
StaRRNIC: Enabling Runtime Reconfigurable
FPGA NICs

Anup Agarwal∗ Daehyeok Kim†

Srinivasan Seshan∗

March 2023
CMU-CS-23-100

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Carnegie Mellon University, Pittsburgh, PA, USA
†University of Texas, Austin, TX, USA



Keywords: Programmable Networks, FPGA, NIC, Reconfigurable Hardware



Abstract

Programmability in the network has accelerated in-network applications like NATs, firewalls,
caching, etc. However, much of this programmability is only compile-time. Outside changing a few
configuration parameters or packet processing rules, changing the functionality requires taking
the network element offline and reflashing it. We explore the use of FPGA partial reconfiguration
primitives to reprogram network elements piece by piece without requiring to take the whole device
offline. We identify key requirements such a solution must provide and find that existing work on
enabling runtime reconfiguration does not fully meet these requirements. We explore potential
ways to meet all the key requirements. We build and test a preliminary prototype on Alveo U280
FPGA board to validate the feasibility of using FPGA partial reconfiguration to provide runtime
reconfiguration.

This report documents our preliminary study into the implementation of a runtime reconfigurable packet processing
pipeline on an FPGA NIC. We hope this report provides useful guidance in designing similar artifacts or using our
code (https://github.com/StaRR-NIC/starrnic-public, https://github.com/StaRR-NIC/
xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py).

https://github.com/StaRR-NIC/starrnic-public
https://github.com/StaRR-NIC/xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py
https://github.com/StaRR-NIC/xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py




1 Introduction
Recent advances in programmable ASICs [5, 8, 7], FPGAs [2, 4], and NPUs [1] have increasing
the functionality that we can run on network switches and network interface cards (NICs) more
sophisticated. The programmability enables them to run complex network functions–like NATs,
firewalls, and load balancers [20, 25]–and to accelerate end-host applications [19, 27, 23] in addition
to traditional functions like forwarding and filtering packets. With this trend, cloud service providers
are deploying these advanced network devices in their production networks [3, 16, 6].

While NICs and switches have become programmable, until recently, they only provided
compile-time programmability for the data plane. Before deploying a NIC or switch to serve traffic,
a developer writes a program for the desired data plane functions. This is then compiled into a
binary image (e.g., firmware for NICs) and flashed to the data plane. However, once the device is
activated, it effectively becomes fixed in its function. Changing device programs requires careful
planning ahead to avoid disruption, such as draining user traffic, provisioning capacity elsewhere,
reflashing the devices, and finally reconnecting them.

Ideally, we want to be able to reprogram the data plane at runtime without requiring to take
down the NIC/switch (for reflashing). While doing so, we do not want any significant packet loss or
performance degradation during runtime reconfiguration (zero downtime runtime reconfiguration).
Apart from this, for practical deployment, we also want reconfigurable NICs and switches to satisfy
the following key requirements: (1) The performance and resource usage should be governed
by the functions built by the developers and not by the control/management logic. (2) When
performing runtime reconfiguration, the data plane logic must be updated consistently. We will
discuss consistency models used in the packet processing context in §3.1. (3) For any stateful
logic, the state must be preserved during and after reconfiguration. (4) To support concurrent
applications from different tenants, they must support key properties required for multi-tenancy,
including resource sharing and isolation during the reconfiguration period and normal operations.
(5) As a single instance of the packet processing logic may not provide high performance, we want
the ability to replicate logic to gain performance from parallelism.

While there are some recent attempts to address the limitation of compile-time programma-
bility [34, 15, 31, 21], we observe that none of the existing work satisfies the all of the above
requirements (§3.2).

We explore the design space of the runtime reconfigurable NIC architecture to understand what
it takes to meet the above requirements. In particular, we focus on FPGA-based NICs that support
partial reconfiguration (PR) that can be used for re-configuring a part of the NIC data plane.

We implemented a preliminary prototype on the Xilinx Alveo U280 FPGA board to verify the
feasibility of using FPGA partial reconfiguration to support zero downtime runtime reconfiguration
(§4). Our microbenchmarks show that our design can maintain its peak throughput without any
packet loss during a reconfiguration period with a small spike in latency.

