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Abstract
Database applications that use multi-terabyte datasets are becoming increasingly important for

scientific fields such as astronomy and biology. Scientific databases are particularly suited for the
application of automated physical design techniques, because of their data volume and the complex-
ity of the scientific workloads. Current automated physical design tools focus on the selection of
indexes and materialized views. In large-scale scientific databases, however, the data volume and the
continuous insertion of new data allows for only limited indexes and materialized views. By contrast,
data partitioning does not replicate data, thereby reducing space requirements and minimizing update
overhead. In this paper we propose AutoPart, an algorithm that automatically partitions database
tables to optimize sequential access assuming prior knowledge of a representative workload. The
resulting schema is indexed using a fraction of the space required for indexing the original schema.
To evaluate AutoPart, we build an automated schema design tool that interfaces to commercial data-
base systems. We experiment with AutoPart in the context of the Sloan Digital Sky Survey database,
a real-world astronomical database, running on SQL Server 2000. Our experiments corroborate the
benefits of partitioning for large-scale systems: Partitioning alone improves query execution perfor-
mance by a factor of two on average. Combined with indexes, the new schema also outperforms the
indexed original schema by 20% (for queries) and a factor of five (for updates), while using only half
the original index space.
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1 Introduction

Scientific experiments in fields such as astronomy and biology typically require accumulating, storing, and processing
very large amounts of information [9]. The ongoing effort to support the Sloan Digital Sky Survey (SDSS) [8][17] pro-
vides a comprehensive example for both the terabyte-scale storage requirements and the complex workloads that will exe-
cute on future database systems. Similarly, the Large-aperture Synoptic Survey Telescope (LSST) [18] dataset is expected
to be in the scale of petabytes (the data accumulation rate is calculated at 8 terabytes per night). Typical processing
requirements on these datasets include decision-support queries, spatial or temporal joins, and versioning. The combina-
tion of massive datasets and demanding workloads stress every aspect of traditional query processing. 

In environments of such scale, query execution performance heavily depends on the indexes and materialized views
used in the underlying physical design. The database community has recently focused on tools that utilize workload infor-
mation to automatically design indexes [1][12]. Currently, all major commercial systems ship with design tools that iden-
tify access patterns in the input workload and propose an efficient mix of indexes and materialized views to speed up
query execution. Typically, the tools tend to generate a set of “covering” indexes per query to enable index-only query
processing (essentially, these indexes implement and ordered partition of the table). In the case of large-scale applications
like SDSS, performance depends upon a large set of covering indexes, since accessing the large base tables (even through
non-clustered indexes) is prohibitively expensive. 

Large numbers of covering indexes are expensive to store and maintain, as data columns from the base table are rep-
licated multiple times in the index set. Adding multiple indexes to multi-terabyte scientific databases typically increases
the database size by a factor of two or three, and incurs a significant storage management overhead. In addition, indexing
complicates insertions and updates. For instance, new experimental or observation data are often inserted in the database
and derived data are recalculated using new models. During update operations, all “replicated” new and updated data val-
ues must be sorted and written multiple times for all the indexes. Insertion and update costs increase as a function of the
number of tuples inserted or modified. If update or storage constraints do not exist, the workload can always be processed
using a complete set of covering indexes. Such a scenario, however, is unrealistic for large-scale scientific databases,
where both insertion and storage management costs are seriously considered.

This paper describes AutoPart, an automated tool that partitions the tables in the original database according to a rep-
resentative workload. AutoPart receives as input a representative workload and designs a new schema using data parti-
tioning. By first designing a partitioned schema and then building indexes on the new database, queries can scan the base
tables efficiently as well as a smaller set of indexes, thereby alleviating unnecessary storage and update statement over-
head. Because data partitioning increases spatial locality, it improves memory and disk system performance when the cov-
ering index set cannot be built due to storage or update constraints. This paper makes the following contributions:
• We introduce AutoPart, a data partitioning algorithm. AutoPart receives as input a representative workload and utilizes

categorical and vertical partitioning as well as selective column replication to design a new high-performance schema. 

• To evaluate AutoPart we build an automated schema design tool that can interface to commercial systems and utilize
cost estimates from the DBMS query optimizer.

