
Software Architecture Evolution
Jeffrey M. Barnes

December 2013

CMU-ISR-13-118

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee

David Garlan (chair) Travis Breaux
Institute for Software Research Institute for Software Research

School of Computer Science School of Computer Science
Carnegie Mellon University Carnegie Mellon University

Ipek Ozkaya Kevin Sullivan
Software Engineering Institute Department of Computer Science

Carnegie Mellon University University of Virginia

Copyright © 2013 Jeffrey M. Barnes

This dissertation is based on research supported by the Software Engineering Institute; the Jet Propul-

sion Laboratory Summer Internship Program; the National Aeronautics and Space Administration;

IBM; the National Science Foundation under grant 0615305; and the United States Navy under con-

tracts N000141310401, N000141310171, and N000140811223. The views and conclusions contained

herein are my own and should not be interpreted as representing the policies or opinions of Carnegie

Mellon University or any of the sponsors of this research.

Keywords: software architecture, software evolution, software engineering, formal

methods, specification, temporal logic, case study, content analysis

Abstract

Many software systems eventually undergo changes to their basic architectural struc-

ture. Such changes may be prompted by new feature requests, new quality attribute

requirements, changing technology, or other reasons. Whatever the causes, architec-

ture evolution is commonplace in real-world software projects.

Today’s software architects, however, have few techniques to help them plan such

evolution. In particular, they have little assistance in planning alternatives, making

trade-offs among these different alternatives, or applying best practices for particular

domains.

To address this, we have developed an approach for assisting architects in planning

and reasoning about software architecture evolution. Our approach is based on

modeling and analyzing potential evolution paths that represent different ways of

evolving the system. We represent an evolution path as a sequence of transitional

architectural states leading from the initial architecture to the target architecture,

along with evolution operators that characterize the transitions among these states.

We support analysis of evolution paths through the definition and application of

constraints that express rules governing the evolution of the system and evaluation

functions that assess path quality. Finally, a set of these modeling elements may

be grouped together into an evolution style that encapsulates a body of knowledge

relevant to a particular domain of architecture evolution.

We evaluate this approach in three ways. First, we evaluate its applicability to

real-world architecture evolution projects. This is accomplished through case studies

of two very different software organizations. Second, we undertake a formal evalua-

tion of the computational complexity of verifying evolution constraints. Finally, we

evaluate the implementability of the approach based on our experiences developing

prototype tools for software architecture evolution.

iii

This dissertation is dedicated to the memory of my grandfather.

Lester Earl Barnes, Jr.

June 20, 1929 – November 24, 2013

When I was in fifth grade, Grandpa Barnes gave me a book on

computer programming and turned me loose on the QBasic in-

terpreter that came packaged with MS-DOS in the 1990s, setting

me on the very long journey that has led me to a PhD in software

engineering. He has been a source of wisdom and encourage-

ment throughout my life and will be dearly missed.

v

Acknowledgments

Appropriately enough, I am writing these acknowledgments on Thanksgiving Day,

four days before my thesis defense. This Thanksgiving, I have much to be grateful for.

I would like to begin by thanking my thesis advisor, David Garlan, who has been

my principal resource and guide throughout my graduate studies. I could not have

hoped for a better advisor. Prospective students visiting Carnegie Mellon often ask

about David’s advising style. Is he hands-on or hands-off? Big-picture or detail-

oriented? I’m always at a bit of a loss about how to answer such questions. The truth

is that David is a very versatile advisor. He has a remarkable knack for providing the

right kind of help and the right amount of guidance at the right time. He’s a fantastic

source of grand visions and big ideas, but he is also abundantly heedful of the need

to get the small details right. He’ll help take you step-by-step through an unfamiliar

process when you need it, but he’ll also entrust you with freedom and responsibility

once you’ve learned the ropes. He’s visionary and idealistic when vision and idealism

are what’s needed, and pragmatic and hardheaded when the time comes for action. I

am deeply grateful for the guidance he has given me over the last six years.

The other members of my thesis committee have done much to improve the

quality of this work. Travis Breaux was particularly helpful in providing guidance on

research methodology and in encouraging me to carry out my empirical evaluation

as meticulously and thoughtfully as I could.

Ipek Ozkaya has been supportive of my research and influential in directing its

course since long before I asked her to join my thesis committee. She has been a

continual source of helpful advice, guidance, and encouragement throughout my

graduate studies.

Finally, my external committee member, Kevin Sullivan, provided a number of

useful comments that have helped to shape the direction of my thesis research. I am

grateful to all four of my thesis committee members for their insight and guidance.

Over the years, I have been fortunate to receive useful input on my research

from a great many people. I would like to particularly acknowledge the contribu-

tions of Bradley Schmerl, Orieta Celiku, Brian Giovannoni, Dave Santo, Oleg Sindiy,

S Sivakumar, Sridhar Iyengar, and Shrikant Palkar. In addition, individuals who con-

tributed significantly to specific projects are acknowledged in footnotes within the

relevant chapters of this dissertation.

I would also like to thank past and present members of the ABLE research group,

as well as the students, faculty, and staff of the Institute for Software Research at large.

I very much appreciate the supportive, collegial environment that ISR has provided

for me during my time here.

The title page of this dissertation identifies the funding sources that made this re-

search possible. I am very grateful to all the organizations that have provided support

vii

for this work. I would like to particularly express my gratitude to the Software Engi-

neering Institute. The consistent support provided by the SEI for this research over

the last several years has enabled me to examine the topic of software architecture

evolution in the depth and breadth that it deserves.

Finally, I will be forever grateful for the emotional, financial, and practical support

that my family has provided me throughout my education. Mom, Dad, and Kevin:

thank you! Your love and support have meant more to me than you know.

Most of all, I am thankful for Mina, who has been a constant source of inspiration,

a beacon of stability, and the light at the end of my tunnel. It’s been a long, crazy

journey together, and I’m grateful every day to have you at my side.

viii

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Motivating example . 2

1.3 Thesis . 5

1.3.1 Thesis statement . 5

1.3.2 Explanation . 6

1.3.3 Research claims . 8

1.4 Dissertation outline . 10

2 Approach 11

2.1 Evolution states . 12

2.2 Evolution operators and transitions . 13

2.3 The evolution graph . 16

2.4 Evolution path constraints . 18

2.5 Evolution path evaluation functions . 19

2.6 Evolution styles . 22

3 Theoretical results on evolution path constraint verification 25

3.1 Syntax of the constraint specification language 25

3.2 Semantics of the constraint specification language 27

3.3 Similar logics . 29

3.4 Computational complexity . 31

3.5 Summary . 39

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory 41

4.1 Background . 41

4.2 Evolution description . 43

4.2.1 Initial architecture . 43

4.2.2 Impetus for evolution . 45

4.2.3 Target architecture . 46

4.3 Approach . 46

4.3.1 Representing software architecture in SysML 47

ix

4.3.2 Modeling software architecture evolution with MagicDraw . . 48

4.3.3 Representing model transformations 48

4.3.4 Modeling constraints and evaluation functions with OCL . . . 50

4.4 Results . 50

4.4.1 Representing the initial architecture 50

4.4.2 Intermediate states and alternative paths 53

4.4.3 Representing architectural transformations 54

4.4.4 Constraints and evaluation functions 55

4.5 Summary . 56

5 Case study: Architecture evolution at Costco 59

5.1 Case selection . 61

5.1.1 About the case . 61

5.1.2 The architecture organization 62

5.2 Data collection . 64

5.2.1 Interview data . 64

5.2.2 Architectural documentation . 66

5.3 Content analysis . 67

5.3.1 A very brief history of content analysis 67

5.3.2 Qualitative versus quantitative content analysis 68

5.3.3 Elements of a qualitative content analysis 71

5.3.4 Coding frame . 72

5.3.5 Segmentation . 75

5.3.6 Pilot phase . 77

5.3.7 Main analysis phase . 78

5.4 Evolution model construction . 78

5.4.1 Initial and target architectures 78

5.4.2 Evolution operators . 83

5.4.3 Constraints . 85

5.4.4 Evaluation functions . 88

5.4.5 Evolution styles . 89

5.5 Findings . 90

5.5.1 Motives for evolution . 90

5.5.2 Causes of problems . 93

5.5.3 Consequences . 95

5.5.4 Challenges . 95

5.5.5 Approaches . 98

x

5.6 Conclusions . 100

5.6.1 Answers to the research questions 100

5.6.2 Reliability . 101

5.6.3 Validity . 107

5.7 Summary . 112

6 Tooling 117

6.1 Ævol: A first step in tool development 117

6.2 A MagicDraw plug-in for architecture evolution 119

6.2.1 Developing the plug-in . 121

6.2.2 Lessons learned . 124

6.3 Automated generation of architecture evolution paths 125

6.3.1 Automated planning . 126

6.3.2 Approach . 128

6.3.3 Application . 133

6.3.4 Findings . 140

6.4 Summary . 142

7 Related work 145

7.1 Software evolution . 145

7.2 Software project planning . 146

7.3 Evaluating and architecting for evolvability 147

7.4 Planning software architecture evolution 148

7.5 Summary . 152

8 Conclusion 155

8.1 Contributions . 155

8.2 Limitations . 157

8.3 Future work . 159

8.3.1 Elaborating the idea of evolution styles 159

8.3.2 Developing sophisticated, mature architecture evolution tools 162

8.3.3 Evaluating and enhancing the usability of the approach 163

8.3.4 Modeling and relating multiple views of a system 165

8.3.5 Making the approach scalable to systems of systems 166

8.3.6 Resolving unanswered questions on automated planning . . . 167

8.3.7 Developing a general operator specification language 169

8.3.8 Analyzing technical debt . 170

8.3.9 Incorporating uncertainty into the model 171

xi

A Case study interview protocol 173

A.1 Introductory consent script . 173

A.2 Collection of personal identifiers . 174

A.3 The participant’s role and background 174

A.4 Software architecture evolution at Costco 174

A.5 Limitations of today’s approaches to software architecture evolution 175

A.6 Specifics about the evolution of particular software systems at Costco 175

A.7 Conclusion . 176

B Content analysis coding guide 177

B.1 Content analysis 1: Learning how architects do evolution 177

B.1.1 General principles . 177

B.1.2 Categories . 178

B.2 Content analysis 2: Modeling a real-world evolution 193

B.2.1 General principles . 193

B.2.2 Categories . 194

C PDDL specification 201

C.1 Domain description . 201

C.2 Problem description . 206

Bibliography 211

xii

1 Introduction

Architectural change is commonplace in real-world software systems. However,

today’s software architects have few tools to help them to plan such architecture evo-

lution effectively. While considerable research has gone into software maintenance

and evolution generally, there has been relatively little work focusing specifically on

foundations and tools to support architecture evolution.

In particular, architects planning a major evolution have almost no assistance in

reasoning about questions such as: How should we stage the evolution to achieve

business goals in the presence of limited development resources? How can we ensure

that intermediate releases do not break existing functionality? How can we reduce

risk in incorporating new technologies and infrastructure required by the target ar-

chitecture? How can we make principled trade-offs between time and development

effort? What kinds of changes can be made independently, and which require co-

ordinated systemwide modifications? How can we represent and communicate an

evolution plan within an organization?

We have developed an approach to support architects in planning and reason-

ing about software evolution. Our approach is based on modeling and analyzing

candidate evolution paths—plans for evolution leading from the current state of the

system to a desired target state. The rest of this chapter elaborates on the motiva-

tion behind this work. Section 1.1 elaborates on the problem that this work aims to

address. Section 1.2 presents an illustrative example to explain the basic elements

of the proposed approach. Section 1.3 states the thesis of this dissertation. Finally,

section 1.4 describes the structure of the remainder of this document, explaining

each chapter’s relevance to the stated thesis.

1.1 Problem

Rearchitecting a software system is often a complex, multifaceted operation; typically,

an architect preparing to carry out an evolution must develop a plan to change the

architecture and implementation of a system through a series of phased releases,

ultimately leading to the target architecture. The architect’s task, therefore, is to

develop a plan consisting of a series of architectural designs for intermediate states

of the system as it evolves, beginning with the current state of the system and ending

with the target state, together with a characterization of the engineering operations

required to transform the system from its current architecture to the target archi-

tecture. This idea is the basis for the model of software architecture evolution that

underlies this research.

It is assumed that both the initial architecture (the current design of the system)

and the target architecture (the intended design to which the system must evolve)

1

1 Introduction

are known. In fact, of course, this is often not the case. Especially in the case of an

old, legacy system, design documents showing the initial architecture may be lost,

fragmentary, or outdated, or they may never have existed at all. And similarly, the

architect may be uncertain what the target architecture should be. However, other

areas of research address these problems. The problem of learning the architecture

of an existing system for which no architectural representation currently exists is

addressed by research on architecture reconstruction, which provides tools for ex-

tracting an architectural representation of an implementation [75]. And the problem

of determining a target architecture is addressed by research on architectural design,

which provides guidance on designing a software architecture that meets a set of

requirements [21]. The research described in this dissertation instead explores the

problem of finding a way to evolve the system from a known initial architecture to

a chosen target architecture—of charting a course from a known origin to a known

destination.

More specifically, this work addresses the following research questions:

RQ1. How can we model the various evolution paths available to a software architect

who is planning a large-scale evolution of a system?

RQ2. How can we model and enforce constraints about which evolution paths are

appropriate or permissible?

RQ3. How can we facilitate analysis of evolution path quality in a way that supports

architects in making trade-offs among candidate evolution paths and selecting

the optimal path?

RQ4. How can we capture expertise about domains of software architecture evolu-

tion so that it can be later reused to inform future evolution planning?

In this dissertation, I describe an approach for software architecture evolution that

addresses these questions. The approach is based on a model in which evolution

plans are explicitly represented as paths through a graph of potential intermediate

states of evolution. The edges of this graph are defined in terms of operators that

characterize the architectural transformations that form the evolution paths. In

addition, constraints may be defined that specify which evolution paths are legal,

and analyses may be defined to assist with selection of an optimal path. These

operators, constraints, and analyses may be bundled together in reusable evolution

styles that capture architectural expertise about domains of software evolution.

1.2 Motivating example

To illustrate the basic elements of the approach that this dissertation will present,

consider the following fictitious, but representative, scenario: Company C runs an

algorithmic trading platform with an aging software architecture. Its clients, mostly

fund managers, use the platform to research, develop, and execute high-frequency

trading algorithms. (In high-frequency trading, trading algorithms are programs,

based on proprietary trading strategies, that automatically make trades in response

to market conditions.) Currently, these various features are accessed via separate web

2

1.2 Motivating example

interfaces, which are showing their age. Input of trading algorithms to be executed

is accomplished via one interface, retrieval and analysis of market data through

another. A third interface allows clients to download a desktop analysis toolkit that

they can use to backtest candidate trading algorithms (i.e., use collected market data

to test how they would have performed in the past). The interfaces are separated in

this way for historical reasons, and while the separation makes maintenance easy

(because the features can be maintained independently), clients hate it; they would

rather be able to research market history, backtest possible trading strategies, define

algorithms, and activate algorithms for execution on one site.

The current architecture has other problems too. First, while software mainte-

nance is easy, maintaining the hardware is quite expensive. Indeed, many of the

components of the system are hardware-intensive. Running the trading algorithms,

for example, is quite processor-intensive, while storing the company’s vast archive of

market data requires a great deal of disk space. The hardware requires frequent up-

grades; the company must have top-of-the-line computing hardware to keep up with

its competitors. In addition, there are significant demand spikes, and the hardware

the company has cannot always keep up. Recently, a hardware failure brought down

one of the web dashboards for two full business days, enraging clients.

In order to address these concerns, Company C is considering migrating to a cloud-

computing-based architecture. In the cloud-computing model, computing resources

are sold by third parties as services and accessed over the Internet. For example,

rather than maintaining its own infrastructure, a company can pay a cloud service

to provide the infrastructure for them. Concretely, what this means is that a cloud

platform like Amazon Web Services will host Company C’s software systems on its

own infrastructure, providing whatever resources Company C needs and is willing

to pay for: data storage, computing capacity, bandwidth, and so on. But unlike a

traditional hosting environment, cloud-computing resources are sold on demand

(e.g., computing capacity is sold by the hour; storage is sold by the gigabyte-month)

and are provisioned elastically (so a customer can have as much or as little of a service

as needed).

By making use of such a platform, Company C could host its software in the cloud

rather than maintaining infrastructure in-house—effectively outsourcing hardware

maintenance while maintaining complete control of the software. Such a migration

could solve many of the company’s problems. Reliability would be assured by the

cloud provider’s service-level agreements. Upgrades to better hardware could be ef-

fected immediately on request. Resources could be increased on demand as required

by demand spikes. Specialized hardware suitable for specific applications, such as

high-CPU hardware for trading-algorithm execution or high-memory hardware for

backtesting, is easy to provision. If the company’s needs change in the future, its in-

frastructure can change with them; the company is not locked into the infrastructure

that it owns. Finally, Company C could focus on its business of developing a great

trading platform rather than on the day-to-day problems of managing infrastructure.

Also as part of the migration, the company plans to merge its multiple separate user

interfaces to create one unified client experience.

The particulars of this example are contrived, but the scenario is a common one.

3

1 Introduction

Cloud computing is a hot topic in the electronic-trading community, and trading

platforms are increasingly asking how they can use cloud architectures to improve

reliability, increase scalability, and allow themselves to focus on their core expertise

rather than the business of keeping hardware running [128]. Moreover, although

this example was framed in terms of an algorithmic trading system, largely the same

concerns apply to a much broader category of systems. A great many organizations

are migrating to the cloud, or contemplating migrations to the cloud, to address these

same concerns.

The chief architect at C must develop a plan to carry out the evolution in a set of

staged releases. Let us see how this might be accomplished using the approach that I

mentioned in section 1.1 and that I will describe in detail in chapter 2.

In this approach, the architect would be supported by an evolution style, which

encapsulates information about a domain of software architecture evolution. In this

case, the evolution style would capture specialized information about the problem

of migrating in-house ad hoc web applications to cloud-computing environments.

Capitalizing on past experience in this area, the evolution style would identify the

essential characteristics of the initial and target architectures. It would also identify a

set of structure- and behavior-changing operations. Examples include the migration

of data from an in-house database to a cloud data store, introduction of adapters as

necessary to allow legacy subsystems to exist in the cloud, and reprovisioning of hard-

ware within the hub as the company ramps up the nascent, cloud-based system to full

production capacity. Finally, the style would specify a set of path constraints. These

would capture the correctness conditions for a valid evolution path. Specifically they

would express things like: in every release all existing functionality must continue to

be available; data should be migrated before applications; all the old componentry

should continue to exist for at least a week after the new cloud environment becomes

accessible to users, so that fallback to the old system is possible.

How would the chief architect at C use the evolution style? The first step would

likely be the definition of the initial and target architectures. Existing tools make it

relatively easy to specify these architectures using standard architecture modeling

and visualization techniques. At this point the evolution tools would check that

these two architectures satisfy the pre- and postconditions required by the style,

perhaps noting situations in which the target architecture is missing certain required

structures or is otherwise malformed with respect to the target family.

Next, the architect starts filling in intermediate stages. By applying in sequence the

operations defined by the evolution style, the architect defines the first intermediate

release; in this case, that release might involve the construction of a skeletal cloud

application alongside the legacy application. The tools would check that the release

is well formed and that the path satisfies the constraints of the style, warning the

architect when it identifies divergences. This process repeats until the architect has

fully specified a set of releases and transitions to arrive at the target architecture. To

define alternative paths, the architect could follow this same process repeatedly, or

instead begin by defining potential intermediate states and then later draw the paths

between them.

The architect also needs to make decisions about various trade-offs—for example,

4

1.3 Thesis

reconciling available resources (e.g., programmers) with the effort and time needed

to create each release. To do this the architect uses one of several parameterized

analyses provided by the evolution style. The analyses require the architect to select

dimensions of concern and provide weighted utilities. With these annotations in

hand, the tools calculate costs and utility, allowing the architect to explore alternative

scenarios. Over time, as the evolution proceeds, the architect will update the values

and perform recalculations, perhaps leading to revisions of the remaining releases

on the path.

The architect also needs to make decisions about various trade-offs. For example:

• One possible alternative for evolving the system may be inexpensive but take

a long time to complete, while another may be faster but more costly. The

architect may want support for understanding this trade-off and choosing an

option based on the company’s priorities.

• It may be possible to take some shortcuts to finish the evolution faster, at the

risk of possibly causing occasional service outages. Again, the architect may

want to explore this trade-off between evolution duration on the one hand,

and availability or risk on the other.

• It may be necessary to reconcile available resources (e.g., programmers) with

the effort and time needed to create each release, to ensure that engineering

resources are not overcommitted during the evolution.

To reason about such trade-offs, the architect can make use of parameterized eval-

uation functions provided by the evolution style. The evaluation functions require

the architect to select dimensions of concern and provide weighted utilities. With

these annotations in hand, the tools calculate costs and utility, allowing the architect

to explore alternative scenarios. Over time, as the evolution proceeds, the architect

will update the values and perform recalculations, perhaps leading to revisions of the

remaining releases on the path.

1.3 Thesis

Section 1.3.1 states the thesis that this work aims to support. Section 1.3.2 breaks this

thesis statement down and explains the research claims and requirements implied

by each part.

1.3.1 Thesis statement

We can help software architects to plan large-scale evolutions of

software systems by providing: (a) a theory to support architectural

reasoning about software evolution, (b) languages and models

for expressing evolution constraints and analyses, and (c) tools

that allow easy application of this theoretical framework.

5

1 Introduction

1.3.2 Explanation

In this section, I break this thesis statement down and explain each of its constituent

parts.

We can help software architects to plan

large-scale evolutions of software systems . . .

Planning a major evolution of a software system presents significant challenges. Un-

derstanding the complexities of a large system composed of many software elements

can be a daunting task. To plan the evolution of such a system, an architect must

consider a dizzying array of interacting concerns, such as:

• The dependencies that exist among the elements of the system, and how to

manage these dependencies as the system evolves

• How the system integrates with other software systems, and how to avoid

integration issues while carrying out the evolution of the system

• How to order and stage the operations necessary to carry out the evolution

• Various kinds of constraints on the evolution, including technical constraints

(such as constraints on the structure of the system or constraints on the order in

which evolution operations may be carried out) as well as business constraints

(such as cost and time)

• The need to preserve (or enhance) the system’s functionality and quality at-

tributes during the course of the evolution

Keeping all these considerations in mind to develop a plan for evolving the system

can be extraordinarily difficult in a complex evolution project. Moreover, an architect

typically has a multitude of choices available—different ways of evolving the system.

The task of understanding the trade-offs among the various alternatives and selecting

which alternative is optimal with respect to the goals of the particular evolution

presents its own significant challenges.

This thesis proposes an approach to help the architect navigate this complex

maze. In this dissertation, I argue that many of these difficulties can be ameliorated

by providing architects with tools that can leverage collected information about

particular domains of evolution and assist the architect in understanding the issues

of an evolution, considering alternative ways of evolving the system from its initial

architecture to a desired target architecture, and making trade-offs among these

alternatives.

A foundational principle of our approach is that it is an architecture-level, rather

than a code-level, solution. Planning the large-scale evolution of an industrial-scale

software system is a high-level engineering task that requires an understanding of

overall system structure, consideration of constraints on system design, and princi-

pled trade-offs among various qualities of concern. For all but the smallest applica-

tions, code-level approaches alone are inadequate for dealing with such issues (see

section 7.1); it is necessary to reason about the system at an architectural level.

6

1.3 Thesis

On the other hand, approaches based on project planning (see section 7.2) are too

high-level to address the problems that we aim to address. While project-planning

approaches can be useful for estimating the overall effort involved in carrying out

a large-scale software evolution and for making high-level business trade-offs, they

are not useful for making detailed architectural decisions about the structure of

the evolving system or the order of architectural operations, nor are they useful for

analyzing the effect of constraints on the evolving architecture.

Thus, to support detailed planning of large-scale evolutions of software systems,

this thesis argues that it is necessary to take an architectural approach. The rest of

the thesis statement explains the elements of this approach.

. . . by providing: (a) a theory to support

architectural reasoning about software evolution, . . .

The first element of the approach that this thesis describes is a theory—a formally

defined framework for modeling instances of software architecture evolution.1 One

of the most basic concepts in software architecture evolution is an evolution path,

a plan for evolving a software system from its current architecture to the target

architecture. The software architect’s task is to select the optimal evolution path from

among the set of all possible evolution paths. (The meaning of optimal depends

on the goals of the particular evolution at hand, but in general terms the aim is to

maximize the utility of the evolution for some appropriate model of utility.) A theory

of software architecture evolution, then, must provide a means of defining such

evolution paths. Further, it must provide:

• A means of describing an evolution path in terms of the intermediate states

through which the system will pass as the evolution is carried out

1The word theory carries some baggage, so it may be helpful to explain in more-formal terms what I

mean by it. There is not complete agreement on what exactly constitutes a theory, but there is fairly

broad consensus that a theory at least includes a set of constructs or entities, propositions that define

how the constructs relate, explanations for the propositions, and a characterization of the scope of

the theory (the domain to which it is applicable).

There are many different kinds of theories. A typology is presented by Gregor [104]. Gregor writes

about the meaning of theory in the domain of information systems, but her work has been influential

in software engineering as well [76; 206]. Gregor distinguishes among five types of theory: analytical

(or descriptive) theories, explanatory theories, predictive theories, theories that are both explanatory

and predictive, and prescriptive theories. The sort of theory I present in this dissertation is probably

best characterized as a prescriptive theory. Gregor [104, p. 619] explains a prescriptive theory as a

special kind of predictive theory for design and action:

A special case of prediction exists where the theory provides a description of the method

or structure or both for the construction of an artifact (akin to a recipe). The provision

of the recipe implies that the recipe, if acted upon, will cause an artifact of a certain

type to come into being.

The appropriateness of including prescription under the label theory has been debated. For example,

March & Smith [145] prefer to reserve the term theory for explanatory and predictive theories, citing

the usage of the term in the natural sciences; they distinguish theories from constructs, models,

methods, and implementations. For further discussion, see Gregor [104] as well as Sjøberg et al. [206].

7

1 Introduction

• A means of characterizing the architectural transitions that must be carried

out in order to traverse an evolution path

• A means of constraining and evaluating evolution paths

Section 2 will discuss the approach more specifically. In particular, it will show

how the requirements listed above can be met by viewing an architecture evolution

scenario as a directed graph in which intermediate evolution states are represented

as nodes, architectural transitions are represented as edges, and evolution paths

appear as paths from the node representing the initial state to that representing the

target state.

This theory provides a formal basis for thinking about software architecture evo-

lution. By itself it is just a conceptual model, but it provides a foundation that will

support the languages, models, and tools necessary to help software architects plan

evolutions.

. . . (b) languages and models for expressing

evolution constraints and analyses, . . .

The second element of the approach is a set of languages and models for captur-

ing constraints and analyses over evolution paths. Constraints arise naturally in

the course of software architecture evolution; understanding and capturing these

constraints, and modeling their effects on the evolution, is critical for making good

decisions. Therefore, we need a language that is sufficiently expressive to capture

the constraints that arise naturally in real-world evolution planning. At the same

time, verifying evolution constraints expressed in the language must be computa-

tionally tractable, and in addition the language should not be too hard to learn (by

comparison with other possible constraint languages, such as common temporal

logics).

Similarly, the ability to specify analyses or evaluations of candidate evolution paths

is necessary for making intelligent trade-offs. This requires a means of expressing

analyses in a way that is sufficiently general to reuse analyses across many evolutions

and sufficient to express analyses useful for evolution planning.

. . . and (c) tools that allow easy application of this theoretical framework.

The approach as I have described it so far would be sufficient to model and analyze

architecture evolutions in principle, but it would not be useful in practical contexts

without adequate tooling. Therefore, it is critical that the languages and models devel-

oped in this research be amenable to automated analysis. More precisely, they must

be reasonably easy to automate in such a way that evaluation of typical constraints

and analyses can be completed within reasonable time, even for industrial-scale

software systems.

1.3.3 Research claims

The thesis statement defines the shape of the approach that this research takes, but it

does not explicitly articulate specific claims about the usefulness and practicality of

8

1.3 Thesis

Research claim Evaluation Reference

1 Applicability Case studies Ch. 4–5

The approach is applicable to the concerns that arise in real-world architecture

evolution projects.

2 Computational complexity Formal proofs Ch. 3

The approach admits efficient verification of evolution constraints.

3 Implementability Prototype development Ch. 6

The approach lends itself to tool support.

Table 1. A summary of the research claims described in section 1.3.3, along with the

methods by which they are evaluated and cross-references to the relevant chapters of

the dissertation.

that approach. That is, it does not define criteria for evaluating the approach. In this

section, I define three specific research claims about the usefulness and practicality

of the approach and explain how they will be evaluated. These are summarized in

table 1.

Research claim 1 (applicability). The approach is applicable to the concerns that

arise in real-world architecture evolution projects.

The approach proposed in this work defines a set of concepts for reasoning about

architecture evolution as well as a set of specification languages for modeling these

concepts. But it is not immediately clear that these concepts and specification

languages are actually useful for capturing the concerns that arise in the real world.

It might be that the kinds of concerns we had in mind when we developed this

approach are quite dissimilar from those that arise in actual architecture evolution

projects, and that our approach is ill suited to representing the evolution concerns

that arise in practice.

To evaluate the applicability of our approach for modeling the concerns that arise

in real architecture evolution projects, I conducted two case studies at large software

organizations, in which I gathered data on architecture evolution projects at the

organizations and then attempted to construct evolution models using our approach.

These case studies are described in chapters 4 and 5.

Research claim 2 (computational complexity). The approach admits efficient verifi-

cation of evolution constraints.

It isn’t sufficient that architecture evolution scenarios be specifiable using our ap-

proach; it also has to be practical to reason about them. Thus, part of ensuring the

practicality of our approach is evaluating the computational complexity of carrying

out the necessary analysis of the evolution graph.

In chapter 3, I provide a detailed theoretical treatment of the language for specify-

ing evolution path constraints, and I prove some results about the time complexity

and space complexity of verifying evolution path constraints. I focus on constraints

9

1 Introduction

in particular because the question of the tractability of evaluation functions is a less

interesting one, as I will explain at the beginning of chapter 3.

Research claim 3 (implementability). The approach lends itself to tool support.

Another aspect of practicality is ensuring that our approach can be easily imple-

mented by tools. In chapter 6, I document the work we have done on developing

prototype tools based on our approach, and I describe the implications of this prelim-

inary tool development work with respect to the implementability of our approach.

Finally, it should be emphasized that these three research claims are by no means

the only criteria by which our approach might be evaluated. On the contrary, there

are a host of qualities that might be evaluated: the usability of the approach (which

could be evaluated through user studies), whether using the approach leads to good

evolution outcomes (which could be evaluated through a controlled experiment),

its scalability to very large projects (which could be evaluated through simulations),

and others. But the three criteria described above—applicability, computational

complexity, and implementability—provide a reasonable basis for evaluation. I will

discuss directions for future work in section 8.3.

1.4 Dissertation outline

The remainder of this dissertation is organized as follows. Chapter 2 details the

approach to architecture evolution modeling that I illustrated informally by example

in section 1.2 above. Chapter 3 undertakes a theoretical study of the specification

language used to define evolution path constraints, proving some results on the

computational complexity of path constraint verification. Chapters 4 and 5 describe

two case studies on architecture evolution. Chapter 6 describes our preliminary work

on tool implementation and reflects on what conclusions can be drawn as to the

implementability of our approach to architecture evolution modeling. Chapter 7

reviews related work. Each of chapters 3–7 ends with a brief summary section explain-

ing the chapter’s significance and its relevance to the thesis statement and research

claims stated in section 1.3. Chapter 8 concludes by summarizing the contributions

of this thesis, identifying the limitations of our approach, and discussing directions

for future work.

10

2 Approach

In chapter 1, I described some of the basic concepts underlying our approach and

provided an informal example illustrating how these concepts are useful in planning

evolution in a particular domain. In this chapter, I describe the technical basis of the

approach.2

As mentioned previously, the approach is based on representing potential interme-

diate states of evolution; therefore, I begin by explaining how these evolution states

are modeled (section 2.1). Then, section 2.2 explains the evolution operators that

model the architectural transformations among these evolution states. Section 2.3

describes how these states and operators are used to form the nodes and edges,

respectively, of an evolution graph. The goal of the architect, in this model, is to

select the optimal path through this graph. These evolution paths can be constrained

by means of evolution path constraints, discussed in section 2.4, and evaluated by

means of evolution analyses, discussed in section 2.5. Finally, section 2.6 introduces

the concept of an evolution style, which unifies these concepts and encapsulates

architectural expertise about a domain of evolution in a reusable package.

Note how the elements of this approach address the research questions of sec-

tion 1.1:

RQ1. How can we model the various evolution paths available to a software architect

who is planning a large-scale evolution of a system? Sections 2.1 through

2.3 explain how we can model intermediate states of evolution, describe the

architectural transformations among these states, and compose these elements

to form an evolution graph with a number of candidate evolution paths.

RQ2. How can we model and enforce constraints about which evolution paths are

appropriate or permissible? Section 2.4 describes how constraints on evolution

paths can be modeled and enforced.

RQ3. How can we facilitate analysis of evolution path quality in a way that supports

architects in making trade-offs among candidate evolution paths and selecting

the optimal path? Section 2.5 describes the sorts of analysis that this approach

supports and how these analyses can be used to support quality trade-offs and

path selection.

RQ4. How can we capture expertise about domains of software architecture evolution

so that it can be later reused to inform future evolution planning? Domain

expertise about classes of architecture evolution can be captured by means of

evolution styles, described in section 2.6.

2The approach detailed in this chapter was first described in a conference paper that we published in

2009 [94] and subsequently elaborated in a journal paper now in press [19].

11

2 Approach

2.1 Evolution states

One of the most basic concepts in our approach is that of the evolution state, an

intermediate architecture that the system might take on as it evolves by stages from

the initial architecture to the target architecture. There are two specially identified

evolution states: the initial state, which captures the architecture of the system

as it exists at the outset of the evolution, and the target state, which captures the

architecture that the system is to attain by the end of the evolution. Between these

two states are the transitional forms that the system may take on as it is evolved.

Each evolution state contains a complete representation of the architecture of

the system. There are, of course, a variety of approaches for representing software

architectures. We typically envision the architectural structure of the intermediate

states as being represented using a formal architecture description language such as

Acme [95]. Architecture description languages provide a rigorous way of representing

the structure of a software system. Different ADLs capture different concepts, but

usually an architecture is represented as a graph whose vertices represent the com-

ponents of a software system (i.e., its computational elements and data stores) and

whose edges represents connectors (i.e., interaction pathways among components)

[53; 154; 182; 202]. In addition, there may be auxiliary elements like ports and roles

(which represent interfaces of components and points of attachment between com-

ponents and connectors), as well as properties that describe the characteristics of the

architectural elements (often used to express things such as reliability and protocols

of interaction), and they may support expression of constraints on and analyses over

architectures.

Our approach does not impose stringent requirements on the form that an ar-

chitecture description must take; in principle, the approach is compatible with

almost any method for architecture description. Our approach does impose one

hard requirement: there must be a way of expressing and evaluating architectural

constraints—predicates that may hold or fail to hold for a given software architecture.

This requirement is important because evolution path constraints (see section 2.4)

are defined in terms of architectural constraints. Thus, without a means of expressing

architectural constraints, we cannot express evolution path constraints.

Of course, the choice of architecture description language has implications for the

kinds of analysis that are possible. An architecture description language that lacks

a type system, for example, will obviously not permit reasoning about the types of

architectural elements. Thus, adopting such a language would preclude the architect

from declaring constraints such as “Until a component of type A is present in the

system, no component of type B can be connected to a component of type C.”

In addition, there are various practical considerations. Ideally, an architecture

description language should be well supported by good tools for defining and an-

alyzing architecture descriptions, and these tools should provide APIs or software

frameworks by which the architectural models can be programmatically accessed.

Chapter 6 will examine some of these implementation issues.

The bottom line, however, is that most conventional methods for architecture

description are suitable for use with our approach. In fact, our approach can be

12

2.2 Evolution operators and transitions

used not only with formal architecture description languages like Acme, but also

with other modeling languages that meet these requirements but are not generally

considered to be formal ADLs, such as UML [174] and SysML [173].

In this discussion so far, I have been tacitly assuming that there is a single, canon-

ical representation of the architecture. But often it is useful to consider multiple

architectural views. An architectural view is a particular representation of, or per-

spective on, a software architecture. Clements et al. [53] identify three basic types

of views: component-and-connector views (which document the structure of the

running system), module views (which document the structure of the source code),

and allocation views (which document the deployment and execution context of the

software). Documenting a software architecture completely often requires the use of

multiple views. Different projects demand different views; the choice of views used

should be guided by the kinds of analysis that are needed.

Our approach allows architects to plan the evolution of a software architecture

from multiple perspectives by representing multiple views of intermediate archi-

tectures [19]. This makes possible constraints and evaluation functions that make

reference to multiple views. For example, “Component A shall not communicate with

component B until database replicas are deployed to three separate geographic loca-

tions” is a constraint that requires examination of both a component-and-connector

view and an allocation view. We could support such a constraint by including, say, a

UML component diagram (representing a component-and-connector view of the

architecture) and a UML deployment diagram (representing a deployment view)

for each evolution state. Architects should carefully select the views to include in

the evolution plan based on the analyses they anticipate; representing additional

views can add significant cost to the planning process, since each view must be

documented for each candidate intermediate architecture.

Finally, in addition to containing a complete architectural representation of the

system (which may comprise multiple views), an evolution state may be annotated

with a set of evolution state properties. These free-form properties may be used to

supplement the evolution state with additional information as desired. For example,

they could be used to demarcate specially distinguished evolution states such as

release points (with a Boolean isRelease property), to indicate special attributes like

deadlines by which transitions must occur (with a date-type property), to specify

business values like the expected impact of a node on the market (perhaps with a

property of some complex type), and so on.

2.2 Evolution operators and transitions

Evolution operators capture the architecture-transforming operations that are rel-

evant to a domain of evolution. In the case of an evolution to a service-oriented

architecture, there might be operators like “Wrap a legacy component as a service”

and “Introduce an enterprise service bus.” In the case of an evolution to cloud com-

puting, operators might instead include “Migrate a component to the cloud” and

“Migrate data from a legacy database to a cloud data store.”

13

2 Approach

An evolution operator comprises: (1) a description of the structural changes that

the operator effects; (2) preconditions describing the conditions under which the

operator may be applied; and (3) additional information used to support analyses—

for example, information on the cost of carrying out the evolution step or the amount

of time required. Thus, the definition of an evolution operator takes the form

operator operatorName(parameters) {

transformations {

// A description of the structural changes that

// the operator effects

}

preconditions {

// The conditions under which the operator

// may be applied

}

analysis {

// Additional information to support analysis

}

}

I now describe each of these parts in turn.

The structural changes of the operator are defined by means of transformations. A

transformation represents a basic structural change to an architectural model. Thus,

transformations are things like adding a component, deleting a port, renaming a

connector, and modifying a property. For example, an evolution operator might be

something like “Wrap a legacy component as a service,” which is a single operator

from an architectural standpoint but actually requires a number of transformations:

introduce a new wrapper service, put the legacy component inside it, reconnect the

ports appropriately, and so on. These transformations are composed to describe the

structural changes that are effected by the operator.

Since transformations are basic changes to architectural models, the transforma-

tions available depend on the modeling language in use. In the case of Acme, the

transformations will be things like adding a component, deleting a port, renaming

a connector, and modifying a property. In the case of a UML deployment diagram,

they will include deploying an artifact to a node and adding a communication path.

We have developed an informal, pseudocode-like operator specification language

that allows for straightforward expression and composition of transformations, which

is best illustrated by example. Figure 1 contains a complete definition of a wrap-

LegacyComponent evolution operator based on the evolution scenario described in

section 1.2, along with a visual depiction of its effect on an architectural diagram.

The transformations block of the operator composes a number of transformations

necessary to define the effects of wrapping a legacy component in a wrapper service.

First, it creates a new wrapper service. Then, it detaches all the connectors attached

to ports on the legacy component and reattaches them to ports on the wrapper. (Note

the use of a for loop here. In addition to sequential composition of transformations,

we allow simple control flow mechanisms such as loops in our operator description

14

2.2 Evolution operators and transitions

operator wrapLegacyComponent(c) {

transformations {

Component wrapper = create Component

: WrapperService;

for (Port p : c.ports) {

Port pw = copy p to wrapper;

for (Role r : p.attachments) {

detach p from r;

attach pw to r;

}

}

Representation rep

= create Representation of wrapper;

move c to rep;

for (Port p : c.ports) {

bind p to wrapper.ports[p.name];

}

}

preconditions {

declaresType(c, LegacyComponent)

}

analysis {

"effortInStaffHours": 6

}

}

Execution

Manager

Order

Validator

in

exec

executionVenues

marketDb

7→

Execution

Manager

Order

Validator

in

exec

executionVenues

in

executionVenues

marketDb

Figure 1. An operator based on the example of section 1.2. On the left is a definition of

the operator. (The architecture description language used for this example is Acme.)

The diagram at right shows the effect of the operator when applied to an architecture

representation.

language.) Finally, the legacy component is moved inside the wrapper service, and

its ports are bound to the corresponding ports on the wrapper service.

As I pointed out in section 2.1, sometimes we want to describe evolution from

multiple architectural views. In this case, an operator must include the structural

changes for each view that is under consideration. The example in figure 1 includes

only one view; for examples of operator specifications containing multiple views, see

our journal paper [19].

In addition to transformations, an operator can include preconditions and analysis

information. Preconditions, which describe the conditions that must be true prior

to executing the transformation, are expressed as architectural constraints. In the

example of section 1.2, consider an operator that migrates a component, c, to the

cloud. A simple precondition for this operator might be: c must not already be in

15

2 Approach

the cloud to begin with. Of course, this is a very simple example; one could devise

a more complex precondition for the same operator, for example one that imposes

restrictions on the kinds of connectors to which c may be attached. The important

point is that a precondition can be defined with respect to a single architecture at a

single point; for example, it can be written as a plain Acme constraint. When multiple

views are under consideration, different preconditions can be specified for each view.

The example in figure 1 contains only a single precondition, requiring that the

component to be wrapped is of type LegacyComponent. If desired, we could add

further preconditions to impose additional requirements—for example, enforcing

restrictions on the types of ports that the legacy component has or the kinds of

connectors to which it is attached.

Finally, analytical information may be included to support evolution analyses

and constraints. For example, an operator can include information like the effort

required to carry it out, the cost of carrying it out, its security implications, or the

risks involved.

Analysis information is less structured than the transformations and preconditions

section. The kinds of analysis information included with an operator are dependent

on the analyses that the evolution style supports. To accommodate as much flex-

ibility as possible, we allow the analysis block to contain arbitrary information in

JavaScript Object Notation [62], which can be freely referenced by the evaluation

functions described in section 2.5. The operator in figure 1 contains a single item

of analytical information, an estimate of the amount of effort required to wrap a

legacy component as a service. This information could be used by an evaluation

function that estimates the total effort of an evolution path by adding up the effort

predictions of its constituent operators. In figure 1, the effort estimate is simply

specified as a number indicating a fixed number of hours of effort required, but we

could also define a value that is dependent on the parameters of the operator, or we

could specify a range of values to indicate uncertainty.

Given a set of operators defined in this way, we can use them to define evolution

transitions among the evolution states. An evolution transition is composed of one

or several operators and describes the architectural transformations necessary to

evolve the system from one state to another. Like an evolution state, an evolution

transition can be annotated with one or more properties that provide supplemen-

tary information (for example, the number of personnel available to carry out the

transition).

2.3 The evolution graph

The task of the software architect is to develop a plan for evolving the system from

its initial architecture to a desired target architecture. We can describe such a plan

as a series of evolution states and evolution transitions leading from the initial ar-

chitecture to the target architecture. An evolution path is a plan described in such a

way.

In a given evolution scenario, there may be many evolution paths under consid-

eration. To understand the space of alternatives under consideration, we construct

16

2.3 The evolution graph

1 3

2

5

4

6

Initial

architecture

Target

architecture

Intermediate

states

Time

Figure 2. A depiction of an evolution graph. Each node in the graph is a complete

architectural representation of the system. The edges of the graph represent possible

evolutionary transitions. The architect’s task is to select the optimal path through the

graph. This graph has only three paths: 1–2–4–6, 1–3–4–6, and 1–3–5–6.

an evolution graph—a graph whose nodes are evolution states and whose edges are

evolution transitions. This concept is illustrated in figure 2.

The task of the software architect is to select an optimal evolution path—a way

of evolving the system from the initial architecture to the target architecture. An

evolution path thus captures a particular plan of evolution. Given an evolution

graph as defined above, an evolution path is simply a path in the graph-theoretical

sense: an open walk from the node corresponding to the initial architecture to that

corresponding to the target architecture. In any given evolution scenario, there may

be many evolution paths that seem feasible; the task of the evolution architect is to

consider these paths and select the one that is optimal. I will clarify the meaning of

optimal in section 2.5.

This graph-theoretical formulation of software architecture evolution is a simple

one, but it provides a useful foundation for reasoning about potential evolution plans

and the distinctions among them. In particular, it gives us a basis for reasoning about:

• Intermediate states of evolution and the architectural distinctions among them

• Release points, milestones, and other specially distinguished stages of evolu-

tion

• Evolution paths in terms of the individual steps that compose them

• Transitions among candidate intermediate architectures, including their archi-

tectural effects and their properties

• Constraints expressing rules about the evolution domain (such as architectural

dependencies, restrictions on releases, invariants, etc.)

• Path utility (and other properties of paths such as expected evolution duration

and cost)

17

2 Approach

• Trade-offs among evolution paths

We have already seen how some of these concepts are modeled. The next two sections

discuss constraints and evaluation functions.

2.4 Evolution path constraints

Path constraints capture evolution path correctness; an evolution path may be re-

garded as correct or legal if it satisfies all defined constraints. Examples of evolution

path constraints from various domains are:

1. Once a server is placed in the Boston data center, it must not be removed

(domain: data migration).

2. The billing subsystem will not be removed until a controller component is

introduced (domain: e-commerce).

3. All the services that are present at a release point remain present throughout

the evolution (domain: service-oriented architecture).

4. As a web host’s server farm is upgraded, hosting operations must continue

uninterrupted, with no disruption to clients (domain: in-place evolution in a

server farm).

Once appropriate constraints for a domain are defined, many of the paths in an

evolution graph can be eliminated automatically by constraint enforcement. This

simplifies path selection.

Formally, a path constraint is a predicate (Boolean-valued function) over evolution

paths. Thus, a constraint judges each evolution path to be either valid or invalid with

respect to the rule of evolution that the constraint encodes.

Path constraints may be specified in an augmented version of linear temporal

logic (LTL). Temporal logic is a natural choice, since path constraints are temporal

propositions. In addition, the interpretation of temporal formulas with respect to an

evolution graph is straightforward. An evolution graph can be naturally viewed as a

Kripke structure whose states are simply the evolution states and whose transitions

are simply the evolution transitions. This allows temporal formulas to be defined

and interpreted in the usual way.

Chapter 3 will describe our path constraint specification language in full detail,

but here I give a brief introduction. We begin with the usual LTL operators, including:

• �, always, to represent an invariant property of a path;

• ♦, eventually, to represent the existence in a path of an architecture with certain

properties;

• U, until, to represent properties that must remain true of a path until some

other property becomes true; and

• ©, next, to represent properties that must be true in the next step of the path.

18

2.5 Evolution path evaluation functions

Although LTL is a good start—there are many path constraints that can be expressed

in LTL in a straightforward manner—it turns out that some path constraints are

inexpressible in LTL. For example, consider constraint 3 from the list above. If we try

to express this constraint in LTL, we quickly encounter a problem. We might start by

trying something like

�(release →�hasAllServices(system,)). (1)

(In this example, release is a property of evolution nodes, hasAllServices is a user-

defined predicate expressing that one architecture has all the same services as an-

other, and system is a keyword that refers to the architecture description associated

with a state.)

The problem is that to express this constraint, we need to refer back to a previous

state, namely the previous release. That is, we want to replace the blank in equa-

tion (1) with a reference to the previous release state. LTL, however, cannot capture

predicates relating multiple different states. This can be solved by extending LTL

with a rigid-variable operator, which allows us to refer directly to states that we have

already “seen.” In our notation, equation (1) would be correctly rendered as

�({s} release →�hasAllServices(system, s.system)).

The braces are our rigid-variable operator. When we encounter them, they “save”

the current state to the rigid variable s so that we can refer back to it as such in

a subsequent step. Because of the finite nature of paths, it is possible to check

whether a given evolution path satisfies a given set of evolution constraints. Thus

verification of path constraints can be automated. Chapter 3 will treat the path

constraint language in detail, discussing a number of related logics and proving

results about the computational complexity of path constraint verification.

Figure 3 shows a constraint based on the example of section 1.2, illustrating how a

constraint is verified with respect to an evolution path.

2.5 Evolution path evaluation functions

With the aid of constraints, an architect can define paths that are technically correct,

taking into consideration rules about what constitutes a valid path. However, the real

benefit of defining paths of evolution is to compare them and decide which path is

the best to take. This is the purpose of evolution path evaluation functions.

Where path constraints provide a hard, yes-or-no judgment about the correct-

ness of a path, path evaluation functions instead provide a quantitative judgment

about its goodness. Formally, constraints and evaluation functions are close kin:

an evolution constraint is a Boolean-valued function (i.e., a predicate) over paths,

while an evaluation function is a numeric-valued function. They tend to be used

differently, however. Constraints are useful for expressing basic rules about a domain;

their ultimate purpose is to prune the evolution graph so that it is more manageable.

Evaluation functions are useful for judging the quality of candidate evolution plans;

their ultimate purpose is to aid the architect in selecting a specific path by facilitating

estimation of path quality. Figure 4 illustrates this concept.

19

2 Approach

Constraint: Once a client is connected to the new dashboard,

no further modifications can be made to elements in the cloud.

�({s} clientConnectedToUnifiedDashboard →�cloudUnchanged(system, s.system))

Analysis

Engine

Strategy

Manager

Unified

Dashboard

Market

Data
Strategy

Database

Client

query

source

query

marketData strategyDb strategyDb

control control

trade

analysisEngine strategyManager

client

unified

WS WS

DB DB

Cloud Boundary

Analysis

Engine

Strategy

Manager

Unified

Dashboard

Market

Data
Strategy

Database

Client

query

source

query

marketData strategyDb strategyDb

control control

trade

analysisEngine strategyManager

client

unified

WS WS

DB DB DB

Cloud Boundary

Figure 3. Illustration of how a particular constraint is evaluated on a particular evo-

lution path. At the top are a path constraint (based on the example of section 1.2) and

its formalization. The diagram depicts a fragment of an evolution path that violates

the constraint. In this evolution path, a connector (shown in red) is added between

the “Analysis Engine” and “Strategy Database” components after a client is already

connected to the dashboard, violating the prohibition on modifying the cloud while a

client is attached. Not shown are the definitions of clientConnectedToUnifiedDash-

board and cloudUnchanged, which are predicates over architecture descriptions and

can be defined by conventional means (e.g., using Acme).

20

2.5 Evolution path evaluation functions

Est. cost: $500K

Est. cost: $400K

Est. cost: $300K

Figure 4. Evaluation functions facilitate path selection by assigning to each evolution

path a value (in this case, an estimate of the total cost of the path).

Evaluation functions help software architects to determine whether a path satisfies

business and management goals. In general, evaluation functions will depend on

attributes specific to a particular business context: (a) the qualities of concern (cost,

functionality, time, etc.) and their relative priorities, and (b) constraints on resources

(number of personnel, time to deliver a release, etc.).

Ultimately, the goal of evolution graph analysis is to select an optimal path. This

requires the definition of an evaluation function that provides an evaluation of the

overall goodness of each path, so that the paths may be compared. Since different

business contexts have different conceptions of “goodness,” we must define a mea-

sure of path utility that is appropriate for the domain at hand. Thus, an evaluation

function for utility might be a composite of evaluation functions for attributes such

as time, cost, and risk, chosen and weighted appropriately for the problem under

consideration.

Another way of developing a utility function is with a cost-benefit approach. Typi-

cally, it makes sense to associate costs with transitions—representing the effort, time,

money, and other resources that will be expended in carrying out each transition—

and benefits with nodes—representing the expected utility from releasing new ver-

sions of the system.

Utility functions allow trade-off analysis. For example, one evolution path might

feature a steady evolution with a large number of incremental releases, while another

might have comparatively few releases, each with major changes—requiring the

investment of substantial resources but reducing the time to reach the target archi-

tecture [39]. By using evaluation functions to explore this utility space, the architect

can make this time/cost trade-off intelligently.

We have not defined a special-purpose specification language for evaluation func-

tions. Instead, we assume that evaluation functions are defined as functions in a

general-purpose programming language, which take the evolution model as input

and produce a numeric value as output. In our work, we have used JavaScript (or,

more precisely, ECMAScript [77]) as our language for defining evaluation functions,

due to its ubiquity and readability, but any language can be used in principle. Exam-

ples of definitions of evaluation functions will be presented in chapter 5.

21

2 Approach

2.6 Evolution styles

Many of the concepts I have mentioned are domain-specific. For example, in the

domain of evolution to a service-oriented architecture, there might be SOA-relevant

operators like “Wrap a legacy component as a service,” SOA-relevant constraints like

“Once an enterprise service bus is introduced, all service components must com-

municate via it," and SOA-relevant evaluation functions based on domain expertise

about the costs and benefits of various SOA operators. Indeed, many of the concerns

that arise during evolution planning are domain-specific. Domain expertise can aid

significantly in planning evolution, and so domain specialization is an important

part of the approach proposed here.

Domain specialization is achieved by means of evolution styles, which encapsulate

architectural expertise about a domain of software evolution. An evolution style

provides common properties, operators, constraints, and evaluation functions to

support modeling and reasoning about a broad class of evolutions. For example,

consider the following domains of evolution:

1. Evolutions from a thin-client/mainframe system to a tiered web application

2. Evolutions from a J2EE web services architecture to a cloud-computing archi-

tecture

3. Evolutions to improve the security of a service-oriented architecture

4. Evolutions from a legacy version of IBM WebSphere to the most recent version

Each of these examples refers to a class of evolutions addressing a recurring, domain-

specific architecture evolution problem. Each of them has identifiable starting and

ending conditions (namely, that the initial and final system adhere to certain archi-

tectural styles, contain certain architectural structures, or have certain architectural

properties). Each embodies certain constraints—for example, that the set of essential

services should not become unavailable during the evolution. Finally, although they

share many commonalities, the specific details of how those evolutions should be

carried out may well be influenced by concerns such as the time it takes to do the

transformation, the available resources to carry it out, etc. We can take advantage of

these characteristics of system evolution.

Evolution styles are defined by analogy with the traditional concept of architectural

styles in software architecture. An architectural style is a class of architectures that

share common element types and properties, such as the pipe-and-filter architectural

style and the service-oriented architecture style. An architectural style is defined by

a vocabulary of architectural element types, together with a set of constraints that

govern how instances of those types can be composed into systems [202]. In a similar

way, an evolution style defines a vocabulary of evolution operators, together with

constraints governing how they may be composed into paths. More precisely, an

evolution style comprises:

• A characterization of the domain to which the evolution style applies (e.g., evo-

lutions from a J2EE web services architecture to a cloud-computing architec-

22

2.6 Evolution styles

ture, or evolutions whose goal is to enhance the security of a service-oriented

architecture)

• A set of evolution operators describing architectural transformations relevant

to the domain

• A set of path constraints to define the rules of the domain

• A set of evaluation functions relevant to the domain

23

3 Theoretical results on evolution path
constraint verification

Chapters 4 and 5 will undertake an empirical evaluation of the approach just de-

scribed, evaluating its applicability to real-world evolution scenarios. Before turning

to this empirical work, however, it is useful to conduct a theoretical analysis of some

of the properties of our modeling apparatus. In this chapter, therefore, I evaluate

our path constraint language by establishing a theoretical foundation for it and then

using this foundation to evaluate its tractability (more precisely, the computational

complexity of evaluating a path constraint).3

I focus on the path constraint language in particular because it is the most theoret-

ically interesting part of our modeling apparatus. Other parts are either trivial and

uninteresting (e.g., operator preconditions and local judgments about architectural

styles) or too general to say anything about (e.g., evaluation functions, which pro-

vide the evolution planner with the full power of a general-purpose programming

language, so the complexity of evaluation is entirely dependent on the complexity of

the evaluation function that the planner chooses to write).

Sections 3.1 and 3.2 present a formal syntax and semantics, respectively, for the

path constraint language. Section 3.3, places this language in context by discussing a

number of other, similar logics that have likewise been formed by supplementing

LTL with a variable-binding operator and identifies where the important differences

lie. Section 3.4 contains the complexity result. Finally, section 3.5 summarizes the

chapter and discusses the significance of the main results.

3.1 Syntax of the constraint specification language

Section 2.4 introduced the path constraint specification language informally. As I

said there, it is based on LTL, which has a very simple syntax:

φ := p | false |φ1 →φ2 |©φ |φ1 Uφ2

for propositional symbols p. Other connectives that appear in LTL can be defined in

terms of these, for example ¬φ :=φ→ false and ♦φ := true Uφ and �φ :=¬♦¬φ.

Such a simple definition will not work for our evolution path constraint language.

We need to be concerned not only with ordinary propositions, but also with predi-

cates and functions. A condition such as “The software architecture has at least one

3Much of the material in this chapter is adapted from the theoretical discussion in our recent journal

article [19, § 4].

25

3 Theoretical results on evolution path constraint verification

component” could be represented as a proposition p. But a more interesting condi-

tion such as “This software architecture has at least the same database components

as the one in the previous state” expresses a relation over two different architectures.

So in defining a syntax, we need to recognize that there are atomic formulas other

than merely propositional symbols. In this respect, it is similar to first-order predicate

logic (FOL), and so in formalizing the syntax for our path constraint language, we take

a cue from FOL, giving separate, inductive definitions for terms, atomic formulas,

and finally formulas:

Definition 1 (path constraint syntax). Let V be a set of variables. For n = 0,1,2, . . .,

let Fn be a set of n-ary function symbols and let Pn be a set of n-ary predicate

(relation) symbols. Together these sets form a signature, which we write as Σ =
(V , (Fn)n∈N, (Pn)n∈N). (This is just as in FOL.)

The terms π, atomic formulas α, and formulas φ are defined inductively:

π := x | f (π1, . . . ,πn)

α := p(π1, . . . ,πn)

φ :=α | false |φ1 →φ2 |©φ |φ1 Uφ2 | {x}φ

for x ∈V , f ∈ Fn , and p ∈ Pn .

To make this definition more concrete, let us analyze the example formula from

section 2.4 in terms of this syntax. In the formula

�({s} release →�hasAllServices(system, s.system)),

hasAllServices is a binary predicate and release is a proposition (nullary predicate).

The keyword system is a function. When it appears alone, as in the first occurrence

of system in the formula above, is is a nullary function: it takes no arguments and

behaves as a term. (This might be surprising, since in FOL we often refer to nullary

functions as “constants,” and system does not hold constant—on the contrary, it

refers to something different in every state. But in a temporal context, constant is

not a very good word for a nullary function, because a nullary function can refer

to different states depending on the current state, just as a nullary predicate—a

proposition—can have a different truth value from state to state. For a different

approach, see half-order modal logic [108], where functions have a “rigid”—state-

independent—interpretation and predicates have a “flexible” interpretation.) When

system is applied to the variable s, it is a unary function.

Where do the predicates come from? Where are things like hasAllServices defined?

The answer was prefigured in section 2.1, which noted that in order to be suitable for

use with our approach, an architecture modeling language must provide a means of

specifying architectural constraints—predicates over architecture descriptions. The

predicates in our temporal path constraints, then, can be specified as conventional

architectural constraints, using the facilities provided by the architecture modeling

language. The Acme ADL, for example, has a constraint language called Armani [159],

with which we can define architectural predicates such as hasAllServices. We will see

examples in section 5.4.3.

26

3.2 Semantics of the constraint specification language

The function system, on the other hand, is a keyword built into the path constraint

language. This is the only predefined function that currently exists in the path

constraint language—in our experiences defining path constraints thus far, it has

been sufficient on its own for expressing constraints that are of interest—but other

predefined functions (or user-defined functions) could be added in principle without

affecting the formalization in this chapter, such as a unary successor function that

returns the next intermediate architecture in the temporal sequence.

3.2 Semantics of the constraint specification language

I will now give a semantics for our path constraint language. Let us begin by recalling

the semantics of LTL. There are various ways to formalize the semantics of LTL. In the

following formalization, we identify a state with an interpretation of the propositional

symbols. Alternatively we could externalize an interpretation function as a map from

states to sets of propositions.

The Kripke semantics for LTL is as follows. Let P be a set of propositional symbols.

Let σ be a sequence of states: σ1,σ2, . . ., where σi ⊆ P for each i . (Thus, each state

comprises the set of propositional symbols that are interpreted to hold true in that

state.) We write σ, i Íφ to say that σ satisfies the LTL formula φ at a time i > 0. We

define this satisfaction relation inductively:

• σ, i Í p iff p ∈σi (i.e., iff the propositional letter p is true under the interpreta-

tion given by σi).

• σ, i Í false never holds.

• σ, i Íφ→ψ iff σ, i Íφ implies σ, i Íψ.

• σ, i Í©φ iff σ, i +1 Íφ.

• σ, i Í φ U ψ iff there is some j ≥ i with σ, j Íψ such that σ,k Í φ whenever

i ≤ k < j .

Recall from section 3.1 that the other connectives, such as ¬ and ♦ and �, can be

defined in terms of these, so there is no need to give a semantics for them.

There are a number of things we must change to obtain a semantics for our path

constraint language. First, LTL normally models a sequence of infinitely many states,

σ1,σ2, We, however, are interested in expressing constraints over a finite sequence

of states: the evolution path, which comprises finitely many intermediate software

architectures. So the first modification we will need to make to the definition of the

semantics of LTL is to restrict ourselves to a finite sequence of states. (After all, an

evolution plan that requires infinitely many operations to be carried out to reach the

target architecture is not a very useful evolution plan!)

The second change we need to make is to account for our additions to the syntax.

Atomic terms are much richer than they are in LTL. Again we take a cue from FOL. In

propositional logic, an interpretation is simply an assignment of truth or falsehood

to each proposition symbol. But in FOL, an interpretation is a map that assigns a

function to each function symbol and a relation to each predicate symbol. Similarly,

27

3 Theoretical results on evolution path constraint verification

in our path constraint semantics, a state now needs to be more than simply an

identification of which propositional letters are true; it should be an interpretation

function that maps the function and predicate symbols of the syntax to functions and

relations. (In FOL, these are functions and relations on the domain of quantification;

for us they are functions and relations on the temporal states.)

Finally, we need to express the semantics of our new variable-binding operator,

which means we must keep track of what states the variables are binding to. This

is not as straightforward as it sounds; just adding a line to the definition of the

satisfaction relation does not work. We also need a way to keep track of what states

the variables are binding to. After making all these changes, we obtain the following

semantics.

Definition 2 (path constraint semantics). Let

Σ= (V , (Fn)n∈N, (Pn)n∈N)

be a signature. Let σ be a sequence of states, σ1,σ2, . . . ,σn . As in LTL, we define a

state to be an interpretation, but now each state σi is a function that maps each

function symbol to a function over states and each predicate symbol to a relation

over states. That is,

• If f : Fn , then σi (f) : Sn → S, where S is the set of states.

• If p : Pn , then σi (p) ⊆ Sn .

A variable assignment s : V → S is a function that maps variables to states. (This is

needed to keep track of what free variables stand for.) We writeσ, i , s Íφ to say thatσ

satisfies the path constraint φ at time i ∈ {1, . . . ,n} under the assignment s. We define

the denotation of a term π in the structure σ at time i under assignment s, written

Dσ,i ,s(π), by

• Dσ,i ,s(x) := s(x)

• Dσ,i ,s(f (π1, . . . ,πn)) := (σi (f))(Dσ,i ,s(π1), . . . ,Dσ,i ,s(πn))

Finally, we define the satisfaction relation inductively:

• σ, i , s Í p(π1, . . . ,πn) iff (Dσ,i ,s(π1), . . . ,Dσ,i ,s (πn)) ∈σi (p)

• σ, i , s Í false never holds.

• σ, i , s Íφ→ψ iff σ, i , s Íφ implies σ, i , s Íψ.

• σ, i , s Í©φ iff i = n or σ, i +1, s Íφ.4

• σ, i , s Í φ U ψ iff there is some j ∈ {i , i + 1, . . . ,n} with σ, j , s Í ψ such that

σ,k, s Íφ whenever i ≤ k < j .

• σ, i , s Í {x}φ iff σ, i , s[x 7→σi] Íφ (where s[x 7→σi] is the same assignment as s

except with x now assigned to σi)

If φ is a closed sentence (i.e., has no free variables) then the assignment s is irrelevant

and we may simply write σ, i Íφ.

4This is “weak next,” meaning that ©φ is interpreted to be true in the final state of a sequence. “Strong

next” can be defined in terms of the weak next operator: ©φ :=¬©¬φ.

28

3.3 Similar logics

In the end, we get something that looks more like the semantics of FOL than that

of LTL. Indeed, as we will see in the next section, some authors who have introduced

similar logics have referred to such a variable-binding construct as a special kind of

quantifier; this formalization shows why that is appropriate.

