
Efficient consistency for erasure-coded data via versioning servers

Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, Michael K. Reiter

March 2003

CMU-CS-03-127

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper describes the design, implementation and performance of a family of protocols for survivable,
decentralized data storage. These protocols exploit storage-node versioning to efficiently achieve strong
consistency semantics. These protocols allow erasure-codes to be used that achieve network and storage
efficiency (and optionally data confidentiality in the face of server compromise). The protocol family is
general in that its parameters accommodate a wide range of fault and timing assumptions, up to asyn-
chrony and Byzantine faults of both storage-nodes and clients, with no changes to server implementation
or client-server interface. Measurements of a prototype storage system using these protocols show that the
protocol performs well under various system model assumptions, numbers of failures tolerated, and degrees
of reader-writer concurrency.

We thank the members and companies of the PDL Consortium (including EMC, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft, Network
Appliance, Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights, feedback, and support. We thank IBM and Intel for hardware
grants supporting our research efforts. This material is based on research sponsored by the Air Force Research Laboratory, under agreement number
F49620-01-1-0433, and by DARPA/ITO’s OASIS program, under Air Force contract number F30602-99-2-0539-AFRL. Garth Goodson was sup-
ported by an IBM Fellowship. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the U.S. Government.

Keywords: Decentralized storage, consistency protocol, versioning servers, distributed file systems

1 Introduction

Survivable storage systems spread data redundantly across a set of decentralized storage-nodes, in an effort
to ensure the availability of that data despite the failure or compromise of storage-nodes. Perhaps one
of the most difficult aspects of designing a survivable storage system is predicting the faults, threats, and
environments to which it will be subjected. A system can be designed pessimistically, i.e., built upon
weak assumptions, though often this comes with high performance cost. Alternatively, the system can
optimistically “assume away” certain environments or threats to gain performance.

This paper describes a family of consistency protocols that exploit data versioning within storage-nodes
to efficiently provide strong consistency for erasure-coded data. The protocol family covers a broad range
of system model assumptions with no changes to the client-server interface, server implementations, or
system structure. For each combination of key system model assumptions (crash vs. Byzantine servers,
crash vs. Byzantine clients, synchronous vs. asynchronous communication, total number of failures), there
is a suitable member of the protocol family. Protocol instances are distinguished by their read and write
thresholds (minimum number of storage-nodes contacted to ensure correctness), read and write policies
(actual number of storage-nodes contacted), and data encoding mechanisms. Weaker assumptions lead
to larger thresholds, more demanding policies, and more expensive encoding mechanisms However, for
any given set of system assumptions, the protocol is reasonably efficient. The protocol scales with its
requirements—it only does work necessitated by the system model.

Each protocol in the family works roughly as follows. To perform a write, clients write time-stamped
fragments to at least a write threshold of storage-nodes. Storage-nodes keep all versions of fragments they
are sent. To perform a read, clients fetch the latest fragment versions from a read threshold of storage-
nodes. The client determines whether the fragments comprise a consistent, complete write; usually, they do.
If they do not, additional fragments or historical fragments are fetched, until a consistent, complete write is
observed. Only in cases of failures (storage-node or client) or read-write concurrency is additional overhead
incurred to maintain consistency.

In the common case, the consistency protocol proceeds with little overhead beyond actually reading
and writing data fragments. More specifically, the protocol is efficient in three ways. First, by usingm-of-n
erasure codes (i.e.,m-of-n fragments are needed to reconstruct the data), a decentralized storage system can
tolerate multiple failures with much less network bandwidth (and storage space) than with replication [58,
60]. Second, by matching the value ofm to the read threshold size, no extra communication is required
for consistency in the common case. A client crash during a write operation, a misbehaving server, and
read-write concurrency can introduce protocol overhead. The first two should be very rare. As well, most
studies of distributed storage systems (e.g., [6, 14, 26, 44]) indicate that minimal writer-writer and writer-
reader sharing occurs (usually well under 1% of operations). Third, the execution of the protocol falls on the
clients, leaving storage-nodes to the servicing of simple read and write requests. This results in scalability
gains by following the well-known scalability principal of shifting work from servers to clients [24]. Clients
are responsible for encoding and decoding data, detecting potential consistency problems, and resolving
them.

This paper is comprised of two parts: (i) a partial development of the consistency protocol family and
(ii) an investigation of family members’ performance behavior in a 20 node cluster. Our partial development
of the protocol family focuses on an instance suitable for use in an asynchronous system that tolerates
the Byzantine failure of storage-nodes and clients. In this very weak system model, the protocol offers
strong consistency semantics, namely a variant of linearizability in which read operations are permitted to
abort (in presumably uncommon circumstances). We identify various other members of the protocol family
that eliminate read aborts, are better suited for stronger system models (e.g., synchrony and non-Byzantine
failures), and that offer other features.

The second part of the paper investigates the performance of representative members of the protocol

1

Storage−nodes

WRITE(D) READ(D)

Virtual Disk

Client A

Client B
�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

������������������
����
����
����

��������������������
����
����
����

Figure 1: High-level architecture for survivable storage. Spreading redundant data across independent storage-nodes increases
the likelihood of data surviving failures of storage nodes. Clients update multiple servers to complete a write and (usually) readers
fetch information from multiple servers to complete a read.

family. The response time of a mixed workload is shown to scale nearly linearly up to as many as 20
storage-nodes for three of the four selected protocols. The throughput that a 7 storage-node configuration
can service is shown to scale nearly linearly as clients are added to the system until the network begins to
saturate. The impact of read-write concurrency on system performance is shown to be nominal for a highly
concurrent workload.

2 Background and related work

Figure 1 illustrates the abstract architecture of a fault-tolerant, or survivable, distributed storage system. To
write a data-item D, Client A issues write requests to multiple storage-nodes who host the data-item. To
read D, Client B issues read requests to an overlapping subset of storage-nodes. This basic scheme allows
readers and writers to successfully access data-items even when subsets of the storage-nodes have failed.
To provide reasonable storage semantics, however, the system must guarantee that readers see consistent
answers. For example, assuming no intervening writes, two successful reads of D should produce the same
answer (the most recent write) independent of which subset of storage-nodes are contacted.

2.1 Decentralized storage

A common data distribution scheme used in such storage systems is data replication. That is, a writer stores
a replica of the new data-item value at each storage-node to which it sends a write request. Since each
storage-node has a complete instance of the data-item, the main difficulty is identifying and retaining the
most recent instance. It is often necessary for a reader to contact multiple storage-nodes to ensure that it sees
the most recent instance. Examples of distributed storage systems that use this design include Harp [34],
Petal [33], BFS [8], and Farsite [1].

Some distributed storage systems spread data among storage-nodes more space-efficiently, using era-

2

sure coding or even simple striping. With striping, a data-item is divided into fragments, all of which are
needed to reconstruct the entire data-item. With erasure coding, a data-item is encoded into a set of frag-
ments such that any sufficient subset allows reconstruction. (A primitive version of this is the RAID mech-
anism [45] of striping plus parity computed across the stripe units.) With these data distribution schemes,
reads require fragments from multiple servers. Moreover, the set of fragments must correspond to the same
write operation or else the reconstituted “data” will be incoherent. Examples of distributed storage systems
that use erasure coding include Zebra [21], SwiftRAID [35], Intermemory [10], Cheops [4], Myriad [9], and
PASIS [59, 60].

A challenge that must be confronted in the design of decentralized storage systems is that of partially
completed write operations. Write operations in progress and incomplete write operations by clients that
crash are both instances of partially completed write operations. A common approach to dealing with partial
writes in non-Byzantine-tolerant systems is two-phase commit [20]. This works for both replication and
erasure coding, but adds a round-trip for every write. The partial write problem can also be addressed via
“ repair,” which involves a client or storage-node distributing a partially written value to storage-nodes that
have not seen it. This is only an option for systems using erasure codes when partial writes provide enough
information to reconstruct the original data.

A common approach to dealing with concurrency is to suppress it, either via leases [19] or optimistic
concurrency control [31]. Alternately, many non-Byzantine-tolerant systems (e.g., Harp [34] and Petal [33])
serialize their actions through a primary storage-node, which becomes responsible for completing the up-
date.

An alternate approach to handling both problems is to have the data stored on storage-nodes be im-
mutable [50, 51]. By definition, this eliminates the difficulties of updates for existing data. In doing so, it
shifts the problem up one level; an update now consists of creating a new data-item and modifying the rele-
vant name to refer to it. Decoupling the data-item creation from its visibility simplifies both, but making the
metadata service fault-tolerant often brings back the same issues. Examples of systems that use this model
include SWALLOW [50], Amoeba [42], and most of the recent peer-to-peer file systems (e.g., Past [52],
CFS [12], Farsite [1], and the archival portion of Oceanstore [30]).

