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Abstract

Delta-complete analysis demonstrates the decidability and complex-
ity of delta-complete decision procedures through appropriate relax-
ations of exact decision problems. This framework presents a potential
for addressing various practical problems in science and engineering
involving high-order polynomials, transcendental functions, and ordi-
nary differential equations. However, significant challenges remain in
the development of viable and practical delta-decision procedures.

This dissertation aims to address the challenge of designing and
implementing a scalable delta-decision procedure that incorporates rich
theories and support for quantifiers, as well as a bounded reachability
analysis tool that is based on such a procedure.

First, we propose algorithms for solving SMT problems that involve
ordinary differential equations (ODEs) by utilizing ODE constraints
to design pruning operators within a branch-and-prune framework.
Furthermore, we prove the delta-completeness of our algorithms.

Second, we present algorithms for solving SMT problems that involve
universal quantification and a broad range of nonlinear functions by
integrating interval constraint propagation, counterexample-guided
synthesis, and numerical optimization. The proposed algorithms are
demonstrated to be effective in handling a wide range of challenging
global optimization and control synthesis problems.

Finally, we present dReal and dReach, a delta-SMT solver and a
delta-reachability analysis tool respectively, for nonlinear real formulas
and hybrid systems. dReal is capable of handling various nonlinear real
functions, such as polynomials, trigonometric functions, and exponen-
tial functions, and implements the delta-complete decision procedure
framework. dReach, on the other hand, encodes reachability problems
as first-order real formulas and solves them using dReal. As a result,
dReach is equipped to handle a wide range of highly nonlinear hybrid
systems, as demonstrated by its scalability on various realistic models
from biomedical and robotics applications.
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Chapter 1

Introduction

1.1 Problem Motivation and Scope

The objective of this dissertation is to demonstrate steps taken to bridge the gap
between the theoretical possibility and the practical realization of an efficient delta-
decision procedure. In their seminal papers [48, 49], Gao, Avigad, and Clarke
introduced the notion of delta-decision problem for bounded first-order sentences
over the reals with computable functions. By allowing for an appropriate relaxation
of the exact decision problems, they proved the decidability of delta-decision
problems and presented their complexity results. However, despite this theoretical
breakthrough, the design and implementation of an efficient delta-complete decision
procedure remained a challenge to be addressed in future work as noted in [49]:

“In future work, it would be very interesting to see how this framework
can be used in developing efficient SMT/SAT solvers and theorem
provers.”

The main scope of this dissertation is to address the challenge of designing and
implementing a scalable delta-decision procedure that incorporates rich theories
and quantifier support.

1



2 Introduction

Solving delta-SMT Problems with ODE Constraints The formal verification of
hybrid systems [5] is a challenging task that has been the focus of research in recent
years. Hybrid systems [64] consist of both discrete transitions and continuous
dynamics and can be found in various domains, such as automotive systems [73, 7],
embedded systems [83], and biological systems [86, 87]. One of the key challenges
in the verification of these systems is the need to reason about the interactions
between the discrete and continuous dynamics. However, traditional SMT solvers
are not equipped to handle ODEs, which are a fundamental component of many
hybrid systems.

To address this challenge, we propose to investigate a method for solving delta-
SMT problems that incorporate ODE constraints, with a specific focus on supporting
nonlinear Lipschitz-continuous ODEs. This is motivated by the fact that nonlinear
dynamics are commonly found in real-world systems. For example, a non-linear
7 degree of freedom bicycle model [101] is widely used to describe the dynamics
of vehicles in the field of autonomous vehicles. In this model, the state vector ®𝑥
describing the vehicle consists of 7 components, (𝛽,𝜓, ¤𝜓, 𝑣, 𝑠𝑥 , 𝑠𝑦, 𝛿) where 𝛽 is the slip
angle at the center of mass,𝜓 is the heading angle, ¤𝜓 is the yaw rate, 𝑣 is the velocity,
𝑠𝑥 is the vehicle’s x position, 𝑠𝑦 is the vehicle’s y position, and 𝛿 is the angle of the
front wheel. Its continuous dynamics is governed by the following nonlinear ODEs:

¤𝛽 =

(
𝐶𝑟𝑙𝑟 −𝐶 𝑓 𝑙 𝑓

𝑚𝑣2

)
¤𝜓 +

(
𝐶 𝑓

𝑚𝑣

)
𝛿 −

(
𝐶 𝑓 +𝐶𝑟
𝑚𝑣

)
𝛽

¥𝜓 =

(
𝐶𝑟𝑙𝑟 −𝐶 𝑓 𝑙 𝑓

𝐼𝑧

)
𝛽 −

(
𝐶 𝑓 𝑙

2
𝑓
−𝐶𝑟𝑙2𝑟
𝐼𝑧

) ( ¤𝜓
𝑣

)
+

(
𝐶 𝑓 𝑙 𝑓

𝐼𝑧

)
𝛿

¤𝑣 = 𝑎𝑥
¤𝑠𝑥 = 𝑣 cos(𝛽 +𝜓 )

¤𝑠𝑦 = 𝑣 sin(𝛽 +𝜓 )
¤𝛿 = 𝑣𝑤

where 𝐶𝑟 , 𝐶 𝑓 , 𝑙𝑟 , 𝑙 𝑓 ,𝑚, 𝐼𝑧 , 𝑎𝑥 , 𝑣𝑤 are constant values for a vehicle. A vehicle planning
algorithm may be modeled as a hybrid system by combining a continuous vehicle
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dynamics and discrete control decisions. As demonstrated in [97], a lane changing
planner can be represented using two discrete states — one for lane following, the
other for lane changing. The bounded safety property of the hybrid system model
is then established via bounded reachability analysis.

By developing SMT solvers that can handle nonlinear ODEs, we aim to enable
the efficient verification of real-world hybrid systems. This is crucial for ensuring
the correct operation of these systems in various domains. By supporting nonlinear
ODEs, SMT solvers can be used to reason about the interactions between the discrete
and continuous dynamics, and check the reachability and safety of the system.

Solving Exists-Forall Formulas in the delta-decision Framework Next, we delve
into the challenge of solving exists-forall formulas within the delta-decision frame-
work. This problem is not only important, but also intriguing, as it has the potential
to revolutionize the way we tackle general optimization problems. General optimiza-
tion problems, including non-convex, multi-objective, and disjunctive optimization
problems, can all be represented as exists-forall formulas. Thus, by solving exists-
forall problems, we can also solve these general optimization problems. While
numerical optimization techniques can be effective, they cannot guarantee optimal-
ity in all cases. Our approach, on the other hand, offers a guarantee in the form of a
delta-close solution to the optimal solution, providing a more reliable solution for
these complex problems.

Synthesis problems are another domain where exists-forall encodings can be
effectively utilized. A prime example of this is the synthesis of Lyapunov functions
for dynamical systems. Lyapunov functions [82] play a critical role in demonstrating
the stability of a dynamical system, as they provide a systematic way to measure the
amount of energy stored in the system, and thus, its stability. By using exists-forall
encodings to represent the synthesis problem, we can leverage the delta-decision
framework to systematically search for a Lyapunov function that meets certain
criteria and guarantees stability. In this way, our approach has the potential to
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greatly simplify the process of verifying the stability of complex dynamical systems.

Design and Implementation of delta-decision Tools The state-of-the-art SMT
solvers, such as Z3 [34], CVC [10, 9], and Yices [38, 37], have had a significant
impact on the field of automated reasoning and formal verification. They provide
an accessible and flexible platform for researchers and practitioners to perform
complex logical computations in various applications, such as software verification,
hardware verification, and optimization. These solvers are widely adopted due to
their ability to handle various theories and logics, including linear arithmetic, arrays,
and bit-vectors, among others. Additionally, the open-source nature of these solvers
allows for the community to actively contribute to and improve their performance
and functionality.

Our goal is to provide an open-source implementation of a delta-SMT solver
that is capable of handling a broad spectrum of nonlinear functions and supports
quantifier reasoning. This will enable the tool to be utilized by a multitude of
applications and tools, further fostering the growth of formal verification techniques
in various domains.

Building upon this idea, we present the design and implementation of the
delta-decision procedure, dReal, and the delta-reachability analysis tool, dReach,
which is built on top of dReal. The efficient implementation of dReal and dReach
is crucial because numerous tools, including APEX [97], BioPSy [90], Daisy [33],
DiffRNN [91], Drake [111], ETCetera [35], FOSSIL [1], HybridSyncAADL [84],
JDart [89], LinSyn [99], Manifold [14], PGCD [8], PolyReach [110], ProbReach [107],
STLMC [118], Sally [39], Verisig [69], Viatra [106], SReach [115], and symQV [12] have
been developed based on dReal / dReach tools. The performance and functionality
of these dependent tools are directly tied to the efficiency of the underlying tools,
dReal and dReach.
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1.2 Thesis Statement and Contributions

The thesis statement can be summarized as follows:

An efficient delta-decision procedure can solve real-world problems
with precision and computational efficiency, including those involv-
ing nonlinear functions, ordinary differential equations, and universal
quantification.

We make three major contributions in this dissertation:

1. We formalize the SMT problem over the reals with general Lipschitz-continuous
ODEs. To showcase its expressiveness, we illustrate how various standard
ODE-related problems can be encoded, including initial and boundary value
problems, parameter synthesis problems, differential algebraic equations, and
bounded model checking of hybrid systems. Our proposed algorithms utilize
ODE constraints to construct pruning operators within a branch-and-prune
framework, and we demonstrate their delta-completeness through mathe-
matical proof. Finally, the scalability of these algorithms is demonstrated on
practical benchmarks, demonstrating their ability to tackle formal verification
problems for a range of nonlinear hybrid systems.

2. We propose delta-complete decision procedures for solving the satisfiability
of nonlinear SMT problems over real numbers that contain universal quan-
tification and a wide range of nonlinear functions. Our approach combines
interval constraint propagation, counterexample-guided synthesis, and nu-
merical optimization techniques. We demonstrate how to effectively handle
the interleaving of numerical and symbolic computation to ensure delta-
completeness in quantified reasoning. We demonstrate that the proposed
algorithms can handle various challenging global optimization and control
synthesis problems that are beyond the reach of existing solvers.
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3. We present the design and implementation of the delta-decision procedure,
dReal, and the delta-reachability analysis tool, dReach. dReal is capable of
handling various nonlinear real functions, such as polynomials, trigonometric
functions, and exponential functions, and implements the delta-complete de-
cision procedure framework. dReach, on the other hand, encodes reachability
problems as first-order real formulas and solves them using dReal. dReach
is equipped to handle a wide range of highly nonlinear hybrid systems, as
demonstrated by its scalability on various realistic models from biomedical
and robotics applications.

Our work, while building on the foundation of Gao, Avigad, and Clarke’s seminal
papers [48, 49], sets itself apart in several key aspects.

• In [49], Gao, Avigad, and Clarke introduced the notion of delta-decidability and
offered complexity results for general problems, including ODE constraints
and bounded quantifiers. Although this work serves as a theoretical basis, it
does not delve into the specifics of algorithms. In contrast, this thesis presents
not only the algorithms but also the design and implementation of tools based
on them.

• In [48], Gao, Avigad, and Clarke established the existence and complexity of
delta-complete decision procedures for bounded quantifier-free SMT problems.
This paper does not address the quantified problems covered in this thesis.
In comparison, this thesis provides an algorithm for exists-forall problems,
demonstrates its well-definedness, and implements it in dReal.

• While [48] describes the general DPLL<ICP> framework and suggests the
possibility of defining ODE pruning algorithms by providing an example
(Proposition 4.3 Simple ODE-pruning), this thesis delves deeper into the vari-
ous ODE pruning algorithms, proving their well-definedness and providing
implementation details.
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1.3 Thesis Organization

The remainder of this dissertation is organized as follows.

• In Chapter 2, we present various fundamental definitions and notation used
throughout this thesis.

• In Chapter 3, we study SMT problems over the reals containing ordinary
differential equations and present delta-complete algorithms for the SMT
problems. The work presented in this chapter is a reformulation and extension
of a prior publication [54].

• In Chapter 4, we present a delta-complete decision procedure for solving satis-
fiability of nonlinear SMT problems over real numbers that contain universal
quantification and a wide range of nonlinear functions. The work presented
in this chapter is a reformulation and extension of a prior publication [80].

• In Chapter 5, we present the design and implementation of dReal. The
work presented in this chapter is a reformulation and extension of a prior
publication [52].

• In Chapter 6, we present the design and implementation of dReach. The
work presented in this chapter is a reformulation and extension of prior
publications [78, 86, 87].

• In Chapter 7, we conclude with a summary of contributions and future work.





Chapter 2

Preliminaries

In this chapter, we give various basic definitions and notions in the delta-decision
framework [48, 49].

2.1 Computable Real Functions

As studied in Computable Analysis [116, 77], we can encode real numbers as infinite
strings, and develop a computability theory of real functions using Turing machines
that perform operations using oracles encoding real numbers. We use | | · | | to denote
the max norm | | · | |∞ over R𝑛 for various 𝑛. First, a name of a real number is a
sequence of rational numbers converging to it:

Definition 1 (Names). A name of 𝑎 ∈ R is any function 𝛾𝑎 : N→ Q that satisfies: for
any 𝑖 ∈ N, |𝛾𝑎 (𝑖) − 𝑎 | < 2−𝑖 . For ®𝑎 ∈ R𝑛, 𝛾®𝑎 (𝑖) = ⟨𝛾𝑎1 (𝑖), ..., 𝛾𝑎𝑛 (𝑖)⟩. We write the set of all
possible names for ®𝑎 as Γ( ®𝑎).

Next, a real function 𝑓 is computable if there is a Turing machine that can use
any argument 𝑥 of 𝑓 as an oracle, and compute the value of 𝑓 (𝑥) up to an arbitrary
precision 2−𝑖 , where 𝑖 ∈ N. Formally:

9



10 Preliminaries

Definition 2 (Computable Functions). We say 𝑓 :⊆ R𝑛 → R is computable if there
exists an oracle Turing machineM𝑓 such that for any ®𝑥 ∈ dom(𝑓 ), any name 𝛾®𝑥 of ®𝑥 , and
any 𝑖 ∈ N, the machine uses 𝛾®𝑥 as an oracle and 𝑖 as an input to compute a rational number
𝑀
𝛾 ®𝑥
𝑓
(𝑖) satisfying |𝑀𝛾 ®𝑥

𝑓
(𝑖) − 𝑓 ( ®𝑥) | < 2−𝑖 .

The definition requires that for any ®𝑥 ∈ dom(𝑓 ), with access to an arbitrary
oracle encoding the name 𝛾®𝑥 of ®𝑥 , 𝑀𝑓 outputs a 2−𝑖-approximation of 𝑓 ( ®𝑥). In
other words, the sequence 𝑀𝛾 ®𝑥

𝑓
(1), 𝑀𝛾 ®𝑥

𝑓
(2), ... is a name of 𝑓 ( ®𝑥). Intuitively, 𝑓 is

computable if an arbitrarily good approximation of 𝑓 ( ®𝑥) can be obtained using any
good enough approximation to any ®𝑥 ∈ dom(𝑓 ). Most common continuous real
functions are computable [116] including addition, multiplication, absolute value,
min, max, exp, and sin. Compositions of computable functions are computable. In
particular, solution functions of Lipschitz-continuous ordinary differential equations
are computable.

2.2 LRF Language

We consider first-order formulas over real numbers that can contain arbitrary
nonlinear functions that can be numerically approximated, such as polynomials,
exponential, and trigonometric functions. Theoretically, such functions are called
Type-2 computable functions [116]. We write this language as LRF , formally defined
as:

Definition 3 (The LRF Language). Let F be the set of Type-2 computable functions. We
define LRF to be the following first-order language:

𝑡 := 𝑥 | 𝑓 (®𝑡), where 𝑓 ∈ F , possibly 0-ary (constant);

𝜑 := 𝑡 ( ®𝑥) > 0 | 𝑡 ( ®𝑥) ≥ 0 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥𝑖𝜑 | ∀𝑥𝑖𝜑.

Remark 1. Negations are not needed as part of the base syntax, as they can be defined
through arithmetic: ¬(𝑡 > 0) is simply −𝑡 ≥ 0. Similarly, an equality 𝑡 = 0 is just
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𝑡 ≥ 0 ∧ −𝑡 ≥ 0. In this way we can put the formulas in normal forms that are easy to
manipulate.

We focus on formulas whose variables take values from bounded domains,
which can be defined using bounded quantifiers:

Definition 4 (Bounded Quantifiers). The bounded quantifiers ∃[𝑢,𝑣] and ∀[𝑢,𝑣] are defined
as

∃[𝑢,𝑣]𝑥 .𝜑 =𝑑 𝑓 ∃𝑥 .(𝑢 ≤ 𝑥 ∧ 𝑥 ≤ 𝑣 ∧ 𝜑),

∀[𝑢,𝑣]𝑥 .𝜑 =𝑑 𝑓 ∀𝑥 .((𝑢 ≤ 𝑥 ∧ 𝑥 ≤ 𝑣) → 𝜑),

where 𝑢 and 𝑣 denote LRF terms, whose variables only contain free variables in 𝜑 excluding
𝑥 . It is easy to check that ∃[𝑢,𝑣]𝑥 .𝜑 ↔ ¬∀[𝑢,𝑣]𝑥 .¬𝜑 .

2.3 Delta-decidability

The key definition in the framework is 𝛿-variants of first-order formulas:

Definition 5 (𝛿-Variants). Let 𝛿 ∈ Q+ ∪ {0}, and 𝜑 a bounded LRF -sentence of the
standard form

𝜑 : 𝑄 𝐼11 𝑥1 · · ·𝑄
𝐼𝑛
𝑛 𝑥𝑛 𝜓 [𝑡𝑖 ( ®𝑥) > 0; 𝑡 𝑗 ( ®𝑥) ≥ 0],

where 𝑖 ∈ {1, ...𝑘} and 𝑗 ∈ {𝑘 + 1, ...,𝑚}. Note that negations are represented by sign changes
on the terms. The 𝛿-weakening 𝜑−𝛿 of 𝜑 is defined as the result of replacing each atom
𝑡𝑖 > 0 by 𝑡𝑖 > −𝛿 and 𝑡 𝑗 ≥ 0 by 𝑡 𝑗 ≥ −𝛿 . That is,

𝜑−𝛿 : 𝑄 𝐼11 𝑥1 · · ·𝑄
𝐼𝑛
𝑛 𝑥𝑛 𝜓 [𝑡𝑖 ( ®𝑥) > −𝛿 ; 𝑡 𝑗 ( ®𝑥) ≥ −𝛿] .

The SMT problem is standardly defined as deciding satisfiability of quantifier-
free formulas, which is equivalent to deciding the truth value of fully existentially
quantified sentences. We will also consider formulas that are partially universally
quantified. Thus, we consider both Σ1 and Σ2 formulas here.
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Definition 6 (Bounded Σ1- and Σ2-SMT Problems). A Σ1-SMT problem is a formula of
the form

∃𝐼1𝑥1 · · · ∃𝐼𝑛𝑥𝑛 .𝜑 ( ®𝑥)

and a Σ2-SMT problem is of the form

∃𝐼1𝑥1 · · · ∃𝐼𝑛𝑥𝑛∀𝐼𝑛+1𝑥𝑛+1 · · · ∀𝐼𝑚𝑥𝑚 .𝜑 ( ®𝑥).

In both cases 𝜑 ( ®𝑥) is a quantifier-free LRF -formula.

Definition 7 (𝛿-Completeness [48]). Let 𝑆 be a set of LRF formulas, and 𝛿 ∈ Q+. We say
a decision procedure 𝐴 is 𝛿-complete for 𝑆 , if for any 𝜑 ∈ 𝑆 , 𝐴 correctly returns one of the
following answers
• 𝜑 is false;
• 𝜑−𝛿 is true.
If the two cases overlap, either one is correct.

In [49], it is proved that 𝛿-complete decision procedures exists for arbitrary
bounded LRF -sentences. In particular, there exists 𝛿-complete decision procedures
for the bounded Σ1 and Σ2 SMT problems. This serves as the theoretical foundation
as well as a correctness requirement for the practical algorithms that we will develop
in this thesis.

Theorem 1 (Complexity [49]). Let 𝑆 be a class of LRF -sentences, such that for any 𝜑 in
𝑆 , the terms in 𝜑 are in Type 2 complexity class C. Then, for any 𝛿 ∈ Q+, the 𝛿-decision
problem for bounded Σ𝑛-sentences in 𝑆 is in (Σ𝑃𝑛 )𝐶 .

