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Abstract

How closely related are two nodes in a graph? How to compute this score quickly, on huge, disk-resident,
real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in
a weighted graph, and it has been successfully used in numerous settings, like automatic captioning of
images, generalizations to the “connection subgraphs”, personalized PageRank, and many more. However,
the straightforward implementations of RWR do not scale for large graphs, requiring either quadratic space
and cubic pre-computation time, or slow response time on queries.
We propose fast solutions to this problem. The heart of our approach is toexploit two important properties
shared by many real graphs: (a) linear correlations and (b) block-wise, community-like structure. We exploit
the linearity by using low-rank matrix approximation, and the community structure by graph partitioning,
followed by the Sherman-Morrison lemma for matrix inversion. Experimental results on the Corel image
and the DBLP dabasets demonstrate that our proposed methods achieve significant savings over the straight-
forward implementations: they can saveseveral orders of magnitude in pre-computation and storage cost,
and they achieve up to 150x speed up with 90%+ quality preservation.
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1 Introduction

Defining the relevance score between two nodes is one of the fundamentalbuilding blocks in graph mining.
One very successful technique is based on random walk with restart (RWR). RWR has been receiving
increasing interest from both the application and the theoretical point of view (see Section (5) for detailed
review). An important research challenge is its speed. especially for large graphs.

Mathematically, RWR requires a matrix inversion. There are two straightforward solutions, none of
which is scalable for large graphs: The first one is to pre-compute and store the inversion of a matrix
(“PreCompute” method); the second one is to compute the matrix inversion on the fly, say, through power
iteration (“OnTheFly” method). The first method is fast on query time, but prohibitive on space (quadratic
on the number of nodes on the graph), while the second is slow on query time.

Here we propose a novel solution to this challenge. Our approach, BLIN, takes the advantage of two
properties shared by many real graphs: (a) the block-wise, community-like structure, and (b) the linear
correlations across rows and columns of the adjacency matrix. The proposed method carefully balances the
off-line pre-processing cost (both the CPU cost and the storage cost), with the response quality (with respect
to both the accuracy and the response time). Compared toPreCompute, it only requires pre-computing
and storing the low-rank approximation of a large but sparse matrix, and theinversion of some small size
matrices. Compared withOnTheFly, it only need a few matrix-vector multiplication operations in on-line
response process.

The main contributions of the paper are as follows:

• A novel, fast, and practical solution (BLIN and its derivative, NBLIN);

• Theoretical justification and analysis, giving an error bound for NBLIN;

• Extensive experiments on several typical applications, with real data.

The proposed method is operational, with careful design and numerous optimizations. Our experimental
results show that, in general, it preserves 90%+ quality, while (a) saves several orders of magnitude of pre-
computation and storage cost overPreCompute, and (b) it achieves up to 150x speedup on query time
overOnTheFly. For the DBLP author-conference dataset, with light pre-computational and storage cost, it
achieves up to 1,800x speedup with no quality loss. Figure (1-a) shows some results for the auto-captioning
application as in [22]. Figure (1-b) shows some results for the neighborhood formation application as in [25].

The rest of the paper is organized as follows: the proposed method is presented in Section 2; the justifi-
cation and the analysis are provided in Section 3. The experimental results are presented in Section 4. The
related work is given in Section 5. Finally, we conclude the paper in Section 6.

2 Fast RWR

2.1 Preliminary

Table 1 gives a list of symbols used in this paper.
Random walk with restart is defined as equation (1) [22]: consider a random particle that starts from

nodei. The particle iteratively transmits to its neighborhood with the probability that is proportional to their
edge weights. Also at each step, it has some probabilityc to return to the nodei. The relevance score of node
j wrt nodei is defined as the steady-state probabilityri,j that the particle will finally stay at nodej [22].
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‘Jet’ ‘Plane’ ‘Runway’ ‘Texture’ ‘Candy’ ‘Background’

(a) Automatic image captioning. The proposed method andOnTheFly output the same result within 0.04
seconds and 4.5 seconds, respectively.

(b) Neighborhood formulation. Find the 10 most related conferences forICDM. The proposed method and
OnTheFly output the same result within 0.013 seconds and 23.97 seconds, respectively.

