
Why can’t I find my files?
New methods for automating attribute assignment

Craig A. N. Soules, Gregory R. Ganger

Feb 2003

CMU-CS-03-116

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Attribute-based naming provides powerful searching and organizational tools for ever-increasing user data sets. How-
ever, such systems are only useful in combination with accurate attribute assignment. Existing systems rely on user
input and content analysis, and as a result they have enjoyed minimal success. This paper discusses new approaches
to automatically assigning attributes to files, including several forms of context analysis, which has been highly suc-
cessful in the Google web search engine. With extensions like application hints (e.g., web links for downloaded files)
and inter-file relationships, it should be possible to infer useful attributes for many files, making attribute-based search
tools more effective.

We thank the members and companies of the PDL Consortium (including EMC, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft, Network
Appliance, Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights, feedback, and support.



Keywords: semantic, context, file system, search, attribute-based naming



1 Introduction

As storage capacity increases, the amount of data belonging to an individual user increases ac-
cordingly. Soon, storage capacity will reach a point where there will be no reason for a user to
ever delete old content – in fact, the time required to do so would be wasted. The challenge has
shifted from deciding what to keep to finding particular information when it is desired. To meet
this challenge we need better approaches to personal data organization.

Today, most systems provide a tree-like directory hierarchy to organize files. Although this is
easy for most users to reason about, it does not provide the flexibility required to scale to very large
numbers of files. In particular, a strict hierarchy does not provide the cross-referencing information
required to locate information in a large data repository.

To deal with these limitations, several groups have proposed alternatives to the standard direc-
tory hierarchy [4, 8, 10]. These systems generally assign multiple attributes to files, providing the
ability to cluster and search for files by their attributes. An attribute can be any metadata that de-
scribes the file, although most systems use keywords or

�
category, value � pairs. The key challenge

is assigning useful attributes to files.
To assign attributes, these systems have suggested two largely unsuccessful methods: user

input and content analysis. Although users often have a good understanding of the files they create,
it can be time-consuming and unpleasant to distill that information into the right set of keywords.
As a result, users are understandably reluctant to do so. On the other hand, content analysis takes
none of the user’s time, and can be performed entirely in the background to eliminate any potential
performance penalty. Unfortunately, the complexity of language parsing, combined with the large
number of proprietary file formats and non-textual data types, restrict the effectiveness of content
analysis.

A complementary alternative to these methods is context analysis. Context analysis gathers
information about the user’s system state while creating and accessing files, and uses it to assign
attributes to those files. This can be useful in two ways. First, such context is often related to
the content of a file. For example, a user may read an email about a friend’s dog and then look
at a picture of that same dog. Second, the context may be what a user remembers best when
searching for some files. For example, the user may remember what they were working on when
they downloaded a file, but not what the file itself was named. Combining context analysis with
content analysis and user input will increase the information available for attribute assignment.

This paper describes several new ways to automatically assign attributes to files. Current au-
tomatic assignment methods perform content analysis on individual files. This paper presents two
new categories: access-time context analysis and inter-file relationship analysis. The first gath-
ers information about the state of the system when a user accesses a file. The second propagates
attributes among related files.

The remainder of this paper is organized as follows. Section 2 discusses background and
related work. Section 3 describes access-time context analysis. Section 4 discusses recognition
and use of inter-file relationships. Section 5 presents some initial findings. Section 6 discusses
some challenges facing this work, and ideas on how to approach them.

1



2 Background

Users already have difficulty locating their files. Although inadequate, there exist a variety of
tools for locating files by searching through directory hierarchies. Several groups have proposed
attribute-based naming systems that rely on user input and content analysis to gather attributes, but
they remain largely unused. Web search engines, however, have found greater success obtaining
attributes by combining content analysis with context analysis. This section discusses common
approaches to file organization, proposed systems, and relevant web search-engine approaches.

2.1 Directory hierarchies

There are three key factors that limit the scalability of existing directory hierarchies. First, files
within the hierarchy only have a single categorization. As the categories grow finer, choosing a
single category for each file becomes more and more difficult. Although linking (giving multiple
names to a file) provides a mechanism to mitigate this problem, there exists no convenient way to
locate and update a file’s links to reflect re-categorization (since they are unidirectional). Second,
much information describing a file is lost without a well-defined and detailed naming scheme. For
example, the name of a family picture would likely not contain the names of every family member.
Third, unless related files are placed within a common sub-tree, their relationship is lost.

