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Abstract

In recent years, many works in Computer Vision and NLP have demon-
strated remarkable steps toward generalization through the collection and use
of diverse datasets. However, collecting large-scale robot datasets is often dif-
ficult due to many reasons including cost, reliance on human supervision, and
safety. An alternative approach is to take advantage of the accessibility and
wide variety of human videos available on the internet. In this thesis, we in-
vestigate two approaches that use human videos for robotic control without
relying on robot demonstrations.

In our first work, we use human videos as a prior for dexterous manipulation.
Humans are able to perform a host of skills with their hands, from making food
to operating tools. In this work, we investigate these challenges, especially in
the case of soft, deformable objects as well as complex, relatively long-horizon
tasks. However, learning such behaviors from scratch can be data inefficient. To
circumvent this, we propose a novel approach, DEFT (DExterous Fine-Tuning
for Hand Policies), that leverages human-driven priors, which are executed
directly in the real world. In order to improve upon these priors, DEFT involves
an efficient online optimization procedure. With the integration of human-
based learning and online fine-tuning, coupled with a soft robotic hand, DEFT
demonstrates success across various tasks, establishing a robust, data-efficient
pathway toward general dexterous manipulation.

In our second work, we introduce a method to learn a domain- and agent-
agnostic reward function from large-scale egocentric human data. Prior ap-
proaches that use human data for reward learning either require a small sample
of in-domain robot data in training or need a goal image specified in the robot’s
environment. In this work, we focus on the setting where only human data is
available at training and test time. Our approach trains a multi-task reward
function that learns to discriminate between different tasks by observing the
changes in the environment. We show that our method has strong performance
on three simulation tasks without the help of robot demonstrations in training
or in-domain goals.
The source code for this thesis document is available at:

https://github.com/adityak77/masters-thesis

https://github.com/adityak77/masters-thesis
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Chapter 1
Introduction

Robotic manipulation is an important problem for deploying robots that can perform
everyday tasks in the real world. Human videos include numerous examples of humans in-
teracting with objects, which can be a very useful prior for robots. After all, most common
objects and tools are built with human use in mind, so observing how humans behave in
the world can provide essential information that can be used towards manipulation tasks.

Another important goal in robotics is generalization in terms of environments, tasks,
robot embodiments, etc... One of the reasons that other areas, such as Computer Vision
and NLP, have shown strong generalization with deep learning is that large, annotated
datasets can be collected relatively cheaply for vision and text. On the other hand, collect-
ing demonstrations with robots is difficult because it is expensive, time-consuming, and
requires human supervision for managing resets and safety concerns. Additionally, because
robots are not widely deployed in society, datasets of large magnitude do not naturally exist
on the internet.

Human videos, however, are plentiful on the internet and accessible at scale. Computer
vision tools are also advanced enough to be able to reliably extract task-relevant informa-
tion involving the actions of humans and objects in the scene. As a result, human videos
could potentially bring us closer to the grand goal of general-purpose manipulation. Rely-
ing on human videos comes with many challenges as well, including the lack of annotated
human actions and the embodiment gap between human and robot morphologies. In this
thesis, we present two works that aim to overcome these challenges and enable robots to
interact with objects by learning from human videos.

• In Chapter 2, we investigate how human videos can be used as a prior for dexterous
manipulation. Because most tools and household objects are designed to be ma-
nipulated by human hands, an anthropomorphic hand is a natural step to enable
human-like interaction with common objects. Our method, DEFT, explores in the
real world with a safe and durable soft hand. Because learning a policy from scratch
is inefficient, we develop a prior from human videos that learns to predict affordances
for grasping the object. Experiments demonstrate that DEFT can perform a variety
of challenging tasks effectively.
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• In Chapter 3, we investigate how we can learn generalizable reward functions from
only human videos. While most methods that learn rewards from human videos
require either (1) robot demonstrations in training or (2) goal images specified in the
robot domain, we show that we can learn a multi-task reward without any in-domain
information. In order to bridge the visual morphology gap, our insight is to learn
a representation on data where the agents are visually removed. We show strong
results on three simulation tasks. In the future, we aim to scale to more tasks.
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Chapter 2
Dexterous Fine-Tuning for Hand Policies

2.1 Introduction

Figure 2.1: We present DEFT, a novel approach that can learn complex, dexterous tasks in the
real world in an efficient manner. DEFT manipulates tools and soft objects without any robot
demonstrations.

The longstanding goal of robot learning is to build robust agents that can perform long-
horizon tasks autonomously. This could for example mean a self-improving robot that
can build furniture or an agent that can cook for us. A key aspect of most tasks that
humans would like to perform is that they require complex motions that are often only
achievable by hands–consider the task of tying shoelaces. Such a task would be impossible
with a parallel jaw gripper. Therefore, in this work, we investigate real-world dexterous
manipulation, its challenges, and its deployment in the real world.

A key challenge in deploying policies in the real world, especially with robotic hands,
is that there exist many failure modes. Controlling a dexterous hand is much harder than
end-effectors due to larger action spaces and complex dynamics. This problem becomes
even more difficult when contacts with objects are more involved, as there can be many
points of contact on a robotic hand. To address this, one option is to improve directly
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in the real world via practice. Traditionally, reinforcement learning (RL) and imitation
learning (IL) techniques have been used to deploy hands-on tasks such as in-hand rotation
or grasping. To be proficient at any skill a lot of practice or data is needed. This is
often the case as setups are built so that it is either easy to simulate in the real world or
robust to practice. However, the real world contains tasks that one cannot simulate (such
as manipulation of soft objects like food) or difficult settings in which the robot cannot
practice (sparse long-horizon tasks like assembly). How can we build an approach that can
scale to such tasks?

There are several issues with current approaches for practice and improvement in the
real world. Robot hardware often breaks, especially with the amount of contact to learn
dexterous tasks like operating tools. We thus investigate using a soft anthropomorphic
hand [Man+23], which can easily run in the real world without failures or breaking. This
soft anthropomorphic hand is well-suited to our approach as it is flexible and can gently
handle object interactions. The hand does not get damaged by the environment and is
robust to continuous data collection. Due to its human-like proportions and morphology,
retargeting human hand grasps to robot hand grasps is made simpler.

Unfortunately, this hand is difficult to simulate due to its softness. Directly learning
from scratch is also difficult as we would like to build generalizable policies, and not practice
for every new setting. To achieve efficient real-world learning, we must learn a prior
for reasonable behavior to explore using useful actions. Many previous methods rely on
in-domain human demonstrations that are manually collected by a human operator or
demonstrator [SBP22; Zha+23; Pom88; Man+21]. Due to recent advances in large-scale
computer vision, we propose leveraging human data to learn priors for dexterous tasks, and
improving on such priors in the real world. We aim to use the vast corpus of internet data
to define this prior. What is the best way to combine human priors with online practice,
especially for hand-based tasks? When manipulating an object, the first thing one thinks
about is where on the object to make contact, and how to make this contact. Then, we
think about how to move our hands after the contact. In fact, this type of prior has been
studied in computer vision and robotics literature as visual affordances [FWG15; Bah+23;
Goy+22; NFG19; Sha+20; Liu+22a; Liu+22b; WGG17]. In our approach, DEFT, we build
dexterous grasp affordances which predict the contact point, hand pose at contact, and
post-contact trajectory. To improve upon these, we introduce a sampling-based approach
similar to the Cross-Entropy Method (CEM) to fine-tune. Specifically, we tune the robot
hand grasp, the pose, and the post-grasp trajectory all in the real world for a variety of
tasks. This method enables iterative real-world improvement in less than an hour.