Figure 1: Application examples by RWR

~ri = cW̃~ri + (1− c)~ei(1)

Equation (1) defines a linear system problem, where~ri is determined by:

~ri = (1− c)(I − cW̃)−1~ei

= (1− c)Q−1~ei(2)

The relevance score defined by RWR has many good properties: compared with those pair-wise metrics,
it can capture the global structure of the graph [14]; compared with thosetraditional graph distances (such
as shortest path, maximum flow etc), it can capture the multi-facet relationshipbetween two nodes [26].

One of the most widely used ways to solve random walk with restart is the iterative method, iterating
the equation (1) until convergence, that is, until theL2 norm of successive estimates of~ri is below our
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Table 1: Symbols
Symbol Definition

W = [wi,j ] the weighted graph,1 ≤ i, j ≤ n

W̃ the normalized weighted matrix associated withW

W̃1 the within-partition matrix associated with̃W
W̃2 the cross-partition matrix associated with̃W

Q the system matrix associated withW: Q = I− cW̃

D n× n matrix,Di,i =
∑

j wi,j andDi,j = 0 for i 6= j

U n× t node-concept matrix
S t× t concept-concept matrix
V t× n concept-node matrix
0 a block matrix, whose elements are all zeros
~ei n× 1 starting vector, theith element1 and0 for others
~ri = [ri,j ] n× 1 ranking vector,ri,j is the relevance score of nodej wrt nodei

c the restart probability,0 ≤ c ≤ 1
n the total number of the nodes in the graph
k the number of partitions
t the rank of low-rank approximation
m the maximum iteration number
ξ1 the threshold to stop the iteration process
ξ2 the threshold to sparse the matrix

thresholdξ1, or a maximum iteration stepm is reached. In the paper, we refer it asOnTheFly method.
OnTheFly does not require pre-computation and additional storage cost. Its on-lineresponse time is linear to
the iteration number and the number of edges1, which might be undesirable when (near) real-time response
is a crucial factor while the dataset is large. A nice observation of [25] is that the distribution of~ri is
highly skewed. Based on this observation, combined with the factor that manyreal graphs has block-
wise/community structure, the authors in [25] proposed performing RWR onlyon the partition that contains
the starting pointi (methodBlk). However, for all data points outside the partition,ri,j is simply set0. In
other words,Blk outputs a local estimation of~ri.

On the other hand, it can be seen from equation (2) that the system matrixQ defines all the steady-state
probabilities of random walk with restart. Thus, if we can pre-compute and storeQ−1, we can get~ri real-
time (We refer to this method asPreCompute). However, pre-computing and storingQ−1 is impractical
when the dataset is large, since it requires quadratic space and cubic pre-computation2.

On the other hand, linear correlations exist in many real graphs, which means that we can approximate
W̃ by low-rank approximation. This property allows us to approximateQ−1 very efficiently. Moreover,
this enables a global estimation of~ri, unlike the local estimation obtained byBlk. However, due to the low
rank approximation, such kind of estimation is conducted at a coarse resolution.

1Here, we storeW̃ in a sparse format.
2Even if we useOnTheFly to compute each column ofQ−1, the pre-computation cost is still linear to the number of noden.
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2.2 Algorithm

In summary, the skewed distribution of~ri and the block-wise structure of the graph lead to a local/fine
resolution estimation; the linear correlations of the graph lead to a global/coarse resolution estimation. In
this paper, we combine these two properties in a unified manner. The proposed algorithm, BLIN is shown
in table (2). A pictorical description of BLIN is given in figure (2).

Table 2: B LIN
Input: The normalized weighted matrix̃W and the

starting vector~ei

Output: The ranking vector~ri

Pre-Computational Stage(Off-Line):
p1. Partition the graph intok partitions by METIS [19];
p2. DecomposẽW into two matrices:W̃ = W̃1 + W̃2

according to the partition result, wherẽW1 contains
all within-partition links andW̃2 contains all cross-
partition links;

p3. LetW̃1,i be theith partition, denoteW̃1 as
equation(3);

p4. Compute and storeQ−1
1,i = (I− cW̃1,i)

−1 for
each partitioni;

p5. Do low-rank approximation for̃W2 = USV;
p6. DefineQ−1

1 as equation (4). Compute and store
Λ̃ = (S−1 − cVQ−1

1 U)−1.
Query Stage (On-Line):
q1. Output~ri = (1− c)(Q−1

1 ~ei + cQ−1
1 UΛ̃VQ−1

1 ~ei).

