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Abstract

How closely related are two nodes in a graph? How to compute this scordyquickuge, disk-resident,
real graphs? Random walk with restart (RWR) provides a good ratevacore between two nodes in
a weighted graph, and it has been successfully used in numerous sdikagsutomatic captioning of
images, generalizations to the “connection subgraphs”, personaligedRBak, and many more. However,
the straightforward implementations of RWR do not scale for large grapgsiring either quadratic space
and cubic pre-computation time, or slow response time on queries.

We propose fast solutions to this problem. The heart of our approackeigtoit two important properties
shared by many real graphs: (a) linear correlations and (b) bloak-aanmunity-like structure. We exploit
the linearity by using low-rank matrix approximation, and the community structyigrdph partitioning,
followed by the Sherman-Morrison lemma for matrix inversion. Experimentallt® on the Corel image
and the DBLP dabasets demonstrate that our proposed methods achidieasigsavings over the straight-
forward implementations: they can sasaveral orders of magnitude in pre-computation and storage cost,
and they achieve up to 150x speed up with 90%-+ quality preservation.
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1 Introduction

Defining the relevance score between two nodes is one of the fundarbeitdéig blocks in graph mining.
One very successful technique is based on random walk with restfRYRRWR has been receiving
increasing interest from both the application and the theoretical point of (gee Section (5) for detailed
review). An important research challenge is its speed. especially fa& ¢aephs.

Mathematically, RWR requires a matrix inversion. There are two straightfdnsalutions, none of
which is scalable for large graphs: The first one is to pre-compute angl @te inversion of a matrix
(“PreCompute” method); the second one is to compute the matrix inversion on the fly, saygthgmower
iteration (‘OnTheFly” method). The first method is fast on query time, but prohibitive on spaeadratic
on the number of nodes on the graph), while the second is slow on query time.

Here we propose a novel solution to this challenge. Our approathiNBtakes the advantage of two
properties shared by many real graphs: (a) the block-wise, commurgtysiilacture, and (b) the linear
correlations across rows and columns of the adjacency matrix. Theggomeethod carefully balances the
off-line pre-processing cost (both the CPU cost and the storage witstthe response quality (with respect
to both the accuracy and the response time). Compar&ie@ompute, it only requires pre-computing
and storing the low-rank approximation of a large but sparse matrix, aridwbision of some small size
matrices. Compared wit®nTheFly, it only need a few matrix-vector multiplication operations in on-line
response process.

The main contributions of the paper are as follows:

e A novel, fast, and practical solution (BIN and its derivative, NBLIN);
e Theoretical justification and analysis, giving an error bound forINI;
e Extensive experiments on several typical applications, with real data.

The proposed method is operational, with careful design and numerboszgtions. Our experimental
results show that, in general, it preserves 90%+ quality, while (a) savesas orders of magnitude of pre-
computation and storage cost owereCompute, and (b) it achieves up to 150x speedup on query time
overOnTheFly. For the DBLP author-conference dataset, with light pre-computatiobs#rage cost, it
achieves up to 1,800x speedup with no quality loss. Figure (1-a) shanes s ults for the auto-captioning
application as in [22]. Figure (1-b) shows some results for the neigbbdrformation application as in [25].

The rest of the paper is organized as follows: the proposed methodsenpee in Section 2; the justifi-
cation and the analysis are provided in Section 3. The experimental resufisegented in Section 4. The
related work is given in Section 5. Finally, we conclude the paper in Section 6

2 Fast RWR

2.1 Preliminary

Table 1 gives a list of symbols used in this paper.

Random walk with restart is defined as equation (1) [22]: consider dorarparticle that starts from
nodei. The particle iteratively transmits to its neighborhood with the probability thabiggational to their
edge weights. Also at each step, it has some probabildayeturn to the nodé The relevance score of node
J wrt node: is defined as the steady-state probabitity that the particle will finally stay at nodg[22].
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(a) Automatic image captioning. The proposed method @ntheFly output the same result within 0.04
seconds and 4.5 seconds, respectively.
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(b) Neighborhood formulation. Find the 10 most related conferencd€foM. The proposed method and
OnTheFly output the same result within 0.013 seconds and 23.97 seconds, neslgecti

Figure 1: Application examples by RWR

(1) 7 = Wi + (1 - o)

Equation (1) defines a linear system problem, whgis determined by:

o= (1-co) —cW) g
(2) = (1-09Q7'g
The relevance score defined by RWR has many good properties: cainpitin those pair-wise metrics,
it can capture the global structure of the graph [14]; compared with tinadtional graph distances (such
as shortest path, maximum flow etc), it can capture the multi-facet relatiobstvigen two nodes [26].

