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Abstract

We show that the Gaussian random fields and harmonic energy minimizing function framework for
semi-supervised learning can be viewed in terms of Gaussian processes, with covariance matrices
derived from the graph Laplacian. We derive hyperparameter learning with evidence maximization,
and give an empirical study of various ways to parameterize the graph weights.

This research was partially supported by the Advanced Research and Development Activity in Information Technology
(ARDA), contract number MDA904-00-C-2106, and by the National Science Foundation (NSF), grant CCR-0122581.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of ARDA, NSF, or the U.S. government.



Keywords: 1.2.6 [Artificial Intelligence] Learning; 1.5.1 [Pattern Recognition] Models—Stat-
istical, 1.5.2 [Pattern Recognition] Design Methodology—Classifier design and evaluation; General
Terms: Algorithms; Additional Key Words: semi-supervised learning, kernel, Gaussian processes.



1 Introduction

Semi-supervised learning uses unlabeled data in addition to labeled data to improve classification
[See01]. Recently there has been significant interest in formulating the problem in terms of learning
on graphs [BC01, SJO1, BNO2b]. In a previous paper [ZGLO03] we propose a Gaussian random
field framework on graphs for semi-supervised learning. In this paper we will show the connection
between the Gaussian random field framework and familiar kernel machines, in particular Gaussian
processes. In addition, we derive hyperparameter learning for our Gaussian fields by evidence
maximization, and provide an empirical study of different ways to parameterize the graph from
data.

Let {(z1,t1) - (z;,1;)} be the labeled data. In this paper we assume binary classification and
binary labels t; € {—1,1}. Let {z;1--- 2,4y} be the unlabeled data, and set n = [ + u. We
will often use L and U to denote the labeled and unlabeled data. We assume distance scores d;;
between any two instances x;,z;. For example, d;; might be the Euclidean distance if z; € R™.
The distance scores need not form a metric, but they must be symmetric and non-negative.

2 From Gaussian Fields to Gaussian Processes

In previous work [ZGL03], we propose the use of Gaussian random fields for semi-supervised learn-
ing. We form a graph over the labeled and unlabeled data, where the nodes of the graph represent
instances z;,7 = 1...n, and where the edge weights represent the “local similarity” between pairs
of instances. For instance, in [ZGLO03] the graph is fully connected with the following edge weight
function:

We denote the n x n edge weight matrix by W. For each node 7 in the graph we assign a hidden
continuous variable y; € R, which can be thought of as a soft label. We define a conditional
Gaussian random field' on the soft labels y, conditioned on the covariates z and the constraints
that for labeled data, y; = t;,1 € L:

p(y) o exp —gzwij(yi—yj)Q = exp (—gyTAy> (1)
i

where (3 is an “inverse temperature parameter,” and A is the combinatorial Laplacian, given in
matrix form as A = D — W where D = diag(d;) is the diagonal matrix with entries d; = ) ; Wij-
The Gaussian field favors soft labels that change slowly across the graph. The mean of the Gaussian
field is

yo = Auv 'WuLys (2)

conditioned on the soft labels y;, where Ayy is the sub-matrix of Laplacian for unlabeled data.
Classification can be carried out by simply thresholding the mean.

! A Gaussian random field is simply a Markov random field with continuous states and a joint Gaussian distribution
over those states. The edges in the graph correspond to non-zeros in the inverse covariance matrix, and represent the
statistical dependence (and independence) relations in the field. For details see [Whi90].



Note that equation (1) is a Gaussian distribution. A Gaussian process restricted to finite
data z; - - - =, is simply a multivariate Gaussian distribution [Mac98]. This indicates a connection
between Gaussian random fields and Gaussian processes; we will discuss this connection first under
the finite case, and later propose extensions to the infinite case.