One way to try and overcome these limitations is to provide tools to search through these
hierarchies. Today, on UNIX systems, many users locate files via tools such as find and grep. These
tools provide the ability to search throughout a hierarchy for given text within a file, providing
rudimentary content analysis. Glimpse is a system that provides similar functionality, but utilizes
an index to improve the performance of queries [13]. Windows’ search utility provides a similar
indexing service using filters to gather text from well-known file formats (e.g., Word documents).
Going a step further, systems such as LXR and CScope [21], perform content analysis on well-
known file formats to provide some attribute-based searching features within a hierarchy (e.g.,
locating function definitions within source code).

2.2 Proposed systems

To go beyond the limitations of directory hierarchies, several groups have proposed extending file
systems to provide attribute-based indexing. BeFS extends the directory hierarchy by adding a new
organizational structure for indexing files by attribute [7]. The system takes a set of

�
file, keyword �

pairings and creates an index allowing fast lookup of an attribute value to return the associated file.
This structure is useful for files that have a set of well-known attributes on which to index (e.g.,�
email message, sender � ).

The semantic file system provides a way to assign generic
�
category, value � pairings to files,

increasing the scope of their namespace [8]. These attributes are assigned either by user input or
by file content analysis. Content analysis is done by a set of transducers that each understand a
single well-known file format. Once attributes are assigned, the user can create virtual directories
that contain links to all files with a particular attribute. The search can be narrowed by creating
further virtual sub-directories.

Several groups have explored other ways of merging hierarchical and attribute-based nam-
ing schemes. Sechrest and McClennen detail a set of rules for constructing various mergings of

2



hierarchical and flat namespaces using Venn diagrams [20]. Gopal defines five goals for merg-
ing hierarchical name spaces with attribute-based naming and evaluates a system that meets those
goals [9].

Other groups have looked at the problem of providing an attribute-based naming scheme
across a network of computers. Harvest and the Scatter/Gather system provide a way to gather
and merge attributes from a number of different sites [2, 4].

These systems provide a number of interesting variations on attribute-based naming. But they
all rely upon user input and content analysis to provide useful attributes, with limited success.

2.3 Context analysis

Early web search-engines, such as Lycos [14], relied upon user input (user submitted web pages)
and content analysis (word counts, word proximity, etc.). Although valuable, the success of these
systems has been eclipsed by the success of Google [3].

To provide better search results, Google utilizes two forms of context analysis. First, it uses
the text associated with a link to decide on attributes for the linked site. This text provides the
context of both the creator of the linking site and the user who clicks on the link at that site. The
more times that a particular word links to a site, the higher that word is ranked for that site. Second,
Google uses the actions of a user after a search to decide what the user wanted from that search.
For example, if a user clicks on the first four links of a given search, and then does not return, it
is likely that the fourth link was the best match. This provides the user’s context for those search
terms; the user believes that those terms relate to that particular site.

Unfortunately, Google’s approach to indexing cannot be moved wholesale to the realm of file
systems. Much of the information that Google relies on, such as links between pages, do not exist
within a file system. For example, Google’s query feedback mechanism relies on two properties:
users are normally looking for the most popular sites when they perform a query, and they have
a large user base that will repeat the same query many times. Unfortunately, neither of these
properties are true in file system: (1) users usually search for files that have not been accessed
in a long time since they usually remember where recently accessed files reside and access them
directly, and (2) there is generally only a single user for each set of files; thus, it is unlikely that
frequent queries will be generated for any given file.

3 Access-based Context Analysis

This section outlines two approaches to automatically gathering attributes when a file is created or
accessed. These approaches use the context of the user’s session at the time a file is accessed to
assign attributes. The first uses application assistance, and the second uses existing user inputs.

Application assistance: Although most computers can provide a vast array of functionality,
most people use their computer for a limited set of tasks. Most of these tasks are performed by a
small set of applications, which in turn access and create most of the user’s files. Modifying these
applications to provide hints about the user’s context could provide invaluable attribute informa-
tion.