3.3 Similar logics

It is important to understand how our path constraint language relates to the existing

landscape of temporal logics, both to provide a context of related work and to clarify

the significance of the results in section 3.4. Indeed, there are several logics that are

similar to ours with respect to our introduction into LTL of variables that retain their

values across states.

A logic that is very similar to ours is one developed by Richardson [187] to support

lists in an object-oriented data model. Richardson’s logic is essentially LTL with

the addition of “rigid variables,” which are semantically identical to our extension

to LTL. Richardson’s logic does not appear to have been studied for its theoretical

properties; the paper has not been widely cited outside the database community.

“Rigid variables” appear elsewhere in the literature as well, most famously Lamport’s

temporal logic of actions [126], although Lamport’s rigid variables are somewhat

different.

Another related logic has been developed to model real-time systems. A natural

way to specify real-time systems is with LTL, but one problem that arises is the

incorporation of hard real-time requirements. Alur & Henzinger [4] developed a logic

that they called timed propositional temporal logic (TPTL), whose main feature was

the introduction of freeze quantifiers, which bind a variable to a particular time so

that it can be accessed later. These are similar to our rigid variables. There are a

couple of differences, which I describe under the next subhead.

Also very similar is Lisitsa & Potapov’s temporal logic with predicate λ-abstraction

[140]. Lisitsa & Potapov’s work is a specialization of the abstraction device for modal

logic documented by Fitting [83] to LTL. This abstraction mechanism is the same

variable-capturing device as our rigid variables or Alur & Henzinger’s freeze quanti-

fiers, although it appears to have been developed independently. As Demri et al. [71]

observe, “Even though this construct is essentially the same as the freeze quantifier,

apparently there have been no cross-references between the literature dealing with

predicate λ-abstraction [. . .] and that dealing with the freeze quantifier [. . .].”

Yet another related logic is Goranko’s temporal logic with reference pointers [102],

which differs in a couple of ways. First, unlike Richardson, Alur and Henzinger, and us,

who were devising specification languages for particular domains (object-oriented

data models, real-time systems, and software architecture, respectively), Goranko is

philosophically motivated. He notes that LTL lacks a way to refer to particular points

in time—to express the concept “then.” Unlike the other logics we have seen, which

give explicit names to states, Goranko’s logic simply uses the symbol ↓ to indicate a

point that we might refer to later, then uses ↑ to refer to it (to say “then”). Syntactically,

↑ behaves like a propositional variable; semantically, ↑ is true if the current time is

29

3 Theoretical results on evolution path constraint verification

the same as the time of ↓. Goranko uses this to express things like “now will not occur

again”: ↓�¬↑.

A final related family of logics is hybrid logic [29; 30], where states can be referred

to via labels called nominals. A nominal is an atomic symbol with the special property

that it is true at exactly one state. We can also use a nominal a to build satisfaction

statements, which have the form @aφ, which means “φ is true relative to the state

characterized by a.” Finally, often hybrid logics are supplemented with a ↓ binder,

which binds a label to the current state, much like our rigid variables (or a named

version of Goranko’s ↓). The result is powerful. For example, we can now define until

in terms of these hybrid logic constructs:

φ until ψ := ↓x(♦↓y(ψ∧@x�(♦y →φ)))

Hybrid logics are rather different from our logic, but the basic idea of named states,

and in particular the ↓ binder, are closely related.

This is not an exhaustive list; Blackburn and Tzakova [30], for example, cite a few

others, observing, “Labeling the here-and-now seems to be an important operation.”

Indeed, the idea seems to have been reinvented numerous times. Another discussion

of related logics is given by Demri et al. [71, § 5].

How our evolution path constraint language differs. Our language fits comfortably

within this family of related logics. Operators that bind variables are nothing new.

However, there are some ways in which our path constraint language distinguishes

itself semantically from its cousins. Although these distinctions are subtle, they turn

out to have, in some cases, major theoretical consequences. Although the existing

literature is rich, it is also somewhat patchy. There are interesting problems that

have yet to be tackled. Notably, the question of the complexity of model-checking

a path, which we discuss below and resolve in section 3.4, is a natural one that

has been solved for LTL and a number of extensions to LTL [147] but not for LTL

with a variable-binding operator. In the remainder of this section, I will discuss the

differences between our path constraint language and other logics. I will focus on the

two related logics that are the most mature and best studied: TPTL and hybrid logic.

TPTL was invented by Alur and Henzinger to model real-time systems, but (likely

due to their extensive theoretical characterization of their new “freeze quantifier”

and their generalization of the idea beyond their domain) their work became quite

influential outside of this field. The semantics of TPTL differs from our path con-

straint language in two important ways. First, TPTL, like LTL, assumes an infinite

sequence of states; our logic assumes a finite sequence. Second, the variables that

freeze quantifiers capture are times (natural numbers) rather than architectural mod-

els. All they do with the variables they freeze is compare them to other times with

operators like ≤; we want to do architectural analysis. At first glance, these seem to

be peripheral issues, but they turn out to be important. Indeed, Alur and Henzinger

themselves showed that small changes to the language can substantially change its

theoretical properties; for example, supplementing TPTL with addition over time

renders the satisfiability problem highly undecidable.

The results that I will present in section 3.4 agree with this generalization. These

seemingly subtle semantic changes have substantial ramifications on the theoret-

30

3.4 Computational complexity

ical properties of the language, and not always in the way that one would expect.

For example, consider the problem of model-checking a path: evaluating whether

a formula holds for a single path. Alur and Henzinger show that this problem is

EXPSPACE-complete for TPTL, further noting that it would be undecidable if TPTL

were modified to allow more powerful atomic propositions, such as addition over

terms. Our path constraint language, on the other hand, goes so far as to allow atomic

propositions made up of arbitrary predicates over arbitrary terms (just like FOL),

but then we regain decidability by studying finite sequences rather than infinite

sequences. Unsurprisingly, this completely changes the problem of model-checking

a path. What is perhaps surprising is that the problem is still hard and interesting.

The problem of model-checking a single, finite path might be naively thought to be

rather trivial, but Markey and Schnoebelen [147] suggest that in fact the problem is

of substantial theoretical interest. The results in section 3.4 support their contention.

As I will show, the problem of model-checking an evolution path constraint on a

finite path is hard (PSPACE-complete). Not only that, but this complexity result does

not lend itself to easy proof; a fairly sophisticated reduction strategy was necessary

to prove PSPACE-hardness.

Much the same can be said of hybrid logic. Although hybrid logic can be used to

express constraints over finite, linear paths, it does not seem to be done often, at least

not often enough that anyone has bothered to study the theoretical properties of that

case. And again, although naively we might assume this case to be trivial, boring,

or a straightforward specialization of the more general case, in fact interesting and

surprising results emerge from these restrictions.

Hybrid logic is quite different in character and focus from our constraint logic. In

particular, although the general idea of nominals (propositions that are true in only

one state and hence uniquely identify that state) is quite central to hybrid logic, the

↓ binder that corresponds to our variable-binding operator is not. Rather, ↓ was a

late-breaking addition, imported into hybrid logic from Goranko’s temporal logic

of reference pointers [102]. This is not to say that the theory of ↓ in hybrid logic

is underdeveloped—on the contrary, some remarkable results about it have been

published—but the focus of hybrid logic is different from ours. More characteristic

of hybrid logic than ↓ is the aforementioned satisfaction operator; it effectively jumps

to a named state. Not having the satisfaction operator imposes some unexpected

challenges. For example, as I note in section 3.4, having the satisfaction operator

would make proving the PSPACE-hardness result dramatically less challenging.

Of course, nominals themselves are also somewhat different from bound variables

in our language. A nominal is a proposition that is true in exactly one state; a bound

variable is a term that directly captures a state object. This is an important semantic

difference, although the effect is similar.

3.4 Computational complexity

The primary thing we want to do with path constraints, of course, is check whether a

given path satisfies a given constraint. This can be easily stated as a model-checking

problem. In general, model checking is the problem of checking whether a specific

31

3 Theoretical results on evolution path constraint verification

formula is true of a specific Kripke structure. More specifically, model checking is

usually used to verify that a state transition system has some property. For some

logics, such as CTL, this is easy. For others, such as LTL, it is hard—PSPACE-complete,

in fact. That is, given a finite state transition system, determining whether an LTL

formula is valid in that transition system is PSPACE-complete [205]. Moreover, the

solution to the model-checking problem for LTL is intellectually rather challenging

too, involving an intricate tableau construction. There is certainly not much hope

that our variable-binding construct will make things any easier, especially in light of

the result that model-checking TPTL is EXPSPACE-hard [4].

Fortunately, we are not terribly interested in this form of the problem. Instead, we

are interested in model-checking a single, particular path—not verifying a formula

over an entire state transition system. Our primary use case is telling software ar-

chitects whether the paths that they have planned are admissible according to the

constraints; we do not need to check all the paths in some transition system, nor

even a great number of paths—just one, or a few, at a time. Likewise, all our paths are

finite—and in most cases probably rather short, since they must be comprehensible

to the human architects reasoning about them.

Model-checking a single path is a much easier problem computationally, but one

that has been recognized in recent years as theoretically interesting [147].5 For pure,

propositional LTL, model-checking a formula of length ` on a path of length m

takes O(`m). The algorithm for single-path model checking for LTL is the same as

the familiar algorithm for model-checking CTL, since LTL and CTL coincide over

individual paths [147]. This traditional algorithm [52] uses a dynamic-programming

approach. To determine whether σ, i Íφ for some finite temporal sequence σ and

formulaφ, we list the subformulas ofφ and solveσ, i Íφi for each subformulaφi . We

begin with the smallest subformulas (i.e., atomic formulas), which are immediately

solvable, then inductively solve larger subformulas by using the solved subformulas

that compose them.

Things become messier when we add the variable-binding operator, {x}. This

simple dynamic-programming algorithm is no longer adequate, because we also

need to keep track of variable valuations. For example, in the formula �{x}�p(x), the

truth of p(x) depends not only on the state at which we are evaluating p(x), but also

on the value of x. To determine whether the formula holds on a path, we ultimately

need to evaluate p(x) at each state and for each value of x. The subformula p(x) thus

needs to be evaluated O(m2) times; in model-checking finite LTL paths, we never

need to evaluate a subformula more than m times. So it is clear that model-checking

our path constraint language will be harder than model-checking finite LTL paths.

But how hard?

Consider a formula of the form

�{x1}�{x2} · · ·�{xk }�p(x1, . . . , xk)

5In the program verification community, the problem of checking a finite, single trace is known as

runtime verification, with the term model checking reserved for checking entire state structures [22,

§ 1.1].

32

3.4 Computational complexity

The only apparent way to check this formula is to evaluate p(x1, . . . , xk) at each state

and for each valuation x1 ≤ ·· · ≤ xk . There are
(m+k−1

k

)
such valuations, which is

Θ(mk) for fixed m. Note that k, the number of rigid variables, is asymptotically

proportional to the length of the formula, `. Thus, we have to evaluate p(x1, . . . , xk)

underΘ(m`) different valuations. This gives us a strong hint that we have departed

the realm of polynomial-time algorithms.

However, we can model-check a path constraint in polynomial space, because

we only need to work with one valuation at a time. In fact, even the naive recursive

algorithm is polynomial-space:

Theorem 1. There is a polynomial-space algorithm for model-checking a path

constraint on a single path.

Proof. Let σ be a temporal sequence of finite length m. Let φ be a path constraint of

length `. We define a recursive algorithm to determine whether σ, i Íφ:

CHECK(σ, i ,φ, s)

if φ is an atomic proposition

evaluate φ at i using assignment s

if φ= false

return false

if φ is of the form χ→ψ

return CHECK(σ, i ,ψ, s) or not CHECK(σ, i ,χ, s)

if φ is of the form ©ψ

return i = m or CHECK(σ, i +1,ψ, s)

if φ is of the form χUψ

for j = i to m

if CHECK(σ, j ,ψ, s)

return true

if not CHECK(σ, j ,χ, s)

return false

return false

if φ is of the form {x}ψ

return CHECK(σ, i ,ψ, s[x 7→σi])

To check whether σ, i Íφ, we call CHECK(σ, i ,φ,;).

Consider the space complexity of this algorithm. Since every recursive call is of a

strict subformula, the stack depth of this algorithm never exceeds `. Each execution

of CHECK (excluding the recursion) uses only O(1) space. Thus, the space complexity

of the algorithm is O(`).

This shows that the model-checking problem for path constraints is in PSPACE.

I will now prove that it is PSPACE-complete. The way to prove that a problem is

PSPACE-hard is to prove that the quantified-Boolean-formula (QBF) problem reduces

to it. QBF is the canonical PSPACE-complete problem; it fulfills the same role for

PSPACE that the Boolean satisfiability problem (SAT) fulfills for NP. In fact QBF is a

33

3 Theoretical results on evolution path constraint verification

direct generalization of SAT. A quantified Boolean formula is just what it sounds like:

a formula such as

∃x∀y∃z(z ∧x ∨ y) (2)

where each variable is interpreted as Boolean and is quantified. (This QBF is in

prenex normal form: it comprises a string of quantifiers followed by a quantifier-free

propositional form. Any QBF can be converted to prenex normal form in polynomial

time, so from now on we will assume prenex normal form, as is typical in QBF proofs.)

The QBF problem is to determine whether the formula is true. SAT can be viewed as

the special case of QBF where all the quantifiers are existential.

There is a fairly obvious transformation from QBF to our model-checking problem,

but unfortunately this obvious reduction does not work. The obvious reduction is to

change the ∀s into �s and the ∃s into ♦s, add variable bindings after each quantifier,

then check the formula on a path of length 2, where the first state represents falsehood

and the second represents truth. Thus formula (2) would become

♦{x}�{y}♦{z}(t (z)∧ t (x)∨ t (y))

where t is a predicate that is false when its argument refers to state 1 and true

for state 2. This would work if � meant “for all states” rather than “for all future

states” and likewise for ♦. But since y cannot be a state previous to x and z cannot

be previous to y , there are some assignments that will never arise from this path

constraint, such as {x 7→ 2, y 7→ 2, z 7→ 1}. Thus the path constraint is not equivalent

to formula (2).

However, it is temptingly close, and it is easy to imagine language extensions that

would make the proof work. For example, if we had an operator called @ that allowed

us to jump to a previous state, we could translate formula (2) as

{h}♦{x}@0�{y}@h♦{z}(t (z)∧ t (x)∨ t (y))

The @ operator exists in hybrid logic, and indeed precisely this approach was used by

Franceschet & de Rijke in 2006 to prove that model-checking a hybrid logic with @

and variable binders is PSPACE-hard [88].

Proving that model-checking a path constraint is PSPACE-hard is more challenging.

Instead of a simple two-state model, we must build a 2k-state model, where k is the

number of quantifiers. The odd states will represent falsehood; the even, truth. The

following proof provides the details.

Theorem 2. The problem of model-checking a path constraint on a single path is

PSPACE-complete.

Proof. By theorem 1, the problem is in PSPACE. To show it is PSPACE-hard, we exhibit

a polynomial-time reduction of QBF. Let

Q1x1Q2x2 · · ·Qk xkφ(x1, x2, . . . , xk)

be a QBF in prenex normal form, so Q1, . . . ,Qk are quantifiers and φ(x1, . . . , xk) is an

abbreviation for a propositional Boolean formula over the variables. We translate this

QBF into a path constraint model-checking problem as follows. Define the signature

by

Σ= ((x1, . . . , xk), (;), ({p1, . . . , pk }, {t },;,;, . . .))

34

3.4 Computational complexity

σ1 σ2 σ3 σ4 σ5 σ6 · · · σ2k

p1 holds p2 holds p3 holds

t (σi) is true when i is even

t (σi) is false when i is odd

Figure 5. A graphical representation of the path constraint language model that we

construct in the reduction of a QBF.

Thus x1, . . . , xk will be variables, p1, . . . , pk will be nullary predicates, and t will be

a unary predicate. Now let σ be a temporal sequence of 2k states, σ1, . . . ,σ2k . We

define the interpretation of the nullary predicates at each state by

σi (p j) =
{

true if 2 j −1 ≤ i ≤ 2 j

false otherwise

for all i , j . (A nullary relation can be simply identified with true or false.) We define

the interpretation of the unary predicate t by

σi (t) = {σ2,σ4,σ6, . . . ,σ2k }

Figure 5 summarizes this model. Note that we can construct this model in linear

time.

We now construct the path constraint that corresponds to the QBF. For the quanti-

fier part, we translate:

• ∀xi into the string “�(pi → {xi }”

• ∃xi into the string “♦(pi ∧ {xi }”

The quantifier-free part we transcribe literally, except that each occurrence of xi

becomes t (xi). At the end of the formula, we add k closing parentheses. For example,

formula (2) becomes

♦(p ∧ {x}�(q → {y}♦(r ∧ {z}(t (z)∧ t (x)∨ t (y)))))

This formula, too, can be constructed in linear time. It is larger than the original QBF,

but only by a constant factor.

It remains to show that the constructed path constraint (call it ψ) is true iff the

original QBF (call it χ) is true. Let χi denote χ with the first i quantifiers removed.

Similarly let ψi denote ψ with the first i quantifier translations (and the last i paren-

theses) removed. We will show that for any i , for any j < 2i , and for any assignment s

of the variables,

σ, j , s ÍPCL ψi iff s∗ ÍFOL χi

(We use ÍPCL and ÍFOL to indicate semantic consequence with respect to our path

constraint language and FOL, respectively.) Note that we translate the path constraint

35

3 Theoretical results on evolution path constraint verification

language assignment s : V → S into the FOL assignment s∗ : V → {true, false} given by

s∗(x j) =
{

true if s(x j) is one of σ2,σ4,σ6, . . . ,σ2k

false if not

The proof is by induction on i . The base case is i = k, where all the quantifiers have

been removed, so χi and ψi are both propositional formulas. The propositional

connectives have the same semantics in our path constraint language and FOL, so it

suffices to show that for any j < 2i and for each h,

σ, j , s ÍPCL t (xh) iff s∗ ÍFOL xh

By the definition of t and the semantics of our path constraint language, it suffices to

show that

s(xh) ∈ {σ2,σ4,σ6, . . . ,σ2k } iff s∗ ÍFOL xh

This is immediate from the definition of s∗.

For the inductive step, suppose we have proven the result for i +1, so we know that

for any j < 2i +2 and any assignment s, we have σ, j , s ÍPCL ψi+1 iff s∗ ÍFOL χi+1. We

split by cases based on whether the i th quantifier is ∀ or ∃.

Case: ∀. We must show that for each j < 2i and for any s,

σ, j , s ÍPCL �(pi → {xi }ψi+1) iff s∗ ÍFOL ∀xiχi+1

Whenever j < 2i , observe that

σ, j , s ÍPCL �(pi → {xi }ψi+1)

iff σ,h, s ÍPCL {xi }ψi+1 for all h ≥ j with σ,h, s Í pi

iff σ,h, s ÍPCL {xi }ψi+1 for all h ∈ {2i −1,2i }

iff σ,h, s[xi 7→σh] ÍPCL ψi+1 for all h ∈ {2i −1,2i }

Similarly,

s∗ ÍFOL ∀xiχi+1

iff s∗[xi 7→ h] ÍFOL χi+1 for all h ∈ {true, false}

Thus, it suffices to show that

σ,h, s[xi 7→σh] ÍPCL ψi+1 for all h ∈ {2i −1,2i }

iff s∗[xi 7→ h] ÍFOL χi+1 for all h ∈ {true, false}

For this, it suffices to show that

σ,2i −1, s[xi 7→σ2i−1] ÍPCL ψi+1

iff s∗[xi 7→ false] ÍFOL χi+1

and

σ,2i , s[xi 7→σ2i] ÍPCL ψi+1

iff s∗[xi 7→ true] ÍFOL χi+1

But each of these is simply an instance of the induction hypothesis, since by the

definition of s∗ we have

(s[xi 7→σ2i−1])∗ = s∗[xi 7→ false]

(s[xi 7→σ2i])∗ = s∗[xi 7→ true]

36

3.4 Computational complexity

Case: ∃. We must show that for each j < 2i and for any s,

σ, j , s ÍPCL ♦(pi ∧ {xi }ψi+1) iff s∗ ÍFOL ∃xiχi+1

By reasoning parallel to the ∀ case, it suffices to show that

σ,h, s[xi 7→σh] ÍPCL ψi+1 for some h ∈ {2i −1,2i }

iff s∗[xi 7→ h] ÍFOL χi+1 for some h ∈ {true, false}

As in the previous case, this follows from the induction hypothesis.

This concludes the inductive proof that σ, j , s ÍPCL ψi iff s∗ ÍFOL χi for any i , any

j < 2i , and any s. Choosing i = 0 and j = 1, we obtain σ,1 ÍPCL ψ iff ÍFOL χ as

desired.

The QBF reduction in this proof is similar to that recently employed to prove

PSPACE-completeness for the finitary model-checking problem for LTL augmented

with finitely many registers, over deterministic one-counter automata [72].

The PSPACE-completeness result here is somewhat unfortunate, but perhaps

to be expected, since, as we have seen, the variable-binding extension is a sort of

quantifier, and a great many interesting decision problems for quantified logic are

PSPACE-complete [93], including even the problem of checking first-order monadic

logic over finite paths [147]. And of course hybrid logic with ↓ has the same problem

as our path constraint language.

There are practical reasons not to be overly concerned about the PSPACE-hardness

of checking path constraints. First, actual path constraints are typically not terribly

long. They are, after all, written by humans for the purpose of reasoning formally

about constraints that arise naturally. Second, it is possible that the predicates

that arise in this domain might lend themselves to specialized analyses with good

performance. That is, the predicates we actually encounter are not arbitrary n-ary

relations over the state space; they are simple tests like “has a database.” Third, and

most importantly, the constraints that arise are likely to be particularly well-behaved,

so the worst-case running time will be quite rare in actuality. Of course, this is a claim

that is likely to be made about any intractable problem, but at least here it can be

formalized.

The complexity of the path-checking problem in our case arises, of course, from

the variable-binding extension, but in particular it arises from nesting these binders.

All of the intractable examples we have seen, such as the transformed formula in the

QBF reduction, involve arbitrarily deeply nested variable bindings. The following

theorem shows that model-checking a path constraint over a path is intractable only

to the extent that variables are nested without bound.

Theorem 3. Let σ be a temporal sequence of length m. Let φ be a path constraint of

length `. Let d be the maximum variable-nesting depth of φ (i.e., there is no point in

φ at which more than d variables are bound at once). Then there is an algorithm that

determines whether σ, i Íφ in O(`md+1).

Proof. Let φ1, . . . ,φn be the subformulas of φ, listed by nondecreasing length. We

define a Boolean matrix [t j ,k]m×n . The follow recursive algorithm fills the kth column

of the matrix under variable assignment s:

37

3 Theoretical results on evolution path constraint verification

FILLCOL(k, s)

if φk is an atomic proposition

for j = 1 to m

t j ,k := evaluate φk at j using assignment s

if φk = false

for j = 1 to m

t j ,k := false

if φk is of the form φg →φh

FILLCOL(g , s)

FILLCOL(h, s)

for j = 1 to m

t j ,k := t j ,h or not t j ,g

if φk is of the form ©φh

FILLCOL(h, s)

for j = 1 to m −1

t j ,k := t j+1,h

tm,k := true

if φk is of the form φg Uφh

FILLCOL(g , s)

FILLCOL(h, s)

prev := false

for j = m to 1 step −1

prev := t j ,h or (t j ,g and prev)

t j ,k := prev

if φk is of the form {x}φh

for j = 1 to m

FILLCOL(h, s[x →σ j])

t j ,k := t j ,h

To solve the model-checking problem, execute FILLCOL(n,;) and read the answer

from ti ,n . The correctness of the algorithm follows easily from the semantics of path

constraints.

Note that in the case where there are no variable assignments, this algorithm

reduces to the algorithm for LTL. When there are variable assignments, intermediate

results in the matrix are overwritten; in an intermediate evaluation of a formula of the

form {x}ψ, we use the columns to our left to first evaluate ψ under the assignment

x 7→ 1, then immediately overwrite them, using the same space to evaluate ψ under

the assignment x 7→ 2, and so on. More precisely, the kth column of the matrix is

ultimately filled mdk times, where dk is the variable-nesting depth of φk (i.e., the

number of variables that are bound for the subformula φk). Thus no column is filled

more than md times, where d is the maximum variable-nesting depth of φ. Filling

a single column, not counting the time to fill its subformula columns to the left,

takes O(m) time. And there are n columns in total, which is O(`). Therefore the total

complexity of the algorithm is O(`md+1).

38

3.5 Summary

If d is bounded (e.g., we never have constraints with a variable-nesting depth

greater than 3) then we can model-check a path constraint over a path in polynomial

time. (If d = 0, we get the same, linear performance as the LTL algorithm, as we

would hope.) If d is unbounded, then the performance is exponential, O(`m`),

since the quantifier depth can approach the length of the formula. In practice, it

seems unlikely that variable bindings will often be very deeply nested, since software

architects are unlikely to be naturally interested in such convoluted constraints. The

path constraints that arose in our empirical work (chapter 5) seem to bear this out;

in fact, I have never seen a path constraint arising from a real-world evolution with a

variable-nesting depth greater than 1.

3.5 Summary

In this chapter, we produced a formal syntax and semantics for the path constraint

language that was introduced in section 2.4, surveyed a number of related logics, and

proved some results about the computational complexity of verifying evolution path

constraints. This chapter thus addresses research claim 2 from section 1.3.3, which

was a claim about the computational complexity of path constraint verification.

In one sense, this kind of formal analysis provides the best and most thorough pos-

sible evaluation of the research claim. A result of PSPACE-completeness establishes

a tight upper and lower bound on both the time complexity and space complexity

of verifying path constraints. This is the best sort of result we could hope for in

undertaking a theoretical evaluation like this one.

In another sense, though, the practical relevance of these results is somewhat

murky. The PSPACE-completeness result (theorem 2) suggests that verifying path

constraints may be intractable for large problem sizes, and the polynomial-time result

for the case in which the variable-nesting depth is bounded (theorem 3) suggests

that the problem may become tractable provided that rigid variables are not deeply

nested. But how are we to apply these theoretical results in practical contexts? Is path

constraint verification computationally practical for the problem sizes and constraint

specifications that are likely to emerge in realistic architecture evolution scenarios?

This dissertation does not provide final answers to these questions. Fully settling

them would require performance tests of tools implementing our approach. Thus,

although these theoretical results provide a final and decisive answer to the question

of the computational complexity of path constraint verification, they do not provide

an entirely satisfying answer to the question of practical performance. I leave this

for future work. (However, see section 6.3 for a discussion of an implementation

project that incorporated automated enforcement of path constraints, demonstrating

that evolution paths satisfying a reasonable set of realistic path constraints can be

automatically generated fairly quickly.)

It is also worth emphasizing that these theoretical results are of much broader

relevance beyond their immediate application to the topic of software architecture

evolution. As we saw in section 3.3, this version of linear temporal logic augmented

with state-capturing variables has been reinvented numerous times and applied

to a variety of practical contexts. The theoretical results proved in this chapter are

39

3 Theoretical results on evolution path constraint verification

of relevance to anyone using such a logic to verify formulas over finite paths. This

finite-path computational complexity question, although it might naively be thought

to be more trivial or obvious than the problem of model-checking a temporal formula

over an entire Kripke structure, is of substantial theoretical interest and practical

importance [147]. Thus, it is my hope that the results here will be useful to other

researchers beyond the domain of architecture evolution, apart from their relevance

to my own thesis.

40

4 Case study: Architecture evolution at
NASA’s Jet Propulsion Laboratory

In this chapter and the one that follows, I review the empirical research we have

carried out to evaluate the applicability of our approach to architecture evolution in

real-world software organizations. In this chapter, I discuss the first of the two case

studies, which examined software architecture evolution at NASA’s Jet Propulsion

Laboratory.6 This case study had three main goals: (1) to understand a real-world

software architecture evolution problem in its natural context, (2) to assess the

usefulness of our framework for software architecture evolution in helping to plan

evolutions and reason about trade-offs, and (3) to assess the ease of implementing

our approach to software architecture evolution with off-the-shelf languages and

tools.

This chapter is organized as follows. Section 4.1 provides some background on

software architecture evolution at JPL. Section 4.2 describes the evolution that was

modeled in this case study. Section 4.3 describes how I modeled this evolution,

adapting our architecture evolution modeling approach to architecture modeling

languages and tools in use at JPL. Section 4.4 present the results of this modeling

process. Finally, section 4.5 concludes by discussing the significance of these results.

4.1 Background

At JPL, software architecture evolution is both very common and very important.

One reason for this is that missions at JPL can last for decades, and software systems

must evolve to support them continuously. The Voyager mission launched in 1977,

and 36 years later it is still running—and transmitting telemetry that must continue

to be processed by software on the ground. The flight software and ground software

associated with this mission have required continuous maintenance to keep them

up and running for 36 continuous years. This maintenance entails not only routine

collection and analysis of telemetry, but also occasional software evolution as well

as responses to sporadic anomalies, as in 2010 when a flight software glitch left

Voyager 2 nonfunctional until project engineers could repair the software, allowing it

to continue reporting on its journey out of our solar system [56]. The Voyager probes

6The case study described in this chapter was carried out during an internship at JPL in the summer of

2011. The case study report from my internship first appeared publicly on the JPL Technical Report

Server [15]. In 2012, I published a conference paper on the case study [16].

I would like to express my deep gratitude to Brian Giovannoni, Dave Santo, and Oleg Sindiy for

their guidance and support on this project.

41

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

are expected to continue transmitting telemetry at least until 2025, when they will at

last have insufficient power to support any of their instruments, for a total mission

length of nearly half a century [113].

But long mission durations are only one reason that software evolution is so im-

portant to JPL. Perhaps even more significant are the multimission software systems

that JPL maintains. Today, JPL is constantly maintaining the software for a wide array

of missions; currently JPL has 119 active missions, according to its website—from

the Active Cavity Irradiance Monitor Satellite to the Wide-Field Infrared Survey Ex-

plorer [115]. Each of these missions has plenty of custom software written for it,

but most of them also make use of multimission software—software that is shared

among several missions. JPL takes a sort of product line approach to multimission

software; it develops software for multimission use, then adapts it for each mission.

Of course, multimission software lasts longer than a typical single mission, and it also

has greater evolution needs. As new missions make use of a multimission platform,

the platform must evolve to support the new capabilities and qualities that the new

missions require. Over a long period of time, a multimission system can change

drastically, ultimately to the point where it bears little resemblance to its ancestral

form.

The best example of such a multimission system at JPL is the Advanced Multi-

mission Operations System. AMMOS is the ground software system used for JPL’s

deep-space and astrophysics missions [114]. It was developed beginning in 1985,

with the goal of providing a common platform to allow mission operators to manage

ground systems at lower cost than would be possible by building mission-specific

tools, without compromising reliability or performance [103]. The system has been

used for many prominent NASA missions, and continues to be used today.

Architecturally, AMMOS is a system of systems; although it functions as a coherent

whole with a common purpose, it is composed of disparate elements, each of which

has its own engineers, its own users, and its own architectural style. Among the

systems that make up AMMOS are elements responsible for uplink and downlink of

spacecraft telemetry, for planning command sequences, for processing spacecraft

telemetry, for navigation, and so on.

AMMOS has served JPL well for many missions, but it is an aging system, and by the

time of this case study, the limitations of its architecture had become apparent [163].

The architecture was resistant to evolution and expensive to maintain. The system

suffered from architectural inconsistencies and redundancies and lacked a coherent

overarching architecture. Requirements changes often necessitated modifications

spanning many subsystems, and the system relied on large amounts of “glue” code—

adapters and bridges connecting different parts of the system in an ad hoc way that

made maintenance difficult.

At the time of this case study, ongoing architecture modernization efforts aimed

to address this situation by rearchitecting AMMOS in a way that would make use of

modern architectural styles and patterns [163; 194]. This would allow easier, less ex-

pensive maintenance and evolution of AMMOS in the future and also facilitate easier

customization of AMMOS for individual missions. The goal was to develop a modern

deep-space information systems architecture based on principles of composability,

42

4.2 Evolution description

interoperability, and architectural consistency.

4.2 Evolution description

For the case study, I focused on one element of AMMOS that was of particular in-

terest from the standpoint of software architecture evolution: the AMMOS element

responsible for mission control, data management and accountability, and spacecraft

analysis (MDAS). The MDAS element was an attractive choice for several reasons.

First, it was undergoing a major restructuring to meet specific goals. Second, it had

an explicit initial software architecture, and the target architecture was also reason-

ably well understood. Third, it presented interesting trade-offs and unanswered

questions that might be usefully addressed by an architecture evolution analysis.

Fourth, I had good access to staff who were familiar with the system and with the

evolution, who could provide architectural information beyond that available in

official documentation.

The MDAS element has a number of responsibilities, but one of the most important

is to process, store, and display telemetry and other mission data from deep-space op-

erations. Prior to the Mars Science Laboratory (MSL) mission, this responsibility was

fulfilled by an assortment of different subsystems, including the Data Monitor and

Display (DMD) assembly; the Tracking, Telemetry, and Command (TT&C) system;

and a number of others [124]. For the MSL mission, a new system was developed to

supplant this complex of systems: the Mission Data Processing and Control System

(MPCS) [69].

MPCS was originally developed as a testing platform modeled after the ground data

systems for the Mars Exploration Rovers; later it was promoted to support operations

for MSL [69]. At the time of this case study, engineers were in the process of adapting

and refining the architecture of MPCS for multimission use. In this section, I describe

the initial MPCS architecture (as used by MSL), the motivations for evolving it, and

the planned future architecture.

4.2.1 Initial architecture

MPCS was architected as an event-driven message bus system, with all communi-

cation among the system’s major components occurring via a Java Message Service

message bus [69]. This architecture was designed to promote loose coupling of soft-

ware components without compromising reliability. Components could be attached

to or detached from the message bus freely (by subscribing to or publishing the

appropriate kind of event) provided that they adhered to application protocols and

did not violate architectural constraints, allowing for plug-and-play reconfiguration

of the system. The components were Java-based and platform-independent; the

interfaces by which they communicated were based on XML [69].

This event-driven, bus-mediated architecture gave MPCS a degree of architectural

flexibility. There was not really any one “MPCS architecture;” rather, MPCS could

be configured in different ways to achieve different goals. At its most flexible, MPCS

could be regarded a loose confederation of tools rather than a cohesive system with

43

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

a fixed design. However, MPCS did have a rather stable infrastructure of core com-

ponents that were generally connected in a well-defined way, so for most purposes

MPCS could be treated as a system with a stable platform and a fixed set of variation

points.

An important example of the architectural variability of MPCS is that it could

be deployed with different configurations in different environments. MPCS was

used in several environments—not only mission operations, but also flight software

development; system integration; and assembly, test, and launch operations (ATLO)—

and there were initially significant differences in architectural configuration among

the environments [69]. For flight software development, for example, MPCS could

be used to issue commands to the flight software under development; in operations,

however, commanding features were delegated to a different system called CMD,

which was external to MPCS and indeed external to AMMOS (it was a subsystem

within JPL’s Deep Space Network).

The most important components of MPCS are:

• The aforementioned message bus.

• The telemetry processing subsystem of MPCS, called chill_down [45] (chill is a

code name for MPCS [212], and down is for downlink). The role of this com-

ponent is to take as input an unprocessed telemetry stream from a spacecraft

(or other telemetry source, such as a simulation environment), perform frame

synchronization and packet extraction, and process packets to produce event

verification records and data products [45].

• The commanding component of MPCS, called chill_up (up for uplink) [67;

68]. This component’s role is to transmit commands to the flight software (or

simulation environment). In the initial architecture, chill_up was used only in

the flight software development and ATLO environments, not in operations.

• The MPCS database, a MySQL database used for storing telemetry as well

as some other information, such as logs and commanding data [68]. This

database was queried by a number of analysis components.

• The monitoring interface, called chill_monitor, used for real-time display of

telemetry [67; 68]. There were generally many instances of chill_monitor for

a single instance of MPCS, as many mission operators could be monitoring

telemetry simultaneously.

• A variety of MPCS query components, with names like chill_get_frames, chill_

get_packets, chill_get_products, and so on [68]. The purpose of these programs

was to retrieve data from the database and output the data in a standard format.

Together, these components effectively formed a standard MPCS workflow. Com-

mands would be issued by chill_up and conveyed to the flight software (or simulation

environment), which would carry out the commands; the flight software would

produce telemetry, which would be processed by chill_down. The chill_down com-

ponent would store the processed telemetry to the MPCS database (where it would

be queried by the MPCS query components) and transmit messages about the pro-

44

4.2 Evolution description

cessed telemetry to the message bus (where it would be displayed by chill_monitor).

Although MPCS was flexible enough to be configured in many different ways, this

workflow describes the way MPCS works most of the time, in typical environments.

In section 4.4, I will show an architectural diagram of MPCS illustrating these compo-

nents and the connections among them.

4.2.2 Impetus for evolution

MPCS was expected to serve adequately for the MSL mission. However, as MPCS was

to be developed for reuse in future missions, engineers faced the need to evolve the

system to improve qualities such as performance and usability, support additional

needed capabilities, and better integrate with other ground data systems. In this case

study, I focused on two particular proposed features of MPCS that project architects

hoped to introduce in future versions: integrated commanding (ICMD) and timeline

integration.

ICMD was motivated by the NASA principle “test like you fly.” NASA aims to make

system-testing environments as similar as possible to actual spaceflight operations.

As we have seen, one of the most salient architectural characteristics of MPCS in the

initial architecture is that it took different forms in different environments. In partic-

ular, there were important architectural differences between the testing environment

(ATLO) and the spaceflight operations environment. The ICMD effort aimed to bring

the operations environment more in line with the ATLO environment.

The main difference between the testing configuration of MPCS and the operations

configuration of MPCS was commanding. In ATLO, the chill_up component of

MPCS was responsible for issuing commands to the spacecraft. In operations, the

responsibility of issuing commands was excised from MPCS entirely; instead, the

CMD system was responsible for issuing commands. ICMD was intended to change

the operations environment to look more like ATLO; the chill_up component of

MPCS would now issue commands in all environments.

Timelines were a new data structure proposed for storing streams of time-oriented

data throughout AMMOS. A “timeline” is exactly that: a linear sequence of events

with associated times, in chronological order. Many of the kinds of data that JPL

handles on a day-to-day basis fit naturally into this model: telemetry, command

sequences, and others. The timeline proposal defined specific formats for storage

and transmission of timelines, and also described the architectural infrastructure

necessary to support them. Timelines were expected to be useful for many purposes,

but one of the most important was comparison of actual telemetry with expected

telemetry. Mission operators need this capability all the time (comparing an ob-

servation with a theoretical prediction is one of the most basic requirements in

science), but in the initial architecture, comparing expected and actual telemetry

was a manual, laborious operation. Supporting timelines would require substantial

architectural infrastructure. Although the basic idea is not complex, there were very

stringent performance requirements; processing timelines had to be very fast. Thus,

for example, a specially engineered timeline database was planned, which would be

designed specifically for efficient storage and retrieval of timelines.

45

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

The introduction of timelines would have ramifications for many of the AMMOS

elements, including MPCS. In its initial form, MPCS stored telemetry information

in a MySQL database. Ultimately, this database was to be rendered obsolete by

the introduction of timelines. After timelines are integrated into MPCS, telemetry

would be stored in an AMMOS-wide timeline management system, and the MySQL

database would eventually be retired. Other parts of MPCS would also be affected by

the introduction of timelines; for example, the subsystem for mission planning and

sequencing is likely to see changes as well.

4.2.3 Target architecture

The main differences between the end state of the evolution and the initial state were

greater homogeneity among deployment environments (supporting the “test like

you fly” philosophy) and integration with the new timeline infrastructure (improving

on the usability of the existing architecture).

In the end state, chill_up would be used for commanding in all environments,

including spaceflight operations. The CMD system would continue to exist but

would no longer be the originator of commands in the operations environment.

Instead chill_up would originate commands and convey them to CMD, which would

prepare them for uplink.

More precisely, chill_up would not directly send commands to CMD, but would

instead transmit references to commands that it had stored in a command repository;

CMD would then access this repository to read the actual commands. With the

introduction of timelines, this command repository would become obsolete, as

command sequences would be stored as timelines and would therefore be stored

by the timeline management system. This was an important point of interaction

between the two pieces of the evolution, ICMD and timelines.

In addition to storing commands, the timeline management system in the end state

would be responsible for storing channelized telemetry. Thus, the target architecture

lacked the MySQL database that existed in the initial architecture, and the usages of

that database by other MPCS components were replaced by connections with the

timeline management system. The timeline management system would be external

to MPCS, so these connections would be external collaborations rather than internal

connections.

4.3 Approach

At the beginning of the case study, I spent several weeks gathering information—

familiarizing myself with the particulars of the various elements of AMMOS and the

plans that were in place for evolving them. I did this by reviewing project documents

and speaking with project personnel.

During this period, I also selected an evolution to study—the one described in the

previous section. Among the options considered were past evolutions (i.e., those

that had already been finished and whose outcome was therefore known); current

evolutions (i.e., those which were ongoing); and future evolutions (i.e., those that

46

4.3 Approach

were under consideration to occur in the future). I ultimately selected an evolution

that was in progress but had been underway for only a short time. Picking a current

evolution had the advantage of being of greatest relevance to JPL. Another advantage

was that there were ample resources for learning about the evolution; it was easy to

find project personnel who could share accurate, timely information about evolution

plans. If I had selected a past evolution, it is likely that documentation would have

been difficult to find, and there would have been few available personnel who were

familiar enough with the evolution to provide useful information. On the other

hand, if I had selected a future evolution for which few firm plans had been made,

substantial speculation would have been necessary in order to construct an evolution

graph.

Another important choice was the scope of the evolution, in terms of both time

(i.e., a long evolution versus a short one) and breadth (i.e., the evolution of a small

subsystem versus the evolution of a large chunk of AMMOS). I could have picked

a much larger scope than I did—for example, by studying the overall evolution of

AMMOS rather than focusing on MPCS, or by trying to look further into the future.

However, given the limitations of the case study format, it would have been difficult

to gather sufficient information about a broader evolution to produce a useful model

capable of saying anything useful about the evolution—one that was more than a

superficial overview. A more narrowly scoped study, on the other hand, would have

shown changes that were too minor to be interesting.

Once I had selected an evolution to study, the next task was to model it. As men-

tioned in the introduction to this chapter, one of the aims of this work was to evaluate

the practicality of adapting our approach to off-the-shelf languages and tools like

those used at JPL. At JPL, the dominant modeling language is SysML, the Systems

Modeling Language, and the dominant modeling tool is MagicDraw, a commercial

tool that can produce SysML models. In this section, I will describe how I adapted

our architecture evolution approach to SysML and MagicDraw.

4.3.1 Representing software architecture in SysML

SysML [173] is a specialization of UML to the domain of systems engineering. It

is defined as a profile of UML. SysML arose from collaboration, beginning in 2001,

between the Object Management Group and the International Council on Systems

Engineering. It was developed by a coalition of industry leaders and adopted as a

standard in 2006. SysML is both a restriction and extension of UML. It is an extension

in the sense that it adds new syntax and semantics beyond that of UML. It is a

restriction in that it excludes many of the elements that do exist in UML, for the

purpose of simplifying the language. SysML takes a subset of the diagram types

from UML and repurposes them for the domain of systems engineering. The class

diagrams of UML, for example, become block definition diagrams (BDDs) in SysML;

composite structure diagrams become internal block diagrams (IBDs).

I used two diagram types in representing evolution states: BDDs and IBDs. In

SysML, a block is the basic unit of system structure. A BDD shows the blocks that

appear in the model; an IBD shows the internal structure of a block. I used BDDs to

47

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

show the kinds of architectural components in my model and the hierarchical rela-

tionships among them; I used IBDs essentially as conventional software-architectural

diagrams, to show the architectural structure (components, connectors, etc.) of a

system. BDDs and IBDs are both representations of an underlying model.

I tailored my use of the diagram types to show those aspects of the architecture

whose evolution I hoped to model. The most detailed and important diagram that

I produced was an IBD showing the internal structure of MPCS. I also produced a

set of three IBDs that served essentially as context diagrams showing how MPCS was

deployed in the three different environments (flight software development, ATLO,

and operations). For representing this evolution, it was important to see not only

the internal changes that were occurring within MPCS, but also the changes in how

MPCS interacted with other systems, such as CMD. Recall that such changes were

key to the overall evolution, so modeling them was crucial to providing a complete,

useful representation of the evolution.

4.3.2 Modeling software architecture evolution with MagicDraw

Modeling software architecture in SysML is fairly straightforward; after all, SysML

is a profile of UML, which is specifically designed for software architecture repre-

sentation. More interesting is the question of how to model architecture evolution

effectively. Recall that we model an evolution as a graph, in which the nodes are

intermediate architectures and the edges are transitions. The first step in represent-

ing an architecture evolution, then, is figuring out how to represent the nodes. The

simplest strategy would be to create one MagicDraw project for each intermediate

state. A better idea, however, is to include all the intermediate states, and hence the

entire evolution graph, in a single project. With everything in one project, it becomes

possible to write evolution constraints and evaluation functions with existing tools,

simply by using the model constraint and analysis facilities already provided by the

tool.

More specifically, I placed each intermediate state in its own package. A package is

a UML construct (also available in SysML) that encapsulates related entities. Placing

the intermediate states into different packages allows them to be as isolated as neces-

sary, while still existing within the same project so as to accommodate analyses of

the entire evolution graph. In addition, we can represent the packages themselves in

a package diagram; then we can represent the transitions between them by relation-

ships among the packages. Finally, if we wish, we can add annotate these packages

and relationships with additional information to facilitate analysis, such as node

properties and edge properties.

4.3.3 Representing model transformations

The problem with having a separate representation for each intermediate state is

that it can be a maintenance nightmare. Since what I was modeling was a gradual

evolution rather than an outright retirement and replacement of a system, all the

states look mostly the same, except for those pieces that are evolving. Thus, modeling

48

4.3 Approach

the evolution graph required me to produce many nearly identical packages. I could

have created this evolution graph model very easily by simply cloning the initial state

and modifying it. That is, after first representing the initial state, I could have copied

it, pasted it, and modified it to create the next state; then done likewise for the next

state; and so on. But maintaining this evolution graph would have been painful.

Suppose that after I had finished representing all the states, I had noticed a mistake

in the initial architecture that affected all the other states as well (since they were

generated by cloning the initial state). To address the problem, I would have had

to fix each state by hand. In the evolution graph I ultimately produced, there were

seven states; a more broadly scoped evolution could have many more. Thus, fixing

problems in this way would be laborious.

Instead of this copy-and-paste approach, I decided to model the structural trans-

formations themselves in such a way that they could be applied automatically. Rather

than generating intermediate states by hand and applying the evolution steps by

hand, I would specify the structural transformations needed to generate the interme-

diate states automatically. Then, if the initial state were to change, the intermediate

states could be regenerated instantly, so fixes could be applied in one place instead

of many. This is analogous to the way that most revision control systems use delta

encoding to store file versions (storing diffs between versions rather than a complete

copy of every version of every file) or to the way that video compression works (by

storing differences between frames, taking advantage of the typical similarity of

nearby frames, rather than storing a complete copy of every frame).

This approach accords well with our approach to architecture evolution modeling.

In our appraoch, we define evolution operators to capture the structural transforma-

tions involved in evolution steps, as well as other information to support analysis.

The transformations that I employed in this case study fulfilled the same role here

(except without providing metadata to support analysis).

I implemented the transformation specifications as macros in MagicDraw. Magic-

Draw supports the definition of fairly sophisticated macros that can alter both the

model and the presentation of its diagrams. To do so, it exposes a rich Java API for

creating and modifying model elements and presentation elements. Macros are

written in a scripting language and compiled to Java bytecode.

There are several languages in which MagicDraw macros can be written: Groovy,

BeanShell, JavaScript, JRuby, and Jython. All of these are dynamically typed program-

ming languages that can compile to Java bytecode and run on the Java platform,

so the choice among them is largely one of personal preference. I selected Groovy,

whose syntax is based on Java but is rather laxer (e.g., semicolons and type dec-

larations are unnecessary) and also introduces many additional features (e.g., for

functional programming).

In principle, one could use a UML transformation standard such as QVT for this

purpose, rather than a script using a proprietary API like MagicDraw’s. I used macros

rather than QVT for two reasons. First, MagicDraw had no built-in support for

QVT (nor any other model transformation language), and although there was an

official MagicDraw plug-in for QVT, it was immature, somewhat buggy, and not well

documented. Second, using macros allowed me to transform not only the model,

49

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

but also the diagrammatic presentation of that model. With QVT I would have been

limited to the former; I could have transformed the model automatically, but still

would have had to update the diagrams by hand, eliminating much of the benefit of

the automated approach.

4.3.4 Modeling constraints and evaluation functions with OCL

Constraints and evaluation functions are important parts of our model of software

architecture evolution. Due to time limitations, I was not able to incorporate formal-

ization of constraints and evaluation functions as part of this case study. However, it is

still useful to point out how constraints and evaluation functions could be formalized

in principle in a model such as this one. With the entire evolution graph represented

in a single model, constraints and evaluation functions could be represented as OCL

constraints over the model.

OCL, the Object Constraint Language, is a declarative language for specifying rules

of models in UML (and other modeling languages governed by the same metamodel

as UML) [172]. OCL was originally developed to annotate UML models with ad-

ditional constraints that are inexpressible in UML; however, it can also be used to

express constraints over UML models—to judge whether a particular UML model

satisfies some constraint. This makes it suitable for expressing evolution constraints,

given that our entire evolution graph is in one model.

In principle, I believe that it should even be possible to develop an algorithm

for translating, or compiling, constraints in our temporal-logic-based constraint

language into OCL. Thus it would be possible to develop, say, a MagicDraw plug-in

that allows architects to express constraints in this temporal logic, then transparently

compiles them to OCL and checks them against the model. However, I have not

explored this idea, and I leave the issue of constraint compilation for future work.

(See also a similar discussion on compiling constraints into PDDL in section 6.3.2.)

Of course, macros are an option here too, and might provide some additional

flexibility, at the cost of portability. Macros might be particularly useful for express-

ing evaluation functions, as OCL’s constraint-based approach may be too rigid for

quantitative analysis of the evolution graph.

4.4 Results

4.4.1 Representing the initial architecture

Figures 6 and 7 show the most important diagrams from my model of the initial

architecture of MPCS. Figure 6 is an IBD depicting the internal structure of MPCS.

This is a fairly complicated diagram, but there are a couple of features that are

particularly worthy of attention. Note first the major components I mentioned in

section 4.2: the message bus, the chill_up and chill_down (uplink and downlink)

components, and so on. This is a very data-flow-oriented representation of MPCS,

which is appropriate given its nature. Most previous architectural representations of

MPCS at JPL have also depicted data flow prominently (e.g., [67–69]).

50

4.4 Results

S
y
s
M

L
 I
n

te
rn

a
l
B

lo
c
k
 D

ia
g

ra
m

[S

y
s
te

m
]

M
P

C
S

in
 :
 T

e
le

m
e
tr

y

c
h
ill

_
u
p
_
o
u
t
:
C

L
T

U
s

c
h
ill

_
m

o
n
it
o
r_

u
i

c
h
ill

_
u
p
_
c
o
m

m
a
n
d
_
s
to

re
 :
 F

ile
c
h
ill

_
u
p
_
c
o
m

m
a
n
d
_
lo

a
d
 :
 F

ile

 :
 c

h
il
l_

u
p

o
u
t
:
C

L
T

U
s

b
u
s
 :
 J

m
s
M

e
s
s
a
g
e

s
a
v
e
C

o
m

m
a
n
d
 :
 F

ile

lo
a
d
C

o
m

m
a
n
d
 :
 F

ile

 :
 c

h
il
l_

d
o

w
n

 [
*]

b
u
s
 :
 J

m
s
M

e
s
s
a
g
e

in
 :
 T

e
le

m
e
tr

y
e
v
rD

b
 :
 E

V
R

c
h
a
n
n
e
lD

b
 :
 C

h
a
n
n
e
lV

a
lu

e
s

fr
a
m

e
D

b
 :
 F

ra
m

e

p
a
c
k
e
tD

b
 :
 P

a
c
k
e
t

p
ro

d
u
c
tD

b
 :
 P

ro
d
u
c
t

s
e
s
s
io

n
D

b
 :
 S

e
s
s
io

n

fi
le

 :
 F

ile

s
e
s
s
io

n
T

a
b

le
 :

 T
a
b

le
in

s
e
rt

S
e
s
s
io

n
 :
 S

e
s
s
io

n
s
e
le

c
tS

e
s
s
io

n
 :
 S

e
s
s
io

n

e
v
rT

a
b

le
 :

 T
a
b

le
in

s
e
rt

E
v
r

:
E

V
R

s
e
le

c
tE

v
r

:
E

V
R

c
h

a
n

n
e
lT

a
b

le
 :

 T
a
b

le
in

s
e
rt

C
h
a
n
n
e
lV

a
lu

e
 :
 C

h
a
n
n
e
lV

a
lu

e
s

s
e
le

c
tC

h
a
n
n
e
lV

a
lu

e
 :
 C

h
a
n
n
e
lV

a
lu

e
s

fr
a
m

e
T

a
b

le
 :

 T
a
b

le
in

s
e
rt

F
ra

m
e
 :
 F

ra
m

e
s
e
le

c
tF

ra
m

e
 :
 F

ra
m

e

p
a
c
k
e
tT

a
b

le
 :

 T
a
b

le
in

s
e
rt

P
a
c
k
e
t
:
P

a
c
k
e
t

s
e
le

c
tP

a
c
k
e
t
:
P

a
c
k
e
t

p
ro

d
u

c
tT

a
b

le
 :

 T
a
b

le
in

s
e
rt

P
ro

d
u
c
t
:
P

ro
d
u
c
t

s
e
le

c
tP

ro
d
u
c
t
:
P

ro
d
u
c
t

lo
g

T
a
b

le
 :

 T
a
b

le
in

s
e
rt

L
o
g
 :
 L

o
g
In

fo
s
e
le

c
tL

o
g
 :
 L

o
g
In

fo

c
o

m
m

a
n

d
T

a
b

le
 :

 T
a
b

le
in

s
e
rt

C
o
m

m
a
n
d
 :
 C

o
m

m
a
n
d

s
e
le

c
tC

o
m

m
a
n
d
 :
 C

o
m

m
a
n
d

d
b

 :
 M

p
c
s
D

a
ta

b
a
s
e

 :
 c

h
il
l_

g
e
t_

*
[*

]

 :
 S

e
s
s
io

n

 :
 E

V
R

 :
 C

h
a
n
n
e
lV

a
lu

e
s

 :
 F

ra
m

e

 :
 P

a
c
k
e
t

 :
 P

ro
d
u
c
t

 :
 L

o
g
In

fo

 :
 C

o
m

m
a
n
d

c
h

il
l_

d
o

w
n

_
o

u
tp

u
t_

d
ir

e
c
to

ry
 :

 F
il
e
S

to
re

s
to

re
 :
 F

ile

c
h

il
l_

u
p

_
c
o

m
m

a
n

d
_
s
to

re
 :

 F
il
e
S

to
re

lo
a
d
 :
 F

ile

s
to

re
 :
 F

ile

b
u

s
 :

 J
m

s
M

e
s
s
a
g

e
B

u
s

s
u
b
s
c
ri
b
e
 :
 J

m
s
M

e
s
s
a
g
e

p
u
b
lis

h
 :
 J

m
s
M

e
s
s
a
g
e

 :
 c

h
il
l_

m
o

n
it

o
r

[*
]

in
 :
 J

m
s
M

e
s
s
a
g
e

u
i

 :
 B

u
s
S

u
p

e
rv

is
o

r

c
o
m

m
a
n
d
D

b
 :
 C

o
m

m
a
n
d

in
 :
 J

m
s
M

e
s
s
a
g
e

lo
g
D

b
 :
 L

o
g
In

fo

S
e
s
s
io

n

E
V

R

C
h
a
n
n
e
lV

a
lu

e
s

F
ra

m
e

P
a
c
k
e
t

P
ro

d
u
c
t

L
o
g
In

fo

C
o
m

m
a
n
d

C
o
m

m
a
n
d
F

ile

C
o
m

m
a
n
d
F

ile

E
V

R

P
ro

d
u
c
t

P
a
c
k
e
t

F
ra

m
e

C
h
a
n
n
e
lV

a
lu

e
s

S
e
s
s
io

n

E
v
rM

e
s
s
a
g
e
,

C
h
a
n
n
e
lM

e
s
s
a
g
e
,

P
ro

d
u
c
tM

e
s
s
a
g
e
,

C
o
m

m
a
n
d
M

e
s
s
a
g
e
,

L
o
g
M

e
s
s
a
g
e

C
o
m

m
a
n
d
F

ile

T
e
le

m
e
tr

y

C
L
T

U
s

L
o
g
In

fo

L
o
g
M

e
s
s
a
g
e
,

P
ro

d
u
c
tM

e
s
s
a
g
e
,

C
h
a
n
n
e
lM

e
s
s
a
g
e
,

C
o
m

m
a
n
d
M

e
s
s
a
g
e
,

E
v
rM

e
s
s
a
g
e

C
o
m

m
a
n
d

C
o
m

m
a
n
d
F

ile

C
h
a
n
n
e
lM

e
s
s
a
g
e
,

P
ro

d
u
c
tM

e
s
s
a
g
e
,

E
v
rM

e
s
s
a
g
e
,

L
o
g
M

e
s
s
a
g
e

C
o
m

m
a
n
d
M

e
s
s
a
g
e
,

L
o
g
M

e
s
s
a
g
e

P
ro

d
u
c
tF

ile
,

P
ro

d
u
c
tM

e
ta

d
a
ta

F
ile

Fi
gu

re
6.

IB
D

sh
ow

in
g

th
e

in
te

rn
al

st
ru

ct
u

re
of

M
P

C
S

in
th

e
in

it
ia

ls
ta

te
.

51

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

(a) SysML Internal Block Diagram [System Context] FlightDevContext FlightDevContext[]

«system»

 : MPCS

in : Telemetry

chill_up_out : CLTUs

chill_monitor_ui

: GSE command : Command

telemetry : Telemetry

: MissionSpace uplinkIn : CLTUs

downlinkOut : Telemetry

uplinkOut : Command

downlinkIn : Telemetry

: EndUser

Telemetry

Command CLTUs

Telemetry

(b) SysML Internal Block Diagram [System Context] AtloContext AtloContext[]

: Spacecraft command : CLTUs

telemetry : Telemetry

«system»

 : MPCS

in : Telemetry

chill_up_out : CLTUs

chill_monitor_ui

: DSNE uplinkIn : CLTUs

downlinkOut : Telemetry

uplinkOut : CLTUs

downlinkIn : Telemetry
: EndUser

CLTUs

Telemetry

CLTUs

Telemetry

(c) [System Context] OpsContext OpsContextibd []

: DSN

downlinkOut : Telemetry

uplinkIn : CLTUsuplinkOut : CLTUs

downlinkIn : Telemetry

: Spacecraft
command : CLTUs

telemetry : Telemetry

«system»

 : MPCS

in : Telemetry

chill_up_out : CLTUs chill_monitor_ui
: EndUser

«system»

 : CMD

command : CLTUs

chill_up is unused in ops

CLTUs

Telemetry

CLTUs

Telemetry

Figure 7. IBDs showing the operational contexts in which MPCS can be deployed:

(a) flight development, (b) ATLO, and (c) spaceflight operations.

SysML Package Diagram MpcsModel[Model] [States]

Timelines: Telemetry & chill_upTimelines: Telemetry Only

Timelines: chill_up & CMDTimelines: chill_up Only

Initial ICMD Final

«transition»

«transition»

«transition»

«transition»

«transition»

«transition»

«transition»«transition»

«transition»
«transition»

«transition»

«transition»

«transition»

Figure 8. Package diagram showing the evolution graph; states are represented as

packages, and transitions are represented as dependencies (dashed lines).

52

4.4 Results

In other ways, however, this representation is quite different from previous repre-

sentations of MPCS at JPL. The most important difference is that there are some key

software elements that previous representations have depicted as being components

of MPCS, but that I have represented instead as external collaborators of MPCS. To

put it another way, I have drawn the boundary of MPCS differently from others at

JPL who have represented the system. Previous representations have included inside

MPCS components such as MissionSpace, a flight software development simula-

tion environment. I have instead represented MissionSpace, along with all other

environment-specific components, as external collaborators of MPCS. This has two

advantages. First, it makes it easy to depict MPCS without the difficulty of somehow

representing all the different architectural configurations in which MPCS can be de-

ployed. Previous diagrams of MPCS have either addressed this issue by introducing

special notation to indicate MPCS components that exist in some environments but

not others, or ignored it by tacitly representing only one environment. The second

advantage is that these extra components are not really part of MPCS anyway. Mis-

sionSpace, for example, is a third-party off-the-shelf tool, and no one thinks of it

as being a component of MPCS; previous diagrams have included it as an MPCS

component apparently for the sake of convenience and diagrammatic simplicity.

Of course, redrawing the boundary of MPCS in this way does not eliminate the

problem of representing multiple environments; it merely pushes the problem out-

ward, so we can deal with it separately. We still do need to represent the different

environments, because they feature importantly in the evolution under study (the

different architectural configurations evolve differently). Therefore, I produced three

more IBDs that show how MPCS interact with its external collaborators (figure 7).

Informally, I refer to these as context diagrams. Properly, neither UML nor SysML has

a context diagram type, so I represented them as IBDs—partial internal representa-

tions of the larger system of systems in which MPCS resides (partial because I do not

include all the ground data system elements, but only the small part of the system

that is relevant to MPCS).

These context diagrams show the different environment configurations in a simple

way. In subfigure 7a, we see that in the flight software development environment,

MPCS both issues commands to and processes telemetry from the simulation equip-

ment. Subfigure 7b shows the ATLO environment, which is mostly the same except

that now MPCS is talking to the real spacecraft instead of a simulator. Finally, in

subfigure 7c we see the spaceflight operations context, which is different. Here, a

separate system is now responsible for commanding, while the uplink port on MPCS

is unused.

4.4.2 Intermediate states and alternative paths

I ultimately produced an evolution graph with seven states, including the start and

end states. The package diagram in figure 8 shows these states. The mainline evo-

lution path is the simple, two-transition path from the “Initial” state to the “ICMD”

state to the “Final” state. The first transition is the introduction of ICMD, and the

second is the introduction of timelines. However, a number of alternative paths are

possible.

53

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

The simplest possible path is to go directly from the initial state to the target state,

skipping the ICMD evolution entirely. That is, rather than first integrating MPCS

commanding into the spaceflight operations and then integrating timelines, we

could go straight to the target architecture. This makes sense because the ICMD and

timeline evolutions interact, and in some respects the timeline evolution undoes part

of the ICMD evolution. The ICMD evolution rewires the commanding components of

MPCS so that they communicate with the CMD element of the Deep Space Network;

the timeline evolution then rewires these same components again so that they can

communicate with the timeline management system. As is often the case with

evolution paths, there are trade-offs. Going directly to the target state would be

faster and cheaper than going via the ICMD waypoint. However, it would also be

riskier—not only because the lack of intermediate releases increases the engineering

risk, but also because the lack of stakeholder visibility into the state of the system

would increase the risk of project cancellation.

The other alternative paths in this graph emerge during the introduction of time-

lines. One possibility would be to stage the introduction of timelines instead of

introducing them all at once. In particular, the integration of timelines into the

uplink portion of MPCS and the integration of timelines into the downlink portion

are independent and could be accomplished separately.

Another evolution option has to do with the way that the chill_up component of

MPCS interacts with CMD. In the final state, chill_up does not actually send com-

mands directly to CMD; instead, it stores commands to the timeline management

system, then passes a references to the command timeline to the commanding el-

ement. Instead of integrating timelines into chill_up in this way immediately, we

could introduce an intermediate state in which chill_up makes use of the timeline

management system itself but continues to send commands to CMD directly.

All of these various possibilities, and the complex interactions between them,

appear in figure 8. Behind each of the packages in figure 8 is a complete architectural

representation of the system in that state; here, I have shown only one state, the initial

state (figures 6 and 7). In the next subsection, I describe how these intermediate-state

representations are generated.

4.4.3 Representing architectural transformations

As I said in section 4.3.3, I used macros to specify the architectural transformations

that defined the evolution transitions rather than explicitly specifying each inter-

mediate state by hand. In addition, I limited the size of the transformation macro

by building up the transformations out of smaller, reusable pieces. For example, in

figure 3, the transition from “ICMD” to “Timelines: chill_up Only” and that from

“ICMD” to “Timelines: Telemetry Only” both involve the introduction of a timeline

management system, so rather than specify the introduction of the timeline man-

agement system twice, I defined it in such a way that it could be referenced by both

transitions.

The transformation specification for the entire evolution graph was 752 lines of

Groovy code, including transformations of both the model and the presentation of all

54

4.4 Results

diagrams (and excluding blank lines and comments). The code is reasonably easy to

read and write. For example, here is the code that creates the timeline management

system block (and its ports):

// Create new TMS block in the model

shared.tms = factory.createClassInstance()

shared.tms.name = "TMS"

shared.tms.owner = modelRoot

StereotypesHelper.addStereotypeByString shared.tms, "System"

// Add input port to TMS

shared.tmsInPort = factory.createPortInstance()

shared.tmsInPort.owner = shared.tms

shared.tmsInPort.name = "in"

StereotypesHelper.addStereotypeByString shared.tmsInPort, "FlowPort"

SysMLHelper.setDirectionFlowPort shared.tmsInPort, "in"

// Add output port to TMS

shared.tmsOutPort = factory.createPortInstance()

shared.tmsOutPort.owner = shared.tms

shared.tmsOutPort.name = "out"

StereotypesHelper.addStereotypeByString shared.tmsOutPort, "FlowPort"

SysMLHelper.setDirectionFlowPort shared.tmsOutPort, "out"

4.4.4 Constraints and evaluation functions

The evolution graph in figure 8 has eight potential evolution paths. Formalized,

automatically checkable constraints and evaluation functions would be helpful for

choosing among these paths. Due to the time limitations of my internship, I did not

have time to formalize constraints and evaluation functions as part of this case study.