Equation (1) can be viewed as a Gaussian prior over y with covariance matrix (8A) 1. However
it is an improper prior: A by definition has a zero eigenvalue (perhaps more than one) with
eigenvector 1 (to see this note that the degree matrix D is the row sum of W). This is undesirable—
since A is singular, we can not compute the covariance matrix; moreover, any y shifted by a constant
¢ will have the same likelihood. To make a proper prior out of the Laplacian, we can regularize
its spectrum to remove the zero eigenvalues, as suggested in [SK03]. In particular, we choose to
transform the eigenvalues according to the function

r(\) = A+ 1/0? (3)

which results in the regularized Laplacian A +1/0?. Using the regularized Laplacian we define the
zero mean Gaussian process prior as

p(y) o< exp (—%yT5y> (4)

which corresponds to a kernel with Gram matrix (covariance matrix) G = A~! = [3(A +1/0?)]~L.
We note several important aspects of the resulting Gaussian process:

. y~N(O,A‘1>;

o Ais non-singular, unlike A, resulting in a proper prior.

The parameter 3 controls the overall sharpness of the distribution; large 8 means p(y) is
more peaked around its mean.

2

The parameter o controls the amount of regularization; large o regularizes less.

The kernel, or covariance matrix G = A~! is the inverse of a function of the Laplacian A.
Therefore the covariance between any two point ¢, j in general depends on all points—all of
the unlabeled data is used to define the prior.

The last point is worth emphasizing. In many familiar Gaussian process kernels the entries are “lo-
cal.” For example, in a radial basis function (RBF) kernel K, the matrix entry k;; = exp (—d%j / a2)
only depends on the distance between 4, j and not any other points. In this case unlabeled data is
useless because the influence of such data in K is marginalized out. In contrast, the matrix entries of
the kernel G;; in (4) depends on all entries in A, and therefore on the distances between all pairs of
instances. Thus, distribution of unlabeled data will strongly influence the kernel, which is desirable
for semi-supervised learning. In other words, in RBF (and many other) kernels we parameterize
the covariance matrix directly, while here we parameterize the inverse covariance matrix.

In moving from Gaussian fields to Gaussian processes, we no longer assume that the soft labels
yr for the labeled data are fixed to the observed labels t;. Instead we now assume the data
generation process is x —+y — t, where y — t is a noisy label generation process with a sigmoid
noise output model between the hidden soft labels y; and observed labels ¢;:

eYiti 1

P(tily:) = (5)

eViti + e—iti 1 4+ e—27Yits



where <y is a hyperparameter which controls the steepness of the sigmoid. This assumption allows
us to handle noise in training labels, and is a common practice in Gaussian process classification.

We are interested in p(ty|tz), the labels for unlabeled data. This is easy once we know the
posterior distribution p(yr,yu|ts). By Bayes’ theorem,

! Nays
p(yL;yU'tL) _ Hi:l P(’;leéil)?(}’L,}’U) (6)

Because of the noise model, the posterior is not Gaussian and has no closed form solution. We
choose to use the Laplace approximation to find the approximate p(yr,yu|tr). The derivation is
given in Appendix A, which largely follows [Her02] (B.7).

Bayesian classification is based on the posterior distribution p(yy|tr). Since under the Laplace
approximation this distribution is also Gaussian, the classification rule depends only on the sign of
the mode yp.

3 The Choice of Kernel

The most important aspect of Gaussian process inference lies in the choice of prior; that is, in the
choice of kernel. It is rarely the case that we are simply “given” the correct kernel; rather, the
kernel will often need to be learned from data. There are several design decisions one has to make.

The first set of design decisions involve how the kernel should be parameterized. Our kernel
A~! is ultimately derived from the graph weights W. Given the distances d;j, we would like the
edge weights to decrease as the distances increases. Some possible ways to parameterize the graph
include the following.

o Unweighted kNN graph: nodes 4, j are connected by an edge of weight 1, if ¢ is in j’s k-nearest-
neighborhood or vice versa. k is a hyperparameter that controls the density of the graph.
Although small & may result in disconnected graphs (which means the graph Laplacian A has
multiple zero eigenvalues), it does not pose a problem for us since these zero eigenvalues go
away in the smoothed Laplacian A. kNN has the nice property of “adaptive scales,” because
the distance with a edge is different in low and high density regions.

e Unweighted eNN graph: nodes ¢,j are connected by an edge of weight 1, if d;; < e. The
hyperparameter e controls neighborhood radius. Although € is continuous, the search for the
optimal hyperparameter only need to take place at at most n? values (the edge lengths in the

graph).

e tanh-weighted graph: w;; = (tanh(aq(d;j —a2))+1)/2. The intuition is to create a soft cutoff
around length «as, so that close examples (presumably from the same class) are connected
and examples from different classes (presumably with large distance) are nearly disconnected.
The hyperbolic tangent function simulates eNN in that when d;; > a9, w;; = 0; d;; < ag,
w;; = 1. The hyperparameters a1, ap controls the slope and cutoff value respectively. Unlike
eNN, tanh-weighted graph is continuous with respect to a1, as and is amenable to learning
with gradient methods.

e exp-weighted graph: w;; = exp(—d?j /a?). Again this is a continuous weighting scheme similar
to tanh-weights, but the cutoff is not as clear as tanh(). Hyperparameter « controls the decay
rate.