This report documents our preliminary study into the implementation of a runtime reconfigurable packet processing
pipeline on an FPGA NIC. We hope this report provides useful guidance in designing similar artifacts or using our
code (https://github.com/StaRR-NIC/starrnic-public, https://github.com/StaRR-NIC/
xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py).

1

https://github.com/StaRR-NIC/starrnic-public
https://github.com/StaRR-NIC/xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py
https://github.com/StaRR-NIC/xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py


2 Background

FPGA. Field Programmable Gate Arrays (FPGAs) are a family of hardware devices that can
be reconfigured (“field-programmable”). To support this, an FPGA is composed of an array of
generic logic blocks/gates, memory elements, and wires. A configuration memory region holds
what computations the blocks perform and how they are interconnected by the wires. A firmware
image or bitstream describes the configuration and can be loaded onto the FPGA to reconfigure its
operation. During this reconfiguration the FPGA is not operational.
Partial Reconfiguration. Partial reconfiguration (PR) is a primitive that allows users to reconfigure
a subset of FPGA logic at runtime, i.e., while the FPGA is operational. Users pre-define a PR
region (PRR) or dynamic region. Users can then compile and load a bitsream to reconfigure just the
circuit/logic inside the dynamic region at runtime. The circuit outside the dynamic region continues
to operate as usual. The region that cannot be reconfigured at runtime is typically referred to as the
static region.

During the PR operation, any logic running inside the PRR will be corrupted and any memory
inside the PRR is lost. To protect against corrupt logic, typically the dynamic region is decoupled
from the static region during the PR operation. This simply means that during the PR operation, the
logic in the static region ignores the values of the signals originating from the dynamic region (as
they may be corrupt).

For a more detailed background, we refer the reader to [30].

3 Design space exploration

Overview. For a runtime reconfigurable FPGA NIC, the design running on the FPGA will have
(1) network functions (NFs) that users will run, and (2) logic to manage interaction between the
network functions, the host server (PCIe interface), and the wire (NIC interface). The NFs will
typically sit in the PR regions and the management logic will sit in the static region.

In our discussion, we define an NF as the processing functionality inside one PR region. The
static design does not have visibility inside the NF (it cannot control how packets move through
modules inside the NF). If multiple logical NFs sit inside a single PR region, we simply refer to
these as sub NFs. The management logic and the NFs may also have both control plane logic and
data plane logic. The control plane logic may be used for instance to collect telemetry data, or
change packet forwarding behavior, etc.

We identify what features a runtime reconfigurable FPGA NIC may want to provide, and then
we discuss how an implementation may provide these features.

3.1 Requirements
1. Performance (throughput and latency) and resource efficiency. We want the performance

and resource consumption to be largely determined by the user provided network functions
instead of the static management logic.

2



2. Zero downtime runtime reconfiguration. During runtime reconfiguration, we do not want
any lost packets, loss in throughput, rise in latency, or any significant increase in resource
consumption (resource consumption might increase as some reconfiguration strategies require
resource headroom to program the new functionality).

3. Consistent updates. The literature has considered different consistency models. We classify
them into two categories (per-packet, and across-packets) and summarize them here:

(a) Per-packet. Consistency is defined based on what NFs process an individual packet.

• Atomicity. If only a single NF is reconfigured, then we just want a packet to be
processed by the old NF or the new NF. A packet should not be processed by an
intermediate garbled NF.

• Packet consistency [28]. If multiple NFs need to be reconfigured at the same time,
we want a packet to be processed by either the old NFs or the new NFs. It shouldn’t
be the case that a packet is processed by one old NF and one new NF. If a packet is
processed by one new NF and one old NF, this situation provides atomicity but not
packet consistency.

• Suffix causal consistency [24]. This is a weaker consistency model than packet
consistency. A packet may be processed by an old NF followed by a new NF (but
not the other way round).

(b) Across-packets. Consistency is defined based on what NFs process potentially multiple
packets [34]. These become interesting when there are potentially multiple control paths
through the NFs.

