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Abstract
Efficiently searching and dereplicating know entities from raw databases of bi-

ological extracts has been one of the major difficulties in natural product discover-
ies. Due to the wide usage of high-throughput mass spectrometry technique (MS)
for building NP databases, there has been a pressing demand for an efficient in-
frastructure capable of organizing community-wide available MS libraries into solid
datasets that allows cross-referencing between different MS spectral data of the same
molecules. While the throughput rate of mass spectrometers and the size of publicly
available metabolomics data are growing rapidly, illuminating the molecules present
in untargeted mass spectrometry data remains a challenging task. In the past decade,
molecular networking and MASST were introduced to organize and query untar-
geted mass spectrometry data. While useful for single datasets, these methods can-
not scale to searching and clustering billions of mass spectral data in metabolomics
repositories, e.g. the Global Natural Product Social (GNPS) molecular networking
infrastructure. To address this shortcoming, we developed an efficient strategy for
the computation of dot-product between mass spectra, where the relevant informa-
tion from spectral datasets is stored in an indexing table. Based on this strategy, we
designed MASST+ and Networking+, scalable approaches for querying and cluster-
ing mass spectra that can process datasets that are up to three orders of magnitude
larger than the state-of-the-art. Our method enables querying against 717 million
spectra from the GNPS public data in less than an hour and mapping the chemical
diversity of all GNPS public data in days.



iv



Acknowledgments
I would like to thank my advisor, Professor Hosein Mohimani, for his unwaver-

ing support throughout my last two years of research. I would like to thank Profes-
sor Carl Kingsford for attending my thesis committee. I would like to thank Mihir
Mongia for his guidance and encouragement during my most struggling and diffi-
cult times in the project. I would also like to thank my collaborators Tyler Yasaka,
Mustafa Guler and Bahar Behsaz for offering me valuable advice in research, as well
as Liang Lu, Aditya Bhagwat, Mingxun Wang and Professor Pieter Dorrestein who
have been great collaborators and mentors

I would also like to thank Professor Phillip Gibbons and Professor David Ander-
son for their valuable academic and research advice. I would also like to thank my
room mates Zihao Deng, Runxuan Wang, and Zhengze Gong for their support in my
academic journey, as well as those who inspired me with new ideas and knowledge
through conversations and projects: Vivswan Shah, Fan Pu Zeng, Yiwen Song, and
hopefully many more to come.



vi



Contents

1 Introduction 1

2 Related Work 5
2.1 Mass Spectrometry Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Spectral Library Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Spectral Molecular Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Methods 9
3.1 Indexing-based dot-product score . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 MASST+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Networking+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Clustering+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Pairing+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Results 17
4.1 Benchmarking MASST+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Benchmarking Networking+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Identification of lanthipeptides using Networking+ . . . . . . . . . . . . . . . . 22

5 Conclusion and Discussion 25
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Appendix 27
6.1 Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Algorithms Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography 33

vii



viii



List of Figures

1.1 In case of exact search, MASST searches a query spectrum against all database
spectra with similar precursor masses, and computes the ExactScore, a sum mul-
tiplications between intensities of peaks shared by the query and database spec-
trum (shown in solid grey). In this case the score is 6.2 × 3.2 + 10.2 × 16.3 =
186.1. In the case of analog search, MASST searches the query spectrum against
all database spectra within a specific precursor mass range (e.g. 300 Da) and
computes the ShiftedScore, a sum of multiplications between intensities of peaks
that are shared and ∆-shifted between query and database spectrum. Here there
is one shared (solid grey) and two ∆-shifted (dashed grey) peaks, yielding a total
score of 6.2× 2.2 + 10.2× 9.2 + 15.4× 9.2 = 249.16. ∆ denotes the precursor
mass difference between query and database spectra . . . . . . . . . . . . . . . . 3

1.2 Growth of the GNPS database size since 2015. The size of the public GNPS
database is projected to contain a billion spectra by the year 2026. . . . . . . . . 4

3.1 Fast Dot Product Indexing: The fast dot product indexing table corresponds
to a two-dimensional grid, with precursor mass on the x-axis and peak mass on
the y-axis. Each database peak is inserted into a list corresponding to a specific
location in the grid, determined by the peak mass and the precursor mass. In
exact search, for each query peak only the list in a single cell will be retrieved
(highlighted with green circle). For analog search, red cells (corresponding the
shared peaks) and blue cells (corresponding to ∆-shifted peaks) are retrieved. . . 10

3.2 Preprocessing pipeline of Clustering+ . . . . . . . . . . . . . . . . . . . . . . 13

4.1 MASST + indexing memory (left) and run time (right) as database size grows.
Both runtime and memory grow sub-linearly (linear growth shown on dashed
line). On the clustered GNPS, MASST+ requires eight hours of and eight giga-
bytes of memory. Note that indexing needs only to be performed once for each
database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Indexing time changes as peak tolerance and number of query spectra grows 19
4.3 Portion of clusters containing 2, 3-5, 6-10, 10-20, 20-50, and 50+ spectra for

clusters of varying mass ranges. For precursor mass ranges of 0Da-400Da, a
significantly larger fraction of clusters contain 2 spectra compared to clusters
with precursor mass larger than 400Da. . . . . . . . . . . . . . . . . . . . . . . 21

ix



x



List of Tables

4.1 Benchmarking MASST+ search MSV000078787 (195K spectra), clustered GNPS
(83M spectra), or entire GNPS (717M spectra) are used as the reference database.
Search time, search memory consumption, and number of identifications result-
ing from searching queries are shown. For MSV000078787, clustered GNPS,
and entire GNPS, MASST+ is two orders of magnitude faster than MASST while
consuming the same or less memory. MASST search did not yield results for en-
tire GNPS in a reasonable time frame (three days threshold). MASST+ reports
are identical to MASST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Benchmarking Networking+ Comparison of Molecular Networking and Molec-
ular Networking+ runtimes for various sizes of spectral datasets (runtimes are
shown in seconds). The cases where the search did not yield results within 24
hours are shown with N/A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Benchmarking Molecular Networking and Networking+. MSV000078787
(195K spectra), entire GNPS (717M spectra) are used as spectral datasets. Clus-
tering time, clustering memory, number of clusters, networking time and net-
working memory are shown. Networking+ clusters and networks the entire
GNPS in 25 and 97 hours respectively while Molecular Networking does not
complete clustering in 14 days . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Benchmarking Clustering+ Comparison of Clustering+ and Molecular Clus-
tering+ runtimes for various sizes of spectral datasets (runtimes are shown in
seconds). The cases where the search did not yield results within 24 hours are
shown with N/A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Benchmarking Pairing+ Comparison for Pairing+ and Spectral Networking
runtimes for various sizes of spectral datasets (runtimes are shown in seconds).
The cases where the search did not yield results within 24 hours are shown with
N/A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 List of MassIVE datasets mined for lanthipeptides . . . . . . . . . . . . . . . . . 24

xi



4.7 Novel and known lanthipeptides discovered by network motif mining. The pro-
ducer organism, name, sequence, Dereplicator score, and p-value, mass and ref-
erences are shown. Moreover, it is also indicated whether the precursor genes
and core peptides are identified by Walker et al. YY means both precursor gene
and core peptide are predicted by Walker et al. YN means the precursor gene is
predicted by Walker et al., but the core peptide is inconsistent. NN means the
precursor gene is not predicted by Walker et al. The p-values were computed
using Markov Chain Monte Carlo approach [40]. This is a one-sided p-value,
where adjustment was made for multiple comparisons. . . . . . . . . . . . . . . 24

xii



Chapter 1

Introduction

Identifying and discoverying new molecules from a collected sample of mixed products has al-
ways been an important task in all areas of research in life science. For example, to understand
the function of uncharacterized genomic sequences, proteomics scientists need to identify all rel-
evant final proteome product of the gene that’s inherently more complex and closer to function
than the gene itself [25, 60]. Metablomics scientists, on the other hand, need to discover small
molecule metabolites to improve the understanding metabolic mechanism of numerous diseases,
and improve the ability for monitoring various metabolic changes in clinical settings [51]. Scien-
tists working on NP-drug discovery also need to determine all known molecules in their samples
before identifying a bioactive ‘hit’ extract that’s further fractionated to isolate the active Natural
Products [5]. Mass spectrometry (MS) is a commonly used, high-throughput tool for identifying
proteins and small molecules from mixtures [59]. Specifically, mass spectrometry breaks the
molecules into smaller pieces and measures the mass of each fragment to determine the unique
mass spectrometry fingerprints of molecules. The fingerprints of each molecule consists of a
mass to charge ratio vector (representing masses of molecular fragments) and the intensity vec-
tor (representing the abundance of each fragment). An approach to identify all known molecules
in the sample is to search mass spectra fingerprints of molecules collected from the samples
against those of all existing molecules in the database with the probabilistic measure between a
query spectra and a reference spectra in the database marked by the dot-product between their
fingerprint vectors.

During the past decade, the size of mass spectral data collected in the fields of natural prod-
ucts, exposomics, and metabolomics has grown exponentially [30, 62, 70]. How to design
algorithms and systems that can perform efficient searching and analysis across large number
mass spectral datasets has been an important open problem to tackle. In accordance with the
advances in mass spectrometry technology , multiple computational methods were developed
for analyzing this massive data. For example, in order to determine whether a spectrum shares
the same identity with the ones in the dataset, a naive approach is to brute-force compute the
probabilistic measure between the query spectrum and each reference in the dataset of known
molecules. However, the runtime of this approach grows linearly with the size of the reference
database, which is proven to be really expensive when searching across very large public spectra
datasets such as the Global Natural Product Social molecular networking infrastructure (GNPS)
dataset [70] which contains hundreds of millions of mass spectrometry data. For example,

1



searching a single query spectra against all reference spectra in GNPS using this naive approach
can take more than a whole day on a single CPU. In the case of unrestricted search allowing for a
modification in the query spectrum in relation to the reference, the runtime increases to multiple
months per query spectrum.