Ivy [43] provides decentralized read/write access to immutable stored data in a fashion similar to our
approach. Per-client update logs (which are similar to version histories) are merged by clients at read time
(which is similar to write classification in our protocol). Ivy differs from our protocol in that it does not
provide strong consistency semantics in the face of data redundancy or concurrent updates. Whereas certain
failures may result in unclassifiable writes in our protocol, correct operations may lead to unresolvable
situations in Ivy (in this way, Ivy is similar to Coda [25]).

Amiri et al. [4, 5] use a “stripe map” to communicate to storage-nodes the set of other storage-nodes
that host related stripe units. In the Palladio project [16], stripe maps enables the masking of partial writes by
clients. Since client writes employ two-phase commit, storage-nodes can detect a failure of the client using
a timeout. Upon client failure detection, the stripe map enables the storage-nodes to perform a reconciliation
protocol that results in either the write being completed (repaired) or aborted (deleted at all nodes involved).
In our protocol, when repair is allowed, it is initiated by clients and made possible by retaining versions on
the storage-nodes. If repair is not allowed, each subsequent read operation requires the client to resolve the
partial write operation.

2.2 Byzantine fault-tolerance

Most systems that tolerate Byzantine client and server failures use Byzantine fault-tolerant agreement to
maintain replicated state machines [53]. Long believed to be too costly for extensive use in practice, this
approach was recently employed by Castro and Liskov [8] to implement a reasonably-performing replicated
NFS service. Their implementation is well suited for achieving consistent transition between immutable

3

versions, as demonstrated by its use in Farsite [1]. Our versioning-based protocols are enabled by the fact
that storage actions (read and write) are simpler than arbitrary state machines. An alternative to replicated
state machines is Byzantine quorum systems [38], of which our protocols can be viewed as employing a
particular type. Byzantine quorums have been used to implement shared objects with semantics similar
to those offered by replicated state machines (e.g., [37]) and with correspondingly higher cost than we
encounter here.

Herlihy and Tygar [22] were perhaps the first to apply quorums to the problem of protecting the con-
fidentiality and integrity of replicated data against a threshold of Byzantine-faulty servers, as we do here.
However, in contrast to our work, that work did not focus on achieving strong data semantics in the face of
concurrent access, did not admit the full range of system models that we consider here, and did not include
an implementation or performance analysis. As such, our contributions are substantially different.

2.3 Consistency semantics

Our primary target consistency semantics (linearizability [23] with read aborts) have been studied previ-
ously. Notably, Pierce [47] presents a protocol implementing these semantics in a decentralized storage
system using replication. This protocol is achieved by conjoining a protocol that implements pseudo-regular
semantics (regular semantics [32] with read aborts) with a “write-back” protocol (repair). The penultimate
step of a read operation is to write-back the intended return value, which ensures that the return value of
the read operation is written to a full quorum before it is returned. Our protocols go beyond this work by
accommodating erasure-coded data and providing greater efficiency: e.g., our common case read operation
is a single round. Initial work on our protocol is described in [18].

Versioning storage-nodes in our protocol provide capabilities similar to “ listeners” in the recent work of
Martin, et al. [39]. The listeners protocol guarantees linearizability in a decentralized storage system. A read
operation establishes a connection with a storage-node. The storage-node sends the current data-item value
to the client. As well, the storage-node sends updates it receives back to the client, until the client terminates
the connection. Thus, a reader may be sent multiple versions of a data item. In our protocol, readers look
backward in time via the versioning storage-nodes, rather than listening into the future. Looking back in
time is more message-efficient in the common case, yields a lighter-weight server implementation, and does
not necessitate repair to deal with client failures.

3 System model

We describe the system infrastructure in terms of clients and storage-nodes. There are N storage-nodes and
an arbitrary number of clients in the system.

We say that a client or storage-node is correct in an execution if it satisfies its specification throughout
the execution. A client or storage-node that deviates from its specification is said to fail. We assume a hybrid
failure model for storage-nodes. Up to t storage-nodes may fail, b � t of which may be Byzantine faults;
the remainder are assumed to crash benignly. A client or storage node that does not exhibit a Byzantine
failure (it is either correct or crashes) is said to be benign. We assume that Byzantine clients and storage-
nodes are computationally bounded so that we can employ cryptographic primitives (e.g., cryptographic
hash functions and encryption).

We assume that communication between clients and storage-nodes is point-to-point, reliable, and au-
thenticated: A correct storage-node (client) receives a message from a correct client (storage-node) if and
only if that client (storage-node) sent it. When convenient, we will represent communication using SEND

and RECEIVE primitives. A message RECEIVE’d bears an identifier of client/storage-node from which it was
received.

4

We consider both synchronous and asynchronous models. In an asynchronous system, we make no
assumptions about message transmission delays or the execution rates of clients or storage-nodes. In con-
trast, in a synchronous system, there are known bounds on message transmission delays between correct
clients/storage-nodes and their execution rates. As well, in the synchronous model, we assume that clients
and storage-nodes have loosely synchronized clocks (i.e., in the synchronous model, all clocks are synchro-
nized to within some constant, τ, of the same value). Protocols to achieve approximate clock synchroniza-
tion in today’s networks are well known, inexpensive, and widely deployed [40, 41]. Alternately, a distinct
synchronous communication path can be assumed for clock synchronization (e.g., GPS).

There are two types of operations in the protocol — read operations and write operations — both of
which operate on data-items. Clients perform read/write operations that issue multiple read/write requests
to storage-nodes. A read/write request operates on a data-fragment. A data-item is encoded into data-
fragments. Requests are executed by storage-nodes; a correct storage-node that executes a write request is
said to host that write operation.

Clients encode data-items in an erasure-tolerant manner; thus the distinction between data-item and
data-fragment. We only consider threshold erasure codes in which any m of the n encoded data-fragments
can decode the data-item. Examples of such codes are replication, Reed-Solomon codes [7], secret shar-
ing [54], RAID 3/4/5/6 [45], information dispersal (IDA) [49], short secret sharing [29], and “ tornado”
codes [36].

Storage-nodes provide fine-grained versioning, meaning that a correct storage-node hosts a version of
the data-fragment for each write request it executes. Storage-nodes offer interfaces to write a data-fragment
at a specific logical time, to query the greatest logical time of a hosted data-fragment, to read the hosted
data-fragment with the greatest logical time, and, to read the hosted data-fragment with the greatest logical
time at or before some logical time.

4 Consistency protocol

We have developed a family of consistency protocols that efficiently support erasure-coded data-items by
taking advantage of versioning storage-nodes. Members of the protocol family are differentiated based
on the system model assumed (asynchronous or synchronous, type of storage-node and client failure), the
specified protocol thresholds (write and read thresholds), the specified write and read policy, additional
encode mechanisms employed, and whether repair is performed. We sketch the protocol at a high level,
then give more details about the asynchronous protocol under the hybrid failure model. Other members
of the protocol family are reductions or slight modifications of the asynchronous consistency protocol. In
Section 4.4, we discuss other protocols from the same family as the asynchronous protocol.

At a high level, the protocol proceeds as follows. Logical timestamps are used to totally order all write
operations and to identify write requests from the same write operation across storage-nodes. For each write,
a logical timestamp is constructed that is guaranteed to be unique and greater than that of the latest complete
write (the complete write with the highest timestamp).

To perform a read operation, clients issue read requests to a set of storage-nodes. Once at least a read
threshold of storage-nodes reply, the client identifies the candidate, which is the data-item version returned
with the greatest logical timestamp. The set of read responses that share the timestamp of the candidate
are the candidate set. The read operation classifies the candidate as complete, partial or unclassifiable. If
the candidate is classified as complete, then the read operation is complete; the value of the candidate is
returned. If it is classified as partial (i.e., not complete), the candidate is discarded, a new candidate is
identified, previous data-item versions are requested, and classification begins anew; this sequence may
be repeated. If information has been solicited from all possible storage-nodes and the candidate remains
unclassifiable, the read operation aborts.