The theorem states that, as a general rule, an increase in the number of quantifier
alternations will correspond to an increase in the complexity of the problem, unless
P = NP (recall that Σ𝑃0 = P and Σ𝑃1 = NP). This result can specialized for specific
families of functions. For example, with polynomially-computable functions, the
𝛿-decision problem for bounded Σ𝑛-sentences is (Σ𝑃𝑛 )-complete. For a comprehensive
analysis and related results, the reader is referred to [49].



Chapter 3

Satisfiability Modulo Ordinary
Differential Equations

3.1 Introduction

Hybrid systems tightly combine finite automata and continuous dynamics. In most
cases, the continuous components are specified by ordinary differential equations
(ODEs). Thus, formal verification of general hybrid systems requires reasoning
about logic formulas over the reals that contain ODE constraints. This problem is
considered very difficult and has not been investigated in the context of decision
procedures until recently [40, 41, 68]. It is believed that current techniques are
not powerful enough to handle formulas that arise from formal verification of
realistic hybrid systems, which typically contain many nonlinear ODEs and other
constraints.

Since the first-order theory over the reals with trigonometric functions is already
undecidable, solving formulas with general ODEs seems inherently impossible. This
theoretical difficulty was resolved by the study of 𝛿-complete decision procedures
for such formulas [49]. An algorithm is 𝛿-complete for a set of SMT formulas,
where 𝛿 is an arbitrary positive rational number, if it correctly decides whether a

13
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formula is unsatisfiable or 𝛿-satisfiable. Here, a formula is 𝛿-satisfiable if, under
some 𝛿-perturbations, a syntactic variant of the original formula is satisfiable [48].
It has shown that 𝛿-complete decision procedures are suitable for various formal
verification tasks [48, 49]. It was also proved that 𝛿-complete decision procedures
exist for SMT problems over the reals with Lipschitz-continuous ODEs. Such results
serve as a theoretical foundation for developing practical decision procedures for
the SMT problem.

In this chapter we study practical 𝛿-complete algorithms for SMT formulas over
the reals with ODEs. We show that such algorithms can be made powerful enough
to scale to realistic benchmark formulas with several hundred nonlinear ODEs.

We develop decision procedures for the problem following a standard DPLL⟨ICP⟩
framework, which relies on constraint solving algorithms as studied in Interval
Constraint Propagation (ICP) [13]. In this framework, for any ODE system we can
consider its solution function ®𝑥𝑡 = ®𝑓 (𝑡, ®𝑥0) as a constraint between the initial variables
®𝑥0, time variable 𝑡 , and the final state variables ®𝑥𝑡 . We define pruning operators
that take interval assignments on ®𝑥0, 𝑡 , and ®𝑥𝑡 as inputs, and output refined interval
assignments on these variables. We formally prove that the proposed algorithms
are 𝛿-complete. Beyond standard SMT problems where all variables are existentially
quantified, we also study ∃∀-formulas under the restriction that the universal
quantifications are limited to the time variables (we call them ∃∀𝑡 -formulas). Such
formulas have been an obstacle in SMT-based verification of hybrid systems [29, 30].

In brief, we make the following contributions:

• We formalize the SMT problem over the reals with general Lipschitz-continuous
ODEs, and illustrate its expressiveness by encoding various standard problems
concerning ODEs: initial and boundary value problems, parameter synthesis
problems, differential algebraic equations, and bounded model checking of
hybrid systems. In some cases, ∃∀𝑡 -formulas are needed.

• We propose algorithms for solving SMT with ODEs, using ODE constraints to
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design pruning operators in a branch-and-prune framework. We handle both
standard SMT problems with only existentially quantified variables, as well
as ∃∀𝑡 -formulas. We prove that the algorithms are 𝛿-complete.

• We demonstrate the scalability of the algorithms, as implemented in our open-
source solver dReal [52], on realistic benchmarks encoding formal verification
problems for several nonlinear hybrid systems.

This chapter is organized as follows. In Section 3.2, we define the SMT problem
with ODEs and show how it can encode various standard problems with ODEs.
In Section 3.3, we propose algorithms in the DPLL⟨ICP⟩ framework for solving fully
existentially quantified formulas as well as ∃∀𝑡 formulas. In Section 3.4 we show
experimental results.

Related Work Solving real constraints with ODEs has a wide range of applications,
and much previous work exists for classes with special structures in different
paradigms [32, 60, 85]. [59] proposed a more general constraint solving framework,
focusing on the formulation of the problem in the standard constraint programming
framework. On the SMT solving side, several authors have considered logical
combinations of ODE constraints and proposed partial decision procedures [40,
41, 68]. We aim to extend and formalize existing algorithms for a general SMT
theory with ODEs, and formally prove that they can be made 𝛿-complete. In terms
of practical performance, the proposed algorithms are made scalable to various
benchmarks that contain hundreds of nonlinear ODEs and variables.

3.2 SMT over the Reals with ODEs
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3.2.1 The ICP framework

The method of Interval Constraint Propagation (ICP) [13] finds solutions of real
constraints using a “branch-and-prune” method that performs constraint propa-
gation of interval assignments on real variables. The intervals are represented by
floating-point end-points. Only over-approximations of the function values are
used, which are defined by interval extensions of real functions.

Definition 8 (Floating-Point Intervals and Hulls). Let F denote the finite set of all
floating point numbers with symbols −∞ and +∞ under the conventional order <. Let

IF = {[𝑎, 𝑏] ⊆ R : 𝑎, 𝑏 ∈ F, 𝑎 ≤ 𝑏} and BF =

∞⋃
𝑛=1
IF𝑛

denote the set of closed real intervals with floating-point endpoints, and the set of boxes
with these intervals, respectively. When 𝑆 ⊆ R𝑛 is a set of real numbers, the hull of 𝑆 is:

Hull(𝑆) =
⋂
{𝐵 ∈ BF : 𝑆 ⊆ 𝐵}.

For 𝐼 = [𝑎, 𝑏] ∈ IF, we write |𝐼 | = |𝑏 − 𝑎 | to denote its width. For 𝐵 ∈ IF𝑛, | |𝐵 | |
denotes its maximum width.

Definition 9 (Interval Extension [13]). Suppose 𝑓 :⊆ R𝑛 → R is a real function. An
interval extension operator ♯(·) maps 𝑓 to a function ♯𝑓 :⊆ BF→ IF, such that

for any 𝐵 ∈ dom(♯𝑓 ), it is always true that {𝑓 ( ®𝑥) : ®𝑥 ∈ 𝐵} ⊆ ♯𝑓 (𝐵).

ICP uses interval extensions of functions to “prune” out sets of points that are
not in the solution set, and “branch” on intervals when such pruning can not be
done, until a small enough box that may contain a solution is found. A high-level
description of the decision version of ICP is given in Algorithm 3.1.

In Algorithm 3.1, Branch(𝐵, 𝑖) is an operator that returns two smaller boxes
𝐵′ = 𝐼1 × · · · × 𝐼 ′𝑖 × · · · × 𝐼𝑛 and 𝐵′′ = 𝐼1 × · · · × 𝐼 ′′𝑖 × · · · × 𝐼𝑛, where 𝐼𝑖 ⊆ 𝐼 ′𝑖 ∪ 𝐼 ′′𝑖 . The
key component of the algorithm is the Prune(𝐵, 𝑓 ) operation. Any operation that
contracts the intervals on variables can be seen as pruning, but for correctness we
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Algorithm 3.1 ICP(𝑓1, . . . , 𝑓𝑚, 𝐵0 = 𝐼 01 × · · · × 𝐼 0𝑛 , 𝛿)

1: 𝑆 ← 𝐵0
2: while 𝑆 ≠ ∅ do
3: 𝐵 ← 𝑆.pop()
4: while ∃1 ≤ 𝑖 ≤ 𝑚, 𝐵 ≠ Prune(𝐵, 𝑓𝑖) do
5: 𝐵 ← Prune(𝐵, 𝑓𝑖)
6: end while
7: if 𝐵 ≠ ∅ then
8: if ∃1 ≤ 𝑖 ≤ 𝑛, |♯𝑓𝑖 (𝐵) | ≥ 𝛿 then
9: {𝐵1, 𝐵2} ← Branch(𝐵, 𝑖)

10: 𝑆.push({𝐵1, 𝐵2})
11: else
12: return sat
13: end if
14: end if
15: end while
16: return unsat

need formal requirements on the pruning operator in ICP. Basically, we need to
require that the interval extensions of the functions converge to the true values of
the functions, and that the pruning operations are well-defined, as specified below.

Definition 10 (𝛿-Regular Interval Extensions). We say an interval extension ♯𝑓 of 𝑓 :

R𝑛 → R is 𝛿-regular, if for some constant 𝑐 ∈ R, for any 𝐵 ∈ IF𝑛, |♯𝑓 (𝐵) | ≤ max(𝑐 | |𝐵 | |, 𝛿).

Definition 11 (Well-defined Pruning Operators [48]). Let F be a collection of real
functions, and ♯ be a 𝛿-regular interval extension operator on F . A well-defined (equality)
pruning operator with respect to ♯ is a partial function Prune♯ :⊆ BF × F → BF, such
that for any 𝑓 ∈ F , 𝐵, 𝐵′ ∈ BF,

1. Prune♯ (𝐵, 𝑓 ) ⊆ 𝐵;

2. If Prune♯ (𝐵, 𝑓 ) ≠ ∅, then 0 ∈ ♯𝑓 (Prune♯ (𝐵, 𝑓 ));

3. 𝐵 ∩ {®𝑎 ∈ R𝑛 : 𝑓 ( ®𝑎) = 0} ⊆ Prune♯ (𝐵, 𝑓 ).
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When ♯ is clear, we simply write Prune. The rules can be explained as follows.
(W1) ensures that the algorithm always makes progress. (W2) ensures that the result
of a pruning is always a reasonable box that may contain a zero, and otherwise 𝐵 is
pruned out. (W3) ensures that the real solutions are never discarded. Gao, Avigad,
and Clarke proved the following theorem in [48]:

Theorem 2. Algorithm 3.1 is 𝛿-complete if the pruning operators are well-defined.

3.2.2 Solution Functions of ODEs

We show that the framework of computable functions allows us to consider solution
functions of ODE systems.

Notation 1. We use ®𝑥 = ®𝑦 between 𝑛-dimensional vectors to denote the system of equations
𝑥𝑖 = 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

Let 𝐷 ⊆ R𝑛 be compact and 𝑔𝑖 : 𝐷 → R be 𝑛 Lipschitz-continuous functions,
which means that for some constant 𝑐𝑖 ∈ R+ (1 ≤ 𝑖 ≤ 𝑛), for all ®𝑥1, ®𝑥2 ∈ 𝐷 ,

|𝑔𝑖 ( ®𝑥1) − 𝑔𝑖 ( ®𝑥2) | ≤ 𝑐𝑖 | | ®𝑥1 − ®𝑥2 | |.

Let 𝑡 be a variable overR. We consider the first-order autonomous ODE system (3.1)

𝑑 ®𝑦
𝑑𝑡

= ®𝑔( ®𝑦 (𝑡, ®𝑥0)) (3.1a)

®𝑦 (0, ®𝑥0) = ®𝑥0 (3.1b)

where ®𝑥0 ∈ 𝐷 . Here, each

𝑦𝑖 : R × 𝐷 → R (3.2)

is called the 𝑖-th solution function of the ODE system (3.1). A key result in
computable analysis is that these solution functions are computable, in the sense
of Definition 2:
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Proposition 1 ([77]). The solution functions ®𝑦 in the form of (3.2) of the ODE system (3.1)
are computable over R × 𝐷 .

To see why this is true, recall that for any 𝑡 ∈ R and ®𝑥0 ∈ 𝐷, the value of the
solution function follows the Picard-Lindelöf form:

®𝑦 (𝑡, ®𝑥0) =
∫ 𝑡

0
®𝑔( ®𝑦 (𝑠, ®𝑥0)) 𝑑𝑠 + ®𝑥0.

Approximations of the right-hand side of the equation can be computed by finite
sums, theoretically up to an arbitrary precision.

3.2.3 SMT Encoding of Standard Problems with ODEs

In this section, we list several standard problems related to ODE systems and show
that they can be easily encoded and generalized through SMT formulas. They
motivate the development of decision procedures for the theory.

Remark 2. In all the following cases, solutions to the standard problems are obtained from
witnesses for the existentially quantified variables in the SMT formulas.

Remark 3. In the definitions below, when the solution functions ®𝑦 of ODE systems are
written as part of a formula, no analytic forms are needed. They are functions included in
the signature LRF .

Generalized Initial Value Problems An initial value problem (IVP) in ordinary
differential equations is a problem that involves specifying the values of the variables
and their derivatives at a specific point in time (the initial time), and then solving
the ODEs to find the values of the variables at all other times. The solution to
an IVP is a function that describes how the variables change over time, subject to
the constraints imposed by the ODEs and the initial conditions. IVPs are used to
model a wide range of physical, biological, and engineering systems. In the form of
SMT formulas, we easily allow the initial conditions to be constrained by arbitrary
quantifier-free LRF -formulas:
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Definition 12 (Generalized IVP). Let 𝑋 ⊆ R𝑛 be a compact domain, 𝑇 ∈ R+, and
®𝑦 : [0,𝑇 ] ×𝑋 → 𝑋 be the computable solution functions of an ODE system. Let 𝑡 ∈ [0,𝑇 ] be
an arbitrary constant that represents a time point of interest. The generalized IVP problem
is defined by formulas of the form:

∃𝑋𝑥0∃𝑋 ®𝑥 . 𝜑 ( ®𝑥0) ∧ ®𝑥 = ®𝑦 (𝑡, ®𝑥0),

where 𝜑 is a quantifier-free LRF -formula constraining the initial states ®𝑥0, and ®𝑥 is the
needed value for time point 𝑡 .

Generalized Boundary Value Problems A boundary value problem (BVP) in
ordinary differential equations is a type of problem where the solution is required
to satisfy certain conditions, called boundary conditions, at two or more specified
points in the domain of the problem, rather than a single initial point as in an initial
value problem. The solution is a function that describes how the variables change
over the entire domain of the problem, subject to the constraints imposed by the
ODEs and the boundary conditions. A generalized version as encoded by SMT
formulas is:

Definition 13 (Generalized BVP). Let 𝑋 ⊆ R𝑛 be a compact domain, 𝑇 ∈ R+, and
®𝑦 : [0,𝑇 ] × 𝑋 → 𝑋 be the solution functions of an ODE system. Let 𝑡, 𝑡 ′ ∈ [0,𝑇 ] be two
time points of interest. The generalized BVP problem is:

∃𝑋𝑥0∃𝑋 ®𝑥𝑡∃𝑋 ®𝑥 .𝜑 ( ®𝑥0, ®𝑥𝑡 , 𝑡) ∧ ®𝑥𝑡 = ®𝑦 (𝑡, ®𝑥0) ∧ ®𝑥 = ®𝑦 (𝑡 ′, ®𝑥0)

where 𝜑 is a quantifier-free LRF -formula that specifies the boundary conditions. Note that ®𝑥
is the value that we are interested in solving in the chosen time point 𝑡 ′.

Data-Fitting and Parameter Synthesis The data-fitting problem, also known as
the inverse problem, is the task of finding the unspecified parameters in a system
of ordinary differential equations that best fit a given set of data. The goal is to
determine the parameters that result in the best match between the predictions of
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the ODE model and the observed data. This problem arises in a wide range of
applications, including physics, biology, and engineering, where the underlying
dynamics of a system are not fully understood or are difficult to measure directly.

We define the data fitting problem as follows. Suppose an ODE system has part
of its parameters unspecified. Given a sequence of data (𝑡1, ®𝑎1), . . . , (𝑡𝑘 , ®𝑎𝑘), we need
to find the values of the missing parameters of the original ODE system. More
formally:

Definition 14 (Data-Fitting Problems). Let 𝑋 ⊆ R𝑛 and 𝑃 ⊆ R𝑚 be compact domains,
𝑇 ∈ R+, and ®𝑦 ( ®𝑝) : [0,𝑇 ] × 𝑋 → 𝑋 be the solution functions of an ODE system, where
®𝑝 ∈ 𝑃 be a vector of parameters. Let (𝑡1, ®𝑎1), . . . , (𝑡𝑘 , ®𝑎𝑘) be a sequence of pairs in [0,𝑇 ] × 𝑋 .
The data-fitting problem is defined by:

∃𝑃 ®𝑝∃𝑋𝑥0. 𝜑 ( ®𝑥0) ∧ ®𝑎1 = ®𝑦 ( ®𝑝, 𝑡1, ®𝑥0) ∧ · · · ∧ ®𝑎𝑘 = ®𝑦 ( ®𝑝, 𝑡𝑘 , ®𝑥0),

where a quantifier-free 𝜑 constraints the initial states ®𝑥0.

Differential Algebraic Equations Differential algebraic equations (DAEs) are
a type of mathematical equation that combines both differential and algebraic
equations. They are used to describe a wide range of physical and engineering
systems that involve both continuous and discrete variables. Formally, a DAE can
be written in the following form:

𝑑 ®𝑦
𝑑𝑡

= ®𝑔( ®𝑦 (𝑡, ®𝑦0), ®𝑧) (3.3)

0 = ®ℎ( ®𝑦, ®𝑧, 𝑡) (3.4)

where ®𝑦, ®𝑦0 ∈ R𝑛, ®𝑧 ∈ R𝑚. To express the problem in LRF , we need to use extra
universal quantification to ensure that the algebraic relations hold throughout
the time duration. Again, we can also generalize Equation (3.4) to an arbitrary
quantifier-free LRF -formula. The problem is encoded as:

Definition 15 (DAE Problems). Let 𝑋 ⊆ R𝑛 be a compact domain, 𝑇 ∈ R+, and ®𝑦®𝑧 :

[0,𝑇 ] × 𝑋 → 𝑋 be the computable solution functions of the ODE system 𝑑 ®𝑦
𝑑𝑡

= ®𝑔( ®𝑦 (𝑡, ®𝑦0), ®𝑧)
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in (3.3) parameterized by ®𝑧. Let ℎ be defined by (3.4). Let 𝑡 ∈ [0,𝑇 ] be a time point of
interest. A DAE problem is defined by the following formula:

∃𝑋 ®𝑥0∃𝑋 ®𝑥∃𝑍 ®𝑧∀[0,𝑡]𝑡 ′. 𝜑 ( ®𝑥0) ∧ ®𝑥 = ®𝑦®𝑧 (𝑡, ®𝑥0) ∧ ℎ( ®𝑦®𝑧 ( ®𝑥0, 𝑡 ′), ®𝑧, 𝑡 ′) = 0

where a quantifier-free 𝜑 specifies the initial conditions for ®𝑦, and ®𝑥 is the needed value at
time point 𝑡 .

Bounded Model Checking of Hybrid Systems Bounded model checking problems
for hybrid systems can be naturally encoded as SMT formulas with ODEs [40, 41,
68, 29, 30]. We consider a simple hybrid system to show an example. Let 𝐻 be an
𝑛-dimensional 2-mode hybrid system. In mode 1, the flow of the system follows an
ODE system whose solution function is ®𝑦1(𝑡, ®𝑥0), and in mode 2, it follows another
solution function ®𝑦2(𝑡, ®𝑥0). The jump condition from mode 1 to mode 2 is specified
by jump( ®𝑥, ®𝑥′). The invariants are specified by inv𝑖 ( ®𝑥) for mode 𝑖. Let unsafe( ®𝑥)
denote an unsafe region. Let the continuous variables be bounded in 𝑋 and time be
bounded in [0,𝑇 ]. Now, if 𝐻 starts from mode 1 with initial states satisfying init( ®𝑥),
it can reach the unsafe region after one discrete jump from mode 1 to mode 2, iff the
following formula is true:

∃𝑋 ®𝑥1∃𝑋 ®𝑥𝑡1 ∃𝑋 ®𝑥2∃𝑋 ®𝑥𝑡2 ∃[0,𝑇 ]𝑡1∃[0,𝑇 ]𝑡2 ∀[0,𝑡1]𝑡 ′1∀[0,𝑡2]𝑡 ′2.
(
init( ®𝑥1) ∧ ®𝑥𝑡1 = ®𝑦1(𝑡1, ®𝑥1) ∧ inv1( ®𝑦1(𝑡 ′1, ®𝑥1))

∧ jump( ®𝑥𝑡1, ®𝑥2) ∧ ®𝑥𝑡2 = ®𝑦2(𝑡2, ®𝑥2)

∧ inv2( ®𝑦2(𝑡 ′2, ®𝑥2)) ∧ unsafe( ®𝑥𝑡2)
)
.

