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Abstract
In many machine learning application domains, obtaining labeled data is expen-

sive but obtaining unlabeled data is much cheaper. For this reason there has been
growing interest in algorithms that are able to take advantage of unlabeled data. In
this report we propose an algorithm for using unlabeled data in a regression problem.
The idea behind the method is to do manifold regularization using local linear esti-
mators. This is the first extension of local linear regression to the semi-supervised
setting. We present experimental results on both synthetic and real data and show
that this method tends to perform better than methods which only utilize the labeled
data.





Contents

1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Local Linear Semi-supervised Regression. . . . . . . . . . . . . . . . . 2

2.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Parametric Regression methods. . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Non-Parametric Regression methods. . . . . . . . . . . . . . . . . . . . 4
2.1.3 Linear Smoothers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Local Linear Semi-supervised Regression. . . . . . . . . . . . . . . . . . . . . 6
4.1 An Iterative Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
5.1 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

5.1.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
5.1.2 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
5.1.3 Error metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
5.1.4 Computing LOOCV . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
5.1.5 Automatically selecting parameters. . . . . . . . . . . . . . . . . . . . 12
5.1.6 Synthetic Data Set: Gong. . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.7 Local Learning Regularization. . . . . . . . . . . . . . . . . . . . . . . 17
5.1.8 Further Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . .18

6.1 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

v





1.1 Introduction and Motivation

In many machine learning domains, labeled data is much more expensive than labeled data. For
example, labeled data may require a human expert or an expensive experimental process to clas-
sify each example. For this reason there has been a lot of interest in the last few years in machine
learning algorithms than can make use of unlabeled data [26]. The majority of such proposed
algorithms have been applied to the classification task. In this report we focus on using unlabeled
data in regression. In particular, we present LLSR, the first extension of Local Linear Regression
to the problem of semi-supervised learning.

1.1.1 Regression

Regression is a fundamental tool in statistical analysis. At its core regression aims to model the
relationship between 2 or more random variables. For example, an economist might want to
investigate whether more education leads to an increased income. A natural way to accomplish
this is to take number of years of education as the dependent variable and annual income as the
independent variable and to use regression analysis to determine their relationship.

Formally, we are given as input(X1, Y1), ...(Xn, Yn) where theXi are the independent vari-
ables andYi are the dependent variables. We want to predict for anyX, the value of the corre-
spondingY . There are two main types of techniques used to accomplish this:

1. Parametric regression: In this case we assume that the relationship between the variable
is of a certain type (e.g. a linear relationship) and we are concerned with learning the
parameters for a relationship of that type which best fit the data.

2. Non-parametric regression: In this case we do not make any assumptions about the type of
relationship that holds between the variables, but we derive this relationship directly from
the data.

Regression analysis is heavily used in the natural sciences and in social sciences such as
economics, sociology and political science. A wide variety of regression algorithms are used
including linear regression, polynomial regression and logistic regression (among the parametric
methods) and kernel regression and local linear regression (among the non-parametric meth-
ods). A further discussion of such methods can be found in any introductory statistics textbook
[77, 78].

In semi-supervised regression in addition to getting the dependent and independent variables
X andY we are also given an addition variableR which indicates whether or not we observe
that value ofY . In other words we get data(X1, Y1, R1), ...(Xn, Yn, Rn) and we observeYi only
if Ri = 1.



We note that the problem of semi-supervised regression is more general than the semi-
supervised classification problem. In the latter case theYi are constrained to have only a finite
number of possible values whereas in regression theYi are assumed to be continuous. Hence
some algorithms designed for semi-supervised classification (e.g. graph mincut[13]) are not
applicable to the more general semi-supervised regression problem. Other algorithms such as
Gaussian Fields [85]) are applicable to both problems.

Although semi-supervised regression has received less attention than semi-supervised classi-
fication, a number of methods have been developed dealing specifically with this problem. These
include the transductive regression algorithm proposed by Cortes and Mohri [24]and co-training
style algorithms proposed by Zhou and Li [82], Sindhwani et al.[68] and Brefeld et al.[18].