5

READ() :
1: r := MAX[Rmin;Wmin]
2: StorageNodeSet := f1; : : : ;Ng
3: ResponseSet := DO READ(StorageNodeSet ;r;�)
4: loop
5: hCandidateSet;LTCi := CHOOSE CANDIDATE(ResponseSet)
6: if (jCandidateSet j �Wmin) then
7: =� Classify candidate as complete �=
8: Data := DECODE(CandidateSet)
9: RETURN(Data)

10: else if (jCandidateSetj+(N �jResponseSetj)<Wmin�b) then
11: =� Classify candidate as partial, determine new candidate �=
12: ResponseSet := ResponseSet�CandidateSet
13: hCandidateSet;LTCi := CHOOSE CANDIDATE(ResponseSet)
14: ResponseSet := ResponseSet [

DO READ(StorageNodeSet �ResponseSet;
r�jResponseSetj;LTC)

15: else if (r < R) then
16: =� Candidate is unclassifiable, must read more �=
17: INCREMENT[r]
18: ResponseSet := ReponseSet [

DO READ(StorageNodeSet �ResponseSet;
r�jReponseSetj;LTC)

19: else
20: =� Candidate is unclassifiable and cannot read more �=
21: RETURN(?)
22: end if
23: end loop

WRITE(Data) :
1: LT := GET TIME()
2: LT := MAKE TIMESTAMP(LT)
3: fD1; : : : ;DNg := ENCODE(Data)
4: for all StorageNode 2 f1; : : : ;Ng do
5: SEND(StorageNode;WRITE REQUEST;LT;Di)
6: end for
7: repeat
8: ResponseSet := ResponseSet [

RECEIVE(StorageNode;WRITE RESPONSE)
9: until (jResponseSetj==W)

DO READ(ReadSet;ReturnCount;LT) :

1: for all StorageNode 2 ReadSet do
2: SEND(StorageNode;READ REQUEST;LT)
3: end for
4: repeat
5: ResponseSet := ResponseSet [

RECEIVE(StorageNode;READ RESPONSE)
6: until (jResponseSetj== ReturnCount)
7: RETURN(ResponseSet)

Figure 2: Asynchronous consistency protocol pseudo-code.

4.1 Asynchronous protocol

We describe the asynchronous protocol in detail to give an intuition about the properties of the protocol, and
the necessary conditions to achieve the properties. Pseudo-code for the asynchronous protocol is given in
Figure 2. Terms used in the pseudo-code are explained in this section.

The write threshold, Wmin, defines a complete write operation: a write operation is complete the mo-
ment Wmin� b benign storage-nodes have executed write requests. Intuitively, a consistency protocol must
ensure that a write operation, once complete, replaces the previous value. The read threshold, Rmin, ensures
that the protocol provides such consistency: a read operation must have at least Rmin read responses be-
fore identifying the candidate. Essentially, the write and read thresholds establish threshold-quorums that
intersect at some number of correct storage-nodes.

Beyond ensuring consistency, the protocol should enable complete writes to be classified as such. To
this end, correct clients implement write and read policies. Correct clients send write requests to all N
storage-nodes; they wait for W � Wmin write responses before continuing. The value of W depends on
the system model. For example, W � N� t in an asynchronous system, since a client cannot wait for more
responses: t storage-nodes could never respond. Correct clients consider read responses from up to R� Rmin

storage-nodes before aborting due to an unclassifiable candidate.
The major task of the read operation is to identify, and then classify, a candidate. To classify a candidate

as complete, read requests from Wmin � b correct storage-nodes that host the candidate must be collected.
Two factors complicate classification: Byzantine storage-nodes and incomplete information. Up to b re-
sponses to R read requests can be arbitrary. As such, at least Wmin responses supporting a candidate are
required to classify the candidate as complete. To be safe, all storage-nodes for which there is no informa-
tion must be assumed to not host the candidate. Line 6 of READ() tests the above condition to classify the
candidate under consideration. Line 1 of READ() ensures that a read operation may complete with a single

6

round of communication.
To classify a candidate as partial, the read operation must observe that it is impossible for Wmin � b

or more correct storage-nodes to host the candidate. To be safe, all storage-nodes for which there is no
information must be assumed to host the write. Line 10 of READ() tests the partial classification condition.

In some cases, it is impossible for the read operation to classify the candidate as complete or partial.
Interestingly, both partial and complete writes can be unclassifiable. Line 15 of READ() determines if the
read policy (R) allows for more read requests, or if the operation must abort.

On line 1 of WRITE(), the function GET TIME() is called. The current logical time of the data-item
is determined by considering time query responses from at least Rmin storage-nodes. The implementation
of GET TIME() is very similar to the function DO READ(), except the ResponseSet consists solely of logical
timestamps. The high bits of a logical timestamp are the data-item time. To make a timestamp, the client
increments the data-item time and appends its client identifier and request identifier. The low bits of the
timestamp distinguish write operations issued at the same logical data-item time.

The protocol supports erasure-coded data. The functions ENCODE() on line 3 of WRITE() erasure codes
the data-item into N data-fragments. Conversely, function DECODE() on line 8 decodes m data-fragments,
returning the data-item. Mechanisms that provide confidentiality and integrity guarantees can be employed
in concert with erasure codes. Such mechanisms and the properties they provide are discussed more fully in
Section 4.3.

4.2 Asynchronous protocol properties

We develop the protocol to have two major properties. First, it ensures the consistency of stored data-items.
Second, it ensures that if all clients are correct, write and read operations that follow the write and read
policies complete. In this section, we develop constraints on Wmin, Rmin, W , R, and N for the asynchronous
protocol which are sufficient to achieve the desired properties. Formal statements of the desired properties
and proofs that they are achieved will be provided in an extended version of this paper.

Linearizability with read aborts: Operations are linearizable if their return values are consistent with
an execution in which each operation is performed instantaneously at a distinct point in time between its
invocation and completion [23]. Linearizability with read aborts restricts the definition of linearizability to
write operations and read operations that return a value. As such, read operations that abort are excluded
from the schedule of linearized operations. Linearizability with read aborts is similar to Pierce’s “pseudo-
atomic consistency” [47].

To achieve linearizability with read aborts, the protocol must ensure that a read operation will notice
the latest complete write operation as a candidate (assuming the read operation does not abort). Therefore,
it is necessary that a read operation and a write operation “ intersect” at at least one correct storage-node:

b+N <Wmin +Rmin: (1)

Operations can terminate: A necessary condition for liveness in the asynchronous model is that,

W;R � N� t: (2)

Without this constraint, write and read operations could await responses forever, thus never completing.
Constraints (1) and (2) yield lower bounds on Wmin, Rmin, and N (remember, Wmin �W , and Rmin � R):

t +b <Wmin; (3)

t +b < Rmin; (4)

2t +b < N: (5)

7

Constraints (3) and (4) follow from substituting (2) into (1). Constraint (5) follows from the resulting lower
bounds on Wmin and Rmin.

Read operations can return a value: Read operations must be able to return a value despite the presence
of Byzantine storage-nodes in the system. If Byzantine storage-nodes can always fabricate write requests
that a read operation deems unclassifiable, then all read operations can be forced to abort. To ensure that
Byzantine storage-nodes cannot always fabricate an unclassifiable candidate, a candidate set of size b must
be classifiable as partial. To classify such a candidate as partial, it is necessary that,

b+(N�R)<Wmin�b: (6)

Constraint (6) creates a relation between the read policy, R, and the definition of a complete write
(Wmin). The less “aggressive” the read policy, the larger Wmin must be to ensure that Byzantine storage-
nodes cannot force all read operations to abort.

Assuming a read policy of R = N� t� κ, where κ determines the exact read policy R, constraint (6)
becomes,

b+(N� (N� t�κ))<Wmin�b;

t +2b+κ <Wmin: (7)

Constraint (7) is more restrictive (on Wmin) than our previous lower bound, t +b <Wmin (cf. (3)). The most
aggressive read policy, κ = 0, yields t +2b <Wmin.

Correct write operations are classifiable: Write operations by correct clients should be classifiable as
complete. As such, the minimum intersection of write requests and read requests at correct storage-nodes
guaranteed by the write and read policies must ensure sufficient information to classify the candidate as
complete:

W +R�N�b�Wmin: (8)

The term W +R�N is the minimum intersection of write and read requests; up to b of the storage-nodes in
the intersection may be Byzantine. Assuming the most aggressive write and read policies (W = R = N� t),
constraint (8) becomes:

(N� t)+(N� t)�N�b�Wmin;

N�2t�b�Wmin: (9)

Which implies, Wmin +2t +b� N, a more restrictive lower bound on N, than constraint (5).

