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Abstract

In recent years, there is a growing interest in using social media to understand social
phenomena. Researchers have demonstrated many important applications of using
online social media to understand real world events, such as presidential election
prediction, earthquake early detection, and disaster management. A social media site
is mixed with di�erent types of users, in terms of gender, location, ideology, and etc.
Di�erent types of users may have di�erent motivations, di�erent opinions towards
certain topics, di�erent resources at their disposal, di�erent behaviors in events. If
researchers want to understand what is happening on a social media site, it is important
to know where a post comes from, who wrote this post, and which party the author
belongs to. However, this information is not explicitly provided by users.

In this thesis, the goal is to predict users’ latent attributes such as their locations,
social identities, and political orientations. Thanks to the massive text data on social
media, we can learn rich knowledge from text to predict users’ attributes. In the
meanwhile, text data from social media often comes with a significant amount of meta
data. Furthermore, data from social networks also contains rich connection information,
eg. mentioning, following. It is still a challenge task to combine text, meta data, user
network together for user attributes prediction.

In this thesis, I approach user attributes prediction at three levels — single post,
user timeline, graph-level classification. I start with a global location prediction
system that uses one single tweet as input to learn one user’s location. It utilizes
location-related features in a tweet, such as text and user profile metadata. I extend
the tweet-level prediction system to user-level, which combines multiple posts in one
user’s timeline. I demonstrate the e�ectiveness of this model on the task of user
social identity classification. An improved user-level hierarchical location prediction
model is also presented. In these described models, I mainly focus on learning user
attributes from users themselves. In the next step, I consider social graph as additional
information to improve performance. Users connected in a social network often
show similarities in certain aspects, which is a well-known phenomenon called social
homophily. Experiments demonstrate that combining a social graph dramatically
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improves the performance of our prediction system compared to the previous user-level
method. As a case study of the attributes prediction system, I apply the method on a
real world emergency event — the novel coronavirus outbreak starting from 2019. I
demonstrate that we gain better understanding of the public conversation during this
global emergency event.
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Chapter 1

Introduction

In recent years, there is a growing interest in using social media to understand social
phenomena. Researchers have demonstrated many important applications of user
activity understanding in online social media, such as presidential election prediction
[110], earthquake early detection [100], and disaster management [25].

Commonly, a social media site is mixed with users with various attributes, in terms
of gender, location, political a�liation, social roles, and etc. Di�erent types of users may
have di�erent motivations, di�erent opinions towards certain topics, di�erent resources
at their disposal, di�erent behaviors in events. If researchers want to understand what
is happening on a social media site, it is important to know where a post comes from,
who wrote this post, and which party the author belongs to.

In this thesis, the goal is to predict users’ latent attributes such as their locations,
social identities, and political orientations. Many times, these attributes are not
explicitly provided by users. For example, there are no ways for users to specify their
ideologies on Twitter. Even though there is a location field in a Twitter user’s profile, it
is often empty or filled with noisy information unrelated with any geographical location
[50]. However, many times online users would unavoidably provide indicative clues
which are helpful for identifying their attributes in their posts. For example, from a
post "food in cmu is delicious :)", we can infer that this user is probably a student
living in Pittsburgh.

Thanks to the massive text data on social media, we can learn rich knowledge from
text to predict users’ attributes. In the meanwhile, text data from social media often
comes with a significant amount of meta data. Take Twitter for example, a single
tweet object contains one short text with multiple meta fields like posting time, tweet
language, user’s personal description, and etc. How to e�ciently handle text data
combined with meta information still needs to be considered. Furthermore, data from



2 Introduction

social networks also contains rich connection information, eg. mentioning, following.
It is still a challenge task to combine text, meta data, user network together for user
attributes prediction.

In this thesis, I approach user attributes prediction at three levels — single post,
user timeline, graph-level classification. First, I present a global location prediction
system that uses one single tweet as input to learn one user’s location. It utilizes
location-related features in a tweet, such as text and user profile metadata. Second, I
extend the tweet-level prediction system to user-level, which combines multiple posts in
one user’s timeline. I will demonstrate the e�ectiveness of this model on the task of user
social identity classification. An improved user-level hierarchical location prediction
model will also be presented. In these described models, I mainly focus on learning
user attributes from users themselves. In the next step, I consider social graph as
additional information to improve performance. Users connected in a social network
often show similarities in certain aspects, which is a well-known phenomenon called
social homophily [73]. As a case study of the attributes prediction system, I apply the
method on a real world emergency event — the novel coronavirus outbreak starting
from 2019. I demonstrate that we gain better understanding of the public conversation
during this global emergency event.

Unlike previous work, my approaches use neural network to learn rich text rep-
resentations and combine various feature fields. With the graph-level classification
framework, the performance is improved a lot. Though I mainly use tweet data to
predict user attributes like location, social identity, the methodology can be easily
extended to other platforms like Facebook and Weibo, as well as other characteristics,
eg. gender and age.

1.1 Background
Web user attributes prediction or user profiling has long been studied in the literature.
Typically, researchers first define several categories to describe users. Then they use
machine learning methods to classify users into these predefined attribute categories.
Early work first represents a research paper by normalized term frequency, then these
term frequency vectors are feed into a k-Nearest Neighbour classifier to classify topics of
these papers [74]. Thus a user’s research interests can be inferred by using cumulative
paper topics. Similarly, Godoy et al. also transform webpages into term vectors, but
they use hierarchical clustering instead of classification to group users based on their
web interests [39].
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Later, various feature engineering based methods are proposed to improve the
performance of user attributes prediction. Following these term frequency based
methods, Shmueli-Scheuer et al. further apply feature selection method to choose
the best feature combinations [104]. Rao et al. create several features like tweeting
frequency and number of followers in addition to the term features for Twitter user
demographic prediction [95]. Similarly, Pennacchiotti add topic features from an LDA
model and sentiment features from a sentiment lexicon for Twitter user classification
[82]. Great improvement has been achieved with these hand-crafted features.

In recent years, deep neural network based methods show great learning capacity
for various machine learning tasks, eg. computer recognition [49], language modeling
[31], text classification [30]. Di�erent from previous research, I propose to use deep
neural networks to get better representative features without heavy feature engineering.
The methods proposed in this thesis can also be easily generalized to other knowl-
edge domains. Although some previous work use network features to improve their
performance [82, 2, 95], most of them only touch some simple network heuristics like
number of followers, n-popular friends. These methods may not fully utilize the network
structure information. In this work, I will incorporate graph neural networks that
propagate features from network neighbourhoods to make a better decision.

1.2 Datasets

1.2.1 Datasets built in this thesis

Tweet-level Location Dataset

For tweet-level geolocation prediction, we collect geotagged tweets from the whole
world between January 7, 2017 and Febuary 1, 2017. For each user appeared in this
collection, we randomly select one tweet for each city that one user has visited before.
There are 3,321,194 users and 4,645,692 tweets in total.

Table 1.1 Summaries about the tweet-level location prediction dataset. Numbers in
brackets are standard deviation.

# of
tweets

# of
users

# of
timezones

# of
lang.

# of countries
(or regions)

Tweets per
country

# of
cities

Tweets per
city

4645692 3321194 417 103 243 19118.0 (99697.1) 3709 1252.5(4184.5)



4 Introduction

Table 1.2 A brief summary of our two identity datasets.

Public figure Identity
Verified Unverified Media Reporter Celebrity Government Company Sport Regular

Train 152368 365749 1140 614 876 844 879 870 6623
Dev. 1452 3548 52 23 38 40 35 43 269
Test 2926 7074 97 39 75 81 66 74 568

Identity Datasets

We build two datasets from Twitter — public figure dataset, identity dataset. In our
first public figure dataset, we use Twitter’s verification as a proxy for public figures,
and these verified accounts include users in music, government, sports, business, and
etc1. We sampled 156746 verified accounts and 376371 unverified accounts through
Twitter’s sample stream data 2. Then we collected their most recent 20 tweets from
Twitter’s API in November 2018. We randomly choose 5000 users as a development set
and 10000 users as a test set. A brief summary of this dataset is shown in Table 1.2.

In addition, we introduce another human labeled identity dataset for fine-grained
identity classification, which contains seven identity classes: “news media”, “news
reporter”, “government o�cial”, “celebrity”, “company”, “sport”, and “regular user”.
For each identity, we manually labelled thousands of Twitter users and collected their
most recent 20 tweets for classification in November 2018. For the regular Twitter
users, we randomly sampled them from the Twitter sample stream.

Political orientation dataset

We also compiled one large-scale political orientation dataset. We first identify several
popular political figures’ Twitter accounts, then collect followers of these accounts.
Those followers who only follow democratic politics are labeled as liberal users, while
those who only follow republican politics are labeled as conservative users. One thing
to note is that we exclude these politics’ accounts in the dataset to make the task
non-trivial. This dataset is built in October 2019. It covers the most recent 200 tweets
of each individual account as of October 2019.

Table 1.3 Statistics of the political orientation dataset

Dataset # of users
Train Dev. Test

Politic 791K 99K 99K
1https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
2https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample.html
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1.2.2 Datasets released by other groups

User-level Location Datasets

For user-level location prediction, we adopt three commonly used benchmark datasets.
They are Twitter-US, Twitter-World, and WNUT.

Twitter-US is a dataset compiled by Roller et al. [98]. It is based on tweets collected
between September 4th and November 29th, 2011. It contains 429K training users, 10K
development users, and 10K test users in North America. The ground truth location
of each user is set to the first geotag of this user in the dataset.

Twitter-World is a Twitter dataset covering the whole world, with 1,367K training
users, 10K development users, and 10K test users [45]. It is collected using Twitter’s
streaming API between September 21 2011 to February 29 2012. The ground truth
location for each user is the center of the closest city to the first geotag of this user.
Only English tweets are included in this dataset, which makes it more challenging for
a global-level location prediction task.

We downloaded these two datasets from website 3. Each user in these two datasets
is represented by the concatenation of their tweets, followed by the geo-coordinates.
We queried Twitter’s API to add user metadata information to these two datasets in
February 2019. We only get metadata for about 53% and 67% users in Twitter-US
and Twitter-World respectively. Because of Twitter’s privacy policy change, we could
not get the time zone information anymore at the time of collection.

WNUT is released in the 2nd Workshop on Noisy User-generated Text [48]. The
original user-level dataset consists of 1 million training users, 10K users in development
set and test set each. The authors filtered geotagged tweets from 2013 to 2016 via
archived data from Twitter Streaming API. Because of Twitter’s data sharing policy,
only tweet ids of training and development data are provided. We have to query
Twitter’s API to reconstruct the training and development dataset. We finished our
data collection around August 2017. About 25% training and development users’ data
cannot be accessed at that time. The full anonymized test data is downloaded from
the workshop website 4.

Table 1.4 shows a brief summary of these three user-level location prediction datasets
we use here.

3https://github.com/afshinrahimi/geomdn
4https://noisy-text.github.io/2016/geo-shared-task.html
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Table 1.4 A brief summary of our user-level location prediction datasets. For each
dataset, we report the number of users, number of users with metadata, number of
tweets, and average number of tweets per user. We collected metadata for 53% and 67%
of users in Twitter-US and Twitter-World. Time zone information was not available
when we collected meta data for these two datasets. About 25% of training and
development users’ data was inaccessible when we collected WNUT in 2017.

Twitter-US Twitter-World WNUT
Train Dev. Test Train Dev. Test Train Dev. Test

# users 429K 10K 10K 1.37M 10K 10K 742K 7.46K 10K
# users
with meta 228K 5.32K 5.34K 917K 6.50K 6.48K 742K 7.46K 10K

# tweets 36.4M 861K 831K 11.2M 488K 315K 8.97M 90.3K 99.7K
# tweets
per user 84.60 86.14 83.12 8.16 48.83 31.59 12.09 12.10 9.97

1.3 Summary of Thesis
This thesis is composed by seven chapters:

• Chapter 1: Introduction

• Chapter 2: Tweet-level Location Prediction (published at SBP-BRiMS 2017 [54])

• Chapter 3: User-level Social Identity Classification (published at Disinformation,
Misinformation, and Fake News in Social Media [58])

• Chapter 4: Hierarchical User Location Prediction (published at EMNLP 2019
[55])

• Chapter 5: Graph-level Attributes Prediction

• Chapter 6: An Empirical Study of the Novel Coronavirus Outbreak on Twitter

The first chapter introduces this thesis and provides some background information.
I present some prior work on attributes prediction for web users. I also introduce
datasets used in this thesis.

The second chapter presents one tweet-level location prediction system that can
operate on the global-level with multi-lingual support. I present a new method to
predict a Twitter user’s location based on the information in a single tweet. This
method integrates text and user profile meta-data into a single model. Our experi-
ments demonstrate that our neural model substantially outperforms baseline methods,
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achieving 52.8% accuracy and 92.1% accuracy on city-level and country-level prediction
respectively.

The third chapter provides a user-level prediction model for social identity clas-
sification on Twitter. It combines information available in users’ timelines. We first
collect a coarse-grained public figure dataset automatically, then manually label a more
fine-grained identity dataset. We propose a hierarchical self-attention neural network
for Twitter user role identity classification. Our experiments demonstrate that the
proposed model significantly outperforms multiple baselines. We further propose a
transfer learning scheme that improves our model’s performance by a large margin and
greatly reduces the need for a large amount of human labeled data.

In the fourth chapter, we propose a hierarchical location prediction neural network
to improve Twitter user geolocation. It first predicts the home country for a user, then
uses the country result to guide the city-level prediction. In addition, we employ a
character-aware word embedding layer to overcome the noisy information in tweets.
It not only improves the prediction accuracy but also greatly reduces the mean error
distance.

In previous chapters, I have shown various methods for user attributes prediction.
Most of them only use user’s local features without any network information, which
may contain useful information for prediction. In the fifth chapter, I combine social
networks into my prediction models. Specifically, I use previous user-level architecture
to extract user representations and build a graph attention network on top these user
representation features. I further demonstrate that under semi-supervised setting we
can greatly improve our system’s performance by adding unlabeled users.

In chapter 6, I show a case study of the presented methods on a global emergency
event — the outbreak of a novel coronavirus disease. With the help of the attributes
prediction system, we are interested in four research questions: 1. Who are the sources
of influential tweets in this global health emergency event? 2. Who are the sources of
fake news and misinformation? 3. Which countries are the origins of fake news and
misinformation? Does fake news distribute the same as real news geographically? 4.
How does fake news and misinformation spread internationally?

Chapter 7 summarizes this thesis and provides some discussion.





Chapter 2

Tweet-level Location Prediction

2.1 Introduction
Recently, there is growing interest in using social media to understand social phenomena.
For example, researchers have shown that analyzing social media reveals important
geospatial patterns for keywords related to presidential elections[110]. People can use
Twitter as a sensor to detect earthquakes in real-time[100]. Recent research also has
demonstrated that Twitter data provides real-time assessments of flu activity[1].

Using Twitter’s API1, a keyword search can be done and we can easily get tweet
streams from across the world containing keywords of interest. However, we cannot
conduct a fine-grained analysis in a specific region using such a keyword-based search
method. Alternatively, using the same API tweets with geo-information can be collected
via a bounding box. Since less than 1% of tweets are tagged with geo-coordinates[43],
using this location-based search means we will lose the majority of the data. If we can
correctly locate those ungeotagged tweets returned from a keyword search stream, that
would enable us to study users in a specific region with far more information.

With this motivation, we are aiming to study the problem of inferring a tweet’s
location. Specifically, we are trying to predict on a tweet by tweet basis, which
country and which city it comes from. Most of the previous studies rely on rich user
information(tweeting history and/or social ties), which is time-consuming to collect
because of the Twitter API’s speed limit. Thus those methods could not be directly
applied to Twitter streams. In this paper, we study a global location prediction system
working on each single tweet. One data sample is one tweet JSON object returned by
Twitter’s streaming API. Our system utilizes location-related features in a tweet, such

1https://dev.twitter.com/docs
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as text and user profile meta-data. We summarize useful features that can provide
information for location prediction in Table 2.1.

Table 2.1 Feature table for tweet location prediction.

Feature Type
Tweet content Free text
User personal description Free text
User name Free text
User profile location Free text
Tweet language(TL) Categorical
User language(UL) Categorical
Timezone(TZ) Categorical
Posting time(PT) UTC timestamp

Recent research has shown that using bag-of-words and classical machine learning
algorithms such as Naive Bayes can provide us a text-based location classifier with good
accuracy[47]. Di�erent from previous research, we intend to use the convolutional neural
network(CNN) to boost prediction power. Inspired by the success of convolutional
neural network in text classification[63], we are going to use CNN to extract location
related features from texts and train a classifier that combines high-level text feature
representations with these categorical features. To benchmark our method, we compared
our approach with a stacking-based method. Experimental results demonstrate that
our approach achieves 92.1% accuracy on country-level prediction and 52.8% accuracy
on city-level prediction, which greatly outperforms our baseline methods on both tasks.

2.2 Related Work
There is increasing interest in inferring Twitter user’s location, which is largely driven
by the lack of su�cient geo-tagged data[43]. In many situations, it is important to know
where a tweet came from in order to use the information in the tweet to e�ect a good
social outcome. Key examples include: disaster relief[67], earthquake detection[36],
and predicting flu trends[1].

A majority of previous works either focus on a local region e.g. United States[26],
Sweden[10], or using rich user information like a certain number of tweets for each
user[26], user’s social relationship[62, 88]. Di�erent from these works, this paper works
on worldwide tweet location prediction. We only utilized features in one single tweet
without any external information. Thus this method could be easily applied to real-time
Twitter stream.
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For fine-grained location prediction, there are several types of location representation
methods existing in literature. One typical method is to divide earth into small grids
and try to predict which cell one tweet comes from. Wing and Baldridge introduced a
grid-based representation with fixed latitude and longitude[116]. Based on the similarity
measured by Kullback-Leibler divergence, they assign each ungeotagged tweet to the
cell with most similar tweets. Because cells in urban area tend to contain far more
tweets than the ones in rural areas, the target classes are rather imbalanced[46]. To
overcome this, Roller et al. further proposed an adaptive grid representation using
K-D tree partition[98]. Another type of representation is topic region. Hong et al.
proposed a topic model to discover the latent topic words for di�erent regions[53].
Such parametric generative model requires a fixed number of regions. However, the
granularity of topic regions is hard to control and will potentially vary over time[47].

The representation we choose is city-based representation considering most tweets
come from urban area. One early work proposed by Cheng et al. using a probabilistic
framework to estimate Twitter user’s city-level location based on the content of
tweets[26]. Their framework tries to identify local words with probability distribution
smoothing. However, such method needs a certain number of tweets(100) for each
user to get a good estimation. Han et al. proposed a stacking-based approach to
predict user’s city[46]. They combine tweet text and meta-data in user profile with
stacking[117]. Specifically, they train a multinomial naive Bayes base classifier on
tweet text, profile location, timezone. Then they train a meta-classifier over the base
classifiers. More recently, Han et al. further did extensive experiments to show that
using feature selection method, such as information gain ratio[90] could greatly improve
the classification performance.