One of the most widely used ways to solve random walk with restart is the viemratthod, iterating
the equation (1) until convergence, that is, until the norm of successive estimates ©fis below our
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Table 1: Symbols

| Symbol | Definition
W = [w; ;] | the weighted graph, <i,j <n
W the normalized weighted matrix associated vith
W, the within-partition matrix associated witl/
W, the cross-partition matrix associated wWi¥i
Q the system matrix associated Wii: Q = I — ¢cW
D n x n matrix, D; ; = Zj w;j andD; ; = 0fori # j
U n x t node-concept matrix
S t x t concept-concept matrix
A\Y t x n concept-node matrix
0 a block matrix, whose elements are all zeros
€; n x 1 starting vector, thé"" elementl and0 for others
7 = [ri;] | m x 1ranking vectory; ; is the relevance score of noglevrt nodes
c the restart probability) < ¢ <1
n the total number of the nodes in the graph
k the number of partitions
t the rank of low-rank approximation
m the maximum iteration number
& the threshold to stop the iteration process
& the threshold to sparse the matrix

threshold¢;, or a maximum iteration stem is reached. In the paper, we refer it @aTheFly method.
OnTheFly does not require pre-computation and additional storage cost. Its oredipense time is linear to
the iteration number and the number of edgegich might be undesirable when (near) real-time response
is a crucial factor while the dataset is large. A nice observation of [25]as tthe distribution ofr; is
highly skewed. Based on this observation, combined with the factor that neahygraphs has block-
wise/community structure, the authors in [25] proposed performing RWRamtkie partition that contains
the starting point (methodBIk). However, for all data points outside the partitief); is simply set0. In
other wordsBlk outputs a local estimation of.

On the other hand, it can be seen from equation (2) that the system Qatiexines all the steady-state
probabilities of random walk with restart. Thus, if we can pre-compute tord @ !, we can gef; real-
time (We refer to this method éreCompute). However, pre-computing and storigy—! is impractical
when the dataset is large, since it requires quadratic space and ceduicmpputatior?.

On the other hand, linear correlations exist in many real graphs, whichsleat we can approximate
W by low-rank approximation. This property allows us to approximate' very efficiently. Moreover,
this enables a global estimation®f unlike the local estimation obtained Bjk. However, due to the low
rank approximation, such kind of estimation is conducted at a coarsetiegolu

'Here, we stordV in a sparse format.
2Even if we use@OnTheFly to compute each column @', the pre-computation cost is still linear to the number of nede



2.2 Algorithm

In summary, the skewed distribution &f and the block-wise structure of the graph lead to a local/fine
resolution estimation; the linear correlations of the graph lead to a globakcesslution estimation. In
this paper, we combine these two properties in a unified manner. The ptbalg®rithm, BLIN is shown

in table (2). A pictorical description of BRIN is given in figure (2).

Table 2: B_LIN
Input: The normalized weighted matr®¥ and the

starting vectog;

Output: The ranking vector;

Pre-Computational Stage(Off-Line):

pl. Partition the graph intb partitions by METIS [19];

p2. Decompos®V into two matricesW = W, + W
according to the partition result, wheW; contains
all within-partition links andW, contains all cross-
partition links;

p3. LetW ; be theit” partition, denotéV, as
equation(3);

p4. Compute and sto®; ; = (I — ¢W ;)" for
each partition;

p5. Do low-rank approximation foW, = USV;

p6. Definte_1 as equation (4). Compute and store
A= (S"'-cvQrlu)l,

Query Stage (On-Line):

gl. Outputi; = (1 —¢)(Q;'G + cQ; 'UAVQ;'&).