• We experimentally evaluate AutoPart on the SDSS database and workload. Our experiments i) evaluate the perfor-
mance improvements provided by partitioning alone, without the use of indexes and ii) quantify the performance ben-
efits of partitioned schemas when indexes are introduced in the design. 

Our experimental results confirm the benefits of partitioning: Even without the use of indexes, a partitioned schema
can speed up query execution by almost a factor of two when compared to the original schema. Partitioning alone
improves query execution performance by a factor of two on average. Combined with indexes, the new schema also out-
performs the indexed original schema by 20% (for queries) and a factor of five (for updates), while using only half the
original index space.

This paper is structured as follows: Section 2 summarizes related work. Section 3 discusses the partitioning problem
in greater detail, while in Section 4 we present the AutoPart algorithm. Sections 5 and 6 discuss the AutoPart architecture
and our experimental setup. Section 7 presents our experimental results and Section 8 our conclusions

2 Related work

In this section we present related work on physical design optimization. Published research is relevant to i) vertical parti-
tioning of database relations, ii) index and materialized view selection and iii) support for partitioning.



2.1 Vertical Partitioning

Vertical partitioning is known to optimize I/O performance since the early days of relational databases. Several studies
[11][13][14] exploit affinity within a set of attributes (a measure of how often queries use attributes together in a represen-
tative workload). Combined with a clustering algorithm, affinity determines a reasonable assignment of attributes to verti-
cal fragments. Attribute affinity identifies clusters by collecting statistics about the attribute usage by queries, and can
therefore scale to large workloads. Its disadvantage is that it is decoupled from the system’s optimizer and the query exe-
cution engine, and thus human intervention is eventually required to validate the quality of the recommended partitioned
designs.

An extension to the previous approaches incorporates query processing using cost estimates given a table configura-
tion [6]. The paper defines a set of analytical formulae that model vertical partitioning as an integer programming optimi-
zation problem. Modern practice, however, suggests that explicit analytical functions are of limited value, since they are
rarely in accordance to the real cost models in modern query optimizers and cannot be easily applied on complex queries
or on complex execution engines.

Similarly to today’s tools for automatically evaluating database indexes, a software cost estimation module examines
candidate configurations and computes their expected cost [10]. Candidate configurations are determined through a heu-
ristic that iteratively combines attributes, minimizing the total workload cost at each step. Although the proposed scheme
is simple and reduces total workload cost at each iteration, it does not incorporate workload-specific information such as
the sets of attributes referenced by each query. 

2.2 Index and Materialized view selection

The method of choice for modern, state-of-the-art automatic design tools is the combination of heuristic search methods
with the system’s own query optimizer. Index selection tools for relational databases [1][2][12] and the automatic declus-
tering techniques for parallel DBMS [16] are based on the optimizer’s cost estimates. The index selection problem is
closely related to vertical partitioning: since the base table structure is perceived as a static property of the database, a via-
ble alternative for reducing the I/O requirements of a query workload is the use of covering, multi-attribute indices to
facilitate index-only data access. Such indexes essentially are ordered vertical partitions. The only difference is that
indexes are redundant structures, therefore a popular column is replicated multiple times in the final design. Given that the
original relations are not necessarily optimized for a particular workload, these tools are often face a difficult problem,
since the use of every additional index increases update overhead and data redundancy.

2.3 Support for partitioning

There has been work on extending the relational engine to support some form of data partitioning. The most recent work
Fractured Mirrors [15] is a storage scheme targeting the Decomposition Storage Model (DSM). DSM first replaced the
original relations by single-attribute fragments, and constructed an index on each fragment independently from the work-
load. DSM penalizes queries that use a large fraction of the relation’s attributes with extra joins. Fractured mirrors remedy
DSM performance by (a) using thick tuples to reduce the cost of DSM joins and (b) storing both the partitioned and the
non-partitioned versions of the database, and combining them during query optimization and execution. Our work aims at
performing workload-conscious vertical partitioning on the initial database while keeping one copy of the database
around, and can be combined with mirroring for even better performance.