However, I did consider informally the sorts of analyses that would be helpful here

and how they could be captured in principle.

Many of the concerns pertaining to the alternative evolution paths appear to be

based on risk. For example, as I mentioned earlier, the primary argument against

evolving directly from the initial system to the target system is that it entails sub-

stantial risks. Similar trade-offs are involved in many of the other evolution paths.

In section 8.3 on future work, I will argue that risk (or uncertainty) is a special kind

of quality that merits special consideration in the context of software architecture

evolution. In this case, analyzing risk would likely entail the construction of some

sort of probability model for the evolution, so that we could model the likelihood

that various contingencies may occur and the effect that those contingencies would

have. There is a great deal of existing work on risk modeling, both for the software

industry specifically and also in more general contexts such as economics, which we

could draw on to develop a model of risk in software architecture evolution. For now,

this remains as future work.

Other prominent concerns about this evolution include time, cost, and collabora-

tion. These are somewhat more straightforward to model. Recall that the transitions

55

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

in our model are composed out of smaller, simpler operators; if we can understand

the time and cost properties of these operators, we can compose them to develop

time and cost models for the entire evolution graph. Estimating the time and cost

of these operators is still not trivial, but it is considerably easier than attempting to

understand the entire evolution graph at once.

These are all “business” issues rather than technical ones. But there are also

technical constraints in play in this evolution, and technical constraints are often

simpler to analyze in purely structural terms than business constraints. In this

evolution, we might have a constraint that there are always complete pathways by

which commands may be uplinked to the spacecraft and telemetry downlinked; if

not, there is a bug in the model.

Thus, even though detailed constraint and analysis definition was not a focus

of this case study, in general terms it appears that our approach is well suited to

capturing the sorts of constraints and analyses that are relevant to this case.

4.5 Summary

The introduction to this chapter mentioned that this case study had three main goals.

I revisit these goals here and discuss what conclusion may be drawn from this work.

1. Understand a real-world software architecture evolution problem in its nat-
ural context. In this case study, I spent ten weeks at JPL and examined an

ongoing software architecture evolution in its real-world context. Section 4.2

described this evolution in detail. This kind of rich description of real-world

architecture evolution is valuable for its own sake, because it can help us to un-

derstand challenges and practices of architecture evolution as it is carried out

today. Unfortunately, there is surprisingly little existing work examining real-

world architecture evolution in depth—much existing research on architecture

evolution relies heavily on artificial and toy examples (see section 7.4)—so

examining actual software architecture evolution as it occurs in situ has great

value in informing architecture evolution research and grounding it in reality.

But this work is also helpful for evaluating the assumptions underlying our

approach to software architecture evolution. The MDAS evolution examined in

this case study turned out to be readily comprehensible from the standpoint of

our theory of architecture evolution; the evolution could be easily and compre-

hensively understood in terms of initial and target states, candidate evolution

paths, evolutionary transitions, and so on. This is encouraging because it pro-

vides some evidence that our model of software architecture evolution, and

the assumptions that we made in developing it, are compatible with software

architecture as it is practiced in reality.

2. Assess the usefulness of our framework for software architecture evolution
in helping to plan evolutions and reason about trade-offs. Currently, archi-

tects at JPL use no special tools or approaches to help them reason about and

plan evolution. Architecture modeling tools are used heavily at JPL, but their

function is to represent existing systems, not to plan evolution. Planning for

56

4.5 Summary

evolution is accomplished chiefly via requirements documents and informal

architectural sketches of target states; there is no tool support for architectural

planning.

Through the modeling effort described in sections 4.3 and 4.4, I demonstrated

that our approach can capture many of the real-world architectural concerns

relevant to this evolution instance. Of course, this applicability result should

not be overstated. Aside from the inherit generalization limitations of a single

case study, which I will discuss at length in the Costco case study in section 5.6,

this case study evaluated only a subset of our modeling approach; constraints

and evaluation functions were not formalized. Bearing these limitations in

mind, however, this case study does provide evidence that our approach can

be applied to the concerns that arise in a real-world software architecture

evolution.

3. Assess the ease of implementing our approach to software architecture evo-
lution with off-the-shelf languages and tools. Much of our work in this area,

including the case study in chapter 4, relies on research languages and tools,

particularly Acme and AcmeStudio. This case study shows that benefits in

evolution planning can be achieved even without special-purpose, custom

tools. Our approach can be adapted to languages and tools already in place at

organizations like JPL—such as SysML and MagicDraw—in a straightforward

manner. This bodes well for the adoptability of our approach.

This case study is significant because it was the first detailed case study of a

real-world software organization in the context of software architecture evolution

modeling (see section 7.4 to compare related work). Its results provide support for

the applicability claim articulated in section 1.3.3: that our approach can capture the

concerns that arise in a real-world evolution.

But although this case study made a significant contribution, it was by no means

a final answer to the question of the real-world applicability of an architecture evo-

lution modeling approach. Indeed, a single-case study, by its nature, is an in-depth

study of just one organization. While it can provide evidence that an approach is

applicable to at least some systems, the kind of generalization that is possible in a

case study doesn’t permit us to draw universal conclusions on the basis of a study of

a single organization. (We will examine the topic of case study generalization more

formally in section 5.6.3.) Case study results are strengthened greatly when multiple

case studies of different organizations produce similar results.

Moreover, even beyond the inherent limitations of a case study, the JPL work had

particular limitations that motivated us to pursue a second case study. First, the JPL

case study focused specifically on the construction of an evolution graph; due to

time limitations, I did not formalize constraints and evaluation functions as part of

this case study (see section 4.3.4). Thus, this case study did not help us to evaluate

the applicability of evolution path constraints and evaluation functions. Second, the

JPL case study focused heavily on issues in adapting our approach to commercial

modeling languages and tools (an issue to which I will return in section 6.2). This is

one dimension of applicability, but there are other dimensions of applicability worth

57

4 Case study: Architecture evolution at NASA’s Jet Propulsion Laboratory

considering in greater depth than this case study permitted—such as the degree to

which the basic concepts in our approach are adequate for capturing the concerns

that arise in a real-world evolution. Third, this case study was based on information

that was gathered informally during the course of an internship. This sort of ad hoc

data collection can be highly useful, particularly in cases such as this one where more

elaborate data collection techniques are impractical. However, a more formal and

regimented case study design permits generalizations that may not be warranted in a

less formal case study such as this one. We thus decided to undertake a second case

study with a rather different design, focusing on a different software organization,

with more careful and methodical consideration of issues such as validity, reliability,

and replicability. I will discuss the differences between the two case studies further

in section 5.7.

58

5 Case study: Architecture evolution at
Costco

In this chapter, I discuss the second of the two case studies that together constitute

the empirical evaluation of my thesis.7 I will discuss the differences between the two

case studies at length in section 5.7.

This second case study was carried out at Costco Wholesale Corporation, a major

U.S.-based retailer, and sought to answer three research questions:

1. How do practicing architects in a real-world software organization plan and

reason about evolution?

2. What difficulties do practicing architects face in planning and carrying out

evolution?

3. How well can our modeling framework capture the concerns that arise in a

real-world architecture evolution?

(These case study research questions are not to be confused with the research ques-

tions of my thesis work generally, presented in section 1.1. I will discuss how this

case study relates to the questions and claims of my thesis in section 5.7.)

Figure 9 provides an overview of the design of the case study. The first step was

developing a case study design. I produced a formal case study design document, fol-

lowing the guidelines provided by Yin [226, ch. 2]. Once the case study was designed,

I obtained approval to carry out the case study from Carnegie Mellon University’s

institutional review board.

After these initial, preparatory stages, the next phase of the case study was data

collection. To collect the data for this case study, I spent two weeks at Costco, where

I conducted semistructured interviews with architects and examined a variety of

architectural documentation. Section 5.2 describes the data collection procedures in

detail.

The main analytical method used in the case study was content analysis [195]. In

fact, I conducted two content analyses in parallel: one examining research questions

7This chapter is an abridgment of a much longer case study report. For additional details on the case

study, refer to the full report [17].

I would like to express my sincere gratitude to Shrikant Palkar at Costco Wholesale Corporation

for facilitating this case study. I would also like to thank the anonymous interview participants for

contributing their time.

The opinions and findings in this document are mine alone and should not be construed as

representing the policies or opinions of Costco Wholesale Corporation. Furthermore, where individual

research participants are quoted, their comments are their own and should not be interpreted as

representing the policies or positions of their employer.

59

5 Case study: Architecture evolution at Costco

Design case study

Get IRB approval

Collect data

Transcribe interviews

Content analysis 1

Build

coding

frame

Segment

data

Pilot

Code

Interpret

analysis

findings

Content analysis 2

Build

coding

frame

Segment

data

Pilot

Code

Build

evolution

model

Write report

Case study

design

IRB

approval

Audio

files

Architectural

documentation

Interview

transcripts

Coding

frames

Segmented transcripts

and documents

Coded transcripts

and documents

Evolution

model

Case study

report

ArtifactsProcedures

Figure 9. An overview of the case study design. The stages of the case study procedure

appear on the left. Case study artifacts appear to the right of the stage in which they

are produced.

60

5.1 Case selection

1 and 2 as defined above, and one examining research question 3. I will explain the

reasons for this decision in detail in section 5.3.4, but to summarize briefly, the use of

two content analyses was motivated chiefly by the different characters of the research

questions: research questions 1 and 2 are descriptive of the current state of practice

of architecture evolution, while research question 3 is evaluative of our approach to

evolution modeling. (For a discussion of different types of case studies, see Yin [226,

ch. 1].) Research questions 1 and 2 could be answered directly through a content

analysis of the interview data, while research question 3 was answered through a

two-stage analysis: a content analysis followed by a modeling phase. The content

analysis yielded key architectural elements and evolution elements in the research

data, and these results fed into a modeling phase in which I constructed a (partial)

evolution model using our approach. The content analysis is explained in detail in

section 5.3, and the modeling phase is described in section 5.4.

Finally, the conclusions of the case study are discussed in sections 5.5, 5.6, and 5.7.

Section 5.5 discusses the findings of content analysis 1, and section 5.6 discusses

the overall conclusions of the case study (including both content analyses as well

as the modeling procedure) with respect to the research questions defined above.

Section 5.6 also discusses issues of reliability and validity. Section 5.7 explains the

differences between the two case studies described in this dissertation and their

relevance to the thesis.

This chapter adheres to what Yin [226, p. 176] calls a linear-analytic case study

report structure: the problem is introduced, the methods are described, the findings

are reported, and then conclusions are drawn.

I should note that the final case study report (on which this dissertation chapter

is based) was reviewed by Costco, which requested that I remove or edit certain

passages containing information that they deemed to be confidential or sensitive.

For example, the company requested that I remove all references to specific vendors

associated with the company. I complied with all such requests. All of these changes

were fairly minor and did not, in my judgment, materially influence the presentation

of the overall findings of the case study.

5.1 Case selection

In this section, I describe the organization that served as the case for this case study.

Section 5.1.1 gives general background on the company and explains why it was a

suitable choice for this case study. Section 5.1.2 describes its architectural organiza-

tion.

5.1.1 About the case

Costco Wholesale Corporation, founded in 1983, is the second-largest retailer in the

United States [211] and the sixth-largest in the world [210]. Currently the company

has about 627 locations worldwide, of which 449 are in the United States [59]. The

company uses a warehouse club business model, meaning that it sells goods in

large, wholesale quantities; thus, you can buy a 30-pack of toilet paper, but (unlike

61

5 Case study: Architecture evolution at Costco

Wal-Mart or Target) not a 4-pack. Retail locations are called “warehouses” rather

than “stores” and have a spartan decor, with concrete-floor aisles flanked by stacks of

cardboard boxes. The company uses a membership-only model; only people who

have purchased a membership may shop there. There are currently about 70 million

members [59].

The company’s no-frills warehouses, volume purchasing, and membership model

are part of what allows it to keep prices lower than competitors while remaining prof-

itable. Other contributing factors are the company’s efficient distribution network,

low marketing expenses, limited warehouse hours, rapid inventory turnover, and low

payment processing fees (warehouses don’t accept credit cards other than American

Express). Warehouses also have far fewer distinct items than typical discount retail-

ers, greatly simplifying inventory management. A typical warehouse carries around

3,500 SKUs [58]; by comparison, a typical Wal-Mart Supercenter has 142,000 [34].

Over the years, Costco has accumulated a patchwork of legacy software systems.

Until recently, the company had always built almost all of its software systems, even

systems that are more typically purchased as off-the-shelf packages, such as the

company’s core financial systems. A few years ago, the company embarked on an

extensive and prolonged modernization effort to revamp many of its key software

systems, which were growing archaic. A few of these systems were simply rebuilt

in modern languages with modern engineering techniques, but for the most part,

the company has transitioned from its tradition of homegrown software to a posture

of buying off-the-shelf software whenever possible. Thus, many of the company’s

old, custom-built systems are being replaced with off-the-shelf products. As a result

of this far-reaching modernization effort, architecture-level evolution of software

systems is now pervasive there. The contemporaneous overhaul of so many core

systems has posed significant integration and communication challenges. These

factors made the company an appealing candidate for a case study on architecture

evolution.

5.1.2 The architecture organization

Understanding the organizational structure of the architecture group that was the

focus of this case study will be helpful for contextualizing the rest of this chapter.

The architecture group underwent a significant reorganization several years ago, at

the beginning of the modernization effort just described. Until recently, architects

were scattered throughout the IT department; people in architectural roles were

associated with particular teams or projects, and there was no central architecture

organization, nor even regular communication among the architects. This made it

difficult to understand the dependencies among systems and to diagnose integration

problems, so a central enterprise architecture group was established to define and

maintain enterprise standards and to manage and harmonize architectural practices

across the organization.

In figure 10, I have diagrammed my understanding of the current state of the

architecture organization, based on the interviews I conducted. At the top of the

architecture organization are four enterprise architects (EAs). Each of these four

62

5.1 Case selection

. . .

..
.

..
.

..
.

IS execs

Four enterprise architects

Numerous
domain
architects

CoEs

Sixteen solution architects

Information architecture

Application architecture

Business architecture

Integration architecture

Security architecture

Enterprise and
domain architects

Solution
architects

IS execs CoE members
Key

Figure 10. The organizational structure of Costco’s architects.

individuals has a broad set of responsibilities, but they all have their own focuses. One

of them, for example, is primarily responsible for infrastructure; another has oversight

over process issues. The EAs are together responsible for defining strategy and

making policies that affect the organization as a whole. They are tasked with ensuring

that the company’s software systems are architecturally consistent—to guard against

the kind of architectural incongruities, integration troubles, and communication

problems that beleaguered the company years ago, before a central architecture

organization was created. One of the ways they do this is by leading the Enterprise

Architecture Review Board, which must approve major architectural decisions to

ensure that they are in conformance with corporate strategy and practices.

Under the EAs are a number of domain architects. These domain architects are also

doing enterprise architecture, in the sense that they also set standards and provide

guidance that is applicable to the organization as a whole. Each domain architect has

responsibility over a single domain of expertise; thus, there are information archi-

tects, infrastructure architects, business architects, application architects, security

architects, integration architects, and so on. (For a discussion of different roles and

domains within an enterprise architecture organization, see Winter & Fischer [223].)

When this new enterprise architecture group was formed, there was concern

63

5 Case study: Architecture evolution at Costco

that it would become an ivory tower, estranged from the experiences of the people

actually building the software, dispensing impractical guidance from on high. To

avoid this, centers of excellence (CoEs) were established as a way of keeping the

work of the domain architects grounded in reality. Each domain architect, generally

speaking, leads a CoE that has some decision-making responsibility within that

architect’s domain. Thus, the business architect leads a business architecture CoE,

an application architect leads an application architecture CoE, and so on. The

CoEs are led by the domain architects, but they are staffed by engineers and other

personnel who have hands-on roles in building, maintaining, or managing systems.

These people have practical, day-to-day domain expertise that complements and

grounds the domain architect’s broader, theoretical domain expertise. For example,

the business architecture CoE, which is led by the business architect, is staffed by a

business process analyst, a data steward, a business analyst, a service engineer, and a

couple of product analysts.

Together, the four EAs and the domain architects form the enterprise architecture

side of the architecture organization, support by these CoEs. The other side of

the architecture organization is the solution architects, who are responsible for

specific projects. A solution architect is usually involved with a few projects at a

time. It is the solution architect who actually creates the architectural designs for

individual projects, in accordance with the practices approved by the enterprise

architecture group, and with guidance from domain architects with relevant expertise.

The solution architect gathers project requirements, defines the high-level design for

a project (which will be validated by the enterprise architecture review board), hands

it off to a lead developer for lower-level design, and oversees architectural matters as

the solution is implemented and released. There are sixteen solution architects in

total.

Together these three groups—enterprise architects, domain architects, and so-

lution architects—constitute the architecture group. The EAs provide leadership

and define strategies and policies that affect the entire organization, the domain

architects work with their CoEs to define practices and provide guidance within

their respective domains, and the solution architects work in support of individual

projects.

5.2 Data collection

Data collection was carried out during a two-week visit to Costco’s headquarters

in Issaquah, Washington. I gathered two types of data: interview data and written

architectural documentation.

5.2.1 Interview data

The most important source of data was a series of research interviews that I con-

ducted. During my visit to Costco, I interviewed six participants in eight interview

sessions. Some participants were interviewed more than once, and also in some

interview sessions multiple participants were present.

64

5.2 Data collection

The case study adhered to a semistructured interviewing discipline, which means

that although the interviews were guided by an explicit interview protocol that de-

fined the general topics that the interviews would examine, I was free to devise new

questions on the fly to explore interviewees’ knowledge at will. This is in contrast to a

structured interview, in which every question is entirely scripted and the interviewer

is strongly constrained, or an unstructured interview, in which the interviewer is

completely unconstrained and the interview has no set format.

The choice of semistructured interviewing was the most appropriate for this type

of research, as I had some familiarity with the domain and a strong sense of the

kind of information I was seeking, but I needed the freedom to explore participants’

responses and investigate closely those topics on which a particular participant

might have especially deep knowledge. Unstructured interviews are most useful for

exploring a topic about which very little is known, while structured interviews are

most useful when the focus of the research is on directly comparing responses across

participants (as is generally the case in quantitative interview research). For further

guidance on conducting research interviews, see Kvale & Brinkmann [125].

The interview protocol is reproduced in appendix A. It includes an introductory

script to secure informed consent followed by a series of topics to be covered: the

participant’s background, the practice of architecture evolution, limitations of current

approaches to managing evolution, and specifics about the evolution of particular

software systems. Interview durations ranged from 17 minutes to 56 minutes.

I captured audio recordings of all interviews. Recording interviews has a number

of advantages. First, it provides the researcher with an accurate and complete record

of each interview, so that the researcher is not forced to rely solely on his own notes

and memories, which are inevitably inaccurate and incomplete. Second, it frees the

interviewer from taking excessive, meticulously complete notes during the course of

the interview, which can encumber the flow of dialogue. Third, it bolsters the validity

of the research; when a researcher has only his memories and notes to go on, it is

easier for him to impose his own biases on interview responses. Fourth, it enables

transcription and content analysis of interview responses.

I fully transcribed all eight of the interviews I conducted. Transcription allows

much easier reference to the contents of an interview, permitting the researcher to

peruse the collected interview data freely without the need to listen to long stretches

of audio to find the desired information. Indeed, unlike an audio recording, a tran-

script is fully searchable, allowing the researcher to instantly find significant passages.

Transcription also enables various kinds of analysis, including content analysis (sec-

tion 5.3).

In the social sciences literature, there is a great deal of discussion on methods

and best practices for transcription of research interviews. One of the most basic

decisions that a researcher must make when transcribing interviews is whether to

try to capture all the nuances and quirks of verbal communication, such as pauses,

pronunciation idiosyncrasies, stutters, false starts, and nonverbal utterances, or

whether to instead adapt the material to the written form, eliding stutters and verbal

tics, standardizing grammar, and adding punctuation. In the literature, these are

65

5 Case study: Architecture evolution at Costco

sometimes called denaturalized and naturalized approaches to transcription[40].8

Of course, these are really two ends of a spectrum, and often it is most appropriate

to take a middle course. But in the extreme case, highly naturalized transcriptions

can read much like written, edited prose, while highly denaturalized transcriptions

often adopt abstruse notation systems to capture the nuances of spoken language,

resulting in a transcript that bears little resemblance to ordinary natural language.

This choice is not an inconsequential one. A denaturalized transcription system

includes more information, but it does so at the risk of obscuring the content. A

naturalized transcription system reads much more easily, but it does so at the cost of

losing information that might inform interpretation of the text. These issues have

long been a topic of debate, but a good general principle is that such choices should

be driven by the purpose of the analysis [143; 161; 168; 185; 193]. In this case, we are

interested in the interviews solely for their information content; we are interested

in what is said, not how it is said. As a result, I adopted a highly naturalized form of

transcription.

The transcription process itself was methodical and painstaking. I listened to

each interview several times to ensure transcription accuracy and minimize the

number of passages that had to be marked inaudible. (I used two different recorders

to capture each interview. Because the two recorders were differently positioned,

each picked up some utterances that the other did not, so I used both recordings in

the transcription process.) After all eight interviews were transcribed, I went through

a final editing phase to ensure consistent orthography across interviews. In total,

transcribing all eight interviews took approximately fifty hours of work.

5.2.2 Architectural documentation

In addition to interviewing personnel, I was also permitted to access many architec-

tural documents pertaining to the company’s software systems. These were a very

useful source of data and particularly useful as a complement to the interview data

that I collected.

Particularly significant examples of documents to which I had access include:

• Thirty-five “architectural decision” documents, each of which captured an

architectural decision that had been approved by the enterprise architecture

team in accordance with a defined process. Each of these documents described

the background and justification for the decision, as well as alternatives con-

sidered.

8Unfortunately these useful terms have been compromised by inconsistent usage. When Bucholtz [40]

introduced the terms in 2000, she defined naturalized transcription as transcription that privileges

written over oral discourse features, producing a “literacized” text. Denaturalized transcription,

in Bucholtz’s original terminology, was transcription that prioritizes faithfulness to oral language

through the use of verbatim transcription, including discourse markers, repetitions, repairs, and so

on. However, in a 2005 paper, Oliver et al. [168] reversed these terms (perhaps unintentionally), using

the term naturalized to describe what Bucholtz had called denaturalized transcription and vice versa.

Usage of the terms in the literature is now inconsistent, with some authors [111; 161] using Bucholtz’s

original meanings for the terms and others [152; 157] following Oliver et al. Here I do the former.

66

5.3 Content analysis

• Twenty-one “strategy” documents describing, in more general terms, strategic

initiatives from an architectural standpoint.

• Two detailed architectural design documents describing a specific evolution,

the evolution of Costco’s point-of-sale system, which would become the focus

of the modeling phase of the case study (section 5.4).

These documents were useful because they provided clear, explicit articulation of

the architectural reasoning and decision-making process. However, they did not

provide detailed historical information. Thus, these documents were most useful as

a complement to the interview data, which provides a better historical perspective.

5.3 Content analysis

The main analytical method used in this case study was content analysis [195]. Con-

tent analysis is a research method, commonly used in the social sciences, for extract-

ing meaning from text. A fairly standard definition of content analysis is that given

by Krippendorff [122, p. 24]: “a research technique for making replicable and valid

inferences from texts (or other meaningful matter) to the contexts of their use.”

Content analysis has been seldom used in software engineering research (e.g.,

[3; 9; 165]) and almost never used in software architecture research. Because of

this, many readers may be unfamiliar with it, so I present here an overview of the

method and a fairly detailed discussion of relevant methodological considerations in

adopting it.

Section 5.3.1 presents a brief history of content analysis. Section 5.3.2 discusses the

difference between qualitative and quantitative content analysis and explains why

this case study uses the former. Section 5.3.3 describes the elements of a qualitative

content analysis. Finally, sections 5.3.4–5.3.7 describe how content analysis was used

in this case study.

5.3.1 A very brief history of content analysis

The history of content analysis can be traced back centuries; for an overview of this

early history, see Krippendorff [122, ch. 1]. Content analysis in its modern form,

however, came into being during the Second World War, when the renowned social

scientist Harold Lasswell, acting as the chief of the United States government’s Ex-

perimental Division for the Study of War-Time Communications, applied content

analysis to Axis propaganda [190, ch. 6]. Lasswell standardized techniques that are

still used in content analysis today, such as pilot testing, the use of formal sam-

pling criteria, and assessments of reliability based on interrater agreement. In 1952,

Bernard Berelson published the first major textbook on content analysis [27].

The ensuing decades saw ever-increasing adoption of content analysis by re-

searchers [164, ch. 2]. The method was adapted to varied applications in many

different disciplines, from readability analyses [85] to authorship attribution [160] to

studies of television violence [57]. Today, content analysis is a major research method

in a number of disciplines, and many textbooks and articles give guidance on the

method and its application.

67

5 Case study: Architecture evolution at Costco

5.3.2 Qualitative versus quantitative content analysis

Content analysis has spawned many variants as it has been applied to many different

fields, but the oldest and most enduring division is between quantitative and quali-

tative content analysis. Defining the terms quantitative and qualitative precisely is

difficult [73]. There is no canonical, accepted definition of qualitative research. But

a good definition that conveys many of the main points is that of Cassell & Symon

[44, p. 7], who distinguish between qualitative and quantitative methods by defining

qualitative research as being characterized by:

a focus on interpretation rather than quantification; an emphasis on sub-

jectivity rather than objectivity; flexibility in the process of conducting

research; an orientation towards process rather than outcome; a concern

with context—regarding behaviour and situation as inextricably linked

in forming experience; and finally, an explicit recognition of the impact

of the research process on the research situation.

Schreier [195, pp. 15–17] identifies seven key differences that distinguish quali-

tative content analysis from quantitative content analysis: a focus on latent rather

than manifest meaning, a greater need to take context into account during the analy-

sis, variable handling of reliability, an increased focus on validity, the use of coding

frames that are at least partly data-driven, a tendency to be used to make broader

inferences, and greater variability in its process. We will return to some of these

points shortly.

Content analysis was originally introduced as a quantitative method. In his sem-

inal 1952 textbook, Berelson defined content analysis as “a research technique for

the objective, systematic, and quantitative description of the manifest content of

communication” [27, p. 18]. But it did not take long at all for critics to find fault

with this definition, particularly with the words quantitative and manifest; in the

very same year, Kracauer published a critical response to Berelson, entitled “The

Challenge of Qualitative Content Analysis” [119], that argued that meaning is often

complex, context-dependent, and manifest, and that quantitative approaches are

insufficient for analysis of such meaning.

This interchange defined the contours of a debate that continues to this day. Quan-

titative content analysis has retained its status as the dominant form of the method,

and there has been an ongoing debate about the rigor, validity, and appropriateness

of qualitative alternatives. Advocates of qualitative content analysis argue that a

qualitative approach is useful and necessary for analyzing the content of texts where

meaning is highly subjective and context-dependent and quantitative measurements

are ill suited to describing meaning. Meanwhile, critics of qualitative content analysis

have expressed skepticism about its reliability and its methodological rigor.

Indeed, to a significant degree, mainstream quantitative content analysts continue

to be fairly dismissive of qualitative content analysis. Krippendorff’s Content Analysis:

An Introduction to Its Methodology, the most popular text on the method, equates

qualitative content analyses with what Krippendorff calls “text-driven content anal-

yses” [122, § 14.1.1]—analyses that are motivated by the availability of texts rather

68

5.3 Content analysis

than by epistemic research questions—which he dismisses as “fishing expeditions”

[p. 355]. “Qualitative content analysts,” he writes, “typically stop at their own inter-

pretations of texts” [p. 357]. However, he grants that “qualitative approaches to text

interpretation are not incompatible with content analysis” [p. 89].

Neuendorf’s The Content Analysis Guidebook, another major text on the method, is

even more dismissive, devoting only one sentence to the topic of qualitative content

analysis: “Although some authors maintain that a nonquantitative (i.e., ‘qualitative’)

content analysis is feasible, that is not the view presented in this book” [164, p. 14].

It may be true that early examples of qualitative content analysis lacked some

of the methodological rigors of the quantitative method. However, great strides

have been made in developing qualitative content analysis into a rigorous research

methodology with a disciplined process and with careful consideration of validity

and reliability.

The methodologist most responsible for these strides is Philipp Mayring, who in

1983 published (in German) an influential textbook on qualitative content analysis

that standardized the discipline and introduced methods for evaluating reliability

and validity [150]. However, it was not until 2000 that any of Mayring’s writing

on qualitative content analysis was translated into English, and even then only a

short journal article [148]. (The textbook remains untranslated to date.) As a result,

qualitative content analysis was, for a long time, much more widely adopted by

German researchers than by Anglophones.

This is now changing. Adoption of qualitative content analysis in the English-

speaking research community has increased in recent years and is likely to continue

increasing. One of the first English-language books on qualitative content analysis

was published last year by a German methodologist, Margrit Schreier [195].

Qualitative content analysis, in its modern, systematized form, has a number of

qualities that make it more suitable than quantitative content analysis for this case

study:

• Qualitative content analysis is intended for use in cases where interpretation

is necessary to analyze the data—when the meaning of the material is not

standardized, is context-dependent, or would likely be understood differently

by different readers. A different way of putting this is that qualitative content

analysis specifically seeks to examine the latent meaning of texts rather than

only the manifest content. (Quantitative content analysis is often applied to

latent content as well, but qualitative content analysis is designed specifically

to facilitate reliable and explicit interpretation of texts.)

Schreier [195, p. 2] explains this point with an example based on analysis of

magazine advertisements. If a study seeks to find out information about the

number of women and men who appear in magazine advertisements, then

quantitative content analysis would be more suitable than qualitative content

analysis, because very little interpretation is required to determine whether

the persons in a picture are female or male. But if a study seeks to determine

whether women in magazine advertisements are more likely to be placed

in trivial contexts than men, qualitative content analysis would be a highly

69

5 Case study: Architecture evolution at Costco

suitable method, because there is a significant interpretative step required to

determine whether a given context is “trivial” (different readers might well

disagree). Qualitative content analysis provides a method for managing this

ambiguity in a valid and reliable way.

In the present study, we are explicitly concerned with interpretation of the

language that architects use in their discourse on evolution. The meaning of ar-

chitectural terms is not sufficiently standardized to justify a classical approach

in which we simply apply our own unexamined interpretations to the data;

indeed, even basic terms like architecture and evolution mean very different

things to different people. The use of qualitative content analysis allows us to

deal in an explicit and rigorous way with such polysemy and helps us to avoid

imposing our own biases onto the interpretation of the data.

In addition, one of the particular goals of this study is to translate, in a replicable

way, the language that real-world architects use when talking about evolution

into the modeling constructs of our approach to architecture evolution. This is

merely a special kind of interpretation, and qualitative content analysis can

help us with it by providing a systematic method for resolving ambiguities to

extract meaning from text.

• In quantitative content analysis, the research questions are addressed via

frequency counts (or quantitative measures derived from frequency counts

through methods such as cross-tabulation or factor analysis); counting things

(words, codes, categories, etc.) is almost invariably a core part of the analysis.

In qualitative content analysis, frequency counts and statistical methods may

be used (and often are)—after all, the method necessarily involves unitizing

the material and coding it based on a finite set of predefined categories, so it’s

quite natural to tally the results once the material is coded. But in qualitative

content analysis, it is equally acceptable to conduct a textual (nonfrequency)

analysis, using the codes and categories as a way to achieve reliability and

avoid bias, rather than as figures to be tallied.

The research questions that interest us in this study are not quantitative in char-

acter (although frequency data may be helpful in answering them—and indeed

we will make use of frequency data in our analysis). In addition, a quantitative

analysis approach is most appropriate when there are many subjects to be

compared—when the goal is to compare or relate results collected from many

individuals (individual people, individual companies, individual texts, etc.).

Our content analysis, on the other hand, is conducted within the context of a

case study—indeed, a single-case study. There is only one “subject” of the case

study: Costco. (There were six human participants—the interviewees—but

they are not the subjects of the case study. Rather, their role is as informants

who can supply data about the true subject of the study, Costco.)

• Qualitative content analysis has a more flexible method than quantitative

content analysis. In quantitative content analysis, the procedure is fairly fixed.

There are many variants of the method, but each variant has a prescribed set

70

5.3 Content analysis

of steps, with only certain kinds of deviations permitted.

Qualitative content analysis has historically been much looser. Critics of qual-

itative content analysis have regarded this as a flaw, while advocates have

regarded it as a strength. Here, we are using a particularly well-defined form of

qualitative content analysis that does have a process with a fixed set of steps.

But even so, much more variation is permitted in the execution of those steps

than in classical quantitative analysis. For example, the coding frame may be

defined in a very data-driven way, or in a very concept-driven way; reliability

may be assessed by a variety of different methods [195, p. 17]. Such flexibility

is very useful in the present case study, as we will see later in this chapter.

In reality, the qualitative/quantitative division in content analysis is not a dichotomy,

but a continuum [105]. Many qualitative content analyses have very quantitative

aspects, and many classically quantitative content analyses deal with latent meaning,

involve rich textual interpretation, and adopt methodological variations. However,

the above discussion makes clear that qualitative content analysis is much more

suitable for our research questions than quantitative content analysis.

5.3.3 Elements of a qualitative content analysis

Schreier [195] describes a qualitative content analysis as comprising these main

steps:

1. Define the research questions. The research questions for this case study are

given at the beginning of this chapter.

2. Build a coding frame. Coding—an analysis technique in which researchers

annotate segments of text with descriptive codes, categories, or labels—is prob-

ably the most well known and widely used of all qualitative analysis methods.

There are many methods for coding, which vary greatly in their purpose, use,

and approach [192].

In qualitative content analysis, coding is used as a way of reducing the data and

focusing the analysis on the research questions. Coding is done in accordance

with a coding frame, which defines the codes that may be applied to segments

of data. The construction of the coding frame circumscribes the analysis.

Content analysis is a reductive process; the coding frame determines which

information will be excluded from the analysis and which is important enough

to be included.

3. Divide the material into coding units. In content analysis, codes are not ap-

plied at will to arbitrary segments of text, as in some coding methods. Rather,

the text is first divided into coding units, such that each unit may be coded with

at most one subcategory of a main category in the coding frame.

This is done for a few reasons. First, it forces the researcher to analyze all the

material, segment by segment, avoiding the risk that the researcher will inadver-

tently ignore portions of the text or devote too much attention to the passages

that are most striking (or that fit into a preconceived narrative). Second, it

71

5 Case study: Architecture evolution at Costco

helps to keep the analysis directed toward answering the research questions.

Third, it facilitates double-coding as a means of demonstrating reliability.

4. Try out the coding frame. Before the main coding phase begins, a pilot phase

is recommended in which the researcher applies the coding frame to a portion

of the material. This can reveal problems that would otherwise crop up during

the main analysis.

5. Evaluate the trial coding and finalize the coding frame. After the pilot phase,

the coding frame is evaluated and modified as necessary in preparation for the

main analysis.

6. Carry out the main analysis. Coding in the main analysis is conducted much

as in the pilot phase, except all material is now coded.

7. Interpret the findings. There are various techniques that can be applied to

further analyze the results of a content analysis, and various ways that the

findings of a content analysis can be presented. The ultimate goal is to answer

the research questions in a way that is valid and reliable.

The following sections describe how these steps were carried out in this case study.

5.3.4 Coding frame

The coding frame that I developed is reproduced in its entirety in appendix B. In this

section, I explain how it was constructed.

The construction of the coding frame is one of the most crucial steps in a content

analysis. After all, the coding frame defines the rules that govern the interpretation of

the text. Thus, the construction of the coding frame defines the shape of the rest of

the content analysis, including the segmentation of the text into units, the coding

itself, and the tabulation and reporting of the findings.

There is a particular structure to which a coding frame for a qualitative content

analysis should adhere [195]. The starting point for a coding frame is a set of main

categories, which define the dimensions or aspects on which the analysis will focus.

Within each main category is a set of subcategories that specify what may be said

about the aspect represented by the main category. In effect, the main categories

are analogous to the variables in a quantitative study, and the subcategories are

analogous to the levels of those variables. Coding frames vary greatly in complexity;

there may be one or many main categories, and there may also be multiple levels of

hierarchy, with subcategories containing their own further subcategories. (Note that

in content analysis, category is effectively synonymous with code, even though these

terms are importantly different in, e.g., grounded theory.)

For the present work, it is useful to observe that the research questions stated at

the beginning of this chapter are of two very different characters. Research questions

1 and 2 are questions about how evolution happens in the real world today; these

questions are descriptive of architecture as it is practiced today. They will be answered

directly through a content analysis of the interview data.

Research question 3 is quite different; it asks whether our modeling approach

is suitable for representing the concerns of a real-world evolution. This research

72

5.3 Content analysis

Content analysis Content analysis 1 Content analysis 2

Research questions 1 and 2 3

Purpose Descriptive Evaluative

Material All interview data Interview data and archi-

tectural documentation per-

taining to the point-of-sale

evolution

Coding frame Data-driven Concept-driven

Segmentation A coding unit is a passage of

text addressing one topic of

interest

A coding unit is a word or

phrase representing a partic-

ular architectural element

Use Results will be directly inter-

preted with respect to the re-

search questions

Results will feed into a mod-

eling phase to evaluate ap-

plicability

Table 2. A summary of the differences between the two content analyses used in this

case study.

question is evaluative of our approach. It will be answered via a two-step process

in which we first apply content analysis to that portion of the research data which

pertains to a specific evolution (the evolution of the point-of-sale system), then

use the results of that content analysis to construct a model of the evolution in

accordance with our approach.

It is therefore useful to describe the analysis as comprising two entirely separate

qualitative content analyses, one (which I will call “content analysis 1”) targeted at

the descriptive research questions and one (“content analysis 2”) targeted at the

evaluative research question. A summary of the two content analyses appears in

table 2.

The differences between these two content analyses necessitate that their coding

frames likewise be constructed differently. It is helpful here to consider a distinc-

tion that is drawn in the methodological literature on qualitative content analysis.

Both Mayring [148; 149] and Schreier [195, pp. 84–94], in their treatments of qualita-

tive content analysis, identify two main approaches for developing a coding frame:

data-driven (or inductive) and concept-driven (or deductive) category development.

With a data-driven strategy, categories are based on the collected data—developed

through progressive summarization of relevant passages of text or other similarly

bottom-up strategies. With a concept-driven strategy, categories are defined a priori,

without reference to the data. Instead of being derived from the text, categories are

based on preexisting theory, prior research, the format of the interviews, or other

similar considerations. Most qualitative content analyses, Schreier suggests, will use

a combination of data-driven and concept-driven strategies. Schreier emphasizes

that the strategy adopted for developing a coding frame should be one that is suited

73

5 Case study: Architecture evolution at Costco

to the goals of the analysis. However, as a general recommendation, she writes that a

data-driven strategy is most appropriate for detailed description of material, while a

concept-driven strategy is most appropriate for testing hypotheses or establishing

comparisons with prior work [195, pp. 105–106]. The distinction between data-driven

and concept-driven content analysis might be compared with the difference between

the Glaserian and Straussian paradigms in grounded theory; for a discussion of these

two grounded theory methods and their application to software engineering, see van

Niekerk & Roode [219].

I adopted a principally data-driven strategy for content analysis 1 and a principally

concept-driven strategy for content analysis 2. For the descriptive research ques-

tions, the purpose of the content analysis is to describe architects’ perceptions and

experiences regarding architecture evolution. Because the purpose of this content

analysis is to describe the material in detail, a primarily data-driven approach is most

suitable.

Therefore, after defining the top-level categories based on the research questions

(“Evolution motives,” “Challenges,” etc.), I defined their subcategories using a data-

driven strategy. To do so, I made a pass through the entirety of the interview data,

marking and paraphrasing any passages that appeared relevant to any of the top-level

categories. For example, the following is an excerpt from an architect’s reflection on

a previous effort to implement approaches that he and his colleagues had read about

in well-known books on service-oriented architecture:

One of the problems that I’ve seen is that it is very cumbersome. Very

good, very sophisticated, but when you are new to this, when you are re-

ally not intelligent enough to make those decisions, make those choices,

when you have to go through a very elaborate process, it can be very

counterproductive. And indeed that’s what we saw. When this method

is introduced to the world, there’s a lot of confusion about: Why do we

have to do all these things? I personally participated in some meetings

too and saw this whole process as very cumbersome, very confusing, and

frankly the result of that is not very good.

Next to this passage, I wrote, “challenge: available approaches cumbersome.” After

marking all the interview data in this way, I consolidated topically similar marked

passages into subcategories. For example, the above passage was combined with

several others, marked with paraphrases such as “challenge: no resources for infor-

mation” and “challenge: lack of needed tools,” into a category called “Challenges:

Inadequate guidance and tool support.”

For content analysis 2, on the other hand, concept-driven category development

is appropriate. The goal of this content analysis is to evaluate the suitability of a

particular, preexisting model with respect to a specific evolution. This preexisting

model forms the basis from which the coding frame is derived.

Since its output will be used to produce an evolution model, content analysis 2

must serve to identify the elements that will appear in the evolution model. Thus,

the coding units in content analysis 2 are descriptions of the architectural elements

(components, connectors, etc.) and evolution elements (constraints, operators, etc.)

74

5.3 Content analysis

that will appear in the model. (The concepts in the coding frame and their definitions

appear in appendix B.2.2. The application of the coding frame will be discussed in

sections 5.3.5–5.3.7; in this section I discuss the definition of the coding frame itself.)

The first output that the content analysis must yield is the proper identification

of these elements. That is, for each element described by a coding unit, we want

to determine through the content analysis how that element should appear in the

model—whether it should be characterized as a component, connector, constraint,

operator, or some other type of element. Thus, the first part of our coding frame is

a classification scheme for elements of the architecture evolution, with categories

such as “Classification: Component,” “Classification: Constraint,” and so on.

We also want to determine whether each identified element should appear in the

initial and target state of the evolution model. Thus, the second output that content

analysis 2 must yield is a determination of which phases of evolution they appear in:

the initial architecture, the target architecture, neither, or both. The second part of

the coding frame for content analysis 2, therefore, comprises the categories “Presence

in initial architecture: Present,” “Presence in initial architecture: Absent,” “Presence

in target architecture: Present,” and “Presence in target architecture: Absent.”

The advantage of using content analysis to guide the construction of the model

(rather than just constructing a model based on informal impressions and meth-

ods, as is more typical in software architecture research) is that the model will be

directly and reliably tied to the research data, giving us more confidence that the

conclusions we draw from the model are adequately supported by the data and are

not influenced by researcher bias. Because the segmentation (i.e., the identifica-

tion of model elements) and coding (i.e., the classification of model elements) are

conducted according to well-defined procedures, we can be more certain that, for

example, a model element that we identify as a connector really does represent an

actual connector in the system as described in the research data, and that we haven’t

inadvertently omitted or overlooked elements that ought to appear in the model.

The coding guide itself was written in a format typical of coding guides for content

analysis. (For a discussion of the components of a good coding guide, see Schreier

[195, pp. 94–104].) For each category, the coding guide defines: the name of the

category, an abbreviation for the category (to be used when marking the coding

sheet), a detailed description of the category (including an explanation of what it

encompasses and guidelines for determining inclusion in the category), and usually

an example of the category and sometimes a list of indicators to serve as decision

aids. The full coding guide appears in appendix B, as noted earlier.

5.3.5 Segmentation

With the coding frame defined, the next step is to segment the material into coding

units to which the categories of the coding frame can be applied. As with the con-

struction of the coding frame, the segmentation of the material is handled separately

for content analysis 1 and content analysis 2. For content analysis 1, the interview

material was segmented thematically. That is, the material was divided into segments

of sufficiently fine granularity that each coding unit pertained to one topic—where

75

5 Case study: Architecture evolution at Costco

Researcher: When you say you generally have an idea of

where you want to go and how you want to get there—you just

can’t necessarily execute on it as easily as you’d like to—how do

you develop that plan? How do you figure out where you want

to go and how you want to get there? Do you have processes to

help you, or is it mostly just intuition and experience?

Participant: A9〈Mostly intuition and experience, yeah.〉
A10〈You look to the industry to see what’s going on〉, A11〈but

ultimately, in this particular line of business—and I’ve worked

in software development companies and retailers and labo-

ratory environments, and I can tell you that in this business,

you tend to lean toward simplicity. The next system you build

is going to last twenty years, and it needs to be maintainable,

and everybody needs to be able to capitalize on it and expand

and extend when necessary, so you really don’t try to get too

crazy with it. We’re not launching shuttles here, we’re selling

mayonnaise and toilet paper, so let’s keep it in perspective.〉

A9: Approaches: Experi-
ence and intuition

A10: Approaches: Indus-
try practices

A11: Approaches: Rules
of thumb and infor-
mal strategies

Figure 11. A segmented and coded passage from an interview transcript.

topic is interpreted with respect to the coding frame, so that one category is applica-

ble to each coding unit. Figure 11 shows an interview segment as it was segmented

and later coded. The angle brackets in the figure identify coding units; observe that

the text is split such that each coding unit pertains to a single category of the coding

frame.

Segmentation was much more complex for content analysis 2. The objective of

content analysis 2 was to identify the architectural elements and evolution elements

described in the source material—that is, to identify and distinguish among compo-

nents, connectors, evolution operators, evolution constraints, and so on, so that they

could be included in an evolution model based on the content analysis.

One challenge that this posed was how to deal with multiple mentions of the

same element. To correctly identify and code an element, we must consider all its

mentions throughout the source material. This stands in contrast to the piecemeal

interpretative process that is more typical of content analysis, in which we proceed

through the relevant passages of a text in sequence, coding each passage in isolation.

Nonetheless, the need to consider multiple mentions of a referent together in order

to determine a code is not incompatible with content analysis; it merely requires more

careful selection of the coding units. In particular, we can consider multiple mentions

of a single referent (e.g., all references to the corporate integration architecture) to

together constitute a single coding unit—one that happens not to be contiguous.

Krippendorff [122, § 5.2.2] discusses situations where noncontiguous coding units

may be helpful:

The text included in any one recording unit need not be contiguous.

Suppose an analyst samples fictional narratives with the aim of studying

76

5.3 Content analysis

the populations of characters occurring in them. [. . .] In a typical nar-

rative [. . .], the characters are rarely dealt with one at a time, or one per

paragraph, for example. They tend to interact and evolve over the course

of the narrative, and information about them emerges in bits and pieces,

often becoming clear only toward the end. To be fair to the nature of

narratives, the analyst cannot possibly identify one unit of text with each

character. Thus information about a recording unit may be distributed

throughout a text. Once the analyst has described the recording units,

it is these descriptions, the categories to which they are assigned, that

are later compared, analyzed, summarized, and used as the basis for

intended inferences.

(Recording unit is another term for coding unit.) An architectural element or evo-

lution element is similar, in this respect, to a character in a narrative. It may be

mentioned many times throughout the material, in a variety of contexts that provide

different information about it, all of which must be understood together to obtain a

complete view.

Another segmentation challenge posed by content analysis 2 is that not all of

the “text” is strictly textual; in addition to the interview material and the written

documentation, there are a number of diagrams that must be considered in the

analysis. Fortunately, this is not a real problem as far as content analysis is con-

cerned. Content analysis has long been used for analyzing more than just prose. It

has been applied to everything from films [60] to photos of models in magazines

[74] to children’s drawings and cereal boxes [153]. (For general guidance on content

analysis of visual data, see Ball & Smith [12, ch. 2] and Bell [23].) Content analysis of

architectural diagrams, then, is not such a leap. At a basic level, we can segment and

code diagrammatic elements—boxes, lines, clouds, whatever—in much the same

way that we can segment and code phrases and paragraphs. But although there’s

no theoretical barrier to including architectural diagrams in our content analysis,

the heterogeneity of our data does create practical challenges. A coding unit in this

analysis is something much more complex and multifaceted than a coding unit in a

typical content analysis. While in a typical content analysis a coding unit is simply

a phrase or a passage, here a coding unit is an aggregation of words, phrases, and

passages (occurring in both transcribed speech and written architectural documen-

tation) as well as diagrammatic elements. This complicates segmentation, and it also

makes coding itself a much knottier undertaking, since properly categorizing a single

coding unit now requires consideration of textual and diagrammatic elements that

are spread throughout the material.

5.3.6 Pilot phase

In a qualitative content analysis, a pilot phase allows any problems with the coding

frame or the segmentation of the text to be ironed out before the main analysis. After

completing a draft of the coding frame and finishing the definition of the coding

units, I applied the preliminary coding frame to the segmented text, noting any

points of difficulty or confusion. I then made minor changes to the coding guide

77

5 Case study: Architecture evolution at Costco

as appropriate: adjusting boundaries between coding units, clarifying descriptions

of categories in the coding frame, and so on. The coding frame that appears in

appendix B is the final version, which I used for the main analysis.

Another outcome of the pilot phase was the definition of context units to define

the scope of the context to be considered when coding a given unit. In the case of

content analysis 1, I defined a context unit to consist of the paragraphs immediately

surrounding a coding unit. In the case of content analysis 2, I defined the context

unit to encompass the entirety of the source material, since occurrences a single

coding unit could be spread throughout the data, as explained in section 5.3.5.

5.3.7 Main analysis phase

In the main analysis phase, I categorized each coding unit in accordance with the

coding guide I had developed. I carried out the coding for content analysis 1 and

content analysis 2 on separate occasions—again treating them as two distinct content

analyses even though they are part of a single case study.

I conducted two passes of coding: one pass to identify the codes, and a second to

permit evaluation of reliability. I allowed over two weeks to elapse between the passes

so that I would not remember the initially assigned categories on the second pass,

following a recommendation given by Schreier [195, p. 146]. Once the two passes

had been completed, I reconciled the results. For each discrepancy that existed

between the initial coding and the recoding, I carefully examined the coding unit, the

surrounding context, and the full descriptions of both categories (the one assigned

in the initial coding and the one assigned in the recoding) in the coding guide, then

chose whichever of the two was most appropriate. This final categorization served

the basis for the subsequent interpretation of the results as well as (in the case of

content analysis 2) the modeling phase.

5.4 Evolution model construction

The final analytical phase involved the construction of a (partial) evolution model

based on the results of content analysis 2. This construction proceeded in stages.

First, I constructed initial and target architectures, directly using the results of content

analysis 2. Second, I specified a number of evolution operators relevant to the

evolution, including several that had been specifically mentioned in the data. Third,

I specified the constraints that had been identified in content analysis 2. Finally, I

specified evaluation functions for the evolution concerns that had been identified in

the content analysis. I will now describe each of these steps in detail.

5.4.1 Initial and target architectures

As section 2.1 explained, our approach is not tied to any particular modeling language

or tool. Thus, the first step in constructing an evolution model in this case study

was selecting a modeling language. I selected the Acme architecture description

language [95] as the modeling language for the case study. Acme was appealing

78

5.4 Evolution model construction

for this purpose because it is designed specifically for systematic, semantically rich

representation of software architectures, and it has an extensive set of features for that

purpose, such as support for decomposition of architectural elements and definition

of rich hierarchies of element types. By contrast, other modeling languages we have

used, such as UML, aspire to a much broader set of purposes. Consequently, using

such languages with our approach requires care to be taken in establishing explicit

conventions for their use.

The content analysis had produced all the significant architectural elements to

be modeled and had further categorized them as components, connectors, systems,

and so on. In addition, it had determined which of these elements appeared in the

initial architecture, and which appeared in the target architecture. With this work

done, constructing initial and target architectures in Acme was fairly straightforward.

Of course, the content analysis was not sufficient, on its own, to specify the initial

and target architectures fully. It defined and classified all the key elements. But

because the interviews and architectural documentation were fairly high-level, they

seldom descended to the level of ports and roles, for example. Although the coding

guide included a category for ports and roles, most of the ports and roles in the system

were never explicitly mentioned. (Acme requires ports and roles to be specified fully.

Thus, while in casual conversation one might simply speak of a component A being

connected to component B by a connector C , Acme requires the roles of connector

C to be explicitly defined, and attached to ports on components A and B that are

also explicitly defined.) Similarly, we did not attempt to identify element types in the

content analysis; thus, these had to be introduced in the modeling phase.

However, these low-level decisions were all fairly straightforward and inconsequen-

tial. All the major decisions—what the major components of the system were, how

they should be connected, how the system as a whole was structured—had already

been made via the content analysis. At least subjectively, then, we can say that the

content analysis succeeded in systematizing and formalizing the major decisions

involved in architecture representation, even though it did not itself amount to a

comprehensive representation of the architecture.

The initial and target architecture of the system are shown in figures 12 and 13. Not

shown in these figures are system substructures modeled using Acme representations.

Elements with representations defined are indicated by AcmeStudio’s symbol. For

the most part, the finer details of the point-of-sale evolution are not important here,

but it will be useful to have a passing acquaintance with the system, so I now provide

a brief explanation.

Figures 12 and 13 are each divided into several major groups of elements, repre-

sented by dashed rectangles, which correspond to the groupings identified in the

content analysis. The core point-of-sale system is within the warehouse. The POS

element itself does not appear in these diagrams, because it is inside the controller

components. The main goal of the point-of-sale evolution is to replace the legacy

component at the core of the point-of-sale system, an off-the-shelf point-of-sale

package, with another, more modern off-the-shelf package.

At the same time, however, a number of other things are changing in systems with

which the point-of-sale system integrates, and these changes will affect the operation

79

5 Case study: Architecture evolution at Costco

Figure 12. An AcmeStudio representation of the initial architecture of the point-of-sale

system, constructed from the content analysis results.

Figure 13. An AcmeStudio representation of the target architecture of the point-of-sale

system, constructed from the content analysis results.

80

5.4 Evolution model construction

of the point-of-sale system significantly. For example, a number of new elements

are being introduced to facilitate communication among systems, including a new

integration architecture element, an integration hub, and a Master Data Management

system. These elements will serve to decouple various systems, to unify various com-

munication paradigms in use among systems, and to reduce redundancy. Another

significant change is that various legacy systems will eventually be disused (e.g., the

mid-range systems that appear in figure 12) or replaced (e.g., the legacy membership

system will be replaced with a new CRM system).

Although representing the initial and target architectures based on the results of

the content analysis was generally straightforward, there were a few difficulties that

did arise. These difficulties may suggest areas for future research or methodological

refinement, so I discuss them now:

• The exclusive use of a single (component-and-connector) architectural view

was somewhat limiting. The use of multiple view types might have helpfully en-

riched the model. In particular, supplementing the component-and-connector

view with a deployment view might have helped clarify certain aspects of archi-

tectural structure. Figures 12 and 13 represent physical boundaries primarily

using groupings (e.g., the boundary between the warehouse and the corporate

host systems). However, using a deployment view would have permitted us

to depict such boundaries more explicitly and precisely. In addition, it would

have allowed us to depict which software elements were allocated to which

physical devices. This would have eliminated some redundancy. For example,

all three of the controllers in figure 12 have the same internal substructure; with

a deployment view, this could have been shown with less duplication by depict-

ing individual software elements as being allocated to multiple controllers. In

our journal paper [19], we demonstrated how our approach can be used with

multiple view types. However, in this case study we used only one view type

so as to simplify the content analysis and permit the use of Acme, which does

not support multiple architectural views. See section 8.3.4 for a discussion of

issues involved in representing an evolution from multiple viewpoints.

• There were several elements about which very little information was provided.

For example, the order management system (“OMS” in figures 12 and 13) was

mentioned only a couple of times, and then only in passing. I did not receive

any information about what it was connected to or about its exact relationship

with the point-of-sale system. In fact, it might have been best to omit it from

the model, except that I wanted to ensure the model was derived from the

content analysis with as few tweaks as possible. There were a number of other

elements about which incomplete information was likewise provided. For

example, the TransactionProcessor element was discussed in somewhat more

detail than the order management system, but still not enough detail to be

certain of its correct placement. For example, it might actually be hosted

on one of the mid-range computers. The general problem is that the data

does not provide an exhaustive description each element. In interviews and

documentation, architects tend to focus on elements that are particularly

81

5 Case study: Architecture evolution at Costco

salient, at the expense of more peripheral elements. With more time, I could

have remedied this through follow-ups with the study participants. But the

difficulty of getting an accurate and comprehensive picture of an architecture

also suggests opportunities for future research into methods of architecture

elicitation.

• I had some difficulty representing multiplicity. When it was convenient to

do so, I used multiple element instances; for example, figure 12 shows three

registers and a couple of fuel pumps. (The actual number of registers per

warehouse and pumps per gas station is quite a bit higher.) At other times,

showing multiplicity was impractical. How can we adequately capture the

point that there are hundreds of individual warehouses across the country? We

could simply add an annotation—“Warehouse (627 instances)”—but this is a

rather crude method. In an intermediate state, there is no good way to show

a transitional point in which some warehouses are using a legacy system and

some others are using its modernized successor.

• The target architecture was necessarily speculative, because there were certain

aspects of its structure that architects weren’t yet sure about. For example,

a long-term goal is to increase integration between the point-of-sale system

and the company’s ancillary systems, but it’s not yet certain precisely when

or how this will happen. In the model in figure 13, I showed these ancillary

systems as being fully integrated through the integration architecture, but there

are other possibilities that might be just as likely. To some extent this kind

of uncertainty is unavoidable, but it also suggests the possibility of capturing

the uncertainty in the model itself and reasoning about the trade-offs among

different possibilities.

• A subtler difficulty had to do with the way that people describe architectural

structure when speaking informally. In formal architecture description, we are

very precise about how we describe relationships among elements. Formally,

to say that a controller is connected to a mid-range computer is different from

saying that the point-of-sale system hosted on that controller is connected

to a socket server hosted on the mid-range computer. In everyday language,

though, these can amount to the same thing. Thus, when one person describes

a connection between the mid-range systems and the warehouse, another

person explains that the controller is connected to the mid-range systems,

and a third explains that the warehouse has a link to the corporate hosts, they

are all referring to the very same connector—even though they are describ-

ing it in different ways, and indeed in our content analysis, such utterances

were unitized as though they were different entities. In fact, this is not a ficti-

tious example; the content analysis had several different coding units such as

“midrange-warehouse,” “controller-midrange,” “hosts-POS,” and several others

that all ended up being realized through the same connector in the model.

One way of understanding such examples is as instances of a very common

linguistic phenomenon called synecdoche, in which a part of something refers

82

5.4 Evolution model construction

to the whole or vice versa, as in the phrase “all hands on deck,” where “hands”

refers to sailors. Similarly, in the example above, we could interpret “warehouse”

as synecdochically referring to the controller or vice versa.

There are other ways in which casual language treats architectural structure

imprecisely. Sometimes when architects appear to be describing a connection

between two components A and B , they are actually describing a communi-

cation pathway comprising a series of connectors, in which A and B are the

endpoints and the communication goes through a number of intermediaries,

so A is connected to C , C to D , and D to B . For example, one architect told me

that the CRM system has “an integration point to” the point-of-sale system in

the target architecture. In the content analysis, I identified this as a connector

between the point-of-sale system and the CRM system. But while reviewing

the architectural documentation during the modeling effort, I came to believe

that in fact there is no direct link between these two systems in the target archi-

tecture; rather, this communication goes through a series of intermediaries:

the integration hub, the integration architecture, and the MDM system.

Such complexities suggest a need for further research on how humans talk

about architecture and how to elicit precise architectural information from

practitioners.

5.4.2 Evolution operators

Because the point-of-sale evolution is a fairly large-scale evolution with many parts

and aspects, architects tended to speak of the evolution in terms of its general goals

and major stages, rather than the specific individual operations that will be required

to carry it out. Nonetheless, the content analysis did identify a few evolution opera-

tions at a finer level of granularity, namely:

1. Removing an existing legacy element

2. Connecting the point-of-sale system to a new system

3. Doing in-house customization of an off-the-shelf point-of-sale system

4. Paying the vendor to customize an off-the-shelf point-of-sale system

5. Upgrading the operating system of the warehouse controllers

6. Deploying new point-of-sale software to the warehouse controllers

7. Eliminating the fuel controllers (so that gas stations share warehouse con-

trollers)

8. Replacing nightly polling of transaction logs with a “trickle poll” setup that

provides a steady stream of updates throughout the day

9. Installing an off-the-shelf product in the warehouse

10. Modifying an off-the-shelf package to meet the company’s needs

11. Replacing legacy communication for file transfers with the managed file trans-

fer capabilities provided by the company’s new integration architecture

83

5 Case study: Architecture evolution at Costco

12. Replacing the data queues used by the socket server with message queues

13. Moving functionalities and responsibilities from a legacy system to the mod-

ernized system that replaces it

Obviously, this handful of operators is not sufficient, on its own, to describe all

the changes in the point-of-sale evolution—to take us from figure 12 to 13. Because

of the scale and complexity of the point-of-sale evolution, a fairly large number of

operators would need to be defined to accomplish this. But the operators mentioned

in the data are a good basis on which to evaluate our modeling approach. These

operators are likely to be no less complex and no less difficult to model than typical

evolution operators.

In the full case study report [17, § 4.3.2], I demonstrate how each of these operators

can be modeled in our approach. In this dissertation, I show only a few of them.

1. Removing an existing legacy element is a straightforward deletion operator,

which is not hard to model at all:

operator removeElement(e) {

transformations {

delete e;

}

}

2. Connecting the point-of-sale system to a new system amounts to the creation

of a new connector between the point-of-sale system and the new system. To

avoid ambiguity, the operator must take as parameters the specific ports to

join, rather than just the components.

operator integrateWithSystem(clientPort, systemPort) {

transformations {

Connector c = create Connector : SystemIntegrationT;

attach clientPort to c.Client;

attach systemPort to c.Sys;

}

preconditions {

declaresType(clientPort, SystemCallT) and

declaresType(systemPort, SystemIntegrationPointT)

}

}

11. Replacing legacy communication for file transfers with the managed file
transfer capabilities provided by the company’s new integration architec-
ture is only slightly more complex than the examples we have seen. In this

operator, the legacy connector used to allow the warehouse controllers to inter-

act with the corporate host systems is disused and replaced with a connection

to the integration hub.

84

5.4 Evolution model construction

operator disuseLegacyFileTransferCommunication(legacyComm, integrationHub) {

transformations {

for (Port p : legacyComm.Ctlr.attachedPorts) {

remove type p : ControllerLegacyCommPortT;

add type p : MicrobrokerHookupT;

Component microbroker = create Component : MicrobrokerT;

attach p to microbroker.Controller;

attach integrationHub.IntegrationPoint to microbroker.IntegrationHub;

}

delete legacyComm;

}

preconditions {

declaresType(legacyComm, LegacyCommElementT) and

declaresType(integrationHub, IntegrationHubT) and

size(legacyComm.Ctlr.attachedPorts) = 1 and

forall p in legacyComm.Ctlr.attachedPorts |

declaresType(p, ControllerLegacyCommPortT);

}

}

These operators are remarkable for how straightforward and easy they were to specify.

Even the operators that seemed conceptually complex turned out to be simple to

define. Although we should be careful of drawing too strong a conclusion from this

limited sample, this suggests that the operators that arise in real-world evolution

may tend to be fairly simple in many cases, and that operator specification is not as

difficult as might be feared.

5.4.3 Constraints

Sixteen constraints were identified by the content analysis. A detailed discussion of

each identified constraint appears in the full case study report [17, § 4.3.3]. Here I

give a brief summary.

In segmenting and coding the data, I took a fairly inclusive view of what it means

for something to be a “constraint.” I included in this category everything that took the

form of a constraint somehow governing the evolution, without considering whether

it was an architecture-level constraint or a lower-level constraint, whether it was a

constraint on the evolution as a whole or only particular states, or whether it was

amenable to representation via our approach.

As a result, not all of the constraints identified in the content analysis are easily

representable as evolution path constraints using our approach. Of the sixteen

constraints identified by the content analysis:

• Seven can be straightforwardly represented as evolution path constraints. An

example of such a constraint that arose in the content analysis is a constraint

that ACE can never be hooked up to the socket server. Such a constraint can be

85

5 Case study: Architecture evolution at Costco

modeled easily by

�newPosNotConnectedToSocketServer(system),

where newPosNotConnectedToSocketServer is a unary predicate over architec-

tural states, definable in Acme’s architecture constraint language, Armani, by:

Design Analysis newPosNotConnectedToSocketServer(s : System) : boolean =

forall ctlr : Component in s.components |

forall ctlrRep : Representation in ctlr.representations |

forall pos : Component in ctlrRep.components |

forall posRep : Representation in pos.representations |

forall c : Component in posRep.components |

c.name == "NewPOS" -> !connected(ctlr, WHB400);

• Four are very high-level constraints that were not described in sufficient detail

to model fully, but are representable in principle. For example, one architect

mentioned availability constraints as being particularly significant to the point-

of-sale system, noting that some elements of the point-of-sale system are

expected to have 99.999% availability.

Of course, accurately predicting system availability from architectural structure

is a challenging problem—one that has received significant research attention

in its own right [101]. It would be interesting to study how well our approach

could capture architectural reliability models that have appeared in previous

research, but that is well beyond the scope of this case study.