• Program consistent. If a packet is processed by a new NF, then all subsequent
packets must be processed by only the new NFs. Note, in packet consistency, a
packet may be processed by old NFs even if some other packet has been processed
by new NFs. This is stronger than packet consistency.

• Element consistent. If a packet is processed by a new NF, then all subsequent
packets that would be processed by the new NF in the new program, must be
processed by the new NF. This is weaker than program consistency, but different
from packet consistency, i.e., there are scenarios that are element consistent but not
packet consistent and vice versa.
For instance, say there is only one control path and NF1 and NF2 need to be
changed. If only one of the NFs is changed, the scenario is element consistent but
not packet consistent. Now say both NFs are changed, but old copies of the NFs are
also present in the system. If some packets go through old NFs and some through
new NFs this is packet consistent but not element consistent.

• Execution consistent. If a packet P is processed by a new NF, then all subsequent
packets that traverse the same control path as P must be processed by the new NF.

4. State or memory. NFs may maintain some state. This state may also be shared between NFs
(e.g., in a pipeline of NFs, upstream NFs may want to communicate results to downstream

3



NFs, or NF replica instances might want to share state for synchronization). State maintained
by an NF may need to be preserved across the reconfiguration.

5. Multi-tenancy. Runtime reconfiguration enables applications like temporal and spatial
multiplexing of different network functions and dynamic resource allocation to different
network functions. This multiplexing is a useful feature for multi-tenant cloud environments
that might share FPGA hardware for network functions (and potentially other non-networking
applications). We list additional features that the FPGA design may want to provide for such
a setting. These are motivated from [31, 22].

(a) Resource sharing/isolation. NFs from different tenants might be deployed on the same
FPGA NIC. For efficiency we want NFs to share resources (computational or memory)
whenever possible. We also want them to be isolated (performance/security). For
instance, a slow NF should not slow down packet processing of another tenant. An NF
should not to be able to read/write the state of an NF from another tenant.

(b) Sharing/isolation during runtime reconfiguration. The resource sharing and isolation
properties described above should not be violated before, during, or after a reconfigura-
tion operation.

6. Replication or support for non-line-rate NFs. Not all network functions may support high
throughput. To support line rate performance, such network functions may be replicated [21].
Depending on the tradeoff choice, to simultaneously support zero downtime reconfiguration,
consistent updates, and isolation/sharing, the static design may need to be explicitly aware of
replicas. We discuss this further in §3.2 (“lose performance” in bullet 2).

3.2 Meeting the requirements
We discuss how the requirements might be met and how existing work meets them. We summarize
this in Table 1.

1. Performance (throughput and latency) and resource efficiency. A number of prior works
use overlays to provide partial reconfiguration. While FPGAs provide the abstraction of
logical blocks, gates, memory, and wires; overlays implement a higher level abstraction (think
of them as processors that can be configured or run instructions provided by users). Users
then reprogram (or reconfigure) the overlay (or the processor) by providing new instructions
(or configuration). FPGA PR changes the configuration of the logic blocks, gates etc.; overlay
PR changes the configuration (instructions) of the overlay processor. Overlays are used by
[34, 15, 31] to provide runtime reconfiguration.

Typically, generating a bitstream for a PRR is time-consuming. The compiler needs to place
and route logical hardware description onto the physical blocks on the FPGA. Generating
configuration of the overlay however is quick. Typically, is no placement/routing involved.
The configuration of the overlay is like a software program that describes what sequence of
instructions need to be performed.

4



Menshen [31]
(based on
RMT [10])

IPSA [15] PANIC [22] Rosebud [21] FlexCore [34]
(based on
dRMT [11])

Performance
or Resource
efficiency

Limited by over-
lay

Limited by over-
lay

✓ High resource
overhead (all
NFs need to be
replicated)

Limited by over-
lay

Zero downtime
runtime recon-
figuration

✓ (Resource
headroom)

✓ (Resource
headroom)

✗ ✓ (Lose perfor-
mance)

✓ (Resource
headroom)

Consistent up-
dates

✗ ✗ ✗ ✓ (all NFs
are changed
together)

✓

Stateful NFs ✓ ✓ ✓ ✓ ✓

State sharing
between NFs

✗ ✓ (high latency) ✗ ✓ ✓ (high latency)

Isolation ✓ (line-rate by
default due to
overlay)

✓ (line-rate by
default due to
overlay)

✓ ✗ (need to manu-
ally schedule be-
tween NFs (ac-
celerators))

✗ (run-to-
completion, no
packet reorder-
ing)

Resource shar-
ing

✓ ✗ ✗ ✗ ✗

Replication
or support for
non-line-rate
NFs

✗ ✗ ✓ ✓ ✓

Table 1: Summary of requirements and prior work.