Recently Mass Spectrometry Search Tool (MASST) was introduced as a search engine for
finding analogs of a query spectrum in mass spectrometry repositories [71]. MASST has demon-
strated utility in the annotation of a wide variety of unidentified metabolites, including clinically
important molecules in patient cohorts [11, 18, 53] toxins/pesticides in environmental samples
[50] fungal metabolites [35], and metabolites from pathogenic microorganisms [14, 17, 38].
Moreover, molecular networking was introduced for clustering spectral datasets into families
of related molecules [6, 22]. Molecular Networking has yielded a systematic view of the
chemical space in different ecosystems and helped determine the structure of many compounds
[31, 44, 54, 55, 64, 67, 74]. MASST and molecular networking are based on a naive approach for
scoring two tandem mass spectra. MASST compares the query spectrum against all reference
spectra one by one and computes a similarity score based on the relative intensities of shared
and shifted peaks. Therefore, the runtime of MASST grows linearly with the repository size.
Molecular networking first uses MS-Clustering [22] to cluster identical spectra by calculating
a dot-product score (Figure 1.1a) between the spectra. Then Spectral Networking [6] is used
to calculate a dot product score that accounts for peaks that are shared or shifted (Figure 1.1b)
between all pairs of clusters in order to find groups of related molecules. This latter procedure
grows quadratically with the number of clusters. Current trends show that the size of public mass
spectral repositories doubles every two to three years (Figure 1.2). Therefore, the current imple-
mentations of MASST and Molecular Networking will not be able to scale with the growth of
future repositories. A MASST search for a single spectrum against the clustered global natural
product social (GNPS) database ( 83 million 54 clusters) currently takes about an hour on a single
thread and a MASST search against the entire GNPS (717 million spectra) does not complete af-
ter being run for three days. Currently, molecular networking analysis of a million spectra takes a
few hours, while molecular networking of 20 million spectra does not yield results after running
for a week. Similar to the area of computational genomics, handling the exponential growth of
repositories requires the development of more efficient and scalable search algorithms.

In this thesis, we introduce a fast dot product algorithm that preprocesses a set of spectra into
an indexing table. This indexing table maps all possible precursor m/z and fragment ion m/z pairs
to the spectra that contain them. Using this indexing, given a query spectrum, the dot product
with respect to all spectra can be computed efficiently by iterating through each query peak and
using the indexing table to retrieve spectra with similar peaks (Figure 2). Since mass spectra are
sparse, only a small fraction of spectra/peaks are retrieved for each query. The ability to leverage
this sparsity requires only a small fraction of the compute used by naive scoring methods because
the vast majority of the MS/MS spectra in the index are never touched during the query process.
By integrating this indexing approach into the scoring subroutines of MASST and Molecular
Networking, we develop MASST+ and Networking+, that are two to three orders of magnitude
faster than state-of-the-art on large datasets. Further, this indexing approach supports on-line
growth, that is, the insertion of new spectra without the need for recalculation from scratch. The
enables both MASST+ and Networking+ to efficiently handle the dynamic growth of reference
spectra.
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(a) peak matching when calculating products in
exact search

(b) peak matching when calculating products in
analog search

Figure 1.1: In case of exact search, MASST searches a query spectrum against all database
spectra with similar precursor masses, and computes the ExactScore, a sum multiplications be-
tween intensities of peaks shared by the query and database spectrum (shown in solid grey).
In this case the score is 6.2 × 3.2 + 10.2 × 16.3 = 186.1. In the case of analog search,
MASST searches the query spectrum against all database spectra within a specific precursor
mass range (e.g. 300 Da) and computes the ShiftedScore, a sum of multiplications between
intensities of peaks that are shared and ∆-shifted between query and database spectrum. Here
there is one shared (solid grey) and two ∆-shifted (dashed grey) peaks, yielding a total score of
6.2× 2.2+ 10.2× 9.2+ 15.4× 9.2 = 249.16. ∆ denotes the precursor mass difference between
query and database spectra

In the following sections of the thesis, we present the outline of our algorithm and the perfor-
mances evaluated on publicly available MS datasets. The contributions of our research consist
of the following aspects:

1. We introduced a fast indexing-based algorithm for calculating the dot-product similarity
score between two mass-spectras.

2. Based on the indexing we designed and implemented an efficient computational method,
MASST+, for searching a query spectra against an untargeted mass-spectrometry dataset
that’s three magnitudes faster than the current state-of-the-art approach.

3. Similar to MASST+, we designed and implemented Networking+ for clustering spectral
datasets into families of related molecules also three magnitudes faster than the state-of-
the-art method. Our Networking+ tool consists of Clustering+ and Pairing+ for clus-
tering identical spectra from the same molecule and finding groups of related molecules
respectively using dot-product scores respectively. Both of these methods turns out to be
about two or three magnitudes faster than existing approaches (MS-Clustering and Spectral
Networking).
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Figure 1.2: Growth of the GNPS database size since 2015. The size of the public GNPS database
is projected to contain a billion spectra by the year 2026.

4. Our methods allows searching and networking analysis on the whole publicly available
GNPS dataset (currently 717 million MS-spectras), a task that’s not achievable by any
existing approaches. The high efficiency of our algorithm allows the democratization of
large mass-spectral dataset searching, clustering and networking tasks.

5. The high efficiency of our algorithm enables forming spectral networks on large-scale
peptide datasets for discovery of new molecules.

6. We posted the networking analysis results of GNPS dataset using our method, provid-
ing solid stepping-stone for future dereplication and searching of public available mass-
spectrometry datasets.

Currently MASST+ is available as a web service from https://masst.ucsd.edu/masstplus/.
GNPS supports stand-alone MASST+ and integration with molecular networking.
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Chapter 2

Related Work

In this section, we provide a brief outline of previous work done in mass-spectrometry analysis,
spectral library search and spectral molecular networking.

2.1 Mass Spectrometry Analysis
Mass spectrometry (MS) techniques are increasingly used in the computational biology commu-
nity due to its suitability for high-throughput characterization of NP [70]. Due to rapid growth of
mass spectral datasets collected in the fields of natural products, exposomics, and metabolomics
[30, 62, 70], there has been a pressing need for an efficient infrastructure for sharing and curation
of crowdsourced MS datasets [70]. Over the past decade, there has been an increase in biological
research that take advantage of publicly available MS datasets. For example, past works using
mass spectrometry data involves discovery of new molecules [9, 10, 56], molecular structure
identifications [19, 28, 39] or metabolomics studies using spectral data analysis [6, 22, 50].

Of particular relevance to our study is the literature on applied algorithms for MS dataset
analysis. To address the issue that NP databases is not searchable with raw MS data, Global Nat-
ural Products Social Molecular Networking (GNPS) [70] is introduced as a publicly available
infrastructure that incorporates MS data from . Further research in the field involves database
searching [24, 34, 61, 69, 76], dereplication [33, 41, 42, 75] and clustering of raw Mass spec-
trometry data [1, 7, 26, 63]. Most of these tools focused on a only a narrow range of mass spec-
trometry data, such as specific types of proteins [72] or small molecules [34], or specialized for
certain research purposes, such as providing fine-grained toolkit for compound identification for
NIST spectral libraries [61], metabolite profiling [72], protein isoforms detection [2] or specific
types of protein profiling and identifications [63, 69]

2.2 Spectral Library Search
Spectral library search has become a mature computational method for identifying tandem mass
spectra in proteomics studies [77]. Spectral library search engines use spectral libraries of iden-
tified, generally experimental MS/MS spectra to identify observed MS/MS spectra to match raw
spectral information with molecules in the databases [78]. Over the past two decades, several
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spectral library search engines, including SpectraST [36] from trans-proteomics pipeline (TPP),
Bibliospec [23] from MacCross lab, XHunter [12] from Global Proteome Machine (GPM)
project, have been developed and many resources started to provide every growing, reliable spec-
tral libraries. However, none of the above tools enables finding specific MS/MS spectra of inter-
est, including unannotated spectra or structural analogs, in public repositories of metabolomics
MS data and natural product MS data. With the development of publicaly avaiable infrastructures
such as GNPS/MassIVE knowledge base [70] and adoption of universal, non-vendor-specific
MS data formats [32] in multiple publicly available MS datasets, MASST[71] was developed as
a web-based system that enables searching a single MS/MS spectrum for identical or analogous
MS/MS spectra against public data in repositories, including unknown molecules.

Almost all of these search engines use a dot-product based similarity scoring approach to
combine the experimental spectra against the library spectra, which treats each spectrum as a vec-
tor of the ordered peak intensities and measures the cosine of the angle between the spectra using
the product of matched peak values. The naive dot product approaches for calculating similarity
score had several limitations. For example, it fails to take into account the fact that matching
peaks to fragments from peptide bonds is more important than matching peaks from other ions;
it is also over-dependent of the resulting dot-product to very high peaks, and fails to take into
account the discrepancy between the m/z values of the peaks in dot-product. Latest search tools
like MASST [71] manage to alleviate the influence of very-high peaks by square-rooting the peak
intensity values and performing normalization prior to calculating the dot product. MASST [71]
performs peak-filtering and merging to get rid of noisy peaks and performs matching between
peaks using an adjustable m/z threshold. MASST also incorporates user-defined parameters of
minimum number of ions to match, precursor (parent) and product (fragment) ion tolerances, and
performs both exact similarity and analog similarity searches based on non-identical precursor
masses [73].