In summary, our approach (DEFT) executes real-world learning on a soft robot hand
with only a few trials in the real world. To facilitate this efficiently, we train priors on
human motion from internet videos. We introduce 9 challenging tasks (as seen in Figure
2.1) that are difficult even for trained operators to perform: Picking a Cup, Pouring
Lemonade, Opening a Drawer, Picking a Spoon, Scooping a Grape, Stirring a Spoon,
Picking Grapes, Flipping a Bagel, and Squeezing a Lemon. While our method begins to
show good success on these tasks with real-world fine-tuning, more investigation is required
to complete these tasks more effectively. Please see our website for details and videos at
http://dexterousfinetuning.github.io.
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2.2 Related Work

2.2.1 Real-world robot learning

Real-world manipulation tasks can involve a blend of classical and learning-based meth-
ods. Classical approaches like control methods or path planning often use hand-crafted
features or objectives and can often lack flexibility in unstructured settings [Kar+11; KL00;
MYB16]. On the other hand, data-driven approaches such as deep reinforcement learn-
ing (RL) can facilitate complex behaviors in various settings, although these methods
frequently rely on lots of data, privileged reward information and struggle with sample
efficiency [KP08; PMA10; Lil+16; Pop+17; Pat+17]. Efforts have been made to scale
end-to-end RL [Lev+16; Nai+18; Agr+16; Haa+17; Kal+18; Kal+21] to the real world,
but their approaches are not yet efficient enough for more complex tasks and action spaces
and are reduced to mostly simple tasks even after a lot of real-world learning. Many ap-
proaches try to improve this efficiency such as by using different action spaces [Mar+19],
goal relabeling [And+17], trajectory guidance [LK13], visual imagined goals [Nai+18], or
curiosity-driven exploration [MBP23].

2.2.2 Learning from Human Motion

The field of computer vision has seen much recent success in human body and object inter-
action with deep neural networks. The human hand is often parametrized with MANO, a
45-dimensional vector [RTB17] of axes aligned with the wrist, and a 10-dimensional shape
vector. MANOtorch from [Yan+21] aligns it with the anatomical joints. Many recent
works detect MANO in monocular video [Wan+20; Kan+17; RSJ21]. Some also detect
objects as well as the hand together [Sha+20; YGT22]. We use FrankMocap to detect the
hand for this work.

There are many recent datasets including the CMU Mocap Database and Human3.6M
[Ion+13] for human pose estimation, 100 Days of Hands [Sha+20] for hand-object interac-
tions, FreiHand [Zim+19] for hand poses, Something-Something [Goy+17a] for semantic
interactions. ActivityNet datasets [FN15], or YouCook [Das+13] are action-driven datasets
that focus on dexterous manipulation. We use these three datasets: [Gra+22] is a large-
scale dataset with human-object interactions, [Liu+22c] for curated human-object inter-
actions, and [Dam+18] which has many household kitchen tasks. In addition to learning
exact human motion, many others focus on learning priors from human motion. [Ma+22a;
Nai+22b] learn general priors using contrastive learning on human datasets.

2.2.3 Learning for Dexterous Manipulation

With recent data-driven machine learning methods, roboticists are now beginning to learn
dexterous policies from human data as well. Using the motion of a human can be directly
used to control robots [Han+20a; SSP22; Mul22]. Moving further, human motion in
internet datasets can be retargeted and used directly to pre-train robotic policies [SBP22;
MG22]. Additionally, using human motion as a prior for RL can help with learning skills
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that are human-like [Raj+17; Pen+18; MG21]. Without using human data as priors,
object reorientation using RL has been recently successful in a variety of settings [And+20;
Che+22b]. Similar to established work in robot dogs which do not have an easy human
analog to learn from, these methods rely on a lot of training data collected in simulation
along with zero-shot transfer [Aga+23; Mar+22].

2.2.4 Soft Object Manipulation

Manipulating soft and delicate objects in a robot’s environment has been a long-standing
problem. Using the torque output on motors, either through measuring current or through
torque sensors, is useful feedback to find out how much force a robot is applying [Yos85;
AS91]. Coupled with dynamics controllers, these robots can learn to not apply too much
torque to the environment around them [LP17; LT17; Kha87]. A variety of touch sensors
[Si+23; YDA17; Bhi+21; Sun+19] have also been developed to feel the environment around
it and can be used as control feedback.

Soft robotics, like our robot hand, inherently have compliant properties that make them
sensitive to the environment [RT15; WTB18]. However, this introduces other difficult
design challenges. Soft materials can change properties and are difficult to manufacture.
Soft robots, including our robot hand, often do not know the end-effector tip position in a
closed-loop manner [But+01; Bau+22].
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2.3 Background

2.3.1 DASH: Dexterous Anthropomorphic Soft Hand

Recently introduced, DASH (Dexterous Anthropomorphic Soft Hand) [Man+23] is a four-
fingered anthropomorphic soft robotic hand well-suited for machine learning research use.
We use the DASH hand on the end-effector of our arm for this work.

The DASH hand’s human-like size and form factor allows us to retarget human hand
grasps to robot hand grasps easily and perform human-like grasps. Each finger is actuated
by 3 motors connected to string-like tendons, which deform the joints closest to the fingertip
(DIP joint), the middle joint (PIP joint), and the joint at the base of the finger (MCP joint).
There is one motor for the finger to move side-to-side at the MCP joint, one for the finger
to move forward at the MCP joint, and one for PIP and DIP joints. The PIP and DIP
joints are coupled to one motor and move dependently. While the motors do not know the
end-effector positions of the fingers, we learn a mapping function from pairs of motor angles
and visually observed open-loop finger joint angles. These models are used to command
the finger joint positions learned from human grasps.

2.3.2 Retargeting MANO to Soft Hand

In order to use human hand poses as a prior for the end effector joints, we need to first
detect hand poses with a model such as MANO [RTB17], and then develop an effective
method to retarget it to soft hand joints.