Wii 0 .. 0
©) wy=| 0 Wi 0
S e
Q 0 0
(4) Q| 0 @b o
S

2.3 Normalization on W

B_LIN takes the normalized matri¥V as the input. There are several ways to normalize the weighted
matrix W. The most natural way might be by row normalization [22]. Complementarilyadiigors in [27]
propose using the normalized graph Lapalicis¥ & D~Y/2WD~1/2). In [26], the authors also propose
penalizing the famous nodes before row normalization for social network.
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(a) Original weighted graph, consisting of 3 partitions,
which are indicated by the dash circles
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(b) Decompose original weighted graph into within-
partition matrix (W), which is block-diagonal, and
cross-partition matrix, which is approximated by low-
rank approximation{, S, andV)
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(c) Approximate the inverse ¢l — cVV) by the inversi-
on of a few small size matrice®Q( 1, Q1 2, Q1,3 andA),
which can be pre-computed and stored more efficiently.

Figure 2: A pictorical description of BLIN

It should be pointed out that all the above normalization methods can be fitbetthéproposed B.IN.
However, in this paper, we will focus on the normalized graph Laplddiarthe following reasons:

e For real applications, these normalization methods often lead to very similatstegFor cross-
media correlation discovery, our experiments demonstrate that normaliaeld baplacian actually
outperforms the row normalization method, which is originally proposed byuti®es in [22]

e Unlike the other two methods, normalized graph Laplacian outputs the symmd¢siarree score
(that isr; ; = r;;), which is a desirable property for some applications.

e The normalized graph Laplacian is symmetric, and it leads to a symn@@trievhich will save50%
storage cost.

%It should be pointed out that strictly speaking,is no longer a probability distribution. However, for all the applications we
cover in this paper, it does not matter since what we need is a releveoree ©n the other hand, we can always normaliZeo
get a probability distribution.



¢ It might be difficult to develop an error bound for BN in the general case. However, as we will
show in Section 3.3, it is possible to develop an error bound for the simplifiesion (NBLIN) of
B_LIN, which also benefits from the symmetric property of the normalized gtaplacian.

2.4 Partition number k: case study

The partition numbek balances the complexity 3V, andW5,. We will evaluate different values fdrin
the experiment section. Here, we investigate two extreme cages of

First, if k = 1, we haveW; = W andW, = 0. Then, BLIN is just equivalent to thé’reCom-
pute method.

On the other hand, if = n, we haveW; = 0 andW5 = W. In this caseQ; = I and we have the
following simplified version of BLIN as in table(3). We refer it as NBIN.

Table 3: NB_LIN
Input: The normalized weighted matr®%v and the

starting vectog;
Output: The ranking vectof;
Pre-Computational Stage(Off-Line):
pl. Do low-rank approximation foW = USV;
p2. Compute and sto® = (S~ — ¢VU) L,
Query Stage (On-Line):
ql. Output; = (1 — ¢)(& + cCUAVE).

An application of random walk with restart is neighborhood formulation in tipartite graph [25].
Suppose there arg andns nodes for each type of objects in the bipartite graghis then, x no bipartite
matrix. The normalized weighted matrix, the starting vector and the rankingrn/eat@ the following
format:

5 (0 M\ . (7 L (€
© W=y o) 7= () 5= ()

As a direct application of NB.IN, we have the following fast algorithm (BBIN) for one class of
bipartite graph whemn; > ny as in table (4)

Table 4: BB_LIN
Input: The normalized weighted matr®v and the

starting vectog; as equation(b)
Output: The ranking vector; as equation(5)
Pre-Computational Stage(Off-Line):
pl. Compute and stork = (I — M7 M)~;
Query Stage (On-Line):
ql.71 = (1 —¢)(&1 + CMAMTE; 1 + cMAGE; 2)
02.79 = (1 — ¢)(cAM”E; 1 + Aé2)
g3. Outputr; = (71,752)7.




2.5 Low-rank approximation on W,

One natural choice to do low-rank approximationdh is by eigen-value decomposititin

(6) W, = USU”T

where each column df is the eigen-vector oW, andS is a diagonal matrix, whose diagonal elements
are eigen-values V.

The advantage of eigen-value decomposition is that it is ‘optimal’ in terms ohstauction error. Also,
sinceV = U7 in this situation, we can sav#% storage cost. However, one potential problem is that it
might lose the sparsity of original matr®W,. Also, whenW, is large, doing eigen-value decomposition
itself might be time-consuming.

To address this issue, in this paper, we also propose the following hetaidtidow-rank approximation
as in table (5). Its basic idea is that, firstly, constricby partitioningWs; and then use the projection of
W, on the sub-space spanned by the columri afs the low-rank approximation.