2.3 Spectral Molecular Networking
Molecular networking is a key method to visualize and annotate the chemical space in non-
targeted mass spectrometry data first introduced in 2012 [73]. Unlike spectra searching al-
gorithms, molecular networking goes beyond spectral matching against reference spectra, by
aligning experimental spectra against one another and connecting related molecules by their
spectral similarity. Idealy, in a molecular network, related molecules are referred to as a ‘molec-
ular family’, differing by simple transformations such as glycosylation, alkylation and oxida-
tion/reduction. [46]. Molecular networking was first publicly released as a part of the GNPS
platform [70], and has become an essential bioinformatics tool for non-targeted mass spec-
trometry (MS) visualization and annotation since then. It’s widely used in fields such as drug
discoveries [13, 45, 52], genome mining [16, 48, 65] and metablomics studies [47, 49, 57] due
to its potential of deciphering the ”dark matter” of metabolomics through publicly available MS
datasets and showing cross-associations between the chemistries of seemingly unrelated biolog-
ical systems.

Similar to most MS searching algorithms, Molecular Networking uses a vector-based com-
putational algorithm to compare the degree of spectral similarity between every MS/MS spectra
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in a dataset [27]. It serves as is a graph-based workflow that aims to organize large MS datasets
by mining spectral similarity between the MS/MS fragmentation patterns of different, but struc-
turally related precursor ions. It first performs clustering to merge spectra with the identical
precursor ion mass-to-charge ratio (m/z) and high dot exact dot product similarity score into
a single consensus spectrum. Additionally, it removes low-intensity fragment ions to simplify
the MS dataset and reduces the downstream computational load for the spectral similarity al-
gorithm [21, 22]. After forming the consensus spectrum (cluster centers) into a vector of m/z
peak values, it calculates a cosine score (normalized dot product) between every possible pair of
consensus MS/MS spectra , which allows the determination of the degree of spectral similarity
between them. The molecular networking tool released with GNPS allows customized precursor
ion mass tolerance for the consensus spectrum and the fragment ion mass tolerance for cluster-
ing. It also allows adjustments to the minimum-match fragment ions to meet the specificity of
the fragmentation behavior of the analyzed molecules. [52].
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Chapter 3

Methods

In this section, we describe the algorithm design of MASST+ and Networking+ and provide
theoretical justifications for its high efficiency that we described in Section 1.

In Section 3.1, we provide the outline of our algorithm and justifications for its high perfor-
mance. In Section 3.2, we describe the data processing techniques and implementation details
for MASST+. In Section 3.3, we describe the data processing techniques and implementation
details for Molecular Networking+. We provide detailed outline of the algorithms in Section 6.3
of the Appendix.

3.1 Indexing-based dot-product score
In this subsection, we describe and provide justification for an indexing based fast dot product
algorithm for calculating similarity scores between spectras that serves as the fundamental cause
for the high time-efficiency of our methods. Researchers usually evaluate the affinity between a
pair of spectra S1 and S2 using cosine similarity score that’s calculated through the dot-product
between the two spectras. When calculating the dot product, each spectra is treated as a vector
of m/z peak intensity pairs (mi, pi) such that m represents the mass divided by charge number
(m/z value) of the peak in the mass spectrum, whereas pi represents the normalized intensity
value of the peak. The dot product between

S1 = {(m(1)
1 , p

(1)
1 ), (m

(1)
2 , p

(1)
2 ), (m

(1)
3 , p

(1)
3 ), · · · , (m(1)

M , p
(1)
M )},

S2 = {(m(2)
1 , p

(2)
1 ), (m

(2)
2 , p

(2)
2 ), (m

(2)
3 , p

(2)
3 ), · · · , (m(2)

N , p
(2)
N )}.

(3.1)

can be written as the matched peak intensity products sum divided by the product of spectral
norm values. We consider a pair of peak to be matched if they have m/z values within a certain
threshold value tol (such as 0.01 Da)

P (S1, S2) =
∑

|m(1)
i −m

(2)
j |<tol

(p
(1)
i ∗ p

(2)
j )

||S1||2 ∗ ||S2||2
(3.2)

||S||2 =
√ ∑

(mi,pi)∈S

p2i (3.3)
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Figure 3.1: Fast Dot Product Indexing: The fast dot product indexing table corresponds to
a two-dimensional grid, with precursor mass on the x-axis and peak mass on the y-axis. Each
database peak is inserted into a list corresponding to a specific location in the grid, determined by
the peak mass and the precursor mass. In exact search, for each query peak only the list in a single
cell will be retrieved (highlighted with green circle). For analog search, red cells (corresponding
the shared peaks) and blue cells (corresponding to ∆-shifted peaks) are retrieved.

where Equation 3.3 represents the L2-norm of the spectra vector
The main underlying intuition of the algorithm is to preprocessing a set of spectra into an

indexing table that maps all possible precursor m/z and fragment ion m/z pairs to the spectra
that contain them.

In algorithm 1 of Section 6.3 we provide the brief outline of the non-indexing algorithm for
performing exact search of a query spectra against all spectras in the library through calculating
the one-versus-all exact dot-products as the similarity scores and only preserving the ones above
a certain threshold. Specifically, or each target spectra inside the library s, for each peak inside
the query spectra P = (m, p), we search through the peaks of s and try to find peaks in the
same location as P . After finding all the matched pairs, we perform sorting and selection on
the matches to make sure each peak from each spectra is matched only once when calculating
pair-wise dot product similarity score. According to Algorithm 1, it’s clear that we have a linear
growth of runtime with respect to the library size of L for searching matched peaks between the
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query and Library spectra.
We provide an example for performing indexing-based one-versus-all peak matching for ex-

act search in Algorithm 3 of Section 6.3. Specifically, we assume that we’ve already constructed
the indexing database D such that the t-th index contains peaks of all spectras from the library
L that have a m/z value between t ∗ tol and (t + 1) ∗ tol. Although the size of this database
grows linearly with the number of the spectra in the library, It only needs to be constructed once
and takes only O(1) time for adding peaks from a new library spectra to the D, offering a high
scalability.

Since each peak P = (m, p) of the query spectra could only match with peaks from library
spectras that are within a m/z difference tolerance range of tol. Therefore, we only need to
search inside the index bin m div tol and its neighboring bins to find the peaks from the en-
tire library that matches with the query peak. Based on the fact that most queries spectra have
sparsed distribution of peaks, we only need to consider the library peaks from a few m/z indexes
when performing one-versus-all dot-product calculation between the query and the library spec-
tras. In fact, the peaks from most library spectra won’t even be accessed during the calculation.
Therefore, the complexity of searching on a query spectra is only proportional with the number
of peaks inside the indexed-bins we need to look at, offering us a two or three magnitudes of
speedup when searching large open libraries.

3.2 MASST+
Given a query spectrum, MASST+ efficiently searches a database of reference spectra to find
similar spectra by using the fast dot product algorithm. The backbone of MASST+ software im-
plementation consists of two parts, constructing indexing-based database and performing search-
ing of a query spectra against all spectra inside the database through dot-product calculations.
MASST+ conducts searching based on exact similarity score and analog similarity score.

When conducting exact search, for each precursor mass M and each peak mass p, a list of
indices of all spectra with precursor M and peak within a tolerance threshold of tol are stored,
along with intensity of peaks. In case of exact search, given a query spectrum with precursor
mass M , MASST+ iterates through the peaks in the query spectrum and retrieves the lists cor-
responding to the peaks and precursor mass M . As each list is stored on disk, each list can be
retrieved in O(1) time. The SharedScore is then calculated by multiplying and adding up the
intensity of each peak in the query spectrum and reference spectra.

In the case of analog search, MASST+ uses a large precursor mass tolerance (e.g. 300Da) and
computes ShiftedScore that takes into account both shared and ∆-shifted peaks, where ∆ is the
mass difference between the query and each reference spectrum. In analog mode, all reference
spectra are processed into lists as in MASST+ exact search. Given a query spectrum, MASST+
analog search iterates through each peak (mz, p) in the query spectrum with precursor mass M ,
and scans lists of shared (ai, pi) and shifted peaks (bj, pj) from a library spectra with precursor
mass M ′ such that either |ai −mz| < tol or |(bj −M ′)− (mz −M)| < tol. The ShiftedScore
between the query and each reference spectrum is calculated by multiplying and adding up the
intensity of shared and shifted peaks in the two spectra. Note that MASST+ analog search is
a variant of the fast dot product algorithm as both methods rely on similarly structured index
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tables. Rather than just retrieving one list for each query spectrum peak, however, MASST+
analog search retrieves two lists.

During the preprocessing step of indexing, We perform filtering using a certain window size
to preserve the top-K peaks with the highest intensity for each window. We then perform L2-
normalization on peaks of each spectra to make sure the square sum of all peaks is equal to 1.
We construct the shifted and unshifted indexing database according to procesures in algorithm
2 and then split the indexes into different ranges and stores peak from each range in a group of
binary files

When conducting exact search on a given set of query spectra, we ues Algorithm 3 to find
the exact matched peaks between the query and library spectra that has at least one unshifted
matched peak with the query. to calculate the dot-product similarity score between query spectra
and library spectra according to Algorithm 5 in Section 6.3. When conducting analog search, we
use Algorithm 4 in Section 6.3 to perform shifted or exact peak matching between the query and
library spectra. We calculate the dot-product similarity score between query spectra and library
spectra according to Algorithm 5 ensuring each peak is only matched once for calculating the
pairwise dot-product.