For now, let us take a simple example. Suppose that we were interested solely

in the reliability of the controllers in the warehouse. A warehouse has two

redundant controllers: a primary and a fail-over. We can annotate each of

these two components with a property indicating its expected failure rate (e.g.,

failureRate = 0.001 to indicate that the component will be down 0.1% of the

time.). If we assume that the two controllers fail independently, we can calcu-

late the overall failure rate of the system by multiplying the failure rates of the

two controllers. (Of course, independence will not hold in practice. If the ware-

house loses power, both controllers will fail. But it is a reasonable simplifying

assumption for our demonstration here.) The constraint that availability never

drops below 99.999% then becomes

�highReliability(system),

where highReliability is defined in Armani by

Design Analysis highReliability(s : System) : boolean =

s.PrimaryController.failRate * s.FailOverController.failRate <= 0.00001;

• Three are low-level, chiefly nonarchitectural constraints, but are representable

to the extent they implicate architectural considerations. For example, one

architect strongly emphasized the importance of minimizing the impact of

the system change on its users, noting that the “first and absolute foremost

goal is to create almost a zero-impact change in our warehouses.” This is a

86

5.4 Evolution model construction

difficult constraint to capture using our methods, because in large part, it is

not architectural. That is, avoiding disruption to users has a great deal to do

with the specifics of exactly how the change is carried out, and details like user

interface elements, and not much to do with architectural structure. In fact,

the same architect made a similar point later in that interview, noting that

carrying out the evolution would require attention to minute, nonarchitectural

details such as the color of the labels on the keys of the cash registers:

The things that boggle my mind we talk about in this project—well,

we need to know what color code to put on the key cap. I say, oh,

yeah, I never really thought about that. But they’re training people

that identify sections of that keyboard. So you learn a little bit more

every time you turn around. It’s kind of interesting. It’s like, ugh,

these darn labels—I forgot all about them! [laughs] And really, is

that something the architect is concerned about? Probably not.

But to the extent that this “zero-impact change” constraint does implicate

architectural considerations, we should be able to model it. For example, a sim-

ple structural constraint like “The number of cash registers in the warehouse

remains constant throughout the evolution” is easy to model.

• One is representable as an operator precondition: a constraint that any new

processes or equipment in the point-of-sale system would require recertifica-

tion with the electronic-payment-services vendor. The most straightforward

way to model this constraint is as a precondition on the operator that would

modify the certified equipment. For example, if we have an operator such

as modifyCashRegisters, it should have as a precondition that the recertifyEps

operator has already happened to ensure that the modifications to the cash

registers have been approved.

• One is representable only with significant modifications to the model: a con-

straint that the legacy warehouse communication elements that facilitate com-

munication to the corporate hosts shouldn’t be removed in any warehouse

until all warehouses are on the new point-of-sale package. Because we have

chosen to model only a single illustrative warehouse, we can’t represent con-

straints that require consideration of differences among different warehouses.

However, if we enriched the architectural model with multiple warehouses,

this would be straightforward to model.

The exact tallies in this list are not important. In many cases, there was some

degree of choice in representing the constraints. Ordering constraints, for example,

can typically be represented either as evolution path constraints or as preconditions.

What is important is the overall result: all the architectural constraints captured

in the content analysis are representable using our approach, albeit with varying

degrees of difficulty. We have seen some specific areas where our constraint language

might be able to benefit from further enrichment, such as support for reasoning

directly about the transitions in an evolution graph in addition to the states. But we

did not encounter any architecture evolution constraints that could not be modeled

87

5 Case study: Architecture evolution at Costco

at all.

5.4.4 Evaluation functions

The content analysis identified seven dimensions of concern: total cost, total effort,

return on investment, performance, implementation details, effort spent on modify-

ing legacy technology, and flexibility. Most of these can be modeled as evaluation

functions with little trouble. In our full case study report [17, § 4.3.4], we examine

each of these seven dimensions of concern in detail. Here I provide a brief summary.

Of the seven dimensions of concern identified in the content analysis, five can be

modeled as evaluation functions with little trouble. One such concern is total cost.

In our approach, cost can be modeled as a property of operators. Each operator can

be assigned a property describing its estimated cost in dollars. For example, if we

know that the replaceDataQueues operator costs 500 dollars to carry out, we can add

a property to the definition of the operator:

operator replaceDataQueues(subsystem) {

transformations { ... }

analysis { "costInDollars": 500 }

}

Of course, in some situations, cost may be more complex—depending, for example,

on the operator parameters—but this is the basic idea. Then, an operator analysis

can simply add up all the operators within an evolution path to get an estimate of the

overall cost of the path.

function analyzeCost(states, transitions) {

var total = 0;

transitions.forEach(function (transition) {

transition.operators.forEach(function (operator) {

total += operator.analysis.costInDollars;

});

});

return total;

}

The only difficult task is accurately estimating the costs of the operators. However,

this is outside the scope of my research. There is a very large body of work on cost

estimation in software engineering, so we may simply assume that the costs of the

operators can be determined through traditional methods.

Two of the dimensions of concern are not so easy to model. One concern identified

by the content analysis pertains to low-level implementation details not relevant to

an architectural analysis. However, the other, flexibility, is a genuine architectural

concern that cannot be easily analyzed using our approach. System flexibility is quite

difficult to estimate based on an architectural model. There is an existing body of

research on architectural analysis of the flexibility, evolvability, or changeability of

software systems (see section 7.3).

88

5.4 Evolution model construction

I did not attempt to implement any architectural analyses for flexibility as part of

this case study. To the extent that flexibility is determinable from standard architec-

tural models, it is analyzable using our approach. However, many existing methods

for architectural analysis of flexibility are not based chiefly on an architectural model,

but instead rely heavily on procedures such as definition of change scenarios [25; 127]

or interviews with stakeholders [70]. Such methods lie well beyond the scope of the

kind of analysis our approach aims to support.

5.4.5 Evolution styles

Before concluding this section on evolution model construction, let us return to

the topic of evolution styles, introduced in section 2.6, and examine how it could

be applied to an evolution like the one examined in this case study. Recall that

an evolution style is a way of encapsulating a family of operators, constraints, and

evaluation functions relevant to an evolution domain. This case study did not set

out to examine the applicability of the concept of evolution styles, and no evolution

styles were constructed during the course of the case study. Nonetheless, it may be

instructive to discuss how an evolution style relevant to the point-of-sale evolution

might be defined, incorporating some of the evolution elements described in the

preceding sections.

The first necessary element of an evolution style is a description of the domain to

which it is relevant. In defining a domain relevant to the point-of-sale evolution, there

are a few different options that might serve as a reasonable basis for an evolution

style. We could, for example, choose to define an evolution style for the domain of

point-of-sale systems. This might be feasible, but it is a bit too specific for the purpose

of this discussion. Architecturally speaking, there is little that distinguishes a point-of-

sale system from other kinds of systems that are architected in a similar fashion (and

conversely, different point-of-sale systems might have very different architectures).

A better choice might be to think of our domain of evolution as technology upgrades

within the context of a hub-and-spoke architecture, in which some corporate host

system serves a large number of remote, distributed systems. Such a domain is broad

enough to encompass a very large class of systems; just about any large company will

have many systems fitting that description. But it is also specific enough that we can

define useful and concrete evolution elements relevant to the domain.

Indeed, many of the evolution elements defined in the preceding sections or in the

full case study report [17, § 4.3] would be suitable for inclusion in such an evolution

style, including operators such as upgrading a system or customizing an off-the-shelf

package or introducing an integration bus, constraints enforcing rules governing how

and when these operators may be applied, and evaluation functions for concerns

such as cost and performance. Of course, to define an evolution style fully, we

would need to define a large number of operators, sufficient to completely specify an

evolution instance in the domain. Additional constraints and evaluation functions

would likely be needed as well. But once the evolution style is defined, we could

apply it to a broad class of evolutions, such that the cost of defining the evolution

style may be amortized over a large number of reuses.

89

5 Case study: Architecture evolution at Costco

There are a couple of unanswered research questions that this examples reveals.

First, it suggests a need for some notion of specialization or extension of evolution

styles. The evolution domain defined in this example—technology upgrades in a

corporate hub-and-spoke system—might be a specialization of a style for technology

upgrades generally, and might in turn be specialized into a more specific substyle for

technology upgrades of point-of-sale systems. Support for defining evolution styles

by inheriting elements from other evolution styles would facilitate reuse and make

it more practical to define and relate evolution styles. A second point is that many

evaluation functions (and perhaps other elements) are not really domain-specific.

Our evaluation function for cost is in no way specific to point-of-sale evolutions or

hub-and-spoke evolutions; it simply adds up the costs defined by the operators. It

therefore doesn’t really make sense to define cost properties and cost evaluations

as part of a conventional evolution style; instead, we might imagine defining some

kind of mix-in style for cost analysis that could somehow be combined with other,

conventional evolution styles. We will return to these issues in section 8.3.1, which

discusses the need for future work on evolution styles.

5.5 Findings

In section 5.3, I discussed the two content analyses used in this case study: one (con-

tent analysis 2) feeding into an evolution modeling phase and one (content analysis 1)

to be interpreted directly by conventional means. In section 5.4, I discussed how the

modeling phase following content analysis 2 was carried out and what its findings

were. In this section, I examine the findings of content analysis 1. In section 5.6, I

will synthesize these findings and explain how they address the research questions

defined at the outset of the study.

The following subsections correspond to the top-level categories of content anal-

ysis 1: “Motives for evolution” (section 5.5.1), “Causes of problems” (section 5.5.2),

“Consequences” (section 5.5.3), “Challenges” (section 5.5.4), and “Approaches” (sec-

tion 5.5.5). It may be helpful to refer to the coding guide in appendix B.1 while reading

the following findings.

5.5.1 Motives for evolution

The first topic that the content analysis examined was the impetuses that motivate

evolution—the catalysts that drive an organization to carry out major changes to its

software systems. Of course, there is a great deal of previous research on reasons

for software changes. One of the first influential taxonomies of software change was

the one proposed by Swanson [213] in 1976, which identified three main kinds of

software maintenance: (1) corrective maintenance, designed to address failures of a

software system; (2) adaptive maintenance, designed to respond to changes in the

environment; and (3) perfective maintenance, designed to improve a software system

that is already working adequately. Swanson’s taxonomy was so influential that it

was incorporated, many years later, into ISO/IEC 14764 [109, § 6.2], an international

standard on software maintenance, with the addition of a fourth type: preventive

90

5.5 Findings

maintenance. For a more modern ontology of software maintenance, see Chapin

et al. [48].

Very little research has been done on motivations for architectural evolution specif-

ically. Of course, many of the motivations for low-level software maintenance can

also be motivations for architecture-level software evolution and vice versa, but

there are likely some important differences, which previous work has rarely exam-

ined. Williams & Carver [222] developed a taxonomy called the Software Architecture

Change Characterization Scheme, which categorizes architectural changes along a

number of dimensions including a change’s motivation, source, importance, and

so on. Their taxonomy incorporates only two classes of motivation for architec-

ture changes: changes motivated by the need for an enhancement, and changes

in response to a defect [222, § 5.2.1]. Besides being reductive in the extreme, this

dichotomy has another problem: Williams & Carver’s taxonomy is based on a litera-

ture review of work on software maintenance generally (such as the aforementioned

work by Swanson and Chapin) rather than any research specifically focusing on

architecture-level change. Thus, while it purports to be a taxonomy of architectural

change, it is not actually based on architecture research. Similarly, Jamshidi et al.

[112, table 6], in their classification framework for “architecture-centric software

evolution,” borrow the software maintenance typology from ISO/IEC 14764 for their

“Need for Evolution” dimension.

I am aware of one empirical study that has examined causes of architecture-level

evolution specifically. Ozkaya et al. [178, § 4.2.1], in an interview-based survey of

nine software architecture projects, collected data on the causes of the evolutions

that the survey participants described. Responses included new features, market

change, technology obsolescence, and scalability.

Clearly, more research investigating motivations for architectural change is needed.

Of course, the objective of this case study was by no means to develop a general

taxonomy of motivations for architecture evolution. Data from a single case study at a

single organization would provide insufficient evidence to support such a taxonomy

even were it my wish to construct one. But what this data can do is help inform

us as to how practicing architects in a real software organization think about and

describe the causes of evolution, and it can also illuminate the rest of the case study

by properly setting the context.

The interviewees I spoke with mentioned a variety of motivations for evolution,

which I grouped into seven categories. These are listed in table 3.

Table 3 illustrates the basic format that all the frequency tallies from the content

analysis will use. The subcategories of the relevant category from the coding frame

are listed, along with the frequencies with which they appeared in the coded data.

The frequency of a category can be reasonably measured in any of three ways in this

study: by counting the number of individual coding units to which the category is

assigned, by counting the number of interviews in which the category occurred at

all, or by counting the number of participants who had any statements to which the

category was assigned. (There is not a one-to-one correspondence between inter-

views and participants because some participants took part in multiple interviews,

and in some interviews two participants were present.) None of these measures is

91

5 Case study: Architecture evolution at Costco

Frequency Frequency Frequency

(coding units) (interviews) (participants)

Add features 12 4 3

Improve interoperability 9 3 2

Modernize technology 5 4 3

Keep apace of business needs 3 3 3

Improve reliability 3 2 2

Improve flexibility 3 1 1

Improve performance 2 2 2

Table 3. Stated motivations for architecture evolution

perfect. Probably the most customary choice would be the number of interviews,

since content analysts most often count their results with respect to the unit of anal-

ysis, which in this case is an interview. However, the divisions between interviews

are not particularly meaningful here. For example, in one case an interview was

ended on Monday afternoon so that the participant could head home at the end of

the workday, then resumed on Tuesday; this was treated as two separate interview

sessions. So a more natural measure might be the number of participants, rather

than the number of interviews. Both of these measures, though, are quite coarse,

since the total number of participants was rather low. A more fine-grained measure is

the number of coding units, but this has problems too. The coding units in this study

varied dramatically in length, ranging from a short phrase to multiple paragraphs, so

different coding units may not carry equal weight. Although none of these measures

is perfect, in concert they give a very good sense of how often the categories occurred.

Several of the categories that appear in table 3—improving flexibility, improving

performance, improving reliability, and improving interoperability—fall under the

general heading of improving architectural qualities. Thus, if I were to summarize

these results in a sentence, I would say that most of the evolutions that architects

described arose from one of three general motivations: adding new features, mod-

ernizing old technology, or improving a system’s architectural qualities.

The full case study report describes in detail each category that appears in table 3

and interprets it with respect to the interview data I collected. For space reasons, I

do not reproduce this discussion here. Before concluding, however, is is important

to note that these results—and especially the relative frequencies with which the

categories occurred—are probably somewhat specific to Costco. Costco is a decades-

old company with a mature IT organization—one that is at present undergoing

significant growth. Thus, it is not surprising that much of the evolution effort there is

focused on modernizing obsolescent systems and ensuring that the architecture can

meet the business’s performance and reliability needs, for example. Were we to repeat

this case study in a different kind of company—a five-year-old start-up, for example—

the results would likely be different. A small, young organization would probably be

92

5.5 Findings

much less driven by issues of technology modernization and scale, and perhaps more

driven by feature development or other kinds of evolution. (Evolution in general

would likely also constitute a lower proportion of software development activities,

with greenfield development of new software systems being more prominent.) Thus,

in generalizing these results, and those of the following sections, it is important that

we keep in mind what special qualities of the case under study may have influenced

the results, and to scope our generalization accordingly. I will return to the issues of

generalization and external validity in section 5.6.3.

Finally, it should be emphasized that the fact that certain causes don’t appear in

table 3 does not mean that such causes are not important. For example, the fact that

technical debt, or the architectural messiness of legacy systems, does not appear here

doesn’t mean that that isn’t an important factor in evolution for the company. On

the contrary, it certainly is. However, the participants in the study did not generally

speak in those terms in their impromptu explanations of reasons for evolution—or

to the extent that they did, those remarks were categorized under “Evolution motives:

Modernize technology” and thus grouped in with other considerations pertaining to

the need to modernize technology. Thus, care should be taken in drawing negative

conclusions from these results—conclusions that unnamed causes are not important.

The categories that appear in table 3 are those that naturally emerged from the

data. (Recall that the definition of the subcategories in content analysis 1 was almost

entirely data-driven, or inductive, not concept-driven, or deductive.) The results here

thus do several things: they highlight some important classes of evolution motives

that demonstrably do occur in a real-world organization, they allow comparison

of the relative frequency with which those motives were reported, and they show

how architects in the case study described the causes of evolution. But they don’t

permit us to infer anything about the frequency or importance of causes that were

not explicitly mentioned.

5.5.2 Causes of problems

The second top-level category of the content analysis was causes of problems—

circumstances that architects described as leading to specific negative outcomes

during the course of an evolution project. (I also coded the consequences of such

circumstances; see section 5.5.3.)

Of all the major categories, “Causes of problems” was the least frequent, and

“Consequences” was the second least frequent. This means that participants spoke

less about problems than they did about motives, challenges, and approaches. There

are a few possible reasons for this. One possibility is that participants were reticent

to speak about the company’s failures; it would be understandable that architects

might want to put their best foot forward in representing the company to an outsider,

especially a researcher who was going to make the results of his study public. There

may be an element of truth to this. However, my impression was that the people I

spoke with were generally quite candid with me. Many of them were quite frank in

discussing disagreements that they had had with other architects, or cultural factors

that they believed were problematic. Many of them also expressed a sincere desire

93

5 Case study: Architecture evolution at Costco

Frequency Frequency Frequency
(coding units) (interviews) (participants)

Cultural inertia 4 2 2

Architects spread across the

organization

2 1 1

Addressing too many problems

up front

2 1 1

Lack of experience 1 1 1

Forking an off-the-shelf package 1 1 1

Ill-timed changes 1 1 1

Table 4. Stated causes of evolution problems

to facilitate the case study and to help me obtain the best results possible. It seems

unlikely that problems were deliberately concealed.

That said, it is certainly possible that participants phrased their answers diplomat-

ically to avoid casting their employer in an unduly negative light. For example, if an

architect believed that decision X had been a mistake, he might not directly say, “We

made a mistake with decision X and ran into trouble because of that.” Instead, he

might say, “Making good decisions about X has been particularly challenging for us.”

But if he phrased it this way, the statement would be coded as a challenge instead of

as a cause of a problem.

This brings us to another factor that could have contributed to the low number

of coding units: the coding frame. The coding frame provided specific guidance for

distinguishing between causes of problems and challenges: only if a circumstance

caused a specifically articulated negative outcome should it be categorized under

“Causes of problems;” otherwise, it should be categorized under “Challenges.” Per-

haps this criterion was too constraining, and greater liberties should have been taken

in reading between the lines to distinguish between general challenges and causes

of specific problems. Alternatively, perhaps these two categories should have been

merged to avoid the issue entirely.

A final possibility is that there genuinely have not been many poor decisions

that resulted in adverse consequences. Certainly, the company has a mature IT

organization with many experienced, thoughtful, and skilled architects. Perhaps

they have successfully averted or mitigated issues that might otherwise have caused

significant problems.

Because there were few coding units identified as causes of problems, each sub-

category had only a handful of occurrences—and in some cases, only one. The

frequencies are given in table 4. These categories are discussed and explained in the

full case study report [17, § 5.2]. For space reasons, I do not reproduce this discussion

here.

94

5.5 Findings

Frequency Frequency Frequency

(coding units) (interviews) (participants)

Wasted effort 6 4 4

Delays in evolving 2 2 2

Limited upgradability 1 1 1

Lost sales 1 1 1

Table 5. Stated consequences of evolution problems

5.5.3 Consequences

“Consequences” is the sister category to “Causes of problems.” It describes the bad

outcomes that resulted from issues such as those discussed in section 5.5.2. The

frequencies from the content analysis appear in table 5. For further discussion of this

category, see the full case study report [17, § 5.3].

5.5.4 Challenges

An interview-based case study provides a unique opportunity to learn about the

challenges that real-world architects face. Software architecture research, including

our research, is often driven by researchers’ beliefs about what will help practicing

architects. These beliefs are often founded on our subjective impressions, general-

izations from our own experiences, and informal conversations with practitioners.

However, it is important to ground these beliefs with real empirical data whenever

possible, and one of the best ways to do so reliably is to ask architects about the

challenges they face in the context of a research interview.

“Challenges” should be understood broadly here. I collected data on all kinds of

challenges that architects face in evolving systems—not just the kinds of challenges

that appear to be addressable through new tools or approaches. Encouraging archi-

tects to speak freely about the challenges that they face, rather than simply asking

them about the narrow classes of challenges that our research is designed to address,

gives us the broadest and least biased picture of architects’ needs, and helps us to

accurately understand the role that approaches like ours can play in addressing a

realistic subset of the challenges that architects face.

Frequencies appear in table 6. The most common code was “Communication,

coordination, and integration challenges,” an expansively defined category that

includes a broad range of difficulties, including challenges of communication among

people, challenges in coordinating efforts, and challenges in integrating systems.

When developing the coding frame, I chose to group these somewhat disparate topics

together under a single category because issues of organizational communication

are often closely tied to issues of software integration. With 22 occurrences, this

category was extremely common—the second most frequently applied category

in the entire coding frame. Broadly speaking, this suggests that participants view

95

5 Case study: Architecture evolution at Costco

Frequency Frequency Frequency
(coding units) (interviews) (participants)

Communication, coordination,

and integration challenges

22 7 5

Dealing with rapid change and

anticipating the future

13 6 4

Business justification 9 6 5

Dealing with legacy systems 9 5 5

Scalability, reliability, and

performance

8 2 3

Managing the expectations and

experience of users and

stakeholders

7 4 5

Managing people 7 3 3

Inadequate guidance and tool

support

6 4 4

Cultural challenges 5 3 3

Lack of expertise or experience 5 3 3

Divergent understandings of

architecture

4 2 2

Managing scope and cost 3 3 3

Dealing with surprises 3 2 2

Table 6. Stated challenges of architecture evolution

communication and coordination challenges as a very important consideration in

architecture evolution efforts.

One significant theme that emerged particularly often was integration issues

among simultaneously evolving systems. Because so many different systems are

evolving as part of the company’s overall modernization effort, integration issues

among those systems arise continually. Architects have to understand not only the

future state of their own system, but also that of the other systems with which their

system interoperates. One architect working on the point-of-sale evolution studied

in section 5.4 explained:

It’s not enough to say I’m going to upgrade my point-of-sale system,

which is a huge and daunting task in and of itself here at Costco. When

you talk about all of the dependencies and all of the different compo-

nents that are going to be interacting with point-of-sale, now you’ve got

a unfathomable challenge in front of you, and it really takes a lot of focus

to keep from getting into trouble.

After communication and coordination issues, the next most frequently occurring

96

5.5 Findings

category was “Dealing with rapid change and anticipating the future.” This, too, is

an umbrella category that encompasses a few different meanings: planning ahead

in the face of rapid change, seeing the long-term ramifications of decisions, esti-

mating future effort, adapting industry advances to the company, and realizing a

long-term vision. What all these topics have in common is that they describe chal-

lenges involved in making good decisions in a rapidly changing environment. The

high frequency with which this category appeared in the data suggests that this is

viewed as a particularly important challenge. As one participant explained:

You really have to have that ability to shift gears and change directions

quickly, because the technology landscape changes so fast, and when

you’re on a project that’s going to run three to five years, changes are

inevitable.

The third most frequent category of challenge was “Business justification,” which

captures challenges in justifying architectural decisions in business terms, ensuring

that software systems support business goals, understanding business needs, and

so on. One participant characterized executive-level support for architecture as the

biggest single issue that the industry faces with respect to architecture evolution,

while emphasizing that this is not such a big problem at Costco:

I think in terms of architecture, what I’ve seen the biggest challenges

are executive buy-in on the architecture function in general, because

when you throw architects in at the beginning (goodness, I hope it’s at

the beginning) of a project, you’re adding time to it, and when you’ve

got a request from the business, or you’re comped on time to market,

then there’s not a whole lot of effort that you want to put into initial

architecture. We’ve been fortunate that we’ve got CIO buy-in of what

we’re doing. But I think that’s probably the largest obstacle, and when I

meet with other people who run EA and solutions architectures groups

from other companies, they always say that that’s the largest challenge

they face.

“Dealing with legacy systems” is a reasonably self-explanatory category. This was

explained to me particularly vividly in an interview with a pair of architects:

Participant 1: One of the sad things that Costco came to realize is that

the applications that were built [. . .] here over time—over the twenty-

five or thirty years or so that the mid-range systems were here—really

grew organically, and there wasn’t comprehensive architectural thinking

going on in the early days, to the point where you had a big ball of string.

And now it’s so brittle that the simplest changes are taking months and

months, and it’s just not really good.

Participant 2: Part of the problem is understanding the existing archi-

tecture that exists, even if it wasn’t architected by design.

97

5 Case study: Architecture evolution at Costco

P1: Yeah, and I would say that’s probably optimistic—understanding the

architecture. Really there was no architecture. [. . .] We got an analysis

tool that we put onto our system and we had it do a drawing of all of the

components and the relationships, and honestly it looked like a ball of

yarn—the big red dots all around the outside with lines going everywhere.

We said, well, that’s the problem right there.

This can be viewed quite naturally as an example of technical debt. In failing to

manage the overall design of its early systems as they were built, maintained, and

evolved over the years, the company has been accruing a kind of architectural debt—

debt which is now coming due as the company struggles to make major changes to

these systems.

For further discussion of these categories as well as explanations of the other

categories of challenges, see our case study report [17, § 5.4].

5.5.5 Approaches

This final section of findings from content analysis 1 answers the question: what

approaches do architects in a real-world software organization currently use to

manage major evolution efforts?

At the beginning of the study, I conjectured that architects currently have few

practical approaches for managing major evolutions, and that I would find that

architects therefore have little to say about the techniques they use to plan and

carry out evolution. But in fact “Approaches” turned out to be the most frequently

occurring of all the major categories. Not only that, but the coding units in this

category were longer, on average, than the coding units in any of the others. Thus,

architects frequently and at great length about the methods they use to manage

evolution.

As with the other categories, the topic of this category was construed quite broadly

for coding purposes. That is, the “Approaches” category includes not only concrete

techniques such as tools and formal methods, but also very informal strategies

and rules of thumb. Thus, the mere fact that the “Approaches” category occurred

frequently does not, by itself, contradict the conjecture that architects lack formal

techniques for managing software evolution. That question can be addressed only

once we have examined the subcategories, which we will now proceed to do. The

frequencies are given in table 7.

Just as “Communication, coordination, and integration challenges” was the most

frequently occurring subcategory of “Challenges,” so is “Communication and co-

ordination practices” the most frequent subcategory of “Approaches”—indeed, the

most frequently occurring subcategory in the entire coding frame. This suggests that

communication and coordination issues are tremendously important in managing

architecture evolution. As one architect explained:

A lot of this is just doing what works for you. It’s really more about

communication than architecting systems. That collaboration aspect, I

think, is absolutely paramount to the success of an architect. You have

98

5.5 Findings

Frequency Frequency Frequency
(coding units) (interviews) (participants)

Communication and

coordination practices

25 7 6

Organizational strategies and

structures

17 5 5

Phased development 15 4 3

Drawing from expert sources 13 5 4

Rules of thumb and informal

strategies

13 5 4

Tools 12 5 5

Anticipating the future 8 5 4

Prototypes, pilots, etc. 8 4 4

Training 8 4 4

Business architecture 8 3 3

Formal approaches 6 4 4

Experience and intuition 6 3 2

Process 4 3 3

Industry practices 3 3 3

Considering alternatives 1 1 1

Table 7. Stated approaches for architecture evolution

to talk to lots of people all the time. The drawings don’t have to be that

precise, as long as they communicate the information.

Participants mentioned a variety of communication and coordination practices that

can facilitate architecture evolution, including prioritization of projects, appropriate

use of architectural documentation, coordination on dates of delivery for internal ser-

vices, organizational standardization on certain technologies, alignment of parallel

efforts, providing guidance on best practices within the organization, understanding

political implications of architectural decisions, and maintaining a feedback loop

between architects and developers.

The second subcategory, “Organizational strategies and structures,” captures ar-

chitects’ explanations of the organizational structure of the IT department and how

it supports architectural efforts. I have already described the organizational structure

in section 5.1.2.

There were 15 occurrences of the category “Phased development,” which captures

situations in which architects described breaking projects down into manageable

phases or stages. As one architect told me, planning a large, complex evolution

in phases is often a practical necessity: “you can’t just Big Bang something like

that.” This category is significant because it describes the same basic approach

99

5 Case study: Architecture evolution at Costco

that we have taken in our research: breaking down a large evolution into smaller

steps that can be more easily understood and managed (or conversely, building up

small operations into a large evolution). The high frequency with which architects

described this technique in the interviews suggests that in this respect, architects are

already using the kind of stage-based reasoning that our approach is based on. This

is an encouraging sign for the realism and practicality of our approach.

The remaining categories are discussed in detail in the case study report [17, § 5.5].

Here it suffices to conclude that architects currently have a variety of approaches that

they use to manage architecture evolution, but many of these approaches are highly

informal or consist of general strategies rather than specific methods. The architects

I spoke with do not have tools of the sort that our research aims to develop: tools for

developing and evaluating end-to-end plans for rearchitecting a software system.

5.6 Conclusions

5.6.1 Answers to the research questions

I now return to the case study research questions articulated at the beginning of this

chapter and document explicitly how they have been answered.

1. How do practicing architects in a real-world software organization plan and
reason about evolution? This question was addressed by content analysis 1,

particularly the “Approaches” category of the content analysis (and to a lesser

extent the “Evolution motives” category, which describes the significant cata-

lysts that architects mentioned as driving evolution). To summarize, we found

that architects have a remarkably wide range of strategies and approaches that

they use to manage architecture evolution. The most prominent category of ap-

proaches in the interview data was communication and coordination practices,

suggesting that issues of communication and coordination are very important

in managing architecture evolution. Other particularly frequently mentioned

approaches for managing architecture evolution included the use of organi-

zational strategies and structures, breaking down software development into

manageable phases, taking advantage of expert sources such as consultants

and books, and using various rules of thumb and informal strategies.

2. What difficulties do practicing architects face in planning and carrying out
evolution? This research question was also addressed by content analysis 1—

particularly the “Challenge” category, as well as the “Causes of problems” and

“Consequences” categories. By far the most commonly mentioned category of

challenges was “Communication, coordination, and integration challenges.”

This corresponds neatly to the result mentioned above that “Communica-

tion and coordination practices” was the most frequent subcategory of “Ap-

proaches.” This reinforces the conclusion that communication and coordina-

tion issues are extraordinarily important in managing architecture evolution in

practice. Specific challenges mentioned within this subcategory include docu-

mentation challenges, challenges of architecture conformance, and challenges

in coordinating with an off-site development team, among others.

100

5.6 Conclusions

Other significant classes of challenges identified by the content analysis in-

clude anticipating future developments, justifying decisions in business terms,

dealing with legacy systems, assuring architectural qualities such as scalability

and reliability, and managing stakeholder expectations.

Understanding the challenges that architects face helps us to position our

research with respect to the current state of architectural practice. Our work

has at least a small role to play in many of these challenges. For example, one

of the goals of our work is to support reasoning about integration activities

during the course of an evolution, which might help forestall certain integration

problems. But clearly there are some categories, such as “Managing people”

and “Cultural challenges,” to which our work is irrelevant.

3. How well can our modeling framework capture the concerns that arise in a
real-world architecture evolution? This research question was addressed by

content analysis 2 and the evolution model that was constructed based on it.

The construction of the evolution model is described in detail in section 5.4.

The great majority of the operators, constraints, and evaluation functions iden-

tified by the content analysis could be modeled using our approach, although

a few of them were not suitable for modeling, often because they were too

low-level (pertaining to implementation details rather than architecture) or

too high-level (encompassing a broad range of specific considerations that

were not understood in sufficient detail to model).

These results are generally encouraging. However, understanding their significance

requires us to assess their reliability and validity.

5.6.2 Reliability

There are two broad quality dimensions that are of paramount importance in quali-

tative research: validity and reliability. An instrument is said to be valid to the extent

that it captures what it sets out to capture and reliable to the extent that it yields data

that is free of error. In this section, I evaluate and discuss the reliability of this case

study. In the following section, I will consider validity.

The most well-known treatment of content analysis reliability is that of Krippen-

dorff [122], who distinguishes among three kinds of reliability:

• Stability, the degree to which repeated applications of the method will produce

the same result

• Reproducibility, the degree to which application of the method by other ana-

lysts working under different conditions would yield the same result

• Accuracy, the degree to which a method conforms to a standard

These are listed in order of increasing strength; reproducibility is a stronger notion

of reliability than stability is, and accuracy is the strongest of the three. However,

accuracy is only occasionally relevant in content analysis, because it presumes that

there is some preexisting gold standard to use as a benchmark, such as judgments by

a panel of experienced content analysts. In many content analyses, especially those

101

5 Case study: Architecture evolution at Costco

exploring new domains or topics, there is no such gold standard to use. In addition,

as Krippendorff [122, p. 272] explains, accuracy is a problematic concept for content

analysis even in principle: “Because interpretations can be compared only with other

interpretations, attempts to measure accuracy presuppose the privileging of some

interpretations over others, and this puts any claims regarding precision or accuracy

on epistemologically shaky grounds.” Thus, the two main forms of reliability which

are normally relevant to content analysis are stability and reproducibility.

Let us begin with stability. The most direct way of assessing the stability of an

instrument is through the use of a test-retest procedure, in which the instrument

is reapplied to the same data to see if the same results emerge. In fact, stability is

sometimes called “test-retest reliability” or simply “repeatability.” I incorporated

a test-retest procedure into the design of the content analysis. For each of the two

content analysis, I conducted a second round of coding at least 17 days after the

initial coding. (As mentioned in section 5.3.7, Schreier [195, p. 146] recommends that

at least 10–14 days elapse between successive codings by the same researcher.) Once

two rounds of coding have been completed, the results can be compared to evaluate

the degree to which they agree. This provides a measure of intrarater agreement (also

known by other similar names such as intracoder reliability, intra-observer variability,

etc.).

Intrarater agreement can be quantified using the same metrics that are used to

measure interrater agreement in studies with multiple coders. There are a large

number of such metrics [84, ch. 18; 184], but there are four that are most popular in

content analysis: percent agreement, Scott’s π, Cohen’s κ, and Krippendorff’s α.

Percent agreement is the simplest and most obvious metric for quantifying in-

trarater or interrater agreement. It is exactly what it sounds like: the percentage of

coding units that were categorized the same way in both codings. For example, in

our content analysis 1, there were 306 coding units total across the eight interviews,

of which 280 were categorized the same way in the initial coding and the recoding;

thus, the percent agreement was 280/306 = 91.5%. This metric is intuitive and easy to

calculate, but it is also problematic. In particular, it does not account for agreement

that would occur merely by chance. Thus, the metric is biased in favor of coding

frames with a small number of categories, since by chance alone, there would be a

higher rate of agreement on a two-category coding frame than on a forty-category

coding frame.

To address this problem, researchers developed more sophisticated interrater

agreement measures, which correct for both the number of categories in the coding

frame and the frequency with which they are used. The most important of these

are Scott’s π [198], Cohen’s κ [54], and Krippendorff’s α [120; 122]. All of these are

calculated by (Po −Pe)/(1−Pe), where Po is the percent agreement as defined above

and Pe is the percent agreement to be expected on the basis of chance. They differ in

how the expected agreement Pe is calculated. Informally, these coefficients measure

the degree to which interrater agreement exceeds the agreement that would be

expected by chance. A value of 1 indicates complete agreement, a zero value indicates

that the agreement is no better than chance, and a negative value indicates agreement

worse than chance.

102

5.6 Conclusions

% agreement π κ α

Content analysis 1 91.5% 0.912 0.912 0.912

Content analysis 2: “Classification” 94.7% 0.936 0.936 0.936

Content analysis 2:

“Presence in initial architecture”

91.8% 0.874 0.874 0.874

Content analysis 2:

“Presence in target architecture”

93.8% 0.900 0.900 0.900

Table 8. Intracoder reliability measures: percent agreement, Scott’s π, Cohen’s κ,

Krippendorff ’s α

The differences among the use of these coefficients are subtle, and some method-

ologists have expressed strong opinions about their appropriateness or inappropri-

ateness for various uses [121]. For our purposes, the distinctions are unimportant,

since π, κ, and α are all approximately equal for our data.

Our intracoder reliability figures appear in table 8. These measures were calculated

with ReCal2, an online utility for calculating reliability coefficients [90], and a subset

of the measures was verified by hand in Microsoft Excel. For content analysis 1, only

one set of measures is shown, since each coding unit could be assigned exactly one

category from anywhere in the coding frame. In content analysis 1, there were 306

coding units and 45 categories (i.e., the total number of subcategories that appear in

appendix B.1.2, excluding the residual categories “mot-?,” “cau-?,” “con-?,” “cha-?,”

and “app-?,” which were never used). For content analysis 2, on the other hand, three

sets of reliability measures are shown, one for each main category. This is because

each coding unit in content analysis 2 could be assigned three categories—one

subcategory of each main category. There were 208 coding units in content analysis 2.

There were ten subcategories of the “Classification” category (including the residual

category “c-?,” which was occasionally applied, unlike the residual categories in

content analysis 1). There were three effective subcategories of the “Presence in

initial architecture” category, and likewise for “Presence in target architecture”; in

addition to the two that appear in appendix B.2.2 (“Present” and “Absent”), “Not

coded” was treated as a third, implicit subcategory for the purpose of the reliability

analysis. (Per the coding guide, coding units identified as corresponding to software

elements such as components and connectors were to be coded as present or absent

in the initial and target architectures, while coding units identified as corresponding

to non–software elements such as constraints and containment relations were not to

be so coded. However, it turns out that I failed to adhere to this protocol consistently.

In particular, I often incorrectly treated containment relations as though they were

software elements, and coded them for their presence or absence in the initial and

target architectures. In fact, this particular coding error accounted for a large portion

of the disagreements in content analysis 2, depressing the reliability figures in table 8.)

All twelve of the reliability coefficients in table 8 are between 0.87 and 0.94. But

how are we to interpret these figures? Well, there are no universally accepted thresh-

103

5 Case study: Architecture evolution at Costco

olds, but a number of methodologists have put forth guidelines. Krippendorff [122,

p. 325] recommends α= 0.8 as a reasonable cutoff, with figures as low as α= 0.667

acceptable when drawing tentative conclusions and in cases where reliability is less

important. Another well-known recommendation is that of Fleiss et al. [84, p. 604],

who describe κ> 0.75 as indicating “excellent” agreement, 0.40 ≤ κ≤ 0.75 as indicat-

ing “fair to good” agreement, and κ< 0.40 as “poor.” Various other rules of thumb

have been proposed [107, § 6.2.1; 164, p. 143].

There are a couple of problems with directly applying any of these well-known

and widely used guidelines here. First, these guidelines are intended for assessing

interrater, not intrarater, reliability. It seems reasonable to hold intrarater reliability

to a higher standard than interrater reliability, since one is more likely to agree with

oneself (even one’s past self) than with another person.

Second, these guidelines are intended primarily for use in quantitative research. Ar-

guably different standards should be applied to qualitative content analysis. Schreier

[195, p. 173] writes:

In qualitative research, you will typically be dealing with meaning that

requires a certain amount of interpretation. Also, coding frames in [qual-

itative content analysis] are often extensive, containing a large number

of categories. In interpreting your coefficients of agreement, you should

therefore never use guidelines from quantitative research as a cut-off

criterion [. . .], as in: ‘Oh, my kappa coefficient is below 0.40—it looks

like I will have to scrap these categories’. Instead, what looks like a low

coefficient should make you take another closer look both at your mate-

rial and your coding frame. Perhaps, considering your material and the

number of your categories, a comparatively low coefficient of agreement

is acceptable—this is simply the best you can do.

Schreier may be incorrect in suggesting that a large number of categories justifies

laxer standards for reliability coefficients, since chance-adjusted coefficients such

as π, κ, and α already account for the number of categories. However, the degree

of interpretation required to apply a coding frame is a very good reason to treat

qualitative content analysis differently from quantitative content analysis. Even

Neuendorf [164, p. 146], who is dismissive of qualitative content analysis generally,

argues that content analyses that require significant interpretation should be subject

to more relaxed reliability standards: “Objectivity is a much tougher criterion to

achieve with latent than with manifest variables, and for this reason, we expect

variables measuring latent content to receive generally lower reliability scores.”

Although this discussion has not yielded any precise thresholds to anchor our

interpretation of the reliability figures in table 8, it should by this point be clear that

coefficients of 0.87 to 0.94 are fairly high by almost any standard. Even considering

the fact that these are coefficients of intrarater, not interrater, agreement, it seems

reasonable to conclude that we have adequately demonstrated stability.

This leaves the other main reliability criterion relevant to content analysis: repro-

ducibility. Most commonly, reproducibility is measured through interrater agreement.

In this sense, reproducibility is synonymous with terms such as “interrater reliability”

104

5.6 Conclusions

and “intersubjectivity.” Of course, with a single-coder study design, interrater reli-

ability cannot be assessed. Schreier [195, p. 198] recommends that in a qualitative

content analysis in which a single researcher is coding the data alone, a second round

of coding (at least 10–14 days after the main coding) should be used as a substitute

for using multiple coders to assess reliability, implying that intrarater agreement may

be used as a substitute for interrater agreement in single-coder content analyses and

that stability alone is a sufficient indicator of reliability in such cases. Ritsert [189,

pp. 70–71] takes a similar position: “In an analysis by an individual, the important

possibility of intersubjective agreement as to the coding process is precluded, but the

methods of ‘split half’ or ‘test retest’ can still provide an individual with information

on the consistency and reliability of his judgments.”9

On the other hand, Krippendorff [122, p. 272] argues that stability “is too weak to

serve as a reliability measure in content analysis. It cannot respond to individually

stable idiosyncrasies, prejudices, ideological commitments, closed-mindedness, or

consistent misinterpretations of given coding instructions and texts.” On similar

grounds, Neuendorf [164, p. 142] writes that “at least two coders need to participate

in any human-coding content analysis.”

It is thus fair to say that there is no consensus in the content analysis literature

about the adequacy of stability as a measure of reliability, and it would be misleading

to assert that a single-coder content analysis design with stability as the primary

reliability measure is uncontentious. However, there are certainly methodologists

who do consider it an acceptable choice, and indeed content analyses with single-

coder designs are common in the literature.

However, even in the absence of intercoder agreement as a reliability measure,

reproducibility and intersubjectivity remain important goals in principle. A content

analysis should be reproducible at least in principle, even if no test of interrater agree-

ment was carried out in practice. Fortunately, there are other ways of getting at this

quality in the absence of multiple coders. A particularly helpful perspective comes

from Steinke [209, § 3], who argues that qualitative research needs to be evaluated

differently from quantitative research: “For qualitative research, unlike quantitative

studies, the requirement of inter-subject verifiability cannot be applied. [. . .] What is

appropriate in qualitative research is the requirement to produce an inter-subjective

comprehensibility of the research process on the basis of which an evaluation of

results can take place.” Steinke goes on to suggest that this intersubjective com-

prehensibility can be demonstrated in three ways. First, and most importantly, the

research process should be thoroughly documented so that “an external public is

given the opportunity to follow the investigation step by step and to evaluate the

research process.” Second, interpretations can be cross-checked in groups. Steinke

writes that a strong form of this method is peer debriefing, “where a project is dis-

cussed with colleagues who are not working on the same project.” Third, the use of

codified procedures can contribute greatly to intersubjectivity.

All three of these methods were used in abundance in this case study. If you

have reached this point in this lengthy discussion, the thoroughness with which the

9Translation from German mine.

105

5 Case study: Architecture evolution at Costco

research process was documented is not in question. In addition, in the process

of planning and carrying out this study, I consulted with many colleagues in my

department who were uninvolved with the research. Finally, the content analysis was

conducted in accordance with a rigorously constructed, comprehensively defined

coding frame, which is reproduced in its entirety in appendix B. In Steinke’s terms,

the detailed description of the research procedure and the use and publication of

codified procedures permits readers to evaluate the research process and hence

the results on their own terms. The publication of the coding frame also serves a

more direct replicability purpose: other researchers can adopt the coding frame

and apply it to other data to assess the extent to which the coding frame itself is

generalizable. (However, because the coding frame is heavily data-driven, it would

likely need to be adapted to be effective for use with other data. For example, in this

study, we identified “bridge,” “broker,” “bus,” “queue,” and “transfer” as indicators

signifying connector elements, but a different data set might use different words,

such as “channel,” “link,” “pipe,” and “stream.”)

Before concluding this discussion of reliability, it is useful to examine briefly how

reliability is treated in typical content analyses in the literature. After all, our aim

in applying content analysis in this case study is to adopt a methodology that is

commonly used in other disciplines—not to advance the current state of practice

in content analysis. Thus, irrespective of various methodologists’ opinions about

how reliability issues should ideally be handled and reported, it makes sense to see

whether our treatment of reliability is in line with common practice.

Indeed, it does not take much investigation to see that the current state of practice

with respect to the treatment of reliability in content analysis is unimpressive. There

have been several surveys investigating the treatment of reliability in published

content analyses. The most recent of which I am aware is Lombard et al.’s 2002

content analysis of content analyses [141], which found that only 69% of content

analyses indexed in Communication Abstracts between 1994 and 1998 included any

discussion of intercoder reliability. In those that did, only four sentences, on average,

were devoted to discussion and reporting of reliability. Only 41% of the studies

specifically reported reliability information for one or more variables, 6% had tables

with reliability information, and 2% described how the reliability was computed.

These results were broadly in line with earlier surveys. The state of practice may have

improved somewhat since Lombard et al.’s survey, but it is still easy to find content

analyses with no discussion of reliability.

Incidentally, since Lombard et al.’s survey was itself a content analysis, Lombard

et al. reported their own reliability figures: percentage agreement, Scott’s π, Cohen’s

κ, and Krippendorff’s α. It later turned out that due to bugs in the software they

had used to calculate these figures, they had themselves reported erroneous reli-

ability values [142]—an amusing illustration of the difficulty of getting reliability

reporting right. (I verified many of my reliability figures by hand to avoid any similar

embarrassment.)

In light of such results, it seems that our detailed treatment of reliability here puts

us ahead of the current state of practice in typical content analyses, even in the

absence of any measurement of intercoder reliability.

106

5.6 Conclusions

5.6.3 Validity

The situation with validity is more muddled than that with reliability. There are just

three main types of reliability that are relevant to content analysis—stability, repro-

ducibility, and accuracy—and reliability can be easily quantified via well-accepted

measures of coding agreement. But there is a bewildering array of flavors of validity:

internal validity, external validity, construct validity, content validity, face validity,

social validity, criterion validity, instrumental validity, sampling validity, semantic

validity, structural validity, functional validity, correlative validity, concurrent validity,

convergent validity, discriminant validity, predictive validity, ecological validity. All of

these, and others, have been described as relevant to content analysis. To evaluate

the validity of our content analysis, it is necessary to untangle this knot of concepts

and focus on the elements of validity most relevant to this research.

Krippendorff [122, ch. 13] identifies three broad categories of validity at the highest

level: face validity, social validity, and empirical validity.

Face validity. Krippendorff [122, p. 330] describes face validity as “the gatekeeper

for all other kinds of validity,” so it is a good place to start. Face validity is the extent

to which an instrument appears on its face to measure what it purports to measure.

Face validity thus appeals to a commonsensical evaluation of the plausibility of a

study. Neuendorf [164, p. 115] explains:

It’s instructive to take a “WYSIWYG” (what you see is what you get) ap-

proach to face validity. If we say we’re measuring verbal aggression, then

we expect to see measures of yelling, insulting, harassing, and the like.

We do not expect to find measures of lying; although a negative verbal

behavior, it doesn’t seem to fit the “aggression” portion of the concept.

In the context of a content analysis such as this one, face validity may be assessed by

considering whether the coding procedure appears to correspond with the concept

being measured—the research questions. In section 5.6.1, I examined how our

research questions are addressed by the findings of the content analysis (and the

modeling phase that followed the content analysis). In addition, the coding guide

appears in appendix B. By direct examination of the coding guide, it can be seen that

the coding frame appears on its face to capture the concepts it sets out to capture.

Face validity, however, is a low bar—the mere appearance of measuring the correct

concept. Weber [220, p. 19] calls it “perhaps the weakest form of validity.” I now

continue to examine other kinds of validity relevant to content analysis.

Social validity. The term “social validity” was introduced in 1978 by Wolf [224] in

the field of applied behavior analysis. In its original sense, the term refers to how

well a social intervention is accepted by those who are meant to benefit from it. This

sense is relevant only to interventionist methodologies such as action research.

In content analysis, social validity has a rather different meaning. (For a discussion

of how a variety of meanings of “social validity” arose subsequent to the initial

introduction of the term, see Schwartz & Baer [196].) A useful definition is given

by Riffe et al. [188, p. 137], who describe social validity as hinging on “the degree

107

5 Case study: Architecture evolution at Costco

to which the content analysis categories created by researchers have relevance and

meaning beyond an academic audience.” Social validity thus gets at the importance

of research.

While social validity is a criterion that has seldom (if ever) been applied to software

engineering research, the idea of ensuring that research is relevant to the real world

is an important one. I have motivated our work here in terms of its relevance to prac-

ticing software architects. Software architects today, I have argued, face substantial

challenges in planning and executing major evolutions of software systems, and our

work aims to help address a subset of these challenges. Our work thus has social

validity to the extent it succeeds in having relevance to software practitioners.

Empirical validity. Krippendorff uses “empirical validity” as an umbrella term to

encompass a number of specific types of validity. In general, empirical validity gets

at how well the various inferences made within a research process are supported by

available evidence and established theory, and how well the results can withstand

challenges based on additional data or new observations. Assessments of empirical

validity are based on rational scientific considerations, as opposed to appearances

(face validity) or social implications (social validity). Empirical validity is a broad

concept with a number of distinct facets, which I will now proceed to examine.

There are several conventionally recognized types of validity that fall under the

heading of empirical validity: content validity, construct validity, and criterion validity.

Although some methodologists have undertaken critical examinations of challenges

in applying these (most notably, Krippendorff [122, ch. 13], after introducing and

explaining these concepts, introduces his own typology of validation for quantitative

content analysis), this trio of validities remains very popular in the literature and

continues to be embraced by many content analysis methodologists [164, pp. 115–

118; 195, p. 185].

Content validity. Content validity is the extent to which an instrument captures all

the features of the concept it is intended to measure. As Schreier [195, pp. 186–191]

notes, in a qualitative content analysis, content validity is of relevance to concept-

driven (deductive) coding frames. Data-driven (inductive) coding frames are instead

concerned with face validity. (The reason for this should be obvious. When the

categories are generated from the data, instead of being derived from a theory, there

is no expectation that they should capture any particular theoretical concept; instead,

the only concern is that they faithfully describe the data. But when categories are

derived from a theoretical concept, content validity is a concern, because it needs to

be shown that the categories adequately cover the concepts they purport to cover.) In

this study, only content analysis 2 used a deductive coding frame; the coding frame

for content analysis 1 was data-driven.

Here, the issue of content validity is a fairly straightforward one, because the

categories for content analysis 2 were taken directly from the key concepts in our

research—evolution operators, evolution constraints, and evolution path analyses

(called dimensions of concern in the coding frame)—as well as traditional software

architecture concepts such as components and connectors. (I consider here only the

108

5.6 Conclusions

This category should be applied to software

elements that are best characterized as con-

nectors.

—

A connector represents a pathway of inter-

action between two or more components.

A connector is a runtime pathway of inter-

action between two or more components.

[53, p. 128]

Examples of kinds of connectors include

pipes, streams, buses, message queues, and

other kinds of communication channels.

Simple examples of connectors are ser-

vice invocation, asynchronous message

queues, event multicast, and pipes that

represent asynchronous, order-preserving

data streams. [53, p. 128]

Although connectors are often thought of

as simple, some connectors are quite com-

plex, and connectors can even have an in-

ternal substructure, just as components

can. Thus, do not categorize an element

as a component simply because it seems

complex and bulky.

Like components, complex connectors may

in turn be decomposed into collections of

components and connectors that describe

the architectural substructure of those con-

nectors. [53, p. 128]

Instead, the determination of whether an

element is a component or a connector

should be guided by its function. If it is prin-

cipally a computational or data-processing

element, it should be categorized as a com-

ponent. If its principal role is to facilitate

communication between components, it

should be categorized as a connector.

If a component’s primary purpose is to me-

diate interaction between a set of compo-

nents, consider representing it as a connec-

tor. Such components are often best mod-

eled as part of the communication infras-

tructure. [53, p. 129]

Table 9. The description for the “Connector” category in content analysis 2 (left

column), juxtaposed with selected excerpts from Documenting Software Architec-

tures [53] (right column). Basing our category definitions on widely accepted descrip-

tions of the concepts under study bolsters their content validity.

“Classification” main category of content analysis 2; the other two main categories

are trivial and straightforward.)

For this study, then, the issue of content validity hinges on whether the category

definitions in appendix B.2.2 adequately capture the concepts that they claim to

capture. The descriptions of general software architecture concepts such as compo-

nents, connectors, and attachment relations in the coding guide were based heavily

on a widely used text on architectural representation, Documenting Software Archi-

tectures [53]. For example, compare the description of the “Connector” category in

content analysis 2 with selected passages from the text of Documenting Software

Architectures in table 9. Descriptions of the categories capturing concepts from our

approach (operators, constraints, analyses) were similarly based on our previous

own descriptions of those concepts.

109

5 Case study: Architecture evolution at Costco

Construct validity. Construct validity is “the extent to which a particular measure

relates to other measures consistent with theoretically derived hypotheses concern-

ing the concepts (or constructs) that are being measured” [43, p. 23]. As Krippendorff

[122, p. 331] explains, this concept “acknowledges that many concepts in the social

sciences—such as self-esteem, alienation, and ethnic prejudice—are abstract and

cannot be observed directly.” In this study, we are measuring the concepts we wish

to measure rather directly; we are not using easily observable qualities as a proxy for

difficult-to-observe qualities. Thus, construct validity is of little relevance here.

Criterion validity. A procedure has criterion validity (also called instrumental valid-

ity or pragmatic validity) “if it can be shown that observations match those generated

by an alternative procedure that is itself accepted as valid” [117, p. 22]. Like construct

validity, criterion validity is of limited relevance here. There are no accepted proce-

dures for measuring the qualities that our coding frame seeks to get at, and hence no

basis for assessing or discussing criterion validity.

There is one final type of validity that is highly relevant here: external validity,10

or generalizability. Determining the appropriate scope of inference—the degree to

which results can be generalized—is one of the most challenging and important

aspects of the validation of a content analysis that seeks to have meaning beyond

the immediate context of the data it is based on, or of a case study that aims to have

implications beyond the case it examines. Since this work is both a content analysis

and a case study (or more precisely a case study that incorporates a content analysis),

the problem of generalizability is particularly acute.

It is helpful to bear in mind a few points. First, generalizability is not all-or-nothing.

A study is not “generalizable” or “ungeneralizable.” Rather, a study is generalizable

to a certain extent—in certain respects and to certain contexts. The question is not

whether this case study is generalizable, but to what extent (in what respects, to

which contexts) it is generalizable.

Second, a case study is not generalizable in the same sense that a study based on

statistical sampling is generalizable. In a typical observational study or controlled

experiment, generalization is straightforward. The study is conducted on a sample

of some population, and the study is generalizable to the extent that the sample is

representative of the population. In a case study, the goal is not statistical generaliz-

ability, but instead some notion of transferability or analytic generalizability.11 The

10The appearance of “external validity” here may lead you to wonder why the corresponding term

“internal validity” appears nowhere in this section. Internal validity is the extent to which a study

adequately demonstrates the causal relationships it purports to demonstrate. Since we are not making

any causal claims—this is a descriptive and evaluative case study, not an explanatory one—there is no

issue of internal validity.
11There is considerable disagreement about the proper handling of generalization in case studies and

qualitative research generally. A summary of different schools of thought is given by Seale [199, ch. 8].

There are two particularly significant such schools, which I will summarize in this footnote.

The first camp holds that the proper criterion for generalizability of qualitative research is trans-

ferability. The goal of a case study, these methodologists say, is not to discover some kind of law

that is of general applicability to the world. Rather, it is to achieve a rich understanding of a single

110

5.6 Conclusions

case studied is unique, but the findings of the case study can still be applied to other

contexts.

Finally, there is another sense in which all-or-nothing thinking is unhelpful in rea-

soning about generalizability. Not only are there shades of gray in the generalizability

of the case study as a whole, but also different results of a single case study may be

generalizable in different ways. Some results may be highly specific to the context of

the case study, while other may be readily transferable to other cases.

With these points in mind, we can examine the issue of generalizability with re-

spect to our results. In evaluating analytic generalizability or transferability, we must

consider what special characteristics of the case may have influenced the results. For

example, in this case study, “Dealing with legacy systems” was among the most signif-

icant challenges of architecture evolution mentioned by participants. However, these

legacy challenges have a great deal to do with the history of the specific company un-

der study. At companies whose software systems have a similar history—companies

with large, complex software systems that date back decades, built on mainframes

using now-archaic technologies—this result would be transferable. And in fact, there

are many companies with such a history. But at a company whose software systems

have a very different history, the result would likely be quite different. Consider Ama-

zon.com, for example. Amazon.com certainly has challenges with legacy systems,

but they are quite different in character to those that Costco faces. Amazon.com is a

significantly younger company, and even it’s oldest systems are at worst dated, not

obsolete. And of course, a new start-up would have no legacy challenges at all.

On the other hand, the number one architecture evolution challenge that emerged

in this study was “Communication, coordination, and integration challenges.” There

is no clear a priori reason to expect particularly acute communication, coordination,

and integration challenges to arise in this case. On the contrary, the organization

studied has taken significant measures in recent years to ameliorate communication,

case through thick, naturalistic description, such that the results of the case study can be transferred

on a case-by-case basis to other contexts where they may be applicable. If we accept this notion of

transferability, then transferring the results of a case study requires not only an understanding of the

context of the case study itself, but also an understanding of the context to which the results are to be

transferred. Significant methodologists in this camp include Lincoln & Guba [139] and LeCompte &

Goetz [134].

In the second camp are methodologists who espouse some notion of theoretical generalization.

Most prominent among these is Yin [226, pp. 38–39], who argues that a case study can serve as a way

of validating a previously developed theory, an approach which he calls analytic generalization. Theo-

retical notions of case study generalizability are stronger than transferability because they generate

or provide support for theories that have broad applicability well beyond the immediate context of

the case study. However, some methodologists have criticized theoretical notions of generalizability

due to the difficulty of deriving broad theoretical results from individual cases. Seale [199, p. 112], for

example, is critical of theoretical conceptions of generalization, arguing that transferability “is a more

secure basis for good work.”

Of course, these viewpoints are not mutually exclusive. Some methodologists advocate consid-

eration of both transferability and analytic generalizability [125, pp. 260–265; 158, p. 279]. In my

discussion of the generalizability of this case study, I have avoided taking a stand on the proper under-

standing of generalization in qualitative research. But it is useful to keep these schools of thought in

mind when considering how this work might be generalizable.

111

5 Case study: Architecture evolution at Costco

coordination, and integration difficulties, but still there are significant challenges.

Indeed, on a theoretical basis, we might expect that challenges in integrating systems

and communicating with relevant personnel are highly relevant to architecture evo-

lutions in general. Thus, we might reasonably say that our result on the prominence

of communication, coordination, and integration challenges is more analytically

generalizable than that on dealing with legacy systems.

Of particular interest is the generalizability of our results on the applicability of

our approach to modeling a real-world evolution. Generalizability is a particularly

crucial question here, because not only does this result emerge from a study at a

single company, but it emerges from a study of just a single software system. To what

extent is this result generalizable?

Again, it is important to keep in mind how generalization works for case studies.

There are some aspects of the case under study that do limit generalization in certain

respects. For example, the point-of-sale system is one that can be understood fairly

well from a component-and-connector architectural perspective. Our coding frame

and modeling approach took advantage of this fact. The categories of the coding

frame are based on the assumption of a component-and-connector model, and we

produced only a component-and-connector view during the modeling process. In a

different system where alternate architectural view types are important, the coding

frame and the modeling procedures would have to be revised accordingly.

But the overall result—that our approach can capture the main elements of a real-

world evolution—seems to have a good deal of generalizability. There was no a priori

theoretical reason to believe that the point-of-sale evolution would be particularly

easy to model using our approach. We picked that evolution because it was of a

reasonable size for the purposes of the case study, and because it was easy to get

access to key personnel involved with architecting the system, not because of any

special properties that would render it more amenable to our approach. Thus, the

main evaluative result seems to have fairly strong external validity. But of course this

generalizability has limits. For example, it would be questionable to transfer this

result to evolutions of a very different scale (extremely large and complex evolutions,

or small code-level evolutions), or to evolutions with special properties that we have

theoretical reasons to believe might be difficult to model (e.g., significant elements

of uncertainty). This is not to say that such evolutions could not be modeled using

our approach—only that this case study does not clearly demonstrate that they can

be. Ultimately, case study generalization involves a clear understanding of relevant

theory, careful attention to the specifics of both the case being generalized and the

case to which the result is to be transferred, and a good deal of judgment.

5.7 Summary

In section 5.6, I explained how the research questions articulated at the beginning of

this chapter were answered by the case study. But how do these case study research

questions and results relate to the broader purpose of the thesis—the thesis research

questions listed in section 1.1 and the thesis claims listed in section 1.3.3? Let us

112

5.7 Summary

again turn to each of the case study research questions and consider its relevance to

the thesis.

1. How do practicing architects in a real-world software organization plan and
reason about evolution? With respect to the thesis, answering this question

was important for ensuring that architects do not already have approaches

and tools similar to ours for managing architecture evolution—that we haven’t

reinvented something that already exists in industry, or addressed a need that

has already been adequately met. This question thus isn’t directly germane

to any of the thesis claims in section 1.3.3, but rather helps to ensure that the

foundation for this research is secure—that the thesis research questions asked

in section 1.1 haven’t already been answered by industrial approaches.

In this respect, the answer to this research question was generally encouraging.

Although architects mentioned a variety of approaches and tools that they

employ in the course of planning and carrying out evolution projects, they did

not report having tools to help them with things like architectural planning of

evolution stages, enforcement of constraints, and evaluation of architectural

trade-offs. Most of the approaches that architects mentioned were general

strategies for communication, coordination, and organization rather than

concrete approaches or tools; and to the extent that they did describe concrete

approaches and tools, those approaches and tools had very different purposes

than the purposes that motivate this thesis work.

2. What difficulties do practicing architects face in planning and carrying out
evolution? Like the previous case study research question, this question does

not directly address the thesis claims, but instead helps to evaluate whether

this research is well-founded—whether it addresses a genuine need perceived

by practicing architects. Where case study research question 1 can help us to

ensure that the thesis questions in section 1.1 haven’t already been answered

by industrial approaches, case study research question 2 can help us to ensure

that the thesis questions are worth answering in the first place.

The case study revealed a wide range of challenges pertaining to architec-

ture evolution. Many of these—integration challenges, justifying architectural

decisions in business terms, evaluating reliability and performance, domain

inexperience, and others—are challenges that our approach is intended to

ameliorate. Others, such as managing people and cultural challenges, are

of little relevance to us. But on the whole, the results of the case study are

consistent with the premise that the challenges that motivate our research

are genuine challenges faced by practicing architects in (at least some) real

software organizations.

3. How well can our modeling framework capture the concerns that arise in a
real-world architecture evolution? This case study research question is the

one that is of clearest relevance to the thesis claims in section 1.3.3. Specifi-

cally, this research question directly addresses the claim of applicability—the

claim that our approach is applicable to the concerns that arise in real-world

113

5 Case study: Architecture evolution at Costco

architecture evolution projects. The fact that we were able to easily and directly

model nearly all of the architectural concerns in the point-of-sale evolution

provides strong support for the applicability claim.

The preceding discussion clarifies how the case study described in this chapter

relates to the thesis as a whole. But how does this case study relate to the JPL case

study in chapter 4? After all, both case studies evaluate the applicability of our

modeling approach to real-world architecture evolution scenarios. That is, both case

studies directly address thesis claim 1 in section 1.3.3: the claim of applicability. Why

did we carry out two case studies addressing the same topic?

One answer is that two case studies are much stronger than one. Critics can dismiss

the result of a single case study as a fluke attributable to the unique characteristics

of the case studied rather than evidence of any broader truth. When two different

case studies converge on similar findings, the results are harder to dispute. This

kind of replication logic or triangulation can be quite powerful, especially when the

two case studies were carried out in particularly dissimilar organizations. The two

cases studied here are very different indeed: an aerospace laboratory and a retailer.

These two organizations have very different goals (exploring space vs. making a

profit), very different types of systems (remote cyberphysical systems vs. enterprise

software systems), very different notions of system criticality (supporting billion-

dollar missions and sometimes sustaining human life vs. avoiding lost sales), and

very different challenges of scale (millions of miles vs. millions of users), among many

other differences. Examining two quite different cases, rather than only a single case,

greatly strengthens the claim of applicability.

Beyond this, however, it is worthwhile to examine the differences between the two

case studies we carried out, because in fact they are really quite different. Although

they both examine the applicability of our approach and in particular the question of

whether we can successfully represent real-world evolution concerns, they have very

different designs and focuses. Table 10 summarizes the differences.

One important difference is that the two case studies had somewhat different

goals: one focused on examining how our approach could be adapted to industrial

architecture modeling tools, while the other was concerned with examining the prac-

tice of architecture evolution and the applicability of the elements of our approach.