The approach taken by GMAP [23] is to decouple the logical structure of the database from the physical structures
storing the data. A number of physical design alternatives are examined, including vertical partitioning of relations and
replication of attributes. GMAP provides algorithms for the translation of queries expressed in terms of the logical schema
so that they can efficiently access the underlying physical structures, or for updating the physical level data according to
changes in the logical level. GMAP is complementary to our work: It provides a framework that can support modifica-
tions of the schema in the physical level. It does not cover the problem of identifying the optimal partitioning schemes for
a given workload, rather it provides the primitives that allow a system to transparently support changes in its physical
layer.

3 Workload-based data partitioning

In this section, we first briefly describe the vertical partitioning idea and the factors that limits its efficiency. We then
explain how categorical partitioning and replication can alleviate the problem, using examples drawn from real scientific
databases.



A general formulation of the vertical partitioning problem is the following: Given a set of relations R = {R1,
R2,…,Rn} and a set of queries Q = {Q1, Q2, …, Qm} determine a set of relations R’ ⊆  R to be partitioned and generate a
set of fragments F = {F1, F2, …, FN} such that:
1. Every fragment F ∈  F stores a subset of the attributes of a relation R ∈  R’ plus an identifier column.
2. Each attribute of a relation R ∈  R’, is contained in exactly one fragment F ∈  F. (except for the primary key). 
3. The sum of the query costs when executed on top of the partitioned schema, cost (Q, (R - R’) ∪  F ) is minimized. 

We expect the workload cost over the partitioned schema to be lower, because the fragments are faster to access than
the original relations and queries will be able avoid accessing attributes they do not use. We define the Query Access Set
(QAS) of a query Q with respect to a relation R (QAS(Q,R)), as the subset of R’s attributes referenced by Q. In the ideal
case, where for all query pairs Qi, Qj, QAS(Qi,R) ∩ QAS(Qj,R) = ∅ , the solution to the vertical partitioning problem
would be to simply generate a fragment F for each distinct QAS in the workload. Then, each query would have to access
a single fragment containing exactly the attributes it references, resulting in minimal I/O requirements. Realistically, how-
ever, the workload will contain overlapping QAS. In this case, such “clean” solutions to the vertical partitioning problem
are not possible.

Consider the example in Figure 1(a), drawn from a simplified astronomical database. Our database consists of a sin-
gle table (Objects) that stores astronomical objects (galaxies and stars). Our workload consists of queries Q1,Q2,Q3,
shown in the figure with their QAS. Figure 1(b) shows one possible solution for vertically partitioning Objects into 3 frag-
ments (O1,O2,O3). Q1 needs to access only O1, minimizing its I/O requirements. Since the attribute TYPE exists in all
QAS, queries Q2 and Q3 will have to access fragment O1 in addition to O2 and O3 and perform the necessary joins. Also,
since QAS(Q2)∩ QAS(Q3) = {MAG} Q2 will have to access fragment O3 to obtain its missing attribute, performing an
additional join. Alternatively, merging some of the O1,O2,O3 would result in lower joining overheads, but the queries
would have to access a larger number of additional attributes and the I/O cost would increase.

The previous example demonstrates that overlapping QAS in a workload reduce the efficiency of vertical partition-
ing, because it is impossible to avoid additional joins for some of the queries in the workload. Often, however, much of the
overlap implied by comparing the QAS is not real. Consider, for instance, that in the previous example Q1 restricts its
search to objects of type “Stars”, whereas Q2 and Q3 only care about objects of type “Galaxies”. In this case, considering
only QAS leads to “false sharing” as Q1 will process a completely disjoint set of tuples than Q2 and Q3. By categorically
partitioning Objects we remove the overlap between QAS(Q1) and QAS(Q2)∪ QAS(Q3), since they now access only the
categorical fragments (Figure 1 (c)). Now, the fact that Q1 needs to access attributes {TYPE, ERR} together does not
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affect queries Q2, Q3. In addition, TYPE can be removed from the two horizontal fragments altogether. With this form of
partitioning queries benefit not only from the elimination of unnecessary accesses to objects of the wrong class, but also
from the removal of categorical columns. Application of categorical partitioning is the first step of the partitioning algo-
rithm used in AutoPart. 