3.3 Networking+
The Networking+ software consists primarily of two phases, Clustering+ and Pairing+. In
the Clustering+ phase, we cluster the input spectral library as a number of groups such that
members within each group has a exact dot-product score of larger than a certain threshold
(0.9). In the Pairing+, we select a candidate from each cluster as the cluster center and calculate
all-versus-all pairwise exact or analog dot-product similarity score. We treat each cluster as
a node and preserve the similarity scores above a certain threshold as an edge between the two
clusters. We’re then able to perform extensive metabolomics analysis or signature small molecule
discoveries on the connected components of in the graph

3.3.1 Clustering+
The clustering+ part is aimed to gather untargeted spectra that are likely to belong to the same
molecular structure by comparing the exact similarity scores between their mass-spectrometry
fingerprints. In order for the fingerprints of two spectra to be matched, they should have almost
identical precursor masses. Therefore, in the first step of clustering, we preprocess the spectra
into different precursor mass bins separated according to a certain precursor mass tolerance. Each
bin correspond to a small precursor mass range. We wouldn’t consider clustering mass spectra
with a precursor mass difference larger than the precursor mass tolerance value.

For each precursor mass bin, we perform clustering using a greedy algorithm by iterating
through all spectra in the bin and compare them with candidates of existing clusters. If the
spectra has an above threshold exact similarity score with the candidate spectra of at least one
existing clusters, we add the spectra to the cluster. Otherwise if the spectra is not similar to any of
the existing spectras, we create a new cluster for the spectra and use the spectra as the candidate
for the new cluster.
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Figure 3.2: Preprocessing pipeline of Clustering+

The naive approach of directly comparing the dot-product score between normalized spec-
tra can yield misleading clustering results in certain cases. Since a lot of spectra in the GNPS
library contains one dominant peak that takes up to over 80% of the normalized intensity value,
it would only take two spectra to have an overlapping dominant peak in order to have a high
cosine similarity score rather than having a exact matched mass-spec fingerprint. The existence
of isotopes also generates neighboring peaks that are +1 or +2 units away in m/z values with
a random ratio between the peak intensities directly influenced by the isotopic abundance ratio
of the elements in the samples. The error produced by noise signal of mass-spectrometer is also
likely to cause deviation of mass-distribution, yielding peaks in additional locations or breaking
a larger peak into two smaller ones with close m/z values. These factors would greatly influ-
ence the dot-product similarity score, either increase the chance of spectra from heterogenous
molecules to be clustered or reduce the cosine similarity score between untargeted spectra of
the same molecule. We inherited the preprocessing steps (Figure 3.2) from the source code of
MS-Clustering [22].

During preprocessing step of each spectra, we first merge the peaks close to each other in
consideration of random errors produced by mass-spectrometers using a scanning window. We
then rescale the peak values so that they sum up to 1000 to avoid explosion of dominent peak
when performing the L2-normalization. We also further search peaks off by one or two units
in m/z value (peaks with a difference of 0.99 − 1.01 or 1.99 − 2.01 in m/z value) to reduce
additional peaks caused by isotopic mass differences.

We’ve provided an outline of the Clustering+ procedures below. The first step involves
generating indexing databases according to Algorithm 2. However, contrary to the indexing step
of MASST+, the indexing database for clustering+ is hierarchical. The first layer indexes based
on precursor mass ranges, while the second layer indexes based on m/z value of peaks.

Indexing for Clustering+ Variables:
L the spectral library to be clustered
mzTol the m/z tolerance for two peaks to be matched
massTol the precursor mass tolerance for two spectra to be clustered

1: procedure INDEXING(L,mzTol,massTol)
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2: Initialize Database D = {}
3: D.mzTol = mzTol
4: D.massTol = massTol
5: for spectra s ∈ L do
6: massBin = s.precurMass div massTol ▷ calculate the precursor mass bin of s
7: Store spectra s in the precursor mass bin D[massBin]
8: for peak ∈ s.peaks do ▷ indexing peaks accoding to Algorithm 2
9: Add peak to the m/z Indexed Structure inside the precursor mass bin

10: end for
11: end for
12: return D
13: end procedure

After performing indexing, we perform greedy clustering to iterate over spectra of each
presursor mass bin. For each spectra q in the bin, we calculate the exact cosine dot-product
similarity score between the spectra and candidate spectra of all clusters inside the same presur-
sor mass bin based on the one-versus-all dot product similarity score Algorithm 3 and 5. If the
spectra q does not fit with the candidate of any cluster, we make a new cluster for q and mark it
as the candidate for the new cluster.

Variables:
D the indexed database generated by Indexing step
thresh the minimum threshold for exact dot product similarity score to cluster two spectra

Clustering+ procedure based on Indexed Database
1: procedure CLUSTERING+(D)
2: AllClusters = {}
3: for massBin ∈ D do
4: Initialize empty ClusterCenters to store candidate spectras of clusters
5: Initialize empty CandidateIndex to store peaks of candidate spectras
6: for q ∈ D[massBin] do
7: Preprocess q according to Figure 3.2
8: Based on Algorithm 5,
9: calculate exact scores between q and ClusterCenters using CandidateIndex

10: if at least one similarity score greater than thresh then
11: Add q to the cluster with the highest candidate similarity score with q
12: else
13: Create new cluster C in AllClusters
14: Add q to new cluster C
15: Add q to ClusterCenters
16: Add peaks of q to CandidateIndex using Indexing functions of Algorithm 2
17: end if
18: end for
19: end for
20: return AllClusters
21: end procedure
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3.3.2 Pairing+
Pairing+ computes a score similar to MASST+ analog search that accounts for ∆-shifted and
shared peaks for all pairs of input spectra (e.g. candidates as cluster center from Clustering+).
To do this, it constructs an indexing table similar to MASST+ analog search. Then the table is
used to efficiently compute the score between all pairs of spectra.

We implemented Pairing+ as a more time-efficient approach for spectral network generation
than the baseline proposed in Molecular Networking implementation [27]. Based on the assump-
tion that each cluster generated by MS-Clustering contains spectra from the same molecular
structure, Pairing+ is designed to establish connections between the molecular clusters to form a
graph that visualizes the similarity between molecules. The edges of the graph were determined
based on whether the exact/analog dot-product similarity score between two cluster candidates
are above a certain threshold (which is usually set to 0.7 or 0.9 depending on the task we’re
running). In order to determine all possible pairwise connections between clusters, we need to
calculate the all-versus-all pairwise dot product scores above the threshold. We apply the same
intuition as MASST+ and Clustering+ by preprocessing the cluster candidates into an indexed-
bin based storage structure (If we were using results directly generated by Clustering+ then we
can skip this step by taking the indexing database storing the cluster center peaks generated dur-
ing clustering). We then take each candidate as the query, and calculate its product with all other
candidates through the same methodology as MASST+. After constructing all possible connec-
tions between molecular clusters, we eliminate noise by removing singletons from the graph. We
then perform further analysis by calculating the connected components using Breath-first search
algorithm. We provide a brief outline for the procedure of performing Pairing+ based on analog
similarity score below

Variables:
D the database containing all candidate spectra
I the indexing database containing peaks from all candidates
thresh the minimum exact/analog similarity score for forming an edge between candidates

Clustering+ procedure based on Indexed Database
1: procedure PAIRING+(D, I)
2: Edges = {}
3: for q ∈ D do
4: Initialize empty Product vector to store dot-product scores with other candidates
5: Calculate one versus all product score using query q and store in Product
6: for (specIdx, score) ∈ Product do
7: if score > thresh then
8: Add (q.id, specIdx, score) to Edges
9: end if

10: end for
11: end for
12: Construct V as the indexes of candidates appear as with endpoint of at least one edge
13: Perform BFS on G = (V,E) to generate all connected components information S
14: return S
15: end procedure
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When performing testing of the above draft implementation on large scale MS-datasets, we real-
ized that our Pairing+ implementation had a low time and memory-efficiency. This is likely due
to the redundant memory utilization for storing matched peaks between low-similarity spectra
pairs since memory allocation procedure in C++ is very expensive. In order to further optimize
our implementation, we take advantage of a prefiltering technique based on an estimated upper-
bound for the dot-product similarity score between two spectral peak vectors. Given spectral
peaks v1 = {(pi.mz, pi.int)}Mi=0 and v2 = {(qi.mz, qi.int)}Ni=0 such that v1, v2 contains the exact
and shifted peaks of two spectra, and a tolerance for peak matching of ϵ,

Prod(v1, v2) ≤
∑

||qi.mz−pj .mz||<ϵ

pi.int× qj.int

The above inequality holds since when performing dot-product calculation between two spectra,
each peak index from a spectra can only be matched to one peak index from the other spectra,
therefore, we need sorting in Algorithm 4 to take the optimal set of matching between peaks from
two spectra. The in-place update rule for calculating the product upperbound equation 3.3.2
requires only Constant amount of memory, and thus over two magnitudes more time-efficient
than directly calculating the actual product score. Additionally, due to the sparsity of spectral
peaks, majority of the pairs in the database are expected to have a low product similarity score.
Therefore, our algorithm can be greatly optimized by filtering out the product pairs with a product
upperbound below the threshold

in addition to the above optimization, we also take similar approaches as the preprocessing
steps of Clustering+ to ensure the spectral fingerprint of two molecules match as much as pos-
sible. For example, we take log transformation when normalizing the peak intensity values and
require two matched candidates to have at least 6 matched peaks in additional to having a high
dot-product score. These steps alleviate the influence of the most dominate peak in the spectra
for dot-product score calculation and ensures two matched candidates have spectral fingerprint
that are similar to a reasonable extent.
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Chapter 4

Results

In this section, we describe the results of our main results and supplemental analysis. We include
the comparison between our method and baseline in both time and memory efficiency metric
when testing on different scale of sampled spectral datasets. We benchmark our MASST+ and
Networking+ toolkit on the whole GNPS containing over 717 million spectra, a dataset that
couldn’t be handled by the baseline on commodity computational resources. We report our time
and memory utilization for performing searching and networking on the dataset along with the
connected-component graph generated by Networking+. Additionally, we provide example of
using Networking+ for identification of certain types of small molecules such as lanthipeptides

4.1 Benchmarking MASST+

When benchmarking MASST+, we use a bin size of 0.01Da, which can handle both high-
resolution (0.01Da accuracy) and low-resolution (0.5Da accuracy) data. we use a dot-product
similarity score threshold of 0.7 for searching matched spectra.