For MANO parameters, the axis of each of the joints is rotation aligned with the wrist
joint and translated across the hand. However, our robot hand operates on forward and
side-to-side joint angles. To translate the MANO parameters to the robot fingers, we
extract the anatomical consistent axes of MANO using MANOTorch. Once these axes are
extracted, each axis rotation represents twisting (not possible for human hands), bending,
and spreading. We then match these axes to the robot hand. The spreading of the human
hand’s fingers (side-to-side motion at the MCP joint) maps to the side-to-side motion at
the robot hand’s base joint. The forward folding at the base of the human hand (forward
motion at the MCP joint) maps to the forward motion at the base of the robot hand’s
finger. Finally, the bending of the other two finger joints on the human hand, PIP and DIP,
map to the robot hand’s PIP and DIP joints. While the thumb does not have anatomically
the same structure, we map the axes in the same way.

Other approaches [SSP22] rely on creating an energy function to map the human hand
to the robot hand. However, because the soft hand is similar in anatomy and size to a
human hand, it does not require energy functions for accurate retargeting.
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2.4 Fine-Tuning Affordance for Dexterity

Figure 2.2: Left: DEFT consists of two phases: an affordance model that predicts grasp param-
eters followed by online fine-tuning with CEM. Right: Our affordance prediction setup predicts
grasp location and pose.

The goal of DEFT is to learn useful, dexterous manipulation in the real world that can
generalize to many objects and scenarios. DEFT learns in the real world and fine-tunes
robot hand-to-object interaction using only a few samples. However, without any priors
on what is useful behavior, the robot will explore the action space inefficiently. Especially
with a high-dimensional robotic hand, we need a strong prior to effectively explore the
real world. We train an affordance model on human videos to learn what are reasonable
behaviors the robot should perform.

2.4.1 Learning grasping affordances

To learn from dexterous interaction in a sample efficient way, we use human hand motion
as a prior for robot hand motion. We aim to answer the following: (1) What useful,
actionable information can we extract from the human videos? (2) How can human motion
be translated to the robot embodiment to guide the robot? In internet videos, humans
frequently interact with a wide variety of objects. This data is especially useful in learning
object affordances. Furthermore, one of the major obstacles in manipulating objects with
few samples is accurately grasping the object. A model that can perform a strong grasp
must learn where and how to grasp. Additionally, the task objective is important in
determining object affordances–humans often grasp objects in different ways depending on
their goal. Therefore, we extract three pieces of information from human videos: the grasp
location, the human grasp pose, and the task.

Given a video clip V = {v1, v2, . . . , vT}, the first frame vt where the hand touches the ob-
ject is found using a pre-trained, off-the-shelf hand-object detection model [Sha+20]. Sim-
ilar to previous approaches [Bah+23; Goy+22; Liu+22a; NFG19], a set of contact points
are extracted to fit a Gaussian Mixture Model (GMM) with centers µ = {µ1, µ2, . . . , µk}.
Detic [Zho+22] is used to obtain a cropped image v′1 containing just the object in the initial
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Figure 2.3: We produce three priors from human videos: the contact location (top row) and
grasp pose (middle row) from the affordance prior; the post-grasp trajectory (bottom row)
from a human demonstration of the task.

frame v1 to condition the model. We use Frankmocap [RSJ21] to extract the hand grasp
pose P in the contact frame vt as MANO parameters. We also obtain the wrist orientation
θwrist in the camera frame. This guides our prior to output wrist rotations and hand joint
angles that produce a stable grasp. Finally, we acquire a text description T describing the
action occurring in V .

We extract affordances from three large-scale, egocentric datasets: Ego4D [Gra+22]
for its large scale and the variety of different scenarios depicted, HOI4D [Liu+22b] for
high-quality human-object interactions, and EPIC Kitchens [Dam+18] for its focus on
kitchen tasks similar to our robot’s. We learn a task-conditioned affordance model f that
produces (µ̂, θ̂wrist, P̂ ) = f(v′1, T ). We predict µ̂ in similar fashion to [Bah+23]. First, we
use a pre-trained visual model [Nai+22a] to encode v′1 into a latent vector zv. Then we
pass zv through a set of deconvolutional layers to get a heatmap over v′1 and use a spatial
softmax to estimate µ̂.

To determine θ̂wrist and P̂ , we use zv and an embedding of the text description zT =
g(T ), where g is the CLIP text encoder [Rad+21b]. Because transformers have seen success
in encoding various multiple modes of input, we use a transformer encoder T to predict
θ̂wrist, P̂ = T (zv, zT ). Overall, we train our model to optimize

L = λµ||µ− µ̂||2 + λθ||θwrist − θ̂wrist||2 + λP ||P − P̂ ||2 (2.1)

At test time, we generate a crop of the object using Segment-Anything [Kir+23] and
give our model a task description. The model generates contact points on the object, and
we take the average as our contact point. Using a depth camera, we can determine the 3D
contact point to navigate to. While the model outputs MANO parameters [RTB17] that
are designed to describe human hand joints, we retarget these values to produce similar
grasping poses on our robot hand in a similar manner to previous approaches [Han+20b;
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SSP22]. In addition to the affordance model f , we collect one demo of the human doing
the robot task (Figure 2.3). This demo is used as a prior on the post-grasp trajectory. We
extract the task-specific wrist trajectory after the grasp using [RSJ21]. In the fine-tuning
stage, we initialize the post-grasp trajectory with this human demonstration. Once we
have this prior, how can the robot improve upon it?

2.4.2 Fine-tuning via Interaction

Algorithm 1 Fine-Tuning Procedure for DEFT

Require: Task-conditioned affordance model f , task
description T , post-grasp trajectory τ , residual pol-
icy π. E number of elites, M number of warm-up
episodes, N total iterations.
for k = 1 . . . N do

Ik,0 ← initial image
ξk ← f(Ik,0, T )
ϵk = π(Ik,0, ξk)
Execute grasp from ξk + ϵk, then trajectory τ
Collect reward Rk; reset environment
if k > M then

Order traj indices i1, i2, . . . , ik based on re-
wards
E ← {ϵi1 , ϵi2 , . . . , ϵiE}
Fit π(.) as a VAE to E

end if
end for

The affordance prior allows the
robot to narrow down its learning be-
havior to a small subset of all possible
behaviors. However, these affordances
are not perfect and the robot will of-
tentimes still not complete the task.
This is partially due to morphology dif-
ferences between the human and robot
hands, inaccurate detections of the hu-
man hands, or differences in the task
setup. In order to improve upon this,
we practice in an online fashion to op-
timize the learned skills.

Let the grasp location, wrist rota-
tion, and grasp pose, as well as the tra-
jectory from our affordance prior be ξ.
During training we sample noise ϵ ∼ D
where D is initialized to N (0, σ2) (for
a small σ). We rollout a trajectory pa-

rameterized by ξ + ϵ. We collect Ri, the reward for each ξi = f(vi) + ϵi where vi is the
image. After an initial number of M warmup episodes, we rank the rollouts based on Ri

and extract sampled noise from the elite trajectories {ϵi1 , ϵi2 , . . . , ϵik}. We fit D to the elite
trajectories to improve the sampled noise.