Complete write operations are decodable.: A complete write must be sufficient to decode a data-item. To
achieve this property,

m�Wmin�b: (10)

It is safe to let m = 1 (i.e., replication). But, we are interested in the space-efficiency offered by erasure
codes. As such, the upper bound on m is of interest, since the size of data-fragments are inversely propor-
tional to m.

Given the above constraints, there is still a large space from which to select values for Wmin, Rmin, W , R,
and N. To limit the scope of this investigation, we focus on the smallest values of parameters Wmin, Rmin, and
N that provide the desired properties. Assuming the most aggressive read and write policies, W = R=N� t,
constraints (1), (7), and (9), demand that,

t +2b <Wmin

Wmin +2t+b� N

Wmin+Rmin > N+b

8

Thus, we focus on the threshold values Wmin = t + 2b+ 1, Rmin = 2t + 2b+ 1, and N = 3t + 3b+ 1, which
meet all of the constraints.

4.3 Data encoding

The implementation of ENCODE() and DECODE() are very important to the properties achieved by the protocol
in Figure 2. Here, we describe three mechanisms that can be incorporated into their implementation, and
the properties that these mechanisms provide.
Cross checksums: Cross checksums are used to detect if Byzantine storage-nodes corrupt data-fragments
that they host. After erasure coding, a cryptographic hash of each data-fragment is computed, and the set
of N hashes is concatenated to form the cross checksum of the data-fragments. The cross checksum is then
appended to each data-fragment. A read operation uses the cross checksum to validate the integrity of data-
fragments: each data-fragment that does not match its portion of the cross checksum is discarded. More than
b matching instances of the cross checksum must be observed before it is used to validate data-fragments.

Cross checksums of erasure-coded data were proposed by Gong [17]. Krawczyk [28] extended cross
checksums to make use of error-correcting codes; the space-efficiency of Krawczyk’s distributed fingerprints
comes at a cost in computation and complexity.
Validated cross checksums: In system models that admit Byzantine clients, cross checksums can be ex-
tended to detect Byzantine clients who write data-fragments that are not consistent (i.e., where different sets
of m data-fragments reconstruct a different data-item). Given m data-fragments that are consistent with a
cross checksum received from more than b storage nodes, the reading client regenerates the remaining N�m
data-fragments. If any of these N�m generated data-fragments are inconsistent with the cross checksum,
then decoding fails.

Note that this procedure requires that any m data-fragments uniquely determine the other N�m. This
holds for the erasure-coding schemes that we employ.

When employing this mechanism, there are two options for where to place the cross checksum. In the
first, the cross checksum is embedded as the low order bits of the logical timestamp of the write operation; we
call this construction a self-validating timestamp. The second option is to leave the timestamp construction
unchanged, and to append the cross checksum to each data-fragment as above. In this case, it is necessary
to impose the constraint 2Wmin > N+b to prevent a Byzantine client from completing writes of two distinct
data-items with the same logical time.
Short secret sharing: Short secret sharing [29] provides data confidentiality so long as fewer than m data-
fragments are observed. Thus, if m > b, Byzantine storage-nodes are prevented (computationally) from
leaking information about the contents of data-items. Information about access patterns and data-item size
can still be leaked, of course.

4.4 Other members of protocol family

There are several branches of the protocol family which yield interesting protocols: achieved properties can
be weakened, stronger assumptions can be made, and repair can be leveraged.

The asynchronous protocol described, achieves strong liveness guarantees. Granting Byzantine storage-
nodes the power to prevent read operations from completing creates a larger set of valid protocol thresholds
— these are attractive if the lower bounds on Wmin, Rmin, and N are of concern. We do not experiment with
protocols that do not achieve the above properties in this work.

The assumption of synchrony defines another branch of the protocol family tree. This assumption
introduces the ability to have loosely synchronized clocks and to detect crashed storage-nodes via timeouts.
The former is used to make GET TIME() a local operation (cf. line 1 of the write operation). In this case,
global time is used as the high bits of the logical timestamp. This reduces a write operation to a single round

9

Protocol Wmin Rmin N m

Asynch. t +2b+1 2t +2b+1 3t +3b+1 t +b+1

Synch. t +b+1 t +b+1 2t +b+1 t +1

Asynch. + Repair t +2b+1 t +b+1 2t +2b+1 b+1

Synch. + Repair t +b+1 t +b+1 2t +b+1 b+1

Table 1: Example protocol instances. The protocol thresholds are listed for the set of protocol instances evaluated in Section 6.
All protocol instances listed employ the most aggressive write and read policy possible (e.g., W = R= N� t in the asynchronous
model).

of communication with storage-nodes. The definition of operation duration is extended by the clock skew
of the clock synchronization protocol. Many have exploited the fact that messaging overhead and round-trip
counts can be reduced with loosely synchronized clocks (e.g, Adya et. al [2, 3]).

Since crashed storage-nodes can be detected in the synchronous model, W =N and R=N are allowable
write and read policies. Consequently, the lower bounds on protocol thresholds in the synchronous model
are lower than in the asynchronous. As well, responses from all correct storage-nodes can be solicited; the
lower bound on the range of candidate sets that are unclassifiable can be reduced to b (from t + b in the
asynchronous model).

Introducing repair into the protocol enables it to provide linearizability rather than linearizability with
read aborts. To accomplish this, all unclassifiable candidates must be repairable. This constraint reduces
the upper bound on m, making the protocol less space-efficient. However, the lower bound on N is also
reduced; with repair, Byzantine storage-nodes need not be prevented from making complete write operations
by correct clients unclassifiable. We include repairable protocols for the asynchronous and synchronous
models in our experiments.

The members of the protocol family that we evaluate in Section 6 are listed in Table 1. The values of
N and Wmin in the asynchronous and asynchronous with repair systems are lower bounds. For synchronous
systems, we experiment with thresholds we know to be correct (i.e., that achieve the desired properties), but
we believe are not lower bounds (i.e., we have not completed the proof sketch for lower bounds yet, but our
intuition is that N can be much lower).

4.5 Byzantine clients

If an authorized client is Byzantine, there is little a storage system can do to prevent the client from corrupt-
ing data. Such a client can delete data or modify it arbitrarily. The best a storage system can do is provide
mechanisms that facilitate the detection of incorrect clients and the recovery from Byzantine client actions.

Storage-based intrusion detection could assist in the detection of malicious clients [46, 56]. As well,
since the consistency protocol makes use of fine-grained versioning storage-nodes (i.e., self-securing stor-
age [57]), recovery and diagnosis from detected storage intrusions is possible. Maliciously deleted data can
be recovered, and arbitrarily modified data can be rolled back to its pre-intrusion state.

Encoding mechanisms can limit the power of Byzantine clients; however, they still have some power.
Worse, collusion with Byzantine storage-nodes enables a Byzantine client to perform a write operation that
is guaranteed to be unclassifiable (without repair, such operations result in read aborts). A Byzantine client
can perform a large number of intentional partial write operations such that a subsequent read operation
must issue many read requests to complete. Finally, a Byzantine client can perform write operations that
result in integrity faults. In some situations, such faults cannot be masked, though they are always detected.

In a synchronous system, in which clients use synchronized clocks, Byzantine clients can perform write
operations “ in the future” . Synchronizing storage-nodes clocks with client clocks would enable storage-

10

nodes to bound how far into the future write operations can be performed (e.g., to 2τ).

5 Prototype implementation

This section describes a survivable block-store based on erasure-coding schemes, versioning storage nodes,
and the consistency protocol described in Section 4. The client software can be configured to support differ-
ent system model assumptions and failure tolerances. A given configuration affects the protocol thresholds
and particular erasure-coding scheme utilized.

The system consists of clients and storage-nodes. The client module provides a block-level interface
to higher level software, and uses a simple read-write RPC interface to communicate with storage-nodes.
The client module is responsible for encoding and decoding data-item blocks to and from data-fragments,
and for the execution of the consistency protocol. The storage-nodes are responsible for storing data-item
fragments and their versions.

5.1 Storage-nodes

Storage-nodes provide storage and retrieval of data-fragment versions for clients. Table 2 shows the interface
exported by a storage-node.

