Compiling Knowledge for Dialogue Generation and
Interpretation

Nancy Green Jill Fain Lehman

October 1996
CMU-CS-96-175

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present a new methodology for automatically compiling discourse knowledge during
discourse planning. The resulting discourse knowledge can be used both in dialogue
generation and interpretation. The methodology is based upon the learning mechanism
of the Soar architecture.

This research was supported in part by the Wright Laboratory, Aeronautical Systems Center,
Air Force Materiel Command, USAF, and the Advanced Research Projects Agency under grant
number F33615-93-1-1330. The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of Wright Laboratory or the U.S. government.

Keywords: intelligent agent-based interaction, dialogue

1 INTRODUCTION

Discourse plan operators or recipes have been used successfully in computational
systems for generating and interpreting discourse, e.g.,[3, 8, 11, 12, 17, 18, 20]. A
considerable advantage of using discourse recipes is on-line efficiency, i.e., some non-
trivial amount of problem-solving has been “compiled away” off-line. One purported
disadvantage is lack of completeness. In other words, every case which could be
handled by problem-solving may not be represented in a system’s set of recipes. Thus,
it might be claimed, a recipe-based system lacks the flexibility needed to model human
dialogue. Furthermore, it might be claimed that, as more discourse recipes are added
to a system, its performance will necessarily suffer.

In this paper, we provide a methodology for automatically compiling discourse
knowledge during discourse planning. This compiled knowledge (which can be thought
of as serving the same role as traditional discourse recipes) is used to speed up discourse
generation without sacrificing flexibility and completeness. Note that whenever the
store of compiled discourse knowledge fails to cover the current situation, our system
falls back upon discourse planning, automatically acquiring a new “discourse recipe”
in the process. Performance is not sacrificed as the store of compiled knowledge grows,
due to the underlying architecture’s support for this type of learning. Moreover, we
demonstrate how this same compiled discourse knowledge can be exploited during
discourse comprehension to enable the system to recognize the speaker’s discourse
intentions.

This approach has been implemented as part of the dialogue processing component
of NL-Soar,! a computational model of natural language interpretation and generation
implemented in Soar [21, 13]. Soar is an integrated problem-solving and learning ar-
chitecture, and our methodology for acquiring compiled discourse knowledge is based
upon Soar’s basic learning mechanism. The current implementation of NL-Soar is be-
ing developed to provide real-time dialogue capabilities to automated intelligent agents
who may converse with humans or other intelligent agents in air-combat simulation
environments [27]. Real-time behavior is achieved by training the system on represen-
tative dialogues, so that post-training, dialogues are generated using mostly compiled
knowledge. (The training dialogues need not be identical to the actual dialogues en-
countered in real-time. Also note that compiled syntactic and semantic knowledge also
contributes to NL-Soar’s real-time behavior [9].)

The paper is organized as follows. Section 2 describes a sample dialogue. Section
3 describes the discourse planning component. Sections 4-6 describe the learning
methodology and its use in generation and interpretation, respectively. Section 7
describes related work, and Section 8 offers our conclusions.

INL-Soar has been developed over the last several years by a number of researchers. Earlier versions are
described in [15, 14, 16, 24]. Currently, inputs and outputs to NL-Soar are written. Interfacing NL-Soar to a

speech recognizer is an area of current research.

P2:

Pl:

P2:

UTTERANCE
Parrotl01l.

This is Parrotl02.

I have a contact
bearing 260.

Cver.

Parrotl02.

This is ParrotlOl.

Roger.

I have a contact
bearing 270.

Over.

Parrotl01l.

This is ParrotlQ02.

Roger.

That is your bogey.

Over.

DISCOURSE MOVE

summons

self-
introduction

inform

end-turn

summons

self-
introduction

acknowledge

inform
end-turn
summons
self-
introduction
acknowledge
inform
end-turn

Figure 1: Sample Dialogue

2 SAMPLE DIALOGUE

Figure 1 shows a constructed dialogue which is representative of transcripts of naturally
occurring dialogues between human participants in air-combat training simulations.
Participants flew in a simulated plane and communicated with the other participants
over a simulated radio channel. In the sample dialogue, there are two participants
labeled P1 and P2, whose radio call-signs are Parrot101 and Parrot102, respectively.
Note that as in other domains involving two-way radio discourse [6], a large portion of
each turn is devoted to discourse moves for regulating the turn [25] and grounding [4].
That is, the function of the summons and self-introduction is to identify the addressee
and speaker, respectively, the function of the acknowledgment is to ground the preceding
turn, and the function of the end-turn move is to explicitly mark the release of the turn.
These moves are in service of the main communicative goal underlying the segment,
which is to establish the mutual belief between P1 and P2 that P1 has identified the
same entity that P2 described in the first turn.