Once a graph is parameterized and the Laplacian A computed, another set of design decisions
involves manipulating the the eigensystem of A to create a family of kernels. For example, one
can use only the first few eigenvector as basis for regression, as in [BN02a], or one can apply a
regularization function on the eigenvalues, as in [CWS02] and more explicitly [SK03]. As mentioned
earlier, our kernel A~! employs a particular regularization function (3) on the eigenvalues. In this
paper we will focus on the learning of the graph weights W, with this fixed regularization function.

To favor one kernel over another, we need an optimization criterion. Two possible criteria are
the following.

e Maximize the likelihood of labeled data (evidence maximization). One can choose the hy-
perparameters that maximize the log likelihood of labeled data: ©* = argmaxg logp(t.|©).
logp(tr|©) is known as the evidence and the procedure is also called evidence maximiza-
tion. One can also assume a prior on © and find the maximum a posteriori (MAP) estimate
©* = argmaxg log p(t1,|©) + log p(©). The evidence can be multimodal and usually gradient
methods are used to find a mode in hyperparameter space. This requires the derivatives
0logp(tr|©)/00. We provide a complete derivation for the derivatives in Appendix B, which
largely follows [WBYS].

In a full Bayesian setup, one would average over all hyperparameters (weighted by the pos-
terior p(©|tr)) instead of using the single best estimate ©*. This usually involves Markov
Chain Monte Carlo techniques and is not pursued in this paper.

e Maximize the alignment to labeled data. Alternatively one can regard the matrix yryr"
as the “target covariance matrix,” and maximize the alignment to this target covariance
matrix. The alignment is a generalized cosine similarity defined on matrices. For details see
[CSTEKO1]. The alignment is related to evidence maximization but is different. For example,

the kernel | |~} | aligns better with the labels [1 — 1] than the kernel | ;¢ % |, but

both maximize the evidence given a step function noise model. We do not follow this path in
this paper, but note it as an interesting possible direction.

4 Experiments

We experiment on the following binary classification data sets. A detailed description for most
datasets can be found in [ZLGO3].

e 1/2: Optical character recognition of handwritten digits ‘1’ vs. ‘2’. d;; is pixel-wise Euclidean
distance between two images. There are 1100 positive examples (‘1’s) and 1100 negative
examples (‘2’s). We randomly sample L = 20 labeled examples and use the rest as unlabeled
data.

e 2/3: Similarly ‘2’ vs. ‘3’. 1100 positive examples (‘2’s) and 1100 negative examples (‘3’s).
L = 20.

e o/e: Odd digits (1,3,5,7,9) vs. even digits (2,4,6,8,0). Each digit has 400 images, thus 2000
positive and 2000 negative examples. L = 50.

e b/h: Text document classification with newsgroups rec.sport.baseball (994 documents)
vs. rec.sport.hockey (999 documents). d;; = 1— CS(z;, z;) where CS is the cosine similarity
on tf.idf document vectors. L = 20.



ENN unweighted || eNN unweighted tanh() weights exp() weights

logp(ty) | k| logp(ty) | e | logp(ty) | ai oy | logp(tr) | «
1/2 -12.5 2 -12.1 347.2 -12.2 -0.036 | 261.1 -13.0 124.3
2/3 -15.0 2 -18.8 561.9 -16.8 -0.018 | 315.8 -16.9 196.4
o/e -38.3 3 -40.2 492.8 -37.3 -0.027 | 313.5 -40.1 163.8
b/h -17.3 2 -18.9 0.91 -18.7 -81.7 | 0.88 -19.2 0.57
p/m -19.3 5 -194 0.91 -17.8 -53.3 | 0.80 -19.5 0.59
r/a -39.3 4 -40.0 0.90 -38.3 -49.5 | 0.82 -40.7 0.86

Table 1: Evidence log p(ty) and optimal hyperparameters ©* under different parameterizations of
the graph.