We have benchmarked MASST+ (Table 4.1) on various GNPS datasets including MSV000078787
dataset collected on Streptomyces cultures (5,433 spectra), clustered GNPS (83,131,248 spec-
tra), and entire GNPS (717,395,473 spectra). While MASST and MASST+ report identical hits,
MASST+ is two orders of magnitude faster and more memory efficient. For small data sets we
only get a 3-fold increase in speed. This becomes magnified when the data set that is searched
becomes larger. In case of the clustered GNPS, MASST+ performs analog search in 15 seconds
while MASST takes 49 min, a 196-fold increase. In case of the entire GNPS, MASST+ performs
analog search in under two hours on average, while MASST search does not finish within three
days on the GNPS server making it practically not possible to routinely perform such a search.

Table 4.1 illustrates the runtime and memory consumption of MASST+ versus MASST in
exact and analog mode for various subsets of the clustered GNPS. According to 4.1, the indexing
time and memory consumption grows linearly with the size of datasets. According to 4.2a, the
indexing time increases for larger values of peak mass tolerance. MASST+ takes eight hours
of compute time and eight gigabytes of memory to index 83 million spectra from the clustered
GNPS, and 72 hours of compute time and 9 gigabytes of memory to index 717 million spectra
contained in GNPS. Figure 4.2b breaks down MASST+ runtime into two different steps, loading
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Table 4.1: Benchmarking MASST+ search MSV000078787 (195K spectra), clustered GNPS
(83M spectra), or entire GNPS (717M spectra) are used as the reference database. Search time,
search memory consumption, and number of identifications resulting from searching queries are
shown. For MSV000078787, clustered GNPS, and entire GNPS, MASST+ is two orders of
magnitude faster than MASST while consuming the same or less memory. MASST search did
not yield results for entire GNPS in a reasonable time frame (three days threshold). MASST+
reports are identical to MASST.

Method Mode Dataset(size) Search Time Search Memory Matched IDs

MASST exact MSV000078787 (195K) 0.41 sec 50MB 10
MASST+ exact MSV000078787 (195K) 0.13 sec 0KB 10
MASST analog MSV000078787 (195K) 0.61 sec 40MB 16

MASST+ analog MSV000078787 (195K) 0.14 sec 0KB 16
MASST exact Clustered GNPS (83M) 34 min 952MB 49

MASST+ exact Clustered GNPS (83M) 8.6 sec 24MB 49
MASST analog Clustered GNPS (83M) 49 min 1.1GB 2,175

MASST+ analog Clustered GNPS (83M) 15 sec 159MB 2,175
MASST exact Whole GNPS (717M) N/B N/B N/B

MASST+ exact Whole GNPS (717M) 43 min 21GB 171
MASST analog Whole GNPS (717M) N/B N/B N/B

MASST+ analog Whole GNPS (717M) 115 min 35GB 265,958

peaks lists and computing dot product, for various numbers of query spectra. Loading peak lists
consumes about half of the total runtime when the number of query spectra is greater than 100.

Figure 4.1: MASST + indexing memory (left) and run time (right) as database size grows. Both
runtime and memory grow sub-linearly (linear growth shown on dashed line). On the clustered
GNPS, MASST+ requires eight hours of and eight gigabytes of memory. Note that indexing
needs only to be performed once for each database.

18



(a) Time required for indexing 1 million spectra for various values of peak tolerance. Indexing time
increases monotonically with respect to peak tolerance.

(b) Time required to load lists from index and compute dot product for various numbers of query spectra.
Fraction of time devoted to loading decreases for larger numbers of query spectra.

Figure 4.2: Indexing time changes as peak tolerance and number of query spectra grows
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4.2 Benchmarking Networking+
We compare our implementation of Networking+ with Molecular Networking under the same
parameter values. In order to find structurally related families of small molecules, the exist-
ing Molecular Networking method first clusters spectra from identical molecules using MS-
Clustering [6]. It then connects clusters of related molecules using Spectral Networking [22].
MS-Clustering puts two spectra in the same cluster if their precursor mass difference is below
a threshold (usually 2Da) and their cosine dot product (a normalized SharedScore) is above a
certain threshold (usually 0.7). Then for each cluster, a consensus spectrum is constructed using
the approach introduced by Frank et al [22]. In spectral networking, two consensus spectra are
connected to each other if the shared-shifted cosine score (normalized ShiftedScore) is above a
threshold (default is 0.7).

We provide benchmarking result for Networking+ against molecular networking on various
data sizes for which runtime is less than 24 hours in Table 4.2. We also provide a benchmark
of Clustering+ in Table 4.4 and Pairing+ in Table 4.5 separately. In 24 hours Clustering+ can
process 300 million spectra on a single CPU, while MS-Clustering can process 20 million spec-
tra. Moreover, in this timeline, Pairing+ can process 2 million spectra, while spectral networking
can handle 0.2 million spectra. Clustering+ and Pairing+ are two orders of magnitude faster than
their counterparts, MS-Clustering and Spectral Networking . The clusters and networks reported
by Clustering+ and Pairing+ are identical to MSClustering and spectral networks. As previously
noted in Bittremieux et al.[8], it was not possible to directly create a molecular network from
all the GNPS spectra, here we show that this is now possible with Networking+ with minimal
computer memory requirements.

Table 4.2: Benchmarking Networking+ Comparison of Molecular Networking and Molecular
Networking+ runtimes for various sizes of spectral datasets (runtimes are shown in seconds).
The cases where the search did not yield results within 24 hours are shown with N/A

Dataset size Networking+ Runtime (sec) Molecular Networking Runtime (sec)

100,000 7 30
200,000 13 62
500,00 44 247

1,000,000 94 4041
2,000,000 202 8067
5,000,000 500 28117

10,000,000 1296 N/A
20,000,000 2400 N/A
50,000,000 9931 N/A

100,000,000 34359 N/A

We clustered the entire GNPS (717 million scans) using Clustering+ and formed the network
using Pairing+. This resulted in 8,453,822 million clusters and 4,947,928 connected components
with a total of 17,533,386 edges. As shown in 4.3, about 61 percent of the clusters with pre-
cursor mass between 0 and 400 Daltons consisted of only two GNPS spectra whereas less than
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half the clusters with precursor mass above 400 Daltons consisted of only two GNPS spectra.
Of 307,709 clusters consisting of 20 or more spectra, for 18% (54,518 clusters) all spectra came
from a single MassIVE dataset, while for 13% and 69% (39,428 and 213,763 clusters) spectra
came from 2 or 3+ MassIVE datasets as shown in Figure 4.4a. As for the networking results,
among 4,948,146 connected components in the network, 98% (4,849,047 components) consist of
a single node, while 1.5%, 0.3%, 0.2% and 0.02% (74530, 13957, 9239, and 1152 components)
had 2, 3, and 4-9 and 10+ nodes Among 7,986,356 clusters in the network, 1.7% (134,198 Clus-
ters) matched reference spectra from the NIST library, 6% (477,721 clusters) were a neighbor
of a cluster matched NIST library, 14% (1,130,092 clusters) were a neighbor of a neighbor, and
78% (5,390,554 clusters) were three or more hops away from any cluster matching NIST library
as shown in Figure 4.4b. Networking+ took 6 days to finish this task on 1 CPU. Currently, this
task is not feasible using existing approaches.

Figure 4.3: Portion of clusters containing 2, 3-5, 6-10, 10-20, 20-50, and 50+ spectra for clusters
of varying mass ranges. For precursor mass ranges of 0Da-400Da, a significantly larger fraction
of clusters contain 2 spectra compared to clusters with precursor mass larger than 400Da.