Table 5: Low Rank Approximation by Partition

Input: The cross-partition matri¥V, andt

Output: Low rank approximation oW,: U, S,V

1. PartitionW, into ¢ partitions;

2. Construct am x t matrix U. The:*" column of U is
the sum of all the columns 3V, that belong to the
ith partition;

3. Computes = (UTU);

4. ComputeV = UTW,,.

3 Justification and Analysis

3.1 Correctness

Here, we present a brief proof of the proposed algorithms

3.1.1 BLIN

Lemma 1 If W = W, + USV holds, B_LIN outputs exactly the same result as PreCompute
Proof: SinceW] is a block-diagonal matrix. Based on equation (3) and (4), we have
@ (I-cWy) ' =Qr!
Then, based on the Sherman-Morrison lemma [23], we have:
A (St -cvQylu)t
I-cW) ' = (I-c¢W;—cUSV)™!
= Q'+ cQ'UAVQ;!
iio= (1-0)(Qr'é + Q' UAVQ;'e)

4if the other two normalization methods are used, we can do singular vestongbosition instead.




which completes the proof of Lemma 1. It can be seen that the only approxim@dt® LIN comes from
the low-rank approximation foW,.

We can also interpret BIN from the perspective of latent semantic/concept space. By lok-agn
proximation onW,, we actually introduce & x ¢ latent concept space (8 Furthermore, if we treat the
original W as amn x n node spacelJ andV actually define the relationship between these two spades (
for node-concept relationship and for concept-node relationship). Thus, it can be seen that, instead of
doing random walk with restart on the original whole node spackelNBdecomposes it into the following
simple steps:

(1) Doing RWR within the partition that contains the starting point (multiglpy Q;l);
(2) Jumping from node-space to latent concept space (multiply the régt)tlay V);
(3) Doing RWR within the latent concept space (multiply the result of (2Aby

(4) Jumping back to the node space(multiply the result of (3Uby

(5) Doing RWR within each partition until convergence (multiply the result biAQ; ).

3.1.2 NBLIN
Lemma 2 If W = USV holds, NB_LIN outputs exactly the same result as PreCompute

Proof: TakingW; = 0 andQ; = I, by applying Lemma 1, we directly complete the proof of Lemma 2.

3.1.3 BBLIN

Lemma 3 BB_LIN outputs exactly the same result as PreCompute

Proof: Substituting equation (5) into equation (2), we have
i1 o= (1—co)I—AMMD)H(cME; 2+ €i1)
Fio = (1—o)(I—AMIM) HeMTE + )

Solvingr; o directly completes the proof of 'q2’ in table (4).

Define a new RWR, which takes (9ME¢; > + €;1) as the new starting vector; MM as the new
normalized weighted matrix; and 8M(cI)M”) as the low-rank approximation. Applying Lemma 2 to
this RWR, we complete the proof for 'ql’ in table (4), which in turn completegptioef of Lemma 3.

3.2 Computational and storage cost

In this section, we make a brief analysis for the proposed algorithms in teromgdutational and storage
cost. For the limited space, we only provide the result fdrIR.



3.2.1 On-line computational cost

It is not hard to see that, at the on-line query stage &fiB (table 2, step q1), we only need a few matrix-
vector multiplication operations as shown in equation (8). TherefaldN8is capable of meeting the (near)
real-time response requirement.

- Qe
7 — Vi
o AR
i U
noe QU
(8) rio— (=)o +cr)

3.2.2 Pre-computational cost
The main off-line computational cost of the proposed algorithm consistedbtlowing parts:
(1) partitioning the whole graph;
(2) inversion of eacli — cW ;, (i = 1,..., k);
(3) low-rank approximation ofWs;
(4) inversion of(S~! - VQ;'U).

Thus, instead of solving the inversion of the origimakx n matrix, B.LIN1) inversesk + 1 small
matrices inl, i=1,...,k, andA); 2) computes a low-rank approximation of a sparsen matrix (Ws), and
3) partitions the whole graph.