3 DISCOURSE PLANNING

The input to discourse planning? is the agent’s current mental state, including (1) the
conversational record, and (2) the agent’s private beliefs and desires. The conversa-
tional record consists of information which an agent A1l presumes to be shared with
another agent A2 as a result of being engaged in a sequence of dialogue exchanges with
A2 [29]. It includes information such as the current discourse segment purpose (DSP)
[10], turn management information, discourse expectations [2, 23], and the status of
proposals which each agent has made with respect to the current DSP. An agent Al1’s
private beliefs include information which Al does not (yet) presume to be shared with
another agent A2, e.g., information which A1 may use to satisfy a request from A2.
Note that an agent’s private beliefs are annotated with symbolic confidence-levels. An
agent’s private desire is a DSP which has not yet been entered into the conversational
record, i.e., is not yet a shared goal. The output of discourse planning may include (1) a
sequence of one or more discourse moves sent to a buffer for realization by a sentence
generation component, and (2) modifications of the conversational record expected to
result from the other agent’s comprehension of the planned moves.3

Next, we briefly describe the discourse planning algorithm implemented in the
current version of the system by approximately 35 if-then rules. Note that a variety of
dialogues representative of the current application domain have been generated by this

2Note that the inputs and outputs of discourse generation are the same regardless of whether achieved by
discourse planning or by use of compiled discourse knowledge.

31f the other agent fails to comprehend the moves as intended, then detection of and recovery from the
miscomprehension are required. However, that problem is beyond the scope of our research.

algorithm. The algorithm plans one turn at a time.> A turn is planned in three stages.
First, turn-taking and grounding moves are selected. For example, if speaking over a
radio channel, then it is assumed that it is necessary to explicitly identify who is talking.

Second, illocutionary moves are planned based upon the contents of the conversa-
tional record and, possibly, a small number of types of private beliefs and/or a private
desire. Aspects of the conversational record relevant to planning illocutionary moves
include the current DSP (if known) and the current set of discourse expectations. Three
DSPs are covered, namely: to achieve the mutual belief between agents Al and A2
that (DSP1) A1 and A2 have identified the same entity E, (DSP2) A1 and A2 know the
answer R to a wh-question Q (i.e., Al addresses Q to A2, A2 providesR to Al, and A1
accepts R), and (DSP3) the addressee believes a proposition P.

Discourse expectations are evoked by illocutionary moves.> For example, the
discourse expectations evoked by the inform in turn 1 of the sample dialogue in Figure 1
are: (E1) that the addressee will inform the speaker of a description of an object of
the type in question, (E2) that the addressee will inform the speaker that the addressee
cannot inform him of a description of an object of the type in question, or (E3) that the
addressee will inform the speaker that the object O1 that the addressee last described
is identical to the object O2 of the same type that the addressee has in mind.” Seven
types of illocutionary moves are planned in the current implementation.

To give an example, the inform move in the third turn of the sample dialogue would
be planned by a rule saying that if the DSP is the one listed in (DSP1), and if the current
set of discourse expectations includes the one listed in (E3), and if the agent has a
private belief (with confidence level of certainty) that objects O1 and O2 are identical,
then a move informing the addressee that O2 is the same as Ol is planned.

Lastly, turn-management moves are planned again (e.g., producing an explicit end-
turn move).

4The goals of this implementation are to provide coveragein the current application domain and to enable
us to test the discourse knowledge compilation methodology. We believe that a more sophisticated planning
algorithm such as described in [30] could be substituted without substantially altering our approach of
compiling discourse knowledge for use in generation and comprehension. For example, a hierarchical-task-
network planner which has been implemented in Soar [7] could be used in place of the planning component
of the current implementation.

SPlanning is performed one turn at a time, rather than over multiple turns, to provide responsivenessto the
changing situational and discourse context. Note that to allow a greater responsiveness as well as to allow a
finer-grained interleaving of planning and sentence generation, planning could be performed in even shorter
increments.