(3) W̃1 =




W̃1,1 0 ... 0

0 W̃1,2 ... 0

... ... ... ...

0 ... 0 W̃1,k




(4) Q−1
1 =




Q−1
1,1 0 ... 0

0 Q−1
1,2 ... 0

... ... ... ...

0 ... 0 Q−1
1,k




2.3 Normalization onW

B LIN takes the normalized matrix̃W as the input. There are several ways to normalize the weighted
matrixW. The most natural way might be by row normalization [22]. Complementarily, theauthors in [27]
propose using the normalized graph Lapalician (W̃ = D−1/2WD−1/2). In [26], the authors also propose
penalizing the famous nodes before row normalization for social network.
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(a) Original weighted graph, consisting of 3 partitions,
which are indicated by the dash circles
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(c) Approximate the inverse of(I− cW̃) by the inversi-
on of a few small size matrices(Q1,1, Q1,2, Q1,3 andΛ̃),
which can be pre-computed and stored more efficiently.

Figure 2: A pictorical description of BLIN

It should be pointed out that all the above normalization methods can be fitted into the proposed BLIN.
However, in this paper, we will focus on the normalized graph Laplacian3 for the following reasons:

• For real applications, these normalization methods often lead to very similar results. (For cross-
media correlation discovery, our experiments demonstrate that normalized graph Laplacian actually
outperforms the row normalization method, which is originally proposed by the authors in [22]

• Unlike the other two methods, normalized graph Laplacian outputs the symmetric relevance score
(that isri,j = rj,i), which is a desirable property for some applications.

• The normalized graph Laplacian is symmetric, and it leads to a symmetricQ1, which will save50%
storage cost.

3It should be pointed out that strictly speaking,~ri is no longer a probability distribution. However, for all the applications we
cover in this paper, it does not matter since what we need is a relevance score. On the other hand, we can always normalized~ri to
get a probability distribution.
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• It might be difficult to develop an error bound for BLIN in the general case. However, as we will
show in Section 3.3, it is possible to develop an error bound for the simplified version (NBLIN) of
B LIN, which also benefits from the symmetric property of the normalized graphLaplacian.

2.4 Partition number k: case study

The partition numberk balances the complexity of̃W1 andW̃2. We will evaluate different values fork in
the experiment section. Here, we investigate two extreme cases ofk.

First, if k = 1, we haveW̃1 = W̃ andW̃2 = 0. Then, BLIN is just equivalent to thePreCom-
pute method.

On the other hand, ifk = n, we haveW̃1 = 0 andW̃2 = W̃. In this case,Q1 = I and we have the
following simplified version of BLIN as in table(3). We refer it as NBLIN.

Table 3: NB LIN
Input: The normalized weighted matrix̃W and the

starting vector~ei

Output: The ranking vector~ri

Pre-Computational Stage(Off-Line):
p1. Do low-rank approximation for̃W = USV;
p2. Compute and storẽΛ = (S−1 − cVU)−1.
Query Stage (On-Line):
q1. Output~ri = (1− c)(~ei + cUΛ̃V~ei).

An application of random walk with restart is neighborhood formulation in the bipartite graph [25].
Suppose there aren1 andn2 nodes for each type of objects in the bipartite graph;M is then1×n2 bipartite
matrix. The normalized weighted matrix, the starting vector and the ranking vector have the following
format:

W̃ =

(
0 M

MT 0

)
~ri =

(
~ri,1

~ri,2

)
~ei =

(
~ei,1

~ei,2

)
(5)

As a direct application of NBLIN, we have the following fast algorithm (BBLIN) for one class of
bipartite graph whenn1 ≫ n2 as in table (4)