We use the Comprehensive Versioning File System [55] as the versioning storage-nodes.
Time: Storage-nodes provide an interface for retrieving the logical time of a data-item, but do not enforce
its use. In the synchronous timing model, recall, clients are correct in using their local clocks as logical
timestamps. To break ties, the client ID and request ID are concatenated to the logical timestamp.
Writes: In addition to data, each write request contains a linkage record and, optionally, data-item cross
checksums. The cross checksums are stored with the data-fragment. The linkage record consists of the
addresses of all the storage-nodes in the set of N for a specific data-item. Since there is no create call, the
linkage information must be transmitted on each write request. Linkage records enable storage-nodes to
perform decentralized garbage collection of old versions. Linkage records are similar to the “stripe maps”
used in Cheops [4] and Palladio [16]. Indeed, the linkage record structure is introduced by Amiri and
Golding in [5].
Reads: By default, a read request returns the data of the most current data-fragment version, as determined
by the logical timestamps that accompany the write requests. To improve performance, read requests may
also return a limited version history of the data-fragment being requested (with no corresponding data).
Each history entry consists of a hclient logical timestamp, cookiei tuple. This version history
information allows clients to classify earlier writes without extra requests to storage-nodes. The cookie is
an opaque data handle that can be returned to the storage-node on a subsequent read to efficiently request
the data version that matches a given history entry.
Data versioning: The storage-node implementation uses a log-structured data organization to reduce the
cost of data versioning. Like previous researchers [57], our experiences indicate that retaining every version
and performing local garbage collection come with minimal performance cost (a few percent). Also, previ-
ous research ([48], [57]) indicates that the space required to retain multi-day version histories is feasible.
Garbage Collection: Pruning old versions, or garbage collection, is necessary to prevent capacity exhaus-
tion of the backend storage-nodes. A storage-node in isolation, by the very nature of the protocol, cannot
determine what local data-fragment versions are safe to garbage-collect. This is because write complete-
ness is a property of a set of storage-nodes, and not of a single storage-node. An individual storage-node can
garbage-collect a data-fragment version if there exists a later data-fragment version that is part of a complete
write.

11

RPC Call Description

Read Read a block at/or before a logical timestamp (or latest version)

Write Write a block with logical timestamp

GetLTime Get logical data–item time of a block

Table 2: Remote Procedure Call List.

Storage-nodes are able to classify writes by executing the consistency protocol in the same manner as
the client. Classification requires that storage-nodes know how to contact the other N�1 nodes hosting the
write operation. Linkage records provide this information. As well, they also provide a means of access
control; a storage-node can deny requests from all nodes not contained within the linkage record for a given
data-fragment. In addition, implementation does not require the use of additional RPCs. Furthermore,
garbage collection does not require the transfer of data, only that of history version information.

Policy issues remain regarding the frequency with which storage-nodes should perform garbage col-
lection and the granularity at which it should be done.

5.2 Clients

The bulk of the consistency protocol is handled by the clients. The clients are responsible for encoding data
blocks into data-fragments and storing them across a set of distributed storage-nodes. The clients are also
responsible for enforcing the consistency properties through the correct classification of read requests.

5.2.1 Client interface and organization

In the current implementation, the client-side module is accessed through a set of library interface calls.
These procedures allow applications to control the encoding scheme, the protocol threshold values (N, R,
Rmin, W , Wmin), failure model (b, t, Byzantine clients), and timing model (synchronous or asynchronous), as
well as more routine parameters such as block size. The client protocol routines are implemented in such a
way that different parameters may be specified for different sets of data-items.
Writes: The client write path is implemented as follows. First, depending on the timing model, a logical
timestamp is created. In the asynchronous case, this involves sending requests to at least Rmin storage-nodes
in order to retrieve the data-item time. In the synchronous model, the client’s clock is read (all clients are
synchronized using NTP [41]). A client specific request ID and client ID are then appended to create the
logical timestamp.

Next, the data block is encoded into data-fragments using the specified scheme (see Section 5.2.2). A
set of storage-nodes are then selected. If the write is a block overwrite, a list of storage-nodes must be passed
into the write procedure, if not, a set of nodes is selected randomly from a list of well-known storage-nodes.
Better procedures for selecting “good” storage-nodes are outside the scope of this paper.

Finally, write requests for each encoded data-fragment are issued to the set of N storage-nodes. Each
write includes the linkage record, cross checksum, and logical timestamp. The write completes once Wmin

completions have been successfully returned. Upon completion, the linkage record is returned to the caller.
The remaining N�W responses are dropped by the client, although the writes may execute at the storage-
nodes.
Reads: The client read path is somewhat more complicated, since it executes the resolution portion of
the consistency algorithm. The application is expected to provide the linkage record naming the set of
N storage-nodes from a previous write. Read requests are issued to the first Rmin storage-nodes, so that

12

systematic decoding of the data can be performed if all requests are successful. Once the Rmin requests have
completed, read classification begins.

Read classification proceeds as described in the pseudo code, in Figure 2, with a few optimizations.
Since storage-nodes return a set of data-fragment version histories, the client need issue fewer read requests
for timestamps of previous versions. Classification continues until either a complete read is found or the
client exhausts the set of storage-nodes it can query.

Once classification completes and a complete read has been found, decoding of the data block can be
attempted. To do so, it is necessary to have data from at least m data-fragments belonging to the same logical
timestamp. If the data from fewer than m matching data-fragments are available (due to the use of version
history information), it is necessary to request additional data from storage-nodes hosting the candidate
write. Once m matching data-fragments have been collected, decoding is performed.

If cross checksums are in use (to tolerate Byzantine failures), checksum validation is first performed.
If checksum validation fails, the integrity of the data-item cannot be guaranteed and the implementation
currently returns an integrity fault. Similarly, if validated cross checksums or self-validating timestamps
fail, an integrity fault occurs. If the data block is successfully decoded, it is returned to the client.
Metadata: For simplicity and modularity of the implementation, it is assumed that the client application
maintains metadata as to where data blocks are stored (i.e., the linkage records). For example, to build a file
system, linkage records could be stored within directories and inodes that are themselves stored by the block
store. In this case, there must be some way of determining the root of the file system. For our experiments,
a static set of N storage-nodes are used, obviating the need to save individual linkage records.

5.2.2 Encode and decode implementation

The encode and decode functions are tuned for efficiency. Erasure coding is used when availability is the
focus and short secret sharing when confidentiality (from servers) is desired. This subsection describes both,
as well as cryptographic algorithms.
Erasure codes: Although we have implementations of replication and RAID (i.e., single parity block), we
focus on erasure codes that can protect against more than a single or double erasure.

Our erasure code implementation stripes the data-item across the first m data-fragments. Each stripe-
fragment consists of 1=m the length of the original data-item.

Stripe-fragments are used to generate the code-fragments. Code-fragments are created by treating the m
stripe-fragments as a vector of y values for some unique x value in a Galois Field — polynomial interpolation
within the Galois Field based on the stripe-fragments yields the code-fragments. Each code-fragment has a
unique x value as well. We use a Galois Field of size 28 so that each byte in the data-item corresponds to a
single y coordinate. This decision limits us to 256 unique x coordinates (i.e., N � 256).

Since the polynomial is interpolated at the x coordinate points many times, interpolation coefficients
are precalculated using “Newton’s Formula” [27]. Given these m� (N�m) constants, each of the N�m
code-fragment interpolations require m multiplications and 2m additions. Multiplication in the Galois Field
is implemented as a lookup table (i.e., a 28 � 28 B= 64 KB lookup table is used). Addition in the Galois
Field is just bitwise XOR. Although this implementation more closely resembles the algorithm described by
Shamir for sharing secrets [54], we refer to it as information dispersal [49] because of its lack of secrecy.

Our implementation of polynomial interpolation was originally based on publicly available code for
information dispersal [13]. We note that Hal Finney’s ‘secsplit.c’ was acknowledged in [13]. We modified
the source to make use of stripe-fragments and the lookup table. As well, some loops were unrolled so that
addition (XOR) could occur on word boundaries, rather than byte boundaries.

Stripe-fragments make the erasure code a systematic encoding. If the first m data-fragments are passed
into the decode function, no polynomial interpolation is required — the stripe-fragments need only be copied

13

into the data-item buffer. Each stripe-unit passed in to decode reduces the number of fragments that must be
interpolated during decode by one.
Short secret sharing: Our implementation of short secret sharing closely follows [29]. We use a cryp-
tographically secure pseudo-random number generator to generate an encryption key. The key is used to
encrypt the data-item buffer under AES in CBC mode. Data-fragments written to storage-nodes consist of a
fragment based on the key and a fragment based on the encrypted data-item.

The key is erasure-coded using Secret Sharing [54]. In secret sharing, the data-item is treated as a
data-fragment, m�1 random data-fragments are generated, and N�m+1 code-fragments are interpolated.
The data-fragment based on the data-item is not stored (i.e., the key is not stored).