61.e., during comprehension, the conversational record’s current set of discourse expectations is updated
as each discourse move is recognized.

TDiscourse expectations are used for guidance but dialogues are not required to follow expectations. Also,
when a speaker satisfies any member of the set of current expectations, the entire set is discharged.

4 COMPILING DISCOURSE KNOWLEDGE

4.1 Building D-plan-constructors

We refer to a compiled unit of knowledge about discourse in NL-Soar as a d-plan-
constructor, which is produced as a side-effect of discourse planning.® This section
describes NL-Soar’s technique for learning d-plan-constructors, which makes use of
Soar’s built-in learning mechanism.? In order to describe the technique, it is necessary
to first give a very brief overview of the relationship of problem-solving to learning in
Soar.

In Soar, a task is performed by selecting and applying one or more operators'®
in sequence. An operator is defined by a set of productions (if-ther rules) describing
conditions for its selection and conditional actions it may perform. Whenever no
operator applies in the current situation, Soar signals that an impasse has occurred,
and creates a subgoal. Within the subgoal, Soar’s basic control structure continues to
operate, which may give rise to a stack of subgoals. Whenever Soar detects a situation
in which problem-solving in a subgoal results in changes to state in a supergoal, Soar
automatically creates a chunk, a learned production. The left-hand (if) side of a chunk
encodes what attributes of the supergoal’s state were tested that led to the result, and
the right-hand (zhen) side encodes the result. Then, if a similar problem is encountered
again, Soar is able to use the chunk instead of repeating the original problem-solving.

Note that, in theory, a system designer could produce the same set of productions
that are produced by chunking since chunks are encoded in the same representational
format as hand-coded productions. However, in practice, that would make the system
designer’s task much more complex. Also, a system with both chunking and deeper
problem-solving has the capacity to robustly handle cases not anticipated during the
original design. Another advantage to this approach is that solving a problem via
chunks may be much more efficient because the chunks enable the same results to be
achieved with maximum parallelism. That is, all chunks whose left-hand sides match
the current situation fire in parallel. Thus, data-dependencies are the only potential
source of non-parallelism. Furthermore, due to Soar’s underlying match algorithm,
performance in most Soar systems (including NL-Soar) does not degrade as the number
of learned productions grows (the so-called utility problem in machine learning) [5].

In NL-Soar, the chunking process is used to create each d-plan-constructor, a
learned operator roughly corresponding to a discourse recipe. The process of acquiring
d-plan-constructors goes as follows. NL-Soar includes a top-level discourse planning
operator, learn-discourse, which is designed to allow an impasse to arise. That is, a set

8Note that we do not claim this to be a model of the acquisition of discourse knowledge by children.
Also, the compilation of discourse knowledge during comprehension, whether for use in generation or
comprehension, is beyond the scope of this work.

9The general technique is similar to that developed for learning other recognitional knowledge of language
described in [16, 14].

0please keep in mind that the term operafor is used somewhat differently here than in the discourse
planning literature. Differences between the two are summarized below.

of productions specify when it should be selected,!! but do not specify how it should
plan the turn. To illustrate the following discussion, an excerpt of an execution trace
of NL-Soar from the point at which learn-discourse has been selected to the point
at which a set of chunks making up a new d-plan-constructor (d-plan-constructorl)
are executed is shown in Figure 2. In the trace, which has been edited for readability,
indentation indicates subgoaling and S: precedes states and O: precedes operators.
Comments are annotated with asterisks and lines have been numbered for reference in
the following discussion.

When the impasse on the learn-discourse operator occurs (2), NL-Soar automat-
ically creates a subgoal (3). The system includes productions which, on detecting the
creation of this subgoal, (a) name the subgoal create-d-plan, (b) make a copy of the
agent’s conversational record and relevant private beliefs/desires in the subgoal, and (c)
cause a newly created operator of type d-plan-constructor to be selected in create-d-
plan. The newly created operator is given a unique name, e.g., d-plan-constructor1
(4). Since no productions specify what a newly created d-plan-constructor should do
when it is selected for the first time, another impasse arises (5). Another production
names this subgoal d-plan, which triggers the discourse planning algorithm described
in the previous section. The three phases of planning (described in the previous sec-
tion) are implemented by operators named acquire-turn (6), achieve-d-goal (7), and
release-turn (8), respectively.