Table 4: BB LIN
Input: The normalized weighted matrix̃W and the

starting vector~ei as equation(5)
Output: The ranking vector~ri as equation(5)
Pre-Computational Stage(Off-Line):
p1. Compute and storẽΛ = (I− c2MTM)−1;
Query Stage (On-Line):
q1.~ri,1 = (1− c)(~ei,1 + c2MΛ̃MT~ei,1 + cMΛ̃~ei,2)

q2.~ri,2 = (1− c)(cΛ̃MT~ei,1 + Λ̃~ei,2)
q3. Output~ri = (~ri,1, ~ri,2)

T .
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2.5 Low-rank approximation on W̃2

One natural choice to do low-rank approximation onW̃2 is by eigen-value decomposition4:

(6) W̃2 = USUT

where each column ofU is the eigen-vector of̃W2 andS is a diagonal matrix, whose diagonal elements
are eigen-values of̃W2.

The advantage of eigen-value decomposition is that it is ’optimal’ in terms of reconstruction error. Also,
sinceV = UT in this situation, we can save50% storage cost. However, one potential problem is that it
might lose the sparsity of original matrix̃W2. Also, whenW̃2 is large, doing eigen-value decomposition
itself might be time-consuming.

To address this issue, in this paper, we also propose the following heuristicto do low-rank approximation
as in table (5). Its basic idea is that, firstly, constructU by partitioningW̃2; and then use the projection of
W̃2 on the sub-space spanned by the columns ofU as the low-rank approximation.

Table 5: Low Rank Approximation by Partition
Input: The cross-partition matrix̃W2 andt

Output: Low rank approximation ofW̃2: U,S,V

1. PartitionW̃2 into t partitions;
2. Construct ann× t matrixU. Theith column ofU is

the sum of all the columns of̃W2 that belong to the
ith partition;

3. ComputeS = (UTU)−1;
4. ComputeV = UTW̃2.

3 Justification and Analysis

3.1 Correctness

Here, we present a brief proof of the proposed algorithms

3.1.1 BLIN

Lemma 1 If W̃ = W̃1 + USV holds, B LIN outputs exactly the same result as PreCompute.

Proof: SinceW̃1 is a block-diagonal matrix. Based on equation (3) and (4), we have

(7) (I− cW̃1)
−1 = Q−1

1

Then, based on the Sherman-Morrison lemma [23], we have:

Λ̃ = (S−1 − cVQ−1
1 U)−1

(I− cW̃)−1 = (I− cW̃1 − cUSV)−1

= Q−1
1 + cQ−1

1 UΛ̃VQ−1
1

~ri = (1− c)(Q−1
1 ~ei + cQ−1

1 UΛ̃VQ−1
1 ~ei)

4if the other two normalization methods are used, we can do singular vector decomposition instead.
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which completes the proof of Lemma 1. It can be seen that the only approximation of B LIN comes from
the low-rank approximation for̃W2.

We can also interpret BLIN from the perspective of latent semantic/concept space. By low-rank ap-
proximation onW̃2, we actually introduce at × t latent concept space byS. Furthermore, if we treat the
originalW̃ as ann× n node space,U andV actually define the relationship between these two spaces (U

for node-concept relationship andV for concept-node relationship). Thus, it can be seen that, instead of
doing random walk with restart on the original whole node space, BLIN decomposes it into the following
simple steps:

(1) Doing RWR within the partition that contains the starting point (multiply~ei by Q−1
1 );

(2) Jumping from node-space to latent concept space (multiply the result of (1) by V);

(3) Doing RWR within the latent concept space (multiply the result of (2) byΛ̃);

(4) Jumping back to the node space(multiply the result of (3) byU);

(5) Doing RWR within each partition until convergence (multiply the result of (4) by Q−1
1 ).

3.1.2 NBLIN

Lemma 2 If W̃ = USV holds, NB LIN outputs exactly the same result as PreCompute.

Proof: TakingW̃1 = 0 andQ1 = I, by applying Lemma 1, we directly complete the proof of Lemma 2.

3.1.3 BBLIN

Lemma 3 BB LIN outputs exactly the same result as PreCompute.