Both aimed to evaluate the applicability of our modeling approach to a real-world

architecture evolution. But a secondary goal of the first case study was to evaluate

the ease of adapting our approach to modeling languages and tools already in use

at JPL—namely SysML and UML. By contrast, this was not a goal of the second case

study at all; modeling in the second case study was done in AcmeStudio, a research

tool. The second case study had a different secondary goal: to examine in depth

how a real-world software organization currently manages architecture evolution

challenges. The Costco case study thus had a significant descriptive or ethnographic

component, which was not true of the JPL case study.

The data collection procedures were also quite different. In the first case study,

data was collected informally during the course of a ten-week internship at JPL. In

the second, there was a formal data collection procedure involving semistructured

114

5.7 Summary

Chapter Chapter 4 Chapter 5

Organization

studied

Federally funded laboratory Major retailer

Research

questions

Can an evolution graph capture

the major concerns and alter-

natives under consideration in

a real-world evolution? Can

we adapt our approach for use

with commercial modeling lan-

guages and tools?

Can we use operators, path con-

straints, and path evaluation

functions to capture real-world

evolution concerns? What ma-

jor challenges do architects

face in planning and carrying

out evolution, and how do they

deal with them today?

Data

collection

approach

Information and impressions

gathered informally during a

ten-week internship

Formal semistructured re-

search interviews during a

two-week visit

Analysis

approach

Ad hoc construction of an evo-

lution graph

Formal content analysis lead-

ing to the construction of a

partial evolution model includ-

ing operators, constraints, and

evaluation functions

Publication [16] [17]

Table 10. A summary of the two case studies that together constitute the empirical

validation of my thesis, emphasizing the differences among them.

115

5 Case study: Architecture evolution at Costco

interviews of architects supplemented by collection of architectural documentation.

The two case studies also used very different analysis procedures. The first case

study lacked any formal analysis procedure; I constructed an evolution model ad hoc

based on my impressions of the system under study. The second case study used a

fairly sophisticated analytical approach involving a formal content analysis of the

gathered research data followed by a modeling phase incorporating the results of the

content analysis. The application of content analysis for extracting architectural in-

formation is novel, and I regard this methodological technique as one of the ancillary

contributions of this thesis (see section 8.1).

Finally, the second case study devoted significantly more attention to methodolog-

ical issues in general. The first case study was conducted opportunistically during a

summer internship and was not strictly guided by a formal design (although there

was some consideration of qualities such as research replicability). This first case

study was exploratory in character; the focus was on discovering new ways of adapt-

ing our approach to a real-world setting, unencumbered by the more heavyweight

methodology that characterized the second case study. In the second case study,

great care was taken to develop a detailed, rigorous case study design to guide the

execution of the case study, and significant attention was devoted to issues of validity

and reliability. A key goal of the study was to ensure that the conclusions of that case

study were reliably tied to the data collected. Thus, although the two case studies

share the same basic motivation, they distinguish themselves clearly in their design

and execution; the first case study was more formative in character, while the second

was more summative.

116

6 Tooling

Chapter 3 presented a theoretical analysis of our evolution path constraint specifica-

tion language, thereby providing an assessment of the computational complexity of

our approach. Chapters 4 and 5 described our empirical work, aimed at evaluating

the approach’s applicability. In this chapter, I address the last remaining research

claim from section 1.3.3: the claim of implementability.

I do so by reviewing three prototype tools that we have developed based on the

approach to software architecture evolution described in this thesis. None of these

prototype tools constitutes a complete evaluation of the implementability of our

approach by itself; each of the three tool development projects was intended to

implement only a limited subset of the approach. But together these three projects,

which are very different in their focus and technical approach, reveal a great deal

about the issues that arise in implementing an evolution modeling tool based on our

approach.

The first of the three prototypes, called Ævol, was developed as a plug-in to Acme-

Studio. This was very early exploratory tool work with which I was only very distantly

involved, so I will not say much about it except to provide some relevant background.

I describe this work briefly in section 6.1.

The second prototype was an extension of the JPL case study described in chap-

ter 4. In this second prototype project, we developed a plug-in to MagicDraw (the

commercial UML tool used in the JPL work) implementing a subset of our approach.

One of the main goals of this work was to examine the engineering challenges in-

volved in implementing an architecture evolution tool as a plug-in to an existing

architecture modeling framework. This work is described in section 6.2.

The final prototype was quite different in character from the first two. It was

narrowly focused on evaluating the automatability of evolution path generation.

This work aimed to demonstrate how existing tools based on automated-planning

research could be applied to generate evolution paths leading from a given initial

architectural state to a given target architectural state by intelligently composing

evolution operators from a predefined library. I describe this work in section 6.3.

In section 6.4, I will summarize this chapter by comparing these three pieces of

work. Although all of them address research questions about implementing architec-

ture evolution tools, they have very different focuses and very different perspectives.

6.1 Ævol: A first step in tool development

The first attempt to implement a prototype based on our approach was an Acme-

Studio plug-in called Ævol, which was developed by a team of master’s students as

117

6 Tooling

Figure 14. The Ævol workbench.

a studio project. I was only peripherally involved with the work on the Ævol tool,

and therefore it does not constitute a contribution of my thesis. Nonetheless, it is

useful to briefly review this work, because it provides useful information about the

implementability of our approach in its own right, and discussing this early work

also provides helpful background for our subsequent tooling work to be discussed in

sections 6.2 and 6.3. However, because of my limited involvement with this work, I

discuss it only briefly here. For a detailed description of the Ævol tool, see Garlan &

Schmerl [96].12

Because Ævol is a plug-in to AcmeStudio, it is able to take advantage of Acme-

Studio’s existing architecture modeling facilities. Thus, individual evolution states

are modeled as architectures using AcmeStudio, and the Ævol plug-in relates them

by means of an evolution graph. A screenshot of the Ævol workbench appears in

figure 14. Ævol does not provide any support for evolution operators. This means

there is no way of defining evolution states by applying transformations to other

states; each node in the evolution graph has to be defined in isolation, either by

building it from scratch or by copying, pasting, and modifying another node.

12The development of the Ævol tool was carried out by Snehal Fulzele, Smita Ramteke, Ken Tamagawa,

and Sahawut Wesaractchakit as a studio project in our Master’s in Software Engineering program,

under the direction of David Garlan and Bradley Schmerl [96]. A second studio project to develop ad-

ditional functionality was later carried out by another team of master’s students: Andrew O. Mellinger,

Mohit Bhonde, Raúl A. Véjar Llugany, Majid Alfifi, and Adlan Israilov.

118

6.2 A MagicDraw plug-in for architecture evolution

However, once the nodes of the evolution graph are defined, Ævol provides support

for definition of evolution paths as well as some basic support for definition of

constraints and evaluation functions. Figure 14 shows a rudimentary evaluation

function that estimates the overall cost and benefit of a path by adding up cost and

benefit properties defined on the nodes and transitions of the evolution graph.

This early tool work provided a helpful illustration showing how our approach

could be implemented in a tool, but it was ultimately a proof of concept rather than a

careful evaluation of the implementability of the approach. In the rest of this chapter,

I will describe two implementation efforts with which I was more closely involved.

6.2 A MagicDraw plug-in for architecture evolution

Our second implementation effort was conceived as a follow-on project to the JPL

case study that I described in chapter 4. Recall that in that work I demonstrated

how our approach could be adapted to MagicDraw, a commercial UML tool that is

widely used at JPL. To do so, I developed ways of modeling architecture evolution

in MagicDraw, including representational conventions for modeling architecture

evolutions in UML (or, more precisely, SysML), model transformation macros to im-

plement evolution operators, and SysML models of particular intermediate states of

evolution. Together, these mechanisms served as an illustration of how our approach

could be adapted to commercially prevalent languages and tools such as UML and

MagicDraw.

That work, like the early tool development work I described in section 6.1, was a

proof of concept. It demonstrated how our approach could be implemented in prin-

ciple, but it was not conceived as an in-depth investigation of the implementability

of our approach. Rather, the JPL case study was intended to evaluate the applicability

of our approach to a real-world evolution context; implementation issues were a

secondary consideration. Similarly, the Ævol tool development work, although it

did seek to show that our approach was implementable, did not involve significant

reflection on the practical issues involved in implementation. The prototype work I

describe in this section, on the other hand, was a more deliberate examination of the

challenges involved in developing a practical architecture evolution tool.13

To extend MagicDraw so that it could be used as a general tool for evolution plan-

ning, we recognized that it would be necessary to take a plug-in-based approach,

much like the Ævol prototype described in section 6.1. A plug-in-based approach

has several advantages. First, developing an architecture evolution tool as a plug-in

to a tool such as MagicDraw allows us to leverage the facilities that tool provides for

architectural modeling. This frees us to focus our development efforts on implement-

ing the novel aspects of our approach, rather than reinvent the wheel by building our

13The development of the plug-in described in this section was carried out in 2012 by Nivedhitha

Manjappur Narayanaswamy and Vignesh Venkatachala Perumal as a studio project in our Master’s in

Software Engineering program, supervised by my advisor and me. In 2013, we published a reflection

on this effort as a workshop paper [18]. Some of the material in this section is adapted from that

workshop paper.

119

6 Tooling

own framework for architecture modeling. In addition, a plug-in-based approach can

facilitate user adoption, because users are already likely familiar with the interface

and idioms of the framework on which the plug-in is based (particularly a widely used

framework such as MagicDraw). Finally, plug-ins are significantly more powerful

than other extension mechanisms, such as the macro-based approach used in the

JPL case study, allowing us much more freedom in implementing our approach.

Perhaps the best way to describe the main features we envisioned in a plug-in for

evolution planning is to consider a sample work flow, illustrating how a software

architect might use such a plug-in to define and analyze an evolution space:

1. The architect begins by defining the nodes and transitions of the evolution

graph. This can be done using the architectural modeling tools already present

in MagicDraw. As in the JPL case study described in chapter 4, we can represent

an evolution graph as a package diagram in which evolution states are repre-

sented by packages and transitions are modeled as dependencies. To define the

evolution graph, the architect simply creates a package for each intermediate

state and draws the transitions as dependencies among the packages. Once

the graph is represented in this way, the plug-in can use the MagicDraw API

to inspect the evolution graph, then determine the set of candidate evolution

paths.

2. At this point, the evolution graph has been laid out, but all the evolution nodes

are undefined, in the sense that all the packages representing intermediate

states are empty—they do not yet contain representations of intermediate

architectures. The architect must now “fill in” the evolution graph by specifying

these intermediate nodes. The first node that the architect fills in is the initial

node, which represents the system architecture at the outset of the evolution. (A

plug-in can identify the initial node algorithmically. The initial node is simply

the graph’s source node—the node with in-degree 0, which should be unique

in a well-formed evolution graph.) To do so, the architect uses MagicDraw’s

existing facilities to create an architectural model contained within the package

representing the initial node.

3. Now that the first node has been “filled in”—the initial architecture has been

specified—the architect can begin using the plug-in to define the other inter-

mediate states. To do so, the architect selects one of the transitions leaving the

initial state, then clicks a “Specify Transition” button provided by the plug-in.

This launches transition specification mode, in which the architect applies a se-

quence of operators capturing the architectural transformations that make up

the transition. The architect selects these operators from a predefined palette

and specifies the parameters necessary to apply them to the evolving model.

As the architect does so, the effects of the operators are displayed. Once the

definition of the operators making up the transition is finished, the architect

exits transition specification mode. The newly defined architecture is now

associated with the relevant state in the evolution graph; thus, there are now

two nodes “filled in.”

120

6.2 A MagicDraw plug-in for architecture evolution

4. The architect continues specifying transitions as in step 3 until all transitions

in the graph have been specified. At this point, all nodes have been “filled in.”

5. With the evolution graph fully defined, the architect now clicks a “Validate

Evolution Paths” button, which causes the plug-in to validate all the evolution

paths in the graph with respect to a predefined set of constraints. If a path fails

to satisfy any of the constraints, the user is notified of the violation and given

the opportunity to correct it.

6. Finally, the architect can run a set of predefined evaluation functions, which

provide quantitative assessments of each valid path. The architect is now

equipped to make an informed decision about the optimal evolution path.

With this operational vision in mind, we set out to create a new prototype, the

development of which would allow us to explore the significant implementation

issues involved in developing an architecture evolution planning tool in a much

deeper way than had been done in the development of the Ævol tool or in the JPL

case study.

6.2.1 Developing the plug-in

There are several ways in which the functionality of MagicDraw can be extended.

The most basic and limited is by defining UML profiles. This allows users to enrich

the available modeling vocabulary by extending UML itself; however, UML profiles

cannot be used to modify the user interface or behavior of MagicDraw. A much richer

extension mechanism is the MagicDraw Macro Engine, which I used in our JPL case

study to generate an evolution graph, as described in chapter 4. Finally, the most

powerful means of extension that MagicDraw provides are plug-ins, the approach we

used to develop this prototype.

Both macros and plug-ins interact with MagicDraw via the MagicDraw Open-

API [166], a Java API that provides numerous means of extending or enhancing

MagicDraw’s functionality. With the OpenAPI, it is straightforward to add user inter-

face features (such as buttons and menu items), manipulate model and presentation

elements, listen for events, and so on.

Development of the prototype proceeded in stages, each designed to result in a

particular unit of functionality. These units—“feature prototypes,” we called them—

would be pieced together at the end of the project, in a final integration phase. This

staged development approach allowed us to familiarize ourselves with the relevant

portions of the OpenAPI rapidly. In addition, developing the plug-in by way of a series

of partial prototypes made sense because the plug-in’s responsibilities were clearly

delineated; thus, the components of the plug-in’s planned architecture were well

defined and interacted with each other in well-understood ways. The development

stages were:

Feature 1: Manipulation of the evolution model. Our first feature prototype was

intended to familiarize us with the fundamentals of MagicDraw plug-in development

and to acquaint us with MagicDraw’s model manipulation API. We therefore created

121

6 Tooling

Figure 15. Screenshots of feature prototype 3, the operator palette interface. At left, the

user selects an operator from the palette. In this demo, two operators are defined. The

user selects “Delete element.” At right, the user is prompted to specify the parameter

required by the operator: the element to be deleted.

a simple plug-in that made a predefined sequence of API calls to manipulate a

predefined evolution model in MagicDraw. This prototype was similar in function

to the transformation macro that was used to define evolution operators in the JPL

case study. Here, however, this was accomplished by means of a plug-in rather than

a macro.

Feature 2: Identification of evolution paths. The second feature prototype was

intended to demonstrate basic reasoning about an evolution model. Given a Magic-

Draw model of an evolution graph, this feature prototype would analyze the model

and identify all the evolution paths in the graph.

Feature 3: Interface for applying evolution operators. Next, we wanted to famil-

iarize ourselves with MagicDraw’s user interface extension capabilities. The third

feature prototype was thus an interface for applying an evolution operator (Fig. 15).

To apply an operator, the user firsts select an operator from a palette, then specifies

any required parameters. Each operator can define an arbitrary set of typed parame-

ters. For example, a “delete element” operator might take one parameter: the element

to be deleted. A “create component” operator might have multiple parameters: the

name of the component, its type, and so on.

Feature 4: Operator parser. We wanted operators to be specifiable via a configu-

ration file that would be parsed and interpreted at the time the plug-in is loaded,

so that plug-in users could add, remove, or modify operators easily. In this stage,

we developed a parser for a highly simplified version of our operator specification

language.

Feature 5: Metadata handling. This feature prototype focused on storage of meta-

data pertaining to the model—that is, information that is auxiliary to the evolution

model but necessary to support analysis, such as the sequence of evolution operators

122

6.2 A MagicDraw plug-in for architecture evolution

that makes up each transition in the model. We considered several mechanisms for

storing metadata. The most principled approach would have been to develop a UML

profile for the purpose of representing architecture evolution graphs. However, while

elegant, this solution would have taken too long to implement given the limited time

available. For this feature, we adopted the cruder but more expedient approach of

storing metadata in existing fields intended for other purposes.

Feature 6: Positioning of presentation elements. A significant challenge of devel-

oping an evolution planning tool as a plug-in to a tool like MagicDraw is dealing

with the positioning of presentational elements in intermediate states. For example,

when a user applies an operator that introduces a new component, how should we

position that component in any diagrams that are associated with the new state? We

considered a number of possible approaches, including making use of the layout

algorithms built into MagicDraw, requiring the user to specify the placement of new

presentation elements, or even developing layout algorithms of our own. Ultimately,

we again adopted the most expeditious approach; to determine the layout of an

evolution state, we cloned the layout of the state from which it was derived, then

allowed MagicDraw to position any new elements in the default location.

Feature 7: Evolution path constraints. Evolution path constraints, like operators,

are defined in a configuration file that is read by our plug-in when it is loaded. The

constraints are written in a simplified subset of our constraint specification language.

The final feature prototype comprised a parser and interpreter for this language.

Integration. The feature prototypes were designed to allow us to develop, in iso-

lation, the main features required for an evolution planning plug-in based on our

approach. The final phase of development was an integration phase aimed at tying

these features together into a unified tool.

For the most part, the project proceeded as expected. All the planned feature

prototypes were completed. However, there were a number of unexpected challenges.

First, the MagicDraw API turned out to be less flexible than we had hoped, making

it difficult or impossible to implement several of the features that we had envisioned.

For example, the API does not provide much flexibility for plug-in developers to

overhaul or replace the default user interface, which made implementing the kind of

work flow we had envisioned impractical. I will discuss this further in section 6.2.2.

In addition to limitations in API functionality, we also experienced problems

pertaining to API discoverability. Much of this was due simply to the significant size

of the MagicDraw OpenAPI. With such a large API, it is difficult for a small team of

part-time developers to learn it quickly. Thus, it was often difficult to find the features

we needed, or even to know which features the API supported. Even when we found

the relevant part of the API, the documentation was sometimes inadequate, so trial

and error were required to understand a class’s function.

These delays (along with technical difficulties in the project set-up phase) slowed

our progress significantly. Although we completed all planned feature prototypes,

many of them were not as fully fleshed out as we had anticipated, as mentioned

123

6 Tooling

above. This also left insufficient time for the integration phase to be satisfactorily

completed. Thus, at the end of the master’s studio project, the plug-in was more like

an agglomeration of features than a unified tool with a consistent design.

6.2.2 Lessons learned

Our experience provided a number of insights about challenges in implementing an

architecture evolution tool as a plug-in. Three aspects of the project that we found

particularly challenging were understanding the kinds of variation supported by the

underlying architecture modeling framework, exercising control over the modeling

tool’s user interface, and manipulating the visual presentation of the model. I now

discuss each of these challenges in turn.

Understanding the kinds of variation that the framework supports Plug-ins are,

by nature, subject to the limitations of the frameworks they are based on. A frame-

work, as the name implies, establishes the boundaries within which plug-ins may

operate and rules to which they must adhere, and a plug-in can subvert these bound-

aries and rules only with great difficulty. Therefore, when considering developing a

plug-in to some framework, it is important to consider whether the intended features

of the plug-in align with the intended use of the framework—whether the framework’s

variation points are appropriate to the needs of the plug-in. In this project, we found

that some of the features we wished to implement (e.g., traversing and analyzing

the evolution paths in a model) aligned well with the capabilities of the MagicDraw

OpenAPI, while some others (e.g., ensuring the consistency of the evolution model)

did not.

For a software architecture evolution plug-in, one especially important kind of

variation is variation in the user interface, which I discuss next.

Controlling the user interface At the outset of the project, our hope was that it

would be possible to present the user with custom interfaces for defining evolution

paths, such as a “transition specification mode” in which users could select operators

from a palette and visualize their effects on the architecture. This turned out to

be infeasible. The MagicDraw OpenAPI is ideally suited to adding simple interface

elements such as new toolbars and menus; it does not provide an easy way to define

new user work flows with custom views of the system, or to overhaul the basic user

interface.

For an architecture evolution plug-in to be usable, it is essential that significant

modifications to the basic user interface of the modeling tool be possible. For exam-

ple, to prevent the evolution model from becoming inconsistent, the plug-in must be

able to prevent users from making arbitrary changes to the model. We found this to

be impractical with the MagicDraw OpenAPI.

Manipulating presentational elements A significant practical challenge of develop-

ing an architecture evolution tool based on our approach—or any approach involving

representation of intermediate states—is positioning presentational elements. Be-

cause intermediate states are generated from earlier states by means of operators,

124

6.3 Automated generation of architecture evolution paths

it is the plug-in’s responsibility to ensure those newly generated states are rendered

appropriately (e.g., by deciding where to position newly added components). A ma-

ture software architecture evolution tool might have to make use of fairly intelligent

positioning algorithms to produce a satisfactory user experience. Ideally, we might

hope that the architecture modeling platform on which our plug-in is based would

provide advanced diagram layout features. MagicDraw provides only slight help in

this area; although it has some automatic layout tools, they are quite limited.

The characteristics of the MagicDraw API that presented challenges for us—the

rigidity of its user interface, the difficulty of prohibiting user actions that cause model

inconsistencies, support for advanced diagram layout features—should certainly

not be seen as failings or defects in MagicDraw. Rather, they arise from deliberate

(and not unreasonable) API design choices that the developers of MagicDraw made

in order to better support the core features that they wished to expose. But they do

present limitations in the context of an architecture evolution modeling plug-in, and

such limitations should be carefully considered by developers of any such plug-in.

It is also unlikely that the limitations we encountered are really particular to Magic-

Draw. I suspect that most architecture modeling tools will tend to share many of

these same limitations. Thus, many of the challenges we encountered are likely to

pose difficulties for anyone developing an architecture evolution tool as a plug-in to

an existing architecture modeling tool. If that is the case, these challenges may be

fairly fundamental ones that future developers of architecture evolution tools will be

forced to confront (or they will have to take great care in selecting an architecture

modeling tool that is closely aligned with the necessary requirements).

Of course, an alternative is to develop an architecture evolution tool from the

ground up, without basing it on an existing architecture modeling framework, but

this would involve forgoing the important benefits that a plug-in based approach

provides, such as the ability to leverage the existing architecture modeling facilities

that such a framework provides and the greater usability that results from plugging

into a modeling framework with which users are already familiar.

Our approach to architecture evolution modeling is designed to lend itself to tool

support, and many of the core features of our approach appear to be implementable

in a reasonably straightforward way. But the implementation effort I have described

here revealed a number of specific and significant engineering challenges that devel-

opers of future architecture evolution tools would be wise to consider carefully.

6.3 Automated generation of architecture evolution paths

The third and final implementation effort that I will describe is rather different from

the first two. While the projects described in sections 6.1 and 6.2 were directed at

developing prototypes that would illustrate a broad array of features of our approach,

this third project was a narrower investigation of a single issue: the automatability of

evolution path generation.14

14This work is described in a conference paper that we published this year [20], from which much of the

material in this section is adapted. I would like to acknowledge here the contribution of Ashutosh

125

6 Tooling

In motivating this thesis work in section 1.2, I painted a picture of how a hypotheti-

cal architect would use our approach, first defining the initial and target architectures,

then carefully filling in the rest of the evolution graph by defining the intermediate

states, then applying constraints and evaluation functions to analyze evolution paths.

The prototype tools described in sections 6.1 and 6.2 assumed a similar work flow.

The problem with such an approach is that it imposes a substantial burden on

the architect. The architect must explicitly define the candidate evolution paths and

specify the evolutionary transitions that occur within each such path. In our original

prototype, Ævol, this was done through explicit definition of intermediate states. The

JPL case study and the follow-on MagicDraw plug-in work streamlined this process

by allowing intermediate states to be defined in terms of the initial state by applying

evolution operators. But even in this streamlined process, definition of intermediate

states can be an onerous task in a scenario with many candidate evolution paths,

and numerous transitions within each path.

A better approach would be to generate these evolution paths automatically.

Rather than fully specifying the evolution space, the architect could simply define

the initial and target architectures; then a tool could select architectural transforma-

tions from a predefined library of operators and apply them in sequence to generate

candidate paths from the initial architecture to the target architecture.

While this would alleviate the burden on the architect, it introduces a new difficulty:

determining how to compose the operators together so as to generate the target

architecture from the initial architecture. (Given n operators, each with m parameters

ranging over a domain of d architectural elements, there are (nd m)l evolution paths

of length l . Clearly an undirected brute-force search for an optimal path would

be unwise.) This problem is very much akin to the planning problem in artificial

intelligence [99]: given a description of the state of the world, a goal, and a set of

actions, how can we generate a plan—a sequence of actions leading from the initial

state to the goal?

In this section, I describe our attempt to apply existing approaches and tools from

automated planning to the architecture evolution path generation problem. Adapt-

ing these existing approaches to software architecture evolution is a difficult problem,

as it requires consideration of a number of concepts—architectural changes, techni-

cal and business constraints, rich temporal relationships among events, trade-offs

among evolution concerns—that do not translate easily into the planning domain.

6.3.1 Automated planning

Given a set of states S, a set of actions A : S → S, an initial state s0 ∈ S, and a set of goal

states Sg ⊆ S, the planning problem is the task of finding a sequence of actions that,

when applied to s0, yield one of the goal states.15 The planning problem has broad

applications, from robotics to business management to natural language generation,

and has received a great deal of attention from artificial-intelligence researchers. A

Pandey, with whom I collaborated on this research.
15This is a very abstract formulation of the planning problem. For a discussion of alternative definitions,

including some that are more computationally oriented, see Ghallab et al. [99].

126

6.3 Automated generation of architecture evolution paths

variety of approaches and tools for solving planning problems have been developed

over the last several decades.

To solve a planning problem, a planner must receive a specification of the problem

in a standard format. A number of specification languages for planning problems

have been devised, but by far the most popular—the lingua franca of automated

planning—is the Planning Domain Description Language. PDDL was first introduced

in 1998 [151] and soon became a de facto standard in the planning literature, facil-

itating reuse of research and allowing easy comparison of planners, systems, and

models [87]. These qualities, along with its feature set, made PDDL a good choice for

our work.

PDDL has undergone several revisions. The version that we adopted is PDDL2.1

[87], introduced in 2002, which greatly enhanced the language’s expressivity by intro-

ducing:

• numeric fluents, which provided full support for modeling numerically valued

resources such as fuel and distance;

• durative actions, which greatly enriched the temporal expressiveness of the

language; and

• plan metrics, which allowed specification of a metric with respect to which a

plan should be optimized (e.g., minimize fuel consumption).

All three of these are extremely useful for modeling architecture evolution problems,

as we will see later. Most of PDDL2.1 is now reasonably well supported by the

leading planners. There have subsequently been further additions to the language,

such as the introduction of derived predicates in PDDL2.2 [78] and constraints and

preferences in PDDL3 [97]. While these features would certainly have been useful to

us, they are not as broadly supported by planners, so we chose to target PDDL2.1.

A PDDL specification comprises two parts, which appear in separate files: a do-

main description (consisting chiefly of a description of possible actions that charac-

terize domain behaviors) and a problem description (consisting of the description of

specific objects, initial conditions, and goals that characterize a problem instance).

Thus, a domain description can be shared across multiple planning problems in the

same domain. Both the domain file and the problem file are expressed in a Lisp-like

syntax, as a list of parenthesized declarations.

In PDDL2.1, a domain file can declare:

• A set of types to which objects may belong. Each type may optionally declare a

supertype. If a type does not declare a supertype, it is deemed to be a subtype

of the built-in type Object; all types are ultimately subtypes of Object (perhaps

indirectly). A type is simply a name; it does not define a set of properties or

methods. Rather, predicates, functions, and actions can specify the types that

they govern.

• A set of predicates over objects.

• A set of functions that map Object n →R.

127

6 Tooling

• A set of action schemata, each comprising a list of parameters, the conditions

under which the action may be taken, and the effects of the action. A durative

action additionally specifies its duration.

A problem file declares:

• A list of objects.

• The initial conditions, consisting of truth assignments for predicates and nu-

meric value assignments for functions.

• The goals, which are defined in first-order predicate logic.

• A metric to be minimized or maximized.

A planner takes a domain description and problem description as input and produces

a plan as output—a timed list of actions (with parameters specified) that achieves

the specified goals.

6.3.2 Approach

The problem of generating an evolution path from an initial architecture to a target

architecture can be framed as a planning problem in the sense of section 6.3.1 as

follows:

• S, the set of states, is defined to be the set of legal software architectures.

• A, the set of actions, is defined to be the set of evolution operators.

• s0, the initial state, is defined to be the initial architecture.

• Sg , the set of goal states, is defined to be the singleton set consisting of the

target architecture of the system.

With the problem framed in this manner, we can apply automated planning tools to

the task of generating evolution paths.

In the remainder of this section, I will describe how an architecture evolution

problem can be translated into a planning problem expressed in PDDL. (A summary

appears in table 11.) Section 6.3.3 will make this discussion concrete by showing

how we applied it to a specific architecture evolution problem and used off-the-shelf

planners to generate evolution paths.

Representing the initial and target architectures. The first step of modeling an

architecture evolution problem is to specify the initial and target architectures. Re-

call from section 2.1 that a software architecture is conventionally conceived as an

arrangement of architectural elements such as components and connectors. In ad-

dition, as we have seen, these components and connectors are often expressed in

terms of component types (such as WebService or Database) and connector types (such

as EventBus or HttpConnection).

PDDL’s type system, though simple, is quite adequate for our needs. We can

define component and connector types as types in the PDDL domain description,

then define the components and connectors themselves as PDDL objects of the

defined types. Finally, the relationships among the components and connectors

128

6.3 Automated generation of architecture evolution paths

Evolution element PDDL translation

Transitional architecture State

Architectural element type Object type

Architectural element Object

Relationship among architec-

tural elements

Predicate

Evolution operator Action

Parameter Action parameter

Precondition Action condition

Architectural transformation Action effect

Property Action duration, or action effect modifying

function value

Evolution path Plan

Initial architecture Initial state

Target architecture Goal state

Path constraint PDDL3 constraint, or action condition sup-

ported by predicates to track the state

Path evaluation function Metric

Table 11. Summary of our approach for translating elements of an architecture evolu-

tion problem into PDDL.

129

6 Tooling

Client1

Server1

H
ttp

C
o

n
n

1

Domain description

(:types (Component Connector - Object

Client Server - Component

HttpConnection - Connector))

(:predicates

(connects ?c - Connector ?a ?b - Component))

Problem description

(:objects (HttpConn1 - HttpConnection

Client1 - Client

Server1 - Server))

(:init (connects HttpConn1 Client1 Server1))

Figure 16. An extremely simple software architecture and its PDDL representation.

can be expressed using predicates, which are defined in the domain description and

assigned truth values in the problem description. Figure 16 shows a simple example.

The specification of the initial architecture will appear within the :init block, which

defines the initial conditions, and the specification of the target architecture will

appear within the :goal block, which defines the goals.

Representing evolution operators. An evolution operator, of course, corresponds

to a PDDL action. But how can we actually capture an evolution operator as an action

using the specification facilities that PDDL provides?

Let us consider each of the parts of an evolution operator (as described in sec-

tion 2.2) in turn. An operator comprises:

• A set of parameters. For example, a wrap legacy component operator will take

as a parameter the component to wrap. In PDDL, an action likewise specifies

its parameters.

• A description of the architectural transformations that the operator effects.

These are expressed as a sequence of elementary architectural changes such

as delete component or attach connector. In PDDL, we can represent these

transformations via the action’s effects.

• A description of the operator’s preconditions. These map into PDDL in a

straightforward manner; in PDDL, any action may declare its preconditions in

terms of predicates and functions over the action parameters.16

16For durative actions, this is generalized to include other kinds of conditions—not only preconditions

(conditions that must hold at the start of an action), but also conditions that must hold at the end of

an action, or over its entire duration. These are specified with the temporal annotations at start, at

end, and over all. (These can also be applied to effects.)

130

6.3 Automated generation of architecture evolution paths

• A list of properties of the operator, used to support evaluation functions. Ex-

amples of properties are the time needed to carry out the operator, the cost of

doing so, and the operator’s effects on system performance. In PDDL, the dura-

tion property is given special prominence due to its importance in temporal

reasoning; a durative action must specify its duration. As for the other prop-

erties, these are best captured via PDDL effects. For example, if an evolution

operator has a cost property (indicating that it costs $1,000), we can define a

cost function in the PDDL specification, then add an “increase cost 1000” effect

to the action.

One subtlety worth noting is that PDDL does not permit actions to create new

objects (nor destroy existing ones). This is significant because many evolutions entail

the creation of new architectural elements, or the decommissioning of existing ones.

As a result, in an evolution that may involve creation of new elements, we must

declare some potential objects that do not exist in the initial architecture but may

be used to stand in for elements created during the evolution. In this case, we can

define an isReal predicate that is false for such potential objects and becomes true

when an action creates a new architectural element out of a potential object. Such

approaches have substantial limitations and are rather cumbersome, and Frank et

al. [89] identify this as an important limitation of PDDL. (A related point is that a

PDDL specification can have only finitely many objects, while the set of software

architectures reachable via a set of evolution operations may be infinite in general.)

Representing path constraints. Path constraints are perhaps the most challenging

element of an architecture evolution problem to translate into PDDL. As section 2.4

explained, path constraints can be naturally represented using temporal logic. In

chapter 3, I described an extension of linear temporal logic that is particularly suitable

for expressing evolution path constraints. Unfortunately, PDDL2.1 does not have any

means to define constraints using temporal logic.

One way of addressing this would be to develop a way of translating temporal for-

mulas into PDDL directly. Indeed, there is previous work in this direction; Cresswell

& Coddington [61] present a means of compiling an LTL goal formula into PDDL.

They use a two-step process; first they generate a finite-state machine that accepts

traces of the LTL formula, then they encode this automaton as a collection of facts in

PDDL and modify the actions to track the current state. This process is conceptually

complex and encumbers the specification with numerous state variables. Therefore,

I leave to future work the challenge of extending this compilation process to the

augmented version of LTL that we use to capture path constraints.

To avoid such conceptual complexities in this work, we took a pragmatic approach:

we characterized certain restricted classes of path constraints (with an eye toward

the kinds of constraints that will arise in the example of section 6.3.3) and showed

how they could be easily represented using the existing facilities of PDDL.

• Constraints that must hold throughout an evolution. The simplest possible kind

of constraint is one that must hold continuously through the entire duration of

the evolution (e.g., a system must always be protected by a firewall, or a trusted

131

6 Tooling

component may never connect directly to an untrusted one). In LTL, such a

constraint takes the form �φ for some propositional formula φ. Despite their

simplicity, these constraints are quite common. Such a constraint amounts to

an architectural constraint that persists through an evolution. In PDDL, we

can model such a constraint easily (if verbosely) as a condition on every action.

• Ordering constraints. Another common class of constraints comprises con-

straints that govern the order of the operations that are to be carried out in

the course of an evolution. For example, a firewall must be installed before

connections to a protected resource are permitted; a high-priority client should

receive a service upgrade before a low-priority one. Such constraints are also

generally easy to model in PDDL. If an operator B must be preceded by an

operator A, then we can have action A set a predicate, aExecuted, that is a

precondition for operator B .

• Timing constraints. Constraints on the time at which evolution operations

are carried out, or the time by which certain goals must be achieved, are

extremely common in real-world evolution. In the simplest case, there may

be a requirement that the evolution be completed by a specific date. In more

complex cases, there may be a set of such requirements: feature A must be

available for client 1 by April, feature B for client 2 by July, and so on. These can

be modeled in PDDL by setting appropriate conditions on durative actions.

A more complex kind of timing constraint is a constraint that certain actions

can be performed only at certain times. A real-world example is that many

retailers, such as Amazon.com and Costco, refrain from making major software

changes during the Christmas shopping season, so as not to introduce bugs

during a period of heavy use. In section 6.3.3, we will see another example, in

which certain operations can be carried out only on certain days of the week.

These are also expressible in PDDL. There are some challenges, however, which

are explored in section 6.3.3.

There are many constraints that do not fit into these categories, but it seems that

many of the constraints that arise in real-world evolutions do fall into these groups

(see, for example, section 5.4.3). In section 6.3.3, we will see how various constraints

can be represented in PDDL.

A final point to note is that PDDL3 has its own notion of a constraint. Like our

constraints, PDDL3 constraints express conditions that must be met by an entire plan

(in contrast with conditions in PDDL2.1, which are evaluated locally, with respect

to a particular point in time). Moreover, these constraints are expressed in a syntax

reminiscent of temporal logic, with operators such as always, sometime, at-most-

once, and so on. However, there are substantial restrictions; most significantly, these

modalities may not be nested. As a result, this constraint language is less expressive

than LTL. Nonetheless, PDDL3 constraints would be a useful way of expressing a

broad class of evolution path constraints. However, because we targeted PDDL2.1, I

do not discuss them further here.

132

6.3 Automated generation of architecture evolution paths

Representing path evaluation functions. As explained in section 2.5, an evaluation

function provides a quantitative evaluation of a path. As we have seen, there may be

evaluation functions for various dimensions of concern, such as cost and availability,

which can be composed together into an evaluation function that captures a notion

of overall path utility.

All of this can be translated into PDDL. Evaluation functions such as cost and

availability can be modeled as nullary functions in PDDL, and their values can be

modified by actions as appropriate. Finally, we can use these values to set a plan

metric in the problem description, which planners will try to optimize in generating

a plan. This metric can simply be a reference to a function, or it can be an arbitrary

arithmetic expression. The metric can also incorporate the total duration of the plan

by using the built-in variable total-time.

6.3.3 Application

To show how this approach could be used in practice, and to provide a demonstration

of its applicability, we applied it to an evolution scenario. The scenario is based

loosely on a real-world data migration experience that we had previously elicited (for

other purposes) from a practicing software engineer. We elaborated this experience

into a complete description of an architecture evolution problem, so that it would be

specific enough to operationalize as a planning problem. Then, using the approach

described above, we translated this scenario into PDDL.17 Finally, we used two

different off-the-shelf planners to generate plans and evaluated the results.

Our example is based loosely on a real-world data migration scenario, in which a

company had to migrate a number of services from an old data center to a new data

center. The planning for this migration was nontrivial, because there were a number

of interacting constraints governing how the various services had to be moved. For

example:

• Different services had different kinds of availability requirements. For example,

some services had to be continuously available for regulatory reasons (zero

planned downtime). In other cases, there were periods when certain services

were required to be online (e.g., the payroll system had to be online at the end

of each payroll period).

• Different services had to be moved in different ways. Some services (particu-

larly those hosted on Unix systems) could be easily cloned into the new data

center using the corporate storage area network. Other services were more

finicky and could not be cloned automatically; manual intervention was re-

quired to migrate these services. And there were a few unique legacy services

that were running on custom-built, special-purpose hardware. These services

were so closely tied to the machines on which they were running that the only

practical way to migrate them was to load the machines onto a truck and drive

them to the new data center.

17For the sake of replicability, I have reproduced the entire PDDL specification in appendix C.

133

6 Tooling

Firewall

Internet

PayrollService

AccountingService

FinanceHost (Win)

SafetyDbService

SafetyDbHost (Unix)

AnalyticsService

AnalyticsHost (Win)

ClientWebsiteService1

ClientWebsiteService2

ClientWebsiteHost1 (Unix)

ClientWebsiteService3

ClientWebsiteService4

ClientWebsiteHost2 (Unix)

DC1

(empty)DC2

Service Host Data center
Network

connection

Key

Figure 17. Deployment view of the initial architecture of the data migration scenario.

• No services could be established in the new data center until a firewall was

installed there.

In the real-world experience on which our scenario was based, the architects experi-

enced significant difficulty in managing these interacting constraints to develop a

satisfactory plan. The planning process ultimately took roughly six months, and the

migration itself was carried out over several weekends.

We elaborated this scenario by adding additional architectural details as necessary

to create a complete specification of an architecture evolution problem. For example,

although we had general information about the kinds of architectural elements and

evolution constraints, we did not have a list of specific service names and locations,

so we invented fictitious service names and assigned them to hosts at will.

The initial architecture is shown in figure 17. There are five hosts in data center

DC1, each with one or more services, all of which must ultimately be migrated to

DC2. We defined a number of specific evolution constraints based on the real-world

constraints above. For example, we specified that the payroll service in figure 17

must be available on Mondays to permit payroll processing, and we defined rules

governing how the services could be moved (e.g., Unix services can be cloned to a

new data center over the network, but the analytics engine is tied to special-purpose

hardware that must be physically relocated). We defined six evolution operators: in-

stall network switch, install firewall, decommission host, clone host, manually transfer

service, and physically relocate host. Finally, we defined two ways of evaluating path

134

6.3 Automated generation of architecture evolution paths

quality: cost and duration. Cost is affected by when and how systems are migrated

(migrating a system on weekends is more expensive than during normal working

hours, and physically moving a host is much more expensive than cloning a host over

the network). Duration refers to the overall time to complete the evolution.

Representing the initial and target architectures. We represented the initial archi-

tecture following the approach described in section 6.3.2. In the domain description,

we defined PDDL types for the architectural element types: DataCenter, Service, and

Host (with subtypes UnixHost and WindowsHost). We defined predicates to indicate

relationships among elements, such as an is-in predicate that holds when a given

host is in a given data center and an is-on predicate that holds when a given service

is on a given host. With these types and predicates defined, we were able to translate

the initial architecture in figure 17 into a PDDL description of the initial state.

Representing the target architecture as a set of goal conditions, on the other hand,

entails some subtleties. In principle, we could define the target architecture by the

same method that we defined the initial architecture—specify exactly which services

are on which hosts and which hosts are in which data center. In practice, however,

this would be a bit too restrictive. Because services can be migrated in multiple

ways—cloning, manual service-by-service migration, or physical relocation—there

are actually multiple legal end states. For example, we could clone ClientWebsite-

Host1 onto a new host in DC2 and decommission ClientWebsiteHost1, or we could

instead move ClientWebsiteHost1 itself to DC2. These would result in slightly dif-

ferent end states, but either is permissible from the standpoint of path correctness;

the choice should be left to the planner. Thus, we defined the goals of the evolution

in more general terms; we defined a permissible end state to be one in which (1) all

services end up in DC2 and (2) no hosts remain in DC1.

In principle, these goals are easy to represent in PDDL:

(:goal (and

; All services end up in DC2.

(forall (?s - Service)

(exists (?h - Host) (and (is-on ?s ?h) (is-in ?h DC2))))

; No hosts remain in DC1.

(not (exists (?h - Host) (is-in ?h DC1)))))

Unfortunately, practical considerations prevent such a straightforward approach.

Many planners—including OPTIC, one of the planners we used in this work—do not

support goals with negative or existential operators. To get around this, we defined

helper predicates such as was-migrated (to indicate that a service has been migrated)

and was-removed-from (to indicate that a host has been removed from a data center)

and modified the actions to update them throughout the evolution. We then declared

our goals as follows:

(:goal (and

; All services end up in DC2.

(forall (?s - Service) (was-migrated ?s))

135

6 Tooling

(:durative-action manuallyMigrateService

:parameters (?s - Service ?h1 ?h2 - Host ?d - Day)

:duration (= ?duration 3.9)

:condition (and

(at start (is-on ?s ?h1))

(over all (is-in ?h1 DC1)) (over all (is-in ?h2 DC2))

(over all (has-firewall DC2))

(over all (network-switch-installed))

(at start (not-yet-migrated ?s))

(over all (can-be-migrated-individually ?s))

(over all (ok-to-move-on ?s ?d))

(at start (no-work-in-progress))

(over all (today ?d))

(over all (>= (allowed-downtime ?s) 3.9))

(at start (<= time-since-last-day 4.1)))

:effect (and

(at end (is-on ?s ?h2))

(at end (was-migrated ?s))

(at end (not (not-yet-migrated ?s)))

(at end (not (is-unused ?h2)))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 20 (cost-multiplier ?d))))

(at end (increase current-hour 3.9))

(at end (increase time-since-last-day 3.9))))

Figure 18. Expression of an evolution operator in PDDL.

; No hosts remain in DC1.

(was-removed-from ClientWebsiteHost1 DC1)

(was-removed-from ClientWebsiteHost2 DC1)

(was-removed-from SafetyDbHost DC1)

(was-removed-from FinanceHost DC1)

(was-removed-from AnalyticsHost DC1)))

This complicated the domain description, but it allowed us to express our goals

crisply despite the limitations of planners.

Representing the evolution operators. We represented the operators as actions in

accordance with the approach described in section 6.3.2. Figure 18 shows an example:

the action for manual migration of a service from one host to another. Much of this

is straightforward. The action first defines its parameters: the service being migrated,

the hosts it is moving from and to, and the current day (I will explain this parameter

shortly). Then it defines its duration: 3.9 hours.

Many of its conditions correspond directly to preconditions of the evolution oper-

ator. For example, to migrate a service s from host h1 to host h2, clearly s must be on

136

6.3 Automated generation of architecture evolution paths

h1 at the outset. We also require that h1 is in DC1 and h2 is in DC2 (we only want to

move services from DC1 to DC2), and we require that the firewall and network switch

are already installed.

The conditions that reference no-work-in-progress, today, and time-since-last-day

are used in modeling the passage of time, which I describe later in this section.

Many of the effects are straightforward specifications of the evolution operator’s

architectural transformations. When the manuallyMigrateService operator is applied,

the effect on the architecture is that service s is now on host h2. We also must set here

a number of helper predicates, as mentioned earlier, such as was-migrated, not-yet-

migrated, and is-unused. The effects that mention no-work-in-progress, current-hour,

and time-since-last-day are used to support the modeling of the passage of time and

will be discussed under the next subhead. Finally, the effect that increases total-cost

is used for cost optimization, which I will describe later in this section.

Representing time. The most difficult part of representing this scenario in PDDL

was capturing its temporal aspects. The temporal features that PDDL provides fall

well short of this scenario’s needs. In particular, this scenario (like many evolution

problems) is steeped in references to real-world time—that is, clock time, or calendar

time. The payroll service must be available on Mondays; the accounting service can

be moved only on weekends; operations are most expensive when carried out on

weekends. PDDL is ill suited to representing such considerations. PDDL’s conception

of time is a continuous timeline, extending from zero to infinity. To reason about

concepts such as Mondays and working hours, we must model them ourselves—and

do so in a way consistent with PDDL’s own model of time. This is rather difficult.

In this scenario, we are interested only in working hours; the company, in this

scenario, has only day employees, and all work takes place between 9 a.m. and 5 p.m.

We therefore interpret PDDL’s timeline within an eight-hour day cycle; time indices

between 0 and 8 represent Monday, times between 8 and 16 represent Tuesday, and

so on.

This simplifies the specification because we do not need to model the empty

nighttimes. However, it also creates some difficulties. We now must prohibit actions

from spanning day boundaries; we do not want the planner to schedule a four-hour

action as beginning at time 6 (Monday at 3 p.m.) and ending at time 10 (Tuesday

at 11 a.m.). An action must be completed within a single day. Enforcing this rule in

PDDL is difficult.

First we need a way to keep track of time. In PDDL, an action does not know when

it is occurring; that is, it has no way to refer to the current time. If we want to keep

track of time, then, we must do it ourselves. To do so, we define a nullary function,

current-hour, and we add to each action an effect to set its value:18

(at end (increase current-hour ?duration))

18As can be seen in figure 18, we actually hard-code the duration rather than using the ?duration

parameter, because some planners have trouble when the ?duration parameter appears in effects and

conditions.

137

6 Tooling

If PDDL provided a sufficiently rich set of arithmetic operators, this alone would

be sufficient to prevent actions from crossing day boundaries; each action could

have a precondition

?duration+ (current-hour mod 8) ≤ 8.

Unfortunately PDDL does not have a modulo operator. Instead we must further

complicate the specification with a time-since-last-day function. As with current-

hour, every action has an effect that increments this value by the action’s duration.

We also create a special action, waitTillNextDay, that waits until the next multiple

of 8 and resets the value of time-since-last-day to 0. Finally, we give each action a

precondition that prevents it from being scheduled when there is less time remaining

in the day than is required to carry it out:19

<= time-since-last-day (- 8 ?duration)

Days of the week pose yet another challenge. Recall that some services can be

moved only on certain days; for example, the accounting service can be moved only

on weekends. Again, with a modulo operator, this would be easy; weekends are those

times such that 40 ≤ current-hour mod 56 < 56. Since PDDL lacks a modulo operator,

we must again complicate the domain description, this time by defining a Day type

(with values Monday, Tuesday, etc.) and a predicate over days, today, that indicates

the current day. We then modify the waitTillNextDay action to set this predicate. This

will permit us to express constraints pertaining to days of the week.

A final temporal rule that we enforced was to forbid concurrency. This scenario

describes a single, small team of engineers evolving a simple information system;

they can work on only one thing at a time. PDDL2.1, on the other hand, is based

on an action execution model that is concurrent by default; a planner will gladly

schedule all actions to occur simultaneously at time 0 if allowed to do so. To prevent

this, every action has a condition that prevents it from executing when the no-work-

in-progress predicate is true; every action sets this predicate to false at the beginning

of its execution and resets it to true at the end.

Representing the path constraints. We have already seen the representation of

some of the constraints in this scenario. The prohibition on concurrency, for ex-

ample, is achieved by means of action conditions and effects. The requirement that

a firewall must be installed before any services are migrated is similarly simple to

model via a has-firewall predicate that is set by the installFirewall action and appears

as a precondition for all the migration actions.

The availability constraints were more challenging to model. As we just saw, a

substantial infrastructure is required to model days of the week in a way that can

support the expression of these constraints. With this infrastructure in place, we can

specify which services may be moved on which days by defining a predicate, ok-to-

move-on, over services and days, and setting its values in the problem description

(e.g., “ok-to-move-on AccountingService Saturday”). Then, we set on each migration

action a condition that the given service may be moved on the current day. To do so,

19Again, due to planner limitations we actually hard-code the duration.

138

6.3 Automated generation of architecture evolution paths

we add a parameter d of type Day to the action to represent the current day (which

we enforce with a “today ?d” condition) and then add the condition “ok-to-move-on

?s ?d” (see again figure 18 for a full example).

We use a similar strategy to define the constraints governing how different services

may be migrated. For example, to define which services can be manually migrated

over the network, we define a can-be-migrated-individually predicate over services,

which is a condition of the manuallyMigrateService action.

Most of these constraints are specified using the same general idiom: the con-

straints themselves often appear as action conditions, but they often are supported

by predicates that keep track of state (which is maintained through the use of action

effects). This is an ad hoc version of the kind of state-based reasoning that would

occur if we were to adopt a more formal means of translating constraints expressed in

temporal logic into PDDL à la Cresswell & Coddington, as suggested in section 6.3.2.

Representing the path evaluation function. In this evolution, the goal is to mini-

mize cost; thus we have a single evaluation function, which we model in PDDL by the

nullary function total-cost. The value of this function is incremented by the actions,

and the function is defined as the goal metric in the problem description.

The main complication is that the costs of actions are not fixed. Actions are more

expensive on weekends than during normal working hours. The straightforward

way to model this would be with conditional effects. Unfortunately they are not well

supported (by now a familiar refrain).

Instead we introduce a cost-multiplier function over days, which we value at 1

for weekdays and 3 for weekends. Since each action has a parameter representing

the current day of the week (see section 6.3.3), each action can incorporate this cost

multiplier in its effect on total-cost, as shown in figure 18.

Generating an evolution path. The final PDDL specification was of moderate size:

24 objects, 14 predicates, 8 functions, 130 initial conditions, and 9 durative actions

(each with, on average, 8 conditions and 9 effects). With the specification complete,

the next step was to generate a plan.

We used two different planners to demonstrate a key advantage of PDDL: its status

as a lingua franca supported by many planners. We chose LPG-td [98] and OPTIC [26]

as the two planners due to their feature sets, ease of installation and use, maturity,

planning quality, and general good reputation.

Both planners work by first attempting to generate a correct (but possibly low-

quality) plan, then progressively refining the plan to improve its quality. Both plan-

ners correctly interpret our PDDL specification, find a correct solution within a few

seconds, and refine it into an optimal solution soon thereafter.

Figure 19 shows an optimal plan generated by OPTIC. Observe that services are

always moved by the cheapest means permissible—cloning is preferred, with manual

migration and physical host transfer used only when required. In addition, the

planner avoids scheduling any unnecessary activity on weekends; the only service

migrated on the weekend is the accounting service, which is forbidden to be moved

during weekdays.

139

6 Tooling

0.000: (installswitch monday) [1.900]

1.901: (installfirewall dc2 monday) [0.900]

2.802: (clonehost2 clientwebsitehost2 unusedunixhost1 clientwebsiteservice3 clientwebsiteservice4 monday) [1.900]

4.703: (clonehost2 clientwebsitehost1 unusedunixhost2 clientwebsiteservice1 clientwebsiteservice2 monday) [1.900]

6.604: (waittillnextday monday tuesday) [1.399]

8.004: (physicallymovehost1 analyticshost analyticsservice tuesday) [5.900]

13.905: (clonehost1 safetydbhost unusedunixhost3 safetydbservice tuesday) [1.900]

15.806: (waittillnextday tuesday wednesday) [0.201]

16.008: (decommissionhost safetydbhost dc1 wednesday) [3.899]

19.908: (decommissionhost clientwebsitehost2 dc1 wednesday) [3.899]

23.809: (waittillnextday wednesday thursday) [0.200]

24.011: (decommissionhost clientwebsitehost1 dc1 thursday) [3.899]

27.911: (manuallymigrateservice payrollservice financehost analyticshost thursday) [3.899]

31.812: (waittillnextday thursday friday) [0.200]

32.013: (waittillnextday friday saturday) [8.000]

40.015: (manuallymigrateservice accountingservice financehost analyticshost saturday) [3.899]

43.915: (waittillnextday saturday sunday) [4.100]

48.016: (waittillnextday sunday monday) [8.000]

56.017: (decommissionhost financehost dc1 monday) [3.899]

Figure 19. Output from OPTIC showing an optimal evolution plan. In bold are action

names, which are followed by the action parameter assignments. At the beginning of

each line is the time at which the action is executed.

To reliably quantify the planners’ performance on our specification, we ran our

specification on each planner ten times on an Amazon EC2 medium instance (which

has 3.75 GiB of memory and processing power roughly equivalent to a single 2.2-GHz

core). Conducting multiple runs was particularly important because LPG-td’s plan

generation is highly nondeterministic; the initial plan is created based on a random

seed.

In all ten runs, OPTIC was able to find a correct plan within 8 seconds and an

optimal one (i.e., one that achieves the minimum possible cost) within 10 seconds.

LPG-td was much slower at finding an optimal plan (unsurprisingly, since it is a much

older planner than OPTIC), but it did succeed consistently within a few minutes,

and it always found a correct, nonoptimal solution very quickly. Table 12 presents

summary statistics.

We also ran a modified version of the problem in which we asked the planners to

minimize plan duration and ignore cost. Times for these runs appear in the lower

part of table 12.

6.3.4 Findings

Our experience demonstrated the viability of using automated planning tools to solve

architecture evolution problems, but it also revealed challenges. I now discuss our

main findings.

140

6.3 Automated generation of architecture evolution paths

Time to generate Time to discover
initial solution optimal solution

Min Median Max Min Median Max

Minimizing cost

LPG-td 3.6 3.8 3.9 40.6 126.2 278.4

OPTIC 6.6 6.6 7.9 7.6 7.6 9.3

Minimizing time

LPG-td 3.7 3.7 4.1 49.8 90.5 287.4

OPTIC 6.6 6.6 7.8 15.3 15.4 17.4

Table 12. Time to generate an evolution path. All figures are in seconds and are

calculated over ten runs.

PDDL is expressive enough to capture the significant concerns of an evolution
problem. Despite some challenges, we were able to capture the evolution scenario

in its entirety. The PDDL model of a planning problem is broadly consistent with a

path-oriented view of architecture evolution; the correspondence between evolution

operators and PDDL actions, for example, is satisfyingly direct.

We did have to contend with some limitations of PDDL. Most significantly, PDDL’s

simplistic model of time makes it difficult to specify constraints based on calendar

time or clock time. Modeling constraints about which actions could occur on which

days of the week, for example, posed significant challenges.

There has, incidentally, been considerable research on improved methods for

expressing temporality in planning problems [65; 197], and languages have been

developed that increase the temporal expressivity of PDDL [86; 146]. However, PDDL

is far more widely supported than any other planning language.

Automated planners can effectively and efficiently generate evolution paths. Both

automated planners we tried were able to quickly generate high-quality solutions to

a moderately complex architecture evolution problem. This kind of automated path

generation has the potential to ameliorate one of the most significant burdens of a

path-based approach to software architecture evolution: the need for the architect

to manually specify the evolution graph in full detail before beginning analysis. By

taking advantage of automated planners, we are able to capitalize on decades of

research in artificial intelligence, which allows paths to be generated quickly and

intelligently.

Of course, we should be cautious about overgeneralizing based on a single experi-

ence. Some architecture evolution problems may be more amenable to solution by

automated planners than others. More work is needed to evaluate the scalability and

applicability of this approach.

Current off-the-shelf planners have limited feature sets. Although PDDL provides

a powerful array of features for specifying complex and intricate planning problems,

few (if any) existing planners support the language fully. In section 6.3.3, I mentioned

141

6 Tooling

numerous instances where we had to adapt our specification to accommodate the

limitations of planners. In most cases, we were able to circumvent these limitations.

That is, in many cases, planner limitations do not reduce the practical expressivity

of the specification language, but they do make specifications more verbose and

awkward. For example, poor support for negative and existential conditions forced

us to clutter our specification with many otherwise unnecessary declarations.

This somewhat compromises PDDL’s effectiveness as a lingua franca. Ideally,

we should be able to write a PDDL specification once and use any PDDL-based

planner to analyze it. In practice, planners’ limitations are so idiosyncratic and

poorly documented that adapting a specification to work with a particular planner is

a frustrating and time-consuming process.

Debugging planning specifications is difficult. PDDL specifications are inherently

difficult to debug. If a specification author forgets, for example, to specify a necessary

initial condition in the problem description, causing the problem to be unsolvable,

the planner will simply say that it is unable to generate a plan. There is no good way

to track down the cause of the problem.

The experimental nature of available off-the-shelf planners exacerbates this prob-

lem. Even the most stable planners are fairly buggy and have limited documentation.

We chose LPG-td and OPTIC for their relative maturity and stability, but while using

them, we encountered many bugs and undocumented limitations. Error messages

were often unhelpful, and it can be difficult to tell whether a problem is caused by a

specification error, a limitation of the planner, or an outright bug. When a planner

encounters something its designers did not anticipate, it is as likely to crash with a

segmentation fault as it is to display any useful explanation of the problem.

6.4 Summary

This chapter is a compilation of three projects related to the topic of developing prac-

tical software architecture evolution tools. I have grouped these three pieces of work

together in the same chapter because all three of them are smallish projects focusing

on issues of architecture evolution tool implementation; thus all three of them are

relevant to research claim 3 in section 1.3.3, the claim of implementability. However,

the three projects had very different purposes and goals. In this summary, I compare

the three pieces of work described in this chapter and explain their relevance to my

thesis (and in particular the research claim of implementability). This discussion is

summarized in table 13.

The first section in this chapter described Ævol, an early demonstration of our

approach with which I was only peripherally involved (section 6.1). Thus, I do not

consider it part of my thesis work, and I have not described it in any significant detail

in this chapter. Moreover, Ævol was intended as an illustration of our approach and

“a platform for exploring the foundations of architecture evolution” [96, p. 591], not an

evaluation of implementability. I have referenced this early implementation work in

this chapter primarily for the sake of completeness, but it provides only weak support

for the research claim of implementability.

142

6.4 Summary

Se
ct

io
n

Se
ct

io
n

6.
1

Se
ct

io
n

6.
2

Se
ct

io
n

6.
3

Im
p

le
m

en
ta

ti
o

n
A

cm
eS

tu
d

io
p

lu
g-

in
M

ag
ic

D
ra

w
p

lu
g-

in
P

D
D

L
m

o
d

el

M
o

ti
va

ti
o

n
E

ar
ly

re
se

ar
ch

d
em

o
n

st
ra

ti
o

n
Fo

ll
ow

-o
n

to
JP

L
ca

se
st

u
d

y,
fo

cu
se

d

o
n

im
p

le
m

en
ta

ti
o

n
is

su
es

A
m

el
io

ra
te

b
u

rd
en

o
f

d
efi

n
in

g
ev

o
lu

-

ti
o

n
p

at
h

s

A
p

p
ro

ac
h

Im
p

le
m

en
tb

as
ic

co
n

ce
p

ts
fr

om
ou

ra
p

-

p
ro

ac
h

in
a

p
lu

g-
in

to
a

re
se

ar
ch

to
o

l

Im
p

le
m

en
tb

as
ic

co
n

ce
p

ts
fr

om
ou

ra
p

-

p
ro

ac
h

in
a

p
lu

g-
in

to
a

co
m

m
er

ci
al

m
o

d
el

in
g

to
o

l

A
d

ap
tr

es
ea

rc
h

on
au

to
m

at
ed

p
la

n
n

in
g

to
ge

n
er

at
e

ev
o

lu
ti

o
n

p
at

h
s

au
to

m
at

i-

ca
lly

F
in

d
in

gs
N

o
fo

rm
al

fi
n

d
in

gs
w

er
e

d
es

cr
ib

ed
in

th
e

p
u

b
li

ca
ti

o
n

;p
ro

je
ct

w
as

in
te

n
d

ed

as
a

d
em

o
ra

th
er

th
an

an
ev

al
u

at
io

n

D
et

ai
le

d
d

is
cu

ss
io

n
o

fi
ss

u
es

an
d

ch
al

-

le
n

ge
s

in
im

p
le

m
en

ti
n

g
an

ev
o

lu
ti

o
n

to
ol

as
a

p
lu

g-
in

to
an

ex
is

ti
n

g
ar

ch
it

ec
-

tu
re

m
o

d
el

in
g

fr
am

ew
o

rk

E
vo

lu
ti

o
n

p
at

h
s

ca
n

b
e

ge
n

er
at

ed
au

-

to
m

at
ic

al
ly

u
si

n
g

au
to

m
at

ed
p

la
n

n
in

g

te
ch

n
iq

u
es

,a
lt

h
o

u
gh

th
er

e
ar

e
p

ra
ct

i-

ca
l

ch
al

le
n

ge
s

in
u

si
n

g
cu

rr
en

t
p

la
n

-

n
in

g
to

o
ls

R
el

ev
an

ce

to
th

es
is

P
ro

vi
d

es
w

ea
k

su
p

p
o

rt
fo

r
cl

ai
m

o
fi

m
-

p
le

m
en

ta
b

ili
ty

P
ro

vi
d

es
d

et
ai

le
d

tr
ea

tm
en

t
o

f
p

ra
c-

ti
ca

l
ch

al
le

n
ge

s
an

d
is

su
es

in
im

p
le

-

m
en

ti
n

g
ar

ch
it

ec
tu

re
ev

o
lu

ti
o

n
to

o
ls

D
em

o
n

st
ra

te
s

au
to

m
at

ab
ili

ty
o

fe
vo

lu
-

ti
o

n
p

at
h

ge
n

er
at

io
n

P
u

b
li

ca
ti

o
n

[9
6]

[1
8]

[2
0]

Ta
b

le
13

.A
su

m
m

ar
y

of
th

e
im

p
le

m
en

ta
ti

on
p

ro
je

ct
s

d
es

cr
ib

ed
in

ch
ap

te
r

6
an

d
th

e
d

if
fe

re
n

ce
s

am
on

g
th

em
.

143

6 Tooling

On the other hand, the second piece of work, the MagicDraw plug-in prototype

(section 6.2), was intended explicitly as an examination of practical issues involved in

implementing a software architecture evolution tool as a plug-in to an off-the-shelf

architecture modeling framework. The findings of this work directly address the

research claim of implementability by reporting and discussing a number of general

challenges to architecture evolution tool implementation.

The final piece of work described in this chapter was an attempt to use research

on automated planning to support automatic generation of evolution paths, based

on specifications of an initial architecture, a target architecture, a set of operators, a

set of constraints, and an evaluation function to optimize. This work was narrowly

focused on the question of the automatability of the approach, as opposed to more

general implementation issues.

144

7 Related work

Software evolution is a major area of research, and it has been for some time. Sec-

tion 7.1 gives a brief overview of the extensive literature on software evolution gen-

erally and discusses why much of it is inadequate for addressing the problem of

architecture evolution. Another relevant topic is software project planning. Sec-

tion 7.2 summarizes work in this area and shows how it falls short of addressing the

problem considered here. Section 7.3 discusses research on software evolvability.

This work provides guidance on designing highly evolvable architectures and meth-

ods for evaluating architecture evolvability. Finally, there is now a growing body of

research on the topic of planning software architecture evolution, which section 7.4

discusses in detail. Section 7.5 concludes by discussing how this thesis research

relates to and distinguishes itself from related work.

For alternative views of the software architecture evolution research literature, see

the work of Breivold et al. [38] and Jamshidi et al. [112], both of whom have under-

taken systematic literature reviews on the topic of software architecture evolution.

7.1 Software evolution

Since the early days of software engineering there has been concern for the main-

tainability of software, leading to concepts such as modularization in support of

maintainability [179], indications of maintainability such as coupling and cohesion

[11; 227], code refactoring [175], and many others [100]. These techniques, which

focus on the code structures of a system, have led to numerous advances, such as

language support for modularization and encapsulation, analysis of module com-

patibility and substitutability [46], and design patterns that support maintainability

[92]. While such advances have been critical to the progress of software engineering,

they generally do not treat large-scale reorganization based on architectural abstrac-

tions. They focus primarily on the code level and do not capture information about

architectural structure.