The portions of data-fragments that correspond to the encrypted data-item are generated using the
erasure code technique outlined above.

To decode m data-fragments, the first portions are decoded via secret sharing to recover the key. The
encrypted data-item is recovered via the normal decode technique for erasure-coded data described above.
Finally, the key is used to decrypt the data-item.
Cryptographic algorithms: We use publicly available implementations of SHA1 [13], a cryptographically
secure pseudo-random number generator (based on ANSI X9.17 Appendix C) [13], and AES [15]. We note
that Steve Reid is acknowledged as the originator of the SHA1 code [13].

6 Evaluation

This section uses the prototype system to evaluate performance characteristics of the protocol family.

6.1 Experimental setup

We use a cluster of 20 machines to perform experiments. Each machine is a dual 1GHz Pentium III machine
with 384 MB of memory. Each storage-node uses a 9GB Quantum Atlas 10K as the storage device. The
machines are connected through a 100Mb switch. All machines run the Linux 2.4.20 SMP kernel.

Each storage-node is configured with 128 MB of data cache, and no caching is done on the clients. All
experiments show results using write-back caching at the storage nodes, mimicking availability of 16 MB
of non-volatile RAM. This allows us to focus on the overheads introduced by the protocol and not those
introduced by the disk subsystem.

All experiments employ a similar base policy:

� Clients issue writes to all N storage-nodes, but wait for only Wmin responses.

� Clients read the first Rmin storage-nodes, where the first m data-fragments are stored, taking advantage
of systematic encodings.

� Clients write in a manner such that the systematically encoded data-fragments (i.e., the stripe-fragments)
are randomly distributed across storage-nodes, avoiding hot spots due to the above read policy.

� Clients keep a fixed number of read and write operations outstanding. Once an operation completes,
a new operation is issued. Unless otherwise specified, requests are for 16 KB blocks with a 2:1 ratio
of reads to writes.

� Information dispersal is employed in all experiments for which b = 0. Short-secret sharing and cross
checksums are employed in all experiments for which b > 0.

� For the asynchronous model, clients fetch logical times from storage-nodes before issuing a write.

14

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3
Encode and Decode Performance

Total Failures (t)

C
om

pu
te

 T
im

e
(m

s)

IDA Encode
IDA Decode
IDA WC−Decode
IDA+CC Encode
IDA+CC Decode
IDA+VCC Decode
SSS Encode
SSS Decode

Figure 3: Encode and decode of 16 KB blocks. The erasure code parameters (N & m) are taken from the asynchronous
model with b= t (i.e., N = 6t+1;m= 2t+1). In the legend, IDA means information dispersal algorithm, SSS means short secret
sharing, WC means worst case, CC means cross checksum, and VCC means validated cross checksum. Measurements of decode
cost assume a systematic decoding using stripe-fragments, except for the worst case decode measurement.

6.2 Encode and decode performance

The blowup of an erasure code indicates the proportion of network and storage capacity consumed by the
encoded data. The blowup has a significant impact on the performance of systems that use erasure codes.
Note, in coding theory, the inverse of the blowup is called the rate of a code (i.e., blowup is not a standard
term from coding theory).

For our basic erasure code, the blowup is N
m . In Figure 3, the blowup of the erasure codes are 6t+1

2t+1 . So,
for t = 2, m = 5, N = 13, and the blowup of the encoding is 13

5 . Thus, a 16 KB block is encoded into 13
data-fragments, each of which is 3:2 KB in size. In total, these data-fragments consume 41.6 KB of network
and storage capacity.

A more complicated formula for blowup is required for short secret sharing and cross checksums.
Both mechanisms add additional overhead: the space for secret sharing the key and the space for the cross
checksum respectively.

The three solid lines in Figure 3 show performance for IDA encode and decode. The cost of IDA
encode grows with t because m grows with t; the cost of interpolating each code byte grows with m.

The common-case IDA decode exploits the systematic encoding to achieve near-zero computation cost
(i.e., just the cost of memcpy). The IDA WC-Decode line represents the “worst case” in which only code-
fragments are available. The decode, therefore, requires interpolation of m data-fragments. IDA encode is
more expensive than worst case decode because encode must interpolate N�m > m data-fragments.

The three dotted lines show the cost of encode and decode when IDA is combined with cross-checksums.
The IDA+CC Encode line, when compared to the IDA Encode line, shows the cost of computing SHA1 di-
gests of the N data-fragments. The IDA+CC Decode line, when compared to the IDA Decode line, shows
the cost of computing m SHA1 digests of data-fragments. The IDA+VCC Decode line, representing vali-
dated cross checksums, shows the cost of generating N�m data-fragments and taking their SHA1 digests
on decode.

The two dashed lines show the cost of encoding and decoding a data-item with short secret sharing.
The difference between the SSS Encode line and IDA Encode line, as well as the SSS Decode line and the
IDA Decode line, is the cost of AES encryption of a 16 KB block, as well as key generation and secret

15

1 2 3 4 5 6 7
0

5

10

15

20

25

30
Response Time (Base Constraints)

Total Failures (t)

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)
Async: b=0
Async: b=1
Async: b=t
Sync: b=0
Sync: b=1
Sync: b=t

Figure 4: Mean response time vs. Total failures (t)
(Base Constraints). Compares the mean response time
of requests given different failure and timing models us-
ing non-repair thresholds. The number of storage-nodes
grows with t, b, and the timing model.

1 2 3 4 5 6 7
0

5

10

15

20

25

30
Response Time (Repair Constraints)

Total Failures (t)

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Async: b=0
Async: b=1
Async: b=t
Sync: b=0, m=1
Sync: b=1
Sync: b=t
Sync: b=0, m=2

Figure 5: Mean response time vs. Total failures (t)
(Repair Constraints). Compares the mean response time
of requests given different failure and timing models using
repair constraints.

sharing.
The cryptographic algorithms we use have the following performance characteristics on the testbed

systems: AES 17.6 MB/s, SHA1 66.4 MB/s, and random number generation 4.6 MB/s.

6.3 Protocol overheads

To evaluate the overhead of the protocol under different system models, we consider asynchronous and
synchronous members of the protocol family over a range of failure tolerance. We examine the mean
response time of a single request from a single client, as well as the system throughput of multiple clients
with multiple requests outstanding as failure tolerance scales.

6.3.1 Response time

Figure 4 shows mean response times for several system configurations using the base constraints (i.e., those
without repair in Table 1). Figure 5 shows mean response times using the repair constraints.

The mean response times are plotted as a function of t, the total number of failures the system can
handle. Notice, as t increases, so do Rmin, Wmin, and N (see Table 1 for equations). Three lines are shown
for each of the asynchronous and synchronous models; those that tolerate b = 0, b = 1, and b = t Byzantine
failures out of the t tolerated failures. To put these parameters in context, consider the asynchronous protocol
with b = t in Figure 4. The line for this protocol is only plotted until t = 3. At this point, there are
N = 3t +3b+1 = 9+9+1 = 19 storage-nodes.

The focus of these plots is on slope of the lines. The slope shows the protocol overheads in terms of
network cost, since the number of storage-nodes that are accessed is increased. The flatness of the lines
shows that most network transmissions can be fully overlapped. The slope of the lines is dictated by both
the number of nodes and the blowup of the encoding.

The blowup of encoding directly affects the amount of data put on the wire. The impact of this can most
clearly be seen in Figure 5 for the b=0 lines. Both original lines have m = 1, i.e., data-fragment size equals
the original data-item size — replication is being used. This gives an increase in the amount of network

16

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500
System Throughput

Number of Clients

R
eq

ue
st

s
pe

r
se

co
nd

Async: b=0, t=2
Async: b=1, t=1
Sync: b=0, t=3
Sync: b=1, t=2

Figure 6: Throughput vs. Client Load. Compares the
total system throughput of a mixed read/write workload
as number of clients increase.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7
Reads Aborted due to Concurrency

Concurrency

%
 o

f T
ot

al
 R

ea
ds

Async: b=0, t=2
Async: b=1, t=1
Sync: b=0, t=3
Sync: b=1, t=2

Figure 7: Percentage of Reads Aborting vs. Concur-
rency. Compares the percentage of reads that aborted (out
of the total issued) due to the amount of concurrency in the
system.

traffic proportional to N. To see the effect of m on response time, compare the following lines: Sync: b=0,
m=1 and Sync: b=0, m=2. The m = 2 line bumps Rmin, Wmin, N, and m up by one, reducing the data moved
over the network by approximately a factor of 2. This results in a slightly lower availability, because there
is one more storage-node that could fail, but much improved performance (by just over a factor of two for
t = 7). This is a prime example of why supporting erasure codes is desirable.