At test time, we could take the mean values of the top N trajectories for the rollout
policy. However, this does not account for the appearance of different objects, previously
unseen object configurations, or other properties in the environment. To account for this,
we train a VAE [SYL15; RMW14a; RMW14b; KW13] to output residuals δj conditioned
on an encoding of the initial image ϕ(Ij,0) and affordance model outputs ξj from the top ten
trajectories. We train an encoder q(z|δj, cj) where cj = (ϕ(Ij,0), ξj), as well as a decoder
p(δj|z, cj). At test time, our residual policy π(I0, ξ) samples z ∼ N (0, I) and predicts

δ̂ = p(z, (I0, ξ)). Then we rollout the trajectory determined by the parameters ξ + δ̂.
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2.5 Experimental Setup

Figure 2.4: Left: Workspace Setup. We place an Intel RealSense camera above the robot to
maintain an egocentric viewpoint, consistent with the affordance model’s training data. Right:
Thirteen objects used in our experiments.

2.5.1 Task Setup

We introduce 9 tabletop tasks: Pick Cup, Pour Cup, Open Drawer, Pick Spoon, Scoop
Grape, Stir Spoon, Pick Grape, Flip Bagel, and Squeeze Lemon. For all tasks, we randomize
the position of the object on the table, as well as use train and test objects with different
shapes and appearances to test for generalization. See Figure 2.4 for a depiction of the
robot’s workspace and the objects we use in our experiments.

We define the success criteria for each of our 9 tasks as follows:

• Pick Cup: Cup must leave table surface and stay grasped throughout trial.

• Pour Cup: Cup must be grasped throughout trial and also rotate so that the top of
the cup is at a lower height than the base.

• Open Drawer: Drawer is initially slightly open so that it can be grasped. By the end
of the rollout, the drawer should be at least 1 centimeter more open than it was at
the beginning.

• Pick Spoon: The spoon must not be in contact with the table at the end of the trial.

• Stir Spoon: The spoon base must rotate around the jar/pot at least 180 degrees
while grasped.

• Scoop Grape: The spoon must have a grape at the end of the trial while being held
by the soft hand.

• Pick Grape: All grapes must be held by the hand above the table surface. In partic-
ular, if any single grape falls due to a weak stem, this is considered a failure.
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• Flip Bagel: The side of the bagel that is facing up at the end of the trial should be
opposite the side facing up at the beginning.

• Squeeze Lemon: The lemon should be grasped securely on top of the juicer.

2.5.2 Online Fine-Tuning Setup

To achieve real-world learning with the soft robot hand, we pretrain an internet affordance
model as a prior for robot behavior. As explained in Section 2.4, we train one language-
conditioned model on all data. At test time, we use this as initialization for our real-
world fine-tuning. The fine-tuning is done purely in the real world. An operator runs
10 warmup episodes of CEM, followed by 20 episodes that continually update the noise
distribution, improving the policy. We train a residual VAE policy that trains on the top
ten CEM rollouts to predict the noise given the image and affordance outputs. Across all
our experiments, we collect data for several thousands of rollouts for over 100 hours of
real world data collection.

2.5.3 Datasets and Affordance Model Parameters

We use data from Ego4D [Gra+22], EpicKitchens-100 [Dam+18], and HOI4D [Liu+22b].
After filtering for clips of sufficient length, clips that involve grasping objects with the right
hand, and clips that have language annotations, we used 64666 clips from Ego4D, 9144
clips from EpicKitchens, and 2707 clips from HOI4D. In total, we use a dataset of 76517
samples for training our model.

For our contact location model, we use the visual encoder from [Nai+22a] to encode the
image as a 512-dimensional vector. We use the spatial features of the encoder to upsample
the latent before applying a spatial softmax to return the contact heatmap. This consists
of three deconvolutional layers with 512, 256, and 64 channels in that order.

To predict wrist rotation and grasp pose, we use the language encoder from [Rad+21b]
to compress the language instruction to a 512-dimensional vector. We concatenate the
visual and language latents and pass it through a transformer with eight heads and six
self-attention layers. We pass the result of the transformer through an MLP with hidden
size 576 and predict a vector of size 48: the first 3 dimensions are the axis-angle rotations;
the last 45 dimensions are the joint angles of the hand. These correspond to the parameters
output by Frankmocap [RSJ21], which we used to get ground truth hand pose.

We jointly optimize the L2 loss of the contact location µ, the wrist rotation θwrist and
grasp pose P . The weights we used for the losses are λµ = 1.0, λθ = 0.1, λP = 0.1. We
train for 70 epochs with an initial learning rate of 0.0002 and a batch size of 224. We used
the Adam optimizer [KB14] with a cosine learning rate scheduler. We trained on a single
NVIDIA RTX A6000 with 48GB RAM.

2.5.4 Hardware Setup

We use a 6-DOF UFactory xArm6 robot arm for all our experiments. We attach it to a
16-DOF Soft Hand using a custom, 3D-printed base. We use a single, egocentric RGBD
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camera in order to capture the 3D location of the object in the camera frame. We calibrate
the camera so that the predictions of the affordance model can be converted to and executed
in the robot frame. The flexibility of the robot hand also makes it robust to collisions with
objects or unexpected contact with the environment.

2.5.5 Safety

In our fine-tuning experiments, there is a particular focus on the safety of the robot system
and the environment. The soft hand allows the policy to perform high-contact manipulation
tasks without breaking because of its compliance. Our method takes advantage of its
compliance as it performs thousands of iterations in the real world.

While the end-effector is soft, the arm is not. Because it is susceptible to damage when
colliding with the environment, we constrain the arm’s velocity and ensure that the arm
stays above the tabletop. The rollout will be terminated if the arm’s dynamics controller
senses that the arm collided aggressively with the environment.
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2.6 Results

We perform a variety of experiments to answer the following questions: 1) How good is
our affordance model? 2) How well can DEFT learn and improve in the real world? 3)
How can the experience collected by DEFT be distilled into a policy? 4) How can DEFT
be used for complex, soft object manipulation? We investigate the role of the affordance
model and real-world fine-tuning in Table 2.1 and Figure 2.5. Then we perform a series of
ablations in Table 2.2.

Method Pick cup Pour cup Open drawer Pick spoon Scoop Grape Stir Spoon
train test train test train test train test train test train test

Real-World Only 0.0 0.1 0.2 0.1 0.1 0.0 0.7 0.3 0.0 0.0 0.3 0.0
Affordance Model Only 0.1 0.4 0.5 0.5 0.0 0.3

DEFT 0.8 0.8 0.8 0.9 0.5 0.4 0.8 0.6 0.7 0.3 0.8 0.5

Table 2.1: We present the results of our method as well as compare them to other baselines:
Real-world learning without internet priors used as guidance as well as the affordance model
outputs without real-world learning. Together, our method is able to better complete these
tasks.