At the end of planning, the return-results operator is selected in d-plan to return
these results to create-d-plan, updating the copied agent state, e.g., specifying any
planned discourse moves and changes to the conversational record (9). As a byproduct
of returning results to the create-d-plan supergoal, NL-Soar creates a set of chunks that
define the conditional actions of the new d-plan-constructor (10). Lastly, the return-
d-plan operator in the create-d-plan subgoal returns the new d-plan-constructor to the
Top state (11). A byproduct of this result is the creation of a chunk (12) that proposes
the new operator for execution in the Top state (13). (This chunk also will enable the
d-plan-constructor to be proposed in similar situations in the future, thereby preventing
learn-discourse from being selected.) When the returned d-plan-constructor is run in
the Top state (14), the chunks which implement the new d-plan-constructor, chunk-1
through chunk-10, match and thus make changes to the Top state discourse structures
(15).

In summary, Figure 3 shows the hierarchy of actions involved in producing the first
turnof Figure 1. Nonterminal nodes enclosed inrectangles represent discourse planning
operators, while nodes enclosed in ovals represent plan-compilation operators. Leaf
nodes are discourse moves to be realized by sentence generation. After plan-compilation
is finished, only the nodes labelled in boldface remain. D-plan-constructor2 is shown
in the Figure connected by a dotted line to the root node to indicate that future discourse
planning for this speaker will use this same mechanism during his next turn, working
towards achieving the current DSP. In other words, the hierarchy of planning actions

HMore specifically, whenever no d-plan-constructor is applicable and the agent is free to take the turn
and either the agent has a private desire to communicate or there is a discourse expectation for the agent to
communicate.

1 S: Top Language State
2 0: learn-discourse
3 ==>5: Create-d-plan
* copy Top structures *
4 0: d-plan-constructorl
5 ==>S: D-Plan * make changes
to copy: *
6 0: acquire-turn
7 O: achieve-d-goal
8 0O: release-turn
9 0: return-results
10 Building chunk-1 through
chunk-10
11 O: return-d-plan
12 Building chunk-11

13 Firing chunk-11
* propose d-plan-constructorl *
14 O0: d-plan-constructorl
15 Firing chunk-1 through chunk-10
* make changes in Top State *

Figure 2: Trace of Learning/Executing a D-plan-constructor

{
{leam-discourse(mbdescribe—same—ob'ect) ‘

\~\
~

d-plan-constructor] tefurm--plan ‘ -plan-constractor? ‘

/\\

’
acquire-tom || achieve-d-goal || release-tum ‘ | remmesull]

N

summons‘ ‘ self-infro m{ ‘ endom

/

Figure 3: Hierarchy of Actions in Planning/Learning Turn 1

eventually dominated by this DSP can be thought of as this speaker’s discourse plan.

4.2 D-plan-constructors

D-plan-constructors are similar to the compiled planning knowledge (discourse recipes)
used in traditional discourse generation systems, but with several significant differences:

e They are acquired by NL-Soar by chunking during discourse planning, rather
than provided by the system builder.

e Whereas traditional discourse recipes are declarative specifications which must
be interpreted at run-time, d-plan-constructors represent procedural knowledge
which may be applied with a high degree of parallelism.

o In some cases, the knowledge may be more specific than that typically pro-
vided in hand-coded discourse recipe libraries. In other words, although d-plan-
constructors may be parameterized, they may also contain attribute-values which
reflect the circumstances in which they were learned. (Whether the d-plan-
constructors contain values or variables depends upon the design of the Soar
program.)

e Although subgoal relations are not retained automatically in chunks by NL-Soar,
a Soar program can be designed so that this type of information gets encoded in

chunks. However, information about hierarchical and causal relations between
actions is not used in the current implementation of the planner.

e Most traditional approaches to discourse processing (one exception is [8]) have
not used the same discourse recipes for both generation and interpretation. We
describe in a later section how d-plan-constructors can be used in discourse
interpretation.