The encoding can be explained as follows. For each mode, we use two variable
vectors ®𝑥𝑖 and ®𝑥𝑡𝑖 to represent the continuous flows. ®𝑥𝑖 denotes the starting values of
a flow, and ®𝑥𝑡𝑖 denotes the final values. In mode 1, the flow starts with some values in
the initial states, specified by init( ®𝑥1). Then, we follow the continuous dynamics in
mode 1, so that ®𝑥𝑡1 denotes the final value ®𝑥𝑡1 = ®𝑦 (𝑡1, ®𝑥1). Then the system follows the
jumping condition and resets the variables from ®𝑥𝑡1 to ®𝑥2 as specified by jump( ®𝑥𝑡1, ®𝑥2).
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After that, the system follows the flow in mode 2. In the end, we check if the final
state ®𝑥𝑡2 in mode 2 satisfies the unsafe predicate, unsafe( ®𝑥2).

3.3 Algorithms

3.3.1 ODE Pruning in an ICP Framework

We now study the algorithms for SMT formulas with ODEs. The key is to design
the appropriate pruning operators for the solution functions of ODE systems. The
pruning operations here strengthen and formalize the ones proposed in [40, 41, 59],
such that 𝛿-completeness can be proved.

We recall some notations first. Let 𝐷 ⊆ R𝑛 be compact and 𝑔𝑖 : 𝐷 → 𝐷 be 𝑛
Lipschitz-continuous functions. Given the first-order autonomous ODE system

𝑑 ®𝑦
𝑑𝑡

= ®𝑔( ®𝑦 (𝑡, ®𝑥0)) and ®𝑦 (0, ®𝑥0) = ®𝑥0 (3.5)

where ®𝑥0 ∈ 𝐷 , we write

𝑦𝑖 : [0,𝑇 ] × 𝐷 → 𝐷𝑖

to represent the 𝑖-th solution function of the ODE system. The 𝛿-regular interval
extension of 𝑦𝑖 is an interval function

♯𝑦𝑖 : (IF ∩ [0,𝑇 ]) × (BF ∩ 𝐷) → IF

such that for a constant 𝑐 ∈ R, for any time domain 𝐼𝑡 ⊆ IF ∩ [0,𝑇 ] and any box of
initial values 𝐵®𝑥0 ⊆ BF ∩ 𝐷 , we have

{𝑥𝑡 ∈ R : 𝑥𝑡 = 𝑦𝑖 (𝑡, ®𝑥0), ®𝑥0 ∈ 𝐵®𝑥0, 𝑡 ∈ 𝐼𝑡 } ⊆ ♯𝑦𝑖 (𝐼𝑡 , 𝐵®𝑥0)

and

|♯𝑦𝑖 (𝐼𝑡 , 𝐵®𝑥0) | ≤ max(𝑐 · | |𝐼𝑡 × 𝐵®𝑥0 | |, 𝛿).
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We will also need the notion of the reverse of the ODE system (3.5), as defined by

𝑑 ®𝑦−
𝑑𝑡

= ®𝑔−( ®𝑦−(𝑡, ®𝑥𝑡 )) and ®𝑦 (0, ®𝑥𝑡 ) = ®𝑥𝑡 . (3.6)

Here, ®𝑔− is defined as −®𝑔, the vector of functions consisting of the negation of each
function in ®𝑔, which is equivalent to reversing time in the flow defined by the ODE
system. That is, for ®𝑥0, ®𝑥𝑡 ∈ 𝐷, 𝑡 ∈ R, we always have

®𝑥𝑡 = ®𝑦 (𝑡, ®𝑥0) iff ®𝑥0 = ®𝑦−(𝑡, ®𝑥𝑡 ). (3.7)

Naturally, we write ♯(𝑦−)𝑖 to denote the 𝛿-regular interval extension of the 𝑖-th
component of ®𝑦−.

Algorithm 3.2 ODEPruning(♯®𝑦, 𝐵 ®𝑥0, 𝐵 ®𝑥𝑡 , 𝐼𝑡 )
1: repeat
2: 𝐵′®𝑥𝑡

← Prunefwd(♯®𝑦, 𝐵 ®𝑥0, 𝐵 ®𝑥𝑡 , 𝐼𝑡 )
3: 𝐼 ′𝑡 ← Prunetime(♯®𝑦, 𝐵 ®𝑥0, 𝐵′®𝑥𝑡 , 𝐼𝑡 )
4: 𝐵′®𝑥0

← Prunebwd(♯®𝑦, 𝐵 ®𝑥0, 𝐵′®𝑥𝑡 , 𝐼
′
𝑡 )

5: until 𝐵 ®𝑥0 = 𝐵′®𝑥0 ∧ 𝐵 ®𝑥𝑡 = 𝐵
′
®𝑥𝑡
∧ 𝐼𝑡 = 𝐼 ′𝑡

6: return (𝐵′®𝑥0, 𝐵
′
®𝑥𝑡
, 𝐼 ′𝑡 )

The relation between the initial variables ®𝑥0, the time duration 𝑡 , and the flow
variables ®𝑥𝑡 is specified by the constraint ®𝑥𝑡 = ®𝑦 (𝑡, ®𝑥0). Given the interval assignment
on any two of ®𝑥0, ®𝑥𝑡 , and 𝑡 , we can use the constraint to obtain a refined interval
assignment to the third variable vector. Thus, we can define three pruning operators
as follows.

Remark 4. The precise definitions of the pruning operators should map the interval
assignments on all variables to new assignments on all variables. For notational simplicity,
in the pruning operators below we only list the assignments that are actually changed
between inputs and outputs. For instance, the forward pruning operator only changes the
values on 𝐵®𝑥𝑡 .
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Figure 3.1: Illustration of the forward ODE pruning operator. 𝑋0, 𝑋𝑡 , 𝑇 represent
the current interval assignments on ®𝑥0, ®𝑥𝑡 , and 𝑡 . 𝑋 ′𝑡 ⊆ 𝑋𝑡 is the refined interval
assignment on ®𝑥𝑡 after pruning.

Forward Pruning Given interval assignments on ®𝑥0 and 𝑡 , we compute a refinement
of the interval assignments on ®𝑥𝑡 . Figure 3.1 depicts the forward pruning operation.
Formally, we define the following operator:

Definition 16 (Forward Pruning). Let ®𝑦 : [0,𝑇 ] ×𝐷 → 𝐷 be the solution functions of an
ODE system. Let 𝐵®𝑥0 , 𝐵®𝑥𝑡 , and 𝐼𝑡 be interval assignments on the variables ®𝑥0, ®𝑥𝑡 , and 𝑡 . We
define the forward-pruning operator as:

Prunefwd(𝐵®𝑥𝑡 , ®𝑦) = Hull
(
𝐵®𝑥𝑡 ∩ ♯®𝑦 (𝐼𝑡 , 𝐵®𝑥0)

)
.

Backward Pruning Given interval assignments on ®𝑥𝑡 and 𝑡 , we can compute
a refinement of the interval assignments on ®𝑥0 using the reverse of the solution
function. Figure 3.2 depicts backward pruning. Formally, we define the following
operator:
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Algorithm 3.3 Prunefwd(♯®𝑦, 𝐵 ®𝑥0, 𝐵 ®𝑥𝑡 , 𝐼𝑡 )
1: 𝐵′®𝑥𝑡 ← 𝜙

2: 𝐼Δ𝑡 ← [𝐼 𝑙𝑡 , 𝐼 𝑙𝑡 + 𝜀]
3: while 𝐼𝑢Δ𝑡 < 𝐼

𝑢
𝑡 do

4: 𝐵′®𝑥𝑡
← Hull(𝐵′®𝑥𝑡 ∪ ♯®𝑦 (𝐼Δ𝑡 , 𝐵 ®𝑥0))

5: 𝐼Δ𝑡 ← 𝐼Δ𝑡 + 𝜀
6: end while
7: return 𝐵 ®𝑥𝑡 ∩ 𝐵′®𝑥𝑡

t

T

Xt

X0

X 0
0

Figure 3.2: Illustration of the backward ODE pruning operator. 𝑋0, 𝑋𝑡 , 𝑇 represents
the current interval assignments on ®𝑥0, ®𝑥𝑡 , and 𝑡 . 𝑋 ′0 ⊆ 𝑋0 is the refined interval
assignment on ®𝑥0 after pruning.
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Definition 17 (Backward Pruning). Let ®𝑦 : [0,𝑇 ] × 𝐷 → 𝐷 be the solution functions of
an ODE system, and let ®𝑦− be the reverse of ®𝑦. Let 𝐵®𝑥0 , 𝐵®𝑥𝑡 , and 𝐼𝑡 be interval assignments
on the variables ®𝑥0, ®𝑥𝑡 , and 𝑡 . We define the backward-pruning operator as:

Prunebwd(𝐵®𝑥0, ®𝑦) = Hull
(
𝐵®𝑥0 ∩ ♯®𝑦−(𝐼𝑡 , 𝐵®𝑥𝑡 )

)
.

Algorithm 3.4 Prunebwd(♯®𝑦, 𝐵 ®𝑥0, 𝐵 ®𝑥𝑡 , 𝐼𝑡 )
1: 𝐵′®𝑥0 ← 𝜙

2: 𝐼Δ𝑡 ← [𝐼 𝑙𝑡 , 𝐼 𝑙𝑡 + 𝜀]
3: while 𝐼𝑢Δ𝑡 < 𝐼

𝑢
𝑡 do

4: 𝐵′®𝑥0
← Hull(𝐵′®𝑥0 ∪ ♯®𝑦−(𝐼Δ𝑡 , 𝐵 ®𝑥𝑡 ))

5: 𝐼Δ𝑡 ← 𝐼Δ𝑡 + 𝜀
6: end while
7: return 𝐵 ®𝑥0 ∩ 𝐵′®𝑥0

Time-Domain Pruning Given interval assignments on ®𝑥0 and ®𝑥𝑡 , we can also refine
the interval assignment on 𝑡 by pruning out the time intervals that do not contain
any ®𝑥𝑡 that is consistent with the current interval assignments on ®𝑥𝑡 . Figure 3.3
depicts time-domain pruning. Formally, we define the following operator:

Definition 18 (Time-Domain Pruning). Let ®𝑦 : [0,𝑇 ] ×𝐷 → 𝐷 be the solution functions
of an ODE system. Let 𝐵®𝑥0 , 𝐵®𝑥𝑡 , 𝐼𝑡 be interval assignments on the variables ®𝑥0, ®𝑥𝑡 , and 𝑡 . We
define the time-domain pruning operator as:

Prunetime(𝐼𝑡 , ®𝑦) = Hull
(
𝐼𝑡 ∩ {𝐼 : ♯®𝑦 (𝐼 , 𝐵®𝑥0) ∩ 𝐵®𝑥𝑡 ≠ ∅}

)
.

Overall, the pruning algorithm on based on ODE constraints iteratively applies
the three pruning operators until a fixed point on the interval assignments is
reached.

We show the more detailed steps in the three pruning operations in Algo-
rithms 3.2 to 3.5.

Theorem 3. The three pruning operators are well-defined.
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Algorithm 3.5 Prunetime(♯®𝑦, 𝐵 ®𝑥0, 𝐵 ®𝑥𝑡 , 𝐼𝑡 )
1: 𝐼 ′𝑡 ← 𝜙

2: 𝐼Δ𝑡 ← [𝐼 𝑙𝑡 , 𝐼 𝑙𝑡 + 𝜀]
3: while 𝐼𝑢Δ𝑡 < 𝐼

𝑢
𝑡 do

4: 𝐵′®𝑥𝑡
← ♯®𝑦 (𝐼Δ𝑡 , 𝐵 ®𝑥0)

5: if 𝐵′®𝑥𝑡 ∩ 𝐵 ®𝑥𝑡 ≠ 𝜙 then
6: 𝐼 ′𝑡 = Hull(𝐼 ′𝑡 ∪ 𝐼Δ𝑡 )
7: else
8: 𝐼Δ𝑡 ← 𝐼Δ𝑡 + 𝜀
9: end if

10: end while
11: return 𝐼 ′𝑡

t
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Figure 3.3: Illustration of the time-domain ODE pruning operator. 𝑋0, 𝑋𝑡 , 𝑇
represents the current interval assignments on ®𝑥0, ®𝑥𝑡 , and 𝑡 . 𝑇 ′ ⊆ 𝑇 is the refined
interval assignment on 𝑡 after pruning.
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Proof. We prove that the forward pruning operator is well-defined, and the proofs
for the other two operators are similar. Note that the definitions of well-defined
pruning are formulated for equality constraints compared to 0. Here we use the
function 𝑓 = ®𝑦 (𝑡, ®𝑥0) − ®𝑥𝑡 in the pruning operator. (Strictly speaking 𝑓 is a function
vector that evaluates to ®0 on points satisfying the ODE flow. Here for notational
simplicity we just write 𝑓 as a single-valued function and compare with the scalar
0.)

First, (W1) is satisfied because of the simple fact that for any boxes 𝐵1, 𝐵2 ∈ BF,
we have Hull(𝐵1 ∩ 𝐵2) ⊆ 𝐵1.

Next, suppose 0 ∉ ♯𝑓 (Prunefwd(𝐵®𝑥𝑡 , ®𝑦)−𝐵®𝑥𝑡 ). Then there does not exist any ®𝑎𝑡 ∈ R𝑛

that satisfies both ®𝑎𝑡 ∈ 𝐵®𝑥𝑡 and ®𝑎𝑡 ∈ Prunefwd(𝐵®𝑥𝑡 , ®𝑦). Since at the same time

Prunefwd(𝐵®𝑥𝑡 , ®𝑦) = Hull
(
𝐵®𝑥𝑡 ∩ ♯®𝑦 (𝐼𝑡 , 𝐵®𝑥0)

)
⊆ 𝐵®𝑥𝑡 ,

this requires that Prunefwd(𝐵®𝑥𝑡 , ®𝑦) = ∅. Consequently (W2) is satisfied.
Third, note that ♯®𝑦 (𝐼𝑡 , 𝐵®𝑥0) is an interval extension of ®𝑦. Thus, for any ®𝑎𝑡 ∈ R𝑛

such that ®𝑦 (𝑡, ®𝑥0) for some 𝑡 ∈ 𝐼𝑡 and ®𝑥0 ∈ 𝐵®𝑥0 , we have ®𝑎𝑡 ∈ ♯®𝑦 (𝐼𝑡 , 𝐵®𝑥0). Following the
definition of the pruning operator, we have ®𝑎𝑡 ∈ Prunefwd(𝐵®𝑥𝑡 , ®𝑦). Thus, 𝐵®𝑥𝑡 ∩ 𝑍 𝑓 ⊆
Prunefwd(𝐵®𝑥𝑡 , 𝑓 ) and (W3) holds. □

3.3.2 ∃∀𝑡 -Formulas and Linear Approximation

For ∃∀-formulas, if the universal quantification is only over the time variables, we
can follow the trajectory and prune away the assignments on ®𝑥0, ®𝑥𝑡 , and 𝑡 that violate
the constraints on the universally quantified time variable. In fact, although the
extra quantification complicates the problem, the universal constraints improve the
power of the pruning operations.

Here we focus on problems with one ODE system, which can be easily generalized.
Let ®𝑦 denote the solution functions of an ODE system, we consider an ∃∀𝑡 -formula
of the form

∃𝑋 ®𝑥0∃𝑋 ®𝑥𝑡∃[0,𝑇 ]𝑡∀[0,𝑡]𝑡 ′. ®𝑥𝑡 = ®𝑦 (𝑡, ®𝑥0) ∧ 𝜑 ( ®𝑦 (𝑡 ′, ®𝑥0)) . (3.8)
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Figure 3.4: Illustration of the ODE pruning operator for ∀𝑡 -constraints.

Note that the problems encoded as Σ2-SMT formulas as listed in Section 3.2.3 are all
of this form.

We consider 𝜑 ( ®𝑦 (𝑡 ′, ®𝑥0)) as a special constraint on the ®𝑥0 and 𝑡 variables. Using
this constraint, we can further refine the three pruning operators as follows.

Definition 19 (Pruning Refined by ∀𝑡 -Constraints). Let ®𝑦 : [0,𝑇 ] × 𝐷 → R𝑛 be the
solution functions of an ODE system. Let 𝐵®𝑥0 , 𝐵®𝑥𝑡 , and 𝐼𝑡 be interval assignments on the
variables ®𝑥0, ®𝑥𝑡 , and 𝑡 . Let 𝜑 ( ®𝑦 (𝑡 ′, ®𝑥0)) be a constraint on the universally quantified time
variable, as in (3.8). We first define

♯𝜑 (𝐼𝑡 , 𝐵®𝑥0) = Hull({®𝑎 ∈ R𝑛 : ®𝑎 = ®𝑦 (𝑡, ®𝑥0), 𝑡 ∈ 𝐼𝑡 , ®𝑥0 ∈ 𝐵®𝑥0, and 𝜑 ( ®𝑎) is true.})

and define ♯𝜑− by replacing ®𝑦 with ®𝑦− in the definition above. The forward pruning operator
with 𝜑 , written as Prune𝜑fwd(𝐵®𝑥𝑡 , ®𝑦), is defined as

Hull
(
𝐵®𝑥𝑡 ∩ ♯®𝑦 (𝐼𝑡 , 𝐵®𝑥0) ∩ ♯𝜑 (𝐼𝑡 , 𝐵®𝑥0)

)
.
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Linear Approximation

Figure 3.5: Illustration of the ODE pruning operator using linear approximation.

Backward pruning Prune𝜑bwd(𝐵®𝑥0, ®𝑦) is defined as

Hull
(
𝐵®𝑥0 ∩ ♯®𝑦−(𝐼𝑡 , 𝐵®𝑥𝑡 ) ∩ ♯𝜑−(𝐼𝑡 , 𝐵®𝑥𝑡 )

)
.

Time-domain pruning Prune𝜑time(𝐼𝑡 , ®𝑦) is defined as

Hull
(
𝐼𝑡 ∩ {𝐼 : ♯®𝑦 (𝐼 , 𝐵®𝑥0) ∩ 𝐵®𝑥𝑡 ∩ ♯𝜑 (𝐼𝑡 , 𝐵®𝑥0) ≠ ∅}

)
.

In general, ♯𝜑 can be computed by a recursive call to DPLL⟨ICP⟩, by solving the
Σ1-SMT problem 𝜑 ( ®𝑥). In many practical applications, 𝜑 is of some simple form
such as ®𝑎 ≤ ®𝑥𝑡 ≤ ®𝑏, in which case simple pruning is shown in Figure 3.4.

Another useful heuristic in ODE pruning involves utilizing linear approximation
to bound the range of the derivatives for a vector space specified by ®𝑔. Assuming
that at any time 𝑡 ∈ [0,𝑇 ], the derivatives ®𝑔 are constrained within [®𝑙𝑔, ®𝑢𝑔]. We can
then apply the Picard-Lindelöf representation, resulting in the following expression
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for ®𝑥𝑡 :
®𝑥𝑡 =

∫ 𝑡

0
®𝑔( ®𝑦 (𝑠, ®𝑦0)) 𝑑𝑠 + ®𝑦0 ∈ [0,𝑇 ] · [®𝑙𝑔, ®𝑢𝑔] + 𝐵®𝑥0 ..

This equation can be employed for preliminary pruning of ‘𝑣𝑒𝑐𝑥𝑡 , proving particularly
efficient when combined with ∀𝑡 -constraints. This pruning method is illustrated in
Figure 3.5.

3.4 Experiments

Our tool dReal3 implements the procedures we studied for solving SMT formulas
with ODEs. It is built on several existing packages, including opensmt [22] for the
general DPLL⟨ICP⟩ framework, IBEX-lib [112] for Interval Constraint Propagation,
and CAPD [25] for computing interval-enclosures of ODEs. The tool has been made
available for public use through the GNU Public License (GPL) and can be accessed
at https://github.com/dreal/dreal3. All benchmarks and data shown here are
also available on the tool website.

All experiments were conducted on a machine with a 3.4 GHz octa-core Intel
Core i7-2600 processor and 16 GB RAM, running 64-bit Ubuntu 18.04 LTS. Table 3.1
is a summary of the running time of the tool on various SMT formulas generated
from bounded model checking hybrid systems. The formulas typically contain a
large number of variables and nonlinear ODEs.

Atrial Fibrillation Model The AF model as we show in Table 3.1 is obtained
from [61]. It is a precise model of atrial fibrillation, a serious cardiac disorder.