ENN unweighted || eNN unweighted || tanh() weights || exp() weights
acc tuned acc tuned acc tuned acc | tuned
1/2 || 0.978 0.990 0.922 0.922 0.996 | 0.997 | 0.989 | 0.997
2/3 || 0.976 0.993 0.499 0.980 0.503 | 0.992 | 0.500 | 0.988
o/e || 0.906 0.904 0.525 0.811 0.710 | 0.796 | 0.686 | 0.736
b/h || 0.892 0.892 0.501 0.969 0.512 | 0.977 || 0.500 | 0.851
p/m || 0.506 0.873 0.501 0.856 0.768 | 0.897 | 0.494 | 0.702
r/a | 0.827 0.799 0.619 0.808 0.779 | 0.815 | 0.560 | 0.738

Table 2: Classification accuracy on unlabeled data, threshold at 0 (acc) or with class proportion
knowledge (tuned). These are computed at ©* respectively.

e p/m: Document classification with newsgroups comp.sys.ibm.pc.hardware (982 docu-
ments) vs. comp.sys.mac.hardware (961 documents). L = 20.

e r/a: Newsgroups talk.religion.misc (628 documents) vs. alt.atheism (799 documents).
L = 50.

To facilitate computation, we fix the regularization parameter ¢ = 1000, the temperature
parameter § = 0.1 and the noise parameter v = 1, and learn the remaining graph hyperparameters.
These values for o,8 and 7 are chosen by their good empirical results across different weight
parameterizations. Table 1 and Table 2 compare the remaining graph hyperparameters which were
learned. The best results are marked in bold font.

In Table 1 we show the optimal evidence with the corresponding learned hyperparameters ©* for
the different graphs. No prior on © was used. To search for ©* for the kNN graphs we enumerate
k from 1 to 128; for the eNN graphs we use a multi-resolution grid search on ¢; for the tanh and
exp graphs we use the conjugate gradient search program of [Ras] with arbitrary starting points.

Table 2 shows the classification accuracy on the unlabeled data under the optimal hyperparam-
eters ©*. The standard Bayesian classification rule is to threshold yy at 0. But in practice we find
that y is often biased—for example, all of the values can be less than zero. To solve the problem,
we use the additional knowledge of class proportions, e.g. “50% of unlabeled data are class 1.” We
tune the threshold on yy so that the class proportions are met. This heuristic greatly stabilizes
the accuracy, as shown in the “tuned” columns.



To get a better idea of the effect of hyperparameter learning under the different graph param-
eterizations, we plot the evidence and (tuned) classification accuracy surfaces by systematically
varying the hyperparameters.

e The evidence and tuned accuracy for kNN unweighted graphs is shown in Figure 1; note the
log-scaled z-axis. The vertical lines mark the optimal k. A large range of small k’s achieves
high evidence and high accuracy. There is good correlation between evidence and tuned
accuracy. It appears that small k£ is good in general.

e The evidence and tuned accuracy for eNN unweighted graphs is shown in Figure 2. The
evidence curves have a more zig-zag shape. Another observation is that the number of edges
under the optimal e is much larger (sometimes by a few orders of magnitude) than that of
the kNN graphs.

e The evidence for tanh()-weighted graphs is shown in Figure 3. The vertical lines mark the
position of a;y, as found by gradient ascent. The corresponding tuned classification accuracy
surface is in Figure 4.

e The evidence and tuned accuracy for exp() weighted graphs is shown in Figure 5. This seems
to be the worst among the four. We suspect this is because the exp() function cannot quickly
kill off unwanted edges between different classes. The graph kernel is sensitive to such spurious
edges.

5 Extension to Unseen Examples

We have so far restricted the Gaussian process to the nodes in the graph. In this finite case Gaussian
processes are nothing but n-dimensional joint normal distributions; that is, Gaussian processes and
Gaussian random fields are in this case equivalent. However Gaussian fields, by definition, cannot
handle unseen instances, since any new instances need to become additional nodes in the graph,
resulting in changes in the Laplacian and kernel matrices.