For example, if a user executes a web search for “asparagus” and downloads several pictures,
it is likely that these are pictures of “asparagus.” Similarly, if a user saves an email attachment and

3



the subject of the email is “Re: Marketing report” then it is likely that the attachment is related to
both “marketing” and “report.”

Existing user input: Although most users are not willing to input additional information, they
already are willing to choose a directory and name for the file. Each of the sub-directories along
the path and the file name itself probably contain context information that can be used to assign
attributes. For example, if the user stores a file in “ � /papers/FS/Attribute-based/Semantic91.ps,”
then it is likely that they believe the file is a “paper” having to do with “FS,” “attribute-based,” and
“semantic.”

Like Google, an attribute-based file system can obtain information from user queries. If a
user initially queries the system for “semantic file system” and chooses a file that only contains
the attribute “semantic,” then the additional terms “file” and “system” could be applied to that file.
Also, if the possible matches are presented in the order that the system believes them to be most
relevant, having the user choose files further into the list may be an indicator of success or failure.
Also, as is done in some web search engines, a system could elicit feedback from the user after a
query has completed, allowing them to indicate the success of the query using some sort of scale.
Unfortunately, as mentioned above, individual files are likely to have few queries, reducing the
amount of information available through this method.

4 Inter-file Relationships

Once relationships are established, attributes can be shared between related files. This helps to
propagate attributes among individually hard-to-classify files. In conjunction with approaches that
generate attributes (such as application assistance or content analysis), such propagation should
categorize a much broader set of files. This section outlines two approaches to automatically
gather inter-file relationships. The first approach leverages user access patterns, and the second
approach examines content similarities between potentially related files.

User access patterns: As users access their files, the pattern of their accesses provides a set
of temporal relationships between files. These relationships have previously been used to guide
a variety of performance enhancements [11, 15, 22]. Another possible use of this information
is to help propagate information between related files. For example, accessing “SemanticFS.ps”
and “Gopal.ps” followed by updating “related.tex” may indicate a relationship between the three
files. Subsequently, accessing “related.tex” and creating “WhyCantIFindMyFiles.ps” may indicate
a transitive relationship.

Inter-file content analysis: Content analysis will continue to be an important part of automat-
ically assigning attributes. In addition to existing per-file analysis techniques, our focus on creating
context-based connections between files suggests another source of attributes: content-based rela-
tionships. For example, some current file systems use hashing to eliminate duplicate blocks within
a file system [1, 17], or even locate similarities on non-block aligned boundaries [12, 16]. Such
content overlap could also be used to identify related files, by treating files with large matching
data sets as related.

Often, users (or the system [18]) will keep several slightly different versions of a file. Al-
though these files generally contain differences, often the inherent information contained within
does not change (e.g., a user may keep three instances of their resume, each focused for a different
type of job application). This gives the system two opportunities for content analysis. First, con-

4



All Files

(~6300 files)

User-Organized Files

(~40 files)

Web Cache Text Editor / Email CVS

Tar & Gzip Paper Creation Compiler 

IM Logs Config
���

les Web Browser

FS-tools Illustrator

Figure 1: Programs that create files. Shows the programs that created files within a single graduate student home
directory. The chart on the left shows a breakdown of every created file. Most of the files in this category are caches
of either web pages or email, although archived source code (Tar & Gzip) and CVS repositories also figure in heavily.
The chart on the right shows only those files explicitly organized by the student. These include those files downloaded
from the web, hand edited files, files created by paper creation tools, and an image of a technical poster (Illustrator).

tent comparison can identify related files. Second, by performing content analysis solely on the
differences between versions, it may be possible to determine version-specific attributes, making
it easier for users to locate individual version instances.

5 Initial Findings

Figure 1 shows two charts indicating the percentage of files created by different programs within
a single user’s home directory. This data was gathered from a trace of a single graduate student’s
“home” directory tree over a one month period. The first chart shows a breakdown of every file
created within the directory tree. The second chart shows a breakdown of files explicitly organized
by the user (rather than created and named by the program itself) and believed to have some
permanence (rather than being temporary or scratch files). This excludes things such as caches,
logs, program configuration files, compiler output, and CVS source repositories, which are all
organized by an external entity (generally the programs that create them).