Table 4.3: Benchmarking Molecular Networking and Networking+. MSV000078787 (195K
spectra), entire GNPS (717M spectra) are used as spectral datasets. Clustering time, clustering
memory, number of clusters, networking time and networking memory are shown. Network-
ing+ clusters and networks the entire GNPS in 25 and 97 hours respectively while Molecular
Networking does not complete clustering in 14 days

Method Dataset(size) Clustering Time Clustering Mem Clusters count networking time Networking Mem

Molecular-Networking MSV000078787 (219,915) 321 sec 662Mb 5,288 8 sec 1224Kb
Networking+ MSV000078787 (219,915) 27 sec 992Kb 5,288 0.25 sec 996Kb

Molecular-Networking Whole GNPS (717M) N/A N/A N/A N/A N/A
Networking+ Whole GNPS (717M) 60 hours 93Gb 8,453,822 97 hours 23Gb
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(a) Fraction of large clusters (consisting of
more than 20 GNPS spectra), that contain spec-
tra coming from 1,2,3-5,6-10,10-20, and 20+
unique MASSIVE datasets

(b) Fraction of nodes/clusters in the molecu-
lar network that 0, 1, 2. . .11+ edges away from
clusters that are exact matches to spectra in the
NIST spectral library.

Table 4.4: Benchmarking Clustering+ Comparison of Clustering+ and Molecular Clustering+
runtimes for various sizes of spectral datasets (runtimes are shown in seconds). The cases where
the search did not yield results within 24 hours are shown with N/A

Dataset size Clustering+ Runtime (sec) Molecular Clustering Runtime (sec)

100,000 7 110
200,000 13 151
500,00 42 506

1,000,000 87 1009
2,000,000 185 2867
5,000,000 444 7273

10,000,000 1043 24596
20,000,000 1620 50557
50,000,000 3005 N/A
100,000,000 9933 N/A
300,000,000 91729 N/A

4.3 Identification of lanthipeptides using Networking+

The indexing strategies proposed here are applicable to all classes of small molecules. Here we
illustrate the application of these methods in the case of lanthipeptide natural products. Currently,
methods for high-throughput discovery of lanthipeptides through computational analysis of ge-
nomics and metabolomics data suffer from various limitations, especially at repository scale.
Lanthipeptides are a biologically important class of natural products that include antibiotics [58],
antifungals [43], antiviral [20], and antinociceptives [29]. Lanthipeptides are structurally de-
fined by the thioether amino acids lanthionine, methyllanthionine and labionin. Lanthionine and
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Table 4.5: Benchmarking Pairing+ Comparison for Pairing+ and Spectral Networking runtimes
for various sizes of spectral datasets (runtimes are shown in seconds). The cases where the search
did not yield results within 24 hours are shown with N/A

Dataset size Pairing+ Runtime (sec) Spectral Networking Runtime (sec)

10,000 1.14 27
20,000 5.62 111
50,000 32.5 2072

100,000 91.8 23808
200,000 278.3 83101
500,000 2018.8 N/A

1,000,000 7900.2 N/A
2,000,000 39737 N/A

methyllanthionine are introduced by dehydration of a serine or threonine (to generate a dehy-
droalanine or dehydrobutyrine) and addition of a cysteine thiol, catalyzed by a dehydratase and a
cyclase, respectively [3]. During lanthipeptide biosynthesis, a precursor gene lanA is translated
by the ribosome to yield a precursor peptide LanA that consists of a N-terminal leader peptide
and a C-terminal core peptide sequence. The core peptide is post-translationally modified by the
lanthionine biosynthetic machinery and other enzymes. It is then proteolytically cleaved from
the leader peptide to yield the mature lanthipeptide and exported out of the cell by transporters.
Lanthipeptides usually possess network motifs that enable mining them in spectral networks.
These motifs include mass shifts of -18.01Da (H2O mass) that correspond to the varying number
of dehydrations, and mass shifts equal to amino acid masses that correspond to promiscuity in
Nterminal leader processing.

We formed the spectral network using Networking+ for a subset of 500 Streptomyces cul-
tures with known genomes (Table 4.6). The dataset contains 9,410,802 scans, which are clus-
tered into 354,401 nodes, 6,032 connected components, and 1,265,311 edges. Currently, Molec-
ular Networking crashes on this dataset after eight days of processing. We further only retained
29,639 nodes that possess the network motif by filtering for edges with mass differences equal
to a loss of H2O, NH3, or an amino acid mass. Then we filtered for nodes with long amino
acid sequence tags of various lengths using PepNovo35. There are a total of 2,353 nodes with
sequence tags of length 12 or longer, and 285 of these nodes are connected to an edge with
a mass difference equal to the mass of one H2O or an amino acid loss. We further inspected
these nodes using our in-house software algorithm, Seq2RiPP. Given a lanthipeptide precursor,
Seq2Ripp generates all molecular structures of all possible candidate molecules by considering
different cores and various modifications and then searches the candidate molecular structures
against mass spectra using Dereplicator [41]. This strategy identified three known and 14 novel
lanthipeptides with p-values below 1e-15 (Table 4.7). Among them, the precursor of 13 lan-
thipeptides (76%) overlaps with reports by the genome mining strategy introduced by Walker et
al. [68]. However, only for two lanthipeptides, the core peptides predicted are consistent with
predictions from Walker et al. (11%). Note that in contrast to our approach, Walker et al. is
based solely on genomics, and it does not use metabolomics data for identifying the start of
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core peptide. This demonstrates that MASST+ and Molecular Networking+ can be used to gain
insight into previously uncharacterized molecules.

Table 4.6: List of MassIVE datasets mined for lanthipeptides

MassIVE ID number of strains media

MSV000090476 60 ISP-2
MSV000090473 60 ISP-4
MSV000090472 60 NSG
MSV000090471 60 TSA
MSV000090457 60 Czapek
MSV000089818 264 ISP-4
MSV000089817 264 TSA
MSV000089816 264 Czapek
MSV000089815 264 NSG
MSV000089813 264 ISP-2
MSV000088816 176 ISP-4
MSV000088801 176 TSA
MSV000088800 176 Czapek
MSV000088764 176 NSG
MSV000088763 176 ISP-2

Table 4.7: Novel and known lanthipeptides discovered by network motif mining. The producer
organism, name, sequence, Dereplicator score, and p-value, mass and references are shown.
Moreover, it is also indicated whether the precursor genes and core peptides are identified by
Walker et al. YY means both precursor gene and core peptide are predicted by Walker et al. YN
means the precursor gene is predicted by Walker et al., but the core peptide is inconsistent. NN
means the precursor gene is not predicted by Walker et al. The p-values were computed using
Markov Chain Monte Carlo approach [40]. This is a one-sided p-value, where adjustment was
made for multiple comparisons.

Organism name Sequence score p-value Mass Walker et al.

Streptomyces rimosus NRRL WC-3904 CHM-1793 DT-18GHCS-18GVCT18VLVCT-18VAVC 21 2.50E-36 1793.77 YN
Streptomyces albus NRRL F5917 CHM-1731 YS-18QVCS-18IVVCNT18VVICG 19 5.80E-33 1731.81 YN

Streptomyces lavenduligriseus NRRL ISP-5487 SapT YT-18QGCS-18GLCT18IVICAT-18VVICG 18 1.40E-32 2030.95 YN
Streptomyces species NRRL S-240 CHM-1911 S-18TAGCS-18GLCT-18IIVCAT18VVICA 17 5.20E-31 1911.91 YN

Streptomyces pathocidini NRRL B-24287 CHM-2168 IT-18S-18IS-18YCT-18PGCT18SDGGGS-18GCS-18HCC 16 1.60E-26 2168.76 YY
Streptomyces moroccanus NRRL B-24548 CHM-2182 IT-18S-18IS-18YCT-18PGCT18SEGGGS-18GCS-18HCC 15 2.00E-25 2182.78 YY

Streptomyces cinerochromoge nes NBRC 13822 CHM-1974 YT-18EGCS-18GLCT18ILVCAT-18VVIC 13 9.10E-24 1974.91 NN
Streptomyces hygroscopicus NRRL ISP-5087 CHM-1354 MT-18QVCPVT-18SWHC 13 3.60E-23 1354.56 YN

Streptomyces rimosus NRRL WC-3874 CHM-1831 PSRSSSPGSFPPGST-18PS18APS-18 14 1.60E-21 1831.85 NN
Streptomyces albus NBRC 13041 CHM-1775 YS-18QVCS-18IVICNT18VVICS 11 5.50E-20 1775.84 NN

Streptomyces kanamyceticus NBRC 13414 CHM-1748 IS-18GEES-18CFRT-18CT18TCS-18LC 12 3.40E-19 1748.68 YN
Streptomyces sulphureus NRRL B-2195 CHM-2229 TEGGGGDS-18SGCS-18GVCT18IVVCT-18VIVC 9 1.10E-17 2229.95 YN

Streptomyces anulatus NBRC 12853 AmfS T-18GS-18QVS-18LLVCEYSS18LSVVLCTP 11 2.10E-17 2212.09 YN
Streptomyces anulatus NBRC 13369 CHM-1669 C-34LPEPFP+16TATT18RVGCD 11 9.50E-17 1669.78 YN

Streptomyces paludis JCM 33019 CHM-1635 S-18GEES-18CFRT-18CT-18T18CSLC 11 2.30E-16 1635.59 YN
Streptomyces anulatus NBRC 12861 CHM-2433 CRPPSASLCIT-18SDRS-18S18TGRYLSM 11 3.10E-16 2433.14 NN

Streptomyces brasiliensis NBRC 101283 Amfs analog TGS-18QVS-18VLVCEYS-18S18LSVVLCTP 11 7.10E-16 2198.08 YN
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Chapter 5

Conclusion and Discussion

5.1 Conclusion
In this thesis, we present the design and results of MASST+ and Networking+, two efficient soft-
wares for mass spectrometry searching and analysis over large datasets. We included thorough
comparison with baselines including MASST, Molecular Networking, Molecular Clustering and
Spectral Networking and proved the huge improvement of our method over existing approaches
in terms of both time and memory efficiencies. By taking advantage of indexing calculation for
dot-product similarity scores, we were able to make MASST+ over two magnitudes faster than
MASST, and Networking+ over two magnitudes faster than Molecular Networking. We also
proved the effectiveness of Networking+ for natural product discovery of small molecules by
performing identification of lanthipeptide.