However, overlays come at a cost. Functionality is limited by the abstractions provided by
the overlay. As a result an NF implemented using the overlay’s abstraction might consume
more resources and have poorer performance compared to one implemented directly using
the FPGA’s programming abstraction.

We can get the best of both worlds (fast compilation, and resource efficiency and performance)
by having separate optimized overlays for different types of NFs, e.g., we can have one overlay
that implements telemetry, and another overlay that implements intrusion detection, etc.. Users
can then quickly reconfigure the overlays if they want to make small changes to the running
NFs (using overlay reconfiguration or overlay PR). For instance if an overlay implements
a count-min sketch [13] for telemetry, the overlay may support reconfiguring the number
of rows/columns of the sketch, the flow key used by the sketch, etc.. If the users want to
completely replace the NF (e.g., replace a telemetry NF with an intrusion detection NF), they
can do this using FPGA PR. The optimized overlays can be precompiled offline as a result
the long FPGA compilation times are not part for the critical path of runtime reconfiguration.
Note, concrete NFs can also be precompiled, but optimized overlays offer more flexibility.

2. Zero downtime runtime reconfiguration. In a PR operation, the area being reconfigured
cannot be used to process packets. Due to this we face a choice between three things (also

5



NF1 NF2 NF3

1

NF1 NF2

2

NF3
3

(a) Lose functionality

NF1 NF2 NF3

NF2

1

2

3

(b) Resource headroom

NF1 NF22

NF23

NF21

2

NF3
3

1

(c) Lose performance

Figure 1: Tradeoff space to provide zero downtime runtime reconfiguration. NF2 is being
reconfigured.

illustrated in Figure 1).

• Lose functionality. We can choose to lose the functionality provided by the area being
reconfigured. To avoid any loss or degradation in performance (throughput, latency), we
would need to bypass the area being reconfigured before the PR operation.

• Resource headroom. If we have some extra area on the FPGA that is unused (say scratch
area), we can configure the new functionality in the scratch area. And then convert the
old functionality into a scratch area. To support this, we would need to divert traffic
from the old functionality area to the new functionality area.

• Lose performance. This is applicable when there are multiple instances of an NF running.
We can divert packets to a subset of the replicas, we can then reconfigure the area of the
remainder replicas. This is the choice made by [21].
Note, to implement this choice, the static design needs to be aware of the replicas to be
able to control traffic between them. If the replicas are inside an NF as sub NF instances
(i.e., the replicas are all inside a single PR region), then the static design cannot control
traffic between them.

All the above choices require us to be able to divert traffic away or towards specific NFs (or
areas) on the FPGA. This is typically fulfilled by a configurable interconnect [15].

Interconnect. On chip interconnects have been investigated in the hardware community [14].
Different interconnect choices trade off resources, throughput, latency, flexibility (traffic
patterns that can be supported).

From the point of view of PR, and supporting zero downtime runtime reconfiguration, we can
afford the interconnect to have high latency. The latency differences between interconnect
choices would be on the order of a few clock cycles (at most 10s of nanoseconds) which is
insignificant compared to microseconds of network propagation delays. However, a property
we’d like to have is flexibility, i.e., the traffic patterns the interconnect can support. As the

6



FPGA is reconfigured, the placement of NFs may evolve over time. To be able to redirect
traffic between NFs for PR operations, the interconnect might need to support large volume
of traffic between an arbitrary pair of NFs. The complexity of the interconnect grows with the
number of input/output ports of the interconnect. In an FPGA NIC design the interconnect
will have one I/O port for each NF (PR region), one I/O port for each NIC interface (wire),
and one I/O port for each host interface.