5



Although a large number of files were created within this user’s home directory, most of the
files are organized by user-invoked programs rather than by the user themselves. Most of the user-
organized files on a system are created by three applications: a text editor/email program (emacs),
a web-browser (mozilla), and document creation tools (latex). The others were created by various
manual FS tools (e.g., “cp,” “cat,” etc.).

Examining these results hints at how a combination of the automated attribute assignment
techniques described above can provide useful context information:

� The web-browser can generate hints for the files that it creates. For example, in this trace, the
file “ � /docs/online.pdf” was downloaded after doing a search for “SML Robert Harper” and
clicking through Robert Harper’s home page until the SML programming guide was located.

� Files created by text editors are generally accessed in conjunction with various other files,
creating inter-file relationships. In this trace, several source code files were accessed in con-
junction with a file named “ � /class/814/homework2.tex,” indicating that the files probably
all related to “class,” “814,” and “homework.”

� Document creation tools like LaTeX take input from several different files and output a
single postscript file (such as “homework2.ps”). This many-to-one relationship can be used
to distill all of the input attributes into a smaller set of shared attributes that can be assigned
to the output file. Also, these shared attributes could be passed back to any input files that
do not have them.

� Illustrator (an image manipulation program) was used to create a poster outlining this work,
importing text and images from a variety of related sources, resulting in a similar many-to-
one relationship.

6 Ongoing Challenges

This section outlines some of the challenges facing this work, and some initial ideas on how to
approach them.

6.1 System evaluation

One of the toughest research challenges faced when exploring automated attribute assignment is
evaluating its accuracy. Although several groups have done automated file content analysis, little
evaluation of the accuracy of these mechanisms has been reported. This is probably due to the
difficulty of such an evaluation: what is “accurate?” More importantly, the true value of this kind
of system is in helping users locate lost files, which is difficult to demonstrate without long-term
deployment. Unfortunately, getting users to use such a system without first proving its value is
difficult, resulting in a classic “Catch-22.”

One possible approach is to feed a trace of user activity and application hints into the attribute
assignment system and then compare its results to attribute assignment done by that same user.
Unfortunately, this approach fails to account for user behavior. Although the user may initially
categorize a file one way, they may later use it or look for it in another way. For example, the search
terms they use a year after file creation may end up differing from their initial categorization.

6



6.2 Mechanisms

Although successfully assigning file attributes is one step in creating an attribute-based naming
system, there are two other important aspects: the mechanism for storing attribute mappings and
the user interface to the system. As mentioned in Section 2, several groups have looked at methods
for storing attribute mappings. Until now, these methods have generally worked with a small
number of attributes. By automatically identifying large numbers of attributes, two challenges
arise. First, the existing methods may need to be extended to handle large numbers of attributes.
Second, the system needs a way to identify the most relevant attributes for a file from the large set
of associated attributes (i.e., weighting and false positive removal).

Several groups have also looked at the problem of user interfaces for attribute-based naming
system. MyLifeBits stores

�
file, attribute � pairings within a database, and provides a variety of file

visualizations that help a user locate their files [6]. Lifestreams provides a time-ordered stream
of incoming information to the user, as well as a simple interface for filtering and sorting this
information using a variety of attributes [5, 19]. Our work complements these and may provide
useful insight into these two aspects of attribute-based naming.

7 Conclusions

As the data set associated with a user grows, organizing that information becomes more difficult.
Although hierarchies have several useful aspects, they do not scale, and a more flexible, attribute-
based naming scheme is needed to effectively manage large personal data sets. This paper proposes
automating attribute assignment using at-file-access context analysis and inter-file relationships.
By obtaining many new attributes, these schemes should greatly increase the utility of attribute-
based naming.

References
[1] William J. Bolosky, Scott Corbin, David Goebel, and John R. Douceur. Single instance storage in Windows 2000. USENIX Windows Systems

Symposium (Seattle, WA, 3–4 August 2000), pages 13–24. USENIX Association, 2000.