1.1.2 Local Linear Semi-supervised Regression

In formulating semi-supervised classification algorithms, an often useful motivating idea is the
Cluster Assumption: the assumption that the data will naturally cluster into clumps that have the
same label. This notion of clustering does not readily apply to regression, but we can make a
somewhat similar “smoothness” assumption: we expect the value of the regression function to
not “jump” or change suddenly. In both cases we expectexamples that are close to each other to
have similar values.

A very natural way to instantiate this assumption in semi-supervised regression is by find-
ing estimateŝm(x) that minimize the following objective function (subject to the constraint that
m̂(xi) = yi for the labeled data):

∑
i,j

wij(m̂(xi)− m̂(xj))
2

wherem̂(xi) is theestimatedvalue of the function at examplexi, wij is a measure of the
similarity between examplesxi andxj andyi is the value of the function atxi (only defined on
the labeled examples).

This is exactly the objective function minimized by the Gaussian Fields algorithm proposed
by Zhu, Gharamani and Lafferty [85].

This algorithm has several attractive properties:

1. The solution can be computed in closed form by simple matrix operations.

2. It has interesting connections to Markov Random Fields, electrical networks,spectral graph
theory and random walks. For example, for the case of boolean weightswij, the estimates
m̂(xi) produced from this optimization can be viewed as the probability that a random walk
starting atxi on the graph induced by the weights, would reach a labeled positive example



before reaching a labeled negative example. These connections are further explored in
works by Zhu et al. [84, 85].

However, it suffers from at least one major drawback when used in regression: It is “locally
constant.” This means that it will tend to assign the same value to all the example near a particu-
lar labeled example and hence produce “flat neighborhoods.”

While this behavior is desirable in classification, it is often undesirable in regression applica-
tion where we frequently assume that the true function is “locally linear.” By locally linear we
mean that(on some sufficiently small scale) the value of an example is a “linear interpolation”
of the value of its closest neighbors. (From a mathematical point of view local linearity is a
consequence of a function being differentiable.)Hence if our function is of “locally linear” type
then a “locally constant” estimator will not provide good estimates and we would prefer to use
an algorithm that incorporates a local linearity assumption.

The supervised analogue of Gaussian Fields is Weighted Kernel Regression (also known as
the Nadaraya-Watson estimator) which minimizes the following objective function:

∑
i

wi(yi − m̂(x))2

wherem̂(x) is the value of the function at examplex,yi is the value ofxi andwi is a measure
of the similarity betweenx andxi.

In the supervised case, there already exists an estimator that has the desired property: Local
Linear Regression, which findsβx so as to minimize the following objective function:

n∑
i=1

wi(yi − βT
x Xxi)

2

with

Xxi =

(
1

xi − x

)
.

Hence, a suitable goal is to derive a local linear version of the Gaussian Fields algorithm.
Equivalently, we want a semi-supervised version of the Local Linear estimator.

In the remainder of this report we will give some background on non-parametric regression,
describe the Local Linear Semi-supervised Regression algorithm and show the results of some
experiments on real and synthetic data.

2.1 Background

The general problem of estimating a function from data has been extensively studied in the
statistics community. There are two broad classes of methods that are used: Parametric and



Non-parametric. We describe these in turn below.

2.1.1 Parametric Regression methods

These approaches assume that the function that is being estimated is of a particular type and then
try to estimate the parameters of the function so that it will best fit the observed data.

For example, we may assume that the function we seek is linear but the observations have
been corrupted with Gaussian noise:

y = βT x + εi (with εi ∼ N(0, σ2)).

Parametric methods have some advantages compared to non-parametric methods:

1. They are usually easier to analyze mathematically.

2. They usually require less data in order to learn a good model.

3. They are typically computationally less intensive.

However, they also have several disadvantages, especially if the assumptions are not entirely
correct.

2.1.2 Non-Parametric Regression methods

These approaches do not assume that the function we are trying to estimate is of a specific type.
i.e given

yi = m(xi) + εi

the goal is to estimate the value ofm(x) at each point.

The main advantage of non-parametric approaches is that they are more flexible than para-
metric methods and hence they are able to accurately represent broader classes of functions.