3.2.3 Pre-storage cost

In terms of storage cost, we have to stbre 1 small matrices(Qi}, (i =1,...,k),andA), onen x t matrix
(U) and one x n matrix (V). Moreover, we can further save the storage cost as shown in therifodjo

e An observation from all our experiments is that many elemen&fil}n, U andV are near zeros. Thus,
an optional step is to set these elements to be zero (by the tHr@h@ldd to store these matrices
as sparse format. For all experiments in this paper, we find that this stepgnificantly reduce the
storage cost while almost not affecting the approximation accuracy.

e The normalized graph Laplacian is symmetric, which leads to 1) a symn@g}c and 2)U =

VT, if eigen-value decomposition is used when computing the low-rank apprtgimaBy taking
advantage of this symmetry property, we can further save 50% storage co

50n the other hand, if we use partition-based low-rank approximation abla (&), U and V are usually sparse and thus can
be efficiently stored



3.3 Error Bound

Developing an error bound for the general case of the proposed dsethdifficult. However, for NBLIN
(table 3), we have the following lemma:

Lemma 4 Let 7 and i bethe ranki ng vectors® by PreComputeand by NB_LIN, respectively. If NB_LIN takes

n 1

eigen-value decomposition as low-rank approximation, ||7 — 7| < (1 — ¢) Dimi+1 Tany) Where A; isthe
ith largest eigen-value of W.

Proof: Taking the full eigen-value decomposition fov:

7

9) W =) \-u-ul =USU”
=1

where \; andu; are thei” largest eigen-value and the corresponding eigen-vectdNofrespectively.
U = [ug, ...u,), andS = diag(Ai, ..., A\p)
Notew; - ul = I. We have:

By Lemma 2, we have:

(11) %:(1_C>Zﬁ.ui.u;.a

Thus, we have

Lo 1 -
7=z = [[(1-0¢) Z m “ui - u] Gl
i=t+1 v
n 1 .
< (1-=o Z m S U U;‘FHz - [lézllz
i=t+1 t
= 1
i=t+1 ¢

which completes the proof of Lemma 4.

Here, we ignore the low scrigtof 7 and for simplicity
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4 Experimental Results

4.1 Experimental Setup
4.1.1 Datasets
e ColR

This dataset contains 5,000 images. The images are categorized into $8,ggoch as beach, bird,
mountain, jewelry, sunset, etc. Each of the categories contains 100 imfaggseatially the same content,
which serve as the ground truth. This is a widely used dataset for imags/aetrTwo kinds of low-level
features are used, including color moment and pyramid wavelet texturgdeaVe use exactly the same
method as in [14] to construct the weighted graph maWix which containss, 000 nodes andy 774K
edges

e CoOMMG

This dataset is used in [22], which contains around 7,000 captioned iyresgeswith about 4 captioned
terms. There are in total 160 terms for captioning. In our experiments, in&tfes are set aside for testing.
The graph matridW is constructed exactly as in [22], which contaiids 200 nodes andv 354K edges.

o AP

The author-paper information of DBLP dataset [4] is used to constrectwighted grapfW as in
equation (5): every author is denoted as a nod&inand the edge weight is the number of co-authored
papers between the corresponding two authors. On the whole, there 2reK nodes ands 1,834 K
non-zero edges iW.

o AC

The author-conference information of DBLP dataset [4] is used tatagrighe bipartite grapM.: each
row corresponds to an author and each column corresponds to assw#pand the edge weigh; ; is the
number of papers that th&" author publishes if*” conference. On the whole, there aee291 K nodes
(~ 288 K authors ands 3K conferences) ang 661 K non-zero edges iMVI.

All the above datasets are summarized in table(6):

Table 6: Summary of data sets
| dataset | number of nodes number of edges

ColR 5K ~ TT4K
CoMMG ~ 52K ~ 354K

AP ~ 315K ~ 1,834K

AC ~ 291K ~ 661K

11



4.1.2 Applications

As mentioned before, many applications can be built upon random walk vgitarteln this paper, we test
the following applications:

e Center-piece subgraph discovery (CePs) [26]
e Content based image retrieval (CBIR) [14]
e Cross-modal correlation discovery (CMCD), including automatic captioofrignages [22]

e neighborhood formulation (NF) for both uni-partite graph and bipartitplyfa5s]

The typical datasets for these applications in the past years are sumniaiizele(4.1.2)