[2] C. M. Bowman, P. B. Danzig, U. Manber, and M. F. Schwartz. Scalable internet resource discovery: research problems and approaches.
Communications of the ACM, 37(8):98–114, 1994.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[4] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter/Gather: a cluster-based approach to browsing large
document collections. ACM SIGIR International Conference on Research and Development in Information Retrieval, pages 318–329. ACM,
1992.

[5] Scott Fertig, Eric Freeman, and David Gelernter. Lifestreams: an alternative to the desktop metaphor. ACM SIGCHI Conference (Vancouver,
British Columbia, Canada, 13–18 April 1996), pages 410–411, 1996.

[6] Jim Gemmell, Gordon Bell, Roger Lueder, Steven Drucker, and Curtis Wong. MyLifeBits: fulfilling the Memex vision. ACM Multimedia
(Juan-les-Pins, France, 1–6 December 2002), pages 235–238. ACM, 2002.

[7] Dominic Giampaolo. Practical file system design with the Be file system. Morgan Kaufmann, 1998.

[8] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and James W. O’Toole Jr. Semantic file systems. ACM Symposium on Operating System
Principles (Asilomar, Pacific Grove, CA). Published as Operating Systems Review, 25(5):16–25, 13–16 October 1991.

[9] Burra Gopal and Udi Manber. Integrating content-based access mechanisms with hierarchical file systems. Symposium on Operating Systems
Design and Implementation (New Orleans, LA, 22–25 February 1999), pages 265–278. ACM, 1999.

7



[10] Darren R. Hardy and Michael F. Schwartz. Essence: a resource discovery system based on semantic file indexing. Winter USENIX Technical
Conference (San Diego, CA, 25–29 January 1993), pages 361–373, 1993.

[11] Geoffrey H. Kuenning and Gerald J. Popek. Automated hoarding for mobile computers. ACM Symposium on Operating System Principles
(Saint-Malo, France, 5–8 October 1997). Published as Operating Systems Review, 31(5):264–275. ACM, 1997.

[12] Josh MacDonald. File system support for delta compression. Masters thesis. Department of Electrical Engineering and Computer Science,
University of California at Berkeley, 2000.

[13] Udi Manber and Sun Wu. GLIMPSE: a tool to search through entire file systems. Winter USENIX Technical Conference (San Francisco, CA,
January 1994), pages 23–32. USENIX Association, 1994.

[14] Michael L. Mauldin. Retrieval performance in Ferret a conceptual information retrieval system. ACM SIGIR Conference on Research and
Development in Information Retrieval (Chicago, IL, 1991), pages 347–355. ACM Press, 1991.

[15] Gokhan Memik, Mahmut Kandemir, and Alok Choudhary. Exploiting inter-file access patterns using multi-collective I/O. Conference on
File and Storage Technologies (Monterey, CA, 28–30 January 2002), pages 245–258. USENIX Association, 2002.

[16] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network file system. ACM Symposium on Operating System
Principles (Chateau Lake Louise, AB, Canada, 21–24 October 2001). Published as Operating System Review, 35(5):174–187. ACM, 2001.

[17] Sean Quinlan and Sean Dorward. Venti: a new approach to archival storage. Conference on File and Storage Technologies (Monterey, CA,
28–30 January 2002), pages 89–101. USENIX Association, 2002.

[18] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Ross W. Carton, Jacob Ofir, and Alistair C. Veitch. Deciding when to forget in
the Elephant file system. ACM Symposium on Operating System Principles (Kiawah Island Resort, SC, 12–15 December 1999). Published as
Operating Systems Review, 33(5):110–123. ACM, 1999.

[19] Scopeware, http://www.scopeware.com/.

[20] Stuart Sechrest and Michael McClennen. Blending hierarchical and attribute-based file naming. International Conference on Distributed
Computing Systems (Yokohama, Japan, 9–12, June 1992), pages 572–580, 1992.

[21] Joseph L. Steffen. Interactive examination of a C program with Cscope. Winter USENIX Technical Conference (Dallas, TX, January 1985),
pages 170–175. USENIX Association, 1985.

[22] Stephen Strange. Analysis of long-term UNIX file access patterns for applications to automatic file migration strategies. UCB/CSD–92–700.
University of California Berkeley, Computer Science Department, August 1992.

8