2.1.3 Linear Smoothers

Linear smoothers are a class of non-parametric methods in which the function estimates are a
linear function of the response variable:

ŷ = Ly

whereŷ are the new estimates,y are the observations andL is a matrix which may be con-
structed based on the data.

Linear smoothers include most commonly used non-parametric regression algorithms and in
particular all the algorithms we have discussed so far are linear smoothers. We discuss how we
can view each of them as linear smoothers below.



Weighted Kernel Regression

The objective is to find the number̂m(x) that minimizes the least squares error

∑
i

wi(yi − m̂(x))2.

The minimizer of this objective function is

m̂(x) =

∑
i wiyi∑
i wi

= Ly.

Local Linear Regression

The objective is to findβx that minimizes the least squares error

n∑
i=1

wi(yi − βT
x Xxi)

2

where

Xxi =

(
1

xi − x

)
.

The minimizer of the objective function is

β̂x = (XT
x WxXx)

−1XT
x Wxy

whereXx is then × (d + 1) matrix (XT
xi) and the matrixWx is then × n diagonal matrix

diag(wi).

The local linear estimate ofm(x) is

m̂(x) = eT
1 (XT

x WxXx)
−1XT

x Wxy = Ly.

Gaussian Fields

The objective is to findf that minimizes the energy functional

E(f) =
∑
i,j

wij(fi − fj)
2

with the constraint that some of thefi are fixed.

It can be shown that

E(f) = fT ∆f



where∆ = D−W is thecombinatorial graph Laplacianof the data,W is the weight matrix
andD is the diagonal matrix withDii =

∑
j wij.

If fL denotes the observed labels andfU denotes the unknown labels then the minimizer of
the energy functional is

fU = ∆−1
UU∆ULfL = Ly

where∆UU and∆UL are the relevant submatrices of the graph Laplacian.

3.1 Local Linear Semi-supervised Regression

Our goal is to derive a semi-supervised analogue of Local Linear Regression so we want it to
have the following properties.

1. It should fit a linear function at each point like Local Linear Regression.

2. The estimate for a particular point should depend on the estimates for all the other examples
like in Gaussian Fields. In particular we want to enforce some smoothness in how the linear
function changes.

More specifically, letXi andXj be two examples andβi andβj be the local linear fits atXi

andXj respectively.

Let

Xji =

(
1

Xi −Xj

)
.

ThenXT
jiβj is the estimated value atXi using the local linear fit atXj. Thus the quantity

(βi0 −XT
jiβj)

2

is the squared difference between the smoothed estimate atXi and the estimated value atXi

using the local fit atXj. This situation is illustrated in figure3.1
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Figure 3.1:We want to minimize the squared difference between the smoothed estimate atXi

and the estimated value atXi using the local fit atXj

We can take the sum of this quantity over all pairs of examples as the quantity we want to
minimize:

Ω(β) =
1

2

n∑
i=1

n∑
j=1

wij(βi0 −XT
jiβj)

2

with the constraint that some of theBi are fixed.

Lemma 1.1The manifold regularization functionalΩ(β) can be written as the quadratic form

Ω(β) = βT ∆β

where the local linear Laplacian∆ = [∆ij] is then× n block matrix with(d + 1)× (d + 1)
blocks∆ij = diag(Di)− [Wij] where

Di =
1

2

∑
j

wij(e1e
T
1 + XijX

T
ij)



and

Wij = wij

(
1 (XT

j −XT
i )

(Xj −Xi) 0

)
.