5.2 Discussion
The mass spectrometry search tool (MASST) and molecular networking have become powerful
strategies to analyze LC-MS/MS based data to a broad range of users in the research commu-
nity [4, 46, 53, 55, 66, 73, 75]. However, these tools do not scale to searching and clustering
large spectral repositories with hundreds of millions of spectra. As the size of mass spectral
repositories doubles every two to three years, the current implementation of MASST and Molec-
ular Networking will soon not be able to meet the needs of biologists and clinicians and thus new
solutions are urgently needed. Recent advances have enabled the determination of molecular for-
mula [37] and chemical class [15] for a large portion of spectra in GNPS. Despite these efforts,
it is challenging to assign a chemical structure to the majority of spectra in GNPS.

MASST+ and Networking+ provide efficient ways to annotate this dark matter by elucidating
known molecules and their novel variants in repositories as they grow to billions of mass spectra.
MASST+ currently searches query spectra against the clustered GNPS in a few seconds (in
comparison to an hour for MASST), hence enabling instant analysis of the query mass spectrum
of interest. Further, MASST+ can search the entire GNPS, which contains hundreds of millions
of spectra in less than two hours, a task that is currently impossible with MASST. MASST+ can
be parallelized by splitting a set of query spectra among several computational nodes/threads.
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Each thread then can run a separate MASST+ search job that utilizes the same index stored on
disk.
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Chapter 6

Appendix

6.1 Code Availability
We provide the code for the algorithm and software tools mentioned in the thesis below:

1. MASST+ and Networking+ https://github.com/mohimanilab/MASSTplus

2. Seq2Ripp (https://github.com/mohimanilab/seq2ripp

3. PepNovo (https://github.com/mohimanilab/seq2ripp

4. Dereplicator (https://ccmsucsd.github.io/GNPSDocumentation/dereplicator/)

6.2 Data Availability
The datasets analyzed are available at gnps.ucsd.edu. Accession codes related to Lanthepeptide
portion of manuscript are MSV000090476, MSV000090473, MSV000090472, MSV000090471,
MSV000090457, MSV000089818, MSV000089817, MSV000089816, MSV000089815, MSV000089813,
MSV000088816, MSV000088801, MSV000088800, MSV000088764, MSV000088763. For
comparing MASST+ and Networking+ against previous state of the art, datasets MSV 000078787
, Clustered GNPS, and Unclustered GNPS were used.

6.3 Algorithms Outline
We provide detailed outline for all the algorithms mentioned in the thesis, including the non-
indexing algorithm for dot-product similarity search (Algorithm 1), indexing procedures for
MASST+ and Networking+ (Algorithm 2), peak matching process for one-versus-all exact
(Algorithm 3 )or analog (Algorithm 4) search, and calculating dot-product scores from matched
peaks (Algorithm 5)
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Algorithm 1 A Naive algorithm for query againset all dot-product calculation
Input

A query spectra q containing peaks {(m(q)
1 , p

(q)
1 ), · · · , (m(q)

K , p
(q)
K )}

A spectra library L = {s1, s2, · · · , sN} such that each spectra contains a list of m/z values
Similarity dot-product score threshold thresh (default set to be 0.7 or 0.9)
m/z tolerance tol for two peaks to be matched (default set to be 0.01 or 0.02)

Output
A mapping Res = {(i1, v1), (i2, v2), · · · , (in, vn)} containing idx of matched library spectra
and their similarity product with the query

REQUIRE
peak intensities in q and all library spectra s are L2-normalized
To normalize spectra s = {(mk, pk)}, we perform pk =

pk√∑
j p

2
j

for each peak in the list

1: function NONINDEXSEARCH(L, q, thresh = 0.9, tol = 0.02)
2: Res← {}
3: for s = {(m(s)

1 , p
(s)
1 ), (m

(s)
2 , p

(s)
2 ), · · · )} ∈ L do

4: Prod← 0 ▷ Dot product similarity score between s and q
5: M ← {} ▷ M contains all the matched spectra peaks between s and q

6: for (m
(s)
j , p

(s)
j ) ∈ s do

7: L← Search all peaks (m(q)
k , p

(q)
k ) ∈ q such that |m(q)

k −m
(s)
j | < tol

8: for each matched peak (m
(q)
k , p

(q)
k ) append (k, j, p

(q)
k p

(s)
j ) to M

9: end for
10: Sort M = {(i, j, v)} based on descending order of v
11: Q← {} ▷ A set containing indexes of all peaks from q for the product
12: S ← {} ▷ A set containing indexes of all peaks from s for the product
13: for (i, j, v) ∈M do
14: if i ̸∈ Q & j ̸∈ S then
15: Q.add(i)
16: S.add(j)
17: Prod← Prod+ v
18: end if
19: end for
20: if Prod ≥ thresh then
21: idx← Index of s inside dataset S
22: Res[idx]← Prod
23: end if
24: end for
25: return Res
26: end function
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Algorithm 2 Storing peaks in the indexing-based structure
Input

A spectra library L = {s1, s2, · · · , sN} such that each spectra contains a list of m/z values
m/z tolerance tol for each indexed bin)

Output
An indexing database D = {(idx, i,m, p)} such that idx is the index of spectra in L,
i is the index of the peak in the spectra, m is the m/z value, p is the normalized peak intensity

Helper Function generating indexing structure for unshifted peaks
1: procedure UNSHIFTEDINDEXING(L, tol = 0.02)
2: Initialize empty indexing database D = [] in storage
3: idx← 0
4: for L[idx] ∈ L do
5: i← 0
6: for (mi, pi) ∈ L[idx].peaks do
7: j ← Round(mi div tol)
8: if j ≥ D.size() then
9: D.resize(j + 1)

10: end if
11: D[j].add((idx, i,mi, pi))
12: end for
13: end for
14: end procedure
Helper Function generating indexing database for shifted peaks

1: procedure SHIFTEDINDEXING(L, tol = 0.02)
2: Initialize empty indexing structure D = [] in storage
3: idx← 0
4: for L[idx] ∈ L do
5: i← 0
6: for (mi, pi) ∈ L[idx].peaks do
7: j ← Round((mi − L[idx].precursorMass) div tol)
8: if j ≥ D.size() then
9: D.resize(j + 1)

10: end if
11: D[j].add((idx, i,mi, pi))
12: end for
13: end for
14: end procedure
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Algorithm 3 Generating exact matched peaks between query spectra and library spectra
Input

A query spectra q containing peaks {(m(q)
1 , p

(q)
1 ), · · · , (m(q)

K , p
(q)
K )}

A spectra library L = {s1, s2, · · · , sN}
The address of the unshifted indexing database D, generated by Algorithm 2
Exact similarity dot-product score threshold thresh (default set to be 0.7 or 0.9)
m/z tolerance tol for two peaks to be matched (default set to be 0.01 or 0.02)

Output
A dictionary M containing matched peaks between library spectra and the query

1: function EXACTMATCH(q, L,D, thresh = 0.9, tol = 0.02)
2: M ← {} ▷ A set containing matched peaks for each spectra
3: for (m

(q)
i , p

(q)
i ) ∈ q do

4: bin← Round(m
(q)
i div tol)

5: for (idx, k,m
(idx)
k , p

(idx)
k ) ∈ D[bin] do

6: M [idx].add(i, k, p
(q)
i , p

(idx)
k )

7: end for
8: for (idx, k,m

(idx)
k , p

(idx)
k ) ∈ D[bin− 1]

⋃
D[bin+ 1] do

9: if |p(idx)k − p
(q)
i | ≤ tol then

10: M [idx].add(i, k, p
(q)
i , p

(idx)
k )

11: end if
12: end for
13: end for
14: return M
15: end function
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Algorithm 4 Generating analog matched peaks between query spectra and library spectra
Input

A query spectra q containing peaks {(m(q)
1 , p

(q)
1 ), · · · , (m(q)

K , p
(q)
K )}

A spectra library L = {s1, s2, · · · , sN}
The addresses of unshifted indexing database D1 and shifted indexing database D2

Analog similarity dot-product score threshold thresh (default set to be 0.7 or 0.9)
m/z tolerance tol for two peaks to be matched (default set to be 0.01 or 0.02)

Output
A dictionary M containing unshifted and shifted matched peaks between library spectra and

the query
1: function ANALOGMATCH(q, L,D1, D2, thresh = 0.9, tol = 0.02)
2: M ← {} ▷ A set containing matched peaks for each spectra
3: for (m

(q)
i , p

(q)
i ) ∈ q do

4: bin1 ← Round(m
(q)
i div tol)

5: bin2 ← Round((m
(q)
i − q.precursorMass) div tol)

6: for (idx, k,m
(idx)
k , p

(idx)
k ) ∈ D1[bin] do

7: M [idx].add(i, k, p
(q)
i , p

(idx)
k )

8: end for
9: for (idx, k,m

(idx)
k , p

(idx)
k ) ∈ D2[bin] do

10: M [idx].add(i, k, p
(q)
i , p

(idx)
k )

11: end for
12: for (idx, k,m

(idx)
k , p

(idx)
k ) ∈ D1[bin1 − 1]