2.3 Tweet Location Prediction
In this section, we will introduce our location prediction approach. We first briefly
describe the useful features in a tweet JSON object. After that, we will further explain
how we utilize these features in our prediction model.

2.3.1 Feature Set

We have listed all useful information we want to utilize in Table 2.1. Tweet content,
user personal description, user name and profile location are four text fields that we
will use. Twitter users often reveal their home location in their profile location and
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personal description. However, location indicating words are often mixed with informal
tweet text(e.g. chitown for Chicago). It is unrealistic to use a gazetteer to find these
words. In this work, we choose to apply CNN on these four text fields to extract
high-level representations.

In addition to these four text fields. there are another three categorical features:
tweet language, user language,and timezone. Tweet language is automatically deter-
mined by Twitter’s language detection tool. User language and timezone are selected
by the user in his/her profile. These three categorical features are particularly useful
for distinguishing users at the country-level.

The last feature is UTC posting time. Using posting timestamp as a discriminative
feature is motivated by the fact that people in a region are more active on Twitter at
certain times during the day. For example, while people in United Kingdom start to
be active at 9:00 am in UTC time, most of the people in United States are still asleep.
We transform the posting time in UTC timestamp into discrete time slots. Specifically,
we divide 24 hours into 144 time slots each with a length of 10 minutes. Thus each
tweet will have a discrete time slot number in the range of 144, which can be viewed
as a categorical feature. In Figure 2.1, we plotted the probability distribution of an
user posting tweets in each time slot in three di�erent countries. As expected, there is
a big variance between these three countries.

Fig. 2.1 The probability of an user posting a tweet in di�erent time slot in three
di�erent countries: United States, United Kingdom, Japan.

2.3.2 Our Approach

Our approach is based on the convolutional neural network for sentence classification
proposed by Kim[63]. Di�erent from traditional bag-of-words method, such convolu-
tional neural networks take the word order into consideration. Our model architecture
is shown in Figure 2.2. We use this CNN architecture to extract high-level features from
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four text fields in a tweet. Let xt
i
œ Rk be the k-dimensional word vector corresponding

to the i-th word in the text t, where t œ {tweet content, user description, profile
location, user name}. As a result, one text of length n can be represented as a matrix

Xt

1:n = xt

1 üxt

2 ü ....üxt

n (2.1)

where ü is concatenation operator. In the convolutional layer, we apply each filter
w œ Rhk to all the word vector matrices, where h is the window size and k is the length
of a word vector. For example, applying filter w to a window of word vectors xt

i:i+h≠1,
we generated ct

i
= f(w ·xt

i:i+h≠1 + b). Here b œ R is a bias term and we choose f(x) as
a non-linear ReLU function max(x,0). Sliding the filter window from the beginning
of a word matrix till the end, we generated a feature vector ct = [ct

1, ct
2, ..., ct

n≠h+1] for
each text t. If we have m filters in the convolutional layer, then we can produce m

feature vectors for each text field and 4m vectors in total.

Fig. 2.2 Architecture of our tweet location prediction model.
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In the max-pooling layer, we apply a pooling operation over each feature vector
generated in the convolutional layer. Each pooling operation takes a feature vector
as input and outputs the maximum value ĉt = max(ct). ĉt can be viewed as the most
representative feature generated by a filter on text t. Hence we finally got a long vector
◊ œ R4m after the max-pooling layer. To avoid the co-adaptation of hidden units, we
apply dropout on the max-pooling layer that randomly set elements in ◊ to zero in the
training phase. After that, we append four categorical features tweet language(TL),
user language(UL), timezone(TZ) and posting time(PT) with one-hot encoding at the
end of ◊ and get ◊̂. In the last fully connected layer, we use a softmax function over
this long vector ◊̂ to generate the probability distribution over locations. Specifically,
the probability of one tweet coming from location li is

P (li|◊̂) = exp(—T
i

◊̂)
qL

j=1 exp(—T
j

◊̂)
(2.2)

where L is the number of locations and —i are parameters in softmax layer. The output
predicted location is just the location with highest probability.

The minimization objective in the training phase is the categorical cross-entropy
loss. The parameters to be estimated include word vectors, weight vectors w for each
filters, the weight vectors — in softmax layer, and all the bias terms. The optimization
is performed using mini-batch stochastic gradient descent and back-propagation[99].

2.4 Data
We used geo-tagged tweets collected from Twitter streaming API2 for training and
evaluation. In this study, we set the geographic bounding box as [-180, -90, 180, 90]
so that we could get these geo-tagged tweets from the whole world. Our collection
started from January 7, 2017 to February 1, 2017. Because it is very common for one
user to post tweets from the same city, we randomly chose one tweet for each city
that one user has visited. This could ensure that there is no strong overlap among
our data samples. We are only using tweets either with specific geo-coordinates or a
geo-bounding box smaller than [0.1,0.1]. For the latter case, we are using the center
of one tweet’s bounding box as its coordinates. Besides this, we haven’t done any
data filtering to ensure our data sample is close to real world situation. There are
3,321,194 users and 4,645,692 tweets in total. We randomly selected 10% users’ tweets

2https://dev.twitter.com/streaming/reference/post/statuses/filter
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as testing data. For the remaining 90% users, we picked tweets from 50,000 of them as
a development set and used the remaining tweets as training data.

There are two location prediction tasks we consider in this paper. The first task is
country-level location prediction. We adopted the country code in the geo-tagged tweet
as the label we want to predict. In our dataset, there are 243 countries and regions in
total. The second task is city-level location classification. We adopt the same city-based
representation as Han et al.[16]. The city-based representation consists of 3,709 cities
throughout the world and is obtained by aggregating smaller cities with the largest
nearby city. We assign the closest city for each tweet based on orthodromic distance.
In Table 2.2 are some basic statistics about our dataset. It is worth mentioning that
this dataset is rather imbalanced, where a majority of tweets are sent from a few
countries/cities.
Table 2.2 Summaries about the dataset. Numbers in brackets are standard deviation.

# of
tweets

# of
users

# of
timezones

# of
lang.

# of countries
(or regions)

Tweets per
country

# of
cities

Tweets per
city

4645692 3321194 417 103 243 19118.0 (99697.1) 3709 1252.5(4184.5)

2.5 Experiments

2.5.1 Evaluation Measures

Following previous work of tweet geolocation prediction[46], we used four evaluation
measures listed below. One thing to note is that when we calculated the error distance
we used distance between predicted city and the true coordinates in the tweet rather
than the center of assigned closest city.

• Acc: The percentage of correct location predictions.

• Acc@Top5: The percentage of true location in our top 5 predictions.

• Acc@161: The percentage of predicted city which are within a 161km(100 mile)
radius of the true coordinates in the original tweet to capture near-misses. This
measure is only tested on city-level prediction.

• Median: The median distance from the predicted city to the true coordinates in
the original tweet. This measure is only tested on city-level prediction.
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2.5.2 Baseline Method

We compared our approach with one commonly used ensemble method in previous
research works [46, 47]. We implemented an ensemble classifier based on stacking[117]
with 5-fold cross validation. The training of stacking consists of two steps. First, five
multinomial naive Bayes base classifiers are trained on di�erent types of data(tweet
content, user description, profile location, user name and the remaining categorical
features). The outputs from the base classifiers are used to train a multinomial naive
Bayes classifier in the second layer. We call such method STACKING in this paper.
Same as [47], we also use information gain ratio to do feature selection on text tokens.
We call STACKING with feature selection STACKING+.

2.5.3 Hyperparameters and Training

We used a tweet-specific tokenizer provided by NLTK to tokenize text fields. We built
our dictionary based on the words that appeared in text, user description, and profile
location. To reduce low-utility words and noise, we removed all words that had a
word frequency less than 10. For our proposed approach, we used filter windows(h)
of 3,4,5 with 128 feature vectors each, a dropout rate of 0.5 and batch size of 1024.
We initialize word vectors using word2vec vectors trained on 100 billion words from
Google News. The vectors have dimensionality of 300 and were trained using the
continuous bag-of-words architecture[75]. For those words that are not included in
word2vec, we initialized them randomly. We also performed early stopping based on
the accuracy over the development set. Training was done through stochastic gradient
descent using Adam update rule with learning rate 10≠3[64]. For our baseline models,
we applied additive smoothing with – = 10≠2, which is selected on the development set.
For STACKING+ method, we first ranked these words by their information gain ratio
value, then selected the top n% words as our vocabulary. The tuning of n is based on
accuracy over the development set. We selected n as 40%, 55% for city-level prediction
and country-level prediction respectively.

2.5.4 Results

The comparison results between our approach and the baseline methods are listed in
Table 2.3. Our approach achieves 92.1% accuracy and 52.8% accuracy on country-level
and city-level location prediction respectively. Our approach is consistently better than
the previous model on the country-level location prediction task as shown in Table
2.3. It greatly outperforms our baseline methods over all the measures, especially on
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Table 2.3 Country-level and city-level location prediction results.

Country City
Acc Acc@Top5 Acc Acc@161 Acc@Top5 Median

STACKING 0.868 0.947 0.389 0.573 0.595 77.5 km
STACKING+ 0.871 0.950 0.439 0.616 0.629 47.2 km
Our approach 0.921 0.972 0.528 0.692 0.711 28.0 km

the city-level prediction task. It could assign more than half of the test tweets to the
correct city and gain more than 20% relative improvement over the accuracy of the
STACKING+ method.

To show the importance of each type of feature, we do an ablation study where we
remove each feature one by one. In Table 2.4, we show the performance of our model
without each type of feature. Bar charts in Figure 2.3 show the performance loss in
country-level and city-level prediction when removing each feature. The profile location
is the most important feature for country-level location prediction. Surprisingly, tweet
text is more important than profile location for predicting user’s home city. Possible
reason is that a lot of users provide meaningless or coarse-grained location in this field
[56]. User’s name is the least informative feature in both cases.

Table 2.4 Ablation study for location prediction.

Country City
Acc. Acc@Top5 Acc. Acc@Top 5 Acc@161

Full model 0.921 0.972 0.528 0.711 0.692
w/o text 0.856 0.939 0.332 0.555 0.549
w/o description 0.906 0.966 0.497 0.680 0.667
w/o location 0.830 0.942 0.400 0.557 0.540
w/o name 0.898 0.964 0.505 0.693 0.678
w/o categorical 0.885 0.955 0.498 0.679 0.662

Our approach performs better for countries with a large number of tweets. In Figure
2.4, we plotted the precision and recall value for each country as a scatter chart. The
dot size is proportional to the number of tweets that come from that country. Turkey
appears to be the country with highest precision and recall. These results suggest that
our approach works better with more data samples.

The same graph is also plotted for city prediction in Figure 2.4. Because of the
skewness of our data and the di�culty of city-level prediction, our classifier tends to
generate labels towards big cities, which leads to high recall and low precision for cities
like Los Angeles.
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Fig. 2.3 Bar charts show the performance loss when removing each feature.

Fig. 2.4 Two scatter graphs that show the performances for each country and cities.
The x-axis is precision, y-axis is recall. Each dot represents a country/city. The dot
size is proportional to the number of tweets that comes from the correponding location.
Some tiny invisible country outside of the scope are not shown in the figure.

For real world applications, people may ask how we could set a threshold to get
prediction results with high confidence. To answer this question, we further examined
the relation between prediction accuracy and the output probability. Here the output
probability is just the probability of our predicted location calculated by equation
2.2. Figure 2.5 shows the distribution of tweets in terms of output probability for
two tasks. As expected, the prediction accuracy increases as the output probability
increases. We get 97.2% accuracy for country-level prediction with output probability
larger than 0.9. Surprisingly, the accuracy of city-level is as high as 92.7% for the
29.6% of the tweets with output probability greater than 0.9. However, the city-level
accuracy for the remaining tweets with output probability less than 0.9 is only 48.4%.
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Unlike country-level prediction, the number of tweets decreases as output probability
increases, unless the output probability is larger than 0.9.

Fig. 2.5 Two bar charts that show the location probability distribution of tweets.
Two bar charts that show the distribution of tweets in terms of the output probability.
The x-axis is the output probability associated with each prediction, the y-axis is the
percentage of tweets. The height of grey bar represents the percentage of test data
that has certain output probability. The height of green bar represents the percentage
of correctly predicted tweets in each probability range. We listed the accuracy for each
probability range above the bar. Take the rightmost bar in country-level prediction for
example, there are 81.8% tweets’ country are predicted with output probability larger
than 0.9. Among these 81.8% tweets, 97.2% are predicted correctly.

2.6 Case Study
In this section, we provide a case study to show how this location prediction system can
help us to better understand a real world dataset. Specifically, we collected a Twitter
dataset using keyword search 3. The keyword we chose here is “ukraine”. In total,
there are 18297 tweets in this dataset, while only 292 of them are geotagged (1.6%).
If we want to find out which countries are mainly involved in the discussion about
Ukraine, only using these 292 tweets can barely provide us meaningful information.

In Figure 2.6, we show the number of geotagged tweets sent from each country
in the left. As expected, Ukraine is the dominant country in the dataset because of
the chosen keyword. Countries ranking the second and third are German and Russia.
However, after we apply our country-level prediction system on this dataset, the country
distribution changes dramatically. Again, Ukraine is the country with the most of
tweets. But this time, United States and United Kingdom turn our to be the countries

3https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters
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with the second/third largest amount of tweets. Based on our further analysis, we
found certain accounts such as news agencies, eg. “JuliaDavisNews” annd “Newsweek”
from United States mentioned Ukraine in their tweets while not using geotags.

Fig. 2.6 Country distribution in the dataset. The left figure is the distribution before
prediction, the right one is after prediction.

Similarly, in the country co-hashtag network, we can see there is very few countries
and links in the co-hashtag network before applying location predictor. Ukraine is the
central node in this graph. After location prediction, there are more conversations
happening between United States and other countries and US turns out to be as
important as UA in the conversation.

2.7 Discussion and Conclusion
These experiments demonstrate that our approach is consistently better than the prior
method thus supporting more tweets to be accurately located by country, and in some
cases by city, of origin. At the country level, the more tweets that come from the
country, the better the prediction. Regardless of the number of tweets per country,
we can predict the country location for most tweets wih extremely high confidence
and accuracy. At the city level the results are more mixed. For a small fraction of
tweets we can get greater than 90% accuracy, but for the rest of tweets the accuracy
is less than 50%. For about half the tweets it is di�cult to infer the city location.
This result is partially due to the fact that we base the prediction on only a single
tweet. Future work may consider using collection of tweets per user. This result is also
partially due to the fact that the data is highly skewed toward a few cities. Future
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Fig. 2.7 A visualization of country co-hashtag network. If two countries share one
common hashtag, then there is a link with weight one connecting these two countries.
Nodes are colored by their total degrees. We hide the links which have weight lower
than the mean value in the visualization. The left figure is the network before location
predicting, the right one is after predicting.

work should develop a training set that is more evenly distributed across cities. Despite
these limitations, this approach shows promise.

This paper presents a method for geo-locating a single tweet based on the information
in a tweet JSON object. The proposed approach integrates tweet text and user profile
meta-data into a single model. Compared to the previous stacking method with
feature selection, our approach substantially outperforms the baseline method. We
developed the approach for both city and country level and demonstrated the ability
to classify almost 50% and 90% of all tweets at city-level and country-level respectively.
The results demonstrate that using a convolutional neural network utilizes the textual
location information better than previous approaches and boosts the location prediction
performance substantially.





Chapter 3

User-level Social Identity
Classification

3.1 Introduction
An identity is a characterization of the role an individual takes on. It is often described
as the social context specific personality of an individual actor or a group of people [5].
Identities can be things like jobs (e.g. “lawyer”, “teacher”), gender (man, woman), or
a distinguishing characteristic (e.g. “a shy boy”, “a kind man”). People with di�erent
identities tend to exhibit di�erent behaviors in the social space [21]. In this paper, we
use identity to refer to the roles individuals or groups play in society.

Specifically on social media platforms, there are many di�erent kinds of actors
using social media, e.g., people, organizations, and bots. Each type of actors has
di�erent motivations, di�erent resources at their disposal, and may be under di�erent
internal policies or constraints on when they can use social media, how they can
represent themselves, and what they can communicate. If we want to understand who
is controlling the conversation and whom is being impacted, it is important to know
what types of actors are doing what.

To date, for Twitter, most research has separated types of actors largely based on
whether the accounts are verified by Twitter or not [51], or whether they are bots or
not [27]. However, a variety of di�erent types of actors may be verified - e.g., news
agencies, entertainment or sports team, celebrities, and politicians. Similarly, bots can
vary - e.g., news bots and non-news bots. If we could classify the identities of actors
on Twitter, we could gain an improved understanding of who was doing the influencing
and who was being influenced [24]. This would lead to improved accuracy in measuring
the impact of marketing and influence campaigns.
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In this paper, the primary goal is to classify Twitter users based on their identities
on social media. First, we introduce two datasets for Twitter user identity classification.
One is automatically collected from Twitter aiming at identifying public figures on
social media. Another is a human labeled dataset for more fine-grained Twitter user
identity classification, which includes identities like government o�cials, news reporters,
etc. Second, we present a hierarchical self-attention neural network for Twitter user
identity classification. In our experiments, we show our method achieves excellent
results when compared to many strong classification baselines. Last but not least, we
propose a transfer learning scheme for fine-grained user identity classification which
boosts our model’s performance a lot.

3.2 Related Work
Sociologists have long been interested in the usage of identities across various social
contexts [107]. As summarized in [106], three relatively distinct usages of identity exist
in the literature. Some use identity to refer to the culture of a people [20]. Some use it
to refer to common identification with a social category [108]. While others use identity
to refer to the role a person plays in highly di�erentiated contemporary societies. In
this paper, we use the third meaning. Our goal for identity classification is to separate
actors with di�erent roles in online social media.

Identity is the way that individuals and collectives are distinguished in their relations
with others [60]. Certain di�culties still exist for categorizing people into di�erent
groups based on their identities. Recasens et al. [96] argue that identity should be
considered to be varying in granularity and a categorical understanding would limit us
in a fixed scope. While much work could be done along this line, at this time we adopt
a coarse-grained labeling procedure, that only looks at major identities in the social
media space.

Twitter, a popular online news and social networking site, is also a site that a�ords
interactive identity presentation to unknown audiences. As pointed out by Robinson
[97], individuals form new cyber identities on the internet, which are not necessarily
the way they would be perceived o�ine. A customized identity classifier is needed for
online social media like Twitter.