To give a detailed example, we describe d-plan-constructorl, created during the
planning of turn 1 as shown in Figure 2. This d-plan-constructor, like all learned
operators in NL-Soar, is defined by a set of learned productions (chunks). A chunk

" telling NL-Soar when a d-plan-constructor is applicable to a state is referred to as a
proposal chunk, and is roughly comparable to the applicability conditions [2] of a
discourse recipe. Other productions, the implementation chunks, actually perform the
state changes. We can paraphrase the condition (Ieft-hand) side of chunk-11, which is
the proposal chunk for d-plan-constructorl, as:

¢ The current state allows language operators,

e the agent’s private beliefs include a belief that the agent is certain that he can
describe an object of type ol,

e according to the conversational record, there is currently no DSP, the medium
is two-way radio, the domain is air-combat training simulation, and the turn is
available,

& no moves are waiting to be realized, and

o the agent has a private desire that speaker and hearer mutually believe they are
describing the same object, which is of type ol.

The action (right-hand) side of the chunk tells NL-Soar that d-plan-constructorl may
be applied in the current state.!?

Once d-plan-constructorl has been selected by NL-Soar, its conditional actions
may be performed. Note that in this case, there are no data dependencies and the chunks
will fire in parallel. To describe the other chunks of this d-plan-constructor,

e chunk-1: records aDSP of mb-describe-same-object in the conversational record,
o chunk-2: creates the first move (summons) and adds it to the planned move buffer,
¢ chunk-3: does the same for the second move (self-introduction),

o chunk-4: does the same for the third move (inform),

12Note that, in Soar, all productions whose left-hand side is matched by the current situation will fire in
parallel. Thus, it is possible for multiple operators to be proposed simultaneously. In NL-Soar, search-control
productions are used to specify preferences among currently eligible operators in case of multiple proposals.

e chunk-5: does the same for the fourth move (end-turn),

e chunk-6: records the proposal to be made by the third move in the conversational
record,

o chunk-9: records information about the turn in the conversational record, and
e remaining chunks: set control flags.

To paraphrase chunk-2, for example, its left-hand side conditions are:

¢ operator ol named d-plan-constructorl has been selected, and

o the conversational-record contains the information that the medium is two-way
radio.

The action side of chunk-2 adds a planned move to the planned move buffer. The
planned move is a summons, which is to be realized by saying the addressee’s name.
Also, chunk-2 specifies that the move is the first move of the turn, although sentence
generation may override ordering specifications.

5 DIALOGUE GENERATION

Whenever a d-plan-constructor is selected and applied in the Top Language State, gen-
eration is performed. (When no d-plan-constructor is applicable, i.e., if an appropriate
d-plan-constructor has not yet been acquired via training, NL-Soar will invoke learn-
discourse to create the d-plan-constructor and then apply it to the current situation, as
described in the previous section.) For example, whenever a situation similar to the one
in which d-plan-constructorl was learned arises,!3 it will be selected. The chunks
of a d-plan-constructor add planned discourse moves to a buffer which is the input to
sentence generation. The chunks also update the speaker’s version of the conversational
record appropriately. The process of dialogue generation via chunks is more efficient
than dialogue generation via the planning algorithm due to the fact that the same results
are achieved without performing the original problem-solving that led to the creation of
the chunks (as described in the previous section). Moreover, the actions are performed
with maximum parallelism. That is, as soon as a d-plan-constructor has been selected,
all of its chunks whose left-hand sides match the current situation fire in parallel. Thus,
data-dependencies are the only potential source of non-parallelism.

6 DIALOGUE INTERPRETATION

Here we describe an experimental implementation of discourse comprehension in NL-
Soar which reuses the d-plan-constructors created for and used in discourse generation.

3More specifically, whenever the proposal conditions of chunk-11 are satisfied.

10

Most traditional systems (even those using hand-coded recipes) have not used the
same discourse recipes for generation and comprehension. However, the ability to
reuse this knowledge in service of comprehension reduces problems in maintaining
consistency of discourse knowledge between comprehension and generation subcom-
ponents, and reduces the system builder’s effort in providing knowledge for discourse
comprehension.!# Thus, it is an intriguing area of research of practical value.

The task of dialogue interpretation in NL-Soar is to update the (hearer’s version of
the) conversational record as intended by the speaker, based upon the conversational
record and the semantic interpretation of the speaker’s utterances. For example, given
the semantic interpretation of an utterance U to be a name referring to the hearer (e.g.,
Parrot102, the first utterance of the second turn in Figure 1), then in an appropriate
discourse context the hearer’s task is to recognize that U is being used as a summons
(as opposed to, e.g., a response to a wh-question, or an elliptical self-introduction), and
that the intended effect is to update the conversational record with the mutual belief
that the speaker (P1) has begun a new turn of which the hearer (P2) is the addressee.
Note that if the hearer knew which of the speaker’s d-plan-constructors was used to
produce an utterance, the hearer could update his version of the conversational record
as specified by that d-plan-constructor.