Proof:

Let n be the number of examples.
Let d be the number of dimensions.
Let X be ad× n matrix (the data).
Let W be asymmetricn× n matrix. (the similarity betweenXi andXj)
Let β be an× (d + 1) length vector. (the coefficients we want to learn).
Let βi be theβid+1 to βi(d+1) coefficients inβ. (the coefficients forXi)
Let Xi be [Xi1 . . . Xid]

T (Theith column ofX)
Let Xij be [1 (Xi −Xj)

T ]T

Let e1 be [1 0 0 . . . 0]T

Let di be
∑

j Wij

Starting with the objective function:

Ω(β) =
∑

i

∑
j

Wij(X
T
ii Bi −XT

ijBj)
2 (by definition)

We first expand the expression to get:

=
∑

i

∑
j

WijB
T
i XiiX

T
ii Bi−

∑
i

∑
j

2WijB
T
i XiiX

T
ijBj +

∑
i

∑
j

WijB
T
j XijX

T
ijBj (expanding)

Taking the first term we note that:

∑
i

∑
j

WijB
T
i XiiX

T
ii Bi =

∑
i

BT
i diXiiX

T
ii Bi = BT ∆1B

Where[(∆1)ii] = diXiiX
T
ii

Next looking at the second term we get:

S =
∑

i

∑
j

2WijB
T
i XiiX

T
ijBj =

∑
i

∑
j

2BT
i WijXiiX

T
ijBj

=
∑

i

∑
j

2BT
j WjiXjjX

T
jiBi =

∑
i

∑
j

2BT
i WijXjiX

T
jjBj

So we can derive the following expression for the second term:

S =
1

2
(S + S) =

1

2

∑
i

∑
j

2BT
i Wij(XiiX

T
ij + XjiX

T
jj)Bj = BT ∆2B



Where[(∆2)ij] = Wij(XiiX
T
ij + XjiX

T
jj)

Finally looking at the third term in the original expression:

∑
i

∑
j

WijB
T
j XijX

T
ijBj =

∑
j

BT
j (

∑
i

WijXijX
T
ij)Bj = BT ∆3B

Where[(∆3)ii] =
∑

j WijXjiX
T
ji

So in conclusion:

Ω(β) =
∑

i

∑
j

Wij(X
T
ii Bi −XT

ijBj)
2 = BT ∆B

where∆ = diag(Di)− [Wij] and

diag(Di) = ∆1 + ∆3

[Wij] = ∆2

¥

The term we just derived is the local linear manifold regularizer. Now we add another term
to account for the labeled examples and minimize the sum.

Lemma 1.2.

LetRγ(β) be the manifold regularized risk functional:

Rγ(β) =
1

2

n∑
j=1

∑
Ri=1

wij(Yi −XT
jiβj)

2 +
γ

2
Ω(β)

HereRi = 1 meansi is a labeled example andγ is a regularization constant. We can simplify
this to:

=
1

2

n∑
j=1

(Yi −Xjβj)
T Wj(Yi −Xjβj) +

γ

2
βT ∆β

The minimizer of this risk can be written in closed form as:

β̂(γ) = (diag(XT
j WjXj) + γ∆)−1)(XT

1 W1Y, . . . , XT
1 W1Y )T

Proof.

The expression we want to minimize is:



1

2

n∑
j=1

∑
Ri=1

Wij(Yi −XT
jiBj)

2 +
γ

2

1

2

n∑
i=1

n∑
j=1

Wij(Bi0 −XT
jiBj)

2

Using the previous lemma this is equivalent to:

=
1

2

n∑
j=1

(Y −XjBj)
T Wj(Y −XjBj) +

γ

2
BT ∆B

We can expand the first term:

=
1

2

n∑
j=1

Y T WjY − 1

2

n∑
j=1

BT
j XT

j WjY − 1

2

n∑
j=1

Y T WjXjBj +
1

2

n∑
j=1

BT
j XT

j WjXjBj +
γ

2
BT ∆B

After some rearrangement we get:

=
1

2
Y T (

n∑
j=1

Wj)Y −BT [XT
j WjY ] +

1

2
BT diag(XT

j WjXj)B +
γ

2
BT ∆B

Now we letQ = diag(XT
j WjXj), P = [XT

j WjY ], C = 1
2
Y T (

∑n
j=1 Wj)Y

The expression now becomes:

= C − BT P +
1

2
BT QB +

γ

2
BT ∆B

Now we differentiate with respect toB and set to zero:

= −P + QB + γ∆B = 0

which leads to:

=> B = (Q + γ∆)−1P

So in conclusion the expression which minimizes the manifold regularized risk functional is:

β̂(γ) = (diag(XT
j WjXj) + γ∆)−1)(XT

1 W1Y, . . . , XT
1 W1Y )T

¥

4.1 An Iterative Algorithm

As defined here the LLSR algorithm requires inverting an(d+1)×n(d+1) matrix. This may be
impractical ifn andd are large. For example forn = 1500, d = 199 the closed form computation
would require inverting a300, 000× 300, 000 matrix, a matrix that would take roughly720 GB



of memory to store in Matlab’s standard double precision format.