Note that even in the categorically partitioned schema of Figure 1 (c), there is still an overlap between QAS(Q2) and
QAS(Q3) on MAG. The impact of such overlaps, which cannot be removed by categorical partitioning, can be reduced by
allowing the replication of attributes belonging to the intersection of two or more QAS. In our example, we replicated
attribute MAG in the two fragments, Galaxy1 and Galaxy2, in order to remove the remaining joins (Figure 1(d)). In the
resulting schema all additional joins or unnecessary data accesses have been eliminated. Attribute replication is an effec-
tive way to remove the overheads introduced by overlapping QAS. To control the amount of replication introduced in the
schema, we constraint the partitioning algorithm so that it uses no more than a specified amount of space for attribute rep-
lication. 

4 The AutoPart Algorithm

This section describes the data partitioning algorithm used in AutoPart. The input to AutoPart is a collection of queries Q,
a set of database relations R, and parameter denoting the amount of storage available for attribute replication, which
implicitly bounds the degree of replication allowed. The output is a set F of fragments, which accelerate the execution of
Q. This section presents an overview and details of the interesting stages of the partitioning algorithm.

4.1 Terminology

In our model, a relation R is represented by a set of attributes, whereas a fragment F of R is represented by a subset of R.
We distinguish between two kinds of fragments: atomic fragments are the “thinnest” possible fragments of the partitioned
relations, and are accessed atomically: there are no queries that access only a subset of an atomic fragment. In addition,
atomic fragments are disjoint and their union is equal to R. A composite fragment is constructed by the union of two or
more atomic fragments. The query extent of a fragment F is the set of queries that reference it (if F is atomic) or the inter-
section of the sets of queries that access each of its atomic components (if F is composite). 

4.2 Algorithm overview

The general structure of our algorithm is shown in Figure 2. The first step of the algorithm is to identify the categorical
predicates in Q, and to partition the input relations accordingly to avoid the “false sharing” between queries that have
overlapping QAS but access different object classes. In the second step, the algorithm generates an initial version of the
partitioned schema, consisting only of atomic fragments of the partitioned relations. The performance of this initial ver-

FIGURE 2: Outline of the partitioning algorithm used by
AutoPart
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sion of the solution is determined by the joining overhead (since atomic fragments may often contain a single attribute). 
The performance of this initial schema is improved by forming composite fragments that reduce the joining overhead

in the resulting schema but increase I/O cost: queries accessing a composite fragment don’t necessarily reference all the
attributes in it. Composite fragments can either replace their constituent atomic fragments in the partitioned schema, or
just be appended to the schema (assuming the replication constraint is not violated). The Composite Fragment Generation
module of our algorithm determines a set of composite fragments that should be considered for inclusion in the schema,
while the Composite Fragment Selection module evaluates the available options and chooses the fragments that are found
to provide the highest improvements for the workload.

The algorithm iterates through the composite fragment generation and selection steps multiple times, each time
expanding the fragments selected in the previous steps. The generation of fragments with an increasing number of
attributes, based on the results of previous iterations, is a useful heuristic, applied also in index/materialized view selec-
tion [1,2], to reduce the number of combination considered by the selection module. Note that the composite fragments
considered may contain attributes that are also included in other fragments in the partitioned schema, thus allowing for
attribute replication. When the workload cost cannot be further improved by the incorporation of composite fragments,
the resulting schema is passed through a sequence of pair-wise merges of fragments, attempting to further improve perfor-
mance. 

The following sections present the various components of the algorithm in more detail. The pseudocode for the parti-
tioning algorithm is shown in Figure 3. 

4.3 Categorical Partitioning

The categorical partitioning step first generates horizontal fragments of the partitioned relations. The partitioning depends
on the existence of categorical attributes in the relations and in the workload. Categorical attributes are attributes that take
a small number of discrete values and are used to identify classes of objects. The basic motivation for categorical parti-
tioning is that if queries operate on distinct classes of objects, those classes can be stored in separate horizontal fragments.
The algorithm used for categorical partitioning of a relation R, under a query workload Q is shown in Figure 4. The algo-
rithm first identifies the set of categorical attributes {Ai} in R and their corresponding domains {Di} (step 1). This infor-

/* schema PS is the best partial solution so far */
1. schema PS := AF
/*Composite fragment generation*/
2. for each composite fragment F ∈ SF(k-1)

2.a E(f) := {composite_fragments (F,A∈ AF) ∪
composite_fragments (F, A ∈ AF) having 
query extent > X }