In the experimental version of NL-Soar, a hearer’s d-plan-constructors are used as
a knowledge source for dialogue interpretation. This presupposes that the hearer could
generate anything that he could interpret, i.e., that he has a set of d-plan-constructors
comparable to the speaker’s.!> Such an assumption is consistent with the view of
discourse interpretation as intended plan recognition [22]. Moreover, this assumption is
reasonable in practice given that NL-Soar’s approach to providing real-time generation
is to acquire a set of d-plan-constructors through prior off-line training. To give an
overview of our strategy for discourse comprehension using compiled knowledge, NL-
Soar (acting as the hearer) constructs an initial model of the speaker’s relevant beliefs
and desires, which we refer to as the Hearer’s Model of the Speaker (HMOS). Then,
in the context of HMOS, d-plan-constructors are automatically selected and applied
by NL-Soar, resulting in updates to HMOS. In other words, the speaker’s process of
discourse generation is simulated in HMOS. NL-Soar monitors changes to HMOS and
makes changes to the (hearer’s version) of the conversational record accordingly.

Note that we have not yet addressed strategies for handling detection of and re-
covery from failure, i.e., inferring the wrong d-plan-constructor.!® Thus, when more
than one d-plan-constructor is recognized by NL-Soar to be applicable to the cur-
rent state of HMOS, interaction with the system designer is used to select the right
d-plan-constructor. This has enabled us to verify that, given the correct choice of

14The non-experimental version of discourse comprehension, i.e. the version currently in use in NL-Soar,
consists of hand-coded productions which duplicate much of the same knowledge specified in the discourse

planning component.

15That is, this presupposes that hearer and speaker share knowledge about discourse strategies, though not
necessarily other knowledge about the world.

16However, we envision a general strategy consistent with that used in error recovery in sentence compre-
hension in NL-Soar, which is intended to model real-time human performance limitations.

11

d-plan-constructor, the proposed mechanism is successful in recognizing the speaker’s
intentions in dialogues such as that shown in Figure 1 and others.

6.1 Hearer’s Model of the Speaker

The HMOS consists of the hearer’s model of the speaker’s version of the conversational
record and the hearer’s model of the speaker’s relevant private beliefs and desires.
Ideally, the HMOS must contain sufficient information to trigger the d-plan-constructor
used by the speaker, but not information which would lead to recognition errors. (An
alternate approach to elaborating the HMOS is to eliminate conditions on the left-hand
side of the d-plan-constructor chunks, using a technique such as given in [19].) In our
initial implementation, we are investigating the utility of some minimal heuristics.

First, since the conversational record is presumed by the hearer to normally consist
of shared information, the HMOS conversational record is created by simply copying
the hearer’s version of the conversational record. Second, the HMOS private beliefs is
constructed using the following heuristics.

e The roles of speaker and hearer are reversed.

¢ The speaker is assumed to have a belief corresponding to the literal semantic
interpretation of the utterance under consideration.

¢ If not currently engaged in a discourse segment (according to the conversational
record), then a possible discourse goal type is selected at random.

o A set of salient beliefs is assumed based upon the current discourse segment
purpose, if available from the conversational record; otherwise, based upon the
the assumed discourse goal type. Note that salience is defined operationally
relative to the set of d-plan-constructors which are applicable to the current
assumed discourse goal type.'”

We certainly recognize that, as heuristics, the above may not always provide an
accurate model of the speaker. For example, obviously the assumption that the literal
semantic interpretation is the intended interpretation is not always correct. Investigation
of refinements of the current heuristics is an area for future research.

6.2 Discourse Interpretation Algorithm

The high-level discourse interpretation operator, comp-d-move, is selected whenever
an utterance has been semantically and syntactically interpreted by NL-Soar. Note
that during the process of syntactic and semantic interpretation, features are assigned
to an utterance describing the surface speech act'® [1] and the general content type,

17 Currently, the association between each goal type and set of salient beliefs is hand-coded. We intend to
implement a mechanism so that this association is learned at the same time that the d-plan-constructors are

learned.
1B ¢, the surface speech act of an utterance in the form of a question is a request.