⋃
D1[bin1 + 1] do

13: if |p(idx)k − p
(q)
i | ≤ tol then

14: M [idx].add(i, k, p
(q)
i , p

(idx)
k )

15: end if
16: end for
17: for (idx, k,m

(idx)
k , p

(idx)
k ) ∈ D2[bin2 − 1]

⋃
D2[bin2 + 1] do

18: if |p(idx)k − p
(q)
i | ≤ tol then

19: M [idx].add(i, k, p
(q)
i , p

(idx)
k )

20: end if
21: end for
22: end for
23: return M
24: end function
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Algorithm 5 Similarity scores between query and library spectra based on matched peaks
Input

A spectra library L = {s1, s2, · · · , sN}
The dictionary M output by Algorithm 3 or Algorithm 4

Output
A mapping Res between idx of matched lib spectra and exact score with the query

1: function SCORES(M,L)
2: S ← {}
3: for s = L[idx] do
4: Sort M [idx] = {(i, j, v)} based on descending order of v
5: Q,S ← {} ▷ Sets containing indexes of all peaks from q, s for the product
6: for (i, j, v) ∈M do
7: if i ̸∈ Q & j ̸∈ S then
8: Q.add(i), S.add(j)
9: Prod← Prod+ v

10: end if
11: end for
12: if Prod ≥ thresh then
13: Res[idx]← Prod
14: end if
15: end for
16: return Res
17: end function
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[15] Kai Dührkop, Louis-Félix Nothias, Markus Fleischauer, Raphael Reher, Marcus Ludwig,
Martin A Hoffmann, Daniel Petras, William H Gerwick, Juho Rousu, Pieter C Dorrestein,
et al. Systematic classification of unknown metabolites using high-resolution fragmentation
mass spectra. Nature biotechnology, 39(4):462–471, 2021. 5.2
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Roland Kellner, and Günther Jung. Prepeptide sequence of epidermin, a ribosomally syn-
thesized antibiotic with four sulphide-rings. Nature, 333(6170):276–278, 1988. 4.3

[59] ThermoFisher Scientific. Overview of mass spectrometry for protein analysis, 2016. 1

[60] Andrej Shevchenko, Ole N Jensen, Alexandre V Podtelejnikov, Francis Sagliocco, Matthias
Wilm, Ole Vorm, Peter Mortensen, Anna Shevchenko, Helian Boucherie, and Matthias
Mann. Linking genome and proteome by mass spectrometry: large-scale identification
of yeast proteins from two dimensional gels. Proceedings of the National Academy of
Sciences, 93(25):14440–14445, 1996. 1

[61] Stephen E Stein and Donald R Scott. Optimization and testing of mass spectral library
search algorithms for compound identification. Journal of the American Society for Mass
Spectrometry, 5(9):859–866, 1994. 2.1

[62] Manish Sud, Eoin Fahy, Dawn Cotter, Kenan Azam, Ilango Vadivelu, Charles Burant,
Arthur Edison, Oliver Fiehn, Richard Higashi, K Sreekumaran Nair, et al. Metabolomics
workbench: An international repository for metabolomics data and metadata, metabolite
standards, protocols, tutorials and training, and analysis tools. Nucleic acids research, 44
(D1):D463–D470, 2016. 1, 2.1

[63] Kelly Tilleman, Katrien Van Beneden, Aline Dhondt, Ilse Hoffman, Filip De Keyser, Eric
Veys, Dirk Elewaut, and Dieter Deforce. Chronically inflamed synovium from spondy-
loarthropathy and rheumatoid arthritis investigated by protein expression profiling followed
by tandem mass spectrometry. Proteomics, 5(8):2247–2257, 2005. 2.1

[64] Eric P Trautman, Alan R Healy, Emilee E Shine, Seth B Herzon, and Jason M Craw-
ford. Domain-targeted metabolomics delineates the heterocycle assembly steps of col-
ibactin biosynthesis. Journal of the American Chemical Society, 139(11):4195–4201, 2017.
1

[65] Daniela BB Trivella and Rafael de Felicio. The tripod for bacterial natural product dis-
covery: genome mining, silent pathway induction, and mass spectrometry-based molecular
networking. MSystems, 3(2):10–1128, 2018. 2.3

[66] Justin JJ van Der Hooft, Hosein Mohimani, Anelize Bauermeister, Pieter C Dorrestein,
Katherine R Duncan, and Marnix H Medema. Linking genomics and metabolomics to
chart specialized metabolic diversity. Chemical Society Reviews, 49(11):3297–3314, 2020.
5.2

[67] Maria I Vizcaino, Philipp Engel, Eric Trautman, and Jason M Crawford. Comparative
metabolomics and structural characterizations illuminate colibactin pathway-dependent
small molecules. Journal of the American Chemical Society, 136(26):9244–9247, 2014.
1

38



[68] Mark C Walker, Sara M Eslami, Kenton J Hetrick, Sarah E Ackenhusen, Douglas A
Mitchell, and Wilfred A Van Der Donk. Precursor peptide-targeted mining of more than
one hundred thousand genomes expands the lanthipeptide natural product family. BMC
genomics, 21:1–17, 2020. 4.3

[69] Le-heng Wang, De-Quan Li, Yan Fu, Hai-Peng Wang, Jing-Fen Zhang, Zuo-Fei Yuan,
Rui-Xiang Sun, Rong Zeng, Si-Min He, and Wen Gao. pfind 2.0: a software package for
peptide and protein identification via tandem mass spectrometry. Rapid Communications
in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of
Up-to-the-Minute Research in Mass Spectrometry, 21(18):2985–2991, 2007. 2.1

[70] Mingxun Wang, Jeremy J Carver, Vanessa V Phelan, Laura M Sanchez, Neha Garg, Yao
Peng, Don Duy Nguyen, Jeramie Watrous, Clifford A Kapono, Tal Luzzatto-Knaan, et al.
Sharing and community curation of mass spectrometry data with global natural products
social molecular networking. Nature biotechnology, 34(8):828–837, 2016. 1, 2.1, 2.2, 2.3

[71] Mingxun Wang, Alan K Jarmusch, Fernando Vargas, Alexander A Aksenov, Julia M
Gauglitz, Kelly Weldon, Daniel Petras, Ricardo da Silva, Robert Quinn, Alexey V Mel-
nik, et al. Mass spectrometry searches using masst. Nature biotechnology, 38(1):23–26,
2020. 1, 2.2

[72] Elizabeth J Want, Grace O’Maille, Colin A Smith, Theodore R Brandon, Wilasinee Urit-
boonthai, Chuan Qin, Sunia A Trauger, and Gary Siuzdak. Solvent-dependent metabolite
distribution, clustering, and protein extraction for serum profiling with mass spectrometry.
Analytical chemistry, 78(3):743–752, 2006. 2.1

[73] Jeramie Watrous, Patrick Roach, Theodore Alexandrov, Brandi S Heath, Jane Y Yang,
Roland D Kersten, Menno van der Voort, Kit Pogliano, Harald Gross, Jos M Raaijmakers,
et al. Mass spectral molecular networking of living microbial colonies. Proceedings of the
National Academy of Sciences, 109(26):E1743–E1752, 2012. 2.2, 2.3, 5.2

[74] Sunmin Woo, Kyo Bin Kang, Jinwoong Kim, and Sang Hyun Sung. Molecular networking
reveals the chemical diversity of selaginellin derivatives, natural phosphodiesterase-4 in-
hibitors from selaginella tamariscina. Journal of natural products, 82(7):1820–1830, 2019.
1

[75] Jane Y Yang, Laura M Sanchez, Christopher M Rath, Xueting Liu, Paul D Boudreau, Nicole
Bruns, Evgenia Glukhov, Anne Wodtke, Rafael De Felicio, Amanda Fenner, et al. Molec-
ular networking as a dereplication strategy. Journal of natural products, 76(9):1686–1699,
2013. 2.1, 5.2

[76] John R Yates III. Database searching using mass spectrometry data. Electrophoresis, 19
(6):893–900, 1998. 2.1

[77] Ding Ye, Yan Fu, Rui-Xiang Sun, Hai-Peng Wang, Zuo-Fei Yuan, Hao Chi, and Si-Min He.
Open MS/MS spectral library search to identify unanticipated post-translational modifica-
tions and increase spectral identification rate. Bioinformatics, 26(12):i399–i406, 06 2010.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btq185. URL https://doi.org/10.
1093/bioinformatics/btq185. 2.2

[78] Ding Ye, Yan Fu, Rui-Xiang Sun, Hai-Peng Wang, Zuo-Fei Yuan, Hao Chi, and Si-Min

39

https://doi.org/10.1093/bioinformatics/btq185
https://doi.org/10.1093/bioinformatics/btq185


He. Open ms/ms spectral library search to identify unanticipated post-translational modi-
fications and increase spectral identification rate. Bioinformatics, 26(12):i399–i406, 2010.
2.2

40


	1 Introduction
	2 Related Work
	2.1 Mass Spectrometry Analysis
	2.2 Spectral Library Search
	2.3 Spectral Molecular Networking

	3 Methods
	3.1 Indexing-based dot-product score
	3.2 MASST+
	3.3 Networking+
	3.3.1 Clustering+
	3.3.2 Pairing+


	4 Results
	4.1 Benchmarking MASST+
	4.2 Benchmarking Networking+
	4.3 Identification of lanthipeptides using Networking+

	5 Conclusion and Discussion
	5.1 Conclusion
	5.2 Discussion

	6 Appendix
	6.1 Code Availability
	6.2 Data Availability
	6.3 Algorithms Outline

	Bibliography