Hence, it is desirable to have a more memory efficient method for computing LLSR. An iter-
ative algorithm can fulfill this requirement.

Theorem 1.3 If we initially assignBi arbitrary values for alli, and repeatedly apply the
following formula, then theBi will converge to the minimum of the LLSR objective function:

Bi = [
∑
Rj=1

WijXjiX
T
ji+γ

∑
j

Wij(XiiX
T
ii +XjiX

T
ji)]

−1(
∑
Rj=1

WijXjiYj+γ
∑

j

Wij(XiiX
T
ij+XjiX

T
jj)Bj)

Proof.
The objective function is:

1

2

n∑
j=1

∑
Ri=1

Wij(Yi −XT
ijBj)

2 +
γ

2

1

2

∑
i

∑
j

Wij(X
T
ii Bi −XT

ijBj)
2

If we differentiate w.r.t toBi and set to0 we get:

[
∑
Rj=1

WijXjiX
T
ji+γ

∑
j

Wij(XiiX
T
ii +XjiX

T
ji)]Bi =

∑
Rj=1

WijXjiYj+γ
∑

j

Wij(XiiX
T
ij+XjiX

T
jj)Bj

After rearranging:

⇒ Bi = [
∑
Rj=1

WijXjiX
T
ji+γ

∑
j

Wij(XiiX
T
ii +XjiX

T
ji)]

−1(
∑
Rj=1

WijXjiYj+γ
∑

j

Wij(XiiX
T
ij+XjiX

T
jj)Bj)

Hence the iterative algorithm is equivalent to doing “exact line search” for eachBi. In other
words, given that all other variables are constant, we find the optimal value ofBi so as to mini-
mize the objective function.

This means that at each step the value of the objective function must decrease. But since
the objective function is a sum of squares, it can never be less than 0. Hence the iteration will
eventually converge to a local minima. If we further note that the objective function is convex,
then it only has one global minimum and that will be the only fixed point of the iteration.Hence
the iteration will converge to the global minimum of the objective function. ¥

As we noted previously, ifn = 1500, d = 199 the closed form computation would re-
quire720 GB of memory but the iterative computation only requires keeping a vector of length
n × (d + 1) and inverting a(d + 1) × (d + 1) matrix which in this case only takes 2.4 MB of
memory. So we save a factor of almost 300,000 in memory usage in this example.



5.1 Experimental Results

To understand the behavior of the algorithm we performed some experiments on both synthetic
and real data.

5.1.1 Algorithms

We compared two purely supervised algorithms with Local Linear Semi-supervised Regression.

WKR - Weighted Kernel Regression

LLR - Local Linear Regression

LLSR - Local Linear Semisupervised Regression

5.1.2 Parameters

There are two free parameters that we have to set for LLSR (and one (kernel bandwidth) for
WKR and LLR).

h - kernel bandwidth
γ - Amount of Semisupervised Smoothing

5.1.3 Error metrics

LOOCV MSE - Leave-One-Out-Cross-Validation Mean Squared Error. This is what we actu-
ally try to optimize (analogous to training error).

MSE - This is the true Mean Squared Error between our predictions and the true function (anal-
ogous to test error).

5.1.4 Computing LOOCV

Since we do not have access to the MSE we pick the parameters so as to minimize the LOOCV
MSE. Computing the LOOCV MSE in a naı̈ve way would be very computationally expensive
since we would have to run the algorithmO(n) times.

Fortunately for a linear smoother we can compute the LOOCV MSE by running the algorithm
only once. More precisely if̂y = Ly then

LOOCV MSE=
n∑

i=1

(
yi − ŷi

1− Lii

)2

5.1.5 Automatically selecting parameters

We experimented with a number of different ways of picking the parameters. In these experi-
ments we used a form of coordinate descent.