12

an abstraction of the semantic structure. First, comp-d-move checks whether the
current utterance has been predicted by a d-plan-constructor recognized previously.
(For example, if a d-plan-constructor which generates four moves is recognized from
the first move, then comp-d-move need check only whether the succeeding three
utterances match the remaining predicted moves.) If not, the operator constructs the
HMOS as described in the preceding section. For illustration, consider the interpretation
of the first utterance of turn 1 of the sample dialogue. As soon as the HMOS has been
constructed, any d-plan-constructors whose applicability conditions are satisfied by
the HMOS will be proposed by NL-Soar. As discussed above, interaction with the
system designer is required in the current implementation to select the appropriate
d-plan-constructor from the set of eligible operators, in this case, d-plan-constructorl.

When a d-plan-constructor has been selected, its execution chunks fire, performing
updates to the HMOS conversational record and adding the speaker’s planned discourse
moves to the sentence generation buffer in HMOS. (Note that more than one planned
move may be generated by a d-plan-constructor.) Next, comp-d-move compares the
content type and surface speech act of the utterance to those features of the predicted
moves.'? Inthis example, the utterance matches the features of a predicted summons and
so is recognized. The other moves predicted by d-plan-constructorl are copied into
the agent’s top state (as predictions), his conversational record is updated to reflect the
changes in the HMOS conversational record, and the comp-d-move operator terminates.

As soon as each of the remaining utterances of the turn have been semantically
and syntactically interpreted, comp-d-move is selected again. As long as there are
predicted discourse moves to consider, there is no need to attempt to recognize another
d-plan-constructor. Instead, the current utterance is compared to the predicted moves
in order to be recognized.

7 RELATED WORK

In addition to the related work on discourse cited throughout this paper, our approach to
recognizing discourse intentions has been influenced by earlier work on event tracking
implemented in Soar [28, 26]. In that work, an agent’s own operators and architectural
mechanisms are used to simulate the behavior of another agent in order to comprehend
the other agent’s non-communicative actions. However, that work does not involve use
of learned operators for generating or recognizing behavior. Another difference is that
NL-Soar models intended plan recognition whereas the event tracking work does not.
(For a more detailed comparison, see [9].)

19 Although the planning algorithm specifies a preferred ordering of moves, this information is not used to
constrain interpretation currently.

13

8 CONCLUSIONS

We provide a new methodology for automatically compiling discourse knowledge dur-
ing discourse planning. This compiled knowledge (which can be thought of as serving
the same role as traditional discourse recipes) is used to speed up discourse genera-
tion without sacrificing flexibility and completeness. Compiled discourse knowledge
enables discourse generation to be performed more efficiently because the results of
planning are achieved without deep problem-solving and with maximum parallelism.
Moreover, we demonstrate that the compiled discourse knowledge can be exploited
during discourse comprehension to enable the system to recognize the speaker’s dis-
course intentions. In addition to its practical benefits, the work raises many interesting
issues in cognitive modeling of dialogue processing that we would like to address in

the future.

9 Acknowledgments

We thank Martha Pollack of the University of Pittsburgh and Milind Tambe of Infor-
mation Sciences Institute for feedback on a much earlier version of this paper. Also we
thank Garrett Pelton and Greg Nelson of the CMU Soar community for their program-
ming advice during the implementation of the system.

References

[1] James F. Allen and C. Raymond Perrault. Analyzing intention in utterances.
Artificial Intelligence, 15:143-178, 1980.

[2] Sandra Carberry. Plan Recognition in Natural Language Dialogue. MIT Press,
Cambridge, Massachusetts, 1990.

[3] Alison Cawsey. Explanation and Interaction: The Computer Generation of Ex-
planatory Dialogues. MIT Press, Cambridge, Massachusetts, 1992.

[4] Herbert H. Clark and E. F. Schaefer. Contributing to discourse. Cognitive Science,
13:259-294, 1989.

[5] Robert B. Doorenbos. Production matching for large learning systems. PhD
thesis, Carnegie Mellon University, 1995.

[6] Dafydd Gibbon. Context and variation in two-way radio discourse. Discourse
Processes, 8:395-419, 1985.

[7] Jonathan Gratch. Task-decomposition planning for command decision making. In
Proceedings of the 6th Conference on Computer Generated Forces and Behavorial
Representation, 1996.