The difference in cost between Sync: b=0 and Async: b=0 is the sum of the cost of short secret sharing
versus IDA and the extra round-trip time to fetch the logical timestamp. The b=t lines have higher latencies
because Rmin, Wmin, and N grow at a larger rate in relation to t.

6.3.2 Throughput

Figure 6 shows the throughput of a system of seven storage-nodes, in terms of requests/second, as a function
of client load. Each client keeps four requests outstanding to increase the load generated. Each client
accesses a distinct set of blocks, contributing to load without creating concurrent accesses to specific blocks.

As expected, throughput scales with the number of clients, until servers cannot handle more load,
because of network saturation. The b=0 configurations provides higher throughput because the blowup
is smaller (i.e., the total network bandwidth consumed per operation is lower). The Async configurations
generally saturate sooner than Sync configurations, because they also query servers for logical timestamp
values on write requests.

6.4 Concurrency

To measure the effect of concurrency on the system, we measure multi-client throughput when accessing
overlapping block sets. The experiment makes use of four clients; each client has four operations outstand-
ing. Each client accesses a range of eight data blocks, with no two outstanding requests going to the same
block. The number of blocks in a client’s block range that clients share is denoted as the concurrency level;
e.g., at a concurrency of six, six blocks are shared among all clients, while two blocks are reserved exclu-
sively for each client. Blocks are chosen from a uniform random distribution, with a read/write ratio of
50%.

17

At the highest concurrency level (i.e., all eight blocks are in contention by all clients), we observed
neither significant drops in the bandwidth nor significant increases in mean response time. However, the
standard deviations of bandwidth and response time did rise slightly. Instead of plotting response time or
throughput, the discussion focuses on the subtle interactions between the protocol and concurrency.

At the highest concurrency level, we observed that the initial candidate is classified as complete 89%
of the time. In the remaining 11% of the cases, more information is required. The request latencies for the
latter cases increased slightly due to the extra round trips necessary to complete classification. Since this
occurs so seldom, and since round trip times are fairly small, the effect on mean response time is minimal.

The other case worthy of more detail is that of aborted reads due to read/write concurrency.

6.4.1 Aborted reads

A write operation that is in flight concurrently to a read operation may be observed by the read as partial
(although it may later complete). If a read observes a partial write that is unclassifiable (according to the
classification constraints), it has to abort. This is even true in the absence of failures. We call these types of
aborts, false aborts. This section examines the effect of concurrency on false aborts.

Figure 7 shows the percentage of read operations that abort due to read-write concurrency as a function
of system concurrency. The Sync:b=0 configuration never aborts due to read-write concurrency in the case
of no storage-node failures. This is because it is always able to obtain perfect information about the system.
All writes are classifiable as either partial or as complete.

The other three configurations, Async: b=0, b=1, Sync: b=1, operate under imperfect information.
Imperfect information comes from either having to tolerate liars (Byzantine nodes) or from not being able to
wait for communication from all storage-nodes (asynchronous model). The number of read aborts in each
of the above three configurations is proportional to the amount of information that is unavailable.

The protocol constraints preclude the Sync: b=1 configuration from believing one response given it
hears back from N. The Async: b=0, t=2 configuration is precluded from communicating with t = 2 nodes.
Finally the Async: b=1, t=1 configuration is precluded from communicating with t = 1 nodes and believing
an additional b = 1 nodes. The difference in magnitude between the two Async lines comes from the ratio
of Wmin to Rmin. In the Async: b=1, t=1 configuration, there are

�6
4

�
combinations that a read could observe,

while in the Async: b=0, t=2 configuration there are only
�5

3

�
such combinations.

6.4.2 Retries

Since false aborts occur due to read/write concurrency (not failures), retrying reads may lead to the determi-
nation of a complete value as the system makes progress. Even the case of continuing high concurrency, one
can reduce the probability of observing a complete write by varying the retry attempts. We experimentally
ran a configuration that retried aborted reads. With a maximum of three retries, we observed one abort in
� 16000 sample requests. Continuing retries whenever new responses are observed can reduce this further.

Retries could be used to mimic the “ listeners” approach of Martin et al. [39]. Instead of storage-nodes
forwarding updates to clients that are listening, clients could poll storage-nodes for updates if a read opera-
tion encounters an unclassifiable candidate. In this manner, the client may determine that its read operation
is concurrent to some write operations. Such information can be used to return any of the concurrent write
operations. Such an approach could allow more read operations to complete or could reduce the number of
retries necessary to complete.

18

7 Summary

This paper describes a family of consistency protocols for configurable, survivable storage systems using
erasure codes for data storage. With the same storage-nodes and client-server protocol, thresholds can be
configured to allow collections of blocks to be stored consistently and efficiently under a wide range of
failure and communcation assumptions. Experiments with a prototype demonstrate efficiency across many
points in this range.

Of the space the protocol covers, there is still much to explore. We plan to consider the protocol in a
timed asynchronous system model [11]. In the timed asynchronous model, in which some assumptions are
made about the expected message delay time, we expect to achieve similar properties as in the asynchronous
model, but require lower threshold values to achieve such properties. We believe that tighter lower bounds
can be derived for threshold values in the synchronous timing model, and we plan to ascertain these lower
bounds. Finally, we plan to complete thorough analyses of the protocol performance under many conditions:
wide area system model, network failures, storage-node failures, client failures, etc. Since the protocol is
broadly applicable, there is much to explore.

8 Acknowledgements

We thank Craig Soules for his timely support of the versioned storage-node code base (the “S4” code). As
well, we thank all of the members of the Parallel Data Lab who released cluster machines so that we could
run experiments.

References
[1] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R.

Lorch, Marvin Theimer, and Roger P. Wattenhofer. FARSITE: federated, available, and reliable storage for an incompletely
trusted environment. Symposium on Operating Systems Design and Implementation (Boston, MA, 09–11 December 2002),
pages 1–15. USENIX Association, 2002.

[2] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Efficient optimistic concurrency control using loosely
synchronized clocks. ACM SIGMOD International Conference on Management of Data, pages 23–34, 1995.

[3] Atul Adya and Barbara Liskov. Lazy consistency using loosely synchronized clocks. ACM Symposium on Principles of
Distributed Computing (Santa Barbara, CA, August 1997), pages 73–82. ACM, 1997.

[4] Khalil Amiri, Garth A. Gibson, and Richard Golding. Highly concurrent shared storage. International Conference on Dis-
tributed Computing Systems (Taipei, Taiwan, 10–13 April 2000), pages 298–307. IEEE Computer Society, 2000.

[5] Khalil Amiri, Garth A. Gibson, and Richard Golding. Scalable concurrency control and recovery for shared storage arrays.
CMU–CS–99–111. Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA, February 1999.

[6] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Ousterhout. Measurements of a distributed
file system. ACM Symposium on Operating System Principles (Asilomar, Pacific Grove, CA). Published as Operating Systems
Review, 25(5):198–212, 13–16 October 1991.

[7] Elwyn Berlekamp. Algebraic coding theory. McGraw-Hill, New York, 1968.

[8] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. Symposium on Operating Systems Design and Imple-
mentation (New Orleans, LA, 22–25 February 1999), pages 173–186. ACM, 1998.

[9] Fay Chang, Minwen Ji, Shun-Tak A. Leung, John MacCormick, Sharon Perl, and Li Zhang. Myriad: cost-effective disaster
tolerance. Conference on File and Storage Technologies (Monterey, CA, 28–30 January 2002), pages 103–116. USENIX
Association, 2002.

19

[10] Yuan Chen, Jan Edler, Andrew Goldberg, Allan Gottlieb, Sumeet Sobti, and Peter Yianilos. A prototype implementation of
archival Intermemory. ACM Conference on Digital Libraries (Berkeley, CA, 11–14 August 1999), pages 28–37. ACM, 1999.

[11] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model. IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–657. IEEE, June 1999.

[12] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-area cooperative storage with CFS.
ACM Symposium on Operating System Principles (Chateau Lake Louise, AB, Canada, 21–24 October 2001). Published as
Operating System Review, 35(5):202–215, 2001.

[13] Wei Dai. Crypto++ reference manual. http://cryptopp.sourceforge.net/docs/ref/.

[14] Deepinder S. Gill, Songian Zhou, and Harjinder S. Sandhu. A case study of file system workload in a large–scale distributed
environment. Technical report CSRI–296. University of Toronto, Ontario, Canada, March 1994.