2.b CF(k) := CF(k)∪ E(f)
/*Composite fragment selection */
3. for each composite fragment F ∈ CF(k)

3.schema SF := add_fragment (F,PS)
3.b if size(SF) > B then continue with the next F
3.c compute cost(SF, Q )

4.select Fmin = arg_max (cost (SF, Q ))
 with cost (SFmin,Q ) < cost (PS,Q )

5. if no solution was found then goto 9 /* exit */
6. PS := SFmin
7. SF(k) := SF(k) ∪  Fmin
8. remove Fmin from CF(k)
9. repeat steps 3-8
/* proceed with next iteration*/
10. k++
11. goto 2 /*generate new fragments */

FIGURE 3: The AutoPart algorithm



mation can be provided either by the system’s designer or the system catalog. Each query containing predicates on those
attributes, defines a horizontal subset of R, containing all the objects that satisfy the predicates. The purpose of the algo-
rithm is to determine a suitable collection of non-overlapping such fragments, which will be assigned to different horizon-
tal fragments.For this, we use the methodology developed in [24]

We can express every query predicate involving each of those attributes in the form xi: {Ai ∈  d ⊂  Di}. Let X = {xi}
be the collection of such predicates, and assume that it is minimal and complete, according to [24]. Then, the min-term
predicates Y(X) [24] computed in Step 4 define a collection of non-overlapping horizontal fragments that can be used to
define the horizontal fragments of R. If there exist categorical attributes Ai that take a unique value in the horizontal frag-
ments determined, they can be removed (Step 7). 

Note that this collection of fragments can be modified, for example by suitably merging the horizontal fragments
determined in step 4. Such a merging is shown in steps 5a-5b. The purpose of merging could be to derive a more suitable
collection of horizontal fragments In Figure 4 we restrict the number of horizontal fragments generated to a number less
than N. (This for example could express the user’s desire not to over-partition the horizontal schema, in order to keep its
definition manageable). 

4.4 Composite fragment generation

The composite fragment generation stage provides, in each iteration, a new set of composite fragments to be considered
for inclusion in the schema. It is described by step 2 in Figure 3. 

The input to the stage for iteration k is the set of composite fragments SF(k-1) that were actually selected in the previ-
ous iteration. For the first iteration (k=1) the input to the stage is the set AF of atomic fragments. 

As explained in section 4.1, the algorithm reduces the total number of composite fragments evaluated for inclusion by
essentially extending only those fragments that were selected in the previous iteration. Those fragments can be extended
in two ways:
1. By combining them with fragments in AF.
2. By combining them with fragments in SF(k-1)

The number of fragments generated in the initial steps of the algorithm is in the worst case quadratic to the number of
atomic fragments. Depending on the size of the AF set, this number could be very large. It is possible to reduce the num-
ber of fragments generated, by selecting only those that will have the largest impact in the workload. Intuitively, a com-
posite fragment is useful if it is referenced by many queries. The query extent of a fragment is a measure of a fragment’s
importance. Step 2.a prunes the fragments that are referenced by less than X queries in the workload. Pruning based on the
query extent criterion reduces the set of fragments considered during the initial steps of the algorithm. 

4.5 Greedy fragment selection

Given the collection of composite fragments provided by the generation stage, the selection stage greedily picks a subset
of those for inclusion in the partitioned schema. The selection stage is described by steps 3-8 in Figure 3. 

categorical_partitioning(relation R, queries Q, size N)
1. A := categorical attributes e R. 
2. Let X = collection of predicates in Q of the form

xi:{Ai ∈  d ⊂  Di}
3. XM := complete_minimal_set({xi})
4. horizontal fragments Y := minterm_fragments(X)
5. if |Y| ≤ N then

5a. let A := A - {ai} /* remove attribute ai */
5b. Yi := merge(Y,ai) /* merge the hor. fragments

 defined using ai*/
5c. Select ai that leads in the minimal |Yi|
5d. Set Y := Yi

6. Repeat step 5 until |Y| satisfies size constraint
7. For each fragment F ∈ Y, remove all attributes in 

F that take a single value.