A lot of research has tried to categorize Twitter users based on certain criteria, like
gender [18], location [54], and political orientation [29]. Another similar research topic
is bot detection [27], where the goal is to identify automated user accounts from normal
Twitter accounts. Di�ering from them, our work tries to categorize Twitter users
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based on users’ social identity or social roles. Similarly, Priante et al. [86] also study
identity classification on Twitter. However, their approach is purely based on profile
description, while we combine user self-description and tweets together. Additionally,
we demonstrate that tweets are more helpful for identity classification than personal
descriptions in our experiments.

In fact, learning Twitter users’ identities can benefit other related tasks. Twitter
is a social media where individual user accounts and organization accounts co-exist.
Many user classification methods may not work on these organization accounts, e.g.,
gender classification. Another example is bot detection. In reality, accounts of news
agencies and celebrities often look like bots [28], because these accounts often employ
automated services or teams (so called cyborgs), and they also share features with
certain classes of bots; e.g., they may be followed more than they follow. Being able to
classify actors’ roles on Twitter would improve our ability to automatically di�erentiate
pure bots from celebrity accounts.

3.3 Method
In this section, we describe details of our hierarchical self-attention neural networks.
The overall architecture is shown in Figure 3.1. Our model first maps each word into a
low dimension word embedding space, then it uses a Bidirectional Long Short-Term
Memory (Bi-LSTM) network [52] to extract context specific semantic representations
for words. Using several layers of multi-head attention neural networks, it generates a
final classification feature vector. In the following parts, we elaborate these components
in details.

Fig. 3.1 The architecture of hierarchical self-attention neural networks for identity
classification.
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3.3.1 Word Embedding

Our model first maps each word in description and tweets into a word embedding space
œ RV ◊D by a table lookup operation, where V is the vocabulary size, and D is the
embedding dimension.

Because of the noisy nature of tweet text, we further use a character-level con-
volutional neural network to generate character-level word embeddings, which are
helpful for dealing with out of vocabulary tokens. More specifically, for each character
ci in a word w = (c1, ..., ck), we first map it into a character embedding space and
get vci œ Rd. Then a convolutional neural network is applied to generate features
from characters [63]. For a character window vci:ci+h≠1 œ Rh◊d, a feature ◊i is gener-
ated by ◊i = f(w · vci:ci+h≠1 + b) where w œ Rh◊d and b are a convolution filter and a
bias term respectively, f(·) is a non-linear function relu. Sliding the filter from the
beginning of the character embedding matrix till the end, we get a feature vector
◊ = [◊1,◊2, ...,◊k≠h+1]. Then, we apply max pooling over this vector to get the most
representative feature. With D such convolutional filters, we get the character-level
word embedding for word w.

The final vector representation vw œ R2D for word w is just the concatenation of its
general word embedding vector and character-level word embedding vector. Given one
description with M tokens and T tweets each with N tokens, we get two embedding
matrices Xd œ RM◊2D and Xt œ RT ◊N◊2D for description and tweets respectively.

3.3.2 Bi-LSTM

After get the embedding matrices for tweets and description, we use a bidirectional
LSTM to extract context specific features from each text. At each time step, one
forward LSTM takes the current word vector vwi and the previous hidden state

≠≠≠æ
hwi≠1

to generate the hidden state for word wi. Another backward LSTM generates another
sequence of hidden states in the reversed direction.

≠æ
hwi = ≠≠≠≠æ

LSTM(vwi ,
≠≠≠æ
hwi≠1)

Ω≠
hwi = Ω≠≠≠≠

LSTM(vwi ,
Ω≠≠≠
hwi+1)

(3.1)

The final hidden state hwi œ R2D for word wi is the concatenation of
≠æ
hwi and

Ω≠
hwi as

hwi = [
≠æ
hwi ,

Ω≠
hwi ]. With T tweets and one description, we get two hidden state matrices

Ht œ RT ◊N◊2D and Hd œ RM◊2D.
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3.3.3 Attention

Following the Bi-LSTM layer, we use a word-level multi-head attention layer to find
important words in a text [112].

Specifically, a multi-head attention is computed as follows:

MultiHead(Hd) = Concat(head1, ...,headh)W O

headi = softmax(HdW Q

i
· (HdW K

i
)T
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dk
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œ R2D◊dk , and W O œ Rhdk◊2D are projection pa-

rameters for query, key, value, and output respectively.
Take a user description for example. Given the hidden state matrix Hd of the

description, each head first projects Hd into three subspaces — query HdW Q

i
, key

HdW K
i

, and value HdW V
i

. The matrix product between key and query after softmax
normalization is the self-attention, which indicates important parts in the value matrix.
The multiplication of self-attention and value matrix is the output of this attention
head. The final output of multi-head attention is the concatenation of h such heads
after projection by W O.

After this word-level attention layer, we apply a row-wise average pooling to get a
high-level representation vector for description.

Rd = row_avg(MultiHeadw(Hd)) œ R2D (3.2)

Similarly, we can get T representation vectors from T tweets using the same word-level
attention, which forms Rt œ RT ◊2D.

Further, a tweet-level multi-head attention layer computes the final tweets repre-
sentation vector R̄t as follows:

R̄t = row_avg(MultiHeadt(Rt)) œ R2D (3.3)

In practise, we also tried using an additional Bi-LSTM layer to model the sequence of
tweets, but we did not observe any significant performance gain.

Given the description representation Rd and tweets representation R̄t, a field
attention generates the final classification feature vector

Rf = row_avg(MultiHeadf ([Rd;R̄t])) (3.4)
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where [Rd;R̄t] œ R2◊2D means concatenating by row.

3.3.4 Final Classification

Finally, the probability for each identity is computed by a softmax function:

P = softmax(WRf + b) (3.5)

where W œ R|C|◊2D is the projection parameter, b œ R|C| is the bias term, and C is the
set of identity classes. We minimize the cross-entropy loss function to train our model.

3.4 Experiments

3.4.1 Dataset

To examine the e�ectiveness of our method, we collect two datasets from Twitter. The
first is a public figure dataset. We use Twitter’s verification as a proxy for public
figures. These verified accounts include users in music, government, sports, business,
and etc1. We sampled 156746 verified accounts and 376371 unverified accounts through
Twitter’s sample stream data 2. Then we collected their most recent 20 tweets from
Twitter’s API in November 2018. We randomly choose 5000 users as a development
set and 10000 users as a test set. A summary of this dataset is shown in Table 3.1.

Public Figure Identity
Verified Unverified Media Reporter Celebrity Government Company Sport Regular

Train 152368 365749 1140 614 876 844 879 870 6623
Dev. 1452 3548 52 23 38 40 35 43 269
Test 2926 7074 97 39 75 81 66 74 568

Table 3.1 A brief summary of our two datasets.

In addition, we introduce another human labeled identity dataset for more fine-
grained identity classification, which contains seven identity classes: “news media”,
“news reporter”, “government o�cial”, “celebrity”, “company”, “sport”, and “regular
people”. For each identity, we manually labelled thousands of Twitter users and
collected their most recent 20 tweets for classification in November 2018. For the
regular Twitter users, we randomly sampled them from the Twitter sample stream.
News media accounts are these o�cial accounts of news websites like BBC. News

1https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
2https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample.html
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News Media News Reporter Celebrity Government O�cial Company Sport
CBSNews PamelaPaulNYT aliciakeys USDOL VisualStudio NBA
earthtimes HowardKurtz Adele RepRichmond lifeatgoogle Pirates
BBCNewsAsia jennaportnoy GreenDay HouseGOP BMW NFL
phillydotcom wpjenna ladygaga BelgiumNATO AEO KKRiders
TheSiasatDaily twithersAP TheEllenShow usafpressdesk Sony USAGym

Table 3.2 Five representative Twitter handles for each identity class except for regular
users.

reporters are mainly composed of news editors or journalists. Government o�cials
represent government o�ces or politicians. We collected these three types of accounts
from corresponding o�cial websites. For the other three categories, we first search
Twitter for these three categories, and then we downloaded their most recent tweets
using Twitter’s API. Two individual workers labeled these users independently, and we
include users that both two workers agreed on. The inter-rater agreement measure is
0.96. In Table 3.2, we list several representative Twitter handles for each identity class
except for regular users. Table 2.2 shows a summary of this dataset. Since regular
users are the majority of Twitter users, about half of the users in this dataset are
regular users.

This paper focuses on a content-based approach for identity classification, so we
only use personal description and text of each tweet for each user.

3.4.2 Hyperparameter Setting

In our experiments, we initialize the general word embeddings with released 300-
dimensional Glove vectors3 [83]. For words not appearing in Glove vocabulary, we ran-
domly initialize them from a uniform distribution U(≠0.25,0.25). The 100-dimensional
character embeddings are initialized with a uniform distribution U(≠1.0,1.0). These
embeddings are adapted during training. We use filter windows of size 3,4,5 with 100
feature maps each. The state dimension D of LSTM is chosen as 300. For all the
multi-head attention layers, we choose the number of heads as 6. We apply dropout
[105] on the input of Bi-LSTM layer and also the output of the softmax function in
these attention layers. The dropout rate is chosen as 0.5. The batch size is 32. We use
Adam update rule [64] to optimize our model. The initial learning rate is 10≠4 and it
drops to 10≠5 at the last 1/3 epochs. We train our model 10 epochs, and every 100
steps we evaluate our method on development set and save the model with the best
result. All these hyperparameters are tuned on the development set of identity dataset.

3https://nlp.stanford.edu/projects/glove/
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3.4.3 Baselines

MNB: Multinomial Naive Bayes classifier with unigrams and bigrams. The term
features are weighted by their TF-IDF scores. Additive smoothing parameter is set as
10≠4 via a grid search on the development set of identity dataset.
SVM: Support Vector Machine classifier with unigrams and linear kernel. The term
features are weighted by their TF-IDF scores. Penalty parameter is set as 100 via a
grid search on the development set of identity dataset.
CNN: Convolutional Neural Networks [63] with filter window size 3,4,5 and 100 feature
maps each. Initial learning rate is 10≠3 and drops to 10≠4 at the last 1/3 epochs.
Bi-LSTM: Bidirectional-LSTM model with 300 hidden states in each direction. The
average of output at each step is used for the final classification.
Bi-LSTM-ATT: Bidirectional-LSTM model enhanced with self-attention. We use
multi-head attention with 6 heads.
fastText [61]: we set word embedding size as 300, use unigram, and train it 10 epochs
with initial learning 1.0.
For methods above, we combine personal description and tweets into a whole document
for each user.

3.4.4 Results

Table 3.3 Comparisons between our methods and baselines on identity classification.

Public Figure Identity
Accuracy Macro-F1 Accuracy Macro-F1

Baselines MNB 81.81 82.79 82.9 75.91
SVM 90.60 88.59 85.9 80.19
fastText 90.93 89.01 85.7 80.01
CNN 91.45 89.85 85.9 81.24
Bi-LSTM 93.10 91.84 86.5 84.25
Bi-LSTM-ATT 93.23 91.94 87.3 83.35

Ablated Models

w/o attentions 93.78 92.45 87.0 83.26
w/o charcnn 93.47 92.23 89.0 85.39
w/o description 92.39 90.90 86.7 81.56
w/o tweets 91.62 89.77 84.2 78.41
Full Model 94.21 93.07 89.5 86.09
Full Model-transfer 91.6 88.63

In Table 3.3, we show comparison results between our model and baselines. Gener-
ally, LSTM based methods work the best among all these baseline approaches. SVM
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Table 3.4 The e�ectiveness of di�erent levels of attentions tested on the identity dataset.

Accuracy Macro-F1
Full Model 89.5 86.09
w/o word attention 88.8 84.41
w/o field attention 88.5 85.24
w/o tweet attention 88.5 84.6
w/o all attention 87.0 83.26

has comparable performance to these neural network based methods on the identity
dataset, but falls behind on the larger public figure dataset.

Our method outperforms these baselines on both datasets, especially for the more
challenging fine-grained identity classification task. Our model can successfully iden-
tify public figures with accuracy 94.21% and classify identity with accuracy 89.5%.
Compared to a strong baseline Bi-LSTM-ATT, our model achieves a 2.2% increase in
accuracy, which shows that our model with structured input has better classification
capability.

We further performed ablation studies to analyze the contribution of each model
component, where we removed attention modules, character-level word embeddings,
tweet texts, and user description one by one at a time. As shown in Table 4.3, attention
modules make a great contribution to the final classification performance, especially for
the more fine-grained task. We present the performance breakdown for each attention
module in Table 3.4. Each level of attention e�ectively improve the performance
of our model. Recognizing important words, tweets, and feature fields at di�erent
levels is helpful for learning classification representations. According to Table 4.3, the
character-level convolutional layer is also helpful for capturing some character-level
patterns.

We also examined the impact of two di�erent text fields: personal description and
tweets. Indeed, we found that what users tweeted about is more important than what
they described themselves. On both datasets, users’ tweets provide more discriminative
power than users’ personal descriptions.

3.4.5 Transfer Learning for Fine-grained Identity Classifica-
tion

In reality, it is expensive to get a large-scale human labeled dataset for training a
fine-grained identity classifier. However, a well-known drawback of neural network
based methods is that they require a lot of data for training. Recently, learning
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from massive data and transferring learned knowledge to other tasks attracts a lot
of attention [85, 33]. Since it is relatively easier to get a coarse-grained public figure
dataset to classify those public figures, we explore how to use this coarse-grained public
figure dataset to help the training of fine-grained identity classifier.

Fig. 3.2 Performance comparison between our model with transfer learning and without.
We train our model on various amounts of training data.

Specifically, we first pretrain a binary classifier on the public figure dataset and
save the best trained model on its development set. To make a fair comparison, we
excluded all the users appearing in identity dataset from the public figure dataset when
we built our datasets. Then we initialize the fine-grained identity classifier with this
pretrained model except for the final classification layer. After such initialization step,
we first train the final classification layer for 3 epochs with learning rate 0.01, and
then train our full identity classification model with the same procedure as before. We
observe a big performance boost when we apply such pretraining as shown in Table 4.3.
The classification accuracy for the fine-grained task increases by 2.1% with transfer
learning.

We further examined the performance of our model with pretraining using various
amounts of training data. As shown in Figure 3.2, our pretrained model reaches a
comparable performance only with 20%-30% labeled training data when compared
to the model trained on full identity dataset without pretraining. Using only 20% of
training data, we can get accuracy 0.888 and F1 0.839. If we increase the data size
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to 30% of the training data, the accuracy and F1 will increase to 0.905 and 0.863
respectively. Such pretraining makes great improvements over fine-grained identity
classification especially when we lack labeled training data.

3.4.6 Case Study

In this section, we present a case study in the test set of identity dataset to show the
e�ectiveness of our model. Because of the di�culties of visualizing and interpreting
multi-head attention weights, we instead average over the attention weights in multiple
heads which gives us an approximation of the importance of each word in texts. Take
the user description for example, the approximated importance weight of each word in
the description is given by

–d = row_avg( 1
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Similarly, we can get the importance weights for tweets as well as words in tweets.

Fig. 3.3 The visualization of attention weights for each tweet and description. The
color depth denotes the importance degree of a word per tweet. The importance of
each tweet is depicted as the background color of corresponding tweet header.

In Figure 3.3, we show twenty tweets and a description from a government o�cial
user. We use the background color to represent importance weight for each word.
The color depth denotes the importance degree of a word per tweet. We plot the
tweet-level importance weights as the background color of tweet index at the beginning
of each tweet. As shown in this figure, words like “congressman”, “legislation” in this
user’s description are important clues indicating his/her identity. From the tweet-level
attention, we know that 8th and 14th tweets are the most important tweets related
with the identity because they include words like “legislation” and “bipartisan”. On
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Truth
Prediction Regular Media Celebrity Sport Company Government Reporter

Regular 535 10 12 0 5 2 4
Media 6 81 1 4 2 2 1
Celebrity 15 0 55 2 2 1 0
Sport 1 1 0 71 1 0 0
Company 1 2 1 4 58 0 0
Government 1 1 0 0 0 79 0
Reporter 1 0 1 0 0 0 37

Table 3.5 The confusion matrix on the test set of identity dataset

the contrary, 5th tweet of this user only contain some general words like “car”, which
makes it less important than other tweets.

3.4.7 Error Analysis

We perform an error analysis to investigate why our model fails in certain cases. Table
3.5 shows the confusion matrix generated from prediction results of our identity dataset.
As shown in this table, it is relatively harder for our model to distinguish between
celebrities and regular users. We further looked at such errors with high confidences
and found that some celebrities just have not posted any indicating words in their
tweets or descriptions. For example, one celebrity account only use “A Virgo” in the
description without any other words, which makes this account predicted as a regular
user. Including other features like number of followers or network connections may
overcome this issue, and we leave it for future work. Another common error happens
when dealing with non-English tweets. Even enhanced with transferred knowledge
from the large-scale verify dataset, our model still cannot handle some rare languages
in the data.

In Table 3.6, we also show the testing performance for users with di�erent languages.
Since most of our labeled users speak English, the identity classifier works better in
this case. For other users who use languages such as Spanish and Portuguese, the
performance is much worse especially for the F1 score. For future work, we should take
more labeled non-English speakers into consideration.

3.5 Discussion & Conclusion
As previously discussed, identities can vary in granularity. We examined two levels -
coarse grained (verified or not) and more fine grained (news media, government o�cials,
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lang # of users Accuracy Macro-F1
English 574 91.11 90.35
Spanish 94 88.30 70.51
Arabic 51 96.08 96.64
Portuguese 36 91.67 65.10
French 20 90.0 55.26

Table 3.6 Testing performance for users with di�erent languages (top 5).

etc.). However, there could be more levels. This limits our understanding of activities
of online actors with those identities. A hierarchical approach for identity classification
might be worth further research. Future research should take this into consideration
and learn users’ identities in a more flexible way. Besides, because of the nature of
social media, the content on Twitter would evolve rapidly. In order to deploy our
method in real-time, we need consider an online learning procedure that adapts our
model to new data patterns. Since our method is purely content-based, potential
improvements could be made using additional information like the number of users’
followers, users’ network connections, and even their profile images. We leave this as
our future work.

In the real-world people often have multiple identities - e.g., Serbian, Entrepreneur,
Policewoman, Woman, Mother. The question is what is the relation between identities,
users, and user accounts. Herein, we treat each account as a di�erent user. However, in
social media, some people use di�erent accounts and/or di�erent social media platforms
for di�erent identities - e.g., Facebook for Mother, Twitter for Entrepreneur and a
separate Twitter handle for o�cial policewoman account. In this paper, we made no
e�ort to determine whether an individual had multiple accounts. Thus, the same user
may get multiple classifications if that user has multiple accounts. Future work should
explore how to link multiple identities to the same user. To this point, when there is
either a hierarchy of identities or orthogonal identity categories, then using identities
at di�erent levels of granularity, as we did herein, enables multiple identities to be
assigned to the same account and so to the same user.