Some of the best-known foundational work in the area of software evolution is that

of Lehman [135; 136], who in 1980 described (and in 1996–1997 revisited [137; 138]) a

set of “laws of program evolution” based on software development experiences in the

late 1960s and 1970s. Lehman’s work was particularly notable because it dealt with

the evolution of systems, not just the evolution of code. In this sense, Lehman’s work

was a forerunner of the later research on software architecture evolution described

in sections 7.3 and 7.4.

Lehman’s 1980 papers enunciated five laws:

1. Continuing change. A program either undergoes continuing change or be-

comes progressively less useful. Change or decay continues until it becomes

145

7 Related work

more cost-effective to replace the program with a recreated version.

2. Increasing complexity. As a program evolves, its complexity increases and

structure deteriorates unless work is done to reduce it.

3. The fundamental law. The evolution process is self-regulating, with statisti-

cally determinable trends and invariances.

4. Conservation of organization stability. The global activity rate in a program

evolution project is statistically invariant.

5. Conservation of familiarity. The release content (changes, additions, dele-

tions) of the successive releases of an evolving program is statistically invariant.

The first two laws have particularly clear relevance here. Systems that fail to evolve

become less useful over time; and systems that evolve but fail to do so in a princi-

pled fashion become less maintainable and more complex over time. These truths,

which remain relevant today, justify and explain the need for principled, high-level

evolution to keep systems relevant and coherent.

7.2 Software project planning

In the domain of project planning, traditional project management approaches

and software development planning approaches provide ways to plan and analyze

software development. Broadly speaking, these techniques address the same high-

level problem as this dissertation: planning the best way to carry out major changes

to a software system. However, the approach and applications are quite different.

Among the most well-known and well-developed approaches for project planning

are cost and effort estimation techniques such as COCOMO [31], the Putnam model

[186], SEER-SEM [82], estimation by analogy [204], dynamics-based techniques such

as that of Abdel-Hamid [1], and others [33]. However, such techniques focus primarily

on the end state of a maintenance or development effort. They tend to be more

concerned with gauging the overall cost of an evolution (or other software project)

rather than developing a detailed plan of evolution or reasoning about sequences

of developments. The approach presented here, on the other hand, has the explicit

goal of selecting a particular path of evolution—one that optimizes utility subject to

relevant technical and business constraints.

Aside from these approaches to cost modeling, there is a great deal of general

work on software project management and planning. Boehm [32] describes good

elements of a project plan. Phillips [183] describes the planning process and the

elements of a software project plan. Conger [55] describes steps for developing

a software project plan. Wu & Simmons [225] present a tool-based approach for

developing and managing software project plans. Software project planning is also

a key process area in the Capability Maturity Model, which provides guidance on

what constitutes a mature project planning process [180]. While these resources

provide useful general guidance on effective project planning, they do not provide

architects with domain-specific, situationally tailored guidance on how to structure

an evolution.

146

7.3 Evaluating and architecting for evolvability

Finally, none of these approaches directly address the architecture-level problem.

While they may provide general guidance on the way project planning should occur,

or the amount of effort that is likely to be necessary to complete the evolution, they

do not provide software architects with guidance on what operations must be carried

out, what order they should be done in, and what alternatives exist, nor are they

capable of stating and enforcing constraints on a system’s architectural structure.

Project planning and software architecture evolution modeling complement each

other; project planning approaches can be used to get a rough cost estimate of an

evolution project and figure out what resources to allocate to it, then architecture

evolution tools can be used to plan the architectural operations necessary to achieve

the evolution goals.

7.3 Evaluating and architecting for evolvability

Architectural treatments of evolvability can be roughly divided into two classes:

(1) guidance on designing highly evolvable software, and (2) methods for evaluating

the evolvability of an architecture. The first class of research answers the question of

how to architect software that will be easy to evolve or adapt in the future. The second

answers the question of how to determine the ease with which a software system can

be evolved. Thus, the first is prescriptive and the second is descriptive. Of course,

these two treatments are closely related; often, the reason one wants to evaluate the

evolvability of an architectural design is to optimize the evaluated evolvability and

thus create a highly evolvable design, so evaluation approaches are often used in the

service of architectural design.

Various approaches have been taken to architecting evolvable software. Chung

et al. [51] present a design-pattern-based approach in which they treat adaptability

as a quality attribute to be satisficed. Fricke & Schulz [91] present a set of general prin-

ciples to support changeability in system architectures. ArchWare [176] is a project

that takes a model-driven engineering approach, providing languages and a develop-

ment environment to support engineers in architecting evolvable systems. Focusing

particularly on the domain of embedded systems, America et al. [5] present a series

of recommendations for architecting evolvable software, including the establishment

of a reference architecture and the use of cost-benefit analysis.

This question of how to architect evolvable software is the anticipatory counter-

part of the research questions presented in section 1.1—it is preventive, while our

approach is corrective. The question of how to architect evolvable software is an

important one, but it is useful chiefly for the construction of new systems. This thesis

focuses instead on the common problem of evolving, modernizing, or rehabilitat-

ing existing systems, which may or may not have been originally engineered with

evolvability as an explicit goal.

There are a variety of evaluative approaches as well. Koziolek [118] presents a

literature review of work on sustainability evaluation of software architectures. (Kozi-

olek defines the term sustainability as encompassing maintainability, modifiability,

portability, and evolvability.) Here I highlight a few of the most relevant evaluative

approaches.

147

7 Related work

ALMA (Architecture-Level Modifiability Analysis) [25] is a method for evaluating

the modifiability of an architecture in which change scenarios are elicited from

stakeholders and the architectural effects of those scenarios are evaluated. Del Rosso

& Maccari [70] illustrate a means of assessing the maintainability of an evolving

software system. Tarvainen [216] presents an approach for evaluating the adaptability

of a software architecture, where adaptability is understood to include support for

run-time changes “as well as changes in the requirements of stakeholders’ objectives.”

Brcina & Riebisch [36] present an approach for evaluating architectural models for

evolvability by modeling traceability links between features, architectural elements,

and the implementation. Breivold et al. [37] describe an evolvability analysis method

that they developed in the course of a case study on an industrial automation control

system. The Evolutionary Scenario Development Method (ESDM) [203] takes a

retrospective approach, examining the impact that historical changes have had on

architectural quality.

There are also a number of economic approaches to evaluating the evolvability of

an architecture. Bengtsson & Bosch [24] attempt to predict the maintenance effort

that an architectural design will require by calculating the expected effort for each

change scenario. Anwar et al. [7] quantify maintenance cost using a model that

incorporates factors such as system novelty, turnover, and documentation quality.

Engel & Browning [79] suggest using the economic theory of real options to support

architectural adaptability. Bahsoon & Emmerich [10] present a model to predict the

stability of a software architecture, also using real-options theory. Cai & Sullivan

[41; 42] developed a formal model and tool for reasoning about the technical and

economic implications of design modularity, particularly with respect to evolvability.

What all this work on evolvability has in common is that it is concerned specifically

with ensuring that the future evolution of a system will be easy, not with planning

the details of how such an evolution will be carried out. That is, both areas of work

are concerned with evolvability as a quality attribute rather than evolution as an

activity. The work described here, on the other hand, focuses on modeling evolution

as an activity; thus, evolvability is relevant here only in the sense that improving

evolvability may be a goal of an evolution.

7.4 Planning software architecture evolution

We finally come to the body of research to which this work belongs: models and tools

to support software architects in planning evolution. There have arisen a number

of different perspectives on the topic of planning architecture evolution, which I

summarize under the following subheads:

Capturing architectural transformations. A number of researchers have proposed

formal models that can capture structural and behavioral transformation [13; 14;

106; 207; 208; 221]. For example, Wermelinger & Fiadeiro [221] use category theory

to describe how transformations can occur in software architecture. Their approach

separates computations of a system from its configuration, allowing the introduction

of a “dynamic configuration step” that produces a derivation from one architecture

148

7.4 Planning software architecture evolution

to the next. Architecture in this sense is defined by the space of all possible con-

figurations that can result from a certain starting configuration. Fahmy & Holt [81]

and Grunske [106] present ways of specifying architectural transformations using

graph rewriting systems. Barais et al. [13; 14] present an approach for specifying

architectural transformations inspired by aspect-oriented programming. These refac-

torings are shown to preserve architectural behavior. Spitznagel & Garlan [207, 208]

focus on the transformation of architectural connectors as a way to augment the

communication paths between components.

While such formal approaches lay a foundation for architecture evolution oper-

ations, they differ from the approach described here in that they do not provide

specialization for specific classes of transformation and systematic reuse. Moreover,

while they can provide some support for characterizing forms of evolution correct-

ness, they do not address issues of evolution quality. Finally, these approaches lack

empirical validation. Several of the cited papers [81; 106; 221] contain no empirical

validation of any kind. Barais et al. [13] uses a small, artificial example of a banking

application. Spitznagel & Garlan [207], in their work on connector transformation,

carried out a small case study involving enhancing a Java RMI connector with Ker-

beros authentication. However, this was a small example in laboratory conditions,

not an observation of real-world software engineering practice.

Another area of research worth mentioning here is work on architectural tactics,

a concept introduced by the Software Engineering Institute as a means of charac-

terizing architectural decisions that are used to achieve a desired quality attribute

response [8]. Conceptually, architectural tactics and evolution operators are quite

different. An evolution operator represents some real-world operation carried out

over time in the course of a software system evolution. Architectural tactics, on the

other hand, do not entail any notion of evolution over time; rather, a tactic encap-

sulates a set of decisions relevant to a quality attribute scenario. However, despite

the importance conceptual differences, there are certain similarities between the

two ideas; indeed, many architectural tactics can be reinterpreted as operators. For

example, an availability tactic based on incorporating redundancy in an architectural

design might give rise to an evolution operator that adds a failover component.

Recurring patterns of architecture evolution. In recent years, Tamzalit, Le Goaer,

and others have investigated recurring patterns of architecture evolution, primarily

with respect to component-based architectures [129–133; 191; 214; 215]. They use the

term evolution style to denote a pattern for updating a component-based architecture.

They provide a formal approach based on a three-tiered conceptual framework.

However, unlike the work described in this dissertation, they do not explicitly

characterize or reason about the space of architecture paths, or apply utility-oriented

evaluation to selecting appropriate paths. In addition, they seem to have relied

exclusively on fictitious examples rather than observing real evolutions. Several of

their papers [130; 132; 133] use an example of a client–server architecture based on

an example given by Cheng et al. [50]. In a 2007 paper, Le Goaer & Ebraert [129]

give a couple of other examples: a banking application evolving to accommodate

different account types and a chat application evolving to support two kinds of users.

149

7 Related work

In a more recent paper, Tamzalit & Mens [214] give yet another example, which they

call EShop: an Internet shop application evolving to a client–server architecture. All

these examples seem to be artificial; there is no suggestion in the papers that the

evolutions described were carried out or that they were based on observation of real

evolutions.

A more recently developed style-based approach, building on our work as well as

that of Tamzalit, Le Goaer, et al., is a framework developed by Cuesta et al. [63]. Like

us, they consider an evolution scenario in terms of evolution steps capturing the ar-

chitectural evolution of a system. However, they emphasize that the decision-making

process in architecture evolution should incorporate other kinds of architectural

knowledge beyond just structural information, and they make modeling of architec-

tural decisions a centerpiece of their approach. Their approach is based on local

reasoning; evolution decisions are selected in response to specific conditions which

can bring them about. Thus, unlike our approach, they do not provide any way

of evaluating evolution paths holistically to identify the optimal path, nor any way

of making utility-based trade-offs among competing concerns. To illustrate their

approach, Cuesta et al. present what they call “a real-world case study,” although it

appears to be a fictitious example that they contrived based on general understand-

ing of a domain rather than an actual evolution that was carried out, and it is not a

formal case study of the sort that I have presented in this dissertation.

Another interesting approach is Yskout et al.’s change patterns [228], which pro-

vide a framework for evolving multiple artifacts (in particular, requirements and

architecture) in tandem. This work is focused specifically on co-evolution of related

artifacts and is not a general theory of software architecture evolution.

Making trade-offs among architecture evolution paths. Another area of work is

trade-off analysis for architectural evolution. Within this category, the research that

most closely resembles ours is the recent work of Kang & Garlan [116]. Their ap-

proach, like ours, is based on modeling candidate evolution paths, which are defined

in terms of a sequence of architectural descriptions of a system over time. Also like

us, they use cost-benefit analyses to evaluate and select among these evolution paths.

However, they view evolvability as an architectural quality that is uniquely important

to system evolution; thus, their evaluation framework is built around the idea of dis-

tinguishing costs and benefits that are related to evolvability from those that pertain

to other qualities.

Also notable is the work of Brown et al. [39], who present an approach to iterative

release planning based on analysis and selection of development paths, where each

development path consists of a sequence of releases. Their analysis is based on mea-

surement of architectural design dependencies as represented by design structure

matrices.

Finally, Ozkaya et al. [177] propose to use techniques from options theory to

determine investments in introducing flexibility into a system. In their model, part

of the value of applying an architectural pattern is that it affords architects the ability

(but not the obligation) to take subsequent design actions; this can be viewed as a

real option in economic terms.

150

7.4 Planning software architecture evolution

None of these methods provide support for specifying architectural transforma-

tions, defining evolution constraints, or capturing domain-specific evolution ex-

pertise. All three of them focus specifically on analysis of architecture evolution

alternatives and do not link this to a broader theory of architecture evolution plan-

ning.

Capturing architecture evolution decisions. Zalewski et al. [230] focus on decision-

making processes in software architecture evolution. They present a methodology

for capturing evolution decisions in a decision map (similar to a conventional mind

map). This work focuses solely on capturing and relating decisions and does not

directly represent architectural structure. In addition, while our work focuses on

providing guidance to help architects make good decisions, Zalewski et al. leave

architects to make decisions on their own; their focus is capturing these decisions.

Model-driven reengineering. There has also been work on evolution in the model-

driven engineering community. A particularly significant effort in this area is the

Object Management Group’s Architecture-Driven Modernization initiative, which

aimed to develop systematic approaches to model-driven reengineering [169]. This

initiative led to the development of the Knowledge Discovery Metamodel [170], which

defines an interchange format for reengineering tools. The Knowledge Discovery

Metamodel was later standardized as ISO/IEC 19506 [110].

Model-based reengineering has seen some industrial use. Pérez-Castillo et al. [181]

present a survey of reengineering tools that have been used industrially, several of

which provide some support for model-based restructuring of a software system.

Most of these are fairly limited, but they do show how model-based approaches to

software evolution can be made industrially relevant.

Van Deursen et al. [218] give a useful survey of the state of the art in model-driven

evolution approaches, focusing on limitations and directions for future work.

Case studies in architecture evolution. There have been some exploratory case

studies examining instances of architecture evolution and attempting to draw con-

clusions therefrom. Unlike the work presented in this dissertation, these case studies

do not attempt to link their results to a broader theory of architecture evolution; they

do, however, provide some useful generalizations and prescriptions.

Erder & Pureur [80] present a real-world case study drawn from their profes-

sional experience in the banking industry. They present the case of a loan-servicing

company that was migrating from a mainframe system to an event-driven, service-

oriented architecture. Based on this case study, they provide advice on how to orga-

nize architecture evolution steps into waves and plateaus. The advice is pragmatic in

nature, suggesting that introducing major infrastructure changes (waves) should be

followed by periods of relative stability to permit adjustment to new infrastructure

changes (plateaus).

Antón & Potts [6] present a retrospective case study examining fifty years of re-

quirements evolution in the telephony domain. They observed that the evolution

they studied adhered to a pattern of punctuated equilibrium, characterized by large

151

7 Related work

expansions of functionality that were often followed by periods of retrenchment in

which the number of services receded slightly.

Bratthall [35] conducted a series of studies examining the impact of architec-

tural understanding on evolution quality. Based on the results of these case studies,

Bratthall argues that improving architectural understanding of a system can reduce

development time.

Domain-specific work on architecture evolution. Finally, there is work that ad-

dresses architecture evolution in the context of a specific architectural style, such

as Darwin [144] and C2 [217]. Like the work described in this dissertation, these

approaches can take advantage of domain-specific classes of systems and thereby

achieve analytic leverage, as well as tool support for evolution. However, these

approaches are limited to a particular architectural style.

Outside the research literature, there are plenty of writings that describe, in prac-

tical terms, examples of what we would call architecture evolution. A number of

examples can be found, for instance, in the IBM Redbooks series, which provides

guidance for practitioners on topics such as migrating an Oracle database to DB2

[47] or carrying out a version-to-version WebSphere migration [229]. But again, such

sources are aimed at characterizing a single evolution domain and do not relate the

example to a general approach to architecture evolution.

7.5 Summary

My research fits comfortably into the final category of work, described in section 7.4:

research on models and tools to support software architects. The research areas

described in sections 7.1, 7.2, and 7.3—software evolution, software project planning,

and software architecture evolvability—are useful for setting the context for this

thesis, and to some extent may be seen as complementary to my work (e.g., as noted

in section 7.2, project planning and architecture evolution modeling could be used

in conjunction), but this thesis quite clearly does not belong to any of those bodies of

work.

It does, however, have much in common with the work described in section 7.4.

In that section, I mentioned some of the ways in which our approach distinguishes

itself from particular other approaches. But it is useful here to summarize the main

characteristics that make this thesis research unique. In general terms, the most

crucial differences that distinguish our approach from other approaches that have

appeared in the literature are:

• Our approach supports path-based reasoning about the space of possible

evolutions. Our approach is concerned with defining, analyzing, evaluating,

and selecting among multiple candidate paths of evolution leading from the

current state of a system to a desired target state. This distinguishes it from ap-

proaches that consider only a single possibility for an evolution, or approaches

that only model candidate evolution plans without reasoning about them or

selecting among them.

152

7.5 Summary

• Our approach can be specialized to particular domains of evolution. A key idea

in our approach is the use of evolution styles to encapsulate a set of operators

and analyses relevant to a domain of evolution. Other approaches tend to be

either fully generic (lacking any support for domain specialization) or fully

domain-specific (applicable only to a single domain and otherwise useless).

• Our approach has been evaluated empirically. Other work in this area has

tended to rely heavily on artificial examples—evolutions imagined in general

terms but never actually carried out. Our work is distinguished by the careful

and detailed case studies we have conducted to evaluate it empirically (chap-

ters 4 and 5). In addition to this empirical evaluation, we have also undertaken

a detailed theoretical study of specification and verification issues (chapter 3)

as well as some prototype tool development work to examine issues of im-

plementability (chapter 6). Together, these different evaluation approaches

provide a validation that is quite robust in comparison with existing work in

this area.

A few other approaches have one of these elements. For example, Brown et al. [39]

also do path-based reasoning, Le Goaer et al. [132] also focus on domain specializa-

tion, and the work of Bratthall [35] is heavily empirical. But ours is the only work

that provides a general approach to aid software architects in planning evolution

based on principled consideration of evolution alternatives, leverages domain exper-

tise to support specialized analyses, and has been subjected to rigorous empirical

evaluation.

153

8 Conclusion

In this conclusion, I reflect on the significance of this thesis and its limitations.

Section 8.1 discusses the thesis contributions. Section 8.2 points out limitations of

the work. Finally, section 8.3 suggests directions for future work.

8.1 Contributions

The principal contribution of this thesis is an approach for reasoning about software

evolution at an architectural level. This main contribution incorporates several parts:

• A theoretical framework defining a set of concepts and abstractions to facilitate

architectural reasoning about software evolution

• A means of defining operators that characterize the architecturally significant

evolution operations that can be applied to a software system, including their

preconditions, structural effects, and analytical properties

• A means of defining constraints that specify what constitutes a permissible

path of evolution, in a way that is amenable to automated verification

• A means of defining analyses that allow evaluation of the quality or utility of a

candidate evolution path

• A means of capturing knowledge about specific domains of software architec-

ture evolution in a reusable form

The approach presented in this thesis is the first systematic method for modeling

and analyzing multiple candidate evolution plans at an architectural level.

In addition to this primary contribution, this thesis makes several ancillary contri-

butions that are also significant:

• Novel theoretical results on the computational complexity of model-checking

a version of linear temporal logic with the addition of rigid variables (also

called freeze quantifiers or reference pointers). These results are of interest

in this work on software architecture evolution because they characterize the

difficulty of evolution path constraint verification. But they are also of broader

theoretical interest. As section 3.3 documented, logics very similar to our path

constraint logic have been applied to problems in several domains, such as

object-oriented data modeling and real-time systems. Resolving the important

question of the complexity of the finite-path model-checking problem [147]

for this class of logics is thus likely to be of use to researchers in other fields,

outside of software architecture.

155

8 Conclusion

• Empirical results on the applicability of this research on software architecture

evolution, based on two case studies of real-world software organizations. By

applying our approach to architecture evolution modeling in two large soft-

ware organizations—JPL and Costco—I demonstrated that our approach can

capture the concerns that arise in practice during major evolution projects.

The Costco case study provides particularly robust results in this respect, due

to its careful methodological design and rigorous execution, and also because

it evaluated all the elements of our approach (in contrast to the JPL case study,

which focused on the construction of an evolution model and did not examine

the issue of model analysis in depth). But the JPL case study is also impor-

tant for the applicability argument, because it helps to demonstrate that the

approach is applicable to different kinds of organizations—that Costco was

not a unique case. By assembling the findings of two case studies in this way,

we can make much stronger claims about the general applicability of the re-

search, even if one of the case studies was less formal than the other. The

argument is particularly strong because Costco and JPL are extremely different

organizations—a retailer and a government-funded laboratory. If our approach

can be applied in these very disparate contexts, we can reasonable conclude

that it likely has a fairly broad scope of applicability.

In addition to the results on the applicability of our modeling approach, the

Costco case study also produced descriptive results about the state of archi-

tecture evolution practice in a real-world software organization. These results

help us to position our research, but they may also be of broader use beyond

this work. There has been very little work directed at systematically examining

the impetuses of architecture evolution, the architecture evolution challenges

perceived by real-world architects, and the approaches by which architects

manage evolution today. This case study provides some useful results on these

questions, beyond its immediate relevance to our research.

• A research methodology for extracting information from architectural docu-

mentation in a systematic, replicable way. In addition to its overt contributions

to software architecture evolution research, the Costco case study also makes a

significant methodological contribution. The use of content analysis to mine

architectural elements from architectural documentation is a novel approach

that I hope will be of use to other software architecture researchers. Usually,

software architecture case studies are fairly informal. In particular, researchers

constructing architectural models of systems tend to rely heavily on their own

understanding and intuition about the system being modeled. The use of

content analyses systematizes the process of model construction, reducing

the risk that researcher bias will taint the results, and significantly improving

replicability. The Costco case study demonstrated how content analysis can be

effectively applied to architectural documentation to achieve these results, and

in particular it shows how a coding frame can be designed to extract architec-

tural model elements from content (which may include diverse forms of data

such as interview transcripts, textual architectural documentation, and archi-

156

8.2 Limitations

tectural diagrams). It is my hope that this novel methodological approach to

empirical software architecture research, or variants of it, might be adopted by

other software architecture researchers working with heterogeneous real-world

data.

• Findings on the implementability of the approach, based on the development

of several prototype tools. These prototype tools have demonstrated how

the approach presented in this dissertation can be implemented in practical

tools that leverage existing architecture modeling frameworks. In addition to

these general results on implementability, they have allowed us to explore how

various aspects of our approach can be automated, such as the application of

evolution operators and the generation of evolution paths. At the same time,

this tool work has revealed areas where significant research challenges still

remain, such as relating multiple architectural views of an evolution state and

using constraints and evaluation functions to automatically generate evolution

paths.

8.2 Limitations

Although some important results about our approach have been demonstrated, it

is important to understand the limitations of this work. In this section, I highlight a

number of noteworthy limitations.

The approach carries a significant specification burden. The approach presented

in this thesis requires significant formal specification, including specification of

evolution elements such as operators, constraints, and evaluation functions as well

as specification of an evolution space in terms of intermediate architectural states and

evolutionary transitions among them. The significant specification effort required

may make our approach seem a bit heavyweight, limiting its adoptability.

There are a couple of ways in which this burden is mitigated. First, there is the

idea of evolution styles. An evolution style allows a set of operators, constraints, and

evaluation functions relevant to an evolution domain to be bundled together in such

a way that they can be applied repeatedly to evolution projects within that domain.

In this way, the cost of specifying the evolution elements is amortized over a large

number of systems. This significantly reduces the specification burden. It also sup-

ports a work flow in which evolution elements are defined by a small group of people

(domain experts with some knowledge of formal methods—perhaps researchers or

senior architects, for example) and then used by a much larger community (soft-

ware architects working within the domain). In other words, our approach does not

presume that architects using it must have the necessary knowledge and expertise

to specify evolution styles themselves; rather, they can take advantage of evolution

styles created to support such use.

But even assuming that an evolution style is available to an architect, the architect

still has to define the evolution space, including the initial architecture, the target

architecture, the intermediate architectures, the evolution transitions (and their

157

8 Conclusion

decomposition into operators), and the candidate evolution paths. In our initial

prototype tools, very little automation was available to support the definition of

the evolution space. In subsequent work, we have demonstrated that much of this

can be automated, at least in principle. The architect will still need to define the

initial and target states, but if the evolution style provides an adequate palette of

operators and specifies adequate constraints and evaluation functions to define what

constitute a legal and high-quality evolution path, then an automated planner can

generate evolution paths by composing these operators automatically, as explained

in section 6.3. However, there are still unanswered questions about how this could

be integrated with an architecture evolution tool in practice.

Future work might be able to reduce the specification burden further, including the

burden of defining evolution styles. For example, instead of requiring operators to be

specified in some kind of code, it might be possible to support graphical specification

of operators, or to infer operators from examples of architectural transformation.

Similarly, constraints must currently be specified in temporal logic, which may seem a

bit arcane to practicing architects. But in the future, an intelligent user interface might

allow architects to build constraints from a library of constraint templates capturing

common classes of constraints such as ordering constraints, timing constraints, and

integration constraints.

The approach requires adequate tool support in order to be adopted for practical
use, but such tool support does not yet exist. The approach for architecture evolu-

tion modeling I have presented in this thesis is inherently dependent on tool support

in order to be practical. Without good tools to provide support for constructing and

analyzing evolution models, the framework we have defined is of little use. To show

that the approach is actually implementable and to examine some of the issues in-

volved in tool development, we developed prototype tools that support key elements

of our approach.

But while demonstrating the implementability of the approach in principle is

one goal of this thesis work, actually producing a mature tool that could be readily

adopted by practitioners is not. None of the prototype tools we have developed are

sufficiently complete, usable, or mature that they could actually be adopted for use

in a real, industrial-scale evolution project. This is not a limitation of our approach

in principle, but it is a limitation of this thesis. Further tool development would be

necessary to make the approach adoptable by practitioners.

The empirical work justifying the applicability of this approach consists of just
two case studies. I have argued that the two case studies presented in this disser-

tation provide strong evidence of the applicability of our approach. I have given

particularly careful attention to issues of reliability and validity so as to strengthen

this claim. In addition, the use of two case studies conducted in very different organi-

zational contexts helps support a claim of generalizability.

Even so, case studies have their limitations, and in attempting to generalize from

the results of investigations of just two organizations, we can go only so far. Future

empirical work on this kind of approach to software architecture evolution would be

158

8.3 Future work

of great help in evaluating the scope of our results. A survey-based study (examining

a statistical sample of many software organizations) or a multicase study (examining

a number of different software organizations in some depth) might be particularly

useful in this respect.

There may be some kinds of software organizations for which our approach is less
suitable. The two case studies featured in this dissertation were conducted at two

very different software organizations. But they were similar in at least one important

respect: both organizations featured an architecture group of significant size and

maturity. Not all software organizations have an architecture group; indeed, not all

software organizations have software architects. The relevance of our approach to

organizations where architecture is not formally practiced is unclear.

This is an architecture-level approach, and the fidelity of the implementation to
the architectural design is in no way guaranteed. We believe that an architectural

approach provides a number of benefits not available to code-level approaches.

Reasoning at an architectural level allows us to model high-level concerns such as

integration issues and evolution stages. Taking an architectural perspective also

grants our approach a kind of generality that is usually not available to code-level

approaches, which are frequently programming-language-specific. Finally, an archi-

tectural approach is highly scalable—just as applicable to vast, complex, multifaceted

systems as to small ones. Code-level approaches tend to operate at a more limited

scale.

However, an architectural approach also carries with it certain limitations. One

important limitation is that an architectural model is not necessarily tied to the reality

of the software system. That is, there can be problems of architecture conformance.

There is no mechanism that ensures our evolution model is a faithful representa-

tion of the system it purports to describe. There is a significant body of research

on architecture conformance [2; 28; 162; 200], some of which could be applied here.

But I think there is also a need for more research specifically on evolutionary ar-

chitecture conformance—ensuring not only that a system is in conformance with

its supposed architecture, but also that conformance is retained as we carry out

evolution operations.

8.3 Future work

Throughout this dissertation, I have intermittently noted areas in which some future

work would be helpful for clarifying certain issues or advancing the state of knowledge

of certain topics. In this section, I focus on a few major future areas of work where I

believe a number of significant research challenges remain. In my estimation, each

of the following veins is sufficiently rich to be potentially worthy of a PhD thesis itself!

8.3.1 Elaborating the idea of evolution styles

Section 2.6 presented evolution styles as a means of encapsulating knowledge about

particular domains of evolution. Formally, an evolution style is simply a collection of

operators, constraints, and evaluation functions specialized to some domain.

159

8 Conclusion

Conceptually, evolution styles are quite important to our approach. There are a few

reasons for this. First, they unify the various evolution elements, relating operators

and constraints and evaluation functions. Second, they permit our approach to

be specialized to particular domains, which we view as one of the key strengths

of the approach. Finally, they help to justify the adoptability of the approach by

reducing the burden of specifying evolution elements, since evolution styles provide

a systematic way for evolution elements to be defined once but used many times.

However, evolution styles have not figured prominently in our empirical work

or our tooling work to date. In our case studies and prototype development, we

have examined the applicability and implementability of the individual elements

of our approach—operators, constraints, and evaluation functions—but we have

not specifically examined the usefulness of the evolution style concept for capturing

domains of evolution.

Aside from the need for further empirical and tooling work, however, there are

more fundamental questions about evolution styles that need to be answered—

questions which we have skirted by defining an evolution style as simply a collection

of operators, constraints, and evaluation functions.

How can we make use of multiple evolution styles in a single project? In our work

so far, we have generally assumed that an architecture evolution problem will make

use of a single evolution style—some evolution style that usefully captures the prob-

lem domain. However, there are many good reasons one might want to combine

multiple evolution styles. Consider a situation in which there are two evolution styles

that are relevant to an evolution scenario. For example, if an evolution incorporates a

client-server system evolving to a decentralized peer-to-peer model, as well as a SQL

database being migrated to a cloud storage system such as Amazon S3 (so that any of

the peers can access the data store), we might want to leverage two evolution styles:

one for evolving a client-server system to a peer-to-peer system, and one for data

migration. Scenarios analogous to this one arise often in heterogeneous systems in

which different subsystems have different architectural styles.

Another possibility is the definition of mix-in evolution styles that are designed

specifically to supplement conventional evolution styles—for example, mix-in styles

to support specialized analyses such as performance analysis. Such a mix-in style

could used in conjunction with a conventional style such as a data migration style;

the data migration style would define the basic evolution elements (operators for

migrating data, constraints on how these operators may be applied, and so on),

and the mix-in style could contribute some constraints and evaluation functions for

performance analysis. Supporting this sort of style composition intelligently is harder

than it seems. For example, a mix-in style for performance analysis would not only

need to define new evaluation functions and constraints pertaining to performance;

it would also likely need to somehow modify the operators specified in the base style

to supplement them with properties needed to analyze performance. It might also

need to enrich the architectural style used to define intermediate states, augmenting

architectural element types with properties such as latency and throughput. Defining

a system for composing evolution styles ad hoc in this way poses formidable research

160

8.3 Future work

challenges.

How can evolution styles be related? How can one evolution style build upon an-
other? We have thus far assumed that each evolution style is designed from scratch,

in isolation. But it is reasonable to want to define a new evolution style by building on

an existing one—or more specifically, by specializing an existing one. Such special-

izations might be needed for technical reasons (e.g., specializing a very general data

migration style with a style specifically for fine-grained modeling of SQL database

migrations) or for organizational reasons (e.g., a certain company wants to specialize

an evolution style by adding its own operators, constraints, and evaluation functions

specific to how that company does business).

Although this is a sensible idea, there are many questions about how to implement

it. How should the evolution elements in a substyle relate to the evolution elements

in a base style? What should be the inheritance model? Should we support multiple

inheritance? Would it be better to have some compositional model rather than an

inheritance-based design? Can a substyle delete or modify elements in a base style,

or merely supplement them?

How can we ensure that evolution styles are defined at an appropriate level of gen-
erality—specific enough to be practically useful, general enough to be broadly
reusable? It is very easy to define an evolution style so high-level and nebulous

that it is of very little practical benefit.

A partial solution to this dilemma is the one mentioned above: an inheritance

model for evolution styles. With inheritance, we could define a family of related

evolution styles, with more specific styles inheriting from more general ones. But this

doesn’t entirely solve the problem. Even a root evolution style that serves as a base for

many more specific styles has to be carefully designed so as not to be uselessly general,

and even the styles at the leaves of an inheritance tree need to be general enough

that they can be reused, or they aren’t worth defining at all. Moreover, designing such

a hierarchy of styles requires good judgment about what to include and (perhaps

more importantly) what not to include; an overly fine-grained inheritance hierarchy

can create more problems than it solves.

How should a library of evolution styles be maintained and used? Evolution styles

may indeed be effective at encapsulating reusable knowledge about domains of

evolution—presuming an architect has access to appropriate evolution styles in the

first place. There are a number of research challenges pertaining to how evolution

styles should be stored in such a way that they can be fruitfully discovered and ap-

plied by architects. One might imagine software companies maintaining evolution

style repositories, or global evolution style repositories available online. But what

metadata do we need to have to make such repositories easily searchable? By what

kind of taxonomy can we meaningfully categorize evolution styles? How can duplica-

tion and other kinds of redundancy be avoided? Can we devise ratings systems to

help architects distinguish between good and bad styles?

161

8 Conclusion

How does an evolution style relate the evolution elements within it? An evolution

style is not just a haphazard assortment of operators, constraints, and evaluation

functions; rather, it is a family of closely related elements that have been developed to

describe a particular domain. The elements in a typical evolution style will therefore

have a lot in common. They will refer to the same architectural properties and

architectural element types, the constraints will govern the use of the style’s operators,

and so on.

Currently, however, these relationships are not enforced in any way, nor even well

understood. Ideally, we would like some way to guarantee the consistency of the

style—to make sure that the architectural properties that an evaluation function is

reasoning about are the same ones that are being set by the operators. But it is not

clear how this should happen.

8.3.2 Developing sophisticated, mature architecture evolution tools

The tooling work presented in this dissertation consists solely of preliminary pro-

totypes. While these serve as useful proofs of concept and help to demonstrate the

implementability of the approach, they are not nearly mature or complete enough to

be used by practitioners in their present state. A great deal of tool work remains to

be done, and a number of significant challenges remain as well. Of course, some of

this is just a matter of engineering effort—putting in the work to realize the vision we

have laid out. But there are also significant research questions that have not yet been

answered with respect to tool development. Among the most significant questions

that would benefit from future research are:

How can various aspects of architecture evolution modeling and analysis be auto-
mated? Automation is very important for developing practical architecture evolution

tools. In our previous work, we have demonstrated a couple of ways that automa-

tion can be used to ease the burden of architecture evolution modeling, including

automation of operator application (see sections 4.3.3 and 4.4.3) and automation

of evolution path generation (see section 6.3). But there is more that can be done

to improve these methods, and there are other areas where automation would also

be helpful. For example, a very useful feature would be semiautomated creation of

evolution operators, in which the user defines the structural transformations that an

operator entails by example, and a tool produces a formal operator definition.

How can an evolution tool effectively leverage existing frameworks for architec-
ture modeling? In the MagicDraw tool work, we discovered a number of challenges

in implementing our approach as a plug-in to an existing architecture modeling

framework. These challenges will need to be resolved to make a full implementation

practical.

How can we support an evolution graph definition work flow that makes sense to
the user? An evolution graph is a simple thing in principle, but actually defining

one is a somewhat intricate process. Transitions leading to intermediate states are

defined in terms of a series of operators, each with its own structural effects and

162

8.3 Future work

preconditions. For this model to be accessible to the user, it has to be presented in

a sensible way. One possibility is a transition specification mode, in which the user

can see the effects of operators as they are applied and composed together to form a

transition. However, in our MagicDraw tool work, we found that such a feature was

very difficult to implement in practice due to the limitations of the modeling tool

API.

How can we best maintain the consistency of the evolution model? In a complete

evolution model in which all evolutionary transitions are defined in terms of the

operators that compose them, the transitional states are overspecified. For an in-

termediate state S, there can generally be multiple evolution paths leading from

the initial state to S. Each of these evolution paths can be understood structurally

as the composition of the operators that make up its transitions. If the structural

transformations entailed by one path produce a different architectural state than

those entailed by another path, there is a model inconsistency.

In theory, this does not present a serious problem. We simply declare by fiat that

an evolution graph must be consistent. But enforcing this in a tool poses challenges.

If the evolution graph is defined by hand, how do we get the user to define the paths

in such a way that consistency is guaranteed? If an inconsistency does arise, how do

we report it in a way that makes sense to the user? If the evolution graph is defined

automatically by a planner, how do we ensure the consistency of the generated paths?

If the user wishes to modify a generated path, how do we reconcile the other paths to

achieve consistency? Although the issue of model consistency seems conceptually

simple, there are daunting research challenges just below the surface.

8.3.3 Evaluating and enhancing the usability of the approach

One important criterion that I have not provided any formal validation for is us-

ability. In both the case studies, I was the one doing all the modeling; and none

of our prototype tools were ever tested with real users. As a result, there are many

outstanding questions about how easy it is for practitioners to use the approach, and

how the approach may be made more easily usable. Among the most interesting

such questions are:

How easy or difficult is it to specify operators, constraints, and evaluation func-
tions? This is perhaps the most obvious usability question to arise from our ap-

proach. Can practitioners actually specify these evolution elements in the way we

have prescribed, or are our specification languages too arcane for practical use? (We

justify the difficulty of specifying evolution elements by noting that only evolution

style designers need to do the specification work, and then many architects can use

them. But still, someone needs to do the specifying, so it had better be doable with a

modest amount of training.) This is a rather straightforward question to answer; it

could be addressed through ordinary usability testing.

How can we display an evolution graph in a way that facilitates understanding
and easy access to information? In an industrial-scale evolution project, an evo-

lution graph would contain a lot of data—potentially dozens of states, each with

163

8 Conclusion

perhaps hundreds of architectural elements, in addition to the transitions among

the states, each made of a few operators. How can we display an evolution graph in a

way that makes sense to the user? Displaying a network of undifferentiated nodes

and edges (as we did in the JPL case study) is quite uninformative; users will easily

lose track of which nodes are which. A clearer approach is to display miniature repre-

sentations of each state within the corresponding node, as in the notional illustration

in figure 2, but this becomes impractical for large and complex architectures. It is

even less clear how best to represent an evolution transition in terms of its operators

in such a way that the user can easily understand and manipulate those operators.

How can we make operators, constraints, and evaluation functions understand-
able by users? We have argued that specifying evolution elements need not be excep-

tionally easy, because ordinary users need not specify them; evolution style designers

(senior engineers or researchers) can specify them, and they can be reused across

many projects. But even so, users still need to be able to understand the elements

they’re using. Indeed, the problem of understanding is all the more acute when the

person using the evolution style is not the person who designed it. How can we

represent evolution elements to users in an understandable way? Consider operators,

for example. An operator’s name may be fairly opaque; it’s not immediately clear

what the effects of a wrapSystem operator might be. Its formal definition is even

more opaque; an ordinary user shouldn’t have to dig into the formal definition of

an operator in order to figure out what it does. How can we present information

about the operator to users in a way that helps them to understand its effects and

its preconditions? For example, when the user selects an operator from the palette,

perhaps we could generate some kind of before-and-after illustration showing what

the operator’s effects are on a trivial example. But there are significant technical

challenges in generating such a visualization. Similar questions apply to constraints

and evaluation functions.

How can we localize constraint violations so that the user knows what to fix? For-

mally, constraints are simply predicates over evolution paths; for a given path, a

constraint says, “Yes, the path is valid,” or “No, the path is not valid.” But a simple

yes-or-no answer is not particularly helpful. Troubleshooting why a constraint fails

for a path is likely to be a very frustrating process unless we can do some kind of

constraint violation localization to track down where the problem is. Otherwise, the

fault could be literally anywhere: a single property of a single port within a single

state, for example. However, there are significant theoretical challenges to doing this

kind of localization.

How can we provide a user interface that facilitates flexible reasoning about trade-
offs? A key purpose of evolution styles is to facilitate trade-off-based reasoning. This

can be accomplished through the definition of a utility evaluation function as a

weighted composite of other functions that evaluate more primitive qualities such

as cost, duration, availability, and so on. But if this utility function is hard-coded in

an evolution style, how can we give style users the flexibility to explore the trade-off

space by adjusting these weights? What features can we provide to facilitate easy

164

8.3 Future work

and informative exploration of the trade-off space, and how can these features be

implemented with respect to the evaluation functions defined in a style?

Better yet, is it possible to automate the trade-off analysis, and to present the user

with a meaningful summary of the trade-offs among paths? Can we automatically

characterize the most significant distinguishing factors among the paths? For exam-

ple, such an automated trade-off analysis might highlight that the selected path has

an estimated completion time of 29 months and an estimated failure risk of 8%, while

an alternative path has a much faster completion time but a significantly higher risk

of failure. Automatically identifying these trade-offs and presenting them in a helpful

way presents a number of challenges.

8.3.4 Modeling and relating multiple views of a system

In reasoning about a software system, it is often helpful to consider multiple architec-

tural views of the system [53]. For example, in an evolution involving the migration

and redeployment of software components, it would likely be helpful to consider

both a component-and-connector view and a deployment view of the system. In sec-

tion 2.1, I described how our approach can accommodate representation of multiple

views of each evolution state, and in a paper [19] we showed an example in which

a component-and-connector view was represented as a UML component diagram

and a deployment view was represented as a UML deployment diagram. However, a

number of research challenges remain.

How can relationships across views and across models be represented? It is not

enough merely to have multiple views of each evolution state; we also want these

views to be related. For example, it isn’t enough to have a component-and-connector

view representing the run-time structure of a system and also a deployment view rep-

resenting its physical structure; we also need to relate those views to indicate which

components are deployed on which hosts. If our views are different UML diagram

types, as in our exploratory work on relating views of evolution states [19], this is

fairly straightforward; UML diagram types can be related because they are merely

different projections of a shared model. But relating different types of models—say,

an Acme component-and-connector view and a UML class diagram representing

a module view—is much harder. How can an Acme model incorporate references

to a UML diagram, or vice versa? And how can the integrity of such references be

enforced and preserved as the models change?

How can other system views besides conventional architectural views be used to
inform evolution planning? We need not limit ourselves to considering conven-

tional architectural views of a system. By including other, nonarchitectural system

views, we can gain significant analytical leverage. For example, given the importance

of human factors in system evolution, it might be useful to have an organizational

view alongside the architectural views. Such a view could contain information on

development teams and their respective competencies and specialties. With such a

view defined, we could define constraints restricting which teams can work on which

parts of the system and which skills are required for which tasks, operators that effect

165

8 Conclusion

organizational transformations such as restructuring or training a development team,

and evaluation functions that make use of information in the organizational view to

estimate concerns such as cost and effort in a more precise way. But although this

idea is appealing in principle, it is not clear what guiding principles should govern

the introduction of nonarchitectural views, or how such views might be defined or

related to other views.

How can constraints across views be enforced? One of the appeals of modeling

multiple views is that we can write constraints to reason about the multiple views

and the relations among them—for example, a constraint that a component of a

certain type can’t be migrated to a particular host environment until some necessary

configuration has been done. But what modifications must be made to our constraint

specification language to accommodate such constraints? Currently, the constraint

specification language relies on the architectural modeling language to provide a way

of specifying architectural predicates. But what happens when there are multiple

architectural modeling languages, each with its own way of specifying architectural

predicates?

How can tools be developed that support multiple views? In addition to the the-

oretical challenges discussed above, implementing full support for multiple views

would also present practical implementation challenges. In section 6.2, I discussed

how architecture evolution tools can be implemented as plug-ins to existing architec-

ture modeling tools in order to leverage existing support for definition of architectural

models. But few architecture modeling tools provide good support for modeling and

relating multiple views of a system. Most UML tools support models with multiple di-

agram types, but there are not mature tools for relating different types of architectural

models or for relating architectural models to other kinds of system model. Thus, the

introduction of support for multiple views significantly complicates implementation.

8.3.5 Making the approach scalable to systems of systems

Our approach as it is described in this dissertation presumes a simple and sequential

state of affairs. An architect defines a single evolution graph in which each state

contains a complete representation of the system. Operators are modeled as being

carried out in sequence; an evolution transition comprises a sequence of operators

that are applied in turn.

This model may not scale very well. In the evolution of a very large system, there

may be many architects and engineers, each with responsibility for some small

portion of the overall architecture. In addition, many development teams may be

working simultaneously on different portions of the system; that is, development op-

erations are carried out in parallel rather than in sequence. Extending our approach

to scale to such scenarios poses substantial challenges.

How can an architecture evolution tool be responsive to the structure of a soft-
ware organization, allowing different stakeholders to focus on different portions
of a system? Large evolution efforts require different teams to focus on different

166

8.3 Future work

portions of the system. Often, different architects will plan different aspects of the

evolution. How can an evolution tool support this pattern of work, allowing archi-

tects to collaborate in planning a major evolution? One might imagine some kind of

distributed system in which different architects work on a shared evolution model,

with some system of permissions to determine which architects may work on which

portions of the system, but there are numerous questions about how this idea could

be realized.

How can we extend our approach to accommodate parallel execution of evolution
operators? The assumption of sequential application of operators is ingrained in our

model. The evolution graph is defined in terms of transitions comprising sequences

of operators. Constraints are defined in a logic that presumes a linear evolution path.

And operators themselves are defined in a language that assumes that an operator

has perfect knowledge about, and exclusive control over, the state of the entire

system for the duration of its application. To accommodate definition of operators

occurring in parallel, we would need to throw out all these assumptions, revisiting

each element of our modeling approach. An evolution path might be conceived as

comprising multiple parallel threads of effort. The operator specification language

would need to be reinvented to accommodate the fact that multiple operators may

be occurring in parallel. This presents a number of difficulties. For example, we

now must consider the possibility of conflicts among operators occurring in parallel

(e.g., two operators modifying the same connector at the same time). And the path

constraint specification language would need to be redefined as well. If an evolution

path is a set of parallel threads rather than a linear sequence, then linear temporal

logic may no longer be a good basis for our path constraint language.

Can the idea of planned architecture evolution be extended to sociotechnical eco-
systems that are not under the control of a single organization? Sociotechnical

ecosystems have become an increasingly hot topic in software research. How can

the architecture of a sociotechnical ecosystem be changed in a principled manner?

Evolving a system when there is no single entity that has control over that system is a

challenging prospect. But effecting major changes to such a sociotechnical ecosys-

tem is necessary from time to time, and organizations that manage such ecosystems

might benefit from tools to help them plan evolution. How can such evolution be

planned in the face of radical uncertainty about the actions of other ecosystem

participants?

8.3.6 Resolving unanswered questions on automated planning

Section 6.3 reviewed our work on automated planning, demonstrating how evolution

paths can be generated automatically based on existing automated-planning tech-

nologies. While this work is a useful first step, there are many significant research

questions that remain before such automation can be made practical.

How can we best generate multiple candidate paths and present them to the user?
In the work in section 6.3, we delegated to the planner not only the task of generating

167

8 Conclusion

candidate paths, but also that of selecting an optimal path. However, it might be

desirable to keep the architect in the loop. Rather than present a single, supposedly

optimal path to the architect, it might be better to present multiple candidate paths,

allowing the architect’s experience and judgment to play a role in path selection.

However, it is not clear how we might best generate multiple paths. One option might

be to run the planner multiple times, each time optimizing a different metric.

How can we model transitions consisting of multiple evolution operators? Evolu-

tion operators capture fairly fine-grained architectural changes: installing an adapter,

migrating a database, upgrading a message bus, and so on. In conceptualizing an evo-

lution path, it is helpful to think of evolution transitions as being somewhat coarser,

with each transition potentially comprising multiple operators. This streamlines

the evolution graph, making it more comprehensible to architects and simplifying

analysis. In our automated-planning work, however, we treated evolution operators

as synonymous with the evolution graph transitions. It would be better for a planner

to aggregate operators into larger transitions by identifying particularly significant

points within the evolution to serve as the nodes of the evolution path. However, it is

not clear on what basis it should select these significant points.

How can the translation of architecture evolution problems into PDDL specifica-
tions be automated? In the work in section 6.3, an evolution scenario was encode

in PDDL manually. That is, although the generation of the evolution paths was

automated, the definition of the scenario in PDDL was not. For this research on auto-

mated planning to be practical, we must be able to translate an evolution scenario

into a planning problem automatically. This, however, entails significant challenges.

How can an operator specification such as the one shown in figure 1 on page 15

be automatically converted into a PDDL action? How can a constraint written in

our extended temporal logic be realized in PDDL? And perhaps most difficult, how

can an evaluation function, defined in a general-purpose programming language,

be translated into a PDDL metric? It may not be possible to solve these problems

in the general case; we may need to impose restrictions on the form that evolution

elements can take if they are to be translated into PDDL. But even so, automating

the translation of an architecture evolution scenario into a planning problem would

remain a formidable research challenge.

How can evolution styles be incorporated into an automated-planning approach?
One concept that was not examined in the work in section 6.3 is evolution styles. If

we take an automated-planning approach, can we use the idea of evolution styles to

facilitate reuse of portions of planning specifications within domains of evolution?

The obvious idea is to equate PDDL domain files with evolution styles and PDDL

problem files with individual evolution scenarios. This correspondence doesn’t quite

work out exactly, however, since domain files may sometimes contain information

that is scenario-specific, and problem files often contain information corresponding

to elements of an evolution style (such as the goal metric, which corresponds to an

evaluation function).

168

8.3 Future work

What other approaches, aside from automated planning, could be applied to au-
tomated evolution path generation? We have focused on automated planning using

PDDL as a method for automatically generating evolution paths. This was a natural

choice, given the straightforward correspondence between the architecture evolution

problem and the planning problem. But it is only one possible approach. Other

approaches not yet explored, such as constraint satisfaction or techniques from

operations research, might be fruitful avenues for exploration.

8.3.7 Developing a general operator specification language

The operator specification language presented in section 2.2 is simple but effective

for specifying architecture evolution operators. But is there anything fundamentally

different about specifying architecture evolution operators, as opposed to other

kinds of architectural transformation? There are a variety of subfields of software

architecture research where specifying operators is useful: run-time adaptation,

architecture differencing and merging, and model-driven architecture, for example.

Indeed, many architectural-model transformation languages have been developed,

from languages like QVT for describing transformations in UML and its kin [171] to

languages like Stitch in the context of run-time adaptation [49]. But there has been

little work on unifying or distinguishing these different approaches to architecture

transformation. Specifically, more work is needed to address the following questions:

What needs do different software architecture communities (including both re-
searchers and practitioners) have for model transformation languages? Although

the need to formalize architectural transformation arises in multiple domains, it

is not clear to what extent these different domains’ requirements overlap. Can we

define an operator specification language that is general enough to be used for archi-

tecture evolution, run-time adaptation, model-driven architecture, and so on? Or are

there fundamental reasons that different fields of research and practice require their

own formalisms?

What approaches have been developed for formalizing transformations of archi-
tectural models? There have been various surveys of model transformation ap-

proaches over the years [66; 155; 156; 201], but these have not devoted attention

specifically to the issue of general-purpose, architecture-level languages for model

transformation. Much of the existing work on model transformation is not architec-

tural at all, and does not leverage the structural properties that software architectures

have. That work which does deal with architectural models is often concerned with

translating architectural models to or from something else, such as lower-level mod-

els or source code, not with expressing transformations that can be applied to a

software architecture. Finally, many existing model transformation approaches are

quite arcane and mathematical, not intended to be accessible to software practition-

ers. The question of what approaches exist to support representation of software

architecture transformations in general is quite different from the question that these

existing reviews have examined.

169

8 Conclusion

How can we define a general-purpose language for specifying architectural opera-
tors? Based on the answers to the first two questions in this list, it should be possible

to define a set of requirements for such a specification language and to design a

language that meets a wider range of needs than the ad hoc operator specification

language described in section 2.2.

8.3.8 Analyzing technical debt

Technical debt is a metaphor for software development and maintenance introduced

by Cunningham [64] in 1992:

Shipping first time code is like going into debt. A little debt speeds

development so long as it is paid back promptly with a rewrite. [. . .]

The danger occurs when the debt is not repaid. Every minute spent on

not-quite-right code counts as interest on that debt. Entire engineering

organizations can be brought to a stand-still under the debt load of an

unconsolidated implementation [. . .].

Researchers have recently been devoting increasing attention to technical debt [123],

particularly its application to software architecture.

Technical debt is often thought of as something negative, something to be avoided—

a way of understanding the chaotic state into which some systems fall. In this sense,

technical debt can be understood as a cause of evolution. That is, sometimes the pur-

pose of an evolution effort isn’t to add features or improve system quality; sometimes

evolution is necessary just to correct a state of disarray that has arisen through years

of neglect—to pay off accrued technical debt by refactoring the system architecture.

But technical debt need not be a bad thing. Sometimes it makes sense to go into

debt. When time is of the essence, favoring expediency at the expense of architectural

quality may be exactly the right choice—provided that the technical debt is promptly

repaid. This suggests the possibility of evaluation functions to analyze technical

debt. An architect could model two potential paths—one in which a feature is

implemented slowly and carefully, and another in which the feature is implemented

as expeditiously as possible and problems of architectural quality are addressed

later—and explore trade-offs between them. This idea raises a number of questions.

How can we specify evaluation functions to analyze technical debt? Technical debt

is often referenced as a metaphor, but it is seldom quantified and formally evaluated.

How can we reason about technical debt in a meaningful way using evaluation func-

tions? Can recent research on metrics for architectural debt [167] be adapted to our

approach? Can we define technical debt in terms of the properties and architectural

structures present in an evolution path?

Can evaluation functions for technical debt be reused across multiple instances of
evolution? Analyzing technical debt in the context of a single system might be doable,

but can we define more-general technical debt analyses that can be reused across

systems (in the same sense that we can define a general cost analysis or a general

availability analysis)? What are the right abstractions and models for reasoning about

170

8.3 Future work

technical debt in the context of architecture evolution? Can we develop a general,

broadly applicable theory of technical debt? Can we create an evolution style for

technical debt analysis?

How can technical debt be managed in the presence of uncertainty? How can anal-

yses of technical debt accommodate a lack of certainty with respect to the impact of

delaying necessary maintenance or to the benefits of speedy release?

8.3.9 Incorporating uncertainty into the model

The model described in chapter 2 is entirely deterministic. The initial and target states

are known with perfect certainty, as are the effects of operators, and it is assumed

that an architect will be able to carry out an evolution path without deviation or

misadventure. In reality, of course, there are all kinds of uncertainties and risks in any

major evolution effort. The initial architecture may be uncertain; operators may have

unexpected effects; unforeseen contingencies may arise. To take a concrete example,

an evolution effort may have a dependency on a system with which it is supposed to

integrate, and the date on which that system is to be delivered is uncertain.

We have recently done a bit of exploratory work on the topic of modeling uncer-

tainty in architecture evolution.20 Thus, in this section, rather than ask open-ended

questions as in the other sections on future work, I present some early concrete

ideas about how uncertainty could be incorporated into our model of architecture

evolution.

As noted above, there are many different forms and causes of uncertainty in archi-

tecture evolution. But from a modeling perspective, we can abstractly think of them

all as instances of something more general: modifications to the architectural model

that may occur nondeterministically at certain points in an evolution. By thinking

about the uncertainty problem in this very abstract way, we can gain significant

generality (in terms of the kinds of uncertainty we can address).

With this in mind, I propose that we add uncertainty to our model through the

introduction of pseudo-operators that may occur nondeterministically at various

points in an evolution path. Just like regular operators, pseudo-operators are defined

by the evolution style designer and comprise the same basic parts: a definition of

their preconditions, a specification of their architectural effects, and some analytical

properties. Unlike operators, however, which represent tasks for an engineering

team to carry out, pseudo-operators occur nondeterministically. Whenever the

preconditions of a pseudo-operator are met, that pseudo-operator occurs randomly

with some probability that is defined as part of the pseudo-operator specification.

Pseudo-operators can be conceived as operators that are applied by the environment

and are beyond the control of the people carrying out the evolution.

The introduction of pseudo-operators complicates what it means to find a solution

to an architecture evolution problem, and in particular it complicates what we mean

20I would like to acknowledge here the work of Fu Maosong, a master’s student who did an independent-

study project with us, exploring how the ideas in this section could be implemented using existing

formal modeling tools.

171

8 Conclusion

by “evolution plan.” Now an evolution plan cannot just be an evolution path—a

sequence of operators leading from the initial architecture to the target architecture—

because we can’t count on which pseudo-operators will occur. Instead, an evolution

plan is a strategy or policy that defines, for any possible evolution state, what operator

we should apply next to optimize our expected outcome.

Observe the similarities to Markov decision processes, which also have as their

solution a policy that determines, for any state, which action a decision maker should

select. I suspect that a nondeterministic architecture evolution problem as I have

defined it above may be modeled as a Markov decision process in a fairly straightfor-

ward way—provided that we choose the state space for the Markov decision process

carefully.

In principle, this approach should be flexible enough to capture multiple kinds of

uncertainty pertaining to architecture evolution, including:

• Uncertainty about the initial architecture. In this case, we can introduce an

architecture recovery operation that transforms the architectural model.

• Uncertainty about operator effects. In this case, an operator may be followed

by a pseudo-operator that transforms the architectural model.

• Uncertainty about operator qualities. In this case, an operator may be fol-

lowed by a pseudo-operator that modifies some system property representing

a quality such as time or cost.

• Uncertainty about exogenous events that may occur (such as integration delays

in the example at the beginning of this subsection). In this case, a pseudo-

operator may occur that modifies a system property representing the effects of

the event, such as the availability of some resource. This property could then

be used as a precondition for other operators that may rely on that resource.

I believe an approach like this one is promising because it is simple, general, and

easy to model. But this is just one possible way of modeling uncertainty, which I

present in the interest of stimulating future research. Many other approaches are

also possible and worthy of investigation.

172

A Case study interview protocol

This appendix reproduces the interview protocol used for the case study described in

chapter 5, as approved by Carnegie Mellon University’s institutional review board.

In a semistructured interview protocol, the interviewer (rather than rigidly adher-

ing to a predefined schedule of questions) has the flexibility to explore participant

responses by asking clarifying or follow-up questions on the spot. As a result, the

exact set of questions cannot be known in advance. Rather, this protocol provides

guidance on the overall form of the interview, the topics to be covered, and examples

of key questions.

This protocol document is structured as a list of topics that we intend to cover in

our interviews of software engineers at Costco. The questions listed under each topic

are illustrative of the kinds of questions we plan to ask, but by no means exhaustive.

In addition, the order of topics may be adjusted, or even entire topics excluded, de-

pending on the individual being interviewed. (For example, a newly hired employee

probably won’t know much about the architecture evolution challenges that Costco

has faced in the past, so questions on that topic would be skipped.) Obviously, some

portions of the protocol are fixed: consent must always be obtained at the outset of

the interview, and the “Conclusion” section will always be last.

A.1 Introductory consent script

My name is Jeffrey Barnes, and I am a PhD student working with Pro-

fessor David Garlan at Carnegie Mellon University. We are conducting

a research study to learn about the architectural evolution of software

systems at Costco. As part of our information-gathering process, I would

like to interview you to learn about Costco’s software systems and soft-

ware evolution practices. This interview will take approximately

minutes. Your participation in this research is completely voluntary, and

you may withdraw from the study at any time.

With your permission, I will collect your name and contact information

so that I can contact you later if I have follow-up questions. However,

when we publish the results of this study, we will not use your name; the

data that we obtain from this interview will be anonymized to protect

your identity.

You should avoid using first names or specific names when providing

information for this study.

Before we begin, I need to verify that you’re eligible to participate in

the study. Are you at least 18 years of age?

173

A Case study interview protocol

[If no, abort the interview.]

Great. Do you have any questions about the study as I’ve described it?

[Answer any questions that the participant asks.]

Do you consent to participate in this study?

[If no, abort the interview.]

With your permission, I would like to take an audio recording of our

conversation to ensure I capture it accurately. The audio recording will

be kept private, so that only my research advisor and I have access to it.

Is it OK if I record this interview?

[If no, conduct the interview without audio recording.]

A.2 Collection of personal identifiers

I’d like to get your contact information so I can contact you later if I have

any follow-up questions later or need to clarify something. Would you

mind giving me your name, e-mail address, and phone number?

[Collect information from the participant. If the participant does not wish to provide

complete contact information, but does wish to continue the interview, proceed

without collecting information.]

A.3 The participant’s role and background

Questions such as the following are necessary to understand the context for a partici-

pant’s observations and descriptions.

• What’s your job title?

• Can you explain what your role is within the organization?

• How long have you been working at Costco?

• What are the main software systems that you work on?

• What are the main kinds of tasks you’re responsible for performing on a day-to-

day basis?

A.4 Software architecture evolution at Costco

We will use questions such as the following to learn how software architecture evolution

is planned and carried out at Costco today.

174

A.5 Limitations of today’s approaches to software architecture evolution

• As I mentioned earlier, my research is on the topic of software architecture

evolution, so I’m interested in learning about how software engineers and

architects at Costco plan and carry out major evolution of software systems.

Can you tell me about any significant evolutions you’ve been involved with

that would fit that description?

• Were the architectural changes necessary to achieve this evolution planned

out in detail in advance, or were the changes instead made on an as-needed

basis, without any overarching plan?

• What process was used to develop this evolution plan?

• Were any alternative plans considered?

A.5 Limitations of today’s approaches to software
architecture evolution

With questions such as the following, we are seeking evidence supporting (or refuting)

our hypothesis that today’s software architects are in need of better models and tools to

help plan and carry out evolutions.

• What are some of the major challenges that you’ve faced in trying to plan or

carry out the kinds of evolutions that we’ve been discussing?

• Do you feel that software architects could benefit from better tools for planning

these kinds of evolutions, or do you think today’s approaches are generally

adequate?

• Are there specific areas where you think better tool support would be espe-

cially helpful? Are there particular tasks involved in planning an architecture

evolution that you think are especially suitable for automation?

A.6 Specifics about the evolution of particular software
systems at Costco

In order to model Costco’s software systems accurately, we need to obtain specific

information about the systems’ architectural structure and evolution. The following

questions illustrate the kinds of questions we will ask, although the specific systems

and components named in these sample questions are fictitious.

• Can you give me an overview of the architecture of the inventory management

system?

• How does the ordering module interact with the billing subsystem?

• In which version of the system was the new database adapter you mentioned

added?

• Were there any particular constraints you had to adhere to as you were restruc-

turing this subsystem?

175

A Case study interview protocol

• What specific changes are planned for this system in the coming months?

• What are the main reasons for migrating this data store from MySQL to Amazon

S3?

A.7 Conclusion

Those are all the questions I have for you today. Do you have any other

questions for me about my research or this case study?

Here’s my contact information in case you want to contact me regard-

ing this research in the future. Thank you very much for your time.

176

B Content analysis coding guide

This appendix reproduces the coding frame used for the case study described in chap-

ter 5. As explained in section 5.3.4, the content analysis in this case study was broken

down into two separate content analyses, each with its own procedures and goals

(and thus each with its own coding guide). The first content analysis addressed the

“descriptive” questions of the case study, those that address how software architects plan

and carry out evolution at Costco today. The second content analysis addressed the

“evaluative” research question, which seeks to assess the suitability of our approach to

architecture evolution by using the output of the content analysis for the construction

of an evolution model.

B.1 Content analysis 1: Learning how architects do
evolution

B.1.1 General principles

Each coding unit should be assigned exactly one category. No coding unit may be

left uncategorized, and two categories may not be assigned to a single coding unit.

Top-level categories may not be assigned to coding units directly; instead, select

the appropriate subcategory. That is, never assign the category “Approaches” to a

coding unit. Instead, pick the appropriate subcategory, such as “Approaches: Phased

development.”

Each main category has a residual subcategory, for example “Approaches: Other.”

These residual categories should be used very sparingly if at all. Try to assign the best

possible specific category to each coding unit, even if there is no perfect fit; only use

the residual categories if there really is no suitable category.

In selecting a category for a given coding unit, consider the coding unit itself as

well as its immediate context—up to a couple of paragraphs before and after the

coding unit.

177

B Content analysis coding guide

B.1.2 Categories

Evolution motives
Abbreviation: mot

Description: Subcategories of this category should be applied

to descriptions of impetuses that have motivated software evo-

lution at Costco. These may be stated in terms of goals of the

target system (e.g., an evolution occurs because the target sys-

tem will have improved performance) or inadequacies of the

initial system (e.g., an evolution occurs because the existing

system has inadequate performance). This category may be

applied regardless of whether the evolution described is one

that has already happened, one that may yet occur, or one that

was considered but not carried out.

Add features
Abbreviation: mot-fea

Description: This category should be applied when an aim of

evolution is to implement new functionality or new features.