Proof: Substituting equation (5) into equation (2), we have

~ri,1 = (1− c)(I− c2MMT )−1(cM~ei,2 + ~ei,1)

~ri,2 = (1− c)(I− c2MTM)−1(cMT~ei,1 + ~ei,2)

Solving~ri,2 directly completes the proof of ’q2’ in table (4).
Define a new RWR, which takes 1)(cM~ei,2 + ~ei,1) as the new starting vector; 2)(cMMT ) as the new

normalized weighted matrix; and 3)(M(cI)MT ) as the low-rank approximation. Applying Lemma 2 to
this RWR, we complete the proof for ’q1’ in table (4), which in turn completes theproof of Lemma 3.

3.2 Computational and storage cost

In this section, we make a brief analysis for the proposed algorithms in terms ofcomputational and storage
cost. For the limited space, we only provide the result for BLIN.
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3.2.1 On-line computational cost

It is not hard to see that, at the on-line query stage of BLIN (table 2, step q1), we only need a few matrix-
vector multiplication operations as shown in equation (8). Therefore, BLIN is capable of meeting the (near)
real-time response requirement.

~r0 ← Q−1
1 ~ei

~ri ← V~r0

~ri ← Λ̃~ri

~ri ← U~ri

~ri ← Q−1
1 ~ri

~ri ← (1− c)(~r0 + c~ri)(8)

3.2.2 Pre-computational cost

The main off-line computational cost of the proposed algorithm consists of the following parts:

(1) partitioning the whole graph;

(2) inversion of eachI− cW̃1,i, (i = 1, ..., k);

(3) low-rank approximation oñW2;

(4) inversion of(S−1 −VQ−1
1 U) .

Thus, instead of solving the inversion of the originaln × n matrix, B LIN1) inversesk + 1 small
matrices (Q−1

1,i , i=1,...,k, and̃Λ); 2) computes a low-rank approximation of a sparsen×n matrix (W̃2), and
3) partitions the whole graph.

3.2.3 Pre-storage cost

In terms of storage cost, we have to storek+1 small matrices (Q−1
1,i , (i = 1, ..., k), andΛ̃), onen× t matrix

(U) and onet× n matrix (V). Moreover, we can further save the storage cost as shown in the following:

• An observation from all our experiments is that many elements inQ−1
1,i , U andV are near zeros. Thus,

an optional step is to set these elements to be zero (by the thresholdξ2) and to store these matrices
as sparse format. For all experiments in this paper, we find that this step will significantly reduce the
storage cost while almost not affecting the approximation accuracy.

• The normalized graph Laplacian is symmetric, which leads to 1) a symmetricQ−1
1,i , and 2)U =

VT , if eigen-value decomposition is used when computing the low-rank approximation5. By taking
advantage of this symmetry property, we can further save 50% storage cost.

5On the other hand, if we use partition-based low-rank approximation as in table (5),U andV are usually sparse and thus can
be efficiently stored
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3.3 Error Bound

Developing an error bound for the general case of the proposed methods is difficult. However, for NBLIN
(table 3), we have the following lemma:

Lemma 4 Let ~r and ~̂r be the ranking vectors 6 by PreComputeand by NB LIN, respectively. If NB LIN takes
eigen-value decomposition as low-rank approximation, ‖~r− ~̂r‖2 ≤ (1− c)

∑n
i=t+1

1
(1−cλi)

, where λi is the

ith largest eigen-value of W̃.

Proof: Taking the full eigen-value decomposition for̃W:

W̃ =
n∑

i=1

λi · ui · uT
i = USUT(9)

whereλi and ui are theith largest eigen-value and the corresponding eigen-vector ofW̃, respectively.
U = [u1, ...un], andS = diag(λ1, ..., λn)

Noteui · uT
i = I. We have:

Λ̃ = (S−1 − cUTU)−1

=
n∑

i=1

λi

(1− cλi)
· ui · uT

i(10)

By Lemma 2, we have:

~r = (1− c)
n∑

i=1

1

(1− cλi)
· ui · uT

i · ~ei

~̂r = (1− c)

t∑

i=1

1

(1− cλi)
· ui · uT

i · ~ei(11)

Thus, we have

‖~r − ~̂r‖2 = ‖(1− c)
n∑

i=t+1

1

(1− cλi)
· ui · uT

i · ~ei‖2

≤ (1− c)‖
n∑

i=t+1

1

(1− cλi)
· ui · uT

i ‖2 · ‖~ei‖2

= (1− c)
n∑

i=t+1

1

(1− cλi)
(12)

which completes the proof of Lemma 4.