2.6.1 Effect of affordance prior

The human affordance model predicted three items: the contact location, the wrist grasp
rotation, and the hand joint pose. In the Real-World Only model, we use a few heuristics
in place of each item in the affordance prior and proceed with fine-tuning. For contact
location, we detect the object in the scene using a popular object detection model [Kir+23]
and let the contact location prior be the center of the bounding box. For the wrist rotation,
use a generic rotation with the palm of the hand facing downward. Finally, for the hand
joint angles, we fix a half-closed hand as the grasp pose prior.

With these heuristics, the robot has difficulty finding stable grasps consistently across
a range of tasks. While the robot is able to navigate to the object, the main obstacle was
finding the correct rotation angle for the hand. Hand rotation is very important for many
tool manipulation tasks because it requires not only picking the tool but also grasping in
a stable manner. While the soft hand shows decent success in grasping a spoon (where
the grasp rotation from the heuristic is close to the correct grasp rotation) it is not able to
perform well in tasks that require other wrist rotations.

It is possible that with more exploration the Real-World Only model would be able
to catch up with DEFT. However, we believe that these results indicate that the human
affordance model reduces the number of fine-tuning iterations necessary in the real world.

2.6.2 Zero-shot model execution

We explore the zero-shot performance of our prior with the Affordance Only model. With-
out applying any online fine-tuning to our affordance model, we rollout the trajectory
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Figure 2.5: Improvement results for 6 tasks: pick cup, pour, open drawer, pick spoon, scoop,
and stir. We see a steady improvement in our method as more CEM episodes are collected.

Figure 2.6: Qualitative results showing the finetuning procedure for DEFT. The model learns
to hold the spatula and flip the bagel after 30 CEM iterations.

parameterized by the prior. While our model performs decent on simpler tasks, the model
struggles on tasks like stir and scoop that require strong, power grasps (shown in Table 2.1).
In these tasks, the spoon collides with other objects, so fine-tuning the prior to hold the
back of the spoon is important in maintaining a reliable grip throughout the post-grasp
motion. Because DEFT incorporates real-world experience with the prior, it is able to
sample contact locations and grasp rotations that can better execute the task.

One observation we found is that our zero-shot model sometimes performs better than
the residual model trained on the first ten CEM iterations. This is due to DEFT optimizing
the grasp parameters only after ten iterations. Our first residual model learns only from
random noise, explaining why our zero-shot performance can be stronger than DEFT after
a few iterations of fine-tuning.
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Method Pour Cup Open Drawer Pick Spoon
train test train test train test

Reward Function:
R3M Reward 0.0 0.0 0.4 0.5 0.5 0.4
Resnet18 Imagenet Reward 0.1 0.2 0.3 0.1 0.4 0.2

Policy Ablation:
DEFT w/ MLP 0.0 0.0 0.5 0.0 0.6 0.5
DEFT w/ Transformer 0.4 0.5 0.6 0.1 0.4 0.5
DEFT w/ Direct Parameter est. 0.1 0.1 0.1 0.0 0.3 0.0

DEFT 0.8 0.9 0.5 0.4 0.8 0.6

Table 2.2: Ablations for (1) reward function type, (2) model architecture, and (3) param-
eter estimation approach.

2.6.3 Human and automated rewards

Our method queries the operator during the task reset process to assign a continuous
score from 0 to 1 for the grasp. Because the reset process requires a human-in-the-loop
regardless, this adds little marginal cost for the operator. But what if we would like these
rewards to be calculated autonomously?

We use the final image collected in the single post-grasp human demonstration from
Section 2.4 as the goal image. We define the reward to be the negative embedding distance
between the final image of the rollout and the goal image with either an R3M [Nai+22a] or
a ResNet [He+15] encoder. The model learned from ranking trajectories with R3M reward
is competitive with DEFT in two of the three tasks we tested on, and performed better
than the model that used Resnet18 rewards. Using a third-person camera could potentially
improve the rankings because changes in the environment will be more apparent. These
results indicate that using a visual reward model can potentially provide reasonable results
compared to human rewards.

2.6.4 Model Architecture

We investigate different models and training architectures for the policy trained on the
rollouts (Table 2.2). When we replace the conditional VAE with an MLP that predicts
residuals, the model has difficulty learning the grasp rotation to effectively pour a cup. This
may be because VAEs can compress multi-modal data more effectively (which is useful for
our case as our inputs includes location, rotation, and joint angles).

Our transformer ablation is an offline method similar to [Che+21] where in addition
to the image and affordance model outputs, we condition on the reward outputs and train
a transformer to predict the residual. At test time the maximum reward is queried and
the output is used in the rollout. We hypothesize that the reduced performance is because
the transformer is a data-hungry architecture. The model may need more real-world data,
which can be expensive to collect.
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Figure 2.7: We evaluate DEFT on three additional difficult manipulation tasks.

Finally, we train a VAE to directly estimate ξ instead of the residual. This model
was unable to effectively distill the information from the affordance prior with neither the
diversity of data nor training time allotted. As a result, it often makes predictions that
are far from the correct grasp pose.

2.6.5 Performance on complex tasks and soft objects

We investigate the performance of DEFT on more challenging tasks, which involve grasping
or manipulating food. Tasks involving soft objects cannot be simulated accurately, so
sim2real methods may have difficulty performing these tasks in the real world. Our method
does not have that challenge in this setting and DEFT is able to perform reasonably well
on these tasks.

Of the three tasks, our method has the most difficulty with the Pick Grape task. This
is because grapes are small and require the fingers to curl fully to maintain a stable grasp.
A limitation of our hand is that the range of MCP joint does not allow the fingertips to
touch its palm, and as a result, it has difficulty in consistently picking small objects.
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2.7 Discussion and Limitations

In this thesis, we investigate how to learn dexterous manipulation in complex setups.
DEFT aims to learn directly in the real world. In order to efficiently perform real world
fine-tuning, we build an affordance prior learned from human videos. We are able to
practice and improve in the real world via our online fine-tuning approach, enabled by the
use of a soft anthropomorphic hand, performing a variety of tasks (involving both rigid
and soft objects).

However, there are some limitations to our work. While we are able to learn policies
for the high-dimensional robot hand, the grasps learned are not multi-modal and do not
capture all of the different grasps humans are able to perform. In particular, we find that
the predicted hand poses are all power grasps, which is used even in situations where other
grasps might be more appropriate (such as a pinch grasp when picking a grape). We believe
that this is mainly caused by noisy hand detections. As these detection models improve,
we hope to be able to learn a more diverse set of hand grasps.

Second, during finetuning, resets require human input and intervention. This limits the
amount of real-world learning we can do, as the human has to be constantly in the loop
to reset the objects. Other works [Che+22a; Gup+21] introduce paradigms that might
potentially be useful in helping scale our method for more fine-tuning iterations.

Third, the arm has additional physical limitations. While the DASH hand is soft
like the human hand, the robot arm is rigid. As a result, the robot cannot mimic every
grasp humans make. For example, any underhand grasp that involves sliding the hand
underneath an object is not possible with this setup because the arm would collide with
the table. A soft arm would enable a wider range of human-like grasps.