Interconnects that can support arbitrary permutation of traffic between their ports are called
non-blocking interconnects (e.g., clos [12], crossbar, benes [9], batcher-banyan [26]). Block-
ing interconnects (e.g., ring, bus, tree, torus) on the other hand may not allow all permutations
of traffic. If we consider different non-blocking interconnects, they tradeoff resources, latency,
and potentially throughput (clock speed). A large clos topology will have lower resources,
and higher throughput (clock speed) but higher latency than a crossbar for the same number
of input output ports. However, in practice, NxN non-blocking interconnects (N inputs and
N outputs), are implemented using multiple instances of 4x4 or 5x5 interconnects (typically
crossbars). For small enough N, we do not get much resource benefits from the interconnects
like clos compared to a crossbar. For today’s FPGAs, we are able to instantiate 16x16 cross-
bars without much degradation in the clock speed (i.e., can support min sized packets at 100
Gbps linerate). This is large enough to support 12 PR regions, 2 NIC interfaces and 2 host
interfaces. Given the area of today’s FPGAs and the area it takes to implement meaningful
network functions, we do not expect more than 10s of PR regions. Hence, crossbars suffice.
It is an open question as to what is the best sweet spot between resources, latency, throughput,
and flexibility is if/when the number of PR regions we can/wish to support increases in the
future. A potential sweet spot is proposed by [15]. They reduce flexibility by clustering NFs
and then only allow rerouting between NFs within the same cluster.

A configurable interconnect design not considered by prior work (to the best of our knowledge)
is to have the interconnect sit inside a PR region. The interconnect then just hard codes the
connections between its inputs and outputs. When the on-chip routing needs to be changed, the
hard coded wires can be changed using a PR operation. Note, we cannot take the interconnect
offline, so to support a PR operation on the interconnect, we would have two instances of the
interconnect. To swap out the interconnect, we would need to divert the traffic to the other
interconnect before performing the PR operation on the interconnect. Then we can redirect
traffic to the new interconnect. To support redirecting traffic between the two interconnect
interfaces we can use a simple crossbar interconnect (this is fine as we only need few ports on
the crossbar).

In the hardware literature, another important aspect of interconnects is the routing protocol
used by the interconnect. We can simplify this in the networking context, by having routes
computed offline on the host server as opposed on online on the FPGA. Typically, the set
of NFs that need to process different flows is known. Thus, we can segregate flows by the
set of NFs that need to process the flows. Then we can compute routes for each class of
flows offline and install routing rules in the interconnect. These rules can be changed as
traffic/requirements evolve.

7



3. Consistent updates. We want to provide ensure updates are consistent when multiple NFs
(PRRs) need to be reconfigured simultaneously. If we can only reconfigure one PRR at
a time, then multiple NFs need to be reconfigured one-by-one. As a result there may be
periods when one NF has been reconfigured, but another NF has not. Such cases can violate
packet consistency. To ensure consistency isn’t violated, we need to keep around the old
NF configurations until all NFs (that need to be reconfigured simultaneously) have been
reconfigured. To keep around old NFs, we need some resource headroom, and we also need a
way to route packets through old and new NFs (this is done through versioned routing).

Versioning. This is described in [28] (two-phase update). Specifically, packets are tagged
with a version number. Packets are routed based on their version number. New NFs can be
installed with newer version numbers (these are unobservable by the packets without the new
version number). When all the new NFs are configured, packets can then be tagged with the
new version number (this is a one-touch update in the terminology of [28]).

4. State or memory. Any memory inside the PR region is lost. If we want state to be preserved,
this memory needs to sit in the static design (outside the PR regions).

One option is to have the memory right next to the PR region and only allow memory accesses
from the function inside the associated PR region. With this design the preserved state cannot
be directly shared between the NFs, and if the NF is relocated due to PR (this happens in
the resource headroom approach to achieve zero downtime runtime reconfiguration), then it
cannot access the state.