Atrial fibrillation is a type of heart rhythm disorder that affects the upper
chambers of the heart, known as the atria. In this condition, the atria beat in a
rapid and irregular manner, causing the heart to pump blood less efficiently. Atrial
fibrillation is a common condition that affects millions of people worldwide and
is most commonly seen in people over the age of 60. It is a serious condition that
can lead to a range of complications, including stroke, heart failure, and even death.

https://github.com/dreal/dreal3
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Problem #Mode #Depth #ODEs #Vars 𝛿 Result Time(s) Trace
AF 4 3 20 44 0.001 𝛿-SAT 43.10 90K
AF 8 7 40 88 0.001 𝛿-SAT 698.86 20M
AF 8 23 120 246 0.001 𝛿-SAT 4528.13 59M
AF 8 31 160 352 0.001 𝛿-SAT 8485.99 78M
AF 8 47 240 528 0.001 𝛿-SAT 15740.41 117M
AF 8 55 280 616 0.001 𝛿-SAT 19989.59 137M
CT 2 2 15 36 0.005 𝛿-SAT 345.84 3.1M
CT 2 2 15 36 0.002 𝛿-SAT 362.84 3.1M
EO 3 2 18 42 0.01 𝛿-SAT 52.93 998K
EO 3 2 18 42 0.001 𝛿-SAT 57.67 847K
EO 3 11 72 168 0.01 UNSAT 7.75 –
BB 2 10 22 66 0.01 𝛿-SAT 0.25 123K
BB 2 20 42 126 0.01 𝛿-SAT 0.57 171K
BB 2 20 42 126 0.001 𝛿-SAT 2.21 168K
BB 2 40 82 246 0.01 UNSAT 0.27 —-
BB 2 40 82 246 0.001 UNSAT 0.26 —-
D1 3 2 9 24 0.1 𝛿-SAT 30.84 72K
DU 3 2 6 16 0.1 UNSAT 0.04 –

Table 3.1: #Mode = Number of modes in the hybrid system, #Depth = Unrolling
depth, #ODEs = Number of ODEs in the unrolled formula, #Vars = Number of
variables in the unrolled formula, Result = Bounded Model Checking Result (𝛿-
SAT/UNSAT), Time = CPU time (s), Trace = Size of the ODE trajectory, AF = Atrial
Filbrillation, CT = Cancer Treatment, EO = Electronic Oscillator, BB = Bouncing Ball
with Drag, D1/DU = Decay Models.

This is because the rapid and irregular beating of the atria can cause blood clots to
form, which can then travel to the brain and cause a stroke.

The continuous dynamics in the model concerns four state variables (𝑢, 𝑠, 𝑣 , 𝑡)
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and the ODEs are highly nonlinear, such as:

𝑑𝑢

𝑑𝑡
= 𝑒 + (𝑢 − 𝜃𝑣 ) (𝑢𝑢 − 𝑢)𝑣𝑔𝑓 𝑖 +𝑤𝑠𝑔𝑠𝑖 − 𝑔𝑠𝑜 (𝑢)

𝑑𝑠

𝑑𝑡
=

𝑔𝑠2

(1 + 𝑒−2𝑘 (𝑢−𝑢𝑠))
− 𝑔𝑠2𝑠

𝑑𝑣

𝑑𝑡
= −𝑔+𝑣 · 𝑣

𝑑𝑤

𝑑𝑡
= −𝑔+𝑤 ·𝑤.

The exponential term on the right-hand side of the ODE is the sigmoid function,
which often appears in modeling biological switches. On this model, our tool
is able to perform a depth-55 unrolling, and solve the generated logic formula.
Such a formula contains 280 nonlinear ODEs of the type shown here, with 616
variables. The computed trace from dReal suggests a witness of the reachability
property that can be confirmed by experimental simulation. Figure 3.6 shows the
comparison between the trace computed from bounded model checking and the
actual experimental simulation trace.

Prostate Cancer Treatment Model The Prostate Cancer Treatment model [87]
exhibits more nonlinear ODEs. This model’s dynamics is captured by the following
ODEs:

𝑑𝑥

𝑑𝑡
= (𝛼𝑥 (𝑘1 + (1 − 𝑘1)

𝑧

𝑧 + 𝑘2
− 𝛽𝑥 ((1 − 𝑘3)

𝑧

𝑧 + 𝑘4
+ 𝑘3)) −𝑚1(1 −

𝑧

𝑧0
))𝑥 + 𝑐1𝑥

𝑑𝑦

𝑑𝑡
=𝑚1(1 −

𝑧

𝑧0
)𝑥 + (𝛼𝑦 (1 − 𝑑

𝑧

𝑧0
) − 𝛽𝑦)𝑦 + 𝑐2𝑦

𝑑𝑧

𝑑𝑡
=
−𝑧
𝜏
+ 𝑐3𝑧

𝑑𝑣

𝑑𝑡
= (𝛼𝑥 (𝑘1 + (1 − 𝑘1)

𝑧

𝑧 + 𝑘2
− 𝛽𝑥 (𝑘3 + (1 − 𝑘3)

𝑧

𝑧 + 𝑘4
))

−𝑚1(1 −
𝑧

𝑧0
))𝑥 + 𝑐1𝑥 +𝑚1(1 −

𝑧

𝑧0
)𝑥 + (𝛼𝑦 (1 − 𝑑

𝑧

𝑧0
) − 𝛽𝑦)𝑦 + 𝑐2𝑦.

Figure 3.7 shows the comparison between a trace computed from bounded
model checking and the actual experimental simulation trace.
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(a) Witness for the Atrial Fibrillation model at depth 23 and 1500 time units.

(b) Experimental simulation data. The variables other than tau ared superimposed.

Figure 3.6: Atrial fibrillation model: Comparison between the trace computed from
bounded model checking and the actual experimental simulation trace.
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Prostate Cancer Model (unrolling k = 2)
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(a) Witness computed for the prostate cancer treatment model at depth 2 and 500 time
units.

(b) Experimental simulation data.

Figure 3.7: Prostate cancer treatment model: Comparison between the trace
computed from bounded model checking and the actual experimental simulation
trace.
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Electronic Oscillator The EO model represents an electronic oscillator model that
contains nonlinear ODEs such as the following:

𝑑𝑥

𝑑𝑡
= −𝑎𝑥 · sin(𝜔1 · 𝜏)

𝑑𝑦

𝑑𝑡
= −𝑎𝑦 · sin((𝜔1 + 𝑐1) · 𝜏) · sin(𝜔2) · 2

𝑑𝑧

𝑑𝑡
= −𝑎𝑧 · sin((𝜔2 + 𝑐2) · 𝜏) · cos(𝜔1) · 2

𝜔1

𝑑𝑡
= −𝑐3 · 𝜔1

𝜔2

𝑑𝑡
= −𝑐4 · 𝜔2

𝑑𝜏

𝑑𝑡
= 1.

Quadcopter Control Based on [57], we derived a mathematical model that contains
the full dynamics of a quadcopter. We use the model to solve control problems by
answering reachability questions. A typical set of the differential equations is the
following:
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d𝜔𝑥
d𝑡

= 𝐿 · 𝑘 · (𝜔2
1 − 𝜔2

3) (1/𝐼𝑥𝑥 ) − (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝜔𝑦𝜔𝑧/𝐼𝑥𝑥
d𝜔𝑦
d𝑡

= 𝐿 · 𝑘 · (𝜔2
2 − 𝜔2

4) (1/𝐼𝑦𝑦) − (𝐼𝑧𝑧 − 𝐼𝑥𝑥 )𝜔𝑥𝜔𝑧/𝐼𝑦𝑦
d𝜔𝑧
d𝑡

= 𝑏 · (𝜔2
1 − 𝜔2

2 + 𝜔2
3 − 𝜔2

4) (1/𝐼𝑧𝑧) − (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝜔𝑥𝜔𝑦/𝐼𝑧𝑧
d𝜙
d𝑡

= 𝜔𝑥 +
sin (𝜙) sin (𝜃 )(

sin(𝜙)2 cos(𝜃 )
cos(𝜙) + cos (𝜙) cos (𝜃 )

)
cos (𝜙)

𝜔𝑦 +
sin (𝜃 )

sin(𝜙)2 cos(𝜃 )
cos(𝜙) + cos (𝜙) cos (𝜃 )

𝜔𝑧

d𝜃
d𝑡

= −( sin (𝜙)2 cos (𝜃 )(
sin(𝜙)2 cos(𝜃 )

cos(𝜙) 𝜔𝑦 + cos (𝜙) cos (𝜃 )
)
cos (𝜙)2

+ 1
cos (𝜙) )𝜔𝑦

− sin (𝜙) cos (𝜃 )(
sin(𝜙)2 cos(𝜃 )

cos(𝜙) + cos (𝜙) cos (𝜃 )
)
cos (𝜙)

𝜔𝑧

d𝜓
d𝑡

=
sin (𝜙)(

sin(𝜙)2 cos(𝜃 )
cos(𝜙) + cos (𝜙) cos (𝜃 )

)
cos (𝜙)

𝜔𝑦 +
1

sin(𝜙)2 cos(𝜃 )
cos(𝜙) + cos (𝜙) cos (𝜃 )

𝜔𝑧

d𝑥𝑝
d𝑡

= (1/𝑚) (sin(𝜃 ) sin(𝜓 )𝑘 (𝜔2
1 + 𝜔2

2 + 𝜔2
3 + 𝜔2

4) − 𝑘 · 𝑑 · 𝑥𝑝)
d𝑦𝑝
d𝑡

= (1/𝑚) (− cos(𝜓 ) sin(𝜃 )𝑘 (𝜔2
1 + 𝜔2

2 + 𝜔2
3 + 𝜔2

4) − 𝑘 · 𝑑 · 𝑦𝑝)
d𝑧𝑝
d𝑡

= (1/𝑚) (−𝑔 − cos(𝜃 )𝑘 (𝜔2
1 + 𝜔2

2 + 𝜔2
3 + 𝜔2

4) − 𝑘 · 𝑑 · 𝑧𝑝)
d𝑥
d𝑡

= 𝑥𝑝

d𝑦
d𝑡

= 𝑦𝑝

d𝑧
d𝑡

= 𝑧𝑝.

The other models are standard simple nonlinear models (for instance, bouncing
ball with nonlinear friction), on which our tool has no difficulty in solving.
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3.5 Conclusion

In this chapter we have studied SMT problems over the real numbers with ODE
constraints. We have developed 𝛿-complete algorithms in the DPLL⟨ICP⟩ framework,
for both the standard SMT formulas that are purely existentially quantified, as well
as ∃∀-formulas whose universal quantification is restricted to the time variables. We
have demonstrated the scalability of our approach on nonlinear SMT benchmarks.
We believe that the proposed decision procedures can scale on nonlinear problems
and can serve as the underlying engine for formal verification of realistic hybrid
systems and embedded software.





Chapter 4

Delta-Decision Procedures for
Exists-Forall Problems over the Reals

4.1 Introduction

Much progress has been made in the framework of delta-decision procedures
for solving nonlinear Satisfiability Modulo Theories (SMT) problems over real
numbers [49, 48]. Delta-decision procedures allow one-sided bounded numeri-
cal errors, which is a practically useful relaxation that significantly reduces the
computational complexity of the problems. With such relaxation, SMT problems
with hundreds of variables and highly nonlinear constraints (such as differential
equations) have been solved in practical applications [79]. Existing work in this
direction has focused on satisfiability of quantifier-free SMT problems. Going one
level up, SMT problems with both free and universally quantified variables, which
correspond to ∃∀-formulas over the reals, are much more expressive. For instance,
such formulas can encode the search for robust control laws in highly nonlinear
dynamical systems, a central problem in robotics. Non-convex, multi-objective, and
disjunctive optimization problems can all be encoded as ∃∀-formulas, through the
natural definition of “finding some 𝑥 such that for all other 𝑥′, 𝑥 is better than 𝑥′

41
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with respect to certain constraints.” Many other examples from various areas are
listed in [103].

Counterexample-Guided Inductive Synthesis (CEGIS) [109] is a framework for
program synthesis that can be applied to solve generic exists-forall problems. The
idea is to break the process of solving ∃∀-formulas into a loop between synthesis and
verification. The synthesis procedure finds solutions to the existentially quantified
variables and gives the solutions to the verifier to see if they can be validated,
or falsified by counterexamples. The counterexamples are then used as learned
constraints for the synthesis procedure to find new solutions. This method has
been shown effective for many challenging problems, frequently generating more
optimized programs than the best manual implementations [109].

A direct application of CEGIS to decision problems over real numbers, however,
suffers from several problems. CEGIS is complete in finite domains because it
can explicitly enumerate solutions, which can not be done in continuous domains.
Also, CEGIS ensures progress by avoiding duplication of solutions, while due to
numerical sensitivity, precise control over real numbers is difficult. In this chapter
we propose methods that bypass such difficulties.

We propose an integration of the CEGIS method in the branch-and-prune
framework as a generic algorithm for solving nonlinear ∃∀-formulas over real
numbers and prove that the algorithm is 𝛿-complete. We achieve this goal by using
CEGIS-based methods for turning universally-quantified constraints into pruning
operators, which is then used in the branch-and-prune framework for the search
for solutions on the existentially-quantified variables. In doing so, we take special
care to ensure correct handling of numerical errors in the computation, so that
𝛿-completeness can be established for the whole procedure.

This chapter is organized as follows. We first review the background, and then
present the details of the main algorithm in Section 4.3. We then give a rigorous
proof of the 𝛿-completeness of the procedure in Section 4.4. We demonstrated
the effectiveness of the procedures on various global optimization and Lyapunov
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function synthesis problems in Section 4.5.

Related Work Quantified formulas in real arithmetic can be solved using symbolic
quantifier elimination (using cylindrical decomposition [31]), which is known to
have impractically high complexity (double exponential [18]), and can not handle
problems with transcendental functions. State-of-the-art SMT solvers such as
CVC4 [10] and Z3 [34] provide quantifier support [92, 16, 56, 104] but they are
limited to decidable fragments of first-order logic. Optimization Modulo Theories
(OMT) is a new field that focuses on solving a restricted form of quantified
reasoning [94, 28, 105], focusing on linear formulas. Generic approaches to solving
exists-forall problems such as [36] are generally based on CEGIS framework, and
not intended to achieve completeness. Solving quantified constraints has been
explored in the constraint solving community [95]. In general, existing work has
not proposed algorithms that intend to achieve any notion of completeness for
quantified problems in nonlinear theories over the reals.

4.2 Preliminaries

4.2.1 Delta-Decisions and CNF∀-Formulas

We will focus on the ∃∀-formulas in LRF (Definition 3) in this chapter. Decision
problems for such formulas are equivalent to satisfiability of SMT with universally
quantified variables, whose free variables are implicitly existentially quantified.

It is clear that, when the quantifier-free part of an ∃∀ formula is in Conjunctive
Normal Form (CNF), we can always push the universal quantifiers inside each
conjunct, since universal quantification commute with conjunctions. Thus the
decision problem for any ∃∀-formula is equivalent to the satisfiability of formulas
in the following normal form:
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Definition 20 (CNF∀ Formulas in LRF ). We say an LRF -formula 𝜑 is in the CNF∀, if it
is of the form

𝜑 ( ®𝑥) :=
𝑚∧
𝑖=0

(
∀®𝑦 (

𝑘𝑖∨
𝑗=0
𝑐𝑖 𝑗 ( ®𝑥, ®𝑦))

)
(4.1)

where 𝑐𝑖 𝑗 are atomic constraints. Each universally quantified conjunct of the formula, i.e.,

∀®𝑦 (
𝑘𝑖∨
𝑗=0
𝑐𝑖 𝑗 ( ®𝑥, ®𝑦))

is called as a ∀-clause. Note that ∀-clauses only contain disjunctions and no nested
conjunctions. If all the ∀-clauses are vacuous, we say 𝜑 ( ®𝑥) is a ground SMT formula.

The algorithms described in this chapter will assume that an input formula is in
CNF∀ form. We can now define the 𝛿-satisfiability problems for CNF∀-formulas.

Definition 21 (Delta-Weakening/Strengthening of CNF∀-formulas). Let 𝛿 ∈ Q+ be
arbitrary. Consider an arbitrary CNF∀-formula of the form

𝜑 ( ®𝑥) :=
𝑚∧
𝑖=0

(
∀®𝑦 (

𝑘𝑖∨
𝑗=0

𝑓𝑖 𝑗 ( ®𝑥, ®𝑦) ◦ 0)
)

where ◦ ∈ {>, ≥}. We define the 𝛿-weakening of 𝜑 ( ®𝑥) to be:

𝜑−𝛿 ( ®𝑥) :=
𝑚∧
𝑖=0

(
∀®𝑦 (

𝑘𝑖∨
𝑗=0

𝑓𝑖 𝑗 ( ®𝑥, ®𝑦) ≥ −𝛿)
)
.

Namely, we weaken the right-hand sides of all atomic formulas from 0 to −𝛿 . Note how the
difference between strict and nonstrict inequality becomes unimportant in the 𝛿-weakening.
We also define its dual, the 𝛿-strengthening of 𝜑 ( ®𝑥):

𝜑+𝛿 ( ®𝑥) :=
𝑚∧
𝑖=0

(
∀®𝑦 (

𝑘𝑖∨
𝑗=0

𝑓𝑖 𝑗 ( ®𝑥, ®𝑦) ≥ +𝛿)
)
.

Since the formulas in the normal form no longer contain negations, the relaxation
on the atomic formulas is implied by the original formula (and thus weaker), as
was easily shown in [49].
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Proposition 2. For any 𝜑 and 𝛿 ∈ Q+, 𝜑−𝛿 is logically weaker, in the sense that 𝜑 → 𝜑−𝛿 is
always true, but not vice versa.

Example 1. Consider the formula

∀𝑦 𝑓 (𝑥,𝑦) = 0.

It is equivalent to the CNF∀-formula

(∀𝑦 (−𝑓 (𝑥,𝑦) ≥ 0) ∧ ∀𝑦 (𝑓 (𝑥,𝑦) ≥ 0))

whose 𝛿-weakening is of the form

(∀𝑦 (−𝑓 (𝑥,𝑦) ≥ −𝛿) ∧ ∀𝑦 (𝑓 (𝑥,𝑦) ≥ −𝛿))

which is logically equivalent to

∀𝑦 (∥ 𝑓 (𝑥,𝑦)∥ ≤ 𝛿).

We see that the weakening of 𝑓 (𝑥,𝑦) = 0 by ∥ 𝑓 (𝑥,𝑦)∥ ≤ 𝛿 defines a natural relaxation.

4.2.2 The Branch-and-Prune Framework

A practical algorithm that has been shown to be𝛿-complete for ground SMT formulas
is the branch-and-prune method developed for interval constraint propagation [13].
A description of the algorithm in the simple case of an equality constraint is
in Algorithm 4.1.

The procedure combines pruning and branching operations. Let B be the set
of all boxes (each variable assigned to an interval), and C a set of constraints in
the language. FixedPoint(g, B) is a procedure computing a fixedpoint of a function
𝑔 : B → B with an initial input 𝐵. A pruning operation Prune : B × C → B takes
a box 𝐵 ∈ B and a constraint as input, and returns an ideally smaller box 𝐵′ ∈ B
(Line 5) that is guaranteed to still keep all solutions for all constraints if there is
any. When such pruning operations do not make progress, the Branch procedure
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Algorithm 4.1 Branch-and-Prune
1: function Solve(𝑓 (𝑥) = 0, 𝐵𝑥 , 𝛿)
2: 𝑆 ← {𝐵𝑥 }
3: while 𝑆 ≠ ∅ do
4: 𝐵 ← 𝑆.pop()
5: 𝐵′← FixedPoint

(
𝜆𝐵.𝐵 ∩ Prune(𝐵, 𝑓 (𝑥) = 0), 𝐵

)
6: if 𝐵′ ≠ ∅ then
7: if ∥ 𝑓 (𝐵′)∥ > 𝛿 then
8: {𝐵1, 𝐵2} ← Branch(𝐵′)
9: 𝑆.push({𝐵1, 𝐵2})

10: else
11: return 𝛿-sat
12: end if
13: end if
14: end while
15: return unsat
16: end function

picks a variable, divides its interval by halves, and creates two sub-problems 𝐵1 and
𝐵2 (Line 8). The procedure terminates if either all boxes have been pruned to be
empty (Line 15), or if a small box whose maximum width is smaller than a given
threshold 𝛿 has been found (Line 11). In [48], it has been proved that Algorithm 4.1
is 𝛿-complete if and only if the pruning operators satisfy certain conditions for being
well-defined (Definition 22).

4.3 Algorithms

The core idea of our algorithm for solving CNF∀-formulas is as follows. We
view the universally quantified constraints as a special type of pruning operators,
which can be used to reduce possible values for the free variables based on their
consistency with the universally-quantified variables. We then use these special
∀-pruning operators in an overall branch-and-prune framework to solve the full
formula in a way that ensures 𝛿-completeness. A special technical difficulty for
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ensuring 𝛿-completeness is to control numerical errors in the recursive search for
counterexamples, which we solve using double-sided error control. We also improve
quality of counterexamples using local-optimization algorithms in the ∀-pruning
operations, which we call locally-optimized counterexamples.