Finally, the soft hand’s fingers do not curl fully. The soft hand’s fingers have a tradeoff
between strength and range of motion. The version of the soft hand used for the exper-
iments in this project has high strength, which is useful to pick large, heavier objects.
However, this makes grasping smaller objects, such as individual grapes, more difficult. A
hand that can have the best of both worlds would facilitate a larger variety of tasks and is
a potential area for future research.
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Chapter 3
Zero-Shot Rewards from Human Videos

3.1 Introduction

Despite recent advances in robot learning, there are many challenges in advancing towards
the long-standing goal of developing generalist robotic agents. To achieve this objective,
one must develop a framework that can generalize across diverse environments, tasks, and
robot embodiments. Perhaps the most concise way to represent these challenges is the
problem of learning a goal-conditioned reward function. Critically, we want to learn and
deploy a reward function in a way that is amenable to different tasks and environments.

Traditionally, designing a robotic agent to perform tasks in the real world using re-
inforcement learning has proved difficult due to the sheer amount of data that needs to
be collected in the process of exploring the environment. As a result, much of the ad-
vancement in reinforcement learning has come from model-free reinforcement learning in
simulated environments. Whereas NLP and vision research has shown greater generaliza-
tion when scaling to large datasets [Bro+20], the collection and use of large, task-specific
data in robot learning has encountered more challenges due to the physical cost of robot
deployment. Collecting robot data at scale must provide guarantees for safety, and it re-
quires human supervision for task resets. Many robots are trained in a single environment
on a small number of tasks.

Rather than attempting to collect robot interaction data, a growing body of work
has focused on exploiting the abundance of internet data, particularly egocentric video,
inspired by the success of CLIP [Rad+21a]. The vast quantity of human manipulation data
available online could be a useful prior for robot manipulation. In particular, the diversity
of the environments and tasks depicted in internet-scale data could improve generalization
when learning a goal-specific reward function. With this in mind, many recent works
have collected labeled, in-the-wild, egocentric videos of humans manipulating objects and
performing various tasks [Gra+22; Goy+17b; Dam+20].

However, there are two immediate challenges in utilizing offline human videos for learn-
ing a reward function. Firstly, there is a difference in embodiments when training with
human data compared to test time where trajectories are generated in the robot’s action
space. Transferring rewards across this embodiment gap is necessary to learn a robot pol-
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icy. Secondly, there is a difference in the visual appearance of the agents in the human and
robot trajectories.

What is the best way to learn a reward representation in the absence of robot data?
Our approach to learn a reward function is to mask and inpaint over the agent in a visual
scene to provide agent-agnostic data alignment. In visually removing the agent from the
scene, we hope to learn a reward representation that focuses on relevant, environment-
centric features of the scene that are modified over the course of the trajectory. With
the diversity of environments in datasets like Something-Something [Goy+17b] and Ego4D
[Gra+22], we believe that we can learn generalizable reward functions across different
robotic tasks in simulation environments. Additionally, with this approach, we wish to
use only human demonstrations in specifying a goal. In particular, due to our focus on
building an agent-agnostic reward function, we investigate only the zero-shot paradigm:
no robot demonstrations are used in learning a policy.

We demonstrate that our method shows promise on several tasks in a simulated en-
vironment with a Sawyer arm. More investigation is required to scale this method to a
diverse range of tasks.
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3.2 Related Work

3.2.1 Reward Learning

While many works have used Reinforcement Learning (RL) with great success [Sil+17;
Vin+19; Kum+21; Aga+23], RL assumes access to a reward function which may not
always be easy to define or optimize for. Inverse RL is the field for defining reward functions
from demonstrations and has many prior work [Zie+08; RBZ06; WOP15; Lev18]. Many
recent works have aimed to generalize to scenarios where humans provide desired outcomes
[Fu+18; Sin+19]. However, these works aim to learn rewards in single-task settings. Our
work concentrates on the multi-task setting, where we hope to learn a reward function that
generalizes to many tasks. In particular, we wish to learn a function that can generate
rewards for many tasks given one human demonstration per task.

3.2.2 Pre-training Representations for Control

A natural approach to address multi-task generalization is pre-training on large datasets.
Indeed, many works leverage large-scale data to pre-train representations for control [Par+22;
Cui+22; Nai+22a; Ma+22b; SK21; Rad+22]. To create generalized image representations,
some have trained on a wide variety of images to take advantage of the natural supervi-
sion that’s abundantly available on the internet [Rad+21a]. Many works have adopted
these universal embeddings for downstream robotics tasks [SMF22; Jan+21]. Others have
combined language embeddings with human videos to learn representations that can be
used for robot manipulation tasks [Sha+21]. Similarly, [Nai+22a] applies time contrastive
learning [Ser+18], video-language alignment [Nai+21], and applies a sparsity penalty to
learn a robust representation from Ego4D [Gra+22]. This representation can in turn be
utilized as a distance function for rewards.

Self-supervised representation learning from unlabeled videos encodes semantic and
geometric understanding of diverse actions to define reward functions for reinforcement
learning. Self-supervised representation learning from images has seen significant progress
in recent years [Pat+16; Che+20; Car+21; He+22; Gri+20], approaching the performance
of fully supervised methods on ImageNet [Rus+14]. Given the success of representation
learning in the image domain, recent works adopt similar approaches for learning from
video for downstream robotics applications [SLA20]. [Rad+22] trains a single masked
autoencoder [He+22] on diverse, in-the-wild videos. This unified vision policy is then
adapted for downstream control, significantly outperforming CLIP. [Ser+18] proposes a
time-contrastive approach learning approach from multi-view video, where different views
of a robot action at the same timestamp are close in feature space, while temporally offset
views should be repelled in feature space. [Sch+20] directly incorporates videos collected
by humans by adding videos to the replay buffer and directly performing RL on the ob-
servational data. Combining offline data with in-domain data boosts performance in the
environment. [Zak+21] addresses the generalization across agents by training representa-
tions using a cycle-consistency loss by learning from other agents demonstrating the same
task and is robust to differences in shape, action, end-effector, and dynamics.
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3.2.3 Robot Learning from Human Videos

Because collecting robot demonstrations can be costly, many works have proposed us-
ing human data, which is both plentiful and easily accessible on the Internet. In recent
years, many large-scale annotated human datasets have been collected, such as Something-
Something [Goy+17a], Ego4D [Gra+22], EpicKitchens [Dam+20], YouCook [Das+13], and
ActivityNet [FN15]. Instead of learning an intermediate representation, some works di-
rectly learn from unstructured human videos [BGP22; SBP22; Bah+23].

Other works train representations [Nai+22a; Rad+22; Ma+22b; Rad+21a] that use
human data. For example, VIP [Ma+22b] casts representation learning from human videos
as an offline goal-conditioned reinforcement learning problem to create a temporally smooth
embedding for novel tasks. [Tia+21] learns a visual dynamics model as well as a dynamical
distance function to be used for downstream tasks. However, these approaches require a
goal image with the robot at test time.