The line between a new feature and a quality improvement

can sometimes be fuzzy. For example, an architect may de-

scribe a new feature that requires improvements to system

interoperability to implement. The “Add features” subcategory

should be used whenever a specific feature is being described;

reserve the other subcategories, such as “Improve interoper-

ability,” for when the interviewee describes those goals as the

primary reason for evolving.

Example: “Currently we don’t have any way to tell from looking

at our pharmacy patient files, our optical patient files, our

membership roll, our customers that we’ve reached out to

try to sell memberships to, we don’t have any way to say: Is

the same person in there five times? There’s no unique, one

person we know, ‘Hey, that’s this guy here.’ They need that.”

Modernize
technology
Abbreviation:

mot-mod

Description: This category should be applied when a stated

aim of evolution is to adopt modern technology or abandon

outdated technology.

When outdated technology is discussed as a general chal-

lenge rather than as motivation for a specific evolution, use

“Challenges: Dealing with legacy systems” instead.

Indicators: The initial system is described as “dated,” or irrel-

evant to “today’s world,” or the interviewee names a specific

technology that an evolution aims to disuse.

Example: “Eventually, I want this [mid-range system] stuff to

all go away. I don’t want to have to mess with [that] anymore”

178

B.1 Content analysis 1: Learning how architects do evolution

Keep apace of
business needs
Abbreviation: mot-pac

Description: This category should be applied when an evolu-

tion is driven by the rapid pace of change within the industry

or within the company.

Note that the “Challenges” category has a similar subcat-

egory: “Dealing with rapid change and anticipating the fu-

ture.” When deciding between these two categories, consider

whether the interviewee is describing a reason for a specific

evolution or a general challenge that has arisen.

Indicators: An evolution is described as being motivated by

the “accelerating” pace of change, the “growing demand” of

the business, or a need to “support the business curve.”

Example: “The feeling was [. . .] that our current architecture

and application systems would not scale to meet the growing

demand of our growing business, because Costco’s an extreme-

growth company.”

Improve flexibility
Abbreviation: mot-flx

Description: This category should be applied when an aim of

evolution is to make the system more flexible, or to ameliorate

inflexibility in the current system. This category should be

applied when flexibility in general is described as a goal—

when an evolution is described as aiming to open up future

possibilities generally. For the specific goal of increasing the

system’s ability to interoperate or integrate with other systems,

use the code “Evolution motives: Improve interoperability.”

Indicators: An evolution is described as providing “flexibil-

ity,” making the system more “extensible,” or creating future

“opportunities.”

Example: “It was becoming quite brittle. And an opportunity

had been presented to us to update to an object-oriented

system that would provide some flexibility for anything that

we might choose to do someday.”

Improve
performance
Abbreviation: mot-prf

Description: This category should be applied when an aim of

evolution is to improve system performance.

When performance is discussed as a general challenge

rather than as motivation for a specific evolution, use “Chal-

lenges: Scalability, reliability, and performance” instead.

Example: “We’re going to [a new point-of-sale package], which

is basically the C++ version [. . .]. It’s supposed to be a little

faster”

179

B Content analysis coding guide

Improve reliability
Abbreviation: mot-rel

Description: This category should be applied when an aim

of evolution is to improve the availability, robustness, or re-

silience of the system.

When reliability is discussed as a general challenge rather

than as motivation for a specific evolution, use “Challenges:

Scalability, reliability, and performance” instead.

Example: “Now we’re moving more into the highly available,

somewhat more resilient message-based architecture, and I

think that’s going to be a good thing for us.”

Improve
interoperability
Abbreviation: mot-xop

Description: This category should be applied when an aim

of evolution is to make integration or interoperation among

systems easier.

When interoperability is discussed as a general challenge

rather than as motivation for a specific evolution, use “Chal-

lenges: Communication, coordination, and integration chal-

lenges” instead.

Indicators: The current system is described as being too “pro-

prietary,” or a stated goal is to make it easier to “hook to,”

“work with,” “talk with,” or “share information” with other sys-

tems.

Example: “We’re going to try and make those systems work

with each other and talk with each other and share informa-

tion and data back and forth.”

Other
Abbreviation: mot-?

Description: This category should be applied to evolution

motives that do not fit into any of the other categories. Use

this category sparingly if at all. Residual categories such as

this should be used only when none of the specific categories

fit.

Causes of problems
Abbreviation: cau

Description: Subcategories of this category should be applied

to descriptions of circumstances that caused problems during

the course of an evolution project. Architects often describe

such circumstances in conjunction with their adverse effects,

so “Causes of problems” codes and “Consequences” codes

often occur in close proximity.

Undesirable circumstances that have not caused any specif-

ically articulated problems do not fall under this category but

may fall under the “Challenges” category if they meet its crite-

ria.

180

B.1 Content analysis 1: Learning how architects do evolution

Lack of experience
Abbreviation: cau-exp

Description: This category should be applied when a prob-

lem was caused by inexperience (or a failure to learn from

experience), whether on the part of the architects planning an

evolution or on the part of the engineers carrying it out.

When inexperience is discussed as a challenge in general

rather than as the cause of a specific adverse consequence,

use “Challenges: Lack of expertise or experience” instead.

Example: “The bulk of the people—especially, say, five years

ago—that work in Costco IT—the bulk of them came up

through our warehouses. So there’s not a lot of ex-consultants

running around here to have seen a million and one things.

These are people who have seen one way of doing things. And

then to say, you’ve got to do something new, and by the way

you’ve never experienced that before, mistakes are going to

get made.”

Architects spread
across the
organization
Abbreviation: cau-org

Description: This category should be applied when a problem

was caused by architects being spread across many different

groups within the organization, impeding communication

among architects and complicating diagnosis of system fail-

ures.

Example: “Our forms environment just couldn’t work. Why?

Because the architecture was spread across different groups”

Addressing too
many problems up
front
Abbreviation: cau-prb

Description: This category should be applied when a problem

was caused by attempting to solve all the problems of an evo-

lution at its outset, rather than developing a basic plan that

allows for adaptation to unforeseen circumstances.

Example: “Let’s just put in a foundational system that’s open

to the rest, rather than trying to solve all these questions at

the time, which even now don’t have answers for them. I think

that was part of what happened in those multiple iterations as

we tried to solve and could never get that compelling business

reason down”

Cultural inertia
Abbreviation: cau-cul

Description: This category should be applied when a problem

was caused by cultural factors that inhibited change.

Example: “When we started modernization, for whatever rea-

son, we were talking more about COTS, but kind of in our DNA,

we were still thinking build.”

Forking an
off-the-shelf
package
Abbreviation: cau-frk

Description: This category should be applied when a prob-

lem was caused by adopting and modifying an off-the-shelf

software package, making it difficult to incorporate further

updates from the vendor.

Example: “We bought a package [. . .], and we did a very bad

thing: we took the source code, we actually customized the

source code for our need”

181

B Content analysis coding guide

Ill-timed changes
Abbreviation: cau-tim

Description: This category should be applied when a problem

was caused by changing the system at an inopportune time.

Example: “I don’t know if you’ve ever heard of Finish Line;

they’re an athletic footwear dealer, online mainly. They piloted

new e-comm and web software a week before Black Friday—

the Friday after Thanksgiving. Not the best of times to pilot or

make any changes to your website. It did not work too well.”

Other
Abbreviation: cau-?

Description: This category should be applied to causes that

do not fit into any of the other categories. Use this category

sparingly if at all. Residual categories such as this should be

used only when none of the specific categories fit.

Consequences
Abbreviation: con

Description: Subcategories of this category should be applied

to adverse consequences that arose due to missteps in an

evolution project. Architects often describe problems in con-

junction with their causes, so “Causes of problems” codes and

“Consequences” codes often occur in close proximity.

Lost sales
Abbreviation: con-sal

Description: This category should be applied when problems

during an evolution resulted in financial loss.

Example: “They figure it cost them about six million dollars in

lost sales and things.”

Wasted effort
Abbreviation: con-eff

Description: This category should be applied when missteps

during an evolution resulted in unnecessary effort or unnec-

essary complications, or when an evolution is rolled back and

abandoned, or when the direction or basic approach of the

evolution must be changed while it is being carried out due to

unforeseen problems.

Example: “We ran employees through literally tens of thou-

sands of hours of Java training, but then they were not doing

Java development.”

Delays in evolving
Abbreviation: con-dly

Description: This category should be applied when difficulties

in planning an evolution delay the evolution’s inception.

Example: “I think that was part of what happened in those

multiple iterations as we tried to solve and could never get

that compelling business reason down, so it’s taken so long for

us to do this.”

Limited
upgradability
Abbreviation: con-upg

Description: This category should be applied when missteps

in an evolution result in a system that is difficult to upgrade

further.

Example: “[. . .] which rendered that package to be not upgrad-

able for any future changes.”

182

B.1 Content analysis 1: Learning how architects do evolution

Other
Abbreviation: con-?

Description: This category should be applied to consequences

that do not fit into any of the other categories. Use this cate-

gory sparingly if at all. Residual categories such as this should

be used only when none of the specific categories fit.

Challenges
Abbreviation: cha

Description: Subcategories of this category should be applied

to descriptions of challenges that Costco, or similar compa-

nies, or software organizations in general, face (or have faced

in the past) when planning or carrying out evolution.

This category should not be used for specific challenges

that motivated evolution (these should instead be coded with

subcategories of “Evolution motives”), nor for specific circum-

stances that caused problems in past efforts (these should be

coded with subcategories of “Causes of problems”).

Cultural challenges
Abbreviation: cha-cul

Description: This category should be applied to descriptions

of corporate-culture issues that present challenges, such as

clashes between the corporate culture and the needs of the

business, cultural resistance to needed innovations, or a need

to contravene the organizational culture in order to accom-

plish goals.

Indicators: The interviewee, in describing a challenge that

Costco faces or has faced, uses words like “culture” or “cul-

tural,” or describes a tension between what the company says

and what it does.

Example: “Frankly that’s been, I think, the biggest challenge

of the modernization that we’ve undertaken, because [. . .] we

have a culture of consensus here [. . .]. We don’t do a lot of

empowering some group to say how it’s going to be, and then

they just lay it out. That doesn’t happen. Anything that we

do has to be very collaborative if it’s going to change the way

people operate and whatnot. Frankly, we’re still in the throes

of getting that to work well.”

183

B Content analysis coding guide

Business
justification
Abbreviation: cha-bus

Description: This category should be applied to challenges in

justifying architectural decisions (or the need for architecture,

or the role of architects) in business terms (or to business ex-

ecutives or enterprise architects); challenges in managing the

expectations of business executives; challenges caused by en-

gineers having insufficient business knowledge to make good

decisions; challenges in ensuring that products support busi-

ness goals; and challenges in understanding business needs.

Indicators: The interviewee discusses challenges relating to

executive or business “buy-in” or “sponsorship,” the difficulty

of explaining architectural needs “to the business,” business

“concern” about architectural decision, or the attitudes of the

“management,” or the interviewee questions whether busi-

nesses are “ready” to do architecture, or the interviewee ob-

serves that engineers lack an “appreciation of the business.”

Example: “I think in terms of architecture, what I’ve seen the

biggest challenges are executive buy-in on the architecture

function in general, because when you throw architects in

at the beginning (goodness, I hope it’s at the beginning) of a

project, you’re adding time to it [. . .]. We’ve been fortunate

that we’ve got CIO buy-in of what we’re doing. But I think

that’s probably the largest obstacle, and when I meet with

[architects] from other companies, they always say that that’s

the largest challenge they face.”

Communication,
coordination, and
integration
challenges
Abbreviation: cha-com

Description: This category should be applied to challenges

in integrating systems or facilitating communication among

systems, to challenges of communication and coordination

among people or teams, to challenges in managing multiple

simultaneous initiatives, to challenges in appropriate use of

documentation and standards, and to challenges of architec-

ture conformance.

The challenge of integrating with legacy systems specifically

should instead be coded “Challenges: Dealing with legacy

systems.”

When system integration is discussed as the impetus for

a specific evolution rather than as a general challenge, use

“Evolution motives: Improve interoperability.”

When organizational communication issues are discussed

as the cause of a specific adverse consequence rather than as a

general challenge, use “Causes of problems: Architects spread

across the organization.”

Example: “One of the other challenges is just that we’ve grown

now. We’re in this building; the other half of IT is over on the

corporate campus. You can’t get all of IT together and have a

presentation type of thing. [. . .] That’s been a challenge. The

communication is the biggest part.”

184

B.1 Content analysis 1: Learning how architects do evolution

Lack of expertise or
experience
Abbreviation: cha-exp

Description: This category should be applied to challenges

arising from a lack of expertise or experience on the part of

architects or engineers (or immaturity on the part of the or-

ganization as a whole), including general inexperience, a lack

of knowledge about certain domains, or a lack of familiarity

with particular tools. This category should also be applied to

discussions of the difficulty of training people or the difficulty

of learning new technologies.

When inexperience directly causes a specifically articulated

problem in the course of an evolution, use “Causes of prob-

lems: Lack of experience” instead.

Example: “And the tools around that, really, we’re still very

immature with.”

Dealing with rapid
change and
anticipating the
future
Abbreviation: cha-cha

Description: This category should be applied to challenges per-

taining to planning ahead in the face of rapid change, seeing

the long-term ramifications of decisions, dealing with extreme

change within the company or throughout the industry, es-

timating future effort, adapting advances in the industry to

Costco, or realizing a long-term vision.

When rapid change is discussed as the impetus for a specific

evolution rather than as a general challenge, use “Evolution

motives: Keep apace of business needs” instead.

Indicators: Instances of this category often refer to “extreme”

or “massive” change; describe the company as moving at a

very fast pace; or use metaphors such as shifting sand, a shift-

ing landscape, or a narrow window of opportunity.

Example: “The biggest challenge really, in my mind, is: How do

you make sure that you are relevant? The wheel is moving, you

know. Costco’s situation, I think, is one of the more extreme

kind of conditions. We are trying to change so much in such a

short time.”

185

B Content analysis coding guide

Dealing with
legacy systems
Abbreviation: cha-leg

Description: This category should be applied to challenges

that arise in dealing with legacy systems, including architec-

tural problems with legacy systems, challenges in understand-

ing legacy systems, challenges in bringing legacy vendor sys-

tems in-house, and difficulties in upgrading legacy systems

(such as running a legacy system alongside a modernized sys-

tem).

When the difficulty of dealing with legacy systems is dis-

cussed as the impetus for a specific evolution rather than as

a general challenge, use “Evolution motives: Modernize tech-

nology” instead.

Example: “The applications that were built [. . .] here over

time—over the twenty-five or thirty years or so that the mid-

range systems were here—really grew organically, and there

wasn’t comprehensive architectural thinking going on in the

early days, to the point where you had a big ball of string. And

now it’s so brittle that [. . .] the simplest changes are taking

months and months”

Scalability,
reliability, and
performance
Abbreviation: cha-sca

Description: This category should be applied to challenges

in managing large volumes of data; carrying out large imple-

mentations; meeting the needs of a company of Costco’s size;

ensuring transmission of data over the Internet; verifying the

reliability of critical systems (e.g., through QA); and providing

adequate system performance.

When reliability or performance is discussed as the impetus

for a specific evolution rather than as a general challenge, use

“Evolution motives: Improve reliability” or “Evolution motives:

Improve performance” instead.

Example: “It’s very limited to the options for a retailer of our

size what we can use for that point-of-sale. Especially when

the project started, and even somewhat now, Windows is al-

ways looked at as less than ideal as a stable platform for run-

ning point-of-sale, both from stability and uptime during the

day, as well as the need for constant patches and those kind of

things. So when you limit that away and look at other systems,

other operating system types, to run it, there’s even fewer that

are out there.”

186

B.1 Content analysis 1: Learning how architects do evolution

Dealing with
surprises
Abbreviation: cha-sur

Description: This category should be applied to unexpected

challenges that arise in the midst of an evolution, such as new

requirements or unexpected infrastructure needs. If the unex-

pected challenge was a significant misstep that resulted in a

specifically mentioned adverse consequence, use the appro-

priate subcategory of “Causes of problems” or “Consequences”

instead.

Example: “The reality is: things don’t go as smooth as you’d

like them to in the order you’d like them to. Sometimes devel-

opment may be backed up, in which case you need to go rene-

gotiate when does your project get started versus the projects

that are in play. Capital expenditures: maybe we need to pur-

chase extra infrastructure that we didn’t realize needed to be

purchased up front.”

Managing scope
and cost
Abbreviation: cha-cst

Description: This category should be applied to challenges in

scoping a project or keeping costs low.

Challenges in reconciling large expenses with a cultural of

frugality should instead be coded “Challenges: Cultural chal-

lenges.”

Example: “The biggest concern retailers have about [alterna-

tive payment methods] is the fees they have to pay as part of

them, if you know what an interchange fee is. Basically there’s

a percentage you have to pay. [. . .] that’s been a continuing

challenge for the retailers.”

Inadequate
guidance and tool
support
Abbreviation: cha-gui

Description: This category should be applied when architects

report that they do not have good resources to turn to for in-

formation, or that they have no good source of architectural

guidance, or that they need better tools, or that available ap-

proaches are insufficient, or that they do not have enough

guidance on projects from more senior people in the com-

pany.

Example: “You can get shades-of-gray answers all over the

place. Nobody’s put a fine point on any aspect of it, so you

can interpret what you will. I was telling somebody the other

day, just go google system context diagram, and see how many

flavors of that you get: like a thousand different models. [. . .] I

think again, the challenge is there is no definitive resource.”

187

B Content analysis coding guide

Divergent
understandings of
architecture
Abbreviation: cha-und

Description: This category should be applied to challenges

that arise when there are people who have misunderstandings

of architecture, disagreements about the role of architecture,

or negative perceptions about architecture (or specific vari-

eties of architecture).

If the challenge as described is specific to dealing with busi-

ness executives, use the category “Challenges: Business justifi-

cation” instead.

Example: “In general—not just Costco, but in general—there

is a particular image that comes to a lot of people’s mind when

you say ‘enterprise architecture.’ Some people go into, ‘Oh,

man, that’s a really needed thing that we’ve needed for a long

time.’ The other end of the spectrum is a bunch of ivory-tower

impediments to progress.”

Managing people
Abbreviation: cha-ppl

Description: This category should be applied to challenges

pertaining to the management of personnel, including deal-

ing with employee uncertainty, retraining personnel with out-

dated expertise, motivating workers, and dealing with em-

ployee turnover.

Example: “We’re rooting out [our old] productivity suite, and

we’re going with [a different provider]. [. . .] Now, we had

[administrators for the old system]. So what are you going to

do? At first they were very resistant.”

Managing the
expectations and
experience of users
and stakeholders
Abbreviation: cha-usr

Description: This category should be applied to challenges in

managing users’ and stakeholders’ expectations about soft-

ware systems or the software development process, as well

as to challenges in ensuring that stakeholders and users of

systems have a good experience. Included in this category are

topics such as managing unrealistic expectations, understand-

ing the political impacts of decisions, minimizing the impact

of a system change on its users, and training users on a new

system.

Example: “The problem is in the user community, they feel

like once they have your attention, they have to get everything

they can out of you, otherwise they might not hear from you

again for three years, and that’s not going to help them. They

come and they want the kitchen sink and everything, and it’s

very hard to tell them, we can’t do that”

Other
Abbreviation: cha-?

Description: This category should be applied to challenges

that do not fit into any of the other categories. Use this cate-

gory sparingly if at all. Residual categories such as this should

be used only when none of the specific categories fit.

188

B.1 Content analysis 1: Learning how architects do evolution

Approaches
Abbreviation: app

Description: Subcategories of this category should be applied

to descriptions of approaches, methods, principles, structures,

and tools that architects use (or have used, or have consid-

ered using) to help them plan and carry out evolutions. This

includes everything from formal processes to very informal

rules of thumb. It does not, however, include specific tactics

or operations such as “introduce abstraction layer” or “wrap

legacy component”.

Interviewees often spoke at considerable length and in sig-

nificant detail about the approaches they use, to a much

greater degree than is true for the other major categories in

this coding frame. In addition, some of the subcategories of

this category are rather broad topically. For example, “Chal-

lenges: Organizational strategies and structures” is a fairly

broad topic, and interviewees often expound on the topic of

organizational structure at considerable length. As a result,

subcategories of this category will often apply to quite long

segments of text, to a greater degree than is true of the other

major categories, which usually apply to shorter passages,

rarely longer than a few sentences.

Experience and
intuition
Abbreviation: app-int

Description: This category should be applied to descriptions of

architects relying on their own experience, intuition, or judg-

ment to make evolution decisions, or of architects learning

from their experiences.

Example: “I would say that my twenty-five years of experience

in retail—I have a very unique perspective on what is realistic,

what works, and how to stay away from the fringes and do

what’s right for the company.”

Drawing from
expert sources
Abbreviation: app-exp

Description: This category should be applied to descriptions

of drawing from expert sources to gain knowledge necessary

to plan or carry out an evolution. Expert sources included ex-

perienced engineers within the company, outside consultants,

product vendors, and books.

Example: “Our current direction in Costco for these migra-

tions between current state to these packaged solutions is

leveraging a lot of external vendors [. . .] We are looking at

them to provide. ‘From [your] own best practices, how do you

guys do that? We’re not going to question you. You should tell

us: How do you get this thing done, and how do you ensure

there’s knowledge transfer and support and all that stuff?’”

189

B Content analysis coding guide

Industry practices
Abbreviation: app-ind

Description: This category should be applied when Costco

draws on the experiences and expertise of other companies in

the industry.

Example: “We’ve got a mobile app. We’ve got different types

of mobile checkout people want to look at. How do we do

that in the best way? So we’re looking at what are the trends

in the industry in mobile, both with our big competitors like

Wal-Mart and Target, as well as [smaller chains].”

Phased
development
Abbreviation: app-pha

Description: This category should be used when the devel-

opment or delivery of a project is broken into manageable

phases or stages, or when an incremental or gradual transition

strategy is used.

Example: “I did a very iterative approach. I divided the project

into three evolutions. Each evolution basically took on a chunk

of our scope.”

Tools
Abbreviation: app-too

Description: This category should be applied to mentions

of tools used in planning or carrying out evolution. (These

need not be—and generally will not be—architecture evolu-

tion tools as such, but rather tools that architects and engi-

neers use in the course of planning or carrying out evolution,

including communication tools, code generation tools, re-

verse engineering tools, and process planning tools.)

Example: “We got an analysis tool that we put onto our system

and we had it do a drawing of all of the components and the

relationships”

Formal
approaches
Abbreviation: app-frm

Description: This category should be applied to mentions of

established processes, methods, and frameworks for software

development, such as TOGAF and the Rational Unified Pro-

cess.

Example: “Rather than simply utilize EA group and the knowl-

edge and experience we have [. . .], we’re trying to use a couple

additional tools, one of which is TOGAF. We’re not strictly fol-

lowing that, but that’s the basis of our architecture foundation.

The core of that is the ADM process.”

Prototypes, pilots,
etc.
Abbreviation: app-pil

Description: This category should be applied to descriptions

of the use of prototypes, proofs of concept, pilots, reference ap-

plications, project templates, case studies, mock applications,

and technical demonstrations for trying out or demonstrating

innovations.

Example: “For those architectural decisions, we develop guid-

ance and references, and then further down we create a refer-

ence application that actually implements the decisions and

the guidance that we are telling people to follow.”

190

B.1 Content analysis 1: Learning how architects do evolution

Training
Abbreviation: app-trn

Description: This category should be applied to approaches

for the training and mentoring of architects and engineers

(including the retraining of engineers with unneeded skills).

Example: “I went through the ISA training and got certified on

that”

Business
architecture
Abbreviation: app-bus

Description: This category should be applied to descriptions

of the use of business architecture practices, or the considera-

tion of business concerns in planning architectural operations

more generally, or thinking in terms of business capabilities.

Example: “Instead of all these very virtual or kind of theoretical

categories to rank a service, we just look at business capability.

Services are supposed to be aligned with the business when we

build a service, so why don’t we just go straight to the source?

So what we ended up doing is looking at business capability

from the business architecture team.”

Communication
and coordination
practices
Abbreviation:

app-com

Description: This category should be applied to descriptions

of approaches for facilitating communication and coordina-

tion within the organization, including coordinating efforts,

allocating tasks, providing guidance, documenting decisions,

communicating with stakeholders, and incorporating feed-

back.

When the discussion centers on the challenges of commu-

nication and coordination rather than approaches for com-

munication and coordination, use the category “Challenges:

Communication, coordination, and integration challenges”

instead.

Example: “It’s really more about communication than archi-

tecting systems. That collaboration aspect, I think, is abso-

lutely paramount to the success of an architect. You have to

talk to lots of people all the time. The drawings don’t have to

be that precise, as long as they communicate the information.”

Considering
alternatives
Abbreviation: app-alt

Description: This category should be applied when architects

consider alternative plans or backup plans for evolving a sys-

tem.

Example: “We have to always, I think, have plan A and plan B.

Going into a lot of the work that we’re doing now, I say, well, I

would love to have this SOA service environment, but under-

standing that that’s still very much in its infancy, here I have

plan B, which is let’s just continue on with what we know using

legacy systems and legacy technologies.”

191

B Content analysis coding guide

Anticipating the
future
Abbreviation: app-fut

Description: This category should be applied to descriptions

of anticipating future developments as an approach for better

planning evolution.

When anticipating the future is cited as a challenge rather

than as a strategy, use the category “Challenge: Dealing with

rapid change and anticipating the future” instead.

Example: “Besides point-of-sale, we’re modernizing our loy-

alty system, our CRM system. We’re modernizing all those

parts and pieces. As we modernize those, then we look to that

future where they all have an interaction with each other.”

Rules of thumb
and informal
strategies
Abbreviation: app-rot

Description: This category should be applied whenever an

interviewee articulates a general rule of thumb or informal

strategy for planning or carrying out evolution, such as “lean

toward simplicity,” “prefer open standards,” or “identify areas

of uncertainty.”

Example: “Consistency is very important in my book. I’m

less about which standard’s a better standard than the other—

rather that these have to be enterprise standards—everybody

should do it the same way.”

Organizational
strategies and
structures
Abbreviation: app-org

Description: This category should be applied to descriptions

of the organizational structures and strategies that Costco

uses in architecting systems. This includes discussions of

architects’ and engineers’ roles and the structure, function,

and formation of groups and teams.

Example: “On that EA side, as we talked about, there’s the

domain architects, which span each pillar: information, in-

tegration, business, mobility, security, Large number of

people over on that side. We’re supposed to be focused, as

SA, on the implementation or the project level, and they’re

supposed to be focused on more of the strategy and the do-

main expertise for us to go to for implementation to make sure

we’re using best practices in the security domain, for example,

or infrastructure domain, or some domain that an individual

architect may not be versed in”

Process
Abbreviation: app-pro

Description: This category should be applied to descriptions

of software process at Costco, including descriptions of stages

of software development and discussions of project life cycle.

Example: “There’s this SDM (solution delivery methodology)

out there, which is basically the end-to-end life cycle of all

the people involved in a project. Start-up is the first phase;

that’s when you engage the PM and do as we talked about,

the pre–requirements gathering. Then it goes to solution out-

line, which finalizes in the EARB. From there you go to macro

design. Then you go to micro design, implementation, deploy-

ment, and close-down.”

192

B.2 Content analysis 2: Modeling a real-world evolution

Other
Abbreviation: app-?

Description: This category should be applied to approaches

that do not fit into any of the other categories. Use this cate-

gory sparingly if at all. Residual categories such as this should

be used only when none of the specific categories fit.

B.2 Content analysis 2: Modeling a real-world evolution

B.2.1 General principles

Each coding unit should be assigned exactly one subcategory of each applicable main

category. (Note that this differs from the procedure in content analysis 1, in which

each coding unit should be assigned only one category total.) The “Classification”

main category is applicable to all coding units. Thus, all coding units should be as-

signed exactly one subcategory of the “Classification” main category. The other main

categories are applicable to coding units that describe architectural elements. Thus,

coding units that have been classified as components, connectors, ports or roles,

systems, or groupings should be assigned exactly one subcategory of “Presence in

initial architecture” and one subcategory of “Presence in target architecture.” Those

that have been classified as containment relations, evolution operations, evolution

constraints, dimensions of concerns, or “Other” should not be coded with respect to

the “Presence in initial architecture” and “Presence in target architecture” categories.

Because the coding units in this content analysis are not contiguous—each coding

unit consists of a set of isolated fragments of content spread throughout the data—

substantial surrounding context may be necessary to accurately categorize a coding

unit. This surrounding context certainly extends to each page on which the coding

unit occurs in the architectural documentation, as well as a couple of paragraphs

before and after each occurrence of the coding unit in the interview transcripts. In a

few cases where categorization is particularly difficult, it may be appropriate to go

beyond the research data and consider external sources of information. Specifically,

the following sources may be considered if necessary to accurately judge the proper

categorization of a coding unit:

• The socket server diagram that I received in connection with the interviews

• The cash recyler integration architecture document that I received in connec-

tion with the interviews

• Publicly available documentation pertaining to specific commercially available

software products, obtained from vendor websites (in the case of coding units

corresponding to off-the-shelf products)

However, the architectural documentation and interview transcripts that form the

research data should be the principal consideration. The external documents listed

above should be used only as necessary to settle close calls in cases of ambiguity.

193

B Content analysis coding guide

B.2.2 Categories

Classification
Abbreviation: c

Description: Subcategories of this category are used to identify

what type of entity (software element, constraint, or dimen-

sion of concern) a coding unit refers to. Every coding unit

should fall into one of these subcategories; therefore, each

coding unit should be assigned exactly one subcategory of this

category.

If a coding unit fails to correspond to any of the subcate-

gories, categorize it as “Classification: Other.” If there appear

to be multiple subcategories that could apply to a coding unit,

read the descriptions of the subcategories below carefully for

discussion of the distinctions among them, so that you can

choose the single most appropriate classification.

Component
Abbreviation: c-cmp

Description: This category should be applied to software el-

ements that are best characterized as components. A com-

ponent represents a computational element within a soft-

ware system. Examples of kinds of components include soft-

ware packages, services, data stores, and data processing el-

ements. A component has a well-defined identity, a well-

defined boundary, and a well-defined interface by which it

interoperates with other software elements.

The “Component” category may be confused with several

other categories, notably “Connector,” “System,” and “Group-

ing.” See the definitions of these other categories below for

discussion of the distinctions.

Indicators: A software element that is described as an “ap-

plication,” “controller,” “file,” “handler,” “log,” “product,” or

“server” is usually a component. However, many components

are not described in such terms, and a few elements that are

described in these terms are better classified as systems or

connectors. Thus, components must ultimately be identified

based on their general characteristics, as described above.

An off-the-shelf package should always be classified as a

component (unless it exists chiefly to facilitate communica-

tion, in which case it is a connector).

In graphical diagrams, components are often depicted as

boxes. However, boxes are used for a great many other pur-

pose, including representation of connectors, systems, and

groupings, so this is by no means a reliable indicator of a com-

ponent.

194

B.2 Content analysis 2: Modeling a real-world evolution

Connector
Abbreviation: c-cnn

Description: This category should be applied to software el-

ements that are best characterized as connectors. A connec-

tor represents a pathway of interaction between two or more

components. Examples of kinds of connectors include pipes,

streams, buses, message queues, and other kinds of communi-

cation channels. Although connectors are often thought of as

simple, some connectors are quite complex, and connectors

can even have an internal substructure, just as components

can.

Thus, do not categorize an element as a component simply

because it seems complex and bulky. Instead, the determi-

nation of whether an element is a component or a connector

should be guided by its function. If it is principally a compu-

tational or data-processing element, it should be categorized

as a component. If its principal role is to facilitate commu-

nication between components, it should be categorized as a

connector.

Indicators: A software element that is described as a “bridge,”

“broker,” “bus,” “queue,” or “transfer” is almost certainly a

connector. However, connectors are not always described in

such terms and often must be identified based on their general

characteristics, as described above.

In prose (spoken or written), connectors are often not dis-

cussed in explicit terms as first-class entities, but instead ap-

pear implicitly as relationships between components. For

example, if a component is described as “talking to” another

component, the phrase “talking to” is evidence of a connector

between the two components. A coding unit that captures a re-

lation between components (or systems or groupings) should

always be classified as either a connector or a containment

relation.

In graphical diagrams, components are often depicted as

lines (or arrows). In fact, a line between two components in

a diagram almost always represents a connector. However,

the converse is not true. Connectors can be diagrammatically

represented in many other ways besides as lines—including

as boxes—so the fact that an element appears as something

other than a line in a diagram is not evidence that it is not a

connector.

195

B Content analysis coding guide

Port or role
Abbreviation: c-att

Description: This category should be applied to coding units

that express an attachment relation between a component (or

system or grouping) and a connector. (This could be charac-

terized architecturally as a port, a role, or a combination of a

port attached to a role.)

Application of this category is relatively straightforward.

When a coding unit expresses a relationship between a compo-

nent (or system or grouping) and connector, that unit should

be either coded as “Port or role” (if the relationship is one

of component-connector attachment) or as “Containment

relation” (if the relationship is one of containment).

196

B.2 Content analysis 2: Modeling a real-world evolution

System
Abbreviation: c-sys

Description: This category should be applied when a coding

unit refers to a complete software system.

The distinction between a system and a component can be

hazy, since components may themselves be fairly large and

complex and may contain other software elements. However,

a software system is understood to operate as a complete and

relatively independent whole (although it may have depen-

dencies on other systems with which it interoperates), while

a component is intended to operate as one piece of a larger

system.

In some cases, though, the distinction between a system

and a component is merely a matter of perspective. For ex-

ample, an off-the-shelf point-of-sale package could certainly

be considered a system from the perspective of its developers,

the package vendor, but from Costco’s perspective, it is just

one component of Costco’s point-of-sale system. Thus, this

application should be coded as a component rather than a

system, since we are taking the perspective of Costco.

Topologically, systems are equivalent to components. Thus,

connectors, which normally connect components to compo-

nents, may also connect systems to systems, or components

to systems. Indeed, a system may be regarded as a type of

component. The distinction is made in this coding frame sim-

ply because it facilitates understanding of system boundaries

and areas of responsibility.

Also murky is the distinction between a system and a group-

ing. In general, a system is a concrete package of software

elements that have been deliberately composed together into

a unified whole. The grouping category below is for more neb-

ulous collections of elements. Such groupings may be used to

associate elements logically, to express physical boundaries,

or to demark software layers or tiers.

Indicators: Systems are often easy to recognize simply because

they are called “systems”—for example, the point-of-sale sys-

tem, or the membership system. However, this indicator is not

foolproof; the term system sometimes appears in descriptions

of things that might be better categorized as components.

Notably, off-the-shelf packages should always be classified

as components (or connectors), even though they might be

regarded as systems under other circumstances.

197

B Content analysis coding guide

Grouping
Abbreviation: c-grp

Description: This category should be applied to coding units

that express logical groupings of software elements, such as

software layers or tiers. It should also be applied to coding

units that express the physical boundaries within which soft-

ware elements may be contained. For example, architects

frequently distinguish between software elements that are

contained within individual Costco warehouses, and those

that are part of the central corporate infrastructure. In this

case, warehouse defines a physical boundary and should be

considered a grouping.

Sometimes it may be unclear whether to categorize a unit

as a grouping or a component. Components, after all, can

(like groupings) contain other software elements. However,

components exist as specifically identifiable elements within

the software; they are discrete elements with a well-defined

interface, intended to interoperate with other software ele-

ments. Groupings are more nebulous, and are often purely

logical; in other words, it may be useful to use them to group

related software elements together for purposes of discussion

and analysis, but they may not have any real presence in the

software.

It may also be possible to confuse groupings with systems.

See the definition of the “System” category above for a discus-

sion of the distinction.

Groupings, like systems, are topologically equivalent to com-

ponents. See the description of the “System” category for an

explanation of this point.

Containment
relation
Abbreviation: c-cnt

Description: This category should be applied to coding units

that express a containment relation between two software

elements—that is, when a coding unit expressing a relation-

ship between two software elements implies that one of them

is contained within the other.

Indicators: In diagrams, containment is easy to recognize be-

cause it is almost always represented by physical containment;

for example, one box (representing a system) contains another,

smaller box (representing a component).

Containment relations are not so clearly manifest in prose.

However, a containment relation is often described in terms

of the contained element being “in” the containing element,

or the containing element “having” the contained element.

198

B.2 Content analysis 2: Modeling a real-world evolution

Evolution
operation
Abbreviation: c-eop

Description: This category should be applied to coding units

that describe an operation that may be carried out dur-

ing the evolution. Evolution operations can be simple—

such as adding, removing, or modifying individual software

elements—or moderately complex, such as interposing a

bridging element between two components to facilitate com-

munication, or replacing a network of point-to-point connec-

tors with a bus.

Evolution
constraint
Abbreviation: c-cns

Description: This category should be applied to coding units

that express a constraint on the evolution of the system. Ex-

amples of kinds of evolution constraints including ordering

constraints on evolution operations, architectural constraints

characterizing the structure that the system must have at spe-

cific points within the evolution, timing constraints expressing

when operations must be carried out, and organizational con-

straints expressing which organizational elements carry out

which tasks.

Constraints should be easy to distinguish from all of the

other categories here except perhaps “Dimension of concern.”

After all, constraints and dimensions of concern both repre-

sent qualities that are desired of an evolution. The difference

is that constraints express compulsory requirements that an

evolution must have in order to be valid. Dimensions of con-

cern represent qualities that lie along a range or spectrum,

with one end of the range being preferable to the other, and

points in the middle of the range being intermediate between

them. Thus, “availability” generally is a dimension of concern,

while “The system must maintain 99% availability at all times”

is a constraint.

Dimension of
concern
Abbreviation: c-cnc

Description: This category should be applied to coding units

that capture a dimension of concern relevant to the evolution

of the system—something that could, at least in principle, be

quantified and used as an optimization criterion in planning

the evolution. Examples of possible dimensions of concern

include cost, effort, evolution duration, and architectural qual-

ities such as performance or reliability.

For the difference between constraints and dimensions of

concern, see the definition of the “Evolution constraint” cate-

gory above.

Other
Abbreviation: c-?

Description: This category should be applied to coding units

that do not fall into any of the above categories. Categorize

coding unit in the most appropriate category above if at all

possible; use this residual category only if none of the above

categories are at all applicable.

199

B Content analysis coding guide

Presence in initial
architecture
Abbreviation: init

Description: Subcategories of this category are used to indicate

whether a software element is present in the initial architec-

ture of the system. Note that only coding units correspond-

ing to software elements should be assigned a subcategory

of this category. Coding units not corresponding to software

elements (i.e., coding units tagged “c-cnt,” “c-eop,” “c-cns,”

“c-cnc,” or “c-?”) should not be assigned a subcategory of this

category, since these concepts (constraints, operations, etc.)

are not local to individual evolution states. However, any cod-

ing unit that has been identified as a software element (i.e.,

a coding unit classified “c-cmp,” “c-cnn,” “c-att,” “c-sys,” or

“c-grp”) should be assigned exactly one subcategory of this

category.

The “initial architecture” in this case is the structure of the

system at the outset of the point-of-sale evolution, before any

of the modernizations described in the material had been

effected.

Present
Abbreviation: init-p

Description: This category should be applied when the soft-

ware element is present in the initial architecture, at the outset

of the evolution.

Absent
Abbreviation: init-a

Description: This category should be applied when the soft-

ware element is not yet present in the initial architecture, at

the outset of the evolution.

Presence in target
architecture
Abbreviation: targ

Description: Subcategories of this category are used to indi-

cate whether a software element is present in the initial ar-

chitecture of the system. The same rules apply here as to the

“Presence in initial architecture category”: software elements

should be assigned exactly one subcategory, and other coding

units should not be assigned any.

The “target architecture” is the structure of the system at

the conclusion of the point-of-sale evolution, once all cur-

rently planned changes have been made. (However, specula-

tive changes that are described as possibly occurring in the

distant future, but for which no concrete plans currently exist,

should not be considered as part of this evolution.)

Present
Abbreviation: targ-p

Description: This category should be applied when the soft-

ware element is present in the target architecture, at the con-

clusion of the evolution.

Absent
Abbreviation: targ-a

Description: This category should be applied when the soft-

ware element is no longer present in the target architecture, at

the conclusion of the evolution.

200

C PDDL specification

This appendix reproduces the PDDL specification used in the automation work de-

scribed in section 6.3. As explained in section 6.3.1, a PDDL specification comprises

two parts: a domain description and a problem description.

C.1 Domain description

(define (domain data-center-migration)

(:requirements :typing :durative-actions :action-costs :duration-inequalities)

(:types

DataCenter Host Service Day - object

UnixHost WindowsHost - Host)

(:constants

DC1 DC2 - DataCenter

Monday Tuesday Wednesday Thursday Friday Saturday Sunday - Day)

(:predicates

(is-in ?h - Host ?dc - DataCenter)

(is-on ?s - Service ?h - Host)

(has-firewall ?dc - DataCenter)

(network-switch-installed)

(was-removed-from ?h - Host ?dc - DataCenter)

(was-migrated ?s - Service)

(not-yet-migrated ?s - Service)

(can-be-migrated-individually ?s - Service)

(is-unused ?h - Host)

(ok-to-move-on ?s - Service ?d - Day)

(no-work-in-progress)

(next ?d1 ?d2 - Day)

(weekend ?d - Day)

(today ?d - Day))

(:functions

(total-cost)

201

C PDDL specification

(current-hour)

(next-day)

(time-since-last-day)

(cost-multiplier ?d - Day)

(uid ?s - Service)

(allowed-downtime ?s - Service)

(service-count ?h - Host))

(:durative-action waitTillNextDay

:parameters (?oldDay ?newDay - Day)

:duration (= ?duration (- next-day current-hour))

:condition (and

(at start (no-work-in-progress))

(at start (today ?oldDay))

(over all (next ?oldDay ?newDay))

(at start (<= current-hour next-day)))

:effect (and

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at end (not (today ?oldDay)))

(at end (today ?newDay))

(at end (increase (current-hour) ?duration))

(at end (increase (next-day) 8))

(at end (assign (time-since-last-day) 0))))

(:durative-action installSwitch

:parameters (?d - Day)

:duration (= ?duration 1.9)

:condition (and

(at start (no-work-in-progress))

(over all (today ?d))

(at start (<= time-since-last-day 6.1)))

:effect (and

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at end (network-switch-installed))

(at start (increase (total-cost) (* 1 (cost-multiplier ?d))))

(at end (increase current-hour 1.9))

(at end (increase time-since-last-day 1.9))))

(:durative-action installFirewall

:parameters (?dc - DataCenter ?d - Day)

:duration (= ?duration 0.9)

:condition (and

(at start (no-work-in-progress))

202

C.1 Domain description

(over all (today ?d))

(at start (<= time-since-last-day 7.1)))

:effect (and

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at end (has-firewall ?dc))

(at start (increase (total-cost) (* 5 (cost-multiplier ?d))))

(at end (increase current-hour 0.9))

(at end (increase time-since-last-day 0.9))))

(:durative-action cloneHost1

:parameters (?h1 ?h2 - UnixHost ?s - Service ?d - Day)

:duration (= ?duration 1.9)

:condition (and

(at start (is-on ?s ?h1))

(over all (is-in ?h1 DC1))

(over all (is-in ?h2 DC2))

(over all (has-firewall DC2))

(over all (network-switch-installed))

(at start (not-yet-migrated ?s))

(at start (is-unused ?h2))

(at start (no-work-in-progress))

(over all (today ?d))

(at start (<= time-since-last-day 6.1))

(over all (= (service-count ?h1) 1)))

:effect (and

(at end (is-on ?s ?h2))

(at end (was-migrated ?s))

(at end (not (not-yet-migrated ?s)))

(at end (not (is-unused ?h2)))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 5 (cost-multiplier ?d))))

(at end (increase current-hour 1.9))

(at end (increase time-since-last-day 1.9))))

(:durative-action cloneHost2

:parameters (?h1 ?h2 - UnixHost ?s1 ?s2 - Service ?d - Day)

:duration (= ?duration 1.9)

:condition (and

(at start (is-on ?s1 ?h1))

(at start (is-on ?s2 ?h1))

(over all (is-in ?h1 DC1))

(over all (is-in ?h2 DC2))

(over all (has-firewall DC2))

(over all (network-switch-installed))

203

C PDDL specification

(at start (not-yet-migrated ?s1))

(at start (not-yet-migrated ?s2))

(at start (is-unused ?h2))

(at start (no-work-in-progress))

(over all (today ?d))

(at start (<= time-since-last-day 6.1))

(over all (< (uid ?s1) (uid ?s2))))

:effect (and

(at end (is-on ?s1 ?h2))

(at end (is-on ?s2 ?h2))

(at end (was-migrated ?s1))

(at end (was-migrated ?s2))

(at end (not (not-yet-migrated ?s1)))

(at end (not (not-yet-migrated ?s2)))

(at end (not (is-unused ?h2)))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 5 (cost-multiplier ?d))))

(at end (increase current-hour 1.9))

(at end (increase time-since-last-day 1.9))))

(:durative-action manuallyMigrateService

:parameters (?s - Service ?h1 ?h2 - Host ?d - Day)

:duration (= ?duration 3.9)

:condition (and

(at start (is-on ?s ?h1))

(over all (is-in ?h1 DC1))

(over all (is-in ?h2 DC2))

(over all (has-firewall DC2))

(over all (network-switch-installed))

(at start (not-yet-migrated ?s))

(over all (can-be-migrated-individually ?s))

(over all (ok-to-move-on ?s ?d))

(at start (no-work-in-progress))

(over all (today ?d))

(over all (>= (allowed-downtime ?s) 3.9))

(at start (<= time-since-last-day 4.1)))

:effect (and

(at end (is-on ?s ?h2))

(at end (was-migrated ?s))

(at end (not (not-yet-migrated ?s)))

(at end (not (is-unused ?h2)))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 20 (cost-multiplier ?d))))

204

C.1 Domain description

(at end (increase current-hour 3.9))

(at end (increase time-since-last-day 3.9))))

(:durative-action physicallyMoveHost1

:parameters (?h - Host ?s - Service ?d - Day)

:duration (= ?duration 5.9)

:condition (and

(at start (is-in ?h DC1))

(over all (is-on ?s ?h))

(over all (has-firewall DC2))

(over all (network-switch-installed))

(at start (not-yet-migrated ?s))

(over all (ok-to-move-on ?s ?d))

(at start (no-work-in-progress))

(over all (today ?d))

(over all (= (service-count ?h) 1))

(over all (>= (allowed-downtime ?s) 5.9))

(at start (<= time-since-last-day 2.1)))

:effect (and

(at end (is-in ?h DC2))

(at end (not (is-in ?h DC1)))

(at end (was-removed-from ?h DC1))

(at end (was-migrated ?s))

(at end (not (not-yet-migrated ?s)))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 50 (cost-multiplier ?d))))

(at end (increase current-hour 5.9))

(at end (increase time-since-last-day 5.9))))

(:durative-action physicallyMoveHost2

:parameters (?h - Host ?s1 ?s2 - Service ?d - Day)

:duration (= ?duration 5.9)

:condition (and

(at start (is-in ?h DC1))

(over all (is-on ?s1 ?h))

(over all (is-on ?s2 ?h))

(over all (has-firewall DC2))

(over all (network-switch-installed))

(at start (not-yet-migrated ?s1))

(at start (not-yet-migrated ?s2))

(over all (ok-to-move-on ?s1 ?d))

(over all (ok-to-move-on ?s2 ?d))

(at start (no-work-in-progress))

(over all (today ?d))

(at start (<= time-since-last-day 2.1))

205

C PDDL specification

(over all (>= (allowed-downtime ?s1) 5.9))

(over all (>= (allowed-downtime ?s2) 5.9))

(over all (< (uid ?s1) (uid ?s2))))

:effect (and

(at end (is-in ?h DC2))

(at end (not (is-in ?h DC1)))

(at end (was-removed-from ?h DC1))

(at end (was-migrated ?s1))

(at end (was-migrated ?s2))

(at end (not (not-yet-migrated ?s1)))

(at end (not (not-yet-migrated ?s2)))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 50 (cost-multiplier ?d))))

(at end (increase current-hour 5.9))

(at end (increase time-since-last-day 5.9))))

(:durative-action decommissionHost

:parameters (?h - Host ?dc - DataCenter ?d - Day)

:duration (= ?duration 3.9)

:condition (and

(over all (network-switch-installed))

(at start (no-work-in-progress))

(over all (today ?d))

(at start (<= time-since-last-day 4.1)))

:effect (and

(at end (not (is-in ?h ?dc)))

(at end (was-removed-from ?h ?dc))

(at start (not (no-work-in-progress)))

(at end (no-work-in-progress))

(at start (increase (total-cost) (* 10 (cost-multiplier ?d))))

(at end (increase current-hour 3.9))

(at end (increase time-since-last-day 3.9))))

)

C.2 Problem description

(define (problem data-center-migration)

(:domain data-center-migration)

(:objects

ClientWebsiteHost1 ClientWebsiteHost2 SafetyDbHost

UnusedUnixHost1 UnusedUnixHost2 UnusedUnixHost3 - UnixHost

FinanceHost AnalyticsHost UnusedWindowsHost1 UnusedWindowsHost2

- WindowsHost

206

C.2 Problem description

ClientWebsiteService1 ClientWebsiteService2 ClientWebsiteService3

ClientWebsiteService4 SafetyDbService PayrollService

AccountingService AnalyticsService - Service)

(:init

(is-in ClientWebsiteHost1 DC1)

(is-in ClientWebsiteHost2 DC1)

(is-in SafetyDbHost DC1)

(is-in FinanceHost DC1)

(is-in AnalyticsHost DC1)

(is-in UnusedUnixHost1 DC2)

(is-in UnusedUnixHost2 DC2)

(is-in UnusedUnixHost3 DC2)

(is-in UnusedWindowsHost1 DC2)

(is-in UnusedWindowsHost2 DC2)

(is-on ClientWebsiteService1 ClientWebsiteHost1)

(is-on ClientWebsiteService2 ClientWebsiteHost1)

(is-on ClientWebsiteService3 ClientWebsiteHost2)

(is-on ClientWebsiteService4 ClientWebsiteHost2)

(is-on SafetyDbService SafetyDbHost)

(is-on PayrollService FinanceHost)

(is-on AccountingService FinanceHost)

(is-on AnalyticsService AnalyticsHost)

(has-firewall DC1)

(not-yet-migrated ClientWebsiteService1)

(not-yet-migrated ClientWebsiteService2)

(not-yet-migrated ClientWebsiteService3)

(not-yet-migrated ClientWebsiteService4)

(not-yet-migrated SafetyDbService)

(not-yet-migrated PayrollService)

(not-yet-migrated AccountingService)

(not-yet-migrated AnalyticsService)

(can-be-migrated-individually ClientWebsiteService1)

(can-be-migrated-individually ClientWebsiteService2)

(can-be-migrated-individually ClientWebsiteService3)

(can-be-migrated-individually ClientWebsiteService4)

(can-be-migrated-individually SafetyDbService)

(can-be-migrated-individually PayrollService)

(can-be-migrated-individually AccountingService)

(is-unused UnusedUnixHost1)

(is-unused UnusedUnixHost2)

(is-unused UnusedUnixHost3)

207

C PDDL specification

(ok-to-move-on ClientWebsiteService1 Monday)

(ok-to-move-on ClientWebsiteService1 Tuesday)

(ok-to-move-on ClientWebsiteService1 Wednesday)

(ok-to-move-on ClientWebsiteService1 Thursday)

(ok-to-move-on ClientWebsiteService1 Friday)

(ok-to-move-on ClientWebsiteService1 Saturday)

(ok-to-move-on ClientWebsiteService1 Sunday)

(ok-to-move-on ClientWebsiteService2 Monday)

(ok-to-move-on ClientWebsiteService2 Tuesday)

(ok-to-move-on ClientWebsiteService2 Wednesday)

(ok-to-move-on ClientWebsiteService2 Thursday)

(ok-to-move-on ClientWebsiteService2 Friday)

(ok-to-move-on ClientWebsiteService2 Saturday)

(ok-to-move-on ClientWebsiteService2 Sunday)

(ok-to-move-on ClientWebsiteService3 Monday)

(ok-to-move-on ClientWebsiteService3 Tuesday)

(ok-to-move-on ClientWebsiteService3 Wednesday)

(ok-to-move-on ClientWebsiteService3 Thursday)

(ok-to-move-on ClientWebsiteService3 Friday)

(ok-to-move-on ClientWebsiteService3 Saturday)

(ok-to-move-on ClientWebsiteService3 Sunday)

(ok-to-move-on ClientWebsiteService4 Monday)

(ok-to-move-on ClientWebsiteService4 Tuesday)

(ok-to-move-on ClientWebsiteService4 Wednesday)

(ok-to-move-on ClientWebsiteService4 Thursday)

(ok-to-move-on ClientWebsiteService4 Friday)

(ok-to-move-on ClientWebsiteService4 Saturday)

(ok-to-move-on ClientWebsiteService4 Sunday)

(ok-to-move-on SafetyDbService Monday)

(ok-to-move-on SafetyDbService Tuesday)

(ok-to-move-on SafetyDbService Wednesday)

(ok-to-move-on SafetyDbService Thursday)

(ok-to-move-on SafetyDbService Friday)

(ok-to-move-on SafetyDbService Saturday)

(ok-to-move-on SafetyDbService Sunday)

(ok-to-move-on PayrollService Tuesday)

(ok-to-move-on PayrollService Wednesday)

(ok-to-move-on PayrollService Thursday)

(ok-to-move-on PayrollService Friday)

(ok-to-move-on PayrollService Saturday)

(ok-to-move-on PayrollService Sunday)

(ok-to-move-on AccountingService Saturday)

(ok-to-move-on AccountingService Sunday)

(ok-to-move-on AnalyticsService Monday)

208

C.2 Problem description

(ok-to-move-on AnalyticsService Tuesday)

(ok-to-move-on AnalyticsService Wednesday)

(ok-to-move-on AnalyticsService Thursday)

(ok-to-move-on AnalyticsService Friday)

(ok-to-move-on AnalyticsService Saturday)

(ok-to-move-on AnalyticsService Sunday)

(no-work-in-progress)

(next Monday Tuesday)

(next Tuesday Wednesday)

(next Wednesday Thursday)

(next Thursday Friday)

(next Friday Saturday)

(next Saturday Sunday)

(next Sunday Monday)

(weekend Saturday)

(weekend Sunday)

(today Monday)

(= (total-cost) 0.0)

(= (current-hour) 0.0)

(= (next-day) 8)

(= (time-since-last-day) 0)

(= (cost-multiplier Monday) 1)

(= (cost-multiplier Tuesday) 1)

(= (cost-multiplier Wednesday) 1)

(= (cost-multiplier Thursday) 1)

(= (cost-multiplier Friday) 1)

(= (cost-multiplier Saturday) 3)

(= (cost-multiplier Sunday) 3)

(= (uid ClientWebsiteService1) 0)

(= (uid ClientWebsiteService2) 1)

(= (uid ClientWebsiteService3) 2)

(= (uid ClientWebsiteService4) 3)

(= (uid SafetyDbService) 4)

(= (uid PayrollService) 5)

(= (uid AccountingService) 6)

(= (uid AnalyticsService) 7)

(= (allowed-downtime ClientWebsiteService1) 4.0)

(= (allowed-downtime ClientWebsiteService2) 4.0)

(= (allowed-downtime ClientWebsiteService3) 4.0)

(= (allowed-downtime ClientWebsiteService4) 4.0)

(= (allowed-downtime SafetyDbService) 0.0)

209

C PDDL specification

(= (allowed-downtime PayrollService) 160.0)

(= (allowed-downtime AccountingService) 16.0)

(= (allowed-downtime AnalyticsService) 168.0)

(= (service-count ClientWebsiteHost1) 2)

(= (service-count ClientWebsiteHost2) 2)

(= (service-count SafetyDbHost) 1)

(= (service-count FinanceHost) 2)

(= (service-count AnalyticsHost) 1))

(:goal

(and

; All services have been migrated.

(forall (?s - Service) (was-migrated ?s))

; No hosts remain in DC1.

(was-removed-from ClientWebsiteHost1 DC1)

(was-removed-from ClientWebsiteHost2 DC1)

(was-removed-from SafetyDbHost DC1)

(was-removed-from FinanceHost DC1)

(was-removed-from AnalyticsHost DC1)))

(:metric minimize (total-cost)))

210

Bibliography

I have employed a couple of conventions to make this bibliography easier to navigate.

First, in the margin alongside each entry, I have listed the page numbers on which

citations of the given work appear. This makes it easy to find where in this dissertation

a particular work is cited.

Second, I have typeset my own name in bold wherever it appears within this

bibliography. This makes it easy to find previous publications that I have authored or

coauthored on the topic of software architecture evolution.

[1] T. K. Abdel-Hamid (1989). “The Dynamics of Software Project Staffing: A System p. 146

Dynamics Based Simulation Approach.” IEEE Transactions on Software Engineering

15: 109–119. doi:10.1109/32.21738

[2] M. Abi-Antoun, J. Aldrich (2009). “Static Extraction and Conformance Analysis of Hier- p. 159

archical Runtime Architectural Structure Using Annotations.” Proceedings of the ACM

SIGPLAN Conference on Object-Oriented Programming Languages and Applications

(OOPSLA), pp. 321–340. ACM. ISBN 978-1-60558-734-9. doi:10.1145/1640089.1640113

[3] M. Ali Babar, J. M. Verner, P. T. Nguyen (2007). “Establishing and Maintaining Trust in p. 67

Software Outsourcing Relationships: An Empirical Investigation.” Journal of Systems

and Software 80(9): 1438–1449. doi:10.1016/j.jss.2006.10.038

[4] R. Alur, T. A. Henzinger (1989). “A Really Temporal Logic.” Proceedings of the Sympo- pp. 29, 32

sium on Foundations of Computer Science (FOCS), pp. 164–169. IEEE. ISBN 0-8186-

1982-1. doi:10.1109/SFCS.1989.63473

[5] P. America et al. (2011). “Architecting for Improved Evolvability.” In Views on Evolvabil- p. 147

ity of Embedded Systems (eds. P. van de Laar, T. Punter), chap. 2, pp. 21–36. Springer.

ISBN 978-90-481-9848-1. doi:10.1007/978-90-481-9849-8_2

[6] A. I. Antón, C. Potts (2003). “Functional Paleontology: The Evolution of User-Visible p. 151

System Services.” IEEE Transactions on Software Engineering 29(2): 151–166. doi:

10.1109/TSE.2003.1178053

[7] S. Anwar, M. Ramzan, A. Rauf, A. A. Shahid (2010). “Software Maintenance Predic- p. 148

tion Using Weighted Scenarios: An Architecture Perspective.” Proceedings of the

International Conference on Information Science & Applications (ICISA). IEEE. ISBN

978-1-4244-5943-8. doi:10.1109/ICISA.2010.5480420

[8] F. Bachmann, L. Bass, M. Klein (2003). “Deriving Architectural Tactics: A Step To- p. 149

ward Methodical Architectural Design.” Tech. Rep. CMU/SEI-2003-TR-004, Software

Engineering Institute, Pittsburgh. http://www.sei.cmu.edu/reports/03tr004.pdf

[9] N. Baddoo, T. Hall (2002). “Motivators of Software Process Improvement: An Analysis p. 67

of Practitioners’ Views.” Journal of Systems and Software 62(2): 85–96. doi:10.1016/

S0164-1212(01)00125-X

211

http://dx.doi.org/10.1109/32.21738
http://dx.doi.org/10.1145/1640089.1640113
http://dx.doi.org/10.1016/j.jss.2006.10.038
http://dx.doi.org/10.1109/SFCS.1989.63473
http://dx.doi.org/10.1007/978-90-481-9849-8_2
http://dx.doi.org/10.1109/TSE.2003.1178053
http://dx.doi.org/10.1109/TSE.2003.1178053
http://dx.doi.org/10.1109/ICISA.2010.5480420
http://www.sei.cmu.edu/reports/03tr004.pdf
http://dx.doi.org/10.1016/S0164-1212(01)00125-X
http://dx.doi.org/10.1016/S0164-1212(01)00125-X

Bibliography

[10] R. Bahsoon, W. Emmerich (2003). “ArchOptions: A Real Options-Based Model for p. 148

Predicting the Stability of Software Architectures.” Proceedings of the International

Workshop on Economic-Driven Software Engineering Research (EDSER). http://www.

soberit.hut.fi/edser-5/Papers/E03_BahsoonEmmerich.pdf

[11] C. Y. Baldwin, K. B. Clark (1999). Design Rules, vol. 1. MIT. ISBN 0-262-02466-7. p. 145

[12] M. S. Ball, G. W. H. Smith (1992). Analyzing Visual Data. Sage. ISBN 0-8039-3434-3. p. 77

[13] O. Barais, A. F. Le Meur, L. Duchien, J. Lawall (2008). “Software Architecture Evolution.” pp. 148, 149

In Software Evolution (eds. T. Mens, S. Demeyer), pp. 233–262. Springer. ISBN 978-3-

540-76439-7. doi:10.1007/978-3-540-76440-3_10

[14] O. Barais et al. (2004). “TranSAT: A Framework for the Specification of Software Architec- pp. 148, 149

ture Evolution.” Proceedings of the First International Workshop on Coordination and

Adaptation Techniques for Software Entities (WCAT), pp. 31–38. ISBN 84-688-6782-9.

[15] J. M. Barnes (2011). “NASA’s Advanced Multimission Operations System: A Case Study p. 41

in Formalizing Software Architecture Evolution.” Cleared Document 11-3608, Jet

Propulsion Laboratory, Pasadena, CA. http://hdl.handle.net/2014/42232

[16] J. M. Barnes (2012). “NASA’s Advanced Multimission Operations System: A Case Study pp. 41, 115

in Software Architecture Evolution.” Proceedings of the International ACM SIGSOFT

Conference on the Quality of Software Architectures (QoSA), pp. 3–12. ACM. ISBN

978-1-4503-1346-9. doi:10.1145/2304696.2304700

[17] J. M. Barnes (2013). “Case Study Report: Architecture Evolution at Costco.” Tech. Rep. ch. 5 passim

CMU-ISR-13-116, Carnegie Mellon University, Pittsburgh. http://reports-archive.adm.

cs.cmu.edu/anon/isr2013/CMU-ISR-13-116.pdf

[18] J. M. Barnes, D. Garlan (2013). “Challenges in Developing a Software Architecture pp. 119, 143

Evolution Tool as a Plug-In.” Proceedings of the Workshop on Developing Tools as Plug-

Ins (TOPI), pp. 13–18. IEEE. ISBN 978-1-4673-6288-7. doi:10.1109/TOPI.2013.6597188

[19] J. M. Barnes, D. Garlan, B. Schmerl (in press). “Evolution Styles: Foundations and pp. 11, 13, 15, 25, 81,

165Models for Software Architecture Evolution.” Software and Systems Modeling. doi:

10.1007/s10270-012-0301-9

[20] J. M. Barnes, A. Pandey, D. Garlan (2013). “Automated Planning for Software Architec- pp. 125, 143

ture Evolution.” Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering (ASE). To appear.

[21] L. Bass, P. Clements, R. Kazman (2003). Software Architecture in Practice. Addison– p. 2

Wesley, 2nd edn. ISBN 0-321-15495-9.

[22] A. Bauer, M. Leucker, C. Schallhart (2011). “Runtime Verification for LTL and TLTL.” p. 32

ACM Transactions on Software Engineering and Methodology 20(4): article 14. doi:

10.1145/2000799.2000800

[23] P. Bell (2001). “Content Analysis of Visual Images.” In Handbook of Visual Analysis (eds. p. 77

T. van Leeuwen, C. Jewitt), pp. 10–34. Sage. ISBN 0-7619-6476-2.

[24] P. Bengtsson, J. Bosch (1999). “Architecture Level Prediction of Software Maintenance.” p. 148

Proceedings of the European Conference on Software Maintenance & Reengineering

(CSMR), pp. 139–147. IEEE. ISBN 0-7695-0090-0. doi:10.1109/CSMR.1999.756691

[25] P. Bengtsson, N. Lassing, J. Bosch, H. van Vliet (2004). “Architecture-Level Modifi- pp. 89, 148

ability Analysis (ALMA).” Journal of Systems & Software 69: 129–147. doi:10.1016/

S0164-1212(03)00080-3

212

http://www.soberit.hut.fi/edser-5/Papers/E03_BahsoonEmmerich.pdf
http://www.soberit.hut.fi/edser-5/Papers/E03_BahsoonEmmerich.pdf
http://dx.doi.org/10.1007/978-3-540-76440-3_10
http://hdl.handle.net/2014/42232
http://dx.doi.org/10.1145/2304696.2304700
http://reports-archive.adm.cs.cmu.edu/anon/isr2013/CMU-ISR-13-116.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2013/CMU-ISR-13-116.pdf
http://dx.doi.org/10.1109/TOPI.2013.6597188
http://dx.doi.org/10.1007/s10270-012-0301-9
http://dx.doi.org/10.1007/s10270-012-0301-9
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1109/CSMR.1999.756691
http://dx.doi.org/10.1016/S0164-1212(03)00080-3
http://dx.doi.org/10.1016/S0164-1212(03)00080-3

Bibliography

[26] J. Benton, A. Coles, A. Coles (2012). “Temporal Planning with Preferences and Time- p. 139

Dependent Continuous Costs.” Proceedings of the International Conference on Auto-

mated Planning and Scheduling (ICAPS), pp. 2–10. AAAI. http://www.aaai.org/ocs/

index.php/ICAPS/ICAPS12/paper/view/4699

[27] B. Berelson (1952). Content Analysis in Communication Research. Free Press. pp. 67, 68

[28] W. Bischofberger, J. Kühl, S. Löffler (2004). “Sotograph—A Pragmatic Approach to p. 159

Source Code Architecture Conformance Checking.” Proceedings of the European

Workshop on Software Architecture (EWSA), LNCS, vol. 3047, pp. 1–9. Springer. ISBN

978-3-540-24769-2. doi:10.1007/978-3-540-24769-2_1

[29] P. Blackburn (2000). “Internalizing Labelled Deduction.” Journal of Logic and Compu- p. 30

tation 10(1): 137–168. doi:10.1093/logcom/10.1.137

[30] P. Blackburn, M. Tzakova (1999). “Hybrid Languges and Temporal Logic.” Logic Journal p. 30

of the IGPL 7(1): 27–54. doi:10.1093/jigpal/7.1.27

[31] B. Boehm (1981). Software Engineering Economics. Prentice Hall. ISBN 0-13-822122-7. p. 146

[32] B. Boehm (1996). “Anchoring the Software Process.” IEEE Software 13(4): 73–82. p. 146

doi:10.1109/52.526834

[33] B. Boehm, C. Abts, S. Chulani (2000). “Software Development Cost Estimation Ap- p. 146

proaches – A Survey.” Annals of Software Engineering 10: 177–205. doi:10.1023/A:

1018991717352

[34] M. Boyle, S. Shannon (2011). “Wal-Mart Brings Back 8,500 Products in Bid to End U.S. p. 62

Slump.” Bloomberg.com. http://www.bloomberg.com/news/2011-04-11/wal-mart

-brings-back-8-500-products-in-bid-to-end-u-s-slump.html

[35] L. Bratthall (2001). Empirical Studies of the Impact of Architectural Understanding on pp. 152, 153

Software Evolution. Ph.D. thesis, University of Oslo.