Picking one parameter

To pick one parameter we just reduce the bandwidth until there is no more improvement in
LOOCV MSE.

1. Initially set bandwidth to 1 and compute LOOCV MSE.

2. Seth = h/2 and compute the resulting LOOCV MSE.

3. If the LOOCV MSE decreases then go back to step 2 else go to step 4

4. Output theh which had the lowest LOOCV MSE.

Picking two parameters

To pick two parameters we succesively halve the parameter which yields the biggest decrease in
LOOCV MSE.

1. Initially set both bandwidth and smoothing parameter to 1 and compute LOOCV MSE.

2. Seth = h/2 while leavingγ alone and compute LOOCV MSE.

3. Setγ = γ/2 while leavingh alone and compute LOOCV MSE.

4. If either steps 2 or 3 decreased the LOOCV MSE then choose the setting which had the
lower LOOCV MSE and go back to step 2 else go to step 5.

5. Output the parameter setting which had the lowest MSE.

These procedures are a crude form of gradient descent.
Although they are not guaranteed to be optimal they are (somewhat) effective in practice.

5.1.6 Synthetic Data Set: Gong

The Gong function is a popular function for testing regression algorithms.
Interval:0.5 to 1.5
Data Points: Sampled uniformly in the interval. (Default= 800)
Labeled Data Points: Sampled uniformly from the data points. (Default= 80).
RED = Estimated values
BLACK = Labeled examples
True function:y = 1

x
sin 15

x

σ2 = 0.1 (Noise)

Figures5.2, 5.3 and5.4 show the results of running WKR, LLR and LLSR respectfully on
this example. A table summarizing the results is given below in table5.1. As can be seen LLSR
performs substantially better than the other methods in its MSE and from the figures one can see
that solution produced by LLSR is much smoother than the others.



Algorithm MSE
WKR 25.67
LLR 14.39
LLSR 7.99

Table 5.1:Performance of different algorithms on the Gong dataset

Weighted kernel Regression

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LOOCV MSE: 6.536832 MSE: 25.674466

Figure 5.2:WKR on the Gong example,h = 1
128

Discussion

There is significant bias on the left boundary and at the peaks and valleys. In this case it seems
like a local linear assumption might be more appropriate.



Local Linear Regression

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LOOCV MSE: 80.830113 MSE: 14.385990

Figure 5.3:LLR on the Gong example,h = 1
128

Discussion

There is less bias on the left boundary but there seems to be over fitting at the peaks. It seems
like more smoothing is needed.



Local Linear Semi-supervised Regression

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

LOOCV MSE: 2.003901 MSE: 7.990463

Figure 5.4:LLSR on the Gong example,h = 1
512

, γ = 1

Discussion

Although the fit is not perfect, it is the best of the 3. It manages to avoid boundary bias and fits
most of the peaks and valleys.



5.1.7 Local Learning Regularization

Recently Scḧolkopf and Wu [63] have proposed Local Learning Regularization (LL-Reg) as a
semi-supervised regression algorithm. They also propose a flexible framework that generalizes
many of the well known semi-supervised learning algorithms.

Suppose we can cast our semi-supervised regression problem as finding thef that minimizes
the following objective function:

fT Rf + (f − y)T C(f − y)

We can easily see that thef that minimizes this objective function is

f = (R + C)−1Cy

The first term is the “semi-supervised” component and imposes some degree of “smooth-
ness” on the predictions. The second term is the “supervised” part indicating the agreement of
the predictions with the labeled examples. By choosing different matricesR andC we obtain
different algorithms. Typically C is chosen to be the identity matrix so we focus on the choice of
R.

It turns out that popular semi-supervised learning algorithms such as the harmonic algorithm
[85] and NLap-Reg [81] can be cast in this framework with an appropriate choice ofR. For ex-
ample to get the harmonic algorithm of Zhu, Gharamani and Lafferty [85]we chooseR to be the
combinatorial graph Laplacian. To get the NLap-Reg algorithm of Zhou et al. [81] we chooseR
to be the normalized graph Laplacian.