There are other methods that do not require in-domain goals by learning a classifier
[Sha+21; CNF21]. DVD [CNF21] trains a discriminator to determine if two videos are
performing the same task by learning from in-the-wild videos of humans. The learned
feature representation can be used as a reward function for downstream robot control.
However, DVD still requires in-domain robot rollouts in training to learn reward functions
for downstream tasks. In our work, we build upon DVD and aim to do away with robot
demonstrations at both training and test time.
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3.3 Zero-Shot Rewards from Human Videos

We aim to learn a multi-task reward function by learning from human demonstrations. For
each task Ti, the reward function R will be conditioned on one of K human demonstrations
Di = {di,j}Kj=1 specifying the desired task.

Then, given the robot environment’s state space Sr, action space of the robot Ar, and
robot dynamics f r(s′|s, a), we want to solve the MDP parameterized by (Sr,Ar, f r,R) for
a task Ti.

Figure 3.1: Training Overview: Human data is processed as follows. We generate masks for
human arms and hands in videos from the Something-Something dataset [Goy+17b]. Videos
that do not have high-quality masks are discarded. The remaining videos are inpainted based on
their masks. We take this set of inpainted human videos and learn a discriminator to capture the
functional features of the video.

3.3.1 Learning Agent-Agnostic Representations

Our work addresses the embodiment gap by visually removing the agent from the scene
at both training and test time. There are a few potential inpainting methods we can use
when given masks to remove the agent (human or robot) from a video. To generate the
masks for the robot arm, we used Detectron2 [Wu+19], a state-of-the-art segmentation
method, and fine-tuned it for detecting our robot. However, we found Detectron2 to be
unreliable in detecting human hands and arms in egocentric data. We believe this is
because Detectron2 was trained on third-person views of humans where most of the body
is in the scene. For masking human hands and arms in human videos, we use EgoHOS
[Zha+22], a method trained on egocentric videos from datasets like Ego4D [Gra+22] and
Epic-Kitchens [Dam+20].

While this method provides more consistent masks, there are still videos that have few
or noisy masks due to occlusion or difficult lighting conditions. We refine our dataset by
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removing videos where fewer than half of the frames have human masks. This removes
only one-fifth of our dataset, so we still keep a large majority of our data for training.

For inpainting, we considered two types of methods. We can utilize a video inpainting
method such as Copy and Paste Networks [Lee+19] or E2FGVI [Li+22]. Another option
for inpainting is to inpaint frame-by-frame, such as with Stable Diffusion [Rom+21]. We
found that video inpainting methods perform better as they have access to context for
occlusions that singular images do not have. Stable Diffusion also requires many denoising
iterations that reduce its speed.

3.3.2 Addressing Visual Domain Gap

While training on a large dataset with a variety of objects, lighting, and poses will provide
some generalization, we conjecture that it might not be sufficient to generalize to simulation
environments, which look significantly different from the real world. As a result, we account
for the visual differences between simulation and real-world settings. In particular, we use
Stable Diffusion [Rom+21], a pre-trained image-text generative model, to create synthetic
videos by augmenting existing videos from the dataset.

To augment a video, we take individual frames from the video and generate a novel set
of frames. We guide this image-to-image translation using text conditioning. That is, given
a text prompt T and video V , for each frame v1, v2, . . . , vn ∈ V we use Stable Diffusion
as a function g to map it to new frame v′i = g(vi, T ). In order to promote generalization
to simulation environments, we use prompts T such as "OpenGL style rendering", and
"Unity style rendering" to to encourage the output frames to match the desired style.

Because this approach generates a video by transforming individual frames, this does
not necessarily maintain the temporal consistency of the video. In order to keep the videos
coherent, we restrict the noise added to individual frames to be sampled within a reasonable
range for each video.

3.3.3 Reward Training

The reward function we want to learn is R(s1:T ,Di). Here, for each task Ti, we have a set
of human demonstrations Di.

We will use a pretrained inpainting method ϕh for human inpainting and ϕr for robot
inpainting. During training, we can apply ϕh to each demonstration and train the DVD
encoder fenc and similarity function fsim as described in their paper [CNF21].

To summarize the training method in DVD, we train R as follows. We use a pretrained
encoder fenc and a learned similarity function fsim to generate the pairwise reward:

R(di, dj) = fsim(fenc(ϕ
h(di)), fenc(ϕ

h(dj))).

When learning R at training time, note that fenc and ϕh are pretrained and frozen. To
learn fsim, we sample videos d1i , d

2
i , dj ∈ D. We minimize the cross-entropy loss below:

L = E(d1i ,d
2
i ,dj)∼D[log(R(d1i , d2i )) + log(1−R(d1i , dj)]

Note that this is essentially contrastive loss over demonstrations from different tasks.
Above, d1i is the anchor, d2i is a positive sample and dj is the negative sample.
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3.3.4 Task Execution

Figure 3.2: At test time, we take as input a set of human demonstrations of the same task. Using
trajectories sampled from CEM, we use our reward function to judge the similarity between every
(demo, trajectory) pair. We use CEM to optimize this reward function to generate trajectories
that are most functionally similar to the demos.

At test time, we are given a set of human demonstrations Di = {di,j}Kj=1 for a specific task.
We have a reward function R that can take in a robot trajectory s1:T and a single human
demonstration di,j. We calculate the reward with the corresponding inpainting function,
as follows:

R(s1:T , di,j) = fsim(fenc(ϕ
r(s1:T )), fenc(ϕ

h(di,j)))

We can optimize for this reward function using zeroth order methods like Cross-Entropy
Method (CEM) or Model Predictive Path Integral (MPPI) control. For our method, we
implement CEM. CEM keeps track of a trajectory distribution parameterized by a Gaussian
for each action ai ∼ N (µi, σi) for i = 1 . . . T . CEM then takes multiple samples from
this distribution and retains the samples (elites) with the largest rewards to update the
distribution for the next iteration. Then from this distribution, CEM rolls out a trajectory
to act out an episode.

For the results in Table 3.1, we use the ground truth dynamics from the simulator
when rolling out samples taken from the action distribution. We can also potentially use
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a state or visual dynamics function such as [Haf+19] learned in the environment to run
CEM efficiently in a closed-loop fashion.

3.3.5 Datasets and Environments

We generate results in Metaworld [Yu+19], with a tabletop environment that has a mug,
drawer, and faucet. We train our models using the Something-Something dataset [Goy+17b],
an egocentric dataset of humans manipulating different objects according to various tasks.
We primarily evaluate our method on three tasks: Close Drawer, Push Mug Away, and
Move Mug Right. We train on a dataset of around 10K videos which are labeled with task
information. This dataset consists of data for 6 tasks, of which three are the evaluation
tasks specified above.
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3.4 Experiments

Our experiments aim to answer the following: (1) How effectively does our method perform
without any prior knowledge of robot embodiment or robot demonstrations? (2) How does
our method compare to previous work? (3) Does domain augmentation improve simulation
performance? (4) Does our method improve when trained on additional tasks?