[36] R. Brcina, M. Riebisch (2008). “Architecting for Evolvability by Means of Traceability and p. 148

Features.” Proceedings of the International ERCIM Workshop on Software Evolution

and Evolvability (Evol), pp. 72–81. IEEE. ISBN 978-1-4244-2776-5. doi:10.1109/ASEW.

2008.4686323

[37] H. P. Breivold, I. Crnkovic, R. Land, M. Larsson (2008). “Analyzing Software Evolvability p. 148

of an Industrial Automation Control System: A Case Study.” Proceedings of the Inter-

national Conference on Software Engineering Advances (ICSEA), pp. 205–213. IEEE.

ISBN 978-0-7695-3372-8. doi:10.1109/ICSEA.2008.16

[38] H. P. Breivold, I. Crnkovic, M. Larsson (2012). “A Systematic Review of Software Ar- p. 145

chitecture Evolution Research.” Information and Software Technology 54(1): 16–40.

doi:10.1016/j.infsof.2011.06.002

[39] N. Brown, R. L. Nord, I. Ozkaya, M. Pais (2011). “Analysis and Management of Archi- pp. 21, 150, 153

tectural Dependencies in Iterative Release Planning.” Proceedings of the Working

IEEE/IFIP Conference on Software Architecture (WICSA), pp. 103–112. IEEE. ISBN

978-0-7695-4351-2. doi:10.1109/WICSA.2011.22

[40] M. Bucholtz (2000). “The Politics of Transcription.” Journal of Pragmatics 32(10): p. 66

1439–1465. doi:10.1016/S0378-2166(99)00094-6

[41] Y. Cai, K. J. Sullivan (2005). “Simon: Modeling and Analysis of Design Space Structures.” p. 148

Proceedings of the IEEE/ACM International Conference on Automated Software Engi-

neering (ASE), pp. 329–332. ACM. ISBN 1-58113-993-4. doi:10.1145/1101908.1101962

213

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699
http://dx.doi.org/10.1007/978-3-540-24769-2_1
http://dx.doi.org/10.1093/logcom/10.1.137
http://dx.doi.org/10.1093/jigpal/7.1.27
http://dx.doi.org/10.1109/52.526834
http://dx.doi.org/10.1023/A:1018991717352
http://dx.doi.org/10.1023/A:1018991717352
http://www.bloomberg.com/news/2011-04-11/wal-mart-brings-back-8-500-products-in-bid-to-end-u-s-slump.html
http://www.bloomberg.com/news/2011-04-11/wal-mart-brings-back-8-500-products-in-bid-to-end-u-s-slump.html
http://dx.doi.org/10.1109/ASEW.2008.4686323
http://dx.doi.org/10.1109/ASEW.2008.4686323
http://dx.doi.org/10.1109/ICSEA.2008.16
http://dx.doi.org/10.1016/j.infsof.2011.06.002
http://dx.doi.org/10.1109/WICSA.2011.22
http://dx.doi.org/10.1016/S0378-2166(99)00094-6
http://dx.doi.org/10.1145/1101908.1101962

Bibliography

[42] Y. Cai, K. J. Sullivan (2006). “Modularity and Analysis of Logical Design Models.” Pro- p. 148

ceedings of the IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), pp. 91–102. IEEE. ISBN 0-7695-2579-2. doi:10.1109/ASE.2006.53

[43] E. G. Carmines, R. A. Zeller (1979). Reliability and Validity Assessment. No. 07-017 in p. 110

Quantitative Applications in the Social Sciences, Sage. ISBN 0-8039-1371-0.

[44] C. Cassell, G. Symon (1994). “Qualitative Research in Work Contexts.” In Qualitative p. 68

Methods in Organizational Research: A Practical Guide (eds. C. Cassell, G. Symon), pp.

1–13. Sage. ISBN 0-8039-8769-2.

[45] A. Cervantes (2009). “Exploring the Use of a Test Automation Framework.” Proceedings p. 44

of the IEEE Aerospace Conference. IEEE. ISBN 978-1-4244-2622-5. doi:10.1109/AERO.

2009.4839695

[46] S. Chaki, N. Sharygina, N. Sinha (2004). “Verification of Evolving Software.” Pro- p. 145

ceedings of the Workshop on Specification and Verification of Component Based Sys-

tems (SAVCBS), pp. 55–61. Iowa State University. http://www.eecs.ucf.edu/~leavens/

SAVCBS/2004/savcbs04.pdf

[47] Y. Chan, N. Ivanov, O. Mueller (2013). Oracle to DB2 Conversion Guide: Compatibility p. 152

Made Easy. Redbooks, IBM, 3rd edn. ISBN 0-7384-3875-8.

[48] N. Chapin et al. (2001). “Types of Software Evolution and Software Maintenance.” p. 91

Journal of Software Maintenance and Evolution: Research and Practice 13(1): 3–30.

doi:10.1002/smr.220

[49] S.-W. Cheng, D. Garlan (2012). “Stitch: A Language for Architecture-Based Self- p. 169

Adaptation.” Journal of Systems and Software 85(12): 2860–2875. doi:10.1016/j.jss.2012.

02.060

[50] S.-W. Cheng et al. (2002). “Using Architectural Style as a Basis for System Self-Repair.” p. 149

Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA),

pp. 45–59. Kluwer. ISBN 1-4020-7176-0.

[51] L. Chung, K. Cooper, A. Yi (2003). “Developing Adaptable Software Architectures Using p. 147

Design Patterns: An NFR Approach.” Computer Standards & Interfaces 25: 253–260.

doi:10.1016/S0920-5489(02)00096-X

[52] E. M. Clarke, E. A. Emerson, A. P. Sistla (1986). “Automatic Verification of Finite-State p. 32

Concurrent Systems Using Temporal Logic Specifications.” ACM Transactions on

Programming Languages and Systems 8(2): 244–263. doi:10.1145/5397.5399

[53] P. Clements et al. (2011). Documenting Software Architectures: Views and Beyond. pp. 12, 13, 109, 165

Addison–Wesley, 2nd edn. ISBN 0-321-55268-7.

[54] J. Cohen (1960). “A Coefficient of Agreement for Nominal Scales.” Educational and p. 102

Psychological Measurement 20(1): 37–46. doi:10.1177/001316446002000104

[55] S. A. Conger (1994). The New Software Engineering. Wadsworth. ISBN 0-534-17143-5. p. 146

[56] J.-R. C. Cook (2010). “Engineers Diagnosing Voyager 2 Data System.” Press Release p. 41

2010-151, Jet Propulsion Laboratory, Pasadena, CA. http://www.jpl.nasa.gov/news/

news.cfm?release=2010-151

[57] G. A. Cornstock, E. A. Rubinstein, eds. (1972). Television and Social Behavior: Re- p. 67

ports and Papers, vol. I. National Institute of Mental Health. http://www.eric.ed.gov/

ERICWebPortal/detail?accno=ED059623

214

http://dx.doi.org/10.1109/ASE.2006.53
http://dx.doi.org/10.1109/AERO.2009.4839695
http://dx.doi.org/10.1109/AERO.2009.4839695
http://www.eecs.ucf.edu/~leavens/SAVCBS/2004/savcbs04.pdf
http://www.eecs.ucf.edu/~leavens/SAVCBS/2004/savcbs04.pdf
http://dx.doi.org/10.1002/smr.220
http://dx.doi.org/10.1016/j.jss.2012.02.060
http://dx.doi.org/10.1016/j.jss.2012.02.060
http://dx.doi.org/10.1016/S0920-5489(02)00096-X
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1177/001316446002000104
http://www.jpl.nasa.gov/news/news.cfm?release=2010-151
http://www.jpl.nasa.gov/news/news.cfm?release=2010-151
http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED059623
http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED059623

Bibliography

[58] Costco (2012). “Form 10-K for the Fiscal Year Ended September 2, 2012.” SEC Accession p. 62

No. 0001193125-12-428890. http://edgar.secdatabase.com/1732/119312512428890/

filing-main.htm

[59] Costco (2013). “Form 10-Q for the Quarterly Period Ended May 12, 2013.” SEC Ac- pp. 61, 62

cession No. 0001445305-13-001463. http://edgar.secdatabase.com/2430/144530513

001463/filing-main.htm

[60] G. Cowan, M. O’Brien (1990). “Gender and Survival vs. Death in Slasher Films: A p. 77

Content Analysis.” Sex Roles 23(3/4): 187–196. doi:10.1007/BF00289865

[61] S. Cresswell, A. Coddington (2004). “Compilation of LTL Goal Formulas into PDDL.” p. 131

Proceedings of the European Conference on Artificial Intelligence (ECAI), FAIA, vol. 110,

pp. 985–986. IOS. ISBN 978-1-58603-452-8. http://frontiersinai.com/ecai/ecai2004/

ecai04/p0983.html

[62] D. Crockford (2006). “The application/json Media Type for JavaScript Object Notation p. 16

(JSON).” RFC 4627, IETF. http://www.ietf.org/rfc/rfc4627

[63] C. E. Cuesta, E. Navarro, D. E. Perry, C. Roda (2013). “Evolution Styles: Using Architec- p. 150

tural Knowledge as an Evolution Driver.” Journal of Software: Evolution and Process

25(9): 957–980. doi:10.1002/smr.1575

[64] W. Cunningham (1992). “The WyCash Portfolio Management System.” Adden- p. 170

dum to the Proceedings of the Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications (OOPSLA), pp. 29–30. ACM. ISBN 0-89791-610-7.

doi:10.1145/157709.157715

[65] W. A. Cushing (2012). When is Temporal Planning Really Temporal? Ph.D. thesis, p. 141

Arizona State University. http://sagarmatha.eas.asu.edu/cushing-dissertation.pdf

[66] K. Czarnecki, S. Helsen (2006). “Feature-Based Survey of Model Transformation Ap- p. 169

proaches.” IBM Systems Journal 45(3): 621–645. doi:10.1147/sj.453.0621

[67] N. Dehghani (2007). “Mission Data Processing and Control Subsystem (MPCS).” Pre- pp. 44, 50

sented at the European Ground System Architecture Workshop (ESAW). http://www

.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2007/

day2-Session-4-0900-1040/04_Dehghani.pdf

[68] N. Dehghani, Q. Sun, M. Demore (2009). “NASA’s 2011 Mars Science Laboratory (MSL) & pp. 44, 50

Supporting Ground Data System Architecture.” Presented at the European Ground

System Architecture Workshop (ESAW). http://www.egos.esa.int/export/egos-web/

others/Events/Workshop/ESAW-workshop-2009/Day1-Session-1-0920-1055/S01_

03_Dehghani.pdf

[69] N. Dehghani, M. Tankenson (2006). “A Multi-mission Event-Driven Component-Based pp. 43, 44, 50

System for Support of Flight Software Development, ATLO, and Operations First Used

by the Mars Science Laboratory (MSL) Project.” Cleared Document 06-0909, Jet Propul-

sion Laboratory, Pasadena, CA. Presented at the AIAA International Conference on

Space Operations (SpaceOps 2006). http://hdl.handle.net/2014/39852

[70] C. Del Rosso, A. Maccari (2007). “Assessing the Architectonics of Large, Software- pp. 89, 148

Intensive Systems Using a Knowledge-Based Approach.” Proceedings of the Working

IEEE/IFIP Conference on Software Architecture (WICSA), paper 2. IEEE. ISBN 0-7695-

2744-2. doi:10.1109/WICSA.2007.17

215

http://edgar.secdatabase.com/1732/119312512428890/filing-main.htm
http://edgar.secdatabase.com/1732/119312512428890/filing-main.htm
http://edgar.secdatabase.com/2430/144530513001463/filing-main.htm
http://edgar.secdatabase.com/2430/144530513001463/filing-main.htm
http://dx.doi.org/10.1007/BF00289865
http://frontiersinai.com/ecai/ecai2004/ecai04/p0983.html
http://frontiersinai.com/ecai/ecai2004/ecai04/p0983.html
http://www.ietf.org/rfc/rfc4627
http://dx.doi.org/10.1002/smr.1575
http://dx.doi.org/10.1145/157709.157715
http://sagarmatha.eas.asu.edu/cushing-dissertation.pdf
http://dx.doi.org/10.1147/sj.453.0621
http://www.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2007/day2-Session-4-0900-1040/04_Dehghani.pdf
http://www.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2007/day2-Session-4-0900-1040/04_Dehghani.pdf
http://www.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2007/day2-Session-4-0900-1040/04_Dehghani.pdf
http://www.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2009/Day1-Session-1-0920-1055/S01_03_Dehghani.pdf
http://www.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2009/Day1-Session-1-0920-1055/S01_03_Dehghani.pdf
http://www.egos.esa.int/export/egos-web/others/Events/Workshop/ESAW-workshop-2009/Day1-Session-1-0920-1055/S01_03_Dehghani.pdf
http://hdl.handle.net/2014/39852
http://dx.doi.org/10.1109/WICSA.2007.17

Bibliography

[71] S. Demri, R. Lazić, D. Nowak (2007). “On the Freeze Quantifier in Constraint LTL: pp. 29, 30

Decidability and Complexity.” Information and Computation 205(1): 2–24. doi:10.

1016/j.ic.2006.08.003

[72] S. Demri, R. Lazić, A. Sangnier (2010). “Model Checking Memoryful Linear-Time Logics p. 37

over One-Counter Automata.” Theoretical Computer Science 411(22–24): 2298–2316.

doi:10.1016/j.tcs.2010.02.021

[73] N. K. Denzin, Y. S. Lincoln (2011). “Introduction: The Discipline and Practice of p. 68

Qualitative Research.” In The Sage Handbook of Qualitative Research (eds. N. K. Denzin,

Y. S. Lincoln), pp. 1–19. Sage, 4th edn. ISBN 978-1-4129-7417-2.

[74] H. Dixon et al. (2008). “Portrayal of Tanning, Clothing Fashion and Shade Use in p. 77

Australian Women’s Magazines, 1987–2005.” Health Education Research 23(5): 791–802.

doi:10.1093/her/cym057

[75] S. Ducasse, D. Pollet (2009). “Software Architecture Reconstruction: A Process-Oriented p. 2

Taxonomy.” IEEE Transactions on Software Engineering 35: 573–591. doi:10.1109/TSE.

2009.19

[76] S. Easterbrook, J. Singer, M.-A. Storey, D. Damian (2008). “Selecting Empirical Meth- p. 7

ods for Software Engineering Research.” In Guide to Advanced Empirical Software

Engineering (eds. F. Shull, J. Singer, D. I. K. Sjøberg), pp. 285–311. Springer. ISBN

978-1-84800-043-8. doi:10.1007/978-1-84800-044-5_11

[77] Ecma International (2011). Standard ECMA-262: ECMAScript Language Specification, p. 21

5.1 edn. http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.

pdf

[78] S. Edelkamp, J. Hoffmann (2004). “PDDL2.2: The Language for the Classical Part of the p. 127

4th International Planning Competition.” Tech. Rep. 195, Department of Computer

Science, University of Freiburg. http://tr.informatik.uni-freiburg.de/2004/Report195/

[79] A. Engel, T. R. Browning (2008). “Designing Systems for Adaptability by Means of p. 148

Architecture Options.” Systems Engineering 11: 125–146. doi:10.1002/sys.20090

[80] M. Erder, P. Pureur (2006). “Transitional Architectures for Enterprise Evolution.” IT Pro p. 151

8(3): 10–17. doi:10.1109/MITP.2006.77

[81] H. Fahmy, R. C. Holt (2000). “Using Graph Rewriting to Specify Software Architectural p. 149

Transformations.” Proceedings of the IEEE International Conference on Automated

Software Engineering (ASE), pp. 187–196. IEEE. ISBN 0-7695-0710-7. doi:10.1109/ASE.

2000.873663

[82] L. Fischman, K. McRitchie, D. D. Galorath (2005). “Inside SEER-SEM.” CrossTalk: The p. 146

Journal of Defense Software Engineering 18(4): 26–28. http://www.crosstalkonline.org/

storage/issue-archives/2005/200504/200504-Fischman.pdf

[83] M. Fitting (2002). “Modal Logics between Propositional and First-Order.” Journal of p. 29

Logic and Computation 12(6): 1017–1026. doi:10.1093/logcom/12.6.1017

[84] J. L. Fleiss, B. Levin, M. C. Paik (2003). Statistical Methods for Rates and Proportions. pp. 102, 104

Wiley, 3rd edn. ISBN 0-471-52629-0.

[85] R. Flesch (1948). “A New Readability Yardstick.” Journal of Applied Psychology, 32(3). p. 67

doi:10.1037/h0057532

216

http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1016/j.ic.2006.08.003
http://dx.doi.org/10.1016/j.tcs.2010.02.021
http://dx.doi.org/10.1093/her/cym057
http://dx.doi.org/10.1109/TSE.2009.19
http://dx.doi.org/10.1109/TSE.2009.19
http://dx.doi.org/10.1007/978-1-84800-044-5_11
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://tr.informatik.uni-freiburg.de/2004/Report195/
http://dx.doi.org/10.1002/sys.20090
http://dx.doi.org/10.1109/MITP.2006.77
http://dx.doi.org/10.1109/ASE.2000.873663
http://dx.doi.org/10.1109/ASE.2000.873663
http://www.crosstalkonline.org/storage/issue-archives/2005/200504/200504-Fischman.pdf
http://www.crosstalkonline.org/storage/issue-archives/2005/200504/200504-Fischman.pdf
http://dx.doi.org/10.1093/logcom/12.6.1017
http://dx.doi.org/10.1037/h0057532

Bibliography

[86] M. Fox, D. Long (2002). “PDDL+: Modelling Continuous Time-Dependent Effects.” p. 141

Proceedings of the International NASA Workshop on Planning and Scheduling for

Space.

[87] M. Fox, D. Long (2003). “PDDL2.1: An Extension to PDDL for Expressing Temporal p. 127

Planning Domains.” Journal of Artificial Intelligence Research 20: 61–124. doi:10.1613/

jair.1129

[88] M. Franceschet, M. de Rijke (2006). “Model Checking Hybrid Logics (with an Ap- p. 34

plication to Semistructured Data).” Journal of Applied Logic 4(3): 279–304. doi:

10.1016/j.jal.2005.06.010

[89] J. Frank, K. Golden, A. Jonsson (2003). “The Loyal Opposition Comments on Plan p. 131

Domain Description Languages.” Proceedings of the ICAPS Workshop on PDDL. http:

//users.cecs.anu.edu.au/~thiebaux/workshops/ICAPS03/proceedings/frank.pdf

[90] D. G. Freelon (2010). “ReCal: Intercoder Reliability Calculation as a Web Service.” p. 103

International Journal of Internet Science 5(1): 20–33. http://www.ijis.net/ijis5_1/ijis5_

1_freelon_pre.html

[91] E. Fricke, A. P. Schulz (2005). “Design for Changeability (DfC): Principles to Enable p. 147

Changes in Systems Throughout Their Entire Lifecycle.” Systems Engineering 8: 342–

359. doi:10.1002/sys.20039

[92] E. Gamma, R. Helm, R. Johnson, J. Vlissides (1994). Design Patterns: Elements of p. 145

Reusable Object-Oriented Software. Addison–Wesley. ISBN 0-201-63361-2.

[93] M. R. Garey, D. S. Johnson (1979). Computers and Intractability. Freeman. ISBN p. 37

0-7167-1044-7.

[94] D. Garlan, J. M. Barnes, B. Schmerl, O. Celiku (2009). “Evolution Styles: Founda- p. 11

tions and Tool Support for Software Architecture Evolution.” Proceedings of the Joint

Working IEEE/IFIP Conference on Software Architecture & European Conference on

Software Architecture (WICSA/ECSA), pp. 131–140. IEEE. ISBN 978-1-4244-4984-2.

doi:10.1109/WICSA.2009.5290799

[95] D. Garlan, R. Monroe, D. Wile (1997). “Acme: An Architecture Description Interchange pp. 12, 78

Language.” Proceedings of the Conference of the Centre for Advanced Studies on

Collaborative Research (CASCON), pp. 169–183. ACM. doi:10.1145/1925805.1925814

[96] D. Garlan, B. Schmerl (2009). “Ævol: A Tool for Defining and Planning Architecture pp. 118, 142, 143

Evolution.” Proceedings of the International Conference on Software Engineering

(ICSE), pp. 591–594. IEEE. ISBN 978-1-4244-3452-7. doi:10.1109/ICSE.2009.5070563

[97] A. Gerevini, D. Long (2006). “Preferences and Soft Constraints in PDDL3.” Proceedings p. 127

of the ICAPS Workshop on Planning with Preferences and Soft Constraints, pp. 46–53.

http://strathprints.strath.ac.uk/3149/

[98] A. Gerevini, A. Saetti, I. Serina (2006). “An Approach to Temporal Planning and Schedul- p. 139

ing in Domains with Predictable Exogenous Events.” Journal of Artificial Intelligence

Research 25: 187–231. doi:10.1613/jair.1742

[99] M. Ghallab, D. Nau, P. Traverso (2004). Automated Planning: Theory and Practice. p. 126

Morgan Kaufmann. ISBN 1-55860-856-7.

[100] C. Ghezzi, M. Jazayeri, D. Mandrioli (1991). Fundamentals of Software Engineering. p. 145

Prentice Hall. ISBN 0-13-820432-2.

217

http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1016/j.jal.2005.06.010
http://dx.doi.org/10.1016/j.jal.2005.06.010
http://users.cecs.anu.edu.au/~thiebaux/workshops/ICAPS03/proceedings/frank.pdf
http://users.cecs.anu.edu.au/~thiebaux/workshops/ICAPS03/proceedings/frank.pdf
http://www.ijis.net/ijis5_1/ijis5_1_freelon_pre.html
http://www.ijis.net/ijis5_1/ijis5_1_freelon_pre.html
http://dx.doi.org/10.1002/sys.20039
http://dx.doi.org/10.1109/WICSA.2009.5290799
http://dx.doi.org/10.1145/1925805.1925814
http://dx.doi.org/10.1109/ICSE.2009.5070563
http://strathprints.strath.ac.uk/3149/
http://dx.doi.org/10.1613/jair.1742

Bibliography

[101] S. S. Gokhale (2007). “Architecture-Based Software Reliability Analysis: Overview and p. 86

Limitations.” IEEE Transactions on Dependable and Secure Computing 4(1): 32–40.

doi:10.1109/TDSC.2007.4

[102] V. Goranko (1994). “Temporal Logic with Reference Pointers.” Proceedings of the pp. 29, 31

International Conference on Temporal Logic (ICTL), LNCS, vol. 827, pp. 133–148.

Springer. ISBN 3-540-58241-X. doi:10.1007/BFb0013985

[103] W. B. Green (1995). “Multimission Ground Data System Support of NASA’s Planetary p. 42

Program.” Acta Astronautica 37: 407–415. doi:10.1016/0094-5765(95)00067-A

[104] S. Gregor (2006). “The Nature of Theory in Information Systems.” MIS Quarterly 30(3): p. 7

611–642.

[105] N. Groeben, R. Rustemeyer (1994). “On the Integration of Quantitative and Qualitative p. 71

Methodological Paradigms (Based on the Example of Content Analysis).” In Trends

and Perspectives in Empirical Social Research (eds. I. Borg, P. P. Mohler), pp. 308–326.

Walter de Gruyter. ISBN 3-11-014312-7.

[106] L. Grunske (2005). “Formalizing Architectural Refactorings as Graph Transformation pp. 148, 149

Systems.” Proceedings of the International Conference on Software Engineering,

Artificial Intelligence, Networking & Parallel/Distributed Computing & International

Workshop on Self-Assembling Wireless Networks (SNPD/SAWN), pp. 324–329. IEEE.

ISBN 0-7695-2294-7. doi:10.1109/SNPD-SAWN.2005.37

[107] K. L. Gwet (2012). Handbook of Inter-Rater Reliability. Advanced Analytics, 3rd edn. p. 104

ISBN 978-0-9708062-7-7.

[108] T. A. Henzinger (1990). “Half-Order Modal Logic: How to Prove Real-Time Properties.” p. 26

Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC),

pp. 281–296. ACM. ISBN 0-89791-404-X. doi:10.1145/93385.93429

[109] ISO (2006). International Standard ISO/IEC 14764: Software Engineering—Software p. 90

Life Cycle Processes—Maintenance. 2nd edn. ISBN 0-7381-4961-6.

[110] ISO (2012). International Standard ISO/IEC 19506: Information Technology—Object p. 151

Management Group Architecture-Driven Modernization (ADM)—Knowledge Discovery

Meta-Model (KDM).

[111] A. Jaffe (2012). “Transcription in Practice: Nonstandard Orthography.” In Orthography p. 66

as Social Action: Scripts, Spelling, Identity and Power (eds. A. Jaffe, J. Androutsopoulos,

M. Sebba, S. Johnson), pp. 203–224. De Gruyter. ISBN 978-1-61451-136-6.

[112] P. Jamshidi, M. Ghafari, A. Ahmad, C. Pahl (2013). “A Framework for Classifying and pp. 91, 145

Comparing Architecture-Centric Software Evolution Research.” Proceedings of the

European Conference on Software Maintenance and Reengineering (CSMR), pp. 305–

314. IEEE. ISBN 978-0-7695-4948-4. doi:10.1109/CSMR.2013.39

[113] Jet Propulsion Laboratory (2010). “Voyager: Spacecraft Lifetime.” http://voyager.jpl. p. 42

nasa.gov/spacecraft/spacecraftlife.html

[114] Jet Propulsion Laboratory (2011). “AMMOS.” http://ammos.jpl.nasa.gov/ p. 42

[115] Jet Propulsion Laboratory (2013). “Missions.” http://www.jpl.nasa.gov/missions/ p. 42

[116] S. Kang, D. Garlan (in press). “Architecture-Based Planning of Software Evolution.” p. 150

International Journal of Software Engineering and Knowledge Engineering.

218

http://dx.doi.org/10.1109/TDSC.2007.4
http://dx.doi.org/10.1007/BFb0013985
http://dx.doi.org/10.1016/0094-5765(95)00067-A
http://dx.doi.org/10.1109/SNPD-SAWN.2005.37
http://dx.doi.org/10.1145/93385.93429
http://dx.doi.org/10.1109/CSMR.2013.39
http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html
http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html
http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html
http://voyager.jpl.nasa.gov/spacecraft/spacecraftlife.html
http://ammos.jpl.nasa.gov/
http://www.jpl.nasa.gov/missions/

Bibliography

[117] J. Kirk, M. L. Miller (1986). Reliability and Validity in Qualitative Research. Sage. ISBN p. 110

0-8039-2560-3.

[118] H. Koziolek (2011). “Sustainability Evaluation of Software Architectures: A System- p. 147

atic Review.” Proceedings of the Joint ACM SIGSOFT Conference on the Quality

of Software Architectures & ACM SIGSOFT Symposium on Architecting Critical Sys-

tems (QoSA+ISARCS), pp. 3–12. ACM. ISBN 978-1-4503-0724-6. doi:10.1145/2000259.

2000263

[119] S. Kracauer (1952). “The Challenge of Qualitative Content Analysis.” Public Opinion p. 68

Quarterly 16(4): 631–642. doi:10.1086/266427

[120] K. Krippendorff (1970). “Bivariate Agreement Coefficients for Reliability Data.” Socio- p. 102

logical Methodology 2: 139–150.

[121] K. Krippendorff (2004). “Reliability in Content Analysis: Some Common Miscon- p. 103

ceptions and Recommendations.” Human Communication Research 30(3): 411–433.

doi:10.1111/j.1468-2958.2004.tb00738.x

[122] K. Krippendorff (2013). Content Analysis: An Introduction to Its Methodology. Sage, 3rd ch. 5 passim

edn. ISBN 1-4129-8315-0.

[123] P. Kruchten, R. L. Nord, I. Ozkaya, D. Falessi (2013). “Technical Debt: Towards a p. 170

Crisper Definition.” ACM SIGSOFT Software Engineering Notes 38(5): 51–54. doi:

10.1145/2507288.2507326

[124] S. C. Kurtik, J. B. Berner, M. Levesque (2000). “Calling Home in 2003: JPL Roadmap to p. 43

Standardized TT&C Customer Support.” Cleared Document 00-0675, Jet Propulsion

Laboratory, Pasadena, CA. Presented at the International Space Ops 2000 Symposium.

http://hdl.handle.net/2014/14262

[125] S. Kvale, S. Brinkmann (2009). InterViews: Learning the Craft of Qualitative Research pp. 65, 111

Interviewing. Sage, 2nd edn. ISBN 978-0-7619-2542-2.

[126] L. Lamport (1994). “The Temporal Logic of Actions.” ACM Transactions on Program- p. 29

ming Languages and Systems 16(3): 872–923. doi:10.1145/177492.177726

[127] N. Lassing, D. Rijsenbrij, H. van Vliet (1999). “Towards a Broader View on Soft- p. 89

ware Architecture Analysis of Flexibility.” Proceedings of the Asia Pacific Software

Engineering Conference (APSEC), pp. 238–245. IEEE. ISBN 0-7695-0509-0. doi:

10.1109/APSEC.1999.809608

[128] E. Laursen (2011). “High-End Trading Strategists See Cost Savings in Cloud Comput- p. 4

ing.” Institutional Investor. http://www.institutionalinvestor.com/Popups/PrintArticle.

aspx?ArticleID=2750046

[129] O. Le Goaer, P. Ebraert (2007). “Evolution Styles: Change Patterns for Software Evo- p. 149

lution.” Proceedings of the International ERCIM Symposium on Software Evolution

(Evol), pp. 252–261. ftp://ftp.umh.ac.be/pub/ftp_infofs/2007/ERCIM-Evol2007.pdf

[130] O. Le Goaer, M.-C. Oussalah, D. Tamzalit, A.-D. Seriai (2008). “Evolution Shelf: Ex- p. 149

ploiting Evolution Styles within Software Architectures.” Proceedings of the Inter-

national Conference on Software Engineering & Knowledge Engineering (SEKE), pp.

387–392. Knowledge Systems Institute. ISBN 1-891706-22-5. http://green.cs.ksi.edu/

conference/Proceedings/seke/SEKE2008_Proceedings.pdf

[131] O. Le Goaer, D. Tamzalit, M. Oussalah (2010). “Evolution Styles to Capitalize Evolution p. 149

219

http://dx.doi.org/10.1145/2000259.2000263
http://dx.doi.org/10.1145/2000259.2000263
http://dx.doi.org/10.1086/266427
http://dx.doi.org/10.1111/j.1468-2958.2004.tb00738.x
http://dx.doi.org/10.1145/2507288.2507326
http://dx.doi.org/10.1145/2507288.2507326
http://hdl.handle.net/2014/14262
http://dx.doi.org/10.1145/177492.177726
http://dx.doi.org/10.1109/APSEC.1999.809608
http://dx.doi.org/10.1109/APSEC.1999.809608
http://www.institutionalinvestor.com/Popups/PrintArticle.aspx?ArticleID=2750046
http://www.institutionalinvestor.com/Popups/PrintArticle.aspx?ArticleID=2750046
ftp://ftp.umh.ac.be/pub/ftp_infofs/2007/ERCIM-Evol2007.pdf
http://green.cs.ksi.edu/conference/Proceedings/seke/SEKE2008_Proceedings.pdf
http://green.cs.ksi.edu/conference/Proceedings/seke/SEKE2008_Proceedings.pdf

Bibliography

Expertise within Software Architectures.” Proceedings of the International Confer-

ence on Software Engineering & Knowledge Engineering (SEKE), pp. 159–164. Knowl-

edge Systems Institute. ISBN 1-891706-26-8. http://green.cs.ksi.edu/conference/

Proceedings/seke/SEKE2010_Proceedings.pdf

[132] O. Le Goaer, D. Tamzalit, M. Oussalah, A.-D. Seriai (2008). “Evolution Shelf: Reusing pp. 149, 153

Evolution Expertise within Component-Based Software Architectures.” Proceedings

of the International Computer Software & Applications Conference (COMPSAC), pp.

311–318. IEEE. ISBN 978-0-7695-3262-2. doi:10.1109/COMPSAC.2008.104

[133] O. Le Goaer, D. Tamzalit, M. C. Oussalah, A.-D. Seriai (2008). “Evolution Styles to p. 149

the Rescue of Architectural Evolution Knowledge.” Proceedings of the International

Workshop on Sharing and Reusing Architectural Knowledge (SHARK), pp. 31–36. ACM.

ISBN 978-1-60558-038-8. doi:10.1145/1370062.1370071

[134] M. D. LeCompte, L. P. Goetz (1982). “Problems of Reliability and Validity in Ethno- p. 111

graphic Research.” Review of Educational Research 52(1): 31–60. doi:10.3102/

00346543052001031

[135] M. M. Lehman (1980). “On Understanding Laws, Evolution, and Conservation in p. 145

the Large-Program Life Cycle.” Journal of Systems and Software 1: 213–221. doi:

10.1016/0164-1212(79)90022-0

[136] M. M. Lehman (1980). “Programs, Life Cycles, and Laws of Software Evolution.” Pro- p. 145

ceedings of the IEEE 68(9): 1060–1076. doi:10.1109/PROC.1980.11805

[137] M. M. Lehman (1996). “Laws of Software Evolution Revisited.” Proceedings of the p. 145

European Workshop on Software Process Technology (EWSPT), LNCS, vol. 1149, pp.

108–124. Springer. ISBN 3-540-61771-X. doi:10.1007/BFb0017737

[138] M. M. Lehman et al. (1997). “Metrics and Laws of Software Evolution – The Nineties p. 145

View.” Proceedings of the International Software Metrics Symposium, pp. 20–32. IEEE.

ISBN 0-8186-8093-8. doi:10.1109/METRIC.1997.637156

[139] Y. S. Lincoln, E. G. Guba (1985). Naturalistic Inquiry. Sage. ISBN 0-8039-2431-3. p. 111

[140] A. Lisitsa, I. Potapov (2005). “Temporal Logic with Predicate λ-Abstraction.” Pro- p. 29

ceedings of the International Symposium on Temporal Representation and Reasoning

(TIME), pp. 147–155. IEEE. ISBN 0-7695-2370-6. doi:10.1109/TIME.2005.34

[141] M. Lombard, J. Snyder-Duch, C. C. Bracken (2002). “Content Analysis in Mass Commu- p. 106

nication: Assessment and Reporting of Intercoder Reliability.” Human Communication

Research 28(4): 587–604. doi:10.1111/j.1468-2958.2002.tb00826.x

[142] M. Lombard, J. Snyder-Duch, C. C. Bracken (2003). “Correction.” Human Communica- p. 106

tion Research 29(3): 469–472. doi:10.1111/j.1468-2958.2003.tb00850.x

[143] L. M. MacLean, M. Meyer, A. Estable (2004). “Improving Accuracy of Transcripts p. 66

in Qualitative Research.” Qualitative Health Research 14(1): 113–123. doi:10.1177/

1049732303259804

[144] J. Magee, N. Dulay, S. Eisenbach, J. Kramer (1995). “Specifying Distributed Soft- p. 152

ware Architectures.” Proceedings of the European Software Engineering Confer-

ence (ESEC), LNCS, vol. 989, pp. 137–153. Springer. ISBN 3-540-60406-5. doi:

10.1007/3-540-60406-5_12

[145] S. T. March, G. F. Smith (1995). “Design and Natural Science Research on Information p. 7

220

http://green.cs.ksi.edu/conference/Proceedings/seke/SEKE2010_Proceedings.pdf
http://green.cs.ksi.edu/conference/Proceedings/seke/SEKE2010_Proceedings.pdf
http://dx.doi.org/10.1109/COMPSAC.2008.104
http://dx.doi.org/10.1145/1370062.1370071
http://dx.doi.org/10.3102/00346543052001031
http://dx.doi.org/10.3102/00346543052001031
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1016/0164-1212(79)90022-0
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1109/METRIC.1997.637156
http://dx.doi.org/10.1109/TIME.2005.34
http://dx.doi.org/10.1111/j.1468-2958.2002.tb00826.x
http://dx.doi.org/10.1111/j.1468-2958.2003.tb00850.x
http://dx.doi.org/10.1177/1049732303259804
http://dx.doi.org/10.1177/1049732303259804
http://dx.doi.org/10.1007/3-540-60406-5_12
http://dx.doi.org/10.1007/3-540-60406-5_12

Bibliography

Technology.” Decision Support Systems 15(4): 251–266. doi:10.1016/0167-9236(94)

00041-2

[146] F. Maris, P. Régnier (2008). “TLP-GP: Solving Temporally-Expressive Planning Problems.” p. 141

Proceedings of the International Symposium on Temporal Representation on Reason-

ing (TIME), pp. 137–144. IEEE. ISBN 978-0-7695-3181-6. doi:10.1109/TIME.2008.19

[147] N. Markey, P. Schnoebelen (2003). “Model Checking a Path.” Proceedings of the pp. 30, 31, 32, 37, 40,

155International Conference on Concurrency Theory (CONCUR), LNCS, vol. 2761, pp.

251–265. Springer. ISBN 3-540-40753-7. doi:10.1007/978-3-540-45187-7_17

[148] P. Mayring (2000). “Qualitative Content Analysis.” Forum: Qualitative Social Research, pp. 69, 73

1(2). http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204

[149] P. Mayring (2002). “Qualitative Content Analysis—Research Instrument or Mode p. 73

of Interpretation?” In The Role of the Researcher in Qualitative Psychology (ed.

M. Kiegelmann), pp. 140–149. Ingeborg Huber. ISBN 3-9806975-3-3. http://psydok.

sulb.uni-saarland.de/volltexte/2007/943/

[150] P. Mayring (2010). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Beltz, 11th p. 69

edn. ISBN 978-3-407-25533-4.

[151] D. McDermott et al. (1998). “PDDL—The Planning Domain Definition Language, p. 127

Version 1.2.” Tech. Rep. TR-98-003, Center for Computational Vision and Control, Yale

University.

[152] E. McLellan-Lemal (2008). “Transcribing Data for Team-Based Research.” In Handbook p. 66

for Team-Based Qualitative Research (eds. G. Guest, K. M. MacQueen), pp. 101–118.

AltaMira. ISBN 0-7591-0910-9.

[153] J. U. McNeal, M. F. Ji (2003). “Children’s Visual Memory of Packaging.” Journal of p. 77

Consumer Marketing 20(5): 400–427. doi:10.1108/07363760310489652

[154] N. Medvidovic, R. N. Taylor (2000). “A Classification and Comparison Framework p. 12

for Software Architecture Description Languages.” IEEE Transactions on Software

Engineering 26(1): 70–93. doi:10.1109/32.825767

[155] T. Mens (2010). “Model Transformation: A Survey of the State of the Art.” In Model- p. 169

Driven Engineering for Distributed Real-Time Systems (eds. J.-P. Babau et al.), pp. 1–19.

ISTE. ISBN 978-1-84821-115-5. doi:10.1002/9781118558096.ch1

[156] T. Mens, P. Van Gorp (2006). “A Taxonomy of Model Transformation.” Proceedings of p. 169

the International Workshop on Graph and Model Transformation (GraMoT), ENTCS,

vol. 152, pp. 125–142. Elsevier. doi:10.1016/j.entcs.2005.10.021

[157] I. Mero-Jaffe (2011). “‘Is That What I Said?’ Interview Transcript Approval by Partici- p. 66

pants: An Aspect of Ethics in Qualitative Research.” International Journal of Qualitative

Methods 10(3): 231–247. http://ejournals.library.ualberta.ca/index.php/IJQM/article/

view/8449

[158] M. B. Miles, A. M. Huberman (1994). Qualitative Data Analysis: An Expanded Source- p. 111

book. Sage, 2nd edn. ISBN 0-8039-5540-5.

[159] R. T. Monroe (2001). “Capturing Software Architecture Design Expertise with Armani, p. 26

Version 2.3.” Tech. Rep. CMU-CS-98-163R, Carnegie Mellon University, Pittsburgh.

http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-163R.pdf

221

http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1109/TIME.2008.19
http://dx.doi.org/10.1007/978-3-540-45187-7_17
http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204
http://psydok.sulb.uni-saarland.de/volltexte/2007/943/
http://psydok.sulb.uni-saarland.de/volltexte/2007/943/
http://dx.doi.org/10.1108/07363760310489652
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1002/9781118558096.ch1
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://ejournals.library.ualberta.ca/index.php/IJQM/article/view/8449
http://ejournals.library.ualberta.ca/index.php/IJQM/article/view/8449
http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-163R.pdf

Bibliography

[160] F. Mosteller, D. L. Wallace (1963). “Inference in an Authorship Problem.” Journal of p. 67

the American Statistical Association 58(302): 275–309. doi:10.1080/01621459.1963.

10500849

[161] N. Müller, J. S. Damico (2002). “A Transcription Toolkit: Theoretical and Clini- p. 66

cal Considerations.” Clinical Linguistics & Phonetics 16(5): 299–316. doi:10.1080/

02699200210135901

[162] G. C. Murphy, D. Notkin, K. J. Sullivan (2001). “Software Reflexion Models: Bridging the p. 159

Gap between Design and Implementation.” IEEE Transactions on Software Engineering

27(4): 364–380. doi:10.1109/32.917525

[163] L. Needels (2006). “DSMS Information Systems Architecture (DISA) Overview.” Cleared p. 42

Document 06-0975, Jet Propulsion Laboratory, Pasadena, CA. http://hdl.handle.net/

2014/39174

[164] K. A. Neuendorf (2002). The Content Analysis Guidebook. Sage. ISBN 0-7619-1978-3. ch. 5 passim

[165] M. Niazi, D. Wilson, D. Zowghi (2005). “A Maturity Model for the Implementation of p. 67

Software Process Improvement: An Empirical Study.” Journal of Systems and Software

74(2): 155–172. doi:10.1016/j.jss.2003.10.017

[166] No Magic, Inc. (2011). MagicDraw Open API Version 17.0.1 User Guide. http://nomagic. p. 121

com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf

[167] R. L. Nord, I. Ozkaya, P. Kruchten, M. Gonzalez-Rojas (2012). “In Search of a Metric for p. 170

Managing Architectural Technical Debt.” Proceedings of the Joint Working IEEE/IFIP

Conference on Software Architecture & European Conference on Software Architecture

(WICSA/ECSA), pp. 91–100. IEEE. ISBN 978-0-7695-4827-2. doi:10.1109/WICSA-ECSA.

212.17

[168] D. G. Oliver, J. M. Serovich, T. L. Mason (2005). “Constraints and Opportunities with p. 66

Interview Transcription: Towards Reflection in Qualitative Research.” Social Forces

84(2): 1273–1289. doi:10.1353/sof.2006.0023

[169] OMG (2004). Architecture-Driven Modernization (ADM). http://adm.omg.org/ p. 151

[170] OMG (2008). Architecture Driven Modernization (ADM) Knowledge Discovery Meta- p. 151

model (KDM). http://www.omg.org/spec/KDM/

[171] OMG (2008). Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT). http: p. 169

//www.omg.org/spec/QVT/

[172] OMG (2010). Object Constraint Language, Version 2.2. http://www.omg.org/spec/ p. 50

OCL/2.2/

[173] OMG (2010). SysML 1.2. http://www.omg.org/spec/SysML/1.2/ pp. 13, 47

[174] OMG (2010). UML 2.3. http://www.omg.org/spec/UML/2.3/ p. 13

[175] W. F. Opdyke, R. E. Johnson (1990). “Refactoring: An Aid in Designing Application p. 145

Frameworks and Evolving Object-Oriented Systems.” Proceedings of the Symposium

on Object-Oriented Programming Emphasizing Practical Applications (SOOPPA), pp.

145–160. Marist College.

[176] F. Oquendo et al. (2004). “ARCHWARE: Architecting Evolvable Software.” Proceedings p. 147

of the European Conference on Software Architecture (ECSA), LNCS, vol. 3047, pp.

257–271. Springer. ISBN 3-540-22000-3. doi:10.1007/978-3-540-24769-2_23

222

http://dx.doi.org/10.1080/01621459.1963.10500849
http://dx.doi.org/10.1080/01621459.1963.10500849
http://dx.doi.org/10.1080/02699200210135901
http://dx.doi.org/10.1080/02699200210135901
http://dx.doi.org/10.1109/32.917525
http://hdl.handle.net/2014/39174
http://hdl.handle.net/2014/39174
http://dx.doi.org/10.1016/j.jss.2003.10.017
http://nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://nomagic.com/files/manuals/MagicDraw%20OpenAPI%20UserGuide.pdf
http://dx.doi.org/10.1109/WICSA-ECSA.212.17
http://dx.doi.org/10.1109/WICSA-ECSA.212.17
http://dx.doi.org/10.1353/sof.2006.0023
http://adm.omg.org/
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/SysML/1.2/
http://www.omg.org/spec/UML/2.3/
http://dx.doi.org/10.1007/978-3-540-24769-2_23

Bibliography

[177] I. Ozkaya, R. Kazman, M. Klein (2007). “Quality-Attribute-Based Economic Valuation p. 150

of Architectural Patterns.” Tech. Rep. CMU/SEI-2007-TR-003, Software Engineering

Institute, Pittsburgh. http://www.sei.cmu.edu/reports/07tr003.pdf

[178] I. Ozkaya, P. Wallin, J. Axelsson (2010). “Architecture Knowledge Management during p. 91

System Evolution—Observations from Practitioners.” Proceedings of the Workshop

on Sharing and Reusing Architectural Knowledge (SHARK), pp. 52–59. ACM. ISBN

978-1-60558-967-1. doi:10.1145/1833335.1833343

[179] D. L. Parnas (1971). “Information Distribution Aspects of Design Methodology.” Pro- p. 145

ceedings of IFIP Congress, pp. 339–344. North-Holland. ISBN 0-7204-2063-6.

[180] M. C. Paulk et al. (1993). “Key Practices of the Capability Maturity Model, Version p. 146

1.1.” Tech. Rep. CMU/SEI-93-TR-025, Software Engineering Institute, Pittsburgh. http:

//www.sei.cmu.edu/reports/93tr025.pdf

[181] R. Pérez-Castillo, I. García-Rodriguez de Guzmán, M. Piattini, C. Ebert (2011). “Reengi- p. 151

neering Technologies.” IEEE Software 28(6): 13–17. doi:10.1109/MS.2011.145

[182] D. E. Perry, A. L. Wolf (1992). “Foundations for the Study of Software Architecture.” p. 12

ACM SIGSOFT Software Engineering Notes 17(4): 40–42. doi:10.1145/141874.141884

[183] D. Phillips (1998). The Software Project Manager’s Handbook: Principles That Work at p. 146

Work. IEEE. ISBN 0-8186-8300-7.

[184] R. Popping (1988). “On Agreement Indices for Nominal Data.” In Sociometric Research p. 102

(eds. W. E. Saris, I. N. Gallhofer), vol. 1, pp. 90–105. St. Martin’s Press. ISBN 0-312-00419-

2.

[185] W. R. Powers (2005). Transcription Techniques for the Spoken Word. AltaMira. ISBN p. 66

0-7591-0843-9.

[186] L. H. Putnam (1978). “A General Empirical Solution to the Macro Software Sizing p. 146

and Estimating Problem.” IEEE Transactions on Software Engineering SE-4: 345–361.

doi:10.1109/TSE.1978.231521

[187] J. Richardson (1992). “Supporting Lists in a Data Model (A Timely Approach).” Proceed- p. 29

ings of the International Conference on Very Large Data Bases (VLDB), pp. 127–138.

Morgan Kaufmann. ISBN 1-55860-151-1. http://www.vldb.org/conf/1992/P127.PDF

[188] D. Riffe, S. Lacy, F. G. Fico (1998). Analyzing Media Messages: Using Quantitative p. 107

Content Analysis in Research. Lawrence Erlbaum Associates. ISBN 0-8058-2018-3.

[189] J. Ritsert (1972). Inhaltsanalyse und Ideologiekritik: Ein Versuch über kritische Sozial- p. 105

forschung. Athenäum. ISBN 3-7610-5801-2.

[190] E. M. Rogers (1997). A History of Communication Study: A Biographical Approach. Free p. 67

Press, 1st paperback edn. ISBN 0-684-84001-4.

[191] N. Sadou, D. Tamzalit, M. Oussalah (2005). “A Unified Approach for Software Ar- p. 149

chitecture Evolution at Different Abstraction Levels.” Proceedings of the Inter-

national Workshop on Principles of Software Evolution (IWPSE), pp. 65–70. IEEE.

doi:10.1109/IWPSE.2005.4

[192] J. Saldaña (2013). The Coding Manual for Qualitative Researchers. Sage, 2nd edn. ISBN p. 71

978-1-4462-4737-2.

[193] M. Sandelowski (1994). “Notes on Transcription.” Research in Nursing & Health 17(4): p. 66

311–314. doi:10.1002/nur.4770170410

223

http://www.sei.cmu.edu/reports/07tr003.pdf
http://dx.doi.org/10.1145/1833335.1833343
http://www.sei.cmu.edu/reports/93tr025.pdf
http://www.sei.cmu.edu/reports/93tr025.pdf
http://dx.doi.org/10.1109/MS.2011.145
http://dx.doi.org/10.1145/141874.141884
http://dx.doi.org/10.1109/TSE.1978.231521
http://www.vldb.org/conf/1992/P127.PDF
http://dx.doi.org/10.1109/IWPSE.2005.4
http://dx.doi.org/10.1002/nur.4770170410

Bibliography

[194] A. Sanders (2010). “Innovation at JPL—GDS Modernization: A Case Study.” Presented p. 42

at the Ground Systems Architecture Workshop (GSAW). http://csse.usc.edu/GSAW/

gsaw2010/s11b/sanders.pdf

[195] M. Schreier (2012). Qualitative Content Analysis in Practice. Sage. ISBN 978-1-84920- ch. 5 passim

593-1.

[196] I. S. Schwartz, D. M. Baer (1991). “Social Validity Assessments: Is Current Practice State p. 107

of the Art?” Journal of Applied Behavior Analysis 24(2): 189–204. doi:10.1901/jaba.1991.

24-189

[197] G. Sciavicco (2012). “Reasoning with Time Intervals: A Logical and Computational p. 141

Perspective.” ISRN Artificial Intelligence. doi:10.5402/2012/616087

[198] W. A. Scott (1955). “Reliability of Content Analysis: The Case of Nominal Scale Coding.” p. 102

Public Opinion Quarterly 19(3): 321–325. doi:10.1086/266577

[199] C. Seale (1999). The Quality of Qualitative Research. Sage. ISBN 0-7619-5597-6. pp. 110, 111

[200] M. Sefika, A. Sane, R. H. Campbell (1996). “Monitoring Compliance of a Software p. 159

System with Its High-Level Design Models.” Proceedings of the International Con-

ference on Software Engineering (ICSE), pp. 387–396. IEEE. ISBN 0-8186-7247-1.

doi:10.1109/ICSE.1996.493433

[201] S. Sendall, V. Kozaczynski (2003). “Model Transformation: The Heart and Soul of p. 169

Model-Driven Software Development.” IEEE Software 20(5): 42–45. doi:10.1109/MS.

2003.1231150

[202] M. Shaw, D. Garlan (1996). Software Architecture: Perspectives on an Emerging Disci- pp. 12, 22

pline. Prentice Hall. ISBN 0-13-182957-2.

[203] Y. Shen, N. H. Madhavji (2006). “ESDM—A Method for Developing Evolutionary p. 148

Scenarios for Analysing the Impact of Historical Changes on Architectural Elements.”

Proceedings of the International Conference on Software Maintenance (ICSM), pp.

45–54. IEEE. ISBN 0-7695-2354-4. doi:10.1109/ICSM.2006.26

[204] M. Shepperd, C. Schofield (1997). “Estimating Software Project Effort Using Analogies.” p. 146

IEEE Transactions on Software Engineering 23: 736–743. doi:10.1109/32.637387

[205] A. P. Sistla, E. M. Clarke (1985). “The Complexity of Propositional Linear Temporal p. 32

Logics.” Journal of the ACM 32(3): 733–749. doi:10.1145/3828.3837

[206] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, J. E. Hannay (2008). “Building Theories in p. 7

Software Engineering.” In Guide to Advanced Empirical Software Engineering (eds.

F. Shull, J. Singer, D. I. K. Sjøberg), pp. 312–336. Springer. ISBN 978-1-84800-043-8.

doi:10.1007/978-1-84800-044-5_12

[207] B. Spitznagel, D. Garlan (2001). “A Compositional Approach for Constructing Con- pp. 148, 149

nectors.” Proceedings of the Working IEEE/IFIP Conference on Software Architecture

(WICSA), pp. 148–157. IEEE. ISBN 0-7695-1360-3. doi:10.1109/WICSA.2001.948424

[208] B. Spitznagel, D. Garlan (2003). “A Compositional Formalization of Connector Wrap- pp. 148, 149

pers.” Proceedings of the International Conference on Software Engineering (ICSE),

pp. 374–384. IEEE. ISBN 0-7695-1877-X. doi:10.1109/ICSE.2003.1201216

[209] I. Steinke (2004). “Quality Criteria in Qualitative Research.” In A Companion to Qual- p. 105

itative Research (eds. U. Flick, E. von Kardorff, I. Steinke), pp. 184–190. Sage. ISBN

0-7619-7375-3.

224

http://csse.usc.edu/GSAW/gsaw2010/s11b/sanders.pdf
http://csse.usc.edu/GSAW/gsaw2010/s11b/sanders.pdf
http://dx.doi.org/10.1901/jaba.1991.24-189
http://dx.doi.org/10.1901/jaba.1991.24-189
http://dx.doi.org/10.5402/2012/616087
http://dx.doi.org/10.1086/266577
http://dx.doi.org/10.1109/ICSE.1996.493433
http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1109/ICSM.2006.26
http://dx.doi.org/10.1109/32.637387
http://dx.doi.org/10.1145/3828.3837
http://dx.doi.org/10.1007/978-1-84800-044-5_12
http://dx.doi.org/10.1109/WICSA.2001.948424
http://dx.doi.org/10.1109/ICSE.2003.1201216

Bibliography

[210] STORES Media (2013). “2012 Top 250 Global Retailers.” http://www.stores.org/2012/ p. 61

Top-250-List

[211] STORES Media (2013). “2013 Top 100 Retailers.” http://www.stores.org/2013/ p. 61

Top-100-Retailers?order=field_revenue_value&sort=desc

[212] K. F. Sturdevant (2007). “Cruisin’ and Chillin’: Testing the Java-Based Distributed p. 44

Ground Data System ‘Chill’ with CruiseControl.” Proceedings of the IEEE Aerospace

Conference. IEEE. ISBN 1-4244-0525-4. doi:10.1109/AERO.2007.352957

[213] E. B. Swanson (1976). “The Dimensions of Maintenance.” Proceedings of the Interna- p. 90

tional Conference on Software Engineering (ICSE), pp. 492–497. IEEE.

[214] D. Tamzalit, T. Mens (2010). “Guiding Architectural Restructuring through Architectural pp. 149, 150

Styles.” Proceedings of the IEEE International Conference & Workshops on Engineering

of Computer-Based Systems (ECBS 2010), pp. 69–78. IEEE. ISBN 978-0-7695-4005-4.

doi:10.1109/ECBS.2010.15

[215] D. Tamzalit, N. Sadou, M. Oussalah (2007). “Connectors Conveying Software Ar- p. 149

chitecture Evolution.” Proceedings of the International Computer Software & Ap-

plications Conference (COMPSAC), vol. I, pp. 391–396. IEEE. ISBN 0-7695-2870-8.

doi:10.1109/COMPSAC.2007.97

[216] P. Tarvainen (2007). “Adaptability Evaluation of Software Architectures; A Case Study.” p. 148

Proceedings of the International Computer Software & Applications Conference

(COMPSAC), vol. II, pp. 579–586. IEEE. ISBN 0-7695-2870-8. doi:10.1109/COMPSAC.

2007.240

[217] R. N. Taylor et al. (1996). “A Component- and Message-Based Architectural Style p. 152

for GUI Software.” IEEE Transactions on Software Engineering 22: 390–406. doi:

10.1109/32.508313

[218] A. van Deursen, E. Visser, J. Warmer (2007). “Model-Driven Software Evolution: A p. 151

Research Agenda.” Proceedings of the Workshop on Model-Driven Software Evolution

(MoDSE), pp. 41–49. http://www.cs.vu.nl/csmr2007/workshops/p19.pdf

[219] J. C. van Niekerk, J. D. Roode (2009). “Glaserian and Straussian Grounded Theory: p. 74

Similar or Completely Different?” Proceedings of the Annual Research Conference

of the South African Institute of Computer Scientists and Information Technologists

(SAICSIT), pp. 96–103. ACM. ISBN 978-1-60558-643-4. doi:10.1145/1632149.1632163

[220] R. P. Weber (1985). Basic Content Analysis. No. 07-049 in Quantitative Applications in p. 107

the Social Sciences, Sage. ISBN 0-8039-2448-8.

[221] M. Wermelinger, J. L. Fiadeiro (2002). “A Graph Transformation Approach to Software pp. 148, 149

Architecture Reconfiguration.” Science of Computer Programming 44: 133–155. doi:

10.1016/S0167-6423(02)00036-9

[222] B. J. Williams, J. C. Carver (2010). “Characterizing Software Architecture Changes: A p. 91

Systematic Review.” Information and Software Technology 52(1): 31–51. doi:10.1016/j.

infsof.2009.07.002

[223] R. Winter, R. Fischer (2006). “Essential Layers, Artifacts, and Dependencies of En- p. 63

terprise Architecture.” Proceedings of the IEEE International Enterprise Distributed

Object Computing Conference Workshops (EDOCW), paper 30. IEEE. ISBN 0-7695-

2743-4. doi:10.1109/EDOCW.2006.33

225

http://www.stores.org/2012/Top-250-List
http://www.stores.org/2012/Top-250-List
http://www.stores.org/2012/Top-250-List
http://www.stores.org/2012/Top-250-List
http://www.stores.org/2013/Top-100-Retailers?order=field_revenue_value&sort=desc
http://www.stores.org/2013/Top-100-Retailers?order=field_revenue_value&sort=desc
http://www.stores.org/2013/Top-100-Retailers?order=field_revenue_value&sort=desc
http://www.stores.org/2013/Top-100-Retailers?order=field_revenue_value&sort=desc
http://dx.doi.org/10.1109/AERO.2007.352957
http://dx.doi.org/10.1109/ECBS.2010.15
http://dx.doi.org/10.1109/COMPSAC.2007.97
http://dx.doi.org/10.1109/COMPSAC.2007.240
http://dx.doi.org/10.1109/COMPSAC.2007.240
http://dx.doi.org/10.1109/32.508313
http://dx.doi.org/10.1109/32.508313
http://www.cs.vu.nl/csmr2007/workshops/p19.pdf
http://dx.doi.org/10.1145/1632149.1632163
http://dx.doi.org/10.1016/S0167-6423(02)00036-9
http://dx.doi.org/10.1016/S0167-6423(02)00036-9
http://dx.doi.org/10.1016/j.infsof.2009.07.002
http://dx.doi.org/10.1016/j.infsof.2009.07.002
http://dx.doi.org/10.1109/EDOCW.2006.33

Bibliography

[224] M. M. Wolf (1978). “Social Validity: The Case for Subjective Measurement, or How p. 107

Applied Behavior Analysis Is Finding Its Heart.” Journal of Applied Behavior Analysis

11(2): 203–214. doi:10.1901/jaba.1978.11-203

[225] C.-S. Wu, D. B. Simmons (2000). “Software Project Planning Associate (SPPA): A p. 146

Knowledge-Based Approach for Dynamic Software Project Planning and Tracking.” Pro-

ceedings of the International Computer Software & Applications Conference (COMP-

SAC), pp. 305–310. IEEE. ISBN 0-7695-0792-1. doi:10.1109/CMPSAC.2000.884739

[226] R. K. Yin (2009). Case Study Research: Design and Methods. Sage, 4th edn. ISBN pp. 59, 61, 111

978-1-4129-6099-1.

[227] E. Yourdon, L. L. Constantine (1979). Structured Design. Prentice Hall. ISBN 0-13- p. 145

854471-9.

[228] K. Yskout, R. Scandariato, W. Joosen (in press). “Change Patterns: Co-Evolving p. 150

Requirements and Architecture.” Software and Systems Modeling. doi:10.1007/

s10270-012-0276-6

[229] S. S. Yu et al. (2003). Migrating to WebSphere V5.0. Redbooks, IBM, 2nd edn. ISBN p. 152

0-7384-5338-2.

[230] A. Zalewski, S. Kijas, D. Sokołowska (2011). “Capturing Architecture Evolution with p. 151

Maps of Architectural Decisions 2.0.” Proceedings of the European Conference on

Software Architecture (ECSA), LNCS, vol. 6903, pp. 83–96. Springer. ISBN 978-3-642-

23797-3. doi:10.1007/978-3-642-23798-0_9

226

http://dx.doi.org/10.1901/jaba.1978.11-203
http://dx.doi.org/10.1109/CMPSAC.2000.884739
http://dx.doi.org/10.1007/s10270-012-0276-6
http://dx.doi.org/10.1007/s10270-012-0276-6
http://dx.doi.org/10.1007/978-3-642-23798-0_9

	Introduction
	Problem
	Motivating example
	Thesis
	Thesis statement
	Explanation
	Research claims

	Dissertation outline

	Approach
	Evolution states
	Evolution operators and transitions
	The evolution graph
	Evolution path constraints
	Evolution path evaluation functions
	Evolution styles

	Theoretical results on evolution path constraint verification
	Syntax of the constraint specification language
	Semantics of the constraint specification language
	Similar logics
	Computational complexity
	Summary

	Case study: Architecture evolution at NASA's Jet Propulsion Laboratory
	Background
	Evolution description
	Initial architecture
	Impetus for evolution
	Target architecture

	Approach
	Representing software architecture in SysML
	Modeling software architecture evolution with MagicDraw
	Representing model transformations
	Modeling constraints and evaluation functions with OCL

	Results
	Representing the initial architecture
	Intermediate states and alternative paths
	Representing architectural transformations
	Constraints and evaluation functions

	Summary

	Case study: Architecture evolution at Costco
	Case selection
	About the case
	The architecture organization

	Data collection
	Interview data
	Architectural documentation

	Content analysis
	A very brief history of content analysis
	Qualitative versus quantitative content analysis
	Elements of a qualitative content analysis
	Coding frame
	Segmentation
	Pilot phase
	Main analysis phase

	Evolution model construction
	Initial and target architectures
	Evolution operators
	Constraints
	Evaluation functions
	Evolution styles

	Findings
	Motives for evolution
	Causes of problems
	Consequences
	Challenges
	Approaches

	Conclusions
	Answers to the research questions
	Reliability
	Validity

	Summary

	Tooling
	Ævol: A first step in tool development
	A MagicDraw plug-in for architecture evolution
	Developing the plug-in
	Lessons learned

	Automated generation of architecture evolution paths
	Automated planning
	Approach
	Application
	Findings

	Summary

	Related work
	Software evolution
	Software project planning
	Evaluating and architecting for evolvability
	Planning software architecture evolution
	Summary

	Conclusion
	Contributions
	Limitations
	Future work
	Elaborating the idea of evolution styles
	Developing sophisticated, mature architecture evolution tools
	Evaluating and enhancing the usability of the approach
	Modeling and relating multiple views of a system
	Making the approach scalable to systems of systems
	Resolving unanswered questions on automated planning
	Developing a general operator specification language
	Analyzing technical debt
	Incorporating uncertainty into the model

	Case study interview protocol
	Introductory consent script
	Collection of personal identifiers
	The participant's role and background
	Software architecture evolution at Costco
	Limitations of today's approaches to software architecture evolution
	Specifics about the evolution of particular software systems at Costco
	Conclusion

	Content analysis coding guide
	Content analysis 1: Learning how architects do evolution
	General principles
	Categories

	Content analysis 2: Modeling a real-world evolution
	General principles
	Categories

	PDDL specification
	Domain description
	Problem description

	Bibliography