[15] Brian Gladman. AES implementation. http://fp.gladman.plus.com/cryptography technology/rijndael/index.htm.

[16] Richard Golding and Elizabeth Borowsky. Fault-tolerant replication management in large-scale distributed storage systems.
Symposium on Reliable Distributed Systems (Lausanne, Switzerland, 19–22 October 1999), pages 144–155. IEEE Computer
Society, 1999.

[17] Li Gong. Securely replicating authentication services. International Conference on Distributed Computing Systems (Newport
Beach, CA), pages 85–91. IEEE Computer Society Press, 1989.

[18] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. Decentralized storage consistency via versioning
servers. Technical Report CMU–CS–02–180. September 2002.

[19] Cary G. Gray and David R. Cheriton. Leases: an efficient fault-tolerant mechanism for distributed file cache consistency.
ACM Symposium on Operating System Principles (Litchfield Park, AZ, 3–6 December 1989). Published as Operating Systems
Review, 23(5):202–210, December 1989.

[20] J. N. Gray. Notes on data base operating systems. In , volume 60, pages 393–481. Springer-Verlag, Berlin, 1978.

[21] John H. Hartman and John K. Ousterhout. The Zebra striped network file system. ACM Transactions on Computer Systems,
13(3):274–310. ACM Press, August 1995.

[22] Maurice P. Herlihy and J. D. Tygar. How to make replicated data secure. Advances in Cryptology - CRYPTO (Santa Barbara,
CA, 16–20 August 1987), pages 379–391. Springer-Verlag, 1987.

[23] Maurice P. Herlihy and Jeanette M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems, 12(3):463–492. ACM, July 1990.

[24] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham, and
Michael J. West. Scale and performance in a distributed file system. ACM Transactions on Computer Systems, 6(1):51–81,
February 1988.

[25] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM Symposium on Operating
System Principles (Asilomar, Pacific Grove, CA). Published as Operating Systems Review, 25(5):213–225, 13–16 October
1991.

[26] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. ACM Transactions on Computer
Systems, 10(1):3–25. ACM Press, February 1992.

[27] Donald Ervin Knuth. Seminumerical algorithms, volume 2. Addison-Wesley, 1981.

[28] Hugo Krawczyk. Distributed fingerprints and secure information dispersal. ACM Symposium on Principles of Distributed
Computing (Ithaca, NY, 15–18 August 1993), pages 207–218, 1993.

[29] Hugo Krawczyk. Secret sharing made short. Advances in Cryptology - CRYPTO (Santa Barbara, CA, 22–26 August 1993),
pages 136–146. Springer-Verlag, 1994.

20

[30] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaten, Dennis Geels, Ramakrishna Gummadi, Sean
Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: an architecture for global-scale persis-
tent storage. Architectural Support for Programming Languages and Operating Systems (Cambridge, MA, 12–15 November
2000). Published as Operating Systems Review, 34(5):190–201, 2000.

[31] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM Transactions on Database Systems,
6(2):213–226, June 1981.

[32] Leslie Lamport. On interprocess communication. Technical report 8. Digital Equipment Corporation, Systems Research
Center, Palo Alto, Ca, December 1985.

[33] Edward K. Lee and Chandramohan A. Thekkath. Petal: distributed virtual disks. Architectural Support for Programming
Languages and Operating Systems (Cambridge, MA, 1–5 October 1996). Published as SIGPLAN Notices, 31(9):84–92, 1996.

[34] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and Michael Williams. Replication in the
Harp file system. ACM Symposium on Operating System Principles (Pacific Grove, CA, 13–16 October 1991). Published as
Operating Systems Review, 25(5):226–238, 1991.

[35] Darrell D. E. Long, Bruce R. Montague, and Luis-Felipe Cabrera. Swift/RAID: a distributed RAID system. Computing
Systems, 7(3):333–359. Usenix, Summer 1994.

[36] Michael G. Luby, Michael Mitzenmacher, M. Amin Shokrollahi, and Daniel A. Spielman. Efficient Erasure Correcting Codes.
IEEE Transactions on Information Theory, 47(2):569–584. IEEE, February 2001.

[37] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Persistent objects in the Fleet system. DARPA Information Survivability
Conference and Exposition (Anaheim, CA, 12–14 June 2001), pages 126–136. IEEE Computer Society, 2001.

[38] Dahlia Malkhi and Michael Reiter. Byzantine Quorum Systems. Distributed Computing, 11(4):203–213. Springer–Verlag,
1998.

[39] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. International Symposium on Dis-
tributed Computing (Toulouse, France, 28–30 October 2002), 2002.

[40] David L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE-ACM Transactions on Networking,
3(3), June 1995.

[41] David L. Mills. Network time protocol (version 3), RFC–1305. IETF, March 1992.

[42] Sape J. Mullender. A distributed file service based on optimistic concurrency control. ACM Symposium on Operating System
Principles (Orcas Island, Washington). Published as Operating Systems Review, 19(5):51–62, December 1985.

[43] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy: a read/write peer-to-peer file system. Sym-
posium on Operating Systems Design and Implementation (Boston, MA, 09–11 December 2002), pages 31–44. USENIX
Association, 2002.

[44] Brian D. Noble and M. Satyanarayanan. An empirical study of a highly available file system. ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (Nashville, TN, 16–20 May 1994). Published as Performance Evaluation
Review, 22(1):138–149. ACM, 1994.

[45] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of inexpensive disks (RAID). ACM
SIGMOD International Conference on Management of Data (Chicago, IL), pages 109–116, 1–3 June 1988.

[46] Adam G. Pennington, John D. Strunk, John Linwood Griffin, Craig A. N. Soules, Garth R. Goodson, and Gregory R. Ganger.
Storage-based intrusion detection: Watching storage activity for suspicious behavior. Technical report CMU–CS–02–179.
Carnegie Mellon University, October 2002.

[47] Evelyn Tumlin Pierce. Self-adjusting quorum systems for byzantine fault tolerance. PhD thesis, published as Technical report
CS–TR–01–07. Department of Computer Sciences, University of Texas at Austin, March 2001.

[48] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage. Conference on File and Storage Technologies
(Monterey, CA, 28–30 January 2002), pages 89–101. USENIX Association, 2002.

21

[49] Michael O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the ACM,
36(2):335–348. ACM, April 1989.

[50] D. P. Reed and L. Svobodova. SWALLOW: a distributed data storage system for a local network. International Workshop on
Local Networks (Zurich, Switzerland), August 1980.

[51] David P. Reed. Implementing atomic actions on decentralized data. ACM Transactions on Computer Systems, 1(1):3–23.
ACM Press, February 1983.

[52] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. ACM Symposium on Operating System Principles (Chateau Lake Louise, AB, Canada, 21–24 October 2001).
Published as Operating System Review, 35(5):188–201. ACM, 2001.

[53] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Computing
Surveys, 22(4):299–319, December 1990.

[54] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613. ACM, November 1979.

[55] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Greg Ganger. Metadata efficiency in versioning file systems. Con-
ference on File and Storage Technologies (San Francisco, CA, 31 March–02 April 2003), pages 43–57. USENIX Association,
2003.

[56] John D. Strunk, Garth R. Goodson, Adam G. Pennington, Craig A. N. Soules, and Gregory R. Ganger. Intrusion detection,
diagnosis, and recovery with self-securing storage. Technical report CMU–CS–02–140. Carnegie Mellon University, 2002.

[57] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and Gregory R. Ganger. Self-securing
storage: protecting data in compromised systems. Symposium on Operating Systems Design and Implementation (San Diego,
CA, 23–25 October 2000), pages 165–180. USENIX Association, 2000.

[58] Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs. replication: a quantitative approach. First International
Workshop on Peer-to-Peer Systems (IPTPS 2002) (Cambridge, MA, 07–08 March 2002), 2002.

[59] Jay J. Wylie, Mehmet Bakkaloglu, Vijay Pandurangan, Michael W. Bigrigg, Semih Oguz, Ken Tew, Cory Williams, Gre-
gory R. Ganger, and Pradeep K. Khosla. Selecting the right data distribution scheme for a survivable storage system. Tech-
nical report CMU–CS–01–120. CMU, May 2001.

[60] Jay J. Wylie, Michael W. Bigrigg, John D. Strunk, Gregory R. Ganger, Han Kiliccote, and Pradeep K. Khosla. Survivable
information storage systems. IEEE Computer, 33(8):61–68. IEEE, August 2000.

22