Another option is to have an interconnect between NFs and memory modules. This way any
NF can access any memory region. The downside of this approach is that memory access
time is increased. This can potentially stall the throughput of read after write operations.
Possible solutions include: (1) have a cache that sits close to the NFs (can also be inside the
PR region), (2) use processing-in-memory, i.e., have some generic compute logic collocated
with the memory (e.g., increment by constant, add data in two addresses), the NFs then send
memory manipulation instructions over the interconnect. Such solutions are present in the
Netronome Agilio NICs [1].

5. Multi-tenancy.

(a) Resource sharing. Menshen [31], through its use of overlays, allows sharing compute
resources between NFs. Depending on the packet headers (flow ID), the overlay can
run different instructions. If NFs are directly programmed on the FPGA (without an
overlay), they may be performing arbitrary computation and there is no way to share the
area with some other NF.
In our vision of overlays that are optimized for different overlays (§3.2 bullet 1),
resources can be shared between NFs of the same type (overlay). For instance, the
telemetry NFs from two tenants can share resources. The flow key and measurement
statistic could be specified by the overlay configuration, and computation/measurement
is done by the same physical resources for the two NFs.

8



If an overlay is shared and a tenant wants to replace the overlay used by the NF (e.g.,
move from a telemetry NF to a firewall NF), then the sharing cannot continue. The new
NF would need to be placed in a new PR region or it can be shared with another NF that
uses the firewall overlay (from potentially a third tenant).

(b) Isolation. There may be cases where some NFs are slow. If the packets are processed
in FIFO order, then these slow NFs might slow down the throughput of packets that
never need to be processed by this slow NF (head-of-line (HoL) blocking). [22] pro-
vides isolation in these settings by scheduling packets to NFs. If the NF that should
process a packet is busy, the packets go into a scheduling buffer. This design may limit
performance. The scheduler may need to schedule packets to multiple NFs in the same
cycle and the interconnect might limit how many packets can be sent from the scheduler
in one cycle. An alternate design is to have a scheduler (priority queue, e.g., PIFO [29])
before every NF.
There may be cases when an NF processes packets quickly for one tenant (say tenant
A) but slowly for another tenant (say tenant B). In this case, packets of tenant B may
fill the priority queue. When this happens, the priority queue should drop packets in
priority order to avoid HoL blocking, i.e., drop tenant B’s packets whenever tenant A’s
packets arrive and the queue has B’s packets [18].

4 Prototype Implementation & Microbenchmarks
We perform microbenchmarks to verify if there are any unanticipated challenges associated with
partial reconfiguration and meeting the zero downtime reconfiguration requirement. We implement
a basic prototype that allows bypassing a network function and reconfiguring it (loss of functionality
tradeoff from §3.2). We measure throughput and latency during reconfiguration.
Setup. Our testbed consists of two FPGAs (Xilinx Alveo U280 boards [2]). One FPGA serves as a
traffic source and sink. The other FPGA is the device-under-test (DUT) on which we perform the
PR operation. We use [33] to implement the traffic source/sink. Since our source/sink are on the
same device, we can accurately measure round trip latency. Our DUT code builds upon/uses the
projects: Open NIC [32], and Corundum [17].

We compile a static design with a single PR region, we compile two NFs that can fit into the PR
region and use PR operations to change the NF running. The operation involves diverting packets
away from the PR region (this is done using a demultiplexer), then reconfiguring the PR region,
and finally diverting traffic back to the PR region. We also ensure that during reconfiguration, the
static design does not look at the signals coming from the PR region, we do this using a multiplexer
attached to each signal originating from the PR region.

We use UDP packets with 64B payload. This is the minimum packet size that our traffic
source/sink supports. This translates to 64 + UDP (8), IP (20), Ethernet(14) and FCS (4) = 110B
frames, or 110 + IFG (12), preamble (7), start frame delimiter (1) = 130B on the wire. On a 100Gbps
link, the theoretical maximum packet rate for this packet size is 100 * 1000 Mbps / (130 * 8 bits per
packet) = 96.15 Mpps.

9



0 20 40 60
Time (s)

0

20

40

60

80

M
pp

s (
Pa

yl
oa

d 
= 

64
B) TX

RX

(a) Throughput. The experiment is ended at 70 seconds.