Table 7: Summary of typical applications with different datasets

CBIR | CMCD | Ceps| NF
ColR v v
CoMMG v

AP v

AC v

4.1.3 Parameter Setting

The proposed methods are compared voiiTheFly, PreCompute and Blk. All these methods share 3
parameterse, m and&;. we use the same parameters for CBIR as [14], that4s 0.95, m = 50 and
& = 0. For the rest applications, we use the same setting as [22] for simplicity, that i8.9, m = 80
and¢; = 1078,

For B_LLIN and NB_LIN, we take&, = 10~ to sparsifyQ;, U, andV which further reduces storage
cost. We evaluate different choices for the remaining parameters. Fidicelgon, in the following experi-
ments, BLIN is further referred as B.IN(k, ¢, Eig/Part), whereg: is the number of partitior, is the target
rank of the low-rank approximation, and “Eig/Part” denotes the specific adefibr doing low-rank ap-
proximation — “Eig” for eigen-value decomposition and “Part” for partiticaséd low-rank approximation.
Similarly, NB_LIN is further referred as NB_IN(¢, Eig/Part), andlk is further referred aBlk(k).

For the datasets with groundtruth (ColR and CoMMG ), we use the relatmaracy Rel Acu as the
evaluation criterion:

(13) RelAcu = @
Acu

whereAcu and Acu are the accuracy values by the evaluated method afidi§ompute, respectively.
Another evaluation criterion iRelScore,

tSer

tSer’

(24) RelScore =

12



wheretSer andtSer are the total relevance scores captured by the evaluated method &neloynpute,
respectively.
All the experiments are performed on the same machine with 3.2GHz CPU and2@Bry.

4.2 ColR Results

100 images are randomly selected from the original dataset as the quepsiaradjthe precision vs. scope
is reported. The user feedback process is simulated as follows. In@auth of relevance feedback (RF), 5
images that are most relevant to the query based on the current retesutilare fed back and examined.
It should be pointed out that the initial retrieval result is equivalent to fihabheighborhood formulation
(NF). Rel Acu is evaluated on the first 20 retrieved images, that is, the precision withinsh2Giretrieved
images. In figure (3), the results are evaluated from three perspecteeuracy vs. query time (QT),
accuracy vs. pre-computational time (PT) and accuracy vs. pregsteast (PS). In the figure, the QT,
PT and PS costs are in log-scale. Note that pre-computational time andestostcare the same for both
initial retrieval and relevance feedback, therefore, we only repamuracy vs. pre-computational time and
accuracy vs. pre-storage cost for initial retrieval.

Relative Accuracy vs. Query Time Relative Accuray vs. Query Time
s T T L T T T 2 T T L T T

-

1 ! —k = -
<
0.95 ¢ 0.95 * ’ —
*< 0
097 o 0.9 —
0.85} 0.85
- B OnTheFly - B OnTheFly
2 08 *  PreCompute S o8t *  PreCompute 4
=1 a L]
3 ® BIK(50) 8 ®  BIk(50)
< o075 % NB_LIn(600, Eig) <075 % NB_Lin(600, Eig) |
2 < NB_Lin(800, Eig) £ < NB_Lin(800, Eig)
el 0.7 ¢ B_Lin(50, 300, Eig)| T 3 orr ¢ B_Lin(50, 300, Eig) |
® B_Lin(100,300) ® B_Lin(100,300)
0.65} 0.65 f
0.6 0.6 —
0.55} 0.55 —
05 . . . . . . . 05 . . . . . . .
-4 -3 -2 -1 0 1 2 3 4 = -3 -2 -1 0 1 2 3 4
Log Query Time (Sec) Log Query Time (Sec)
(a) Accuracy (Initial) vs. Log QT (b) Accuracy (RF) vs. Log QT
Relative Accuracy vs. Pre-Computational Cost Relative Accuracy vs. Pre-Storage Cost
e
0.95 ¢ 4 0.95} ¢ —
] * 4 o *4q
0.95 4 0.9 —
0.85} 0.85 f
> B OnTheFly > B OnTheFly
g 0.8 *  PreCompute g o8t *  PreCompute 4
3 ® BIK(50) 3 ® BIk(50)
<075 % NB_LIin(600, Eig) <075 *  NB_Lin(600, Eig) |
% < NB_Lin(800, Eig) % < NB_Lin(800, Eig)
© 0.7 ¢ B_Lin(50, 300, Eig)| T ° 0.7 ¢ B_Lin(50, 300, Eig)| |
® B_Lin(100,300) ® B_Lin(100,300)
0.65} 0.65
0.6 4 0.6 —
0.55} 4 0.55} —
05 . . . . . . . . 05 . . . . . . .
Sinf 05 1 15 2 25 3 35 4 45 inf 0.5 1 1.5 2 25 3 35 4
Log Pre-Computational Cost (Sec) Log Pre-Storage Cost (M)
(c)Accuracy (Initial) vs. Log PT (d) Accuracy (Initial) vs. Log PS