In the following sections we describe these steps in detail. For notational
simplicity we will omit vector symbols and assume all variable names can directly
refer to vectors of variables.

4.3.1 ∀-Clauses as Pruning Operators

Consider an arbitrary CNF∀-formula. Note that without loss of generality we
only use non-strict inequality here, since in the context of 𝛿-decisions the dis-
tinction between strict and non-strict inequalities as not important, as explained
in Definition 5.

𝜑 (𝑥) :=
𝑚∧
𝑖=0

(
∀𝑦 (

𝑘𝑖∨
𝑗=0

𝑓𝑖 𝑗 (𝑥,𝑦) ≥ 0)
)
.

It is a conjunction of ∀-clauses as defined in Definition 20. Consequently, we only
need to define pruning operators for ∀-clauses so that they can be used in a standard
branch-and-prune framework. The full algorithm for such pruning operation is
described in Algorithm 4.2.

In Algorithm 4.2, the basic idea is to use special 𝑦 values that witness the negation
of the original constraint to prune the box assignment on 𝑥 . The two core steps are
as follows.

1. Counterexample generation (Lines 4 – 9). The query for a counterexample𝜓
is defined as the negation of the quantifier-free part of the constraint (Line 4).
The method Solve(𝑦,𝜓, 𝛿) means to obtain a solution for the variables 𝑦 𝛿-
satisfying the logic formula 𝜓 . When such a solution is found, we have a
counterexample that can falsify the ∀-clause on some choice of 𝑥 . Then we use
this counterexample to prune on the domain of 𝑥 , which is currently 𝐵𝑥 .
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Algorithm 4.2 ∀-Clause Pruning

1: function Prune(𝐵𝑥 , 𝐵𝑦 , ∀𝑦
∨𝑘
𝑖=0 𝑓𝑖 (𝑥,𝑦) ≥ 0, 𝛿′, 𝜀, 𝛿)

2: repeat
3: 𝐵

prev
𝑥 ← 𝐵𝑥

4: 𝜓 ← ∧
𝑖 𝑓𝑖 (𝑥,𝑦) < 0

5: 𝜓+𝜀 ← Strengthen(𝜓, 𝜀)
6: 𝑏 ← Solve(𝑦,𝜓+𝜀, 𝛿′) ⊲ 0 < 𝛿′ < 𝜀 < 𝛿 should hold.
7: if 𝑏 = ∅ then
8: return 𝐵𝑥 ⊲ No counterexample found, stop pruning.
9: end if

10: for 𝑖 ∈ {0, . . . , 𝑘} do
11: 𝐵𝑖 ← 𝐵𝑥 ∩ Prune

(
𝐵𝑥 , 𝑓𝑖 (𝑥, 𝑏) ≥ 0

)
12: end for
13: 𝐵𝑥 ←

⊔𝑘
𝑖=0 𝐵𝑖

14: until 𝐵𝑥 ≠ 𝐵prev𝑥

15: return 𝐵𝑥
16: end function

The strengthening operation on𝜓 (Line 5), as well as the choices of 𝜀 and 𝛿′,
will be explained in the next subsection.

2. Pruning on 𝑥 (Lines 10 – 13). In the counterexample generation step, we have
obtained a counterexample 𝑏. The pruning operation then uses this value to
prune on the current box domain 𝐵𝑥 . Here we need to be careful about the
logical operations. For each constraint, we need to take the intersection of the
pruned results on the counterexample point (Line 11). Then since the original
clause contains the disjunction of all constraints, we need to take the box-hull
(
⊔

) of the pruned results (Line 13).

We can now put the pruning operators defined for all ∀-clauses in the overall
branch-and-prune framework shown in Algorithm 4.1.

The pruning algorithms are inspired by the CEGIS loop but differ in multiple
ways. First, we do not explicitly compute any candidate solutions for the free
variables. Instead, we only prune their domain boxes. This ensures that the size of
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the domain box decreases, together with branching operations, and the algorithm
terminates. Second, we do not explicitly maintain a collection of constraints. Each
time the pruning operation works on the previous box, i.e., learning is done on
the model level instead of the constraint level. On the other hand, our inability
to maintain arbitrary Boolean combinations of constraints requires us to be more
sensitive to the type of Boolean operations needed in the pruning results, which
differs from the CEGIS approach that treats solvers as black boxes.

4.3.2 Double-Sided Error Control

To ensure the correctness of Algorithm 4.2, it is necessary to avoid spurious
counterexamples which do not satisfy the negation of the quantified part in a ∀-
clause. We illustrate this condition by consider a wrong derivation of Algorithm 4.2
where we do not have the strengthening operation on Line 5 and try to find a
counterexample by directly executing 𝑏 ← Solve(𝑦,𝜓 =

∧𝑘
𝑖=0 𝑓𝑖 (𝑥,𝑦) < 0, 𝛿). Note that

the counterexample query𝜓 can be highly nonlinear in general and not included
in a decidable fragment. As a result, it must employ a delta-decision procedure
(i.e., Solve with 𝛿′ ∈ Q+) to find a counterexample. A consequence of relying on
a delta-decision procedure in the counterexample generation step is that we may
obtain a spurious counterexample 𝑏 such that for some 𝑥 = 𝑎:

𝑘∧
𝑖=0

𝑓𝑖 (𝑎, 𝑏) ≤ 𝛿 instead of
𝑘∧
𝑖=0

𝑓𝑖 (𝑎, 𝑏) < 0.

Consequently the following pruning operations fail to reduce their input boxes
because a spurious counterexample does not witness any inconsistencies between 𝑥
and 𝑦. As a result, the fixedpoint loop in this ∀-Clause pruning algorithm will be
terminated immediately after the first iteration. This makes the outer-most branch-
and-prune framework (Algorithm 4.1), which employs this pruning algorithm,
solely rely on branching operations. It can claim that the problem is 𝛿-satisfiable
while providing an arbitrary box 𝐵 as a model which is small enough (∥𝐵∥ ≤ 𝛿) but
does not include a 𝛿-solution.
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To avoid spurious counterexamples, we directly strengthen the counterexample
query with 𝜀 ∈ Q+ to have

𝜓+𝜀 :=
𝑘∧
𝑖=0

𝑓𝑖 (𝑎, 𝑏) ≤ −𝜀.

Then we choose a weakening parameter 𝛿′ ∈ Q in solving the strengthened formula.
By analyzing the two possible outcomes of this counterexample search, we show
the constraints on 𝛿′, 𝜀, and 𝛿 which guarantee the correctness of Algorithm 4.2:

• 𝛿′-sat case: We have 𝑎 and 𝑏 such that
∧𝑘
𝑖=0 𝑓𝑖 (𝑎, 𝑏) ≤ −𝜀 + 𝛿′. For 𝑦 = 𝑏 to be a

valid counterexample, we need −𝜀 + 𝛿′ < 0. That is, we have

𝛿′ < 𝜀. (4.2)

In other words, the strengthening factor 𝜀 should be greater than the weakening
parameter 𝛿′ in the counterexample search step.

• unsat case: By checking the absence of counterexamples, it proved that
∀𝑦∨𝑘

𝑖=0 𝑓𝑖 (𝑥,𝑦) ≥ −𝜀 for all 𝑥 ∈ 𝐵𝑥 . Recall that we want to show that
∀𝑦∨𝑘

𝑖=0 𝑓𝑖 (𝑥,𝑦) ≥ −𝛿 holds for some 𝑥 = 𝑎 when Algorithm 4.1 uses this
pruning algorithm and returns 𝛿-sat. To ensure this property, we need the
following constraint on 𝜀 and 𝛿 :

𝜀 < 𝛿. (4.3)

4.3.3 Locally-Optimized Counterexamples

The performance of the pruning algorithm for CNF∀-formulas depends on the
quality of the counterexamples found during the search.

Figure 4.1 illustrates this point by visualizing a pruning process for an uncon-
strained minimization problem, ∃𝑥 ∈ 𝑋0∀𝑦 ∈ 𝑋0𝑓 (𝑥) ≤ 𝑓 (𝑦). As it finds a series
of counterexamples CE1, CE2, CE3, and CE4, the pruning algorithm uses those
counterexamples to contract the interval assignment on 𝑋 from 𝑋0 to 𝑋1, 𝑋2, 𝑋3, and
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X4

Global Minimum

X3
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X0

CE1
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Figure 4.1: Illustration of the pruning algorithm for CNF∀-formulas without local
optimization.

𝑋4 in sequence. In the search for a counterexample (Line 6 of Algorithm 4.2), it
solves the strengthened query, 𝑓 (𝑥) > 𝑓 (𝑦) + 𝜀. Note that the query only requires
a counterexample 𝑦 = 𝑏 to be 𝜀-away from a candidate 𝑥 while it is clear that the
further a counterexample is away from candidates, the more effective the pruning
algorithm is.

Based on this observation, we present a way to improve the performance of
the pruning algorithm for CNF∀-formulas. After we obtain a counterexample
𝑏, we locally-optimize it with the counterexample query 𝜓 so that it “further
violates” the constraints. Figure 4.2 illustrates this idea. The algorithm first finds a
counterexample CE1 then refines it to CE′1 by using a local-optimization algorithm
(similarly,CE2 → CE′2). Clearly, this refined counterexample gives a stronger pruning
power than the original one. This refinement process can also help the performance
of the algorithm by reducing the number of total iterations in the fixedpoint loop.

The suggested method is based on the assumption that local optimization tech-
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Figure 4.2: Illustration of the pruning algorithm for CNF∀-formulas with local
optimization.

niques are cheaper than finding a global counterexample using interval propagation
techniques. In our experiments, we observed that this assumption holds true in
practice. We provide more details in Section 4.5.

4.4 𝛿-Completeness

We now prove that the proposed algorithm is𝛿-complete for arbitrary CNF∀ formulas
in LRF . In the work of [48], 𝛿-completeness has been proved for branch-and-prune
for ground SMT problems, under the assumption that the pruning operators are
well-defined. Thus, the key for our proof here is to show that the ∀-pruning operators
satisfy the conditions of well-definedness.

The notion of a well-defined pruning operator is defined in [48] as follows.
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Definition 22. Let 𝜙 be a constraint, and B be the set of all boxes in R𝑛. A pruning
operator is a function Prune : B × C → B. We say such a pruning operator is well-defined,
if for any 𝐵 ∈ B, the following conditions are true:

1. Prune(𝐵, 𝜙) ⊆ 𝐵.

2. 𝐵 ∩ {𝑎 ∈ R𝑛 : 𝜙 (𝑎) is true.} ⊆ Prune(𝐵, 𝜙).

3. Write Prune(𝐵, 𝜙) = 𝐵′. There exists a constant 𝑐 ∈ Q+, such that, if 𝐵′ ≠ ∅ and
∥𝐵′∥ < 𝜀 for some 𝜀 ∈ Q+, then for all 𝑎 ∈ 𝐵′, 𝜙−𝑐𝜀 (𝑎) is true.

We will explain the intuition behind these requirements in the next proof, which
aims to establish that Algorithm 4.2 defines a well-defined pruning operator.

Lemma 1 (Well-definedness of ∀-Pruning). Consider an arbitrary ∀-clause in the generic
form

𝑐 (𝑥) := ∀𝑦
(
𝑓1(𝑥,𝑦) ≥ 0 ∨ . . . ∨ 𝑓𝑘 (𝑥,𝑦) ≥ 0

)
.

Suppose the pruning operators for 𝑓1 ≥ 0, . . . , 𝑓𝑘 ≥ 0 are well-defined, then the ∀-pruning
operation for 𝑐 (𝑥) as described in Algorithm 4.2 is well-defined.

Proof. We prove that the pruning operator defined by Algorithm 4.2 satisfies the
three conditions in Definition 22. Let 𝐵0, . . . , 𝐵𝑘 be a sequence of boxes, where 𝐵0 is
the input box 𝐵𝑥 and 𝐵𝑘 is the returned box 𝐵, which is possibly empty.

1. The first condition requires (1) that the pruning operation for 𝑐 (𝑥) is reductive.
That is, we want to show that 𝐵𝑥 ⊆ 𝐵prev𝑥 holds in Algorithm 4.2. If it does not
find a counterexample (Line 8), we have 𝐵𝑥 = 𝐵

prev
𝑥 . So the condition holds

trivially. Consider the case where it finds a counterexample 𝑏. The pruned box
𝐵𝑥 is obtained through box-hull of all the 𝐵𝑖 boxes (Line 13), which are results
of pruning on 𝐵prev𝑥 using ordinary constraints of the form 𝑓𝑖 (𝑥, 𝑏) ≥ 0 (Line 11),
for a counterexample 𝑏. Following the assumption that the pruning operators
are well-defined for each ordinary constraint 𝑓𝑖 used in the algorithm, we know
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that 𝐵𝑖 ⊆ 𝐵prev𝑥 holds as a loop invariant for the loop from Line 10 to Line 12.
Thus, taking the box-hull of all the 𝐵𝑖 , we obtain 𝐵𝑥 that is still a subset of 𝐵prev𝑥 .

2. The second condition (2) requires that the pruning operation does not eliminate
real solutions. Again, by the assumption that the pruning operation on Line 11
does not lose any valid assignment on 𝑥 that makes the ∀-clause true. In fact,
since 𝑦 is universally quantified, any choice of assignment 𝑦 = 𝑏 will preserve
solution on 𝑥 as long as the ordinary pruning operator is well-defined. Thus,
this condition is easily satisfied.

3. The third condition (3) is the most nontrivial to establish. It ensures that
when the pruning operator does not prune a box to the empty set, then the
box should not be “way off”, and in fact, should contain points that satisfy
an appropriate relaxation of the constraint. We can say this is a notion of
“faithfulness” of the pruning operator. For constraints defined by simple
continuous functions, this can be typically guaranteed by the modulus of
continuity of the function (Lipschitz constants as a special case). Now, in
the case of ∀-clause pruning, we need to prove that the faithfulness of the
ordinary pruning operators that are used translates to the faithfulness of the
∀-clause pruning results. First of all, this condition would not hold, if we do
not have the strengthening operation when searching for counterexamples
(Line 5). As is shown in Example 1, because of the weakening that 𝛿-decisions
introduce when searching for a counterexample, we may obtain a spurious
counterexample that does not have pruning power. In other words, if we keep
using a wrong counterexample that already satisfies the condition, then we are
not able to rule out wrong assignments on 𝑥 . Now, since we have introduced
𝜀-strengthening at the counterexample search, we know that 𝑏 obtained on
Line 6 is a true counterexample. Thus, for some 𝑥 = 𝑎, 𝑓𝑖 (𝑎, 𝑏) < 0 for every 𝑖.
By assumption, the ordinary pruning operation using 𝑏 on Line 11 guarantees
faithfulness. That is, suppose the pruned result 𝐵𝑖 is not empty and ∥𝐵𝑖 ∥ ≤ 𝜀,
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then there exists constant 𝑐𝑖 such that 𝑓𝑖 (𝑥, 𝑏) ≥ −𝑐𝑖𝜀 is true. Thus, we can take
the 𝑐 = min𝑖 𝑐𝑖 as the constant for the pruning operator defined by the full
clause, and conclude that the disjunction

∨𝑘
𝑖=0 𝑓𝑖 (𝑥,𝑦) < −𝑐𝜀 holds for ∥𝐵𝑥 ∥ ≤ 𝜀.

□

Using the lemma, we follow the results in [48], and conclude that the branch-
and-prune method in Algorithm 4.1 is delta-complete:

Theorem 4 (𝛿-Completeness). For any 𝛿 ∈ Q+, using the proposed ∀-pruning operators
defined in Algorithm 4.2 in the branch-and-prune framework described in Algorithm 4.1 is
𝛿-complete for the class of CNF∀-formulas in LRF , assuming that the pruning operators for
all the base functions are well-defined.

Proof. Following Theorem 4.2 (𝛿-Completeness of ICP𝜀) in [48], a branch-and-prune
algorithm is 𝛿-complete iff the pruning operators in the algorithm are all well-
defined. Following Lemma 1, Algorithm 4.2 always defines well-defined pruning
operators, assuming the pruning operators for the base functions are well-defined.
Consequently, Algorithm 4.2 and Algorithm 4.1 together define a delta-complete
decision procedure for CNF∀-problems in LRF . □

4.5 Experiments

Implementation We implemented the algorithms in dReal [52]1, an open-source 𝛿-
SMT solver. We used IBEX-lib [112] for interval constraints pruning and CLP [88] for
linear programming. For local optimization, we used NLopt [74]. In particular, we
used SLSQP (Sequential Least-Squares Quadratic Programming) local-optimization
algorithm [81] for differentiable constraints and COBYLA (Constrained Optimization
BY Linear Approximations) local-optimization algorithm [102] for non-differentiable
constraints. The prototype solver is able to handle ∃∀-formulas that involve most

1The tool is available on https://github.com/dreal/dreal4 and released under the Apache-2.0
license.

https://github.com/dreal/dreal4
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standard elementary functions, including power, exp, log,√·, trigonometric functions
(sin, cos, tan), inverse trigonometric functions (arcsin, arccos, arctan), hyperbolic
functions (sinh, cosh, tanh), etc.

Experiment Environment All experiments were ran on an AWS EC2 instance
with AMD EPYC 7R32 and 32 GB RAM running Ubuntu 20.04 LTS. All code and
benchmarks are available at https://github.com/dreal/CAV18.

Parameters In the experiments, we chose the strengthening parameter 𝜀 = 0.5𝛿

and the weakening parameter in the counterexample search 𝛿′ = 0.5𝜀. In each call
to NLopt, we used 1𝑒 − 6 for both of absolute and relative tolerances on function
value, 1𝑒 − 3 seconds for a timeout, and 100 for the maximum number of evaluations.
These values are used as stopping criteria in NLopt.

4.5.1 Nonlinear Global Optimization

We encoded a range of highly nonlinear ∃∀-problems from constrained and un-
constrained optimization literature [72, 117]. Note that the standard optimization
problem

min 𝑓 (𝑥) s.t. 𝜑 (𝑥), 𝑥 ∈ R𝑛,

can be encoded as the logic formula:

𝜑 (𝑥) ∧ ∀𝑦
(
𝜑 (𝑦) → 𝑓 (𝑥) ≤ 𝑓 (𝑦)

)
.

As plotted in Figure 4.3, these optimization problems are non-trivial: they
are highly non-convex problems that are designed to test global optimization or
genetic programming algorithms. Many such functions have a large number of
local minima. For example, Ripple 1 Function [72]

𝑓 (𝑥1, 𝑥2) =
2∑︁
𝑖=1
−𝑒−2(log 2)

(
𝑥1−0.1
0.8

)2
(sin6(5𝜋𝑥𝑖) + 0.1 cos2(500𝜋𝑥𝑖))

https://github.com/dreal/CAV18
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Name Solution Time (sec)
Global No L-Opt. L-Opt. No L-Opt. L-Opt. Speed Up

Ackley 2D 0.00000 0.00000 0.00000 0.0216 0.0029 7.45
Ackley 4D 0.00000 0.00005 0.00000 1.3958 0.0145 96.26
Aluffi Pentini -0.35230 -0.35231 -0.35238 0.0149 0.0270 0.55
Beale 0.00000 0.00033 0.00000 0.0147 0.0424 0.35
Bohachevsky1 0.00000 0.00000 0.00000 0.0053 0.0013 4.08
Booth 0.00000 0.00036 0.00000 0.1326 0.0012 110.50
Brent 0.00000 0.00004 0.00000 0.0079 0.0010 7.90
Bukin6 0.00000 0.00015 0.00007 0.0040 0.0027 1.48
Cross in Tray -2.06261 -2.06254 -2.06253 0.0905 0.0242 3.74
Easom -1.00000 -1.00000 -1.00000 0.0033 0.0016 2.06
EggHolder -959.64070 -959.63980 -959.64006 0.0365 0.0123 2.97
Holder Table2 -19.20850 -19.20837 -19.20824 7.0523 4.3070 1.64
Levi N13 0.00000 0.00006 0.00000 0.0517 0.0016 32.31
Ripple 1 -2.20000 -2.20000 -2.20000 0.0056 0.0054 1.04
Schaffer F6 0.00000 0.00038 0.00000 0.0148 0.0040 3.70
Testtube Holder -10.87230 -10.87230 -10.87230 0.0220 0.0019 11.58
Trefethen -3.30687 -3.30668 -3.30673 0.7108 0.3554 2.00
W Wavy 0.00000 0.00000 0.00000 0.0515 0.0059 8.73
Zettl -0.00379 -0.00375 -0.00379 0.0028 0.0022 1.27
Rosenbrock Cubic 0.00000 0.00075 0.00055 0.0034 0.0022 1.55
Rosenbrock Disk 0.00000 0.00001 0.00002 0.0021 0.0014 1.50
Mishra Bird -106.76454 -106.76393 -106.76445 0.3463 0.0664 5.22
Townsend -2.02399 -2.02325 -2.02331 0.8872 0.3103 2.86
Simionescu -0.07262 -0.07194 -0.07198 0.0028 0.0020 1.40

Table 4.1: Experimental results for nonlinear global optimization problems: The first
19 problems (Ackley 2D – Zettl) are unconstrained optimization problems and the
last five problems (Rosenbrock Cubic – Simionescu) are constrained optimization
problems. We ran our prototype solver over those instances with and without
local-optimization option (“L-Opt.” and “No L-Opt.” columns) and compared the
results. We chose 𝛿 = 0.001, 𝜀 = 0.0005, 𝛿′ = 0.00025 for all instances.
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(a) Ackley Function. (b) EggHolder Function.