In conclusion, we introduce two datasets for online user identity classification. One
is automatically extracted from Twitter, the other is a manually labelled dataset. We
present a novel content-based method for classifying social media users into a set of
identities (social roles) on Twitter. Our experiments on two datasets show that our
model significantly outperforms multiple baseline approaches. Using one personal
description and up to twenty tweets for each user, we can identify public figures with
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accuracy 94.21% and classify more fine-grained identities with accuracy 89.5%. We
proposed and tested a transfer learning scheme that further boosts the final identity
classification accuracy by a large margin. Though, the focus of this paper is learning
users’ social identities. It is possible to extend this work to predict other demographics
like gender and age.



Chapter 4

Hierarchical User Location
Prediction

4.1 Introduction
Accurate estimation of user location is an important factor for many online services,
such as recommendation systems [89], event detection [100], and disaster management
[22]. Though internet service providers can directly obtain users’ location information
from some explicit metadata like IP address and GPS signal, such private information
is not available for third-party contributors. With this motivation, researchers have
developed location prediction systems for various platforms, such as Wikipedia [81],
Facebook [9], and Twitter [45].

In the case of Twitter, due to the sparsity of geotagged tweets [40] and the unreli-
ability of user self-declared home location in profile [50], there is a growing body of
research trying to determine users’ locations automatically. Various methods have been
proposed for this purpose. They can be roughly divided into three categories. The
first type consists of tweet text-based methods, where the word distribution is used
to estimate geolocations of users [98, 116]. In the second type, methods combining
metadata features such as time zone, profile description are developed to improve
performance [46]. Network-based methods form the last type. Several studies have
shown that incorporating friends’ information is very useful for this task [78, 37].
Empirically, models enhanced with network information works better than the other
two types, but they do not scale well to larger datasets [91].

In recent years, neural network based prediction methods have shown great success
on this Twitter user geolocation prediction task [92, 78]. However, these neural network
based methods largely ignore the hierarchical structure among locations (eg. country
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versus city), which have been shown very useful in previous study [72, 115]. In recent
work, Huang and Carley [54] also demonstrate that country-level location prediction is
much easier than city-level location prediction. It is natural to ask whether we can
incorporate the hierarchical structure among locations into a neural network and use
the coarse-grained location prediction to guide the fine-grained prediction.

In this paper, we present a hierarchical location prediction neural network (HLPNN)
for user geolocation on Twitter. Our model combines text features, metadata features
(personal description, profile location, name, user language, time zone), and network
features together, and learns two classification representations for country-level and city-
level predictions respectively. It first computes the country-level prediction, which is
further used to guide the city-level prediction. Our model is flexible in accommodating
di�erent feature combinations, and it achieves state-of-the-art results under various
feature settings.

4.2 Related Work
As a popular user profiling task, location inference has been widely studied in the
literature. Though there are some potential privacy concerns, accurate user geolocation
is a key factor for many important applications such as earthquake detection [36], and
disaster management [22]. Because of insu�cient geotagged data on Twitter [40], there
is a growing interest in predicting Twitter users’ locations.

Early work tried to identify users’ locations by mapping their IP addresses to
physical locations [19]. However, such private information is only accessible to internet
service providers. There is no easy way for a third-party to find Twitter users’ IP
addresses. Later, various text-based location prediction systems were proposed. Bilhaut
et al. [15] utilize a geographical gazetteer as an external lexicon and present a rule-
based geographical references recognizer. Amitay et al. [4] extracted location-related
information listed in a gazetteer from web content to identify geographical regions of
webpages. However, as shown in [10], performances of gazetteer-based methods are
hindered by the noisy and informal nature of tweets.

Moving beyond methods replying on external knowledge sources (eg. IP and
gazetteers), many machine learning based methods have recently been applied to
location prediction. Typically, researchers first represent locations as earth grids
[116, 98], regions [79], or cities [46]. Then location classifiers are built to categorize
users into di�erent locations. Han et al. [45] first utilized feature selection methods to
find location indicative words, then they used multinomial naive Bayes and logistic
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regression classifiers to find correct locations. Han et al. [46] further present a stacking
based method that combines tweet text and metadata together. Along with these
classification methods, some approaches also try to learn topic regions automatically by
topic modeling, but these do not scale well to the magnitude of social media [53, 118].

Recently, deep neural network based methods are becoming popular for location
prediction [77]. Huang and Carley [54] integrate text and user profile metadata into a
single model using convolutional neural networks, and their experiments show superior
performance over stacked naive Bayes classifiers. Miura et al. [78], Ebrahimi et al.
[37] incorporate user network connection information into their neural models, where
they use network embeddings to represent users in a social network. Rahimi et al.
[93] also uses text and network feature together, but their approach is based on graph
convolutional neural networks.

Similar to our method, some research has tried to predict user location hierarchically
[72, 115]. Mahmud et al. [72] develop a two-level hierarchical location classifier which
first predicts a coarse-grained location (country, time zone), and then predicts the
city label within the corresponding coarse region. Wing and Baldridge [115] build a
hierarchical tree of earth grids. The probability of a final fine-grained location can
be computed recursively from the root node to the leaf node. Both methods have to
train one classifier separately for each parent node, which is quite time-consuming
for training deep neural network based methods. Additionally, certain coarse-grained
locations may not have enough data samples to train a local neural classifier alone.
Our hierarchical location prediction neural network overcomes these issues and only
needs to be trained once.

4.3 Method
There are seven features we want to utilize in our model — tweet text, personal
description, profile location, name, user language, time zone, and mention network.
The first four features are text fields where users can write anything they want. User
language and time zone are two categorical features that are selected by users in their
profiles. The mention network is constructed directly from mentions in tweets.

We propose a hierarchical prediction framework that combines all seven features
together for user location prediction. Our model first predicts the home country of a
Twitter user, then uses the country-level prediction to guide the city-level prediction.

The overall architecture of our hierarchical location prediction model is shown in
Figure 4.1. It first maps four text features into a word embedding space. A bidirectional
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Fig. 4.1 The architecture of our hierarchical location prediction neural network.

LSTM (Bi-LSTM) neural network [52] is used to extract location-specific features
from these text embedding vectors. Following Bi-LSTM, we use a word-level attention
layer to generate representation vectors for these text fields. Combining all the text
representations, a user language embedding, a timezone embedding, and a network
embedding, we apply several layers of transformer encoders [112] to learn the correlation
among all the feature fields. The probability for each country is computed after a
field-level attention layer. Finally, we use the country probability as a constraint for the
city-level location prediction. We elaborate details of our model in following sections.

4.3.1 Word Embedding

Assume one user has T tweets, there are T +3 text fields for this user including personal
description, profile location, and name. We first map each word in these T + 3 text
fields into a low dimensional embedding space. The embedding vector for word w is
computed as xw = [E(w),CNNc(w)], where [, ] denotes vector concatenation. E(w) is
the word-level embedding retrieved directly from an Embedding matrix E œ RV ◊D by
a lookup operation, where V is the vocabulary size, and D is the word-level embedding
dimension. CNNc(w) is a character-level word embedding that is generated from a
character-level convolutional layer. Using character-level word embeddings is helpful
for dealing with out-of-vocabulary tokens and overcoming the noisy nature of tweet
text.

The character-level word embedding generation process is as follows. For a character
ci in the word w = (c1, ..., ck), we map it into a character embedding space and get a
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vector vci œ Rd. In the convolutional layer, each filter u œ Rlc◊d generates a feature
vector ◊ = [◊1,◊2, ...,◊k≠lc+1] œ Rk≠lc+1, where ◊i = relu(u ¶ vci:ci+lc≠1 + b). b is a bias
term, and “¶” denotes element-wise inner product between u and character window
vci:ci+lc≠1 œ Rlc◊d. After this convolutional operation, we use a max-pooling operation
to select the most representative feature ◊̂ = max(◊). With D such filters, we get the
character-level word embedding CNNc(w) œ RD.

4.3.2 Text Representation

After the word embedding layer, every word in these T +3 texts are transformed into
a 2D dimension vector. Given a text with word sequence (w1, ...,wN ), we get a word
embedding matrix X œ RN◊2D from the embedding layer. We then apply a Bi-LSTM
neural network to extract high-level semantic representations from text embedding
matrices.

At every time step i, a forward LSTM takes the word embedding Xi of word wi and
previous state

≠≠æ
hi≠1 as inputs, and generates the current hidden state

≠æ
h i. A backward

LSTM reads the text from wN to w1 and generates another state sequence. The hidden
state hi œ R2D for word wi is the concatenation of

≠æ
hi and

Ω≠
hi . Concatenating all the

hidden states, we get a semantic matrix H œ RN◊2D

≠æ
hi = ≠≠≠≠æ

LSTM(Xi,
≠≠æ
hi≠1)

Ω≠
hi = Ω≠≠≠≠

LSTM(Xi,
Ω≠≠
hi+1)

hi = [
≠æ
hi ,

Ω≠
hi ]

(4.1)

Because not all words in a text contribute equally towards location prediction,
we further use a multi-head attention layer [112] to generate a representation vector
f œ R2D for each text. There are h attention heads that allow the model to attend to
important information from di�erent representation subspaces. Each head computes a
text representation as a weighted average of these word hidden states. The computation
steps in a multi-head attention layer are as follows.

f = MultiHead(q,H) = [head1, ...,headh]W O

headi(q,H) = softmax(qW Q

i
· (HW K

i
)T

Ô
dk

)HW V

i

where q œ R2d is an attention context vector learned during training, W Q

i
,W K

i
,W V

i
œ

R2D◊dk , and W O œ R2D◊2D are projection parameters, dk = 2D/h. An attention head
headi first projects the attention context q and the semantic matrix H into query and
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key subspaces by W Q

i
, W K

i
respectively. The matrix product between query qW Q

i
and

key HW K
i

after softmax normalization is an attention weight that indicates important
words among the projected value vectors HW V

i
. Concatenating h heads together, we

get one representation vector f œ R2D after projection by W O for each text field.

4.3.3 Feature Fusion

For two categorical features, we assign an embedding vector with dimension 2D for
each time zone and language. These embedding vectors are learned during training. We
pretrain network embeddings for users involved in the mention network using LINE [109].
Network embeddings are fixed during training. We get a feature matrix F œ R(T +6)◊2D

by concatenating text representations of T +3 text fields, two embedding vectors of
categorical features, and one network embedding vector.

We further use several layers of transformer encoders [112] to learn the correlation
between di�erent feature fields. Each layer consists of a multi-head self-attention
network and a feed-forward network (FFN). One transformer encoder layer first uses
input feature to attend important information in the feature itself by a multi-head
attention sub-layer. Then a linear transformation sub-layer FFN is applied to each
position identically. Same as [112], we employ residual connection [49] and layer
normalization [6] around each of the two sub-layers. The output F1 of the first
transformer encoder layer is generated as follows.

F Õ = LayerNorm(MultiHead(F,F )+F )
F1 = LayerNorm(FFN(F Õ)+F Õ)

where FFN(F Õ) = max(0,F ÕW1 + b1)W2 + b2, W1 œ R2D◊Dff , and W2 œ RDff ◊2D.
Since there is no position information in the transformer encoder layer, our model

cannot distinguish between di�erent types of features, eg. tweet text and personal
description. To overcome this issue, we add feature type embeddings to the input
representations F . There are seven features in total. Each of them has a learned
feature type embedding with dimension 2D so that one feature type embedding and
the representation of the corresponding feature can be summed.

Because the input and the output of transformer encoder have the same dimension,
we stack L layers of transformer encoders to learn representations for country-level
prediction and city-level prediction respectively. These two sets of encoders share the
same input F , but generate di�erent representations F L

co and F L
ci

for country and city
predictions.
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The final classification features for country-level and city-level location predictions
are the row-wise weighted average of Fco and Fci. Similar to the word-level attention,
we use a field-level multi-head attention layer to select important features from T +6
vectors and fuse them into a single vector.

Fco = MultiHead(qco,F L

co)
Fci = MultiHead(qci,F

L

ci)

where qco, qci œ R2D are two attention context vectors.

4.3.4 Hierarchical Location Prediction

The final probability for each country is computed by a softmax function

Pco = softmax(WcoFco + bco)

where Wco œ RMco◊2D is a linear projection parameter, bco œ RMco is a bias term, and
Mco is the number of countries.

After we get the probability for each country, we further use it to constrain the
city-level prediction

Pci =softmax(WciFci + bci +⁄PcoBias)

where Wci œ RMci◊2D is a linear projection parameter, bci œ RMci is a bias term, and
Mci is the number of cities. Bias œ RMco◊Mci is the country-city correlation matrix. If
city j belongs to country i, then Biasij is 0, otherwise ≠1. ⁄ is a penalty term learned
during training. The larger of ⁄, the stronger of the country constraint. In practise,
we also experimented with letting the model learn the country-city correlation matrix
during training, which yields similar performance.

We minimize the sum of two cross-entropy losses for country-level prediction and
city-level prediction.

loss = ≠(Yci · logPci +–Yco · logPco)

where Yci and Yco are one-hot encodings of city and country labels. – is the weight
to control the importance of country-level supervision signal. Since a large – would
potentially interfere with the training process of city-level prediction, we just set it as
1 in our experiments. Tuning this parameter on each dataset may further improve the
performance.
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4.4 Experiment Settings

4.4.1 Datasets

To validate our method, we use three widely adopted Twitter location prediction
datasets. Table 4.1 shows a brief summary of these three datasets. They are listed as
follows.

Twitter-US is a dataset compiled by Roller et al. [98]. It contains 429K training
users, 10K development users, and 10K test users in North America. The ground truth
location of each user is set to the first geotag of this user in the dataset. We assign
the closest city to each user’s ground truth location using the city category built by
Han et al. [45]. Since this dataset only covers North America, we change the first level
location prediction from countries to administrative regions (eg. state or province).
The administrative region for each city is obtained from the original city category.

Twitter-World is a Twitter dataset covering the whole world, with 1,367K training
users, 10K development users, and 10K test users [45]. The ground truth location for
each user is the center of the closest city to the first geotag of this user. Only English
tweets are included in this dataset, which makes it more challenging for a global-level
location prediction task.

We downloaded these two datasets from Github 1. Each user in these two datasets
is represented by the concatenation of their tweets, followed by the geo-coordinates.
We queried Twitter’s API to add user metadata information to these two datasets in
February 2019. We only get metadata for about 53% and 67% users in Twitter-US
and Twitter-World respectively. Because of Twitter’s privacy policy change, we could
not get the time zone information anymore at the time of collection.

WNUT was released in the 2nd Workshop on Noisy User-generated Text [48]. The
original user-level dataset consists of 1 million training users, 10K users in development
set and test set each. Each user is assigned with the closest city center as the ground
truth label. Because of Twitter’s data sharing policy, only tweet IDs of training and
development data are provided. We have to query Twitter’s API to reconstruct the
training and development dataset. We finished our data collection around August 2017.
About 25% training and development users’ data cannot be accessed at that time. The
full anonymized test data is downloaded from the workshop website 2.

1https://github.com/afshinrahimi/geomdn
2https://noisy-text.github.io/2016/geo-shared-task.html
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Twitter-US Twitter-World WNUT
Train Dev. Test Train Dev. Test Train Dev. Test

# users 429K 10K 10K 1.37M 10K 10K 742K 7.46K 10K
# users
with meta 228K 5.32K 5.34K 917K 6.50K 6.48K 742K 7.46K 10K

# tweets 36.4M 861K 831K 11.2M 488K 315K 8.97M 90.3K 99.7K
# tweets
per user 84.60 86.14 83.12 8.16 48.83 31.59 12.09 12.10 9.97

Table 4.1 A brief summary of our datasets. For each dataset, we report the number of
users, number of users with metadata, number of tweets, and average number of tweets
per user. We collected metadata for 53% and 67% of users in Twitter-US and Twitter-
World. Time zone information was not available when we collected metadata for these
two datasets. About 25% of training and development users’ data was inaccessible
when we collected WNUT in 2017.

4.4.2 Text Preprocessing & Network Construction

For all the text fields, we first convert them into lower case, then use a tweet-specific
tokenizer from NLTK3 to tokenize them. To keep a reasonable vocabulary size, we
only keep tokens with frequencies greater than 10 times in our word vocabulary. Our
character vocabulary includes characters that appear more than 5 times in the training
corpus.

We construct user networks from mentions in tweets. For WNUT, we keep users
satisfying one of the following conditions in the mention network: (1) users in the
original dataset (2) users who are mentioned by two di�erent users in the dataset. For
Twitter-US and Twitter-World, following previous work [93], a uni-directional edge is
set if two users in our dataset directly mentioned each other, or they co-mentioned
another user. We remove celebrities who are mentioned by more than 10 di�erent users
from the mentioning network. These celebrities are still kept in the dataset and their
network embeddings are set as 0.

4.4.3 Evaluation Metrics

We evaluate our method using four commonly used metrics listed below.
Accuracy: The percentage of correctly predicted home cities.
Acc@161: The percentage of predicted cities which are within a 161 km (100 miles)
radius of true locations to capture near-misses.
Median: The median distance measured in kilometer from the predicted city to the

3https://www.nltk.org/api/nltk.tokenize.html
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true location coordinates.
Mean: The mean value of error distances in predictions.

4.4.4 Hyperparameter Settings

In our experiments, we initialize word embeddings with released 300-dimensional Glove
vectors [83]. For words not appearing in Glove vocabulary, we randomly initialize
them from a uniform distribution U(-0.25, 0.25). We choose the character embedding
dimension as 50. The character embeddings are randomly initialized from a uniform
distribution U(-1.0,1.0), as well as the timezone embeddings and language embeddings.
These embeddings are all learned during training. Because our three datasets are
su�ciently large to train our model, the learning is quite stable and performance does
not fluctuate a lot.

Network embeddings are trained using LINE [109] with parameters of dimension
600, initial learning rate 0.025, order 2, negative sample size 5, and training sample
size 10000M. Network embeddings are fixed during training. For users not appearing
in the mention network, we set their network embedding vectors as 0.

Twitter-US Twitter-World WNUT
Batch size 32 64 64
Initial learning rate 10≠4 10≠4 10≠4

D: Word embedding
dimension 300 300 300

d: Char. embedding
dimension 50 50 50

lc: filter sizes
in Char. CNN 3,4,5 3,4,5 3,4,5

Filter number
for each size 100 100 100

h: number of heads 10 10 10
L: layers of
transformer encoder 3 3 3

⁄: initial penalty term 1 1 1
–: weight for country
supervision 1 1 1

Dff : inner
dimension of FFN 2400 2400 2400

Max number of
tweets per user 100 50 20

Table 4.2 A summary of hyperparameter settings of our model.