6Here, we ignore the low scripti of ~r and~̂r for simplicity
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4 Experimental Results

4.1 Experimental Setup

4.1.1 Datasets

• CoIR

This dataset contains 5,000 images. The images are categorized into 50 groups, such as beach, bird,
mountain, jewelry, sunset, etc. Each of the categories contains 100 images of essentially the same content,
which serve as the ground truth. This is a widely used dataset for image retrieval. Two kinds of low-level
features are used, including color moment and pyramid wavelet texture feature. We use exactly the same
method as in [14] to construct the weighted graph matrixW, which contains5, 000 nodes and≈ 774K

edges

• CoMMG

This dataset is used in [22], which contains around 7,000 captioned images, each with about 4 captioned
terms. There are in total 160 terms for captioning. In our experiments, 1,740images are set aside for testing.
The graph matrixW is constructed exactly as in [22], which contains54, 200 nodes and≈ 354K edges.

• AP

The author-paper information of DBLP dataset [4] is used to construct the weighted graphW as in
equation (5): every author is denoted as a node inW, and the edge weight is the number of co-authored
papers between the corresponding two authors. On the whole, there are≈ 315K nodes and≈ 1, 834K

non-zero edges inW.

• AC

The author-conference information of DBLP dataset [4] is used to construct the bipartite graphM: each
row corresponds to an author and each column corresponds to a conference; and the edge weightMi,j is the
number of papers that theith author publishes injth conference. On the whole, there are≈ 291K nodes
(≈ 288K authors and≈ 3K conferences) and≈ 661K non-zero edges inM.

All the above datasets are summarized in table(6):

Table 6: Summary of data sets
dataset number of nodes number of edges

CoIR 5K ≈ 774K

CoMMG ≈ 52K ≈ 354K

AP ≈ 315K ≈ 1, 834K

AC ≈ 291K ≈ 661K
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4.1.2 Applications

As mentioned before, many applications can be built upon random walk with restart. In this paper, we test
the following applications:

• Center-piece subgraph discovery (CePs) [26]

• Content based image retrieval (CBIR) [14]

• Cross-modal correlation discovery (CMCD), including automatic captioningof images [22]

• neighborhood formulation (NF) for both uni-partite graph and bipartite graph [25]

The typical datasets for these applications in the past years are summarizedin table(4.1.2)

Table 7: Summary of typical applications with different datasets
CBIR CMCD Ceps NF

CoIR
√ √

CoMMG
√

AP
√

AC
√

4.1.3 Parameter Setting

The proposed methods are compared withOnTheFly, PreCompute and Blk. All these methods share 3
parameters:c, m andξ1. we use the same parameters for CBIR as [14], that isc = 0.95, m = 50 and
ξ1 = 0. For the rest applications, we use the same setting as [22] for simplicity, that isc = 0.9, m = 80
andξ1 = 10−8.

For B LIN and NB LIN, we takeξ2 = 10−4 to sparsifyQ1, U, andV which further reduces storage
cost. We evaluate different choices for the remaining parameters. For clarification, in the following experi-
ments, BLIN is further referred as BLIN(k, t, Eig/Part), wherek is the number of partition,t is the target
rank of the low-rank approximation, and “Eig/Part” denotes the specific method for doing low-rank ap-
proximation – “Eig” for eigen-value decomposition and “Part” for partition-based low-rank approximation.
Similarly, NB LIN is further referred as NBLIN( t, Eig/Part), andBlk is further referred asBlk(k).

For the datasets with groundtruth (CoIR and CoMMG ), we use the relative accuracyRelAcu as the
evaluation criterion:

(13) RelAcu =
Âcu

Acu

whereÂcu andAcu are the accuracy values by the evaluated method and byPreCompute, respectively.
Another evaluation criterion isRelScore,

(14) RelScore =
t̂Scr

tScr
,
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wheret̂Scr andtScr are the total relevance scores captured by the evaluated method and byPreCompute,
respectively.

All the experiments are performed on the same machine with 3.2GHz CPU and 2GBmemory.