Figure 3: Evaluation on ColR for CBIR

13



It can be seen that in all the figures,LBN and NB_LIN always lie in the upper-left zone, which in-
dicates that the proposed methods achieve a good balance between @sfiorse quality and off-line
processing cost. Both BIN and NB_LIN 1) achieve about one order of magnitude speedup (compared
with OnTheFly); and 2) save one order of magnitude on pre-computational and stowaggeFor example,
B_LIN(50, 300, Eig) preserves 95%-+ accuracy for both initial retrieval and relevd@edback, while it 1)
achieves 32x speedup for on-line response (0.09Sec/2.91SechmmhpthOnTheFly; and 2)save 8x on
storage (21M/180M) and 161x on pre-computational cost (90Sec8¢w), compared witRreCompute.
NB_LIN(600,Eig) preserves 93%-+ accuracy for both initial retrieval asldvance feedback, while it 1)
achieves 97x speedup for on-line response (0.03Sec/2.91Sec)ammhwaithOnTheFly; and 2)saves 10x
on storage(17M/180M) and 48x on pre-computational cost (303S&608ec), compared withreCom-
pute.”.

For the task of neighborhood formation (NF), figure (4) shows theltre$uiRelScore vs. scope. It
can been seen that by exploring both the block-wise and linear corraatarcture simultaneously, 1)
bothBIk(50) and NBLIN(50, Eig) capture most neighborhood information (for example, thath bapture
about 90% score for the precision on the first 10 retrieved images)2@aBd_IN(50, 300, Eig) captures
95%-+ score over the whole scope. (The improvement becomes even igrafieant with the increase of
the scope).

Evaluation on Neighbor Formulation

RelScore
o
@
&
/
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4
4

— % —BIK(50) e
0.75} | — + — NB_Lin(300, Eig)
B_Lin(50, 300, Eig)

07 . . . . . . . .
10 20 30 40 50 60 70 80 90 100
Scope

Figure 4: Evaluation on ColR for NF

4.3 CoMMG Results

For this dataset, we only compare NBN with OnTheFly and PreCompute. The results are shown in
figure (6). The x-axis of figure (6) is plotted in log-scale. Again, NBI lies in the upper-left zone in all the
figures, which means that NBIN achieves a good balance between on-line quality and off-line psougs
cost. For example, NRIN(100, Eig) preserves 91.3% quality, while it 1) achieves 154x speéat on-line
response (0.029/4.50Sec), compared WitiTheFly; 2) saves 868x on storage (281/243,900M) and 479x on
pre-computational cost (46/21,951Sec), compared RiéCompute. The relative precision/recall vs. scope
is shown in figure (5).

"We also perform experiment on BlockRank [18]. However, the résigiimilar with OnTheFly. Thus, we do not present it in
this paper.
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Evaluation on Relative Precision
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(a) Relative precision

Evaluation on Relative Recall
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Figure 5: Precision/recall for CMCD

4.4 AP Results

This dataset is used to evaluate Ceps as in [28]I8is used to generate 1000 candidates, which are further
fed to the original Ceps Algorithm [26] to generate the final center-piabgraphs. We fix the number of
guery nodes to bg and the size of the subgraph to2e RelScore is measured by "Important Node Score”
as in [26]. The result is shown in figure (7).

Again, B.LIN lies in the upper-left zone in all the figures, which means thdtlB achieves a good
balance between on-line quality and off-line processing cost. For exaBaléN(100, 4000, Part) pre-
serves 98.9% quality, while it 1) achieves 27x speedup for on-line nsgp@®.45/258.2Sec), compared with
OnTheFly; 2) saves 2264x on storage (269/609,020M) and 214x on pre-cotigmatiecost (8.7/1875Hour),
compared witHPreCompute.