A brief summary of hyperparameter settings of our model is shown in Table 4.2.
The initial learning rate is 10≠4. If the validation accuracy on the development set does
not increase, we decrease the learning rate to 10≠5 and train the model for additional
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3 epochs. Empirically, training terminates within 10 epochs. Penalty ⁄ is initialized as
1.0 and is adapted during training. We apply dropout on the input of Bi-LSTM layer
and the output of two sub-layers in transformer encoders with dropout rate 0.3 and
0.1 respectively. We use the Adam update rule [64] to optimize our model. Gradients
are clipped between -1 and 1. The maximum numbers of tweets per user for training
and evaluating on Twitter-US are 100 and 200 respectively. We only tuned our model,
learning rate, and dropout rate on the development set of WNUT.

4.5 Results

4.5.1 Baseline Comparisons

In our experiments, we evaluate our model under four di�erent feature settings: Text,
Text+Meta, Text+Network, Text+Meta+Network. HLPNN-Text is our model only
using tweet text as input. HLPNN-Meta is the model that combines text and metadata
(description, location, name, user language, time zone). HLPNN-Net is the model
that combines text and mention network. HLPNN is our full model that uses text,
metadata, and mention network for Twitter user geolocation.

We present comparisons between our model and previous work in Table 4.3. As
shown in the table, our model outperforms these baselines across three datasets under
various feature settings.

Only using text feature from tweets, our model HLPNN-Text works the best among
all these text-based location prediction systems and wins by a large margin. It not only
improves prediction accuracy but also greatly reduces mean error distance. Compared
with a strong neural model equipped with local dialects [92], it increases Acc@161 by
an absolute value 4% and reduces mean error distance by about 400 kilometers on the
challenging Twitter-World dataset, without using any external knowledge. Its mean
error distance on Twitter-World is even comparable to some methods using network
feature [34].

With text and metadata, HLPNN-Meta correctly predicts locations of 57.2% users
in WNUT dataset, which is even better than these location prediction systems that use
text, metadata, and network. Because in the WNUT dataset the ground truth location
is the closest city’s center, Our model achieves 0 median error when its accuracy is
greater than 50%. Note that Miura et al. [78] used 279K users added with metadata
in their experiments on Twitter-US, while we use all 449K users for training and
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Twitter-US Twitter-World WNUT
Acc@161ø Median¿ Mean¿ Acc@161ø Median¿ Mean¿ Accuracyø Acc@161ø Median¿ Mean¿

Text
Wing and Baldridge [115] 49.2 170.5 703.6 32.7 490.0 1714.6 - - - -
Rahimi et al. [94]* 50 159 686 32 530 1724 - - - -
Miura et al. [78]-TEXT 55.6 110.5 585.1 - - - 35.4 50.3 155.8 1592.6
Rahimi et al. [92] 55 91 581 36 373 1417 - - - -
HLPNN-Text 57.1 89.92 516.6 40.1 299.1 1048.1 37.3 52.9 109.3 1289.4
Text+Meta
Miura et al. [78]-META 67.2 46.8 356.3 - - - 54.7 70.2 0 825.8
HLPNN-Meta 61.1 64.3 454.8 56.4 86.2 762.1 57.2 73.1 0 572.5
Text+Net
Rahimi et al. [91]* 60 78 529 53 111 1403 - - - -
Rahimi et al. [92] 61 77 515 53 104 1280 - - - -
Miura et al. [78]-UNET 61.5 65 481.5 - - - 38.1 53.3 99.9 1498.6
Do et al. [34] 66.2 45 433 53.3 118 1044 - - - -
Rahimi et al. [93]-MLP-TXT+NET 66 56 420 58 53 1030 - - - -
Rahimi et al. [93]-GCN 62 71 485 54 108 1130 - - - -
HLPNN-Net 70.8 31.6 361.5 58.9 59.9 827.6 37.8 53.3 105.26 1297.7
Text+Meta+Net
Miura et al. [77] - - - - - - 47.6 - 16.1 1122.3
Jayasinghe et al. [59] - - - - - - 52.6 - 21.7 1928.8
Miura et al. [78] 70.1 41.9 335.7 - - - 56.4 71.9 0 780.5
HLPNN 72.7 28.2 323.1 68.4 6.20 610.0 57.6 73.4 0 538.8

Table 4.3 Comparisons between our method and baselines. We report re-
sults under four di�erent feature settings: Text, Text+Metadata, Text+Network,
Text+Metadata+Network. “-” signifies that no results were published for the given
dataset, “*” denotes that results are cited from Rahimi et al. [92]. Note that Miura et al.
[78] only used 279K users added with metadata in their experiments of Twitter-US.

evaluation, and only 53% of them have metadata, which makes it di�cult to make a
fair comparison.

Adding network feature further improves our model’s performances. It achieves
state-of-the-art results combining all features on these three datasets. Even though
unifying network information is not the focus of this paper, our model still outperforms
or has comparable results to some well-designed network-based location prediction
systems like [93]. On Twitter-US dataset, our model variant HLPNN-Net achieves a
4.6% increase in Acc@161 against previous state-of-the-art methods [34] and [93]. The
prediction accuracy of HLPNN-Net on WNUT dataset is similar to [78], but with a
noticeable lower mean error distance.

4.5.2 Ablation Study

In this section, we provide an ablation study to examine the contribution of each
model component. Specifically, we remove the character-level word embedding, the
word-level attention, the field-level attention, the transformer encoders, and the country
supervision signal one by one at a time. We run experiments on the WNUT dataset
with text features. We also tried to run a two-step training procedure, where we train
a country-level classifier first and then train city-level classifiers for each country.
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Accuracy Acc@161 Median Mean
HLPNN 37.3 52.9 109.3 1289.4
w/o Char-CNN 36.3 51.0 130.8 1429.9
w/o Word-Att 36.4 51.5 130.2 1377.5
w/o Field-Att 37.0 52.0 121.8 1337.5
w/o encoders 36.8 52.5 117.4 1402.9
w/o country 36.7 52.6 124.8 1399.2
Two-step training 36.3 52.2 122.1 1381.6

Table 4.4 An ablation study on WNUT dataset.

The performance breakdown for each model component is shown in Table 4.4.
Compared to the full model, we can find that the character-level word embedding
layer is especially helpful for dealing with noisy social media text. The word-level
attention also provides performance gain, while the field-level attention only provides
a marginal improvement. The reason could be the multi-head attention layers in the
transformer encoders already captures important information among di�erent feature
fields. These two transformer encoders learn the correlation between features and
decouple these two level predictions. Finally, using the country supervision can help
model to achieve a better performance with a lower mean error distance. Two-step
training does not provide better performance possible reason is lack of su�cient training
data for city-level neural classifiers of each country.

4.5.3 Country E�ect

To directly measure the e�ect of adding country-level supervision, we define a relative
country error which is the percentage of city-level predictions located in incorrect
countries among all misclassified city-level predictions.

relative country error = # of incorrect country
# of incorrect city

The lower this metric means the better one model can predict the city-level location,
at least in the correct country.

We vary the weight – of country-level supervision signal in our loss function from 0
to 20. The larger – means the more important the country-level supervision during the
optimization. When – equals 0, there is no country-level supervision in our model. As
shown in Figure 4.2, increasing – would improve the relative country error from 26.2%
to 23.1%, which shows the country-level supervision signal indeed can help our model
predict the city-level location towards the correct country. This possibly explains why
our model has a lower mean error distance when compared to other methods.
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Fig. 4.2 Relative country error with varying – on test dataset. Experiments were
conducted on WNUT dataset with text feature.

4.6 Conclusion
In this chapter, we propose a hierarchical location prediction neural network, which
combines text, metadata, network information for user location prediction. Our model
can accommodate various feature combinations. Extensive experiments have been
conducted to validate the e�ectiveness of our model under four di�erent feature settings
across three commonly used benchmarks. Our experiments show our HLPNN model
achieves state-of-the-art results on these three datasets. It not only improves the
prediction accuracy but also significantly reduces the mean error distance. In our
ablation analysis, we show that using character-aware word embeddings is helpful for
overcoming noise in social media text. The transformer encoders e�ectively learn the
correlation between di�erent features and decouple the two di�erent level predictions.
In our experiments, we also analyzed the e�ect of adding country-level regularization.
The country-level supervision could e�ectively guide the city-level prediction towards
the correct country, and reduce the errors where users are misplaced in the wrong
countries.

Though our HLPNN model achieves great performances under Text+Net and
Text+Meta+Net settings, potential improvements could be made using better graph-
level classification frameworks. We currently only use network information to train
network embeddings as user-level features. For future work, we would like to explore
ways to combine graph-level classification methods and our user-level learning model.
Propagating features from connected friends would provide much more information
than just using network embedding vectors. Besides, our model assumes each post
of one user all comes from one single home location but ignores the dynamic user
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movement pattern like traveling. We plan to incorporate temporal states to capture
location changes in future work.





Chapter 5

Graph-level Attributes Prediction

5.1 Introduction
In previous chapters, I have shown various methods for user attributes prediction.
Most of them only use user’s local features without any network information. The
only exception is the hierarchical location prediction neural network where we use
network embedding to provide network structure information to the model. However,
a drawback of these type of embedding methods is they cannot handle newly incoming
users. Test users should be available during training so that we can build a network to
train embeddings like LINE [109]. Besides, such a model does not utilize features from
neighbourhood friends, which may contain useful information for prediction.

In this chapter, I will explore using graph neural networks (GNN) to incorporate
graph connections for training. Graph neural networks are deep learning-based methods
that operate on graphs. At each layer, GNNs aggregate information from neighbour-
hoods and generate hidden states for each node. Because GNNs do not require a fixed
graph, we can easily apply them to new graphs on the fly.

Most of the previous work either focus on classification only using network infor-
mation [84], or combining network information with processed features [44]. However,
in this work, users in a network are associated with raw text features, which cannot
be utilized directly in a graph neural network. In this chapter, I will explore how to
combine my previous user-level learning architecture with graph neural networks.

There are two main components in my proposed method. One is user-level feature
extractor, which is just my previous user-level learning module. Another is a graph
neural network that propagate features from users’ neighbourhoods. Generally, the
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learning process can be written as

xi = F (tweetsi,descriptioni) (5.1)
hi = GNN(xi,x[neii]) (5.2)
yi = MLP (xi,hi) (5.3)

where F represents a user-level feature learning function, x[neii] are the features of
neighbour users of user i. MLP (·) is a multilayer perception network.

Fig. 5.1 An illustration of the graph-level attributes learning process.

An illustration of the learning process is shown in Fig. 5.1, where users’ local
features are first computed by a feature extractor function, then these features are
propagated on the graph via a graph neural network.

In addition, such feature propagation procedure can not capture global character-
istics of nodes in a social media. For example, users with millions of followers may
not share much common properties with their followers. Incorporating classic network
metrics like degree centrality, betweenness centrality may be a possible way to alleviate
this issue.
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5.2 Related Work
The concept of graph neural networks was first introduced in [101]. Given a graph with
adjacent matrix A œ RN◊N , the representation hi for a node i is updated as follows:

hi = f(xi,xe[i],hn[i],xni) (5.4)
oi = g(hi,xi) (5.5)

where xi, xe[i], hn[i], xni are features of node i, features of its edges, the states, and the
features of its neighbourhood. Function f is a contraction map and are shared across
layers. The final representation hi for node i is a fixed point of f . Combining hi and
xi, it outputs label oi for node i. In general, this process can be viewed as features
propagation from neighbourhood.

There are several GNN variants exist in the literature. Kipf and Welling introduce
a simplified spectral approach called graph convolutional neural networks (GCN) [65].
They use one-step neighbourhood to update the state of a central node as:

H l+1 = D̂≠ 1
2 ÂD̂≠ 1

2 H l�l (5.6)

where Â = A+I, D̂ii = q
j Âij , H l œ RN◊Cl is the stacked states for all nodes at layer l,

H0 is stacked node features X, �l œ RCl◊Cl+1 is a filter parameter. Cl is the dimension
of hidden states at layer l.

Another popular variant is the graph attention network (GAT) [113]. Again, a
node’s state is updated by aggregating its neighbourhood’s states. GAT adopted
one widely used multi-head attention method in natural language processing to learn
important nodes in neighbourhood [112]. Using K attention heads, GAT update states
by
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=
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k=1
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where
f

represents vector concatenation, –lk
ij

is the attention coe�cient of node i to its

neighbour j in attention head k at layer l. W lk œ R
Cl+1

K ◊Cl is a linear transformation
for input states. ‡ denotes a sigmoid function. al

k
œ R

2Cl+1
K is an attention context

vector learned during training.
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In practise, researchers have observed that deeper GNN models could not improve
performance and even perform worse, which is partially due to more layers would also
propagate noisy information from expanded neighborhood [65]. A common option is
using a residual connection as shown in Eq. 5.9, which adds states from lower layer
directly to higher layer and avoids the local features getting vanished in higher layers.

H l+1 = GNN(H l,A;�l)+H l (5.9)

where �l is parameter of GNN at layer l.

5.3 Method
We treat each user as a unique node in a social network, where users are connected
via certain social relationships, eg. following, mentioning. Each user is associated
with local raw text features such as tweet texts and profile description. Based on the
network connections and users’ local text features, the ultimate task is to infer users’
certain latent attributes such as their political leaning and social identities.

Formally, given there are n users in the social network, we denote the graph as
an adjacent matrix A œ Rn◊n. For user i, there are m text features in total, which
can be written as Ti1,Ti2, ...,Tim. Each text field is a sequence of words such as
Tij = [w1,w2, ...,wl]. The goal is to classify each user into an attribute category.

Figure 5.1 shows the overall architecture of our framework. For users in the social
network, they share a common task-specific feature extractor and this feature extractor
learns high-level feature representations from these raw text features. Based on these
learned high-level local representations, we employ a graph neural network (GNN)
to propagate and aggregate these representations. The final hidden representations
generated by the GNN are used for the final attribute prediction. We will elaborate
each component of our method in the following subsections.

5.3.1 Feature extractor

For words in each text field, we first map them into a word embedding space RD. A
text field Tij = [w1,w2, ...,wl] can be transformed into a sequence of embedding vector
[x1,x2, ...,xl], where xl is the word embedding vector for word wl.

We then apply a Bi-LSTM neural network to extract high-level semantic represen-
tations from text embedding matrices. At every time step t, a forward LSTM takes the
word embedding xt of word wt and previous state

≠≠æ
ht≠1 as inputs, and generates the
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current hidden state
≠æ
h t. A backward LSTM reads the text from wl to w1 and generates

another state sequence. The hidden state ht œ R2D for word wt is the concatenation of
≠æ
ht and

Ω≠
ht . Concatenating all the hidden states, we get a semantic matrix H œ Rl◊2D

≠æ
ht = ≠≠≠≠æ

LSTM(xt,
≠≠æ
ht≠1)

Ω≠
ht = Ω≠≠≠≠

LSTM(xt,
Ω≠≠
ht+1)

ht = [
≠æ
ht ,

Ω≠
ht ]

(5.10)

The text representation of text field is a weighted average of the word semantic
representations. This is achieved by a multi-head attention layer [112]. In each attention
layer, there are h attention heads which learn to attend important information. Each
head computes a text representation as a weighted average of these word hidden states.
The computation steps in a multi-head attention layer are as follows.

f = MultiHead(q,H) = [head1, ...,headh]W O

headi(q,H) = softmax(qW Q

i
· (HW K

i
)T

Ô
dk

)HW V

i

where q œ R2d is an attention context vector learned during training, W Q

i
,W K

i
,W V

i
œ

R2D◊dk , and W O œ R2D◊2D are projection parameters, dk = 2D/h. An attention head
headi first projects the attention context q and the semantic matrix H into query and
key subspaces by W Q

i
, W K

i
respectively. The matrix product between query qW Q

i
and

key HW K
i

after softmax normalization is an attention weight that indicates important
words among the projected value vectors HW V

i
. Concatenating h heads together, we

get one representation vector f œ R2D after projection by W O for each text field.
Given m text fields, we get m text representation vectors Fi = [fi1,fi2, ...,fim]

for user i. We further use several layers of transformer encoders [112] to learn the
correlation between di�erent feature fields. Each layer consists of a multi-head self-
attention network and a feed-forward network (FFN). One transformer encoder layer
first uses input feature to attend important information in the feature itself by a
multi-head attention sub-layer. Then a linear transformation sub-layer FFN is applied
to each position identically. Same as [112], we employ residual connection [49] and
layer normalization [6] around each of the two sub-layers. The output F1 of the first
transformer encoder layer is generated as follows.

F Õ = LayerNorm(MultiHead(F,F )+F )
F1 = LayerNorm(FFN(F Õ)+F Õ)
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where FFN(F Õ) = max(0,F ÕW1 + b1)W2 + b2, W1 œ R2D◊Dff , and W2 œ RDff ◊2D.
Since there is no position information in the transformer encoder layer, our model

cannot distinguish between di�erent types of features, eg. tweet text and personal
description. To overcome this issue, we add feature type embeddings to the input
representations F . There are m text fields in total. Each of them has a learned
feature type embedding with dimension 2D so that one feature type embedding and
the representation of the corresponding feature can be summed.

Because the input and the output of transformer encoder have the same dimension,
we stack L layers of transformer encoders to learn representations for the attribute
prediction. The final classification features are the row-wise weighted average of FL.
Similar to the word-level attention, we use a field-level multi-head attention layer to
select important features from m vectors and fuse them into a single vector.

v = MultiHead(qf ,FL)

where qf œ R2D is an attention context vector.

5.3.2 Graph-level feature aggregation

A graph attention network (GAT) [113] is a variant of graph neural network [101] and
is a key element in our method. It propagates features from a user’s friends to this
user. Given a social graph with n nodes, each user’s local feature is generated by the
feature extractor as described in the previous section. One GAT layer compute node
representations by aggregating neighbourhood’s hidden states. With an L-layer GAT
network, features from L hops away can be propagated to one user.

Specifically, given a user i with a hidden state vl
i

at layer l and the node’s neighbours
n[i] as well as their hidden states, a GAT updates the node’s hidden state at layer l +1
using multi-head attentions [112]. The update process is as follows
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=
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where
f

represents vector concatenation, –lk
ij

is the attention coe�cient of node i to
its neighbour j in attention head k at layer l. Wlk œ R

D
K ◊D is a linear transformation
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matrix for input states. D is the dimension of hidden states. ‡ denotes a sigmoid
function. f(·) is a LeakyReLU non-linear function [71]. alk œ R

2D
K is an attention

context vector learned during training.
For simplicity, we can write such feature propagation process as

V l+1 = GAT (V l,A;�l) (5.13)

where V l œ RN◊D is the stacked states for all nodes at layer l, A œ RN◊N is the graph
adjacent matrix. �l is the parameter set of the GAT at layer l.