(c) Holder Table2 Function. (d) Levi N13 Function.

(e) Ripple 1 Function. (f) Testtube Holder Function.

Figure 4.3: Nonlinear Global Optimization Examples.
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defined in 𝑥𝑖 ∈ [0, 1] has 252,004 local minima with the global minima 𝑓 (0.1, 0.1) =
−2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as ∃∀-problems, we can
perform guaranteed global optimization on these problems.

Table 4.1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second, it
shows that enabling the local-optimization technique speeds up the solving process
significantly for 20 instances out of 23 instances.

4.5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions for
nonlinear dynamic systems described by a set of ODEs:

¤®𝑥 (𝑡) = 𝑓𝑖 ( ®𝑥 (𝑡)), ∀®𝑥 (𝑡) ∈ 𝑋𝑖 .

Lyapunov Function A Lyapunov function is a scalar-valued function that is used
to study the stability of a dynamical system. Specifically, it serves as a mathematical
tool for proving the stability of a system by demonstrating that the function decreases
along the solutions of the system. In particular, a Lyapunov function is a scalar-
valued function that is positive definite and decreases along the solutions of the
system. A positive definite function is one that is greater than zero everywhere
and is equal to zero only at the equilibrium points of the system. By showing
that the function decreases along the solutions of the system, it is established that
the function has a minimum value at the equilibrium points of the system, thus
indicating that the equilibrium points of the system are stable and that solutions of
the system converge to these points.

Our Synthesis Approach Our synthesis approach differs from a recent related
work [76], in which they used dReal only to verify a candidate function that was
found by a simulation-guided algorithm. In contrast, we aim to perform both search
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and verification steps by solving a single ∃∀-formula. Note that to verify a Lyapunov
candidate function 𝑣 : 𝑋 → R+, we need to show that the function 𝑣 satisfies the
following conditions:

∀®𝑥 ∈ 𝑋 \ ®0 𝑣 ( ®𝑥) (®0) = 0

∀®𝑥 ∈ 𝑋 ∇𝑣 ( ®𝑥 (𝑡))𝑇 · 𝑓𝑖 ( ®𝑥 (𝑡)) ≤ 0.

We assume that a Lyapunov function is a polynomial of some fixed degrees over ®𝑥 ,
that is, 𝑣 ( ®𝑥) = ®𝑧𝑇 ®𝑃 ®𝑧 where ®𝑧 is a vector of monomials over ®𝑥 and 𝑃 is a symmetric
matrix. Then, we can encode this synthesis problem into the ∃∀-formula:

∃ ®𝑃 [(𝑣 ( ®𝑥) = (®𝑧𝑇 ®𝑃 ®𝑧))∧

(∀®𝑥 ∈ 𝑋 \ ®0 𝑣 ( ®𝑥) (®0) = 0)∧

(∀®𝑥 ∈ 𝑋 ∇𝑣 ( ®𝑥 (𝑡))𝑇 · 𝑓𝑖 ( ®𝑥 (𝑡)) ≤ 0)]

In the following sections, we show that we can handle two examples in [76].

Normalized Pendulum

The normalized pendulum is a mathematical model that describes the behavior
of a simple pendulum. It is a specific form of the pendulum equation, which is a
second-order nonlinear ordinary differential equation that describes the motion of
a pendulum.

Given a standard pendulum system with normalized parameters[
¤𝑥1
¤𝑥2

]
=

[
𝑥2

− sin(𝑥1) − 𝑥2

]
and a quadratic template for a Lyapunov function 𝑣 ( ®𝑥) = ®𝑥𝑇 ®𝑃 ®𝑥 = 𝑐1𝑥1𝑥2 + 𝑐2𝑥21 + 𝑐3𝑥22 ,
we can encode this synthesis problem into the following ∃∀-formula:

∃𝑐1𝑐2𝑐3 ∀𝑥1𝑥2 [((𝑐3𝑥1𝑥2 + 𝑥21𝑐1 + 𝑥22𝑐2 > 0)∧

(2𝑐1𝑥1𝑥2 + 𝑥2𝑐3 + (−𝑥2 − sin(𝑥1) (𝑥1𝑐3 + 2𝑥2𝑐2)) < 0))∨

¬((0.01 ≤ 𝑥21 + 𝑥22) ∧ (𝑥21 + 𝑥22 ≤ 1))] .
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Our prototype solver takes 44.184 seconds to synthesize the following function
as a solution to the problem for the bound ∥ ®𝑥 ∥ ∈ [0.1, 1.0] and 𝑐𝑖 ∈ [0.1, 100] using
𝛿 = 0.05:

𝑣 = 40.6843𝑥1𝑥2 + 35.6870𝑥21 + 84.3906𝑥22 .

Damped Mathieu System

The Damped Mathieu system [62] is a type of mathematical model that describes the
behavior of a damped oscillator. It is a specific form of the Mathieu equation [114],
which is a second-order differential equation that describes the behavior of systems
that exhibit periodic motion. It is time-varying and defined by following ODEs:[

¤𝑥1
¤𝑥2

]
=

[
𝑥2

−𝑥2 − (2 + sin(𝑡))𝑥1

]
.

where ¤𝑥1 is the position of the oscillator, ¤𝑥2 is the velocity, and 𝑡 is the time. The
solution of this equation describes the behavior of the oscillator over time, including
its amplitude, frequency, and phase. The damped Mathieu system can be used to
model the behavior of mechanical systems, such as oscillating masses or electrical
circuits, and has applications in fields such as control theory, mechanical engineering,
and physics.

Using a quadratic template for a Lyapunov function 𝑣 ( ®𝑥) = ®𝑥𝑇 ®𝑃 ®𝑥 = 𝑐1𝑥1𝑥2 + 𝑐2𝑥21 +
𝑐3𝑥

2
2 , we can encode this synthesis problem into the following ∃∀-formula:

∃𝑐1𝑐2𝑐3 ∀𝑥1𝑥2𝑡 [(𝑥1𝑥2𝑐2 + 𝑥21𝑐1 + 𝑥22𝑐3 > 0)∧

(2𝑐1𝑥1𝑥2 + 𝑥2𝑐2 + (−𝑥2 − 𝑥1(2 + sin(𝑡))) (𝑥1𝑐2 + 2𝑥2𝑐3) < 0)

∨ ¬((0.01 ≤ 𝑥21 + 𝑥22) ∧ (0.1 ≤ 𝑡) ∧ (𝑡 ≤ 1) ∧ (𝑥21 + 𝑥22 ≤ 1))] .

Our prototype solver takes 26.533 seconds to synthesize the following function as a
solution to the problem for the bound ∥ ®𝑥 ∥ ∈ [0.1, 1.0], 𝑡 ∈ [0.1, 1.0], and 𝑐𝑖 ∈ [45, 98]
using 𝛿 = 0.05:

𝑉 = 54.6950𝑥1𝑥2 + 90.2849𝑥21 + 50.5376𝑥22 .
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4.6 Conclusion

We have described delta-decision procedures for solving exists-forall formulas
in the first-order theory over the reals with computable real functions. These
formulas can encode a wide range of hard practical problems such as general
constrained optimization and nonlinear control synthesis. We use a branch-and-
prune framework, and design special pruning operators for universally-quantified
constraints such that the procedures can be proved to be delta-complete, where
suitable control of numerical errors is crucial. We demonstrated the effectiveness of
the procedures on various global optimization and Lyapunov function synthesis
problems.



Chapter 5

dReal: An SMT Solver for Nonlinear
Theories over the Reals

5.1 Introduction

SMT formulas over the real numbers can encode a wide range of problems in
theorem proving and formal verification. Such formulas are very hard to solve when
nonlinear functions are involved. Recent work on 𝛿-complete decision procedures
provided a new framework for this problem [48, 49]. We say a decision procedure
is 𝛿-complete for a set 𝑆 of SMT formulas, where 𝛿 is a positive rational number, if for
any 𝜑 from 𝑆 , the procedure returns one of the following:

• unsat: 𝜑 is unsatisfiable.

• 𝛿-sat: 𝜑𝛿 is satisfiable.

Here, 𝜑𝛿 is a syntactic variant of 𝜑 that encodes a notion of numerical perturbation
on logic formulas [48]. With such relaxation, 𝛿-complete decision procedures can
fully exploit the power of scalable numerical algorithms to solve nonlinear problems,
and at the same time provide suitable correctness guarantees for many correctness-
critical problems. dReal implements this framework. It solves SMT problems

63
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over the reals with nonlinear functions, such as polynomials, sine, exponentiation,
logarithm, etc. The tool is open-source1, built on PicoSAT [15] to implement the
DPLL⟨T⟩, and IBEX-lib [112] for interval pruning algorithms. It returns unsat or
𝛿-sat on input formulas, and the user can obtain certificates (proof of unsatisfiability
or solution) for the answers. In this chapter we describe the design, usage and
experimental results of the tool.

Related work SMT solving for nonlinear formulas over the reals has gained much
attention in recent years and many tools are now available. The symbolic approaches
include Cylindrical Decomposition [31], with significant recent improvement [98, 75],
and Gröbner bases [100]. A drawback of symbolic algorithms is that it is restricted
to arithmetic, namely polynomial constraints, with the exception of [3]. On the
other hand, many practical solvers incorporate scalable numerical computations.
Examples of numerical algorithms that have been exploited include optimization
algorithms [17, 96], interval-based algorithms [43, 40, 50], Bernstein polynomials [93],
and linearization algorithms [47]. All solvers show promising results on various
nonlinear benchmarks. Our goal is to provide an open-source platform for the
rigorous combination of numerical and symbolic algorithms under the framework
of 𝛿-complete decision procedures [48].

5.2 Design

5.2.1 The 𝛿-Decision Problem

The standard decision problem is undecidable for SMT formulas over the reals with
trigonometric functions. Instead, we proposed to focus on the so-called 𝛿-decision
problem, which relaxes the standard decision problem. Let 𝛿 be any positive rational
number. On a given SMT formula 𝜑 , we ask for one of the following answers:

1dReal is available at https://github.com/dreal/dreal4.

https://github.com/dreal/dreal4
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• unsat: 𝜑 is unsatisfiable.

• 𝛿-sat: 𝜑−𝛿 is satisfiable.

When the two cases overlap, either answer can be returned. Here, 𝜑−𝛿 is called the
𝛿-perturbation (or 𝛿-weakening) of 𝜑 , which is formally defined in Definition 5.

Solving the 𝛿-decision problem is as useful as the standard one for many
problems. For instance, suppose we perform bounded model checking on hybrid
systems and encode safety properties as an SMT formula𝜑 . Then following standard
model checking techniques, if we decide that 𝜑 is unsat, then the system is indeed
“safe” with in some bounds. If we decide that 𝜑 is 𝛿-sat, then the system would
become “unsafe” under some 𝛿-perturbation on the system. In this way, when 𝛿 is
reasonably small, we have essentially taken into account the robustness properties
of the system and can justifiably conclude that the system is unsafe in practice.

5.2.2 DPLL⟨ICP⟩

Interval Constraint Propagation (ICP) [13] is a constraint solving algorithm that
finds solutions of real constraints using a “branch-and-prune” method, combining
interval arithmetic and constraint propagation. The idea is to use interval extensions
of functions to “prune” out sets of points that are not in the solution set, and
“branch” on intervals when such pruning can not be done, until a small enough
box that may contain a solution is found. In a DPLL⟨T⟩ framework, ICP can be
used as the theory solver that checks the consistency of a set of theory atoms. In
dReal4, we used PicoSAT [15] to implement the DPLL⟨T⟩ framework and integrate
IBEX-lib [112] which performs interval pruning operations. We now describe the
design of the interface.

Check and Assert For incomplete checks in the assert function, we use the pruning
operator provided in ICP to contract the interval assignments on all the variables, by
eliminating the boxes in the domain that do not contain any solutions. At complete
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checks, we perform both pruning and branching, and look for one interval solution
of the system. That is, we prune and branch on the interval assignment of all
variables, and stop when either we have obtained an interval vector that is smaller
than the preset error bound, or when we have traversed all the possible branching
on the interval assignments.

Backtracking and Learning We maintain a stack of assignments on the variables,
which are mappings from variables to unions of intervals. When we reach a conflict,
we backtrack to the previous environment in the pushed stack. We also collect all
the constraints that have appeared in the pruning process leading to the conflict. We
then turn this subset of constraints into a learned clause and add it to the original
formula.

Witness for 𝛿-satisfiability When the answer is 𝛿-sat on𝜑 ( ®𝑥), we provide a solution
®𝑎 ∈ R𝑛, such that 𝜑𝛿 ( ®𝑎) is a ground formula that can be easily checked to be true. It
is important to note that the solution witnesses 𝛿-satisfiability, instead of standard
satisfiability of the original formula. While the latter problem is undecidable, any
point in the interval assignment returned by ICP can witness the satisfiability of 𝜑𝛿

when the intervals are smaller than an appropriate error bound.

Proofs of Unsatisfiability When the answer is unsat, we produce a proof tree
that can be verified to establish the validity of the negation of the formula, i.e.,
∀®𝑥¬𝜑 ( ®𝑥). We devised a simple first-order natural deduction system, and transform
the computation trace of the solving process into a proof tree. We then use interval
arithmetic and simple rules to check the correctness of the proof tree. The proof
check procedure recursively divide the problem into subproblems with smaller
domains. More details can be found in [53].
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5.2.3 Parallel ICP

The ICP algorithm serves as the primary computational bottleneck in nonlinear SMT
solving within dReal. Given the widespread availability of multi-core processors,
exploiting parallelism in ICP offers a promising approach to mitigating this per-
formance limitation. Our goal is to develop a multi-core implementation of ICP in
dReal that achieves a linear speed-up proportional to the number of cores employed.
By pursuing this parallelization, we aim to enhance the efficiency and scalability of
dReal, thereby enabling the solution of larger and more complex nonlinear SMT
problems.

Before exploring the design of the parallel ICP, we review the sequential ICP
algorithm (Algorithm 4.1). The algorithm maintains a stack of interval boxes
representing the search space. It repeatedly pops the top box, applies pruning
operations until a fixed-point is obtained. Then it partitions the current box into
two sub-boxes, and pushes them back onto the stack. This procedure continues
until either a delta-sat solution is found or the stack is emptied.

The parallel ICP architecture employs a global stack to manage the search space,
represented by interval boxes. Within this architecture, each thread operates as a
worker. The worker retrieves a box from the global stack and successively prunes it
until a fixed-point is reached. Three outcomes are possible in this process. First, if a
box becomes empty, the worker returns to the global stack to obtain another box.
Second, if a box is non-empty and satisfies the delta-sat criteria, the worker signals
other workers to terminate and returns the identified delta-sat solution. Lastly, if a
box fails to meet the delta-sat criteria, the worker performs a branching operation,
producing two new boxes that are subsequently added to the global stack. Through
the distribution of workload among multiple workers, the parallel ICP strives to
attain a linear speed-up proportional to the number of cores employed.

Figure 5.1 depicts the architecture of the parallel ICP implementation, highlight-
ing the following challenges encountered and corresponding solutions developed
to address them.
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...

Global Stack

Pruning Unit: 
 Box → Box

Branching Unit: 
 Box → Box x Box

Local Stack

Synchronization Barrier

Worker #1

Pruning Unit:: 
 Box → Box

Branching Unit: 
 Box → Box x Box

Local Stack

Worker #2

Pruning Unit: 
 Box → Box

Branching Unit: 
 Box → Box x Box

Local Stack

Worker #N

Figure 5.1: The architecture of the parallel ICP implementation: It employs a global
stack to manage the search space . Each thread operates as a worker, which retrieves
and processes boxes from the global stack. To minimize synchronization overhead,
the architecture allocates a local stack to each worker. Additionally, a job spilling
mechanism is introduced to enhance load balancing and maintain high utilization
across all threads by redistributing boxes from local stacks to the global stack when
necessary.

• Synchronization cost: When 𝑁 threads attempt to access the global stack
simultaneously, synchronization overhead arises. To address this issue, we
employ two strategies. First, we utilize the Treiber stack [26], a scalable lock-free
data structure that exploits fine-grained concurrency primitives to facilitate
efficient parallel access. Second, we allocate a local stack to each worker,
thereby minimizing communication and further reducing synchronization
overhead.

• Low utilization / Load unbalancing: In some cases, certain threads may
not have work to perform, resulting in decreased overall utilization and
throughput. To counteract this problem, we introduce a job spilling mechanism.
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This approach involves transferring boxes from a worker’s local stack to the
global stack when the local stack contains an excessive number of boxes. By
redistributing the workload in this manner, we enhance load balancing and
promote higher utilization across all threads.

5.3 Usage

5.3.1 Input Format

We accept formulas in the standard SMT-LIB format [11] with extensions. In addition
to nonlinear arithmetic (polynomials), we allow transcendental functions such as
sin, tan, arcsin, arctan, exp, log, pow, sinh. More nonlinear functions can be added
when needed, by providing the corresponding numerical evaluation algorithms.
Floating-point numbers are allowed as constants in the formula.

Bound information on variables can be declared using a list of simple atomic
formulas. For instance “(assert (< 0 x))”, which sets 𝑥 ∈ (0, +∞) at parsing time.
Also, the user can set the precision by writing “(set-info :precision 0.0001).”
The default precision is 10−3, and can be set through command line.

Example 2. The following is an example input file. It is taken from the Flyspeck project [63].
(Filename flyspeck/172.smt2. Flyspeck ID (6096597438b))

1 (set-logic QF_NRA)

2 (set-info :precision 0.001)

3 (declare-fun x () Real)

4 (assert (<= 3.0 x))

5 (assert (<= x 64.0))

6 (assert

7 (not

8 (> (- (* 2.0 3.14159265)

9 (* 2.0 (* x (arcsin (* (cos 0.797)

10 (sin (/ 3.14159265 x)))))))

11 (+ (- 0.591 (* 0.0331 x))
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12 (+ (* 0.506 (/ (- 1.26 1.0) (- 1.26 1.0))) 1.0)))))

13 (check-sat)

14 (exit)

5.3.2 Command-line Options

To use dReal, you need to install dReal on your system. You can download the latest
version of dReal from the official website (https://dreal.github.io). Follow the
installation instructions for your operating system.

dReal provides the following command-line options:

• –j, —-jobs <N>: Number of threads to use.

• —-precision <N>: Precision (𝛿) value (default = 0.001).

• —-local-optimization: Enable the local-optimization algorithm for exists-
forall problems if specified.

• —-model: Produce models if delta-sat.

• —-random-seed <N>: Set a seed for the random number generator.

• —-sat-default-phase <N>: Set the default initial phase for SAT solver: 0 =
false, 1 = true, 2 = Jeroslow-Wang (default), 3 = random initial phase.

• —-smtlib2-compliant: Strictly follow the SMT-LIB2 standard.

• —-verbose <ARG>: Verbosity level. One of the following: trace, debug, info,
warning, error (default), critical, off.

5.4 Experiments

Flyspeck Benchmark We evaluated the performance of dReal on a set of nonlinear
SMT benchmarks. Specifically, we extracted 903 SMT2 instances from the Flyspeck

https://dreal.github.io
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project [63], which aims to formally prove the Kepler’s conjecture. The following is
a typical formula:

∀®𝑥 ∈ [2, 2.51]6.
(
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where 𝑎𝑖 ( ®𝑥) are quadratic and Δ( ®𝑥) is the determinant of a nonlinear matrix.

Experimental Environment We conducted our experiments on a system compris-
ing an AMD EPYC 7R32 CPU with 16 cores, running at 2.8 GHz, and 32 GB of RAM.
The operating system used was Ubuntu 20.04 LTS, and we set the value of delta to
1e−10.