Scḧolkopf and Wu [63] propose to use the following as the first term in the objective function

∑
(fi − oi(xi))

2

whereoi(xi) is the local prediction for the value ofxi based on the value of its neighbors.
Again we can choose different functions for the local predictoro(x) and get correspondingly
distinct algorithms.

Key point: If the local prediction atxi is a linear combination of the value of its neighbors
then we can write

∑
(fi − oi(xi))

2 asfT Rf for some suitableR.

To see this note that

∑
(fi − oi(xi))

2 = ||f − o||2

But if each prediction is a linear combination theno = Af (for some matrixA) and

||f − o||2 = ||f − Af ||2 = ||(I − A)f ||2 = fT (I − A)T (I − A)f



HenceR = (I − A)T (I − A).

So the only thing we have to do is pick the functionoi(xi) then theR will be fixed.

Scḧolkopf and Wu [63] propose using kernel ridge regression as the local predictor. This will
tend to enforce a roughly linear relationship between the predictors. This makes LL-Reg a good
candidate to compare against LLSR.

5.1.8 Further Experiments

To gain a better understanding of the performance of LLSR we also compare with (LL-Reg) in
addition to WKR and LLR on some real world datasets. The number of examples(n), dimen-
sions(d) and number of labeled examples(nl) in each dataset are indicated in tables5.2and5.3.

Procedure

For each dataset we select a random labeled subset, select parameters using cross validation and
compute the root mean squared error of the predictions on the unlabeled data. We repeat this 10
times and report the mean and standard deviation. We also report OPT, the root mean squared
error of selecting the optimal parameters in the search space.

Model Selection

For model selection we do a grid search in the parameter space for the best Leave-One-Out Cross
Validation rms error on the unlabeled data.

We also report the rms error for the optimal parameters within the range.

For LLSR we search overγ ∈ { 1
100

, 1
10

, 1, 10, 100}, h ∈ { 1
100

, 1
10

, 1, 10, 100}

For LL-Reg we search overλ ∈ { 1
100

, 1
10

, 1, 10, 100}, h ∈ { 1
100

, 1
10

, 1, 10, 100}

For WKR we search overh ∈ { 1
100

, 1
10

, 1, 10, 100}

For LLR we search overh ∈ { 1
100

, 1
10

, 1, 10, 100}



Results

Dataset n d nl LLSR LLSR-OPT WKR WKR-OPT
Carbon 58 1 10 27±25 19±11 70±36 37±11
Alligators 25 1 10 288±176 209±162 336±210 324±211
Smoke 25 1 10 82±13 79±13 83±19 80±15
Autompg 392 7 100 50±2 49±1 57±3 57±3

Table 5.2:Performance of LLSR and WKR on some benchmark datasets

Dataset n d nl LLR LLR-OPT LL-Reg LL-Reg-OPT
Carbon 58 1 10 57±16 54±10 162±199 74±22
Alligators 25 1 10 207±140 207±140 289±222 248±157
Smoke 25 1 10 82±12 80±13 82±14 70±6
Autompg 392 7 100 53±3 52±3 53±4 51±2

Table 5.3:Performance of LLR and LL-Reg on some benchmark datasets

6.1 Discussion

From these results combined with the synthetic experiments, LLSR seems to be most helpful on
one dimensional datasets which have a “smooth” curve. The Carbon dataset happens to be of
this type and LLSR performs particularly well on this dataset. On the other datasets performs
competitively but not decisively better than the other algorithms. This is not surprising give the
motivation behind the design of LLSR which was to smooth out the predictions, hence LLSR is
likely to be more successful on datasets which meet this assumption.

7.1 Conclusion

We introduce Local Linear Semi-supervised Regression and show that it can be effective in taking
advantage of unlabeled data. In particular, LLSR seems to perform somewhat better than WKR
and LLR at fitting “peaks” and “valleys” where there are gaps in the labeled data. In general if
the gaps between labeled data are not too big and the true function is “smooth” LLSR seems to
achieve a lower true Mean Squared Error than the purely supervised algorithms.
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