45 AC Results

For this dataset, the number of conferend@¥s)is much less than that of the autho22§K'). We evaluate
BB_LIN for the following four tasks:

e C_C: Given a conference, find its most related conferences

e C_A: Given a conference, find its most related authors
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e A_A: Given an author, find its most related authors

e A_C: Given an author, find its most related conferences

On this application, BBLIN preserves 100% accuracy for all the tasks. Thus, in table (8)pnie
report Query time (QT), Pre-computational time (PT), and Pre-storagje(le8). Note that the query time
for BB_LIN might differ for the different tasks. For clarification, BBIN is further referred as BR.IN(C/A
C/A). (For example, BBLIN(C, A) denotes using BB.IN for C_A task.)

Table 8: Evaluation on AC for NF

Method QT(Sec)| PT(Sec) | PS(M)
OnTheFly 23.97 0 6.7
PreCompute 0.001 | 6,990,648| 626,250
BB_LIN(C, A) 0.097 20.50 56
BB_LIN(C,C) | 0.013 20.50 56
BB_LIN(A, C) 0.035 20.50 56
BB_LIN(A, A) 0.13 20.50 56

As shown in table (8), BBLIN can achieve up to 3 orders of magnitude speedup, with light off-line
computational and storage cost (20.5Sec for pre-computation and S6Mefstorage). For example, it
achieves 180x speedup fArA (0.13/23.98Sec) and 1,800 speedupGo€(0.013/23.98Sec).

5 Related work

In this Section, we briefly review related work, which can be categorizedfmee groups: 1) random walk
related methods; 2) graph partitioning methods and 3) the methods for |évapanoximation.

Random walk related methods.There are several methods similar to RWR, including electricity-based
method [28], graph-based Semi-supervised learning [27] [7] anchsdEaact solution of these methods
usually requires the inversion of a matrix which is often diagonal dominaihbébig size. Other methods
sharing this requirement include regularized regression, Gaussieg@sgreegression [24], and so on. Exist-
ing fast solution for RWR include Hub-vector decomposition based [16Fkostructure based [18] [25];
fingerprint based [9], and so on. Many applications take random walkelated methods as the building
block, including PageRank [21], personalized PageRank [13], SitkRa#&}, neighborhood formulation in
bipartite graphs [25], content-based image retrieval [14], cross ncodalation discovery [22], the BANKS
system [2], ObjectRank [3], RalationalRank [10], and so on.

Graph partition and clustering. Several algorithms have been proposed for graph partition and clus-
tering, e.g. METIS [19], spectral clustering [20], flow simulation [8];aastering [6], and the betweenness
based method [11]. It should be pointed out that the proposed methdtagonal to the partition method.

Low-rank approximation: One of the widely used techniques is singular vector decomposition (S\23) [1
which is the base for a lot of powerful tools, such as latent semantic ind&X [5], principle component
analysis (PCA) [17], and so on. For symmetric matrices, a complementanyiqeehis the eigen-value
decomposition [12]. More recently, CUR decomposition has been prdgossparse matrices [1].
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6 Conclusions

In this paper, we propose a fast solution for computing the random walkegthart. The main contributions
of the paper are as follows:

e The design of BLIN and its derivative, NBLIN. These methods take advantages of the block-wise
structure and linear correlations in the adjacency matrix of real grapbiesg} the Sherman-Morrison
Lemma.

e The proof of an error bound for NBIN. To our knowledge, this is the first attempt to derive an error
bound for fast random walk with restart.

e Extensive experiments are performed on several real datasets, ical gpplications. The results
demonstrate that our proposed algorithm can nicely balance the off-licessing cost and the on-
line response quality. In most cases, our methods preserve 90%+ qudlityjramatic savings on
the pre-computation cost and the query time.

e A fast solution (BBLIN) for one particular class of bipartite graphs. Our method achieve® up
1,800x speedup with light pre-computational and storage cost, withdetisigf quality loss.

Future work includes exploring error bounds for the general caBeldN, and performing comparative
experiments with other candidate solutions, such as [15] and [9].
A Appendix

Sherman-Morrison Lemma [23]: if X! exists, then:

(X —USV) ' =X £ XTUAVX™!

whereA = (S~! — VX~'U)~!
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Figure 6: Evaluation on CoMMG for CMCD
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