To define a proper Gaussian process, we need to extend the framework to the infinite space of
possible X values. Equivalently, this is the problem of handling new input data in a transductive
framework. Let x be a new instance that is in neither the labeled nor the unlabeled dataset. One
simple strategy is to extend the kernel as

K(.’I?,:Ez) = G(‘T*ami)’ i €L (7)

Note that we only need to define the extended kernel K with respect to labeled instances since
these are sufficient for computation in Gaussian processes. G = A~! is the graph kernel on the
finite labeled and unlabeled set, and z* is the example in the labeled and unlabeled set that is
closest to z:

¥ = argmin,cruydy, (8)
Essentially we divide the input space into Voronoi cells generated by instances in L U U, and map
any new instance x to its Voronoi cell representative. This mapping, however, is done with the
original distance measure d,, which might be the Euclidean distance in the embedding space X,
for example. This is an approximation to the graph distance (or manifold geodesic) we should have



been using. Nonetheless, when the unlabeled data size is large the approximation is reasonable.
From an algorithmic point of view, we classify z the same as its 1-nearest-neighbor in L U U.

One can take one step further and map z to the closest point in the space spanned by instances
in LUU, i.e. as a linear combination of points in L UU . This is the approach taken by [CWS02].
Here closeness is again measured in the embedding space. This might give a better approximation,
but the computation involved is more expensive, as one needs to invert a n X n matrix. When U
is large the cost may not justify the gain compared to the simple Voronoi method.

6 Discussion

The empirical experiments presented above suggest that hyperparameters learned from evidence
maximization correspond reasonably well to classification accuracy. However the computation
involved is significant, because at each step we have to re-compute the covariance matrix G = At
for the updated hyperparameters. Unless a fast algorithm is used, this will be the bottleneck
that limits the application of graph weight learning. This is in general true for Gaussian process
classifiers. Approximate methods exist, see e.g. [Gib97].

In contrast, methods that work under fixed graph weights but manipulate the graph spectrum
[SK03] learn the optimal eigenvalues efficiently while keeping the eigenvectors fixed. But they lack
the flexibility that changing graph weights provides. Such flexibility is important for irrelevant
feature detection, for example. It would be interesting to combine the two.

From a practical point of view, our experiments indicate that tanh() weights are overall (al-
though not always) the better graph parameterization, although only slightly. But for simplicity,
kNN unweighted graphs are preferred, as finding a good k is much easier.

Appendix A: Laplace Approximation for Gaussian Processes

This section largely follows [Her02] (B.7). The Gaussian process model, restricted to the labeled
and unlabeled data, is

y~N (,u, Afl) (9)

We will use G = A~! to denote the covariance matrix (i.e. the Gram matrix). Let t € {—1,+1} be
the observed discrete class labels. The hidden variable y and labels t are connected via a sigmoid
noise model

eYiti 1

P(tily:) = (10)

eiti 4 e—viti 1 4 e—27Yits

where v is a hyperparameter which controls the steepness of the sigmoid. Given the prior and the
noise model, we are interested in the posterior p(yr,yuv|tr). By Bayes theorem,

! Ny
p(}’LayU“:L) _ Hi:1 P(I;J?éiz))(YL’yU) (11)

Because of the noise model, the posterior is not Gaussian and has no closed form solution. We use
the Laplace approximation.



First we find the mode of the posterior (6):

[T, P(t:ilyi)p(yL, yu)

(yALa yAU) = arg ma‘XYL,}’U P(tL) (12)
l

= argmaxy, v, ¥ InP(tly;) + Inp(yr,yv) (13)
=1

= argmaxy; v, Q1 + Q2 (14)

Note yy only appears in ()2, and we can maximize yy independently given y7. (o is the log
likelihood of the Gaussian (9). Therefore given yp, yy follows the conditional distribution of
Gaussian:

plyulyr) =N (GurGrr 'Y, Guv — GurGrr ™ 'GLu) (15)

and the mode is the conditional mean
yu = GurGry lyL (16)

It’s easy to see (16) has the same form as the solution for Gaussian Fields (2): Recall G = A~
From partitioned matrix inversion theorem,

Apy =S,!