Experimental Results First, we used a single thread per problem and solved 489
out of the 903 instances within a timeout of 5 minutes. Out of these, dReal returned
unsat for 196 instances and delta-sat for 293 instances. Next, we increased the
number of threads from 1 to 2, 4, and 8 to evaluate the performance of dReal in
a multi-threaded environment. With eight threads per problem, we were able to
solve 617 instances within a timeout of 5 minutes. Among them, dReal returned
unsat for 263 instances and delta-sat for 354 instances.

In Table 5.1, we present the results of the top 30 instances that we were able
to solve using a single thread within a 5 minute timeout. The total time taken to
solve these 30 problems using a single thread was 3,175.303 seconds. To evaluate
the effectiveness of multi-threading, we ran the same set of problems using eight
threads. The total running time was reduced to 505.607 seconds, resulting in a
speed-up of 6.28 times compared to the single-threaded approach. These results
demonstrate the performance gains that can be achieved with multi-threading in
dReal.
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Instance Result
Time (sec) Speed-up (j1 /j8)

(times)-j1 -j2 -j4 -j8
158 unsat 292.048 130.565 77.472 30.864 9.46
417 unsat 284.103 143.560 69.306 36.623 7.76
100 unsat 249.381 121.685 43.164 16.395 15.21
392 unsat 245.812 146.010 92.800 19.329 12.72
140 unsat 244.160 160.260 76.808 49.811 4.90
64 unsat 234.455 146.552 83.528 34.018 6.89

316 unsat 213.503 153.007 84.746 51.373 4.16
352 unsat 181.891 94.480 83.835 60.225 3.02
165 unsat 173.504 117.281 37.299 36.939 4.70
399 unsat 100.879 51.974 24.173 14.092 7.16
147 unsat 99.985 59.440 25.280 13.086 7.64
144 unsat 93.167 49.881 22.594 12.439 7.49
396 unsat 92.095 52.664 22.901 12.031 7.65
403 unsat 89.394 52.652 22.570 15.579 5.74
151 unsat 89.118 43.382 22.588 11.166 7.98
150 unsat 81.057 39.977 19.976 13.557 5.98
402 unsat 78.866 41.272 21.007 10.812 7.29
398 unsat 73.601 37.632 17.345 10.987 6.70
405 unsat 72.486 40.802 18.048 13.870 5.23
146 unsat 72.301 39.227 19.849 10.230 7.07
877 𝛿-sat 68.098 40.141 22.308 10.518 6.47
894 𝛿-sat 9.370 6.546 6.679 5.455 1.72
892 𝛿-sat 9.315 9.389 7.003 6.716 1.39
766 𝛿-sat 6.780 9.261 3.757 1.490 4.55
767 𝛿-sat 5.093 3.866 1.063 1.365 3.73
754 𝛿-sat 3.464 2.355 1.422 1.342 2.58
804 𝛿-sat 3.267 1.849 1.491 1.310 2.49
794 𝛿-sat 3.086 2.851 1.327 1.375 2.24
797 𝛿-sat 2.957 3.701 0.969 1.298 2.28
753 𝛿-sat 2.067 2.186 1.050 1.312 1.58

Total 3175.303 1804.448 932.358 505.607 6.28

Table 5.1: Experimental results for Flyspeck benchmarks: The top 30 instances with
the longest single-thread solving times within a 5-minute timeout are presented.
The total time taken for these instances with a single thread was 3,175.303 seconds.
To assess multi-threading effectiveness, the same problems were run using two,
four, and eight threads. With eight threads, the total running time decreased to
505.607 seconds, achieving a 6.28-fold speed-up.
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5.5 Conclusion

We have presented dReal, an open-source tool for solving SMT problems over the
reals. dReal is capable of handling various nonlinear real functions, including
polynomials, trigonometric functions, and exponential functions. The tool is based
on the 𝛿-complete decision procedures framework and returns either unsat or 𝛿-sat
on input formulas, where 𝛿 is a user-specified numerical error bound.

Our experimental results demonstrate that dReal is effective in solving nonlinear
SMT problems, even in multi-threaded environments. By leveraging the power
of multi-threading, we were able to achieve significant speed-ups in solving a
nonlinear benchmarks.





Chapter 6

dReach: A Delta-Reachability
Analysis Tool for Hybrid Systems

6.1 Introduction

dReach is a bounded reachability analysis tool for hybrid systems. It encodes
bounded reachability problems of hybrid systems as first-order formulas over the
real numbers, and solves them using 𝛿-decision procedures in the SMT solver
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dReal [52]. dReach is able to handle a wide range of highly nonlinear hybrid
systems [87, 55, 76]. Figure 6.1 highlights some of its features: on the left is an
example of some nonlinear dynamics that dReach can handle, and on the right a
visualized counterexample generated by dReach on this model.

It is well-known that the standard bounded reachability problems for simple
hybrid systems are already highly undecidable [6]. Instead, we work in the
framework of 𝛿-reachability of hybrid systems [51]. Here 𝛿 is an arbitrary positive
rational number, provided by the user to specify the bound on numerical errors
that can be tolerated in the analysis. For a hybrid system 𝐻 and an unsafe region
unsafe (both encoded as logic formulas), the 𝛿-reachability problem asks for one of
the following answers:

• safe: 𝐻 cannot reach unsafe.

• 𝛿-unsafe: 𝐻−𝛿 can reach unsafe−𝛿 .

Here, 𝐻−𝛿 and unsafe−𝛿 encode (𝛿-bounded) over-approximations of 𝐻 and unsafe,
defined explicitly as their syntactic variants as defined in Definition 5. It is important
to note that the definition makes the answers no weaker than standard reachability:
When safe is the answer, we know for certain that 𝐻 does not reach the unsafe
region (no 𝛿 is involved); when 𝛿-unsafe is the answer, we know that there exists
some 𝛿-bounded perturbation of the system that can render it unsafe. Since 𝛿 can
be chosen to be very small, 𝛿-unsafe answers in fact discover robustness problem
in the system, which should be regarded as unsafe indeed. We have proved that
bounded 𝛿-reachability is decidable for a wide range of nonlinear hybrid systems,
even with reasonable complexity bounds [51]. This framework provides the formal
correctness guarantees of dReach.

Apart from solving 𝛿-reachability, the following key features of dReach distin-
guish it from other existing tools in this domain [44, 46, 4, 45, 65, 27, 30].

1. Expressiveness. dReach allows the user to describe hybrid systems using
first-order logic formulas over real numbers with a wide range of nonlinear
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functions. This allows the user to specify the continuous flows using highly
nonlinear differential equations, and the jump and reset conditions with
complex Boolean combinations of nonlinear constraints. dReach also faithfully
translates mode invariants into ∃∀ logic formulas, which can be directly solved
under certain restrictions on the invariants.

2. Property-guided search. dReach maintains logical encodings (the same
approach as [30]), whose size is linear in the size of the inputs, of the reachable
states of a hybrid system [51]. The tool searches for concrete counterexamples
to falsify the reachability properties, instead of over-approximating the full
reachable states. This avoids the usual state explosion problem in reachable
set computation, because the full set of states does not need to be explicitly
stored. This change is analogous to the difference between SAT-based model
checking and BDD-based symbolic model checking.

3. Tight integration of symbolic reasoning and numerical solving. dReach
delegates the reasoning on discrete mode changes to SAT solvers, and uses
numerical constraint solving to handle nonlinear dynamics. As a result, it can
combine the full power of both symbolic reasoning and numerical analysis
algorithms. In particular, all existing tools for reachable set computation
can be easily plugged-in as engines for solving the continuous part of the
dynamics, while logic reasoning tools can overcome the difficulty in handling
complex mode transitions.

The chapter is structured as follows. We describe the system architecture in Sec-
tion 6.3, and give some details about the logical encoding in the tool in Section 6.4.
We then explain the input format and usage in Section 6.5. In Section 6.6, we present
three case studies to demonstrate the effectiveness of dReach.
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6.2 Bounded delta-reachability

Let 𝐻 = ⟨𝑋,𝑄, flow, jump, inv, init⟩ be a hybrid system as standardly defined. We use
first-order formulae over the real numbers to represent 𝐻 , by writing

𝐻 = ⟨𝑋,𝑄, 𝜑flow, 𝜑jump, 𝜑inv, 𝜑init⟩

where 𝜑flow, 𝜑jump, 𝜑inv and 𝜑init are logic formulae that define the corresponding
predicates in the standard definition. Now, let 𝛿 ∈ Q+ be a chosen error bound, we
define the 𝛿-perturbation of 𝐻 to be

𝐻−𝛿 = ⟨𝑋,𝑄, 𝜑−𝛿flow, 𝜑
−𝛿
jump, 𝜑

−𝛿
inv, 𝜑

−𝛿
init⟩.

Here, 𝜑−𝛿 is a syntactic variant of 𝜑 which relaxes the numerical terms in 𝜑 up to an
error bound 𝛿 . The notion was formally defined in Definition 5. We now define the
bounded delta-reachability problem that dReach solves.

Let 𝑛 ∈ N be a bound and𝑇 ∈ R+ be an upper bound of time duration. We write
unsafe to denote a subset of the state space of 𝐻 defined by a first-order formula.
The bounded delta-reachability problem asks for one of the following answers:

• 𝐻 cannot reach unsafe in 𝑛 steps within time 𝑇 .

• 𝐻−𝛿 can reach unsafe−𝛿 in 𝑛 steps within time 𝑇 .

Note that these answers are not weaker than the precise ones. When safe is the
answer, we know for certain that 𝐻 does not reach the unsafe region; when 𝛿-unsafe
is the answer, there exists some 𝛿-bounded perturbation in the system that would
render it unsafe. Note that the error-bound 𝛿 can be chosen to be arbitrarily small,
so that the 𝛿-unsafe answer discovers robustness problem in the system, which
should be regarded as unsafe indeed.
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Figure 6.2: Architecture of dReach: It consists of an bounded model-checking
module and an SMT solver, dReal. In the first phase, the Encoder module translates
an input hybrid system into a logic formula. In the second phase, an SMT solver,
dReal, solves the encoded delta-reachability problem using a solving framework that
combines DPLL⟨T⟩, Interval Constraint Propagation, and reliable (interval-based)
numerical integration.

6.3 System Description

The system architecture of dReach is given in Figure 6.2. We ask the user to provide
an input file and two parameter — (i) a bound on the number of mode changes and
(ii) a numerical error bound 𝛿 ∈ R+.

From these inputs, dReach generates a logical encoding that involves existential
quantification and universal quantification on the time variables. The logical encod-
ing is compact, always linear in the size of the inputs. The tool then makes iterative
calls to the underlying solver dReal [52] to decide the reachability properties. When
the answer is 𝛿-reachable, dReach generates a counterexample and its visualization.
When the answer is unreachable, no numerical error is involved and a (partial, for
now) logical proof of unsatisfiability can be provided [53].

Input Format (drh format) The drh input format for describing hybrid systems
and reachability properties consists of five sections: macro definitions, variable
declarations, mode definitions, and initial condition, and goals. Its formal syntax is
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defined by the following grammar.

drh := macro_def ∗ variable_decl+ mode_def + initial_cond goal+

macro_decl := #define var (expr | formula)

variable_decl := [l, u] var;

mode_def := {mode id; invt : (formula;)+ flow : ode+ jump : jump+}

ode := d/dt[x]=expr

jump := formula ==> @n formula

initial_cond := @mode_id formula;

goal := @mode_id formula;

Note that we use the standard definitions for formula and expr here. We focus on
intuitive explanations here.

• In macro definitions, we allows users to define macros in C preprocessor style
which can be used in the following sections. Macro expansions occur before
the other parts are processed.

• A variable declaration specifies a real variable and its domain in a real
interval. dReach requires special declaration for time variable, to specify the
upper-bound of time duration.

• A mode definition consists of mode ID, mode invariant, flow, and jump. id is
a unique positive integer assigned to a mode. An invariant is a conjunction
of logic formulae which must always hold in a mode. A flow describes
the continuous dynamics of a mode by providing a system of ODEs. The
first formula of jump is interpreted as a guard, a logic formula specifying a
condition to make a transition. Note that this allows a transition but does not
force it. The second argument of jump, 𝑛 denotes the target mode-id. The
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last one is reset, a logic formula connecting the old and new values for the
transition.

• initial-condition specifies the initial mode of a hybrid system and its initial
configuration. goal shares the same syntactic structure of initial-condition.

6.4 Logical Encoding of Reachability

The details of our encoding scheme is given in [51]. Here we focus on explaining
how differential equations and the universal quantifications generated by mode
invariants are encoded, as an extension of the SMT-LIB [11] standard. Although
such formulas are automatically generated by dReach from the hybrid system
description, the explanation below can be helpful for understanding the inner
mechanism of our solver.

Encoding ODE Constraints In each mode of a hybrid system, we need to specify
continuous flows defined by systems of ordinary differential equations. We extend
SMT-LIB with a command define-ode to define such systems. For instance, we
use define-ode as follows to assign a name flow1 to a group of ODE, d𝑥

d𝑡 = 𝑣 and
d𝑣
d𝑡 = −𝑥

2.

(define-ode flow1 ((= d/dt[x] v) (= d/dt[v] (- 0 (^ x 2)))))

We then allow integration terms in the formula. We view the solution of system
of differential equations as a constraint between the initial-state variables, time
duration, and the end-state variables. We can then write

(= [x_t_1 ... x_t_n] (integral 0 t [x_0_1 ... x_0_n] flow_i)),

to represent ®𝑥 = ®𝑥0 +
∫ 𝑡

0 flow𝑖 ( ®𝑥 (𝑠)) d𝑠. Note that we do not need to explicitly mention
®𝑥 (𝑠) as a function in the encoding, which can be inferred by the solver.
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Universal Quantification for Mode Invariant Constraints To encode mode invari-
ants in hybrid systems, we need ∃∀𝑡 -formulas defined in Section 3.3.2. This formula
is a restricted form of ∃∀ formula where the universal quantifications are limited to
the time variables. In SMT2, we introduce a new keyword forall_t to encode ∃∀𝑡

formulas. Given a time bound [0, 𝑡𝑖𝑚𝑒𝑖], mode invariant f at mode 𝑛 is encoded into
(forall_t n [0 time_i] f).

Note that dReal only allows invariants to be expressed as a conjunction of
comparisons between a variable and a constant (𝑓 =

∧
𝑖 𝑣𝑖 ∼ 𝑐𝑖).

6.5 Using dReach

6.5.1 How to Install

dReach is an open source project under GPL-3 license. We bundled dReal and
dReach together and host them at http://dreal.github.io. The BMC encoder
module is written in OCaml and uses Oasis and OCaml Batteries library. At the
release page1, we host pre-compiled static-binaries for Linux and OS X, which do
not require any compilation to use dReach in those platforms.

6.5.2 Command-line Options

dReach follows the standard Unix command-line usage:

dReach <options> <drh file>

It has the following options:

• If -k <N> is used, set the unrolling bound 𝑘 as 𝑁 (Default: 3). It also provides
-u <N> and -l <N> options to specify upper- and lower-bounds of unrolling
bound.

1http://dreal.github.io/download

http://dreal.github.io
http://dreal.github.io/download
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Figure 6.3: Visualization of 𝛿-reachable trajectory for a 3-mode ocillator model.

• If –precision <p> is used, use precision 𝑝 (Default: 0.001).

• If –visualize is set, dReach generates extra visualization data.

We have a web-based visualization toolkit2 which processes the generated visual-
ization data and shows the counterexample trajectory. It provides a way to navigate
and zoom-in/out trajectories which helps understand and debug the target hybrid
system better. Figure 6.3 is a screenshot of the visualization for a cardiac-cell model.

6.6 Case Studies

In this section, we aim to demonstrate the effectiveness of the dReach tool through
three distinct case studies.

2The detailed instructions are available at https://github.com/dreal/dreal2/blob/master/
doc/ode-visualization.md.

https://github.com/dreal/dreal2/blob/master/doc/ode-visualization.md
https://github.com/dreal/dreal2/blob/master/doc/ode-visualization.md
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1. The first study (Section 6.6.1) presents a simple model of a bouncing ball with
air resistance, which serves as a fundamental demonstration of the utilization
of dReach.

2. The second case study (Section 6.6.2) showcases a model of atrial fibrillation.
We formulate a hybrid system model of cardiac cells and translate the question
of “Can we find a set of initial values/parameters that result in a loss of
excitability in a cardiac cell?” into a reachability problem. The dReach tool is
then applied to answer this query.

3. In the third case study (Section 6.6.3), we examine a personalized prostate
cancer treatment model using a parameterized hybrid system. Our goal is
to determine the parameters for a personalized treatment schedule that will
prevent cancer recurrence within a specified number of days. We encode this
query as a bounded model checking problem and demonstrate the use of
dReach to solve it.

6.6.1 Inelastic Bouncing Ball with Air Resistance

Consider the following standard bouncing-ball example with the following assump-
tions:

1. Air Friction acts on the ball, which is proportional to 𝐷 · 𝑣2.

2. The ball is inelastic. That is, whenever it hits the wall, it loses some of its
kinetic energy (𝑣′ = 𝐾 · 𝑣).

We formally define this as a hybrid system as follows:

• 𝑋 = R2 and 𝑄 = {𝑞𝑑 , 𝑞𝑢}. We use 𝑞𝑑 the falling mode and 𝑞𝑢 to represent
bounce-back mode.
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• flow = {flow𝑞𝑑 (𝑥0, 𝑣0, 𝑥𝑡 , 𝑣𝑡 , 𝑡), flow𝑞𝑢 (𝑥0, 𝑣0, 𝑥𝑡 , 𝑣𝑡 , 𝑡)}. We use 𝑥 to denote the
height of the ball and 𝑣 its velocity. Instead of using time derivatives, we can
directly write the flows as integrals over time, using LRF -formulas:

– flow𝑞𝑑 (𝑥0, 𝑣0, 𝑥𝑡 , 𝑣𝑡 , 𝑡) defines the dynamics in the falling phase:(
𝑥𝑡 = 𝑥0 +

∫ 𝑡

0
𝑣 (𝑠) 𝑑𝑠

)
∧

(
𝑣𝑡 = 𝑣0 +

∫ 𝑡

0
−𝑔 − 𝐷 · 𝑣 (𝑠)2 𝑑𝑠

)
.

– flow𝑞𝑢 (𝑥0, 𝑣0, 𝑥𝑡 , 𝑣𝑡 , 𝑡) defines the dynamics in the bounce-back phase:(
𝑥𝑡 = 𝑥0 +

∫ 𝑡

0
𝑣 (𝑠) 𝑑𝑠

)
∧

(
𝑣𝑡 = 𝑣0 +

∫ 𝑡

0
−𝑔 + 𝐷 · 𝑣 (𝑠)2 𝑑𝑠

)
.

where 𝐷 is a constant. Again, note that the integration terms define Type 2
computable functions.

• jump = {jump𝑞𝑢→𝑞𝑑 (𝑥, 𝑣, 𝑥
′, 𝑣′), jump𝑞𝑑→𝑞𝑢 (𝑥, 𝑣, 𝑥

′, 𝑣′)} where

– jump𝑞𝑢→𝑞𝑑 (𝑥, 𝑣, 𝑥
′, 𝑣′) is (𝑣 = 0 ∧ 𝑥′ = 𝑥 ∧ 𝑣′ = 𝑣).

– jump𝑞𝑑→𝑞𝑢 (𝑥, 𝑣, 𝑥
′, 𝑣′) is (𝑥 = 0 ∧ 𝑣′ = −𝑘 · 𝑣 ∧ 𝑥′ = 𝑥), for some constant

0 < 𝑘 < 1.

• init𝑞𝑑 : (𝑥 ≥ 5 ∧ 𝑣 = 0) and init𝑞𝑢 : ⊥.

• inv𝑞𝑑 : (𝑥 ≥ 0 ∧ 𝑣 ≤ 0) and inv𝑞𝑢 : (𝑥 ≥ 0 ∧ 𝑣 ≥ 0).