14

[8] Nancy Green and Sandra Carberry. A hybrid reasoning model for indirect answers.
In Proceedings of the 32nd Annual Meeting of the Association for Computational
Linguistics, 1994.

[9] Nancy Green and Jill Fain Lehman, Comparing agent modeling for language and
action. In Proceedings of the AAAI Workshop on Agent Modeling, 1996.

[10] Barbara Grosz and Candace Sidner. Attention, intention, and the structure of
discourse. Computational Linguistics, 12(3):175-204, 1986.

[11] Eduard H. Hovy. Planning coherent multisentential text. In Proceedings of the
26th Annual Meeting of the Association for Computational Linguistics, pages
163-169, 1988.

[12] Lynn Lambert and Sandra Carberry. A tripartite plan-based model of dialogue.
In Proceedings of the 29th Annual Meeting of the Association for Computational
Linguistics, pages 47-54, 1991.

[13] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle introduction to Soar,
an architecture for human cognition. In S. Sternberg and D. Scarborough, editors,
Invitation to Cognitive Science, volume 4. MIT Press, 1996.

[14] J. F. Lehman, J. Van Dyke, and R. Rubinoff. Natural language processing for ifors:
Comprehension and generation in the air combat domain. In Proceedings of the
Fifth Conference on Computer Generated Forces and Behavioral Representation,
pages 115-23. 1995.

[15] J. Fain Lehman, R. Lewis, and A. Newell. Integrating knowledge sources in
language comprehension. In Proceedings of the Thirteenth Annual Conference of
the Cognitive Science Society, 1991.

[16] Richard Lawrence Lewis. An Architecturally-based Theory of Human Sentence
Comprehension. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, 1993. Available from Computer Science Department as Technical Report
CMU-CS-93-226.

[17] Diane Litman and James Allen. A plan recognition model for subdialogues in
conversation. Cognitive Science, 11:163-200, 1987.

[18] Mark T. Maybury. Communicative acts for explanation generation. International
Journal of Man-Machine Studies, 37:135-172, 1992,

[19] Craig Miller. Modeling Concept Acquisition in the Context of a Unified Theory of
Cognition. PhD thesis, University of Michigan, 1993. CSE-TR-157-93.

[20] Johanna D. Moore and Cecile Paris. Planning text for advisory dialogues: Cap-
turing intentional and rhetorical information. Computational Linguistics, 1993.

15

[21] Allen Newell. Unified Theories of Cognition. Harvard University Press, Cam-
bridge, Massachusetts, 1990.

[22] R. Perrault and J. Allen. A plan-based analysis of indirect speech acts. American
Journal of Computational Linguistics, 6(3-4):167-182, 1980.

[23] Rachel Reichman. Getting Computers To Talk Like You And Me. MIT Press,
Cambridge, Massachusetts, 1985.

[24] R. Rubinoff and J. F. Lehman. Real-time natural language generation in NL-
Soar. In Proceedings of the Seventh International Workshop on Natural Language
Generation, pages 199-206, Kennebunkport, Maine, 1994.

[25] H. Sacks, E. A. Schegloff, and G. Jefferson. A simplest systematics for the
organization of turntaking for conversation. Language, 50:696-735, 1974.

[26] Milind Tambe. Tracking dynamic team activity. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), August 1996.

[27] Milind Tambe, W. Lewis Johnson, Randolph M. Jones, Frank Koss, John E.
Laird, Paul S. Rosenbloom, and Karl Schwamb. Intelligent agents for interactive
simulation environments. Al Magazine, 16(1):15-39, Spring 1995.

[28] Milind Tambe and Paul S. Rosenbloom. RESC: An approach for real-time,
dynamic agent tracking. In Proceedings of the 14th International Joint Conference

on Artificial Intelligence, Montreal, Canada, 1995.

[29] Richmond H. Thomason. Accommodation, meaning, and implicature: Interdis-
ciplinary foundations for pragmatics. In P. Cohen, J. Morgan, and M. Pollack,
editors, Intentions in Communication, pages 325-363. MIT Press, Cambridge,
Massachusetts, 1990.

[30] R. Michael Young, Johanna D. Moore, and Martha E. Pollack. Towards a prin-
cipled representation of discourse plans. In Proceedings of the Sixteenth Annual
Meeting of the Cognitive Science Society, 1994.

16