Figure 3.3: Qualitative Outputs: We show the intermediate results of (1) removing the agent
and (2) modifying the background with pre-trained text-to-image models.

3.4.1 Comparison to Prior Work

We use two prior works as baselines: DVD [CNF21] and VIP [Ma+22b]. DVD’s results
involve training on both human and robot videos, so we hypothesize that training only on
human videos is not sufficient for learning policies for robots at test time. The DVD reward
function does not generalize to unseen robot embodiments. Methods like VIP that pretrain
on diverse human datasets generate a reward that represents a distance function to a goal
image in the robot’s environment. However, we only produce human demonstrations at
test time, so we hypothesize this approach will not work well either.

Our results for these baseline methods are in Table 3.1. The methods we show results
for are as follows:

• Shaped Reward: A human-specified reward function that is shaped for each task.

• DVD-HR: The original implementation of DVD, trained on both human and in-domain
robot demonstrations.
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Model Close Drawer Push Mug Away Move Mug Right Average

Shaped Reward 0.99 0.95 0.99 0.98
DVD-HR [CNF21] 0.75 0.59 0.06 0.47

Human-only Reward Functions :
DVD-H [CNF21] 0.0 0.62 0.0 0.21
VIP [Ma+22b] 0.09 0.22 0.14 0.15

Ours 0.65 0.96 0.75 0.79
Ours + Domain Augmentation 0.84 0.96 0.88 0.89

Table 3.1: Fraction of successful iterations for each model with varying data used at training
and test time. Each model was averaged over 10 different seeds, each seed being run for
100 CEM iterations.

• DVD-H: A modified version of DVD that is limited to training on only human data.

• VIP: Using VIP with a goal image from an OOD human video at test time.

In the first two rows, privileged information is available for the reward function (either
a manually shaped reward or robot demonstrations are available). When DVD does not
have access to in-domain robot data, there is a significant decline in performance in the
zero-shot setting. The DVD model struggles to learn a reward function that can transfer
to the robot’s environment without robot demonstrations. In practice, we see that it only
performs one task, even when given demos of other tasks. VIP also does not perform well
because it requires a goal image in the robot’s setting.

The results of our method are also depicted in Table 3.1. We present our method with
and without visual domain augmentation. Both reward functions perform strongly on all
three tasks despite not having seen the environment in the training data or at test time.
Our method performs significantly better than DVD-H and VIP in the zero-shot setting.
Our method even outperforms DVD-HR on two of the three tasks. Overall, we believe
that removing the agent encourages the representations learned by our method to more
accurately match the functional meaning of the task by focusing on the changes in the
environment. Accordingly, our method can perform better than models like DVD-HR.

3.4.2 Effect of visual domain augmentation

As shown in Table 3.1, domain augmentation with Stable Diffusion improves the results
of our method on two of the three tasks. Overall, it has an 89% success rate while our
method without augmentation has a success rate of 79%. With domain augmentation, our
method beats DVD-HR in all three tasks and is moving closer to the performance of the
shaped reward. Our method with domain augmentation performs the zero-shot baselines
by 68%. Even though Stable Diffusion is not trained on robotics-related data, it is able to
provide meaningful priors to enhance training and potentially improve generalization.

More aggressive augmentation could potentially improve the amount of generalization,
but could also reduce the temporal consistency of the video as a whole. For sample aug-
mentation outputs, see Figure 3.3.
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Figure 3.4: We investigate how adding unrelated tasks in training affects the downstream per-
formance of our method.

Task Our Method (6 Task Training) Our Method (20 Task Training)

Close Drawer 0.65 0.41
Push Mug Away 0.96 0.39
Move Mug Right 0.75 0.66
Move Mug Left 0.65 0.31
Pull Mug to Camera 0.01 0.06
Open Drawer 0.25 0.0

Average 0.55 0.31

Table 3.2: Fraction of successful iterations for reward models trained with a varying number
of tasks.

3.4.3 Number of Training Tasks

The results that we described in the previous section involve training on 6 tasks. One
question we wish to answer is how does the number of tasks we train on affect the perfor-
mance of the reward function on robotic tasks? In other words, how does the diversity of
the training data affect the quality of the reward function learned, and do unrelated videos
enhance the reward function learned?

To investigate this, we additionally train a reward function with our method with 3
tasks, 13 tasks, and 20 tasks. All of these variations include the three evaluation tasks
in the training set. We evaluate the 4 reward functions with the three original evaluation
tasks. We show these results in Figure 3.4. We also show results comparing our method
with 6 task training and 20 task training on 3 additional evaluation tasks in Table 3.2.

Based on the results in Figure 3.4, we find that scaling to more tasks in training
produces better performance and generalization up to a point. The 3-task reward function
performs worse than the 6-task reward function is that there are fewer total videos for
training. While both models are trained for the same number of epochs, the number of
videos in each epoch is smaller for the model trained with three tasks.
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However, after 6 tasks, the success rate plateaus and decreases when going to 13 and
then 20 training tasks. This is additionally reflected in Table 3.2 where the 20-task model
performs worse on all 6 evaluation tasks. This is likely due to the structure of the reward
model: as the discriminator needs to be able to distinguish between more tasks, it might
struggle to disambiguate the salient features for the evaluation tasks compared to the other
tasks it is trained on. As a result, our method loses robustness when training on too many
unrelated tasks.
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3.5 Conclusion and Limitations

We presented a method building on DVD [CNF21] to create a reward function that is
both domain-agnostic and agent-agnostic. Masking and removing the agent is an effec-
tive method to force a reward function to learn representations for tasks that involve the
behavior of manipulated objects in the scene. We found that using data augmented by
pretrained text-image models can further improve the robustness of the reward function
at test time. Overall, our method shows promise in learning a reward function that does
not rely on prior robot knowledge.

Our method also has several limitations. The core limitation of our approach is that
as we train on more tasks, our model has worse performance in evaluation. Ideally, when
we train on more tasks, the performance should improve slightly if not stay the same.
Currently, we treat training a reward function as a binary classification problem, and this
can be improved to account for similarities between similar tasks. Injecting this semantic
knowledge via language embeddings would hopefully lead to a smoother representation
space that might be more effective at improving with more tasks.

Another limitation of our reward is that it is sparse. While reward functions that use
the full video have additional context, it lacks the structure to evaluate partial trajectories
and is sparse, unlike image-based reward functions. A reward function that evaluates
partial trajectories–perhaps subvideos segmented by subgoals–might be able to combine
the best of both worlds.

Our data augmentation setup also has room for improvement. To maintain the co-
herency of the synthetic data generated by the model, we restricted the extent to which we
augmented the frames in the video. Perhaps with more text-video generation models being
open-sourced as of late, we can modify the style more aggressively while also maintaining
consistency across frames. This would potentially allow for better generalization.
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