Ay =—-5;'GurGr]

where Sy = Gyy — Gpr(Grr) 'Gry is the Schur complement of Grr. This gives us

—(Apy)tAuL = 545Gy Gy = Gur Gy}
Thus we have

Yo = —ApLAvnyr (17)
= A, WuLyr (18)

which has the same form as the harmonic energy minimizing function in [ZGL03]. In fact the latter
is the limiting case when 02 — oo and there is no noise model.

Substitute (16) back to Q2, using partitioned inverse of a matrix it can be shown that (not
surprisingly)

1

Q2 = _§YEGLL_1}’L +c (19)

Now go back to Q1. The noise model can be written as

eYiti
Pltily) = o (20)
vy ti+1 vy 1—¢;
i 2 i 2
() o
ey + e Y evYi + e Y
i+l 1t
= w(y) 2 (1—7(y)) 2 (22)



therefore

l
Q1 = > Pty (23)
i=1
l
ti+1 1—t;
= > H () + — (L - 7(y,) (24)
i=1
!
= y(tr —1)Tyr — Y In(l+e727%) (25)
i=1
Put it together,
Yo = argmaxQi + Q2 (26)
!
1
= argmaxy(t, — 1)y, — Zln(l + e72i) — §yEGLL*1yL (27)
i=1

To find the mode, we take the derivative,

0(Q1 +Q2)

dy. =ty —1) +2v(1 —n(y1)) — Gz tyr (28)

Because of the term w(yr) it is not possible to find the root directly. We solve it with Newton-
Raphson algorithm,

YD 0 gt Q1 + Q2)

oyr

yr®
where H is the Hessian matrix,

Q1+ Q)
H= |2\ W1 T2
[ 0y;0y;

] (30)

Note diyiﬂ(yi) = 2y7(yi)(1 — m(ys)), we can write H as
H=-G,, '-P (31)

where P is a diagonal matrix with elements P;; = 4y2m(y;)(1 — 7 (v;))-

Once Newton-Raphson converges we compute yp from y7, with (16). Classification can be done
with sgn(yy) noting this is the Bayesian classification rule with Gaussian distribution and sigmoid
noise model.

To compute the covariance matrix of the Laplace approximation, note by definition the inverse
covariance matrix of the Laplace approximation is

g1 _ | 92— Inp(y[t)
0yiy;

] (32)
YL, yU
From (6) it is straightforward to confirm

»lo= [Eg]JrG—l:[Eg]JrA (33)
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Therefore the covariance matrix is

z::([f;g]JrAy1 (34)

where P is evaluated at the mode y7,.

Appendix B: Hyperparameter Learning by Evidence Maximization

This section largely follows [WB98]. We want to find the MAP hyperparameters © which maximize
the posterior

p(Oltr) o< p(tL|©)p(O)

The prior p(©) is usually chosen to be simple, and so we focus on the term p(tz|®), known as the
evidence. The definition

p(t1]0) = / p(belyL)p(yz|®) dys

is hard to compute analytically. But notice

~ pltrlyn)p(yzl©)
p(tzl®) = p(yrltr,©) ML (35)

Since it holds for all yr,, it holds for the mode of the Laplace approximation y7,:

_ p(tLlyL)p(yL|©)
p(tL|®) - p(yAL|tL, @)

The terms on the numerator are straight forward to compute; the denominator is tricky. However
we can use the Laplace approximation, i.e. the probability density at the mode: p(yr|tr,©) =~

N(¥1|yr,2rL)- Recall
P o G G -1\ !
— . Gru
E_<[O 0:|+|:GUL GUU:| ) (36)

By applying Schur complement in block matrix decomposition twice, we find

Sip=P+G) (37)

So the evidence is

o) ~ B
p(trlyr)p(yr|©)
(2m) "% [Spr| "7
p(trlyr)p(yL|©)
(2m) " F|(P + Gpp) Y2

10



Switching to log domain, we have

log p(tL|©)

Q

1
U(yi) + 5 log2m + ; log [S1s (41)

1
= U(yr)+ glog 2 — 5 log |P + GZi| (42)

where U(yr) = logp(trlyr) + logp(yz|®). Since y ~ N(MA 1) = N (4, G), we have yr, ~
N (pr,Grr)- Therefore

U(yr) = logp(trlyr)+ logp(yr|®©) (43)
L

= =) log(1 + exp(—2yjit:))
i=1

n 1 1 . 1, A
D) log 27 — B log |G| — §(YL - HL)TGLi(YL —pr) (44)

Put it together,
L

logp(tL|©) =~ —_ log(1 + exp(—27yit:))
i=1

1 1 I 1 _
—3 log |GrL| — 5()’L - ML)TGL}J()’L —pL) — B log [P + GL}J

L
= = log(1 + exp(—2vjiti))
i1
1 . Tl 1
_E(YL —pr) G (¥ — pr) — ) log |GLLP +1] (45)

This gives us a way to (approximately) compute the evidence.