We further utilize an LSTM unit to model long-term dependency across layers,
which is also helpful for overcoming noisy information in a graph [57]. At each layer
GAT (V l,A;�l) generates new input for an LSTM unit, and this LSTM unit decides
how much information should be added into the next layer.

V 0,C0 = LSTM(V,(0,0))
V l+1,C l+1 = LSTM(GAT (V l,A;�l),(V l,C l))

Note that such feature propagation procedure does not take network structure
information into consideration explicitly. This feature aggregation procedure is the
same for users with million of followers and users with hundreds of followers. However,
a users with millions of followers may not share much common properties with their
followers. To further incorporate network structure information explicitly, we combine
classic network metrics as additional input. These selected network metrics are as
follow:
In-degree centrality: the number of in-coming edges for each node.
Out-degree centrality: the number of out-coming edges for each node.
Eigenvector centrality: the eigenvector centrality for node i is the i-th element of
the eigenvector x with the largest eigenvalue ⁄. This centrality is measured by looking
at nodes’ followers. Ax = ⁄x.
K-core score: The k-core is found by recursively pruning nodes with degrees less
than k. Clustering coe�cient: The proportion of links between the nodes within
its neighbourhood divided by all the possible links between them. Reciprocity: The
ratio of links in both directions to the total number of edges.

For each graph metric, we first normalize them to zero mean and unit variance,
then concatenate them with the original GAT input vector V .
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5.3.3 Final Classification

With L layers of GAT networks, we get final representations for our target users. We
just retrieve the corresponding hidden state vL

i
for the node.

We map the hidden state vL
i

into the classification space by a linear transformation.
Afterwards, the probability of a attribute class c is computed by a softmax function:

P (y = c) = exp(WvL
i

+ b)c
q

kœC exp(WhL
i

+ b)k

(5.14)

where W,b are the weight matrix and bias for the linear transformation, C is the set of
attribute classes.

The final predicted attribute of a user is the label with the highest probability. We
minimize the cross-entropy loss to train our model

loss = ≠
ÿ

cœC

I(y = c) · log(P (y = c))

where I(·) is an indicator function.

5.4 Experiments Setting

5.4.1 Implementation details

For our base feature extractor, we choose 300-dimensional GloVe vectors [83] to initialize
our word embeddings. These embeddings are adapted during training. The batch size
is set as 32. We train our model with initial learning rate 10≠4 with Adam update
rule [64]. If the validation accuracy is not increased in one epoch, we decrease the
learning rate to 10≠5. We set the number of heads in multi-head attention layers as 5.
We apply dropout on the output of multi-head attentions and feed-forward layers in
transformer encoders with dropout rate 0.1.

We use same number of attention heads in the GAT layers. We stack two layers of
GAT in our graph-level feature aggregation. Practically, training for a large-scale social
graph with millions of users becomes unfeasible because of the memory limitation.
We use the sampling method proposed in GraphSAGE [44] for batched training. At
each training iteration, we first sample a small batch of nodes B0 and then recursively
expand Bl to Bl+1 by sampling Sl neighbourhood nodes of Bl. With a GNN of M

layers, we get a hierarchy of nodes: B0,B1, ...,BM . Representations of target users
B0 are updated by aggregating node states from the bottom layer BM to the upper
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layer B0. In addition, training the feature extractor and feature aggregator end-to-end
requires a lot of GPU memory. We further propose to first train a local feature
extractor, then update the parameters in the graph-level feature aggregator. Using
such two-steps updating function saves a lot of computation cost while maintains a
similar performance empirically.

5.4.2 Datasets

We adopt two datasets released in previous work to evaluate our method. The first
is a public figure identification dataset for Twitter user [58], which is automatically
constructed based on Twitter’s verify field. The goal is to detect public figures based
on their posts. The second is an identity classification dataset[58]. Annotators are
asked to label Twitter users into seven identity classes. We also compiled one large
scale political leaning dataset by using users’ overt following ties. We select political
figures unambiguously from both liberal and conservative politics. These Twitter users
who only follow liberal politics are labeled as liberal, and who only follow conservative
politics are labeled as conservative. We denote this dataset as Politic. We collected
their most recent 200 tweets and following ties during October 2019. We remove
all these political figures’ accounts in the collected dataset. Otherwise, the task will
become trivial. Statistics of these two datasets are shown in Table 5.1. For the relative
small datasets Identity, we run our method in a semi-supervised setting, where users
in this dataset are connected to users in the Public figure dataset.

In addition, we collected 2,052,708 unlabeled users to further enhance our method
in the semi-supervised setting. We first used Twitter’s streaming API to search tweets
mentioning “coronavirus” between Jan. 29 and Jan. 31, then collected the timelines
and followees of users who posted these tweets.

Table 5.1 Statistics of three datasets

Dataset # of users # of classes # of edges
Train Dev. Test

Public figure 518K 5K 10K 2 69,567,290
Identity 11846 500 1000 7 69,567,290
Politic 791K 99K 99K 2 11,797,711
Unlabeled 2M 611,952,012
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5.5 Results
As shown in Table 5.2, we compare our graph-level user attribute prediction system
to a previous user-level prediction system [58]. Our system outperforms previous
method in a large margin across all three datasets. We also compare our graph-level
learning framework to Deepwalk [84], which is a network embedding method. As
shown in the table, using network feature alone works worse than user-level method.
Combining user-level model with Deepwalk indeed improves its performance. However,
the performance is still worse than our graph-level learning framework, especially on
the identity dataset and politic dataset. In addition, we also enhance our method
by adding two million unlabeled users, which is denoted as graph-level+. In this
semi-supervised setting, we gain further improvement using unlabeled data.

Table 5.2 Results of our method on three datasets compared to previous method.
Methods ending with “+” symbol are enhanced by 2M unlabeled users.

Method Public figure Identity Politic
Acc. F1 Acc. F1 Acc. F1

User-level 94.2 93.1 91.6 88.6 78.4 78.4
Deepwalk 80.5 72.4 78.9, 66.5 78.2 78.3
User-level+Deepwalk 96.3 95.5 92.2 89.6 81.5 81.4
Graph-level 97.8 97.4 94.0 91.7 83.6 83.6
Deepwalk+ 82.6 76.1 79.1 70.7 84.2 84.1
User-level+Deepwalk+ 96.1 95.3 92.2 89.5 84.7 84.6
Graph-level+ 98.1 97.7 95.4 93.5 87.4 87.4

5.5.1 Importance of network metrics

We plot the performance loss on the identity classification task when we remove each
network centrality one by one in Figure 5.2. As shown in this figure, the classification
accuracy and F1-score drop by 1.6% and 2.7% respectively after removing all the network
metrics. In-degree centrality is the most important feature followed by reciprocity and
k-core score. These network metrics provide additional network structure information
to the graph neural networks.

5.5.2 Sampling size

When we train our graph-level prediction system end-to-end, the entire feedforward
and backpropagation finish in one single step. The gradient would be back-propagated
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Fig. 5.2 The performance loss when we remove each network centrality.

from the final classification layer to the graph neural network layer and then to the
user-level feature extractor layer, which requires a lot of GPU memory. We use 4 Titan
Xp GPUs for the end-to-end training experiment. Practically, we can only sample 10
neighbourhood for each user with a batch size of 32, while training time is increased
by a factor of 10. Instead, we first train a local user-level classifier, then cache the
user-level feature representations and use them as input for the graph-level aggregator
in the second-phase training. In Figure 5.3, we show the model performance with
respect to the sampling size. The dashed green line represents the performance when
we train our method end-to-end with 10 sampled neighbours. The blue line represents
the performance of our two-step training with sampling size B1 ranging from 5 to 50.
The orange line shows the performance of two-step training with two-layer sampling.
In the first hop, we sample B1 direct connected neighbours with B1 ranging from 5 to
50. In the second hop, we sample 10 neighbours for each users in B1. As shown in this
figure, with the same sampling size, the two-step training generally works worse than
end-to-end training. However, we can easily scale up our sampling size in the two-step
training and gain additional performance increase.

5.5.3 Scalability

Scalability is always a concern when we apply our machine learning model on a massive
of users in a large scale social network. Assume each user has in total of T tweets,
the time complexity to compute the user feature is O(T ). For a two-layer sampling
with sampling sizes B1 and B2, it takes O(T + T ◊ B1 ◊ B2) to compute the user-
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Fig. 5.3 Model performance with respect to the sampling size on the Politic dataset.

level features for all the sampled users. In practise, this user-level feed-forward pass
takes much longer time than the graph-level aggregation step. Hence, when we apply
our method on large scale dataset, we cached all the user-level representations in a
database. As a result, given a lot of users’ representations cached in the database, the
time complexity of the user-level feed-forward pass for a new incoming user can be
reduced from O(T +T ◊B1 ◊B2) to O(T ).

In the Figure 5.4, we show the tradeo� between the model performance and runtime
consumption. As shown in the figure, using only one tweet would greatly reduce the
inference time by more than 5 times compared to using user’s whole timeline. In the
meanwhile, though with a longer computation time, the user-level model improves the
performance in a large margin. Last, we can see aggregating user’s friends’ features
also improve the performance with the cost of additional computation overhead.

5.6 Conclusion
In this paper, we present a user attribute prediction system which incorporates users’
local textual features as well as the social graph. We first extract user representations
from local text fields by a deep neural network, then aggregate neighbours’ features to
generate final predictions. We achieve the state-of-the-art results on three benchmark
datasets. We further demonstrate that under semi-supervised setting we can greatly
improve our system’s performance by adding unlabeled users.
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Fig. 5.4 Tradeo� between model performance and runtime on the identity dataset.

Certain limitations also exist in this paper. First, we assume users’ attributes are
static overtime. However, certain attributes such as political orientation, social roles
may evolve. Future work should take the attributes dynamic into consideration. In
addition, users may hold di�erent political ideology under di�erent circumstances and
political topics. In the future, we plan to tackle this issue by looking at aspect-specific
political orientation prediction. Hence, we can get users’ stances of di�erent issues.
Given a pair of input — user’s profile and a political issue, we can output a stance of
each user for this specific issue.

Besides, this work only utilizes the following network among Twitter users. In reality,
there are many other social interactions among users, eg. mentioning, retweeting. In
our experiments, we also tried propagate features both from following friends and
mentioned users separately. However, the mentioning graph is much sparser than the
following graph. In the case of public figure dataset, the density of following graph is
0.25%�, which is 6.6 times as high as as the density of mentioning graph. As a result,
the additional information from mentioned friends does not provide much improvement.
Features propagated from following friends dominate in the classification process. In
the future, we would like to tackle this problem and find out a way to handle this
multi-model graph issue.





Chapter 6

An Empirical Study of the Novel
Coronavirus Outbreak on Twitter

6.1 Introduction
As 2020 began, an outbreak of a new respiratory disease that would come to be
known as COVID-19 occurred. The disease was first reported from Wuhan, China on
December 31, 2019 1. On January 30, 2020 the World Health Organization (WHO)
declared the outbreak a public health emergency of international concern. By May 7,
2020, more than 3,900,000 cases were confirmed worldwide spread across 214 countries
and regions, and 270,057 people had died. Severe outbreaks has occurred in China,
United States, and Europe.

As the novel coronavirus spread globally, a growing public panic was expressed
over the internet. We tracked this panic using Twitter. Twitter is one of major social
media platforms where users expressed concerns about the outbreak of this disease,
shared purported preventions and cures, discussed theories about where the disease
came from, and how governments were and should respond. A significant fraction
of the information being shared was “fake” as noted by numerous news agencies
reports2. Online fact checking sites, like Poynter3, put up new information each day
about new disinformation stories. Our analysis of these stories4 showed many types of
disinformation stories: false preventions and cures, false claims about the nature of the

1https://www.who.int/emergencies/diseases/novel-coronavirus-2019
2https://www.nytimes.com/2020/03/08/technology/coronavirus-misinformation-social-

media.html?searchResultPosition=1
3https://www.poynter.org/ifcn-covid-19-misinformation/
4https://www.cmu.edu/ideas-social-cybersecurity/research/index.html
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disease, false diagnostic procedures, false origin stories, false emergency measures, false
“feel good” stories, and so on.

The research community has frequently turned to social media to study the spread
of information, disinformation and misinformation [3, 68, 69, 8]. Among the platforms
studied are: Twitter [114, 102, 7], Facebook [80, 14, 32], and Youtube [35, 87, 70].
Disinformation or “fake news” has recently draw attention primarily in a political
context, such as studies around elections [41, 3, 111]. Bovet and Makse investigated
30 million tweets containing a link to news outlets preceding the election day. They
found that the top influencers spreading traditional center and left leaning news largely
influence the Clinton supporters, while top “fake news” spreaders influence Trump
supporters [17]. Grinberg et al. found that only small portion of individuals accounted
for a majority of “fake news” sharing [41]. They also found conservative leaning users
are more likely to engage with “fake news” sources. “fake news” also emerges in
information about topics such as vaccination and natural disaster. Chiou and Tucker
studied the role of social media in the dissemination of false news stories about vaccines.
They documented that members of anti-vaccine Facebook groups tended to disseminate
false stories beyond the group through diverse media. Gupta et al. in a study of fake
images during Hurricane Sandy[42] found that the top thirty users resulted in 90% of
retweets of fake images. Most prior research has focused on specific users, with little
concern for the type of user or their geographic location. An exception here is the
work by Babcock and colleagues that shows that disinformation spread by celebrities
or newsagencies has greater reach [8], and Carley et al. [23] that news agencies are
typically the most retweeted users, particularly during disasters.

During a pandemic, trust in health authorities is critical to prevent the spread of
the disease, to save lives, and to enable public safety. Misinformation is damaging and
can even be deadly. Because of the severe consequence, it is critical to understand the
spread of accurate and inaccurate information. A key problem in a global pandemic
is that while these authorities, other than the World Health Organization are local,
information and disinformation is spread globally. Hence, disinformation from one
country can undermine, even unintentionally, the heath authority in another country.
This may be particularly true when the information appears to come from a credible
source such as a newsagency or government o�cial. However, little is known about the
spread of information, let alone misinformation, between countries. Little is known
about the role of types of actors, such as newsagencies, in the spread of information
and disinformation particularly from a global perspective. In this study, we examine
the global spread of information related to key disinformation stories during the early
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stages of the global pandemic. We address four research questions:
1. What types of users send influential tweets in this global health emergency event?
2. Who is discussing disinformation stories?
3. Where in the world are those who discuss low credibility information?
4. What is the global network for discussing low credibility information?

6.2 Data and definitions

6.2.1 Data collection

To answer these questions, we monitored conversations about COVID-19 on Twitter
starting from January 29, 2020 to March 4, 2020. We select a list of keywords to track
Twitter’s real-time conversations5. The list include “coronavirus”, “coronaravirus”,
“wuhan virus”, “wuhanvirus”, “2019nCoV”, “NCoV”, “NCoV2019”. There are 67.4
million tweets and 12.0 million users involved in this time period. We recognize that
most Twitter users are tweeting in English, and that much of the discussion around
the coronavirus early on, used the English terms if it was on Twitter. Hence, we used
these predominantly English keywords, and the WHO terms. Although this creates a
bias toward the spread of English tweets, it does pick up a large number of tweets in
other languages.

In Figure 6.1, two red lines show the general trends for number of tweets and
number of users involved each day. The two blue lines represent the number of newly
confirmed patients each day in China as well as those outside of China reported by
WHO 6. As shown in this figure, the volume of tweets first gradually reduced as the
disease was contained inside China. As confirmed cases spread throughout the world,
the volume of daily conversation in Twitter soared. By February 26, it was six times
higher than on February 20 (3,904,293 v.s. 638,204).

To further determine users’ location, social identity, and political orientation, we
also collected the most recent 200 tweets and the following ties for each user who posted
tweets between January 29, 2020 and March 4, 2020. Among 12,047,990 involved users,
we successfully collected information for 11,951,739 users. These data are further fed
into a state-of-the-art user profiling system [55, 58]. Using this system we predict the
users’ home country based on these tweets with 92.96% accuracy. We classify users’
social identity into seven categories – news media, news reporter, celebrity, government

5https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters
6https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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Fig. 6.1 The red lines show the number of tweets and number of users each day. The
blue lines represent the newly confirmed patients each day.

o�cial, sport, company, and regular user. We also predict users’ political orientation as
liberal or conservative. We achieve accuracies of 95.4% and 87.4% on these standalone
test datasets for identity classification and political orientation prediction respectively.
Because our identity and political orientation classifiers are mainly trained on English
users, we only apply these two classifiers to users whose major language is English.

6.2.2 Disinformation and misinformation

Following previous work [68] and [41], we define “fake news sites” as ones that “lack the
news media’s editorial norms and processes for ensuring the accuracy and credibility of
information.” We adopt three lists of fake news sites as proposed in [41]. The black list
contains a set of websites which published exclusively fabricated stories. The red list is
a set of websites spreading falsehoods with a flawed editorial process. Sites labeled as
orange represent cases where annotators were less certain that the falsehoods stemmed
from a flawed editorial process. We further add a list of news sources as trusted news
sites. There are 20 black, 26 red, 25 orange fake news sites and 90 real news sites
whose URLs appear in our collected data.

To study the conversation around specific disinformation stories, we manually
identified five disinformation story-lines. The first is a popular conspiracy that this
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Source Total Bio-weapon Bleach Chlorine Garlic Sesame
Black 3083 92 (2.98%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Red 53522 4,447 (8.31%) 0 (0.00%) 0 (0.00%) 5 (0.01%) 0 (0.00%)
Orange 61162 4,879 (7.98%) 0 (0.00%) 1 (0.00%) 10 (0.02%) 0 (0.00%)
Real 796071 1,245 (0.16%) 0 (0.00%) 13 (0.00%) 169 (0.02%) 18 (0.00%)

Table 6.1 Number of source tweets with news URLs, overall and by storyline.

Retweet Total Bio-weapon Bleach Chlorine Garlic Sesame
Black 32302 73 (0.23%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Red 151249 15,467 (10.23%) 0 (0.00%) 0 (0.00%) 2 (0.00%) 0 (0.00%)
Orange 205362 24,916 (12.13%) 0 (0.00%) 0 (0.00%) 11 (0.01%) 0 (0.00%)
Real 2738551 4,291 (0.16%) 0 (0.00%) 0 (0.00%) 205 (0.01%) 25 (0.00%)

Table 6.2 Number of retweets with news URLs, overall and by storyline.

novel coronavirus is a bio-weapon developed in a research lab. The remaining story-lines
are about potential cures for this disease – garlic, sesame oil, bleach, and chlorine
dioxide. For each story-line, we retrieve tweets by searching for corresponding keywords
in our COVID-19 corpus. For this body of tweets, we can say that they are discussing
a particular disinformation story-line; however, at this point we cannot say whether
or not the sender of the message is knowingly spreading disinformation, unwittingly
spreading misinformation, joking about the story-line (satire), or pointing out that
this story-line is not true and so countering disinformation. What we can say is that
they are taking part in the discussion around that story-line.