4.2 CoIR Results

100 images are randomly selected from the original dataset as the query images and the precision vs. scope
is reported. The user feedback process is simulated as follows. In eachround of relevance feedback (RF), 5
images that are most relevant to the query based on the current retrievalresult are fed back and examined.
It should be pointed out that the initial retrieval result is equivalent to thatfor neighborhood formulation
(NF). RelAcu is evaluated on the first 20 retrieved images, that is, the precision within the first 20 retrieved
images. In figure (3), the results are evaluated from three perspectives: accuracy vs. query time (QT),
accuracy vs. pre-computational time (PT) and accuracy vs. pre-storage cost (PS). In the figure, the QT,
PT and PS costs are in log-scale. Note that pre-computational time and storage cost are the same for both
initial retrieval and relevance feedback, therefore, we only report accuracy vs. pre-computational time and
accuracy vs. pre-storage cost for initial retrieval.
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Figure 3: Evaluation on CoIR for CBIR
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It can be seen that in all the figures, BLIN and NB LIN always lie in the upper-left zone, which in-
dicates that the proposed methods achieve a good balance between on-lineresponse quality and off-line
processing cost. Both BLIN and NB LIN 1) achieve about one order of magnitude speedup (compared
with OnTheFly); and 2) save one order of magnitude on pre-computational and storagecost. For example,
B LIN(50, 300, Eig) preserves 95%+ accuracy for both initial retrieval and relevance feedback, while it 1)
achieves 32x speedup for on-line response (0.09Sec/2.91Sec), compared withOnTheFly; and 2)save 8x on
storage (21M/180M) and 161x on pre-computational cost (90Sec/14,500Sec), compared withPreCompute.
NB LIN(600,Eig) preserves 93%+ accuracy for both initial retrieval and relevance feedback, while it 1)
achieves 97x speedup for on-line response (0.03Sec/2.91Sec), compared withOnTheFly; and 2)saves 10x
on storage(17M/180M) and 48x on pre-computational cost (303Sec/14,500Sec), compared withPreCom-
pute.7.

For the task of neighborhood formation (NF), figure (4) shows the result of RelScore vs. scope. It
can been seen that by exploring both the block-wise and linear correlations structure simultaneously, 1)
bothBlk(50) and NBLIN(50, Eig) capture most neighborhood information (for example, they both capture
about 90% score for the precision on the first 10 retrieved images), and2) B LIN(50, 300, Eig) captures
95%+ score over the whole scope. (The improvement becomes even more significant with the increase of
the scope).
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Figure 4: Evaluation on CoIR for NF

4.3 CoMMG Results

For this dataset, we only compare NBLIN with OnTheFly and PreCompute. The results are shown in
figure (6). The x-axis of figure (6) is plotted in log-scale. Again, NBLIN lies in the upper-left zone in all the
figures, which means that NBLIN achieves a good balance between on-line quality and off-line processing
cost. For example, NBLIN(100, Eig) preserves 91.3% quality, while it 1) achieves 154x speedup for on-line
response (0.029/4.50Sec), compared withOnTheFly; 2) saves 868x on storage (281/243,900M) and 479x on
pre-computational cost (46/21,951Sec), compared withPreCompute. The relative precision/recall vs. scope
is shown in figure (5).

7We also perform experiment on BlockRank [18]. However, the resultis similar withOnTheFly. Thus, we do not present it in
this paper.
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Figure 5: Precision/recall for CMCD

4.4 AP Results

This dataset is used to evaluate Ceps as in [26]. BLIN is used to generate 1000 candidates, which are further
fed to the original Ceps Algorithm [26] to generate the final center-piece subgraphs. We fix the number of
query nodes to be3 and the size of the subgraph to be20. RelScore is measured by ”Important Node Score”
as in [26]. The result is shown in figure (7).

Again, B LIN lies in the upper-left zone in all the figures, which means that BLIN achieves a good
balance between on-line quality and off-line processing cost. For example, B LIN(100, 4000, Part) pre-
serves 98.9% quality, while it 1) achieves 27x speedup for on-line response (9.45/258.2Sec), compared with
OnTheFly; 2) saves 2264x on storage (269/609,020M) and 214x on pre-computational cost (8.7/1875Hour),
compared withPreCompute.