FIGURE 4: Categorical partitioning algorithm



For each iteration, the selection module starts with the best "partial" schema found so far, PS, and a set of composite
fragments CF(k) that must be evaluated for inclusion in the schema (step 3). The algorithm incorporates each candidate
fragment in the current partial solution PS and computes the workload cost on the resulting schema (Steps 3.a, 3.b, 3.c).
The fragment that minimizes workload cost is selected and permanently added to PS (Steps 6-8). The procedure is
repeated until the workload cost cannot be further improved by fragments in CF(k). 

The function add_fragment (Figure 5, used in step 3.a) removes all the subsets of a new fragment before adding it to
the schema. This "recycling" of fragments simplifies the management of the storage space during the execution of the
algorithm. If we were simply appending the new fragments to the partial solution, then the algorithm would quickly run
out of space and then a separate process for removing fragments would have to be used. Using this replacement strategy ,
our algorithm works naturally when no replication is allowed in the partitioned schema. 

Cost evaluation: Cost models
The selection module makes decisions based on the workload cost. We implemented AutoPart to utilize both a simple ana-
lytical cost model and the detailed cost estimation provided by the query optimizer of database systems. A simple model
for the cost of a query on a partitioned schema is presented in Figure 6. The model captures only the parameters necessary
for partitioning, like the I/O cost of scanning a table and the cost of joining two or more fragments to reconstruct a portion
of the original data. In our model the I/O cost of scanning a fragment F is proportional to the number of its attributes (Step
4.a), since the number of rows in the fragments of the same relation is constant. The scaling factor SR accounts for differ-
ences in relation sizes. The cost of joining two fragments is for simplicity considered constant and equal to J. The value of
J must be carefully chosen to reflect the relative cost of joining compared to performing I/O. We computed the value of J
by observing the query plans generated by the query optimizer, for various partitioned schemas.Our experimentation sug-
gests that a value for J between 5 and 10 gives good approximations of the workload cost.

An alternative to analytical models is the system’s query optimizer. Modern optimizers utilize detailed knowledge of
the query execution engine internals and of the data distributions to provide realistic cost estimates. The use of the query
optimizer accounts for all the factors involved in query execution that our simple model ignores, like those affecting the
joining costs. The use of the optimizer removes the constant join cost assumption of our model and takes into account fac-
tors like the existence of different join algorithms and the influence of predicate selectivities.The main disadvantage of
using the query optimizer compared to an analytical cost model is that a call to the optimizer is time consuming. 

4.6 Pairwise merging

The final part of the algorithm (Figure 7) is intended to improve the solution obtained by the greedy fragment selec-
tion through a process of pairwise merges. The algorithm merges pairs of fragments from the solution obtained so far and

procedure add_fragment (schema S, fragment F)
for each fragment F1 ∈ S

if (F1⊂ F) then remove F1 from S
S := S ∪ {  F}

return S

FIGURE 5: Procedure to add new fragments

procedure cost (workload Q, schema S)
1.repeat for each query q in Q
2. Let R = a relation referenced in q
/* compute the set of partitions Q will access */
3. P := plan (Q,S)
4. for each fragment f in P

4.a scan_cost := scan_cost + SR * | F|
5. join_cost = (|P|-1) * J
6. costR := scan_cost + join_cost
7. repeat steps 2-6 for every relation referenced in q
8. costQ := sum of costR + count(R) * J’
9. return the total cost for all queries

FIGURE 6: The model used for cost estimation



evaluates the impact of the merge on the workload. Merges that improve workload cost are incorporated in the solution.
The loop in steps 1-5 terminates when the solution cannot be further improved. Note that merging does not increase the
size of the solution. We use the pair-wise merging process to capture the most important of those composite fragments that
were not considered by the algorithm, because they were omitted by the fragment selection process. 