We show the number of tweets that contain one of the news URLs and a story-line
in Table 6.1 for original tweets and in Table 6.2 for retweets. As shown in Table 6.1,
most of source tweets with fake news URLs contain keywords related to the bio-weapon
conspiracy. There is a high percentage of tweets both mentioning “bio-weapon” and
fake news URLs compared to tweets mentioning “bio-weapon” and a trusted news
source. This suggests that the bio-weapon disinformation came from these fake news
sites. In the case of retweets, a high percentage of retweets that mention red news or
orange news sites also mention “bio-weapon”. This suggests that these less credible
news sites were critical in further spreading this conspiracy; particularly as tweets
mentioning black news URLs and “bio-weapon” were less likely to be retweeted. It is
likely that there are more tweets discussing these stories, than listed here, as selection
on keyword tends to under-sample.
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6.3 Results

6.3.1 What types of users spread influential tweets?

There are 67,408,573 tweets posted by 12,047,990 users in total between January 29,
2020 and March 4, 2020. Among 5,448,250 English speaking users, 28.6% exhibit
bot-like characteristics and behavior. There are 96.44% regular users (30.73% are
labeled as bots7), 1.12% news agencies (32.91% of which are bots), 1.18% news reporters
(18.04% of which are bots), and 1.05% government o�cials (19.94% of which are bots).
Only 0.15% of users are company accounts and the rest appear to be celebrities. As
companies and celebrities together make up less than 1% of the users, we do not
continue to analyze these groups in this paper.

Fig. 6.2 Two bar charts show identity distributions across top influential tweets. There
are 20 bars in the left figure, each of which represents the identity distribution of source
users of 100 tweeters. The leftmost bar is for the top 100 most retweeted tweets. From
left to right, the number of retweets decrease. The right figure contains 50 bars. Each
bar shows the identity distribution of 10000 tweeters. The leftmost bar is the identity
distribution for the most retweeted 10000 tweets.

We define influential tweets as those which were the most retweeted. For these
influential tweets, we identify the type of user (identity) mainly tweeting in English
that posted it. In Figure 6.2, two bar charts show the identity distribution across these
most widely spread tweets. As expected, news medias play an important role in this

7We use bothunter with a 60% cuto� which has a precision of .957 and a recall of .704. [13, 12, 11]
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event. 25.98% and 12.38% of top 10000 most influential tweets are posted by news
agencies and individual news reporters. Government o�cials also contribute 8.79% of
these 10000 influential tweets. Even though less than 5% of users are these o�cial
accounts, they contribute more than 50% of these top 10000 tweets. Regular users
posted 48.29% of these influential tweets. The percentage is relatively small considering
more than 95% of the users are regular users. A deeper dive into these top 100 most
influential tweets, shows that 90% of the tweets are posted by regular users. Thus
there is a curvilinear relationship with influence such that low influence and super
high influence tweets are posted by regular users; whereas highly influential tweets are
posted by news agencies and government o�cials.

6.3.2 What types of users cite “fake news” sites or discuss
disinformation story-lines?

To study the identity of users who are talking about “fake news” URLs, we first retrieve
all the tweets that contained a URL to a news site (fake or real), then we apply our
user profiling system to these users. In total, there are 3085 source tweets containing
black news URLs, 53531 source tweets containing red news URLs, and 61179 source
tweets containing orange news URLs, and 796267 containing real news URLs. The
number of retweets containing such URLs are 32305 (black), 151286 (red), 205409
(orange), and 2739257 (real).

In Table 6.3, we listed the number of tweets by each type of user that contain a URL
to a news site by level of credibility. As shown in this table, news sites with di�erent
levels of credibility attract di�erent types of users (‰2 = 8832.1,p < 0.001,df = 18).
About 90% of the tweets containing these “fake news” URLs are initiated by regular
users. Most of those tweets contain links to red or orange sites. In contrast, the real
news sites are linked to by governments and individual news reporters.

We show the number and percentage of tweets sent by each type of user with
bot-like behavior by levels of credibility in Table 6.4. We find that the lower the
credibility of the news site being linked to, the more likely the sender of the tweet
is a bot. For example, 58.74% of the source users sending a URL for a black news
site appear to be bots as shown in Figure 6.3. A majority of retweeters of black sites
are predicted as bot accounts, which indicates that a large group of automatically
operated accounts are trying to promote these news. We also note that some of the
news agencies, government and news reporter users appear to be bots. None of the
accounts labeled as possible bots are verified accounts. There are several possible
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reasons for this: a) there are news bots and propaganda bots that are employed by
some news agencies and various o�cial account, b) an account where multiple people
send out the tweets can appear as a bot, and c) despite 95.7% precision the bot-hunter
program may be making errors. Nonetheless, the results suggest that there may be a
set of bots that were established precisely to spread information from the less credible
sites - particularly the black news sites.

Regular News agency Government News reporter
Black news 2,090 (81.45%) 409 (15.94%) 36 (1.40%) 27 (1.05%)
Red news 45,200 (91.64%) 3,155 (6.40%) 490 (0.99%) 357 (0.72%)
Orange news 45,503 (88.62%) 4,260 (8.30%) 821 (1.60%) 634 (1.23%)
Real news 509,188 (78.95%) 68,044 (10.55%) 15,430 (2.39%) 45,547 (7.06%)

Table 6.3 Number of tweets by each type of user that contain a URL to a news site by
levels of credibility.

Regular News agency Government News reporter
Black news 1,487 (71.15%) 361 (88.26%) 29 (80.56%) 21 (77.78%)
Red news 30,165 (66.74%) 2,711 (85.93%) 294 (60.00%) 225 (63.03%)
Orange news 25,296 (55.59%) 2,392 (56.15%) 584 (71.13%) 295 (46.53%)
Real news 242,487 (47.62%) 41,633 (61.19%) 5,620 (36.42%) 10,912 (23.96%)

Table 6.4 Number of tweets by each type of user that also have bot-like behavior that
contain a URL to a news site by levels of credibility, e.g. among 2090 tweets citing
black news by regular users, 71.15% of them are posted by bot-like accounts.

What types of users are discussing the disinformation story-lines varies by story-line
(‰2 = 5233.8,p < 0.001,df = 30) as can be seen in Table 6.5. The bio-weapon conspiracy
is the most widely spread story-line as 34,301 unique users tweet about this story.
Bleach is the most popular story-line concerning a false cure. A manual examination
of the content of bleach tweets, showed that many of them appeared to be jokes or
satirical responses to the original disinformation story. Fewer regular users spread the
remaining story-lines. Many news agencies and government o�cials such as WHO are
sending tweets trying to refute the original disinformation story-line.

In many cases, though, it appears that it is bots sending tweets regarding these
disinformation story-lines. In Table 6.6 we see that there is not a simple pattern
to the bot activity. We do find that there are more bot-like users spreading the
bio-weapon story-line. This suggest that a set of bots may have been established to
mimic authoritative sites to spread this information.
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Fig. 6.3 Percentage of bot-like source users and retweeters who share news URLs (Above).
Percentage of bot-like source users and retweeters who talked about misinformation
(bottom). We also include same percentages of all the tweets in the chart below.

For the political orientation, Figure 6.4 shows most people who tweet and retweet
“fake news” URL are more leaning towards conservative users. 33.28% of people
tweeting real news URLs are labeled as conservative users, while 82.45% of people
sharing “fake news” URLs are labeled conservative users. For each misinformation
story, the percentage varies case by case. The widely spread bio-weapon story tends to
attract a higher percentage of conservative users than liberal users. For the other cure
stories, most of users discussing them are labeled as liberal users. Interestingly, even
though chlorine dioxide is one kind of bleach, people who tweet about chlorine dioxide
di�er significantly from the bleach case, and the tweets are less likely to be jokes.
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Misinformation Regular News agency Government News reporter
Bio-weapon 45,791 (91.54%) 1,956 (3.91%) 842 (1.68%) 1,192 (2.38%)
Bleach 5,826 (91.78%) 280 (4.41%) 72 (1.13%) 142 (2.24%)
Chlorine dioxide 262 (79.39%) 58 (17.58%) 4 (1.21%) 5 (1.52%)
Garlic 2,316 (79.89%) 385 (13.28%) 79 (2.73%) 100 (3.45%)
Sesame 279 (76.23%) 33 (9.02%) 27 (7.38%) 22 (6.01%)
All tweets 6,516,340 (79.96%) 1,102,842 (13.53%) 185,731 (2.28%) 263,939 (3.24%)

Table 6.5 Number of tweets by each type of user that mention one of the story-lines.

Regular News agency Government News reporter
Bio-weapon 21,556 (47.07%) 1,344 (68.71%) 590 (70.07%) 852 (71.47%)
Bleach 2,491 (42.76%) 134 (47.86%) 26 (36.11%) 31 (21.83%)
Chlorine 92 (35.11%) 13 (22.41%) 2 (50.00%) 3 (60.00%)
Garlic 946 (40.85%) 218 (56.62%) 23 (29.11%) 28 (28.00%)
Sesame 108 (38.71%) 22 (66.67%) 6 (22.22%) 4 (18.18%)
All tweets 2,759,427 (42.35%) 658,941 (59.75%) 72,451 (39.01%) 70,077 (26.55%)

Table 6.6 Number of tweets by each type of user with bot-like behavior that contain
one of the story-lines, e.g. among 45,791 tweets mentioning bio-weapon by regular
users, 47.07% of them are posted by bot-like accounts.

6.3.3 Where in the world are those who discuss low credibility
information?

To measure users’ geographical distribution, we combine geotags in user timelines
with our country-level location predictions. For each user collected with timeline
data, we look at the geotag in each tweet. Among 11,951,739 users, there are 791,830
individuals with geotags in their timelines. The home country of these geotagged users
is determined by a majority vote of these geotags. For the remaining users, we apply
our country-level location predictor to get their home countries.

Because these news lists are mainly compiled by English speakers, we only measured
the country distributions among English speaking users to avoid potential language
bias. As shown in Table 6.7, United States, United Kingdom, and Canada are the three
countries from which most tweets with “fake news” URLs originate. Because of the
language bias, there are many more tweets mentioning “fake news” and misinformation
stories from countries mainly speaking in English such as United States and United
Kingdom. 73.26% of the English speakers who posted tweets with “fake news” URLs
came from United States. The percentage is also much higher than the U.S. users who
posted real news URLs. To partially control for this bias, we normalize the number of
users sharing “fake news” URLs by the total number of users in each country. The
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Fig. 6.4 Percentage of conservative source users and retweeters who share news URLs
(Above). Percentage of conservative source users and retweeters who talked about
misinformation (bottom). We also include same percentages of all the tweets in the
chart below.

last column of Table 6.7 shows the normalized results. The probability for each U.S.
user posting a “fake news” URL is 2.28%, while the probabilities for Philippines and
Malaysia are 0.13% and 0.17%. Even though many users in United Kingdom shared
“fake news” URLs, the normalized number is much lower than countries like the United
States and Canada. Users mentioning “fake news” URLs are more di�erent from the
underlying population than users mentioning real news. We use KL-divergence to
measure the distance from country distribution of source users posting “fake news”
URLs to the country distribution of all English sources. The distance is 0.144 in this
case. On the contrary, the KL-divergence from country distribution of sources posting
real news URLs to the country distribution of English sources is only 0.075.

In Table 6.8, we also show the country distribution for users who retweet these
“fake news” URLs. Again, a majority of retweeters are from the United States, followed
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Country/region # of EN users posting
“fake news” URLs

# of EN users posting
real news URLs # of EN source users % of EN users posting

“fake news” URLs per country
United States 24,552 (73.26%) 146,875 (64.11%) 1,077,431 (51.55%) 2.28%
United Kingdom 2,599 (7.75%) 23,988 (10.47%) 255,779 (12.24%) 1.02%
Philippines 112 (0.33%) 2,483 (1.08%) 89,480 (4.28%) 0.13%
India 334 (1.00%) 4,674 (2.04%) 83,030 (3.97%) 0.40%
Canada 1,368 (4.08%) 10,228 (4.46%) 77,344 (3.70%) 1.77%
Nigeria 677 (2.02%) 1,263 (0.55%) 59,862 (2.86%) 1.13%
Australia 607 (1.81%) 6,755 (2.95%) 52,526 (2.51%) 1.16%
South Africa 339 (1.01%) 1,261 (0.55%) 26,308 (1.26%) 1.29%
Malaysia 39 (0.12%) 961 (0.42%) 22,869 (1.09%) 0.17%
Kenya 83 (0.25%) 900 (0.39%) 19,486 (0.93%) 0.43%
total 33,514 229,111 2,089,892 1.60%

Table 6.7 Country distribution of English speaking users who posted tweets with news
URLs. We only show top 10 countries with the most English source users in this table.

Country/region # of EN retweeters
of “fake news” URLs

# of EN retweeters
of real news URLs # of EN retweeters % of EN retweeters of

fake news URLs per country
United States 79,157 (75.52%) 343,418 (64.18%) 2,088,187 (49.88%) 3.79%
United Kingdom 6,667 (6.36%) 49,222 (9.20%) 441,331 (10.54%) 1.51%
India 1,642 (1.57%) 13,277 (2.48%) 206,542 (4.93%) 0.79%
Philippines 241 (0.23%) 11,960 (2.24%) 204,856 (4.89%) 0.12%
Nigeria 2,953 (2.82%) 5,108 (0.95%) 135,306 (3.23%) 2.18%
Canada 3,586 (3.42%) 21,614 (4.04%) 135,083 (3.23%) 2.65%
Malaysia 380 (0.36%) 5,973 (1.12%) 118,361 (2.83%) 0.32%
Australia 1,393 (1.33%) 12,200 (2.28%) 69,699 (1.66%) 2.00%
Indonesia 98 (0.09%) 4,781 (0.89%) 62,147 (1.48%) 0.16%
South Africa 1,093 (1.04%) 2,875 (0.54%) 57,511 (1.37%) 1.90%
total 104,811 535,113 4,186,548 2.50%

Table 6.8 Country distribution of English speaking users who retweeted tweets with
news URLs. We only show top 10 countries with the most English retweeters in this
table.

by the United Kingdom and Canada. After we normalize the number of retweeters
of “fake news” URLs by the total number of retweeters in each country, we can see
that 3.79% of users in United States have at least retweeted one tweet with “fake news”
URLs, which is much higher than the average percentage. Even though the United
Kingdom has the second most English speaking retweeters, the probability for users
in the United Kingdom retweeting “fake news” URLs is still lower than the average
probability. Again, users retweeting “fake news” URLs are more di�erent from the
underlying population than are users mentioning real news. The KL-divergence from
country distribution of retweeters of “fake news” URLs to English retweeters is 0.192,
while the distance from real news retweeters to English retweeters is only 0.096.

We have similar observation on the country distribution of misinformation, as shown
in Table 6.9. Most of users involved in the conversation about misinformation are from
United States, followed by United Kingdom, Canada. Among these top 10 countries,
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Country/Region # of EN sources
talking misinfo. # of EN sources

% of EN sources
talking misinfo.
per country

# of EN retweeters
of misinfo.

# of EN
retweeters

% of retweeters
of misinfo.
per country

United States 23,234 (63.40%) 1,077,431 (51.55%) 2.16% 93,696 (67.54%) 2,088,187 (49.88%) 4.49%
United Kingdom 2,327 (6.35%) 255,779 (12.24%) 0.91% 7,484 (5.39%) 441,331 (10.54%) 1.70%
Philippines 1,142 (3.12%) 89,480 (4.28%) 1.28% 2,401 (1.73%) 204,856 (4.89%) 1.17%
India 1,351 (3.69%) 83,030 (3.97%) 1.63% 5,330 (3.84%) 206,542 (4.93%) 2.58%
Canada 1,541 (4.21%) 77,344 (3.70%) 1.99% 4,791 (3.45%) 135,083 (3.23%) 3.55%
Nigeria 1,080 (2.95%) 59,862 (2.86%) 1.80% 4,181 (3.01%) 135,306 (3.23%) 3.09%
Australia 879 (2.40%) 52,526 (2.51%) 1.67% 1,962 (1.41%) 69,699 (1.66%) 2.81%
South Africa 359 (0.98%) 26,308 (1.26%) 1.36% 1,539 (1.11%) 57,511 (1.37%) 2.68%
Malaysia 219 (0.60%) 22,869 (1.09%) 0.96% 2,009 (1.45%) 118,361 (2.83%) 1.70%
Kenya 341 (0.93%) 19,486 (0.93%) 1.75% 1,773 (1.28%) 39,558 (0.94%) 4.48%
total 36,645 2,089,892 1.75% 138,723 4,186,548 3.31%

Table 6.9 Country distribution of English speaking users who are involved in the
conversation of misinformation. We only show top 10 countries with the most English
source users in this table.

people from United States, Canada are more likely to tweet or retweet misinformation.
Among 1,077,431 U.S. users who posted tweets, 2.16% of them posted tweets mentioning
misinformation stories. And 4.49% of retweeters in U.S. have retweeted tweets talking
misinformation stories. One thing we want to note is that even though only 11,734 and
32,643 English-speaking tweeters and retweeters are from Hong Kong, 2.86% tweeters
and 6.99% retweeters from Hong Kong have tweeted or retweeted tweets mentioning
misinformation phrases.

We plot the Kl-divergence between the country distribution of English speaking
users who share specific news and the country distribution of all English speakers in
Figure 6.5. As shown in this figure, the population of who sharing real news is the
closest one to the underlying one. The less credible the news sites, the bigger of the
population di�erence. In the bottom of Figure 6.5, we also show the same plot for all
misinformation stories. The country distribution of source users who talked about the
bio-weapon conspiracy are very close to the one of underlying population. Among the
cure stories, the bleach misinformation is the one spread most closest to the underlying
population.

6.3.4 What is the global network for discussing low credibility
information?

An important question that has received little attention is how information about
low credibility websites and disinformation story-lines spread between countries. To
examine this, we extracted the information flow among countries. If a user in country
A retweets a tweet posted by a user in country B, then we add an edge from country B
to country A. Figure 5 shows the percentage of retweets between countries for tweets
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Fig. 6.5 KL-divergence between country distributions of EN users sharing news and all
EN users (above). KL-divergence between country distributions of EN users talking
misinformation stories and all EN users (bottom).

with “fake news” URLs and misinformation conversations. As shown in the above
figure, 39.31% of users who retweet tweets with real news URLs are from a di�erent
country than the source tweet. The percentage of inter-country retweets is much lower
for the tweets containing URLs to less credible sites, especially for the black news sites.
This demonstrates that tweets mentioning less credible news-sites tend to stay within
the source country. This helps explain why country distribution of users sharing these
“fake news” URLs di�er from the underlying population.