4.5 AC Results

For this dataset, the number of conferences (3K) is much less than that of the authors (228K). We evaluate
BB LIN for the following four tasks:

• C C: Given a conference, find its most related conferences

• C A: Given a conference, find its most related authors
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• A A: Given an author, find its most related authors

• A C: Given an author, find its most related conferences

On this application, BBLIN preserves 100% accuracy for all the tasks. Thus, in table (8), weonly
report Query time (QT), Pre-computational time (PT), and Pre-storage cost (PS). Note that the query time
for BB LIN might differ for the different tasks. For clarification, BBLIN is further referred as BBLIN(C/A
C/A). (For example, BBLIN(C, A) denotes using BBLIN for C A task.)

Table 8: Evaluation on AC for NF
Method QT(Sec) PT(Sec) PS(M)
OnTheFly 23.97 0 6.7
PreCompute 0.001 6,990,648 626,250
BB LIN(C, A) 0.097 20.50 56
BB LIN(C, C) 0.013 20.50 56
BB LIN(A, C) 0.035 20.50 56
BB LIN(A, A) 0.13 20.50 56

As shown in table (8), BBLIN can achieve up to 3 orders of magnitude speedup, with light off-line
computational and storage cost (20.5Sec for pre-computation and 56M for pre-storage). For example, it
achieves 180x speedup forA A (0.13/23.98Sec) and 1,800 speedup forC C(0.013/23.98Sec).

5 Related work

In this Section, we briefly review related work, which can be categorized into three groups: 1) random walk
related methods; 2) graph partitioning methods and 3) the methods for low-rank approximation.

Random walk related methods.There are several methods similar to RWR, including electricity-based
method [28], graph-based Semi-supervised learning [27] [7] and so on. Exact solution of these methods
usually requires the inversion of a matrix which is often diagonal dominant and of big size. Other methods
sharing this requirement include regularized regression, Gaussian process regression [24], and so on. Exist-
ing fast solution for RWR include Hub-vector decomposition based [15]; block structure based [18] [25];
fingerprint based [9], and so on. Many applications take random walk and related methods as the building
block, including PageRank [21], personalized PageRank [13], SimRank [16], neighborhood formulation in
bipartite graphs [25], content-based image retrieval [14], cross modalcorrelation discovery [22], the BANKS
system [2], ObjectRank [3], RalationalRank [10], and so on.

Graph partition and clustering. Several algorithms have been proposed for graph partition and clus-
tering, e.g. METIS [19], spectral clustering [20], flow simulation [8], co-clustering [6], and the betweenness
based method [11]. It should be pointed out that the proposed method is orthogonal to the partition method.

Low-rank approximation: One of the widely used techniques is singular vector decomposition (SVD) [12],
which is the base for a lot of powerful tools, such as latent semantic index (LSI) [5], principle component
analysis (PCA) [17], and so on. For symmetric matrices, a complementary technique is the eigen-value
decomposition [12]. More recently, CUR decomposition has been proposed for sparse matrices [1].
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6 Conclusions

In this paper, we propose a fast solution for computing the random walk withrestart. The main contributions
of the paper are as follows:

• The design of BLIN and its derivative, NBLIN. These methods take advantages of the block-wise
structure and linear correlations in the adjacency matrix of real graphes,using the Sherman-Morrison
Lemma.

• The proof of an error bound for NBLIN. To our knowledge, this is the first attempt to derive an error
bound for fast random walk with restart.

• Extensive experiments are performed on several real datasets, on typical applications. The results
demonstrate that our proposed algorithm can nicely balance the off-line processing cost and the on-
line response quality. In most cases, our methods preserve 90%+ quality,with dramatic savings on
the pre-computation cost and the query time.

• A fast solution (BBLIN) for one particular class of bipartite graphs. Our method achieves upto
1,800x speedup with light pre-computational and storage cost, without suffering quality loss.

Future work includes exploring error bounds for the general case ofB LIN, and performing comparative
experiments with other candidate solutions, such as [15] and [9].

A Appendix

Sherman-Morrison Lemma [23]: if X−1 exists, then:

(X−USV)−1 = X−1 + X−1UΛ̃VX−1

whereΛ̃ = (S−1 −VX−1U)−1
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Figure 6: Evaluation on CoMMG for CMCD
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