5 System Architecture

This section describes the functional blocks of the automated schema partitioning tool, depicted in Figure 8. The system
implementation was done using Java (JDK 1.4) and JDBC and the DBMS is SQL Server 2000.
QUERY PARSER. This module receives as input the original queries (Q) and the tables to partition ({R}). Its output is
the queries in a parsed representation (QP)
TABLE DESIGNER.The Table Designer module is the heart of the schema design tool. It receives as input the set of
parsed queries (QP) and the original schema definition (WORIG), and applies the vertical partitioning algorithms of Section
4. Its output is a set of candidate partitioned schemas ({WPART} ) to be evaluated by the query optimizer.
QUERY REWRITER. The rewriter uses each partitioned schema definition (WPART) and the set of parsed queries (QP)
to produce a set of equivalent rewritten queries (QR) that can access the fragments in WPART. 
DBMS INTERFACE. This is a JDBC interface to the database currently hosted by the SQL Server. The interface exe-
cutes table and statistics creation statements according to WPART. To accurately estimate query costs, our tool provides the
query optimizer with the correct table sizes and statistics for the partitioned schema. Since it is impractical to populate the
tables for each candidate schema, we estimate table sizes and copy the estimates to the appropriate system catalog tables,
for the optimizer to access. In addition, we compute statistics for each column in the original, unpartitioned tables and
reuse that information for the evaluated partitions. To test our virtual table generation method, we actually implement the
partitions recommended by our tool and find that the cost estimates obtained by it match those obtained from the real data-
base.

We found that in order for the virtual and real cost estimates to agree, the statistics must be generated using full data
scans and not by random sampling. 

procedure pairwise (queries Q, schema S)
1. for each pair Fi, Fj in S

1.a Fij := merge (Fi,Fj)
1.b Sij := S - Fi -Fj
1.c Sij:= Sij ∪ Fij

2. find imin, jmin such that cost(Q,Sij) is the minimal
3. if cost not improved then goto 6 /*exit*/
4. S := s imin, jmin
5. repeat steps 1-5
6. return S

FIGURE 7: The pairwise merging procedure

FIGURE 8: Partitioning tool architecture.
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SYSTEM CATALOG. The DBMS catalog stores information like table sizes, row sizes and statistics. To facilitate query
cost estimation, we update the system catalog tables with information reflecting the new schemas.
OPTIMIZER INTERFACE. This JDBC interface receives as input the rewritten queries (QR) and uses the query opti-
mizer to obtain query plan information and cost estimates.

We deployed our partitioning tool as a web application, that runs independently of the database server component. We
provide the input (query workload and tables to be partitioned) through a simple web interface. Our tool can (through
standard JDBC) access remote databases to obtain the original schemas, modify their structure and obtain cost estimates
for alternative solutions 

6 Experimental setup

Our experiments use the Sloan Digital Sky Survey (SDSS) database [8][17], running on SQL Server 2000. The database is
structured around a central “catalog” table, PHOTOOBJ (22GB), which describes each astronomical object using 369
mostly numerical attributes. The second largest table is NEIGHBORS (5GB), which is used to store spatial relationships
between neighboring objects. It essentially contains pairs of references to neighboring PHOTOOBJ objects and additional
attributes, such as distance. Both tables are clustered on their primary key, which consists from application-specific object
identifiers.

The SDSS workload consists of 35 SQL queries. Most of them are sequential scans that process PHOTOOBJ and
apply predicates to identify collections of astronomical objects of interest. 6 queries (the most expensive ones) have a spa-
tial flavor, joining PHOTOOBJ with NEIGHBORS. Only 68 of the 369 attributes in the PHOTOOBJ table and 5 out of the
8 attributes in NEIGHBORS are actually referenced in the workload. For a fair comparison, we modified the database
tables before our experiments, so that they only contain the attributes actually referenced in the workload. 

To realistically evaluate the full impact of data partitioning one needs to include maintenance operations in the work-
load. The update workload (SDSS_U) used in our experiments consists of two insertion statements (SQL INSERT), that
simulate the insertion of new data in the system’s two largest tables. The statements we use simply append 800,000 and
5,000,000 tuples in the PHOTOOBJ and NEIGHBORS tables respectively, corresponding to 6% and 4.5% of their current
contents. 

The SDSS database comprises 39 tables. We used our partitioning algorithm to partition the two largest ones, PHO-
TOOBJ and NEIGHBORS, that are almost exclusively responsible for the workload’s I/O costs. We present our perfor-
mance results in terms of the estimated execution time provided by the query optimizer. The speedup of a query is defined
as 

s = 1 - (query_cost_optimized)/ (query_cost_original)

7 Experimental results

In this section we present experimental results on (a) the performance of our data partitioning algorithm and (b) the
benefits of partitioning in the presence of indexes and maintenance workloads. 