In mode 𝑞𝑑 , the ball is subject to gravity and air resistance, which cause the ball
to fall towards the ground. In mode 𝑞𝑢 , the ball bounces back up, transitioning
from a falling to a rising state. This transition is a discrete event, triggered when
the ball reaches the ground. The behavior of the hybrid system is determined by
the interaction between the continuous and discrete dynamics. For example, air
resistance affects the velocity of the ball as it falls and affects the height of the bounce.
The inelasticity of the ball, in turn, affects the energy dissipation during the bounce,
leading to a reduction in the height of subsequent bounces.
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1 #define D 0.1
2 #define K 0.9
3 #define g 9.8
4
5 [0, 50] x;
6 [-50, 50] v;
7 [0, 30] time;
8
9 { mode 1;

10
11 invt:
12 (v <= 0);
13 (x >= 0);
14 flow:
15 d/dt[x] = v;
16 d/dt[v] = -g + (D * v ^ 2);
17 jump:
18 (x = 0) ==> @2 (and (x' = x) (v' = - K * v));
19 }
20 {
21 mode 2;
22 invt:
23 (v >= 0);
24 (x >= 0);
25 flow:
26 d/dt[x] = v;
27 d/dt[v] = -g + (- D * v ^ 2);
28 jump:
29 (v = 0) ==> @1 (and (x' = x) (v' = v));
30 }
31 init:
32 @1 (and (x >= 5) (v = 0));
33
34 goal:
35 @1 (and (x >= 0.45));
36

Figure 6.4: An example of drh format: Inelastic bouncing ball with air resistance.
Lines 1 – 3 define a drag coefficient 𝐷 = 0.1, an elastic coefficient 𝐾 = 0.9, and the
gravity constant 𝑔 = 9.8. Lines 5 – 7 declares variables 𝑥 , 𝑣 , 𝑡𝑖𝑚𝑒 with their domains
(0 ≤ 𝑥 ≤ 50, −50 ≤ 𝑣 ≤ 50, 0 ≤ 𝑡𝑖𝑚𝑒 ≤ 30). At lines 9 – 19 and 20 – 30, we define two
modes — the falling and the rising modes respectively. At line 32, we specify that
the hybrid system starts at mode 1 (@1) with initial condition satisfying 𝑥 ≥ 5∧ 𝑣 = 0.
At line 35, we ask whether there exists a trajectory ending at mode 1 (@1) while the
height of the ball is higher than 0.45.



Case Studies 87

Input Format (drh) Figure 6.4 shows how to describe this hybrid system in drh
format. In the first part, we declare variables (𝑥 , 𝑣) and constants (𝑔 = 9.8, 𝑑𝑟𝑎𝑔 = 0.1,
𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = 0.9), and special variable 𝑡𝑖𝑚𝑒 which is a bounded variable representing
time in each mode. Then, we describe each mode of this hybrid system. Mode
1 represents the status where a ball is falling down toward a floor, while mode 2
describes a ball bouncing back from a floor. invt describes the invariant of each
mode. In this example, we have simple invariants — velocity of the ball in mode 1
should be negative since it’s falling and the velocity of a ball should be positive in
mode 2 because it’s bouncing back from the floor. Dynamics of variables in each
mode is described by flow, which is a set of differential equations. Here, we have
simple dynamics: ¤𝑥 = 𝑣 and ¤𝑣 = −𝑔± (𝐷2 · 𝑣). jump describes the conditions to switch
mode, the destination mode, and changes of values. Note that when it jumps from
mode 1 to mode 2, the velocity of the ball reduces due to the inelasticity, 𝑣′ = 𝐾 · 𝑣 .
In the end, we describe the initial condition, and the goal which we want to check
its satisfiability. In this example, we start with 𝑥 ≥ 5 and 𝑣 = 0 and check whether it
is possible to reach the mode 1 while 𝑥 ≥ 0.45.

Running dReach dReach takes in a hybrid system description (.drh) and unrolling
bound 𝑘 , and performs bounded model-checking.

$ dReach -k 10 -l 10 bouncing_ball.drh --visualize --precision=0.1

The command-line argument -k 10 specifies the upper bound on the unrolling
depth of bounded model checking, and the optional -l 10 specifies the lower bound.
The options –visualize and –precision=0.001will be passed to dReal. The first
option –visualize enables dReal to store additional information to visualize the
witness of 𝛿-sat result. The second option –precision specifies the value of
numerical perturbation 𝛿 we allow. Running the above command, it first generates
an SMT2 file. Figure 6.5 shows the SMT2 encoding of the bounded reachability
problem of a bouncing ball example (when 𝑘 = 10).
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1 (set-logic QF_NRA_ODE)
2 (declare-fun x () Real)
3 (declare-fun v () Real)
4 (declare-fun x_0_0 () Real)
5 (declare-fun x_0_t () Real)
6 ...
7 (declare-fun x_10_0 () Real)
8 (declare-fun x_10_t () Real)
9 (declare-fun v_0_0 () Real)

10 (declare-fun v_0_t () Real)
11 ...
12 (declare-fun v_10_0 () Real)
13 (declare-fun v_10_t () Real)
14 (declare-fun time_0 () Real)
15 ...
16 (declare-fun time_10 () Real)
17 (declare-fun mode_0 () Real)
18 ...
19 (declare-fun mode_10 () Real)
20 (define-ode flow_1 ((= d/dt[x] v)
21 (= d/dt[v] (+ (- 0.000000 9.800000) (* -0.450000 (^ v 1.000000))))))
22 (define-ode flow_2 ((= d/dt[x] v) (= d/dt[v]
23 (+ (- 0.000000 9.800000) (* -0.450000 (^ v 1.000000))))))
24 (assert (<= 0.000000 x_0_0))
25 (assert (<= x_0_0 15.000000))
26 ...
27 (assert (<= -18.000000 v_10_t))
28 (assert (<= v_10_t 18.000000))
29 (assert (<= 0.000000 time_0))
30 (assert (<= time_0 3.000000))
31 ...
32 (assert (<= 0.000000 time_10))
33 (assert (<= time_10 3.000000))
34 ...
35
36 (assert (and (= v_0_0 0.000000) (>= x_0_0 5.000000)
37 (= mode_0 1.000000)
38 (= [x_0_t v_0_t] (integral 0. time_0
39 [x_0_0 v_0_0] flow_1))
40 (= mode_0 1.000000)
41 (forall_t 1.000000 [0.000000 time_0] (<= v_0_t 0.000000))
42 (<= v_0_t 0.000000)
43 ...
44 (forall_t 1.000000 [0.000000 time_10] (>= x_10_t 0.000000))
45 (>= x_10_t 0.000000)
46 (>= x_10_0 0.000000)
47 (= mode_10 1.000000)
48 (>= x_10_t 0.450000)))
49 (check-sat)
50 (exit)

Figure 6.5: SMT2 encoding of the problem of an inelastic bouncing ball with air
resistance.
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It shows that if the ball starts at a height between  , it can reach the height 0.45 after bouncing five times. Note that we only
specify the initial condition  and dReal found out the satisfying solution  by solving the encoded constraints.
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Figure 6.6: Visualization of 𝛿-reachable trajectory for a bouncing-ball model.

dReach returns 𝛿-sat and generates the visualization of its reachable trace. Fig-
ure 6.6 shows that if the ball starts at a height between [8.720703125, 8.73046875], it can
reach the height 0.45 after bouncing five times. Note that we only specify the initial
condition 𝑥 ≥ 5 and dReal finds out the satisfying solution [8.720703125, 8.73046875]
by solving the encoded constraints.

6.6.2 delta-Reachability Analysis of Cardiac Cell Models

Cardiac Cell Hybrid Models The proper functioning of the heart’s rhythm relies
on the coordinated electrical activity of the cardiac muscle cells in both the atria
and ventricles. This electrical behavior is controlled by the opening and closing of
ion channel gates on the cell membrane. Disruptions in the ionic channel functions
can lead to a loss of cell excitability, which can further lead to cardiac abnormalities,
such as ventricular tachycardia or fibrillation. To comprehend the underlying
mechanisms of cardiac disorders, recent development of hybrid automata models
such as the Fenton-Karma (FK) model [42] and the Bueno-Cherry-Fenton (BCF)
model [24] are being utilized. Figure 6.7 illustrates the two models.

• FK Model: The Fenton-Karma model [42], introduced by Flavio Fenton and
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(a) (b) Bueno-Cherry-Fenton (BCF) model [24].

Figure 6.7: Hybrid models of cardiac cells.

Alain Karma in 1998, is a simplified model of cardiac cell electrophysiology. It
is designed to represent the electrical activity within cardiac cells by using
three variables: membrane potential (𝑣), gating variable (𝑤), and recovery
variable (𝑢). These variables capture the essential features of action potential
generation and propagation in cardiac tissue, including the fast inward sodium
current, the slow inward calcium current, and the outward potassium current.
The Fenton-Karma model is based on a set of nonlinear ordinary differential
equations (ODEs) that describe the time evolution of the three variables. This
model is computationally efficient and can be used to simulate electrical activity
in large cardiac tissue networks without requiring excessive computational
resources.
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Run Model Initial State Result Time (sec)
1 BCF (𝑢 = 0, 𝑣 = 1,𝑤 = 1, 𝑠 = 0, 𝜖 ∈ [0.9, 1.1]) 𝛿-sat 13.357
2 FK (𝑢 = 0, 𝑣 = 1,𝑤 = 1, 𝜖 ∈ [0.9, 1.1]) 𝛿-sat 9.380
3 BCF (𝑢 = 0, 𝑣 = 1,𝑤 = 1, 𝑠 = 0, 𝜖 ∈ [0.0, 0.25]) unsat 0.060
4 FK (𝑢 = 0, 𝑣 = 1,𝑤 = 1, 𝜖 ∈ [0.0, 0.25]) unsat 0.909

Table 6.1: Experimental results for cardiac-cell models: Runs 1 and 2 investigate
whether a significant stimulation can induce excitability in the cardiac cell models
BCF and FK. Runs 3 and 4 aim to determine whether these models can disregard
minor stimulation in each cardiac cell.

• BCF Model: The Bueno-Cherry-Fenton model [24] is an extension of the Fenton-
Karma model. It builds upon the original model by incorporating additional
ionic currents and a more detailed description of the intracellular calcium
dynamics. This increased complexity allows the model to better represent the
electrophysiological properties of cardiac cells, specifically ventricular cells.

Checking Excitability via Reachability Analysis To determine if a successful
action potential (AP) initiation occurs, each hybrid system must transition from
mode 1 to mode 4, where the peak of the variable u corresponds to cardiac muscle
contraction. The question of identifying initial values or parameters leading to a
loss of excitability in a cardiac cell is translated into reachability problems.

To maintain proper cardiac cell function in noisy environments, the system
should filter out insignificant stimulation (parameter 𝜖 in the models). We expect
action potentials (APs) to be initiated for large 𝜖 ([0.9, 1.1]) but not for small 𝜖
([0.0, 0.25]).

We formulated four reachability problems using dReach for two different models
(FK, BCF) and two different 𝜖 ranges (small, large). Then, we ran dReach to assess
mode 4’s reachability from mode 1 using the parameter values from [24]. Our
experiment was conducted in an environment consisting of an AMD EPYC 7R32
CPU running at 2.8 GHz with 16 cores, and 32 GB of RAM. The operating system
used was Ubuntu 20.04 LTS. We used 𝛿 = 1𝑒 − 3 in dReach.
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The experimental results are presented in Table 6.1. For the initial state (𝑢 =

0, 𝑣 = 1,𝑤 = 1, 𝑠 = 0, 𝜖 ∈ [0.9, 1.1]) in Mode 1, we found that Mode 4 is reachable
(𝛿-sat) for both models (Run#1 and Run#2 in Table 6.1). However, starting from the
state (𝑢 = 0, 𝑣 = 1,𝑤 = 1, 𝑠 = 0, 𝜖 ∈ [0.0, 0.25]) in Mode 1, we found that Mode 4 is not
reachable (unsat) for both the BCF and FK models (Run#3 and Run#4 in Table 6.1),
demonstrating the models’ robustness to stimulation amplitude.

6.6.3 Personalized Prostate Cancer Therapy

Hormone Therapy for Prostate Cancer Prostate cancer is a significant threat to
the health of men in the United States, ranking as the second leading cause of
cancer-related deaths [108]. Hormone therapy, in the form of androgen deprivation,
has been used to manage advanced prostate cancer for several decades, although its
optimal application remains controversial [23]. However, this treatment method,
known as Continuous Androgen Suppression (CAS), is associated with various
side effects [2], including anemia, osteoporosis, and impotence. Furthermore, the
median duration of CAS treatment before a relapse occurs is 18-24 months, due to
the proliferation of Castration Resistant Cancer Cells (CRCs).

A method for limiting the negative effects of Castration-resistant cancer (CRC)
and delaying relapse is Intermittent Androgen Suppression (IAS) [58]. IAS restricts
the duration of low-androgen conditions to prevent the emergence of CRCs, as
reported in [19]. The therapy alternates between treatment and non-treatment
phases by monitoring the Prostate-Specific Antigen (PSA) levels in the patient’s
serum:

1. When the PSA level decreases and reaches a lower threshold value 𝑟0, androgen
suppression is suspended.

2. When the PSA level increases and reaches an upper threshold value 𝑟1,
androgen suppression is resumed by the administration of medical agents.



Case Studies 93

Recently clinical phase II and III trials have established that IAS provides
improvements in quality of life and cost [20, 21]. However, the superiority of
IAS over CAS in terms of time to relapse and cancer-specific survival is subject to
patient-specific factors and the on- and off-treatment scheme, according to these
trials [20, 21]. Hence, a critical challenge remains in determining a personalized
treatment plan that optimizes therapeutic outcomes for each individual patient.

Nonlinear Hybrid System Model In [87], we proposed a nonlinear hybrid-system
model (Figure 6.8) to describe the prostate cancer progression dynamics under IAS
thereapy. Our model extends the models previously proposed in [71, 70, 67]. This
model has the following four state variables:

• 𝑥 (𝑡): The population of HSCs (Hormone Sensitive Cells).

• 𝑦 (𝑡): The population of CRCs (Castration Resistant Cells).

• 𝑧 (𝑡): Serum androgen concentration level.

• 𝑣 (𝑡): Serum PSA (Prostate-Specific Antigen) level.

The model has two modes: on-treatment mode and off-treatment mode. Following
[67], in the off-treatment mode (Mode 2), the androgen concentration is maintained
at the normal level 𝑧0 by homeostasis. In the on-treatment (Mode 1), the androgen
is cleared at a rate 1

𝜏
.

Personalized Therapy Design We utilize delta-reachability analysis to create
treatment schemes tailored to individual patients. Specifically, the treatment
scheme is customized to the patient by determining appropriate parameter values
through solving the parameter identification problem. This problem involves (i)
setting the ranges of scheduling parameters, 𝑟0 and 𝑟1, and (ii) checking if the “no
cancer relapse” invariants (𝑥 ≤ 35 and 𝑦 ≤ 1) are not violated within a year, while
also ensuring that the goal state is reachable.
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Figure 6.8: A hybrid automaton model for prostate cancer hormone therapy.
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Patient# Initial State Result Time (sec)
1 𝑟0 ∈ [0.0, 7.99], 𝑟1 ∈ [8.0, 15.0] 𝛿-sat (k=1) 236.70

15 𝑟0 ∈ [0.0, 7.99], 𝑟1 ∈ [8.0, 15.0] 𝛿-sat (k=1) 7764.23
26 𝑟0 ∈ [0.0, 7.99], 𝑟1 ∈ [8.0, 15.0] 𝛿-sat (k=3) 2420.55
11 𝑟0 ∈ [0.0, 7.99], 𝑟1 ∈ [8.0, 15.0] unsat (𝑘 = [1..8]) 3723.21

Table 6.2: Experimental results for personalized therapy design: It shows that
an IAS treatment schedule was successfully designed for patients 1, 15, and 26.
However, no feasible treatment schemes could be identified for Patient 11.

1. If the result of this analysis is unsat, it indicates that androgen suppression
therapy is not the optimal treatment for the patient and other therapeutic
interventions should be considered.

2. Conversely, if the analysis returns a delta-sat answer, a treatment scheme
containing feasible values of 𝑟0 and 𝑟1 is provided, which can help in preventing
or delaying the relapse within a bounded time. Notably, a result of 𝑟0 = 0

suggests that a CAS scheme may be a more appropriate treatment option for
the patient instead of an IAS scheme.

Evaluation Results Our method was evaluated using patient data collected by [21]3.
Our experiment was conducted in an environment consisting of an AMD EPYC
7R32 CPU running at 2.8 GHz with 16 cores, and 32 GB of RAM. The operating
system used was Ubuntu 20.04 LTS. Our study’s outcomes are presented in Table 6.2.
Notably, we were able to design an IAS treatment schedule for patients 1, 15, and
26. In contrast, our parameter identification approach returned unsat for Patient
11, which indicates that no feasible treatment schemes could be identified for this
individual. We have generated a personalized treatment schedule for Patient #26
using the IAS scheme with 𝑟0 = 5.984 and 𝑟1 = 8.314, and visualized the results
in Figure 6.9. The visualization demonstrates that the proposed treatment scheme

3The patient data can be accessed through the website, http://nicholasbruchovsky.com/
clinicalResearch.html

http://nicholasbruchovsky.com/clinicalResearch.html
http://nicholasbruchovsky.com/clinicalResearch.html
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Figure 6.9: Visualization of a personalized treatement schedule for Patient #26
(𝑟0 = 5.984 and 𝑟1 = 8.314). The population of Hormone Sensitive Cells (HSCs)
is denoted by 𝑥 (𝑡), while the population of Castration Resistant Cells (CRCs) is
represented by 𝑦 (𝑡). The serum androgen concentration level is denoted by 𝑧 (𝑡).
The visualization demonstrates that the proposed treatment scheme is effective in
maintaining the HSCs and CRCs level below the corresponding thresholds (𝑥 ≤ 35
and 𝑦 ≤ 1).

is effective in maintaining the HSCs and CRCs level below the corresponding
thresholds (𝑥 ≤ 35 and 𝑦 ≤ 1).

6.7 Conclusion

We have presented dReach, a bounded reachability analysis tool for hybrid systems.
dReach encodes bounded reachability problems of hybrid systems as first-order
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formulas over the real numbers and solves them using 𝛿-decision procedures in the
SMT solver dReal. Our tool is capable of handling a wide range of highly nonlinear
hybrid systems. Our experimental results demonstrate the effectiveness of dReach
on several case studies, including a model of atrial fibrillation and a personalized
prostate cancer treatment model. These case studies demonstrate the wide range of
applications for which dReach can be used.





Chapter 7

Conclusion

7.1 Review of Thesis Contributions

To summarize, this dissertation introduces an efficient delta-decision procedure
capable of precisely and efficiently addressing real-world problems, including those
that involve nonlinear functions, ordinary differential equations, and universal
quantifications.

Delta-decision Algorithms This dissertation presents two algorithms within the
delta-decision framework. The first algorithm addresses the SMT problem for real
numbers with general Lipschitz-continuous ODEs. The second algorithm proposes
delta-complete decision procedures for nonlinear SMT problems over real numbers
that incorporate universal quantification and a range of nonlinear functions.

Delta-decision Tools This dissertation also presents the design and implementa-
tion of the delta-decision procedure, dReal, and the delta-reachability analysis tool,
dReach. These algorithms have been shown to be effective and scalable through
practical benchmarks and realistic models from various fields, including global non-
linear optimization, computational biology, theorem proving, and control synthesis,
demonstrating their ability to solve real-world problems with precision and compu-

99
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tational efficiency. Our tools have been adopted in academia and industry, serving
as the foundation for numerous tools such as APEX [97], BioPSy [90], Daisy [33],
DiffRNN [91], Drake [111], ETCetera [35], FOSSIL [1], HybridSyncAADL [84],
JDart [89], LinSyn [99], Manifold [14], PGCD [8], PolyReach [110], ProbReach [107],
STLMC [118], Sally [39], Verisig [69], Viatra [106], SReach [115], and symQV [12].

7.2 Future Directions

As Alan Turing [113] stated, “We can only see a short distance ahead, but we can
see plenty there that needs to be done.” In this section, we present the following
research directions that future research can expand upon the work presented in
this thesis.

Incorporate Under-approximation-based Methods Our current approach of
Interval Constraint Propagation (ICP) maintains over-approximated sets of solution
spaces, but we aim to enhance it by incorporating under-approximation-based
techniques. To that end, we plan to investigate the dual of ICP and integrate it with
our current method. We will start by leveraging sampling-based techniques. Each
sample point will undergo a satisfiability check, and we will consider incorporating
local-optimization techniques to enhance the quality of the samples and find better
points. The combination of these approaches should lead to a more efficient theory
solver. Multi-threading can be utilized to achieve this integration, with ICP running
in one thread and under-approximation-based methods in another.

Learning Solver Heuristics from Data We aim to create solver heuristics that are
tailored to specific problem groups through data-driven methods. In industrial
settings, it is common to face similar problems repeatedly, and we aim to make
the most of this information to improve solver performance. One example of
this is the branching heuristics in ICP. As we have demonstrated in [66], different
branching heuristics can have a significant impact on overall solver performance.
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To achieve this, we plan to employ reinforcement learning techniques to learn
branching heuristics from previous runs, and then apply them to solve similar
problem instances in the future. This will allow us to effectively leverage historical
data and enhance the performance of the solver on similar problem groups.
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