To find the MAP estimate of © (which can have multiple local maxima), we use gradient meth-
ods. This involves the derivatives of the evidence dlog p(t|©)/00, where 6 is the hyperparameter
0,0, or the ones controlling W.

We start from

0 0 1
) = =——-— 4
56" ") = Geitew (46)
. vy O 0Yi
= 2n(G) (1 — 7)) (i 55 + 755) (47)
To compute dyr,/06, note the Laplace approximation mode y7, satisfies
ov . 1a
OUYL)| ey 41— 2m(yn)) — Gy — ) =0 (48)
YL lyy
which means
yo = 7Gro(te +1=2n(yr)) + pr (49)
Taking derivatives on both sides,
ay’ 0 .
S5 = 3g7CrLlts +1—2n(y1)) (50)
_ 0GrLL . on(yr)
= % (tr +1—2n(yL)) — 29GrL % (51)
NnGLL X 1 . Oy oyL
= 1-2 — —GLPyL2 — G PE 2
50 (tr + 7(¥L)) fYGLL YL 5 Grr 20 (52)

11



which gives

ayL _1 |0GLL A Oy
— I P e — 1-2 - — P
20 I+ GrLP) 59 ot m(yL)) GLL Yo g (53)
Now it is straight forward to compute the gradient with (45):
0
59 108P(tL[0)
L 1
~ [ ) log(1 + exp(—2vgiti)) — 5L — pr) G (YL —nr) — 5 108; |GLLP +1
=1
_ Z eXP 27yztz ( 2ti)( 67 ayz)
1+ exp(—27yyit;) ' 00 o0
1 1 L OYL BGZL
_Z 9 _ gL _ _
5 [ (GLL YL — 1)) 75 + o — ne) == (VL — pr)
—Etr ((GLLP +1) 50 ) (54)
where we used the fact
0log|A| _104
it = ekl R A-1942
50 tr 50 (55)

For example, if # = +, the gradient can be computed by noting 87(;“ = Gz, 3_3 = 1,
1
a(;% =0, and aGaLyLP G2 - Where aP“ = 8ym(yi)(1 — 7r(yz)) + 492 (1 — ZW(yZ))a”(y’).
oG _
For = 3, we have 21FLL =7( 1/ﬁ)GLL, 9 0, 2800 — G}/, and 2SR — Gy P/+
G155 where %4 = 8y3m (i) (1 — m(§:))(1 — 27r(yz))3y,;
For @ = o, the computation is more intensive because the complex dependency between G and

o. We start from ag‘% = [%]LL. Using the fact %071 = —A*I%A*1 and G = AL, we get

% = 8/a3G2. Note the computation involves the multiplication of the full matrix G and is thus

more demanding. Once 6%‘% is computed the rest is easy.
If we parameterize the weights W in Gaussian Fields with radial basis functions (for simplicity
we assume a single length scale parameter « for all dimensions. Extension to multiple length scales

is simple),
d2.
w;; = €Xp (-ﬁ) (56)

where d;; is the Euclidean distance between z;,z; in the original feature space, we can similarly
d% .
learn the hyperparameter . Note Bw” = wij L%, ‘gﬁ = ‘?9]2 aa\;V, ‘gﬁ ﬁ%. The rest is the same
as for o above.
Similarly with a tanh()-weighted weight function w;; = (tanh(ai(d;; — a2)) + 1)/2, we have
owij _ (1 — tanh?(a (dij — a2)))(dij — a2)/2 and aw“ = —(1 — tanh?(a; (dij — @2)))a1/2, and the

Oaq
rest follows.
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Figure 3: Evidence surface
found by gradient ascent.
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