7.1 Evaluation of partitioning

This section demonstrates that the combination of categorical partitioning and attribute replication can generate schemas
that can significantly improve query execution, even without the use of any indexes. We derive two partitioned schemas,
CVP_x0 and CVP_x0.5 through categorical and vertical partitioning, without and with replication respectively. In the
attribute replication case, we set a storage upper bound for the replication columns equal to 1/2 the original database size.

The SDSS queries are categorized into two groups. The first group, SDSS_J, consists of four queries, whose execu-
tion is bounded by expensive joins among several instances of PHOTOOBJ and NEIGHBORS. These queries account for
47% of the total workload cost. The second group, SDSS_S, includes 31 SDSS queries, dominated by table scans. Queries
in the SDSS_J group do not benefit much from partitioning, since the joins are their dominant operators. On the other
hand, we expect vertical partitioning to significantly improve performance of queries in the SDSS_S group

Figure 9 (next page) shows the estimated workload performance distinguishing and the two query classes, SDSS_S
and SDSS_J. As expected the replicated schema (CVP_x0.5) performs better than the one without replication. (CVP_x0)
The overall performance improvement is 47% and 43% respectively. Queries in the SDSS_J class benefit less, 19% and
24% respectively, while the improvements for the SDSS_S class queries are 69% and 72%. We observe that attribute rep-
lication after partitioning did not make significant difference in the overall execution time (8%).



.

Figure 10 shows normalized execution times for queries in the SDSS_J (left) and in the SDSS_S (right) groups.
When compared to ORIG, query performance in the SDSS_J group, improves from 2% (Q17, CVP_x0) to 56% (Q17,
CVP_x0.5). The performance improvement for queries in the SDSS_S group is often impressive (an order of magnitude
for Q7). 

Partitioning improved the performance of all the SDSS queries, by significantly reducing their I/O costs. The schema
with attribute replication offers better performance, at the expense of additional space.

7.2 Indexing a partitioned schema

This section shows the benefits of partitioning even when compared to an unpartitioned schema with indexes. We
designed indexes using the Index Tuning Wizard in SQL Server 2000. We allowed unlimited storage for indexes, but we
added updates (SDSS_U) to the input workload. The cost of the SDSS_U workload increases considerably with every
new index built, since that index would require the updated data to be properly ordered. Since the partitioned schemas are
already optimized for the particular workload, they will require much less indexing effort, offering better performance for
both retrieval and update statements

Figure 11 (next page) shows the total workload cost when using the indexed original and partitioned schemas, for all
the statement groups (SDSS_J, SDSS_S, and SDSS_U). When using the I_CVP_x0 and I_CVP_x0.5 schemas, read-only
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FIGURE 10: Query execution times when using the original and the partitioned schemas.



statements run 20% faster compared to the original schema, whereas the insertion statements are more than 5 times faster.
Overall, the partitioning improves query execution performance even in the presence of indexes, by approximately 45%.

.Figure 12 shows the total amount of storage allocated for the I_ORIG and the two partitioned schemas, broken down
into the storage required to index the two main tables. The partitioned schemas require about half the storage space for
indexes, compared to the original schema. According to Figure 12, the original schema relies on heavily indexing PHO-
TOOBJ for performance. In comparison, because of the performance benefits of partitioning PHOTOOBJ, the partitioned
schemas require 7 and 4 times less storage of indexing. Instead of heavily indexing PHOTOOBJ, the partitioned schemas
allocate some more space for the efficient indexing of NEIGHBORS.

Our experimental results in this section show that partitioning can improve query execution performance, requiring
less indexing overhead.

8 Conclusions

Database applications that use multi-terabyte datasets are becoming increasingly important for scientific fields such as
astronomy and biology. In such environments, physical database design is a challenge that involves complex query pro-
cessing needs as well as space limitations. We propose AutoPart, an algorithm that automatically partitions database tables
utilizing prior knowledge of a representative workload. Using a data partitioning and replication, AutoPart suggests an
alternative, high-performance schema that executes queries faster than the original one and can be indexed using a frac-
tion of the space required for indexing the original schema. To evaluate AutoPart, we build an automated schema design
tool that interfaces to commercial database systems. The paper describes our algorithm, the system architecture, and
experimental results using the Sloan Digital Sky Survey database.
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