As for the misinformation stories, tweets talking about bio-weapon, bleach, chlorine
dioxide are more likely to be retweeted by users from the same country. Tweets
mentioning garlic and sesame are more likely to spread internationally. One reason for
this is that global health agencies such as WHO posted several clarifications for these
misinformation stories.
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Fig. 6.6 Percentages of retweets between countries for “fake news” sites and misinfor-
mation conversations.

As a result, conversations about real news and certain misinformation stories have
high country diversity in their spread. Here, we use entropy of country distribution
to measure the country diversity of Twitter users who shared each “fake news” sites
and misinformation stories. As shown in Figure 6.7, the country entropy of users who
posted tweets with “fake news” URLs are much less than users who posted real news
URLs. The black news and red news are constrained in the source countries. Similar
e�ect also happens for misinformation stories. Tweets talking about garlic and sesame
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are spreading as diverse as normal tweets, while users talking about chlorine dioxide
are highly concentrated in certain countries.

In Figure 6.8, we show the information flows among countries. The width of a
flow is proportional to the percentage of retweets from country A to country B among
retweets between all the countries. We only show information flows with percentages
higher than 0.5%. We also exclude the retweets inside the same country in this figure.
As shown in Figure 6.8a, United States contributing the most of the retweeting flow
between countries. Out of 11,092,477 inter-country retweets, 4,034,985 are from United
States (36.38%). A great deal of information moves from the United States to other
countries particularly the United Kingdom and Hong Kong. The situations become
more extreme in the cases of bio-weapon (39,535 out of 69,389, 56.98%), bleach (5,803
out of 8,144, 71.25%), and chlorine dioxide (292 out of 326, 89.6%). Switzerland, where
WHO is located, plays a larger role in the flow of information about sesame and garlic.
For example, for the sesame story-line there are 823 retweets between countries, 415 of
them are from Switzerland (50.43%). All of these retweets are people retweeting WHO.

6.4 Discussion
This study investigated the discussion about the novel coronavirus on Twitter. We
examined fake news URLs and misinformation stories spreading in this emergence
event. Our study shows that news agencies, government o�cials, and individual news
reporters do send messages that spread widely, and so play critical roles. However,
the most influential tweets are those posted by regular users, some of whom are bots.
Tweets mentioning fake news URLs and misinformation stories are more likely to be
spread by regular users than the news or government accounts. The distribution of
users mentioning the URLs of less credible news sites across countries is di�erent from
the distribution of users mentioning real news URLs. More users mentioning these less
credible sites and/or the disinformation story-lines come from United States. Unlike
messages that mention real news URLs or don’t discuss these disinformation story lines
which often spread between countries, these “fake news” discussions typically spread
within a country.

In this paper, we utilized machine learning systems to predict users’ latent attributes,
such as their locations and political orientations. Even though our prediction systems
have reasonably high accuracy, they are still prone to prediction errors for individual
users. To ensure the reliability of our analysis, we have focused on aggregated results.
For the same reason we focused on comparative results instead of absolute values;
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Fig. 6.7 Entropy of country distribution for users who posted certain “fake news” URLs
and misinformation stories.

e.g., there is a higher percentage of conservative users involved in the bio-weapon
conspiracy tweets than in non-conspiracy tweets. We also tested the generalizability of
the machine learning systems on this COVID-19 dataset. For the location prediction
system, we re-trained it using the geotagged users in this dataset. For the identity
and political orientation prediction models, we extracted all test users existing in the
COVID-19 dataset and re-collected their most recent 200 tweets in this time period.
The testing accuracies for this subset of test users are 90.2% and 91.4% which are
very close to the performance 90.6% and 90.6% on identity and political orientation
classification respectively evaluated on the original dataset. In order to get a consistent
evaluation on the political ideology of global users, we apply a political orientation
prediction system trained on users from the United States on English speaking users
globally. The political orientation prediction results should be interpreted relative to
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the current conservative versus liberal di�erences in the United States. We note that,
to first order, these same di�erences are prevalent in Western Europe.

It is important to note that this study only extracted tweets containing certain
types of news URLs or certain keywords associated with disinformation story-lines.
Whether these tweets are being spread by those knowing they are inaccurate mali-
ciously, as a joke, or simply to discuss the inaccuracy is not considered in this paper.
Future work, separating these tweets by the original purpose could provide us with
a better understanding of how disinformation spreads during an emergency and the
conditions under which it needs to be countered. Our search criteria for finding tweets
coronavirus resulted in a bias toward tweets in the English language. Our search
was also constrained by the limits of the Twitter APIs. Hence, there are likely to be
additional conversations related to this pandemic that are not captured. Future work
might consider automatically detecting new tracking keywords in the streaming data to
dynamically shift the selection and so capture more conversations as the conversation
drifts between topics [66].

There are many potential implications of this study. We found that regular users
sent the majority of tweets referring to non-credible news sites and mentioning the
disinformation story-lines. Many of these regular users appear to be bots; however,
most people cannot recognize bots. Thus, people should be cautious when reading
tweets sent from regular users, and perhaps be even more skeptical when reading those
posts, than those from news agencies and the government. Regular users in some
countries appear to be greater consumers of information and sources lacking credibility.
This suggests that local country regulations, policies, and technology may be important
in reducing the spread of such information. We found that health authorities, such as
WHO, played a critical role. Concerted e�orts to increase the reach of such authorities
may be of value in combating misinformation.



6.4 Discussion 85

(a) Flow of EN tweets be-
tween countries

(b) Flow of tweets talking
bioweapon

(c) Flow of tweets talking
sesame

(d) Flow of tweets talking
garlic

(e) Flow of tweets talking
chlorine dioxide

(f) Flow of tweets talking
bleach

Fig. 6.8 Information flows among countries. Retweets from the same country as the
source are excluded in this figure. We use ISO 3166-1 alpha-2 country code.





Chapter 7

Conclusions and Discussions

7.1 Summary of Contributions
This thesis aims to learn user latent attributes from their social media posts. These
attributes such as location and politic orientation are often not explicitly available from
user’s homepage and some implicit indicative information are often buried in the large
volume of noisy social media content, which makes this task challenging. In this thesis,
I uncover these implicit indicative information with machine learning. I propose to
learn user latent attributes from three levels – tweet-level, user-level, and graph-level.
The proposed methods utilize heterogeneous data available on social media including
tweet text, user profile information, as well as social networks.

I start the thesis with a simple tweet-level tweet-level location prediction system.
It is able to geolocate one user based on the information in a single tweet object.
The proposed approach integrates tweet text and user profile meta-data into a single
model. Compared to the previous stacking method with feature selection, our approach
substantially outperforms the baseline method. We developed the approach for both
city and country level and demonstrated the ability to classify almost 50% and 90% of
all tweets at city-level and country-level respectively.

I further improve the performance of the tweet-level system by incorporating more
information from user’s whole timeline. We propose a hierarchical self-attention neural
network to learn useful features from multiple tweets for each user. Our experiments
demonstrate that the proposed model significantly outperforms multiple baselines.
Based on this user-level model, we propose a hierarchical location prediction neural
network to improve Twitter user geolocation. It first predicts the home country for
a user, then uses the country result to guide the city-level prediction. It not only
improves the prediction accuracy but also greatly reduces the mean error distance.
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All the previous presented methods ignore the social network factor, which may
provide additional information to learn user’s attributes because of social homophily
e�ect. In the fifth chapter, I propose a unified model which combines my user-level
model and a graph neural network into one single prediction model. I demonstrate
that we can get much better performance when considering network information.
Furthermore, I also show that classic network metrics could complement the graph
neural network by adding network structure information.

Given all the tools developed in this thesis, I investigated the discussion about the
novel coronavirus on Twitter as a case study. My studies show that news reporters,
government o�cials, and individual news reporters play an important role in this event.
Generally, tweets written by these users are more likely to spread widely. However,
the most influential tweets are still posted by regular users. In the mean while, tweets
with fake news URLs and misinformation stories are also more likely to be spread
by regular users. In this particular event, fake news country distribution di�ers from
real news spreading pattern. A higher proportion of tweets talking about fake news
and misinformation come from United States. Besides, unlike real news and normal
tweets, tweets with fake news URLs are constrained inside the source country and are
less likely to spread internationally. As a result, tweets with fake news URLs spread
to countries with lower diversity than tweets with real news URLs. We have similar
observation for tweets talking about certain misinformation stories.

Because it is relatively expensive to get manually labeled data, in this thesis I
also explored various ways to use unlabeled users to enhance the performance. In the
fourth chapter, my experiments show that we can utilize the Twitter’s verify field as a
noisy label to learn identity features of public figures. The knowledge learned from
public figures can be transferred to the more fine-grained identity classification task,
which reduces the need of manual labeling and improves the performance. In the fifth
chapter, I also show that in the semi-supervised setting we can greatly improve the
classification performance by adding unlabeled users.

Last, I want to note that though I mainly use tweet data to predict user attributes
like location, social identity, the methodology can be easily extended to other platforms
like Facebook and Weibo, as well as other characteristics, eg. gender and age.

7.2 Limitations & Future Work
There are some limitations of the work presented in this thesis. I list several major
ones as follows.
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For these latent attributes, our methods assume they are static through time.
However, some of these attributes may evolve overtime when users change their statuses.
For example, people may relocate to other cities because of traveling. However, our
model assumes each post of one user all comes from one single home location but ignores
the dynamic user movement pattern. For other attributes such as political orientation,
people may also change their ideology slowly overtime. We plan to incorporate temporal
states to capture attributes changes in future work.

Besides, in this thesis we only considered limited dimensions of latent attributes.
However, attributes such as political orientation may have various dimensions. Users
we labeled as liberal may be in favor of certain political policies of the democratic
party while do not support the other democratican policies. Also, users in other foreign
countries may share a di�erent politic ideology system. Users considered to be mild
conservative in one country may be considered as liberal in another country. Similar
for identity classification, in the real-world people often have multiple identities - e.g.,
Serbian, Entrepreneur, Policewoman, Woman, Mother. In social media, some people
use di�erent accounts and/or di�erent social media platforms for di�erent identities -
e.g., Facebook for Mother, Twitter for Entrepreneur and a separate Twitter handle for
o�cial policewoman account. In this paper, we made no e�ort to determine whether an
individual had multiple accounts. Thus, the same user may get multiple classifications
if that user has multiple accounts. Future work should explore how to link multiple
identities to the same user.

For future work, we may also consider increase the granularity of our prediction
labels. In the case of city-level location prediction, we have over 3000 major populated
cities around world. If we want to increase the granularity, we may consider divide earth
into tens of thousands grids. Then, we place each user into these fine-grained grids.
However, when the number of classes increases to hundreds of thousands, we may not
have enough training data for every target class. Alternatively, we may also consider
convert the problem into coordinates regression that learn the precise coordinates of
users. However, such precise geolocation would put individual’s privacy at risk. In
the case of identity classification, currently we do not have a hierarchical ontology of
identities. For future work, we also need to design such identity ontology and predict
users’ identities at di�erent levels, which also enables multiple identities to be assigned
to the same account and so to the same user. For political orientation prediction,
in reality people may have di�erent political opinion towards certain topics. In the
future, we plan to tackle this issue by looking at aspect-specific political orientation
prediction. Hence, we can get users’ stances of di�erent issues. Given a pair of input —
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user’s profile and a political issue, we can output a stance of each user for this specific
issue. In the meanwhile, we also need to control the granularity of our prediction so
that individual users cannot be separated out from a group of users due to privacy
consideration.

Currently, our methods are trained on previously collected datasets. However, topics
discussed on social media evolves very quickly. People may still discuss the superbowl
in early February 2020, while the major topic changes to the novel coronavirus very
soon. The performance of machine learning models trained on data collected years
before may not generalize to the current data pattern. To accommodate the newly
incoming data stream, we may consider a never-ending learning paradigm [76].

In addition to the timing e�ect, attributes prediction models trained on a limited
number of training data may also su�er from the domain bias. When we apply our
prediction systems in the wild, it is still questionable that can our models generalize to
users in another domain. Using users’ whole timeline and social links may minimize the
bias e�ect, since their long tweeting histories and social ties are less prone to the topic
drift. When apply our models on a new dataset, one can also try the same method as
what we did in the Chapter 6 that test the performance on a subset of overlapped users.
If the performance drops significantly, we may also consider unsupervised domain
adaption technique [38] to better adapt our models in a new domain.

Previous study also shows that deep neural networks can be easily fooled by some
simple data manipulation [103]. If malicious users such as social bots want to hide their
identities or pretend themselves to be someone else, they may intentionally manipulate
their social posts and fool such learning algorithms. In the future work, we would like
to consider a more robust neural network model.

Last but not least, though this work proposes multiple ways to reduce the need of
labeled users such as transfer learning and semi-supervised learning, it still requires
human supervision to learn user representations, which is very expensive. One possible
way to learn universal representations without labeled data is via self-supervision [33].
BERT already demonstrates we can learn a powerful language model which could
be adapted to multiple sub-tasks. Since we not only have text, but also metadata
and graphs, it is still challenging to learn a universal user-level model that takes the
heterogeneous data sources into consideration.
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7.3 Privacy Considerations
One concern of studying user behavior on social media is privacy. By default tweets
posted by users are considered as public information and anyone on Internet can access
public tweets without restriction1. There are an option for users that they can choose
to hide their profiles and unrelated persons are not allowed to view their profiles. In
this paper, we only collected data that are public available following users’ privacy
setting. The collected datasets are only used for research and are not shared with
any third-parties. In the meanwhile, the trained models are also used internally for
research purpose.

This thesis only presents results for groups of users on an aggregated level. The data
reported in this paper does not involve any individual’s sensitive information. This
thesis demonstrates that we can combine conversations on social media and machine
learning techniques during a global disaster for social good.

1https://twitter.com/en/privacy
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Appendix A

Data Collections

Tweet-level location dataset
We used geo-tagged tweets collected from Twitter streaming API1. We set the geographic
bounding box as [-180, -90, 180, 90] so that we could get these geo-tagged tweets from
the whole world. Our collection started from January 7, 2017 to February 1, 2017. The
dataset is stored at /storage2/binxuan/data/tweet_global_location on CASOS’s ECE
servers.

We are only using tweets either with specific geo-coordinates or a geo-bounding box
smaller than [0.1,0.1]. The country label is directly retrieved from geotags in tweets.
The city label is created by assigning tweets to the major populated cities. The city
list is in the file of city_collapsed_all.

There are 3,321,194 users and 4,645,692 tweets in total. We randomly selected 10%
users’ tweets as testing data. For the remaining 90% users, we picked tweets from
50,000 of them as a development set and used the remaining tweets as training data.
The training data is saved in 5 files with name starting with “training_”. The test
data is saved in 2 files with name starting with “testing_”. The “dev_0” contains
development data. Each line of these files represents one single tweet. Each line is
organized as
country_index city_index tweet_text description location tweet_lang_index

user_lang_index timezone_index time_index.
1https://developer.twitter.com/en/docs/tweets/filter-realtime/api-reference/post-statuses-filter
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You can find the name to index mapping in files “langMap”, “countryMap”, “time-
zoneMap” for language, country, and timezone respectively. The city index is the line
number for each city in the file city_collapsed_all starting from 0.

Public Figure
We use Twitter’s verification as a proxy for public figures, and these verified accounts
include users in music, government, sports, business, and etc2. We sampled 156746
verified accounts and 376371 unverified accounts through Twitter’s sample stream data
3. Then we collected their most recent 200 tweets from Twitter’s API4 in November
2018. We randomly choose 5000 users as a development set and 10000 users as a test
set.

The dataset is saved at /storage2/binxuan/data/verify_full on CASOS’s ECE
servers. Files with name “output_*_.json.gz” contains the raw collected tweet JSONs.
After de-compressing, each line of these file represents one single tweet JSON. The user
label is contained in the “verified” field in the JSON. The file following_reduced.csv
contains the following ties among these users. Each line is organized as “source, target
(followee)”. It is collected from Twitter’s API5.

preprocess_v2.ipynb is a jupyter notebook that runs a spark application to pre-
process the raw json files. “user.json” is the concatenated output file which contains
user-based data point. Each line is a user JSON object with fields “user_id”, “descrip-
tion”, “name”, “screen_name”, “label”, and “tweets”.

Identity
The identity dataset is saved at /storage2/binxuan/data/identity2 on CASOS’s ECE
servers. In the “data” folder, each csv file contains the user IDs for each corresponding
identity category. In the same folder, we also have the corresponding raw json files
containing the most recent 200 tweets collected using API6.

2https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
3https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample.html
4https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-

usertimeline
5https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-

reference/get-friends-ids
6https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-

usertimeline
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preprocess_v2.ipynb is a jupyter notebook that runs a spark application to pre-
process the raw json files. “user.json” is the concatenated output file which contains
user-based data point. Each line is a user JSON object with fields “user_id”, “descrip-
tion”, “name”, “screen_name”, “label”, and “tweets”.

Political Orientation

The political orientation dataset is saved at /storage2/binxuan/data/politic_final
on CASOS’s ECE servers. The seed politicians’ accounts are included in the file
“political_a�aliation.csv”. Each line of it contains the screen name, name, political
party, and position of each politicians. followers_parties.csv is the edgelist file that
contains the followers of these politicians belonging to democratic or republican. We
sampled a subset of users only following politicians of one party and saved them at
collect_final.csv. Each line of this file is “follower_id, party_index”. Party index “1”
represents conservative.

We collected the timelines of these users using API7. The folder “timeline” contains
raw JSON files of the most recent 200 tweets for all the users. following_reduced.csv
contains the following ties among these users. Each line is organized as “source, target
(followee)”. It is collected from Twitter’s API8.

Coronavirus

The coronavirus dataset is created by searching coronavirus related keywords in the
real-time Twitter stream starting from Jan. 29, 2020. The initial keywords set contains
“coronaravirus”, “coronavirus”, “wuhan virus”, “wuhanvirus”. Then we added keywords
“NCoV” on Jan. 30 and “covid-19”, “covid19”, “covid 19” on March 11. These files
saved are saved at /storage3/coronavirus/json_keyword_stream/ on CASOS’s ECE
servers. The file names are “virus_year_month_day.json.gz”.

The timeline data is saved at /storage3/binxuan/data/virus with name pattern
“timeline_start_date_end_date”. Each folder contains the most recent 200 tweets for
users who have only posted after the start date and before the end date (new unique
users appearing after the start date.). The following edgelists are also saved at /stor-
age3/binxuan/data/virus with name pattern “following_start_date_end_date.csv”.

7https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-
usertimeline

8https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-
reference/get-friends-ids
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Each folder contains following ties for users who have only posted after the start date
and before the end date.
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