0 100 200 300 400 500 600
Time (s)

2.22

2.23

2.24

2.25

2.26

La
te

nc
y 

(u
s)

Mean
Max

(b) Latency

Figure 2: Performance during PR operations.

We perform PR over the JTAG interface on the FPGA board. The operation involves opening
Vivado hardware manager, reconfiguring the multiplexers and demultiplexers, and finally loading
the partial bitstream that reconfigures the PR region. This process takes roughly 32.5 seconds.
When a PR operation finishes, we invoke another one after 5 seconds. So we get a PR operation
every 37.5 seconds. [21] implements PR over PCIe, which is faster and does not require launching
the Vivado hardware manager.

To measure throughput, we continuously send packets from the source and then at the sink keep
track of how many packets arrived by any given time. The throughput is calculated as (total packets
arrived/time since start of experiment). To measure latency, we send a probe packet every 50 clock
cycles (the benchmarking design has 294 Mhz clock). The benchmarking tool maintains a counter
incremented every clock cycle. The counter value is injected into the packet payload and compared
with the counter value at packet receive time to obtain the packet round trip time (latency).
Observations. We show throughput and latency during PR operations in Figure 2. We observe
that throughput is not affected by PR operations. We observe a small latency spike every other
PR operation. We do not exactly know the cause of this. We suspect this is due to delay added in
reconfiguring the multiplexers/demultiplexers. There is no packet loss.

10



Acknowledgments
We thank Chris Neely, Gordon Brebner, and Xilinx, Inc. for providing us with the FPGA hardware,
early access to their P4 to FPGA toolchain, and technical support. We thank Zhipeng Zhao,
Shashank Obla, James Hoe, Alex Forencich, Moein Khazraee, Hugo Sadok, and Nirav Atre for
useful discussions.

Availability
The code for this project is available at https://github.com/StaRR-NIC/starrnic-public.
Our benchmarking code is available at https://github.com/StaRR-NIC/xup_vitis_
network_example/blob/starrnic/Notebooks/measure_exp.py.

References
[1] December 2020. [Online; accessed 3. Apr. 2023]. URL: https://www.netronome.com/

media/redactor_files/WP_NFP_Programming_Model.pdf.

[2] Alveo U280 Data Center Accelerator Card, April 2023. [Online; accessed 3. Apr. 2023]. URL:
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html.

[3] AWS Nitro System, March 2023. [Online; accessed 3. Apr. 2023]. URL: https://aws.amazon.
com/ec2/nitro.

[4] Intel® FPGA PAC N3000, April 2023. [Online; accessed 3. Apr. 2023]. URL:
https://www.intel.com/content/www/us/en/products/sku/193920/
intel-fpga-pac-n3000/specifications.html.

[5] Intel® Tofino™ Series Programmable Ethernet Switch ASIC, April 2023. [Online; ac-
cessed 3. Apr. 2023]. URL: https://www.intel.com/content/www/us/en/products/
network-io/programmable-ethernet-switch/tofino-series.html.

[6] Introducing C3 machines with Google’s custom Intel IPU | Google Cloud Blog, April 2023. [Online;
accessed 3. Apr. 2023]. URL: https://cloud.google.com/blog/products/compute/
introducing-c3-machines-with-googles-custom-intel-ipu.

[7] Spectrum-4 Datasheet, April 2023. [Online; accessed 3. Apr. 2023]. URL: https://
resources.nvidia.com/en-us-accelerated-networking-resource-library/
ethernet-switches-pr?lx=LbHvpR&topic=Networking%20-%20Cloud#page=1.

[8] Trident4 / BCM56880 Series, March 2023. [Online; accessed 3. Apr. 2023]. URL:
https://www.broadcom.com/products/ethernet-connectivity/switching/
strataxgs/bcm56880-series.

[9] V. E. Beneš. On rearrangeable three-stage connecting networks. The Bell System Technical Journal,
41(5):1481–1492, 1962. doi:10.1002/j.1538-7305.1962.tb03990.x.

11

https://github.com/StaRR-NIC/starrnic-public
https://github.com/StaRR-NIC/xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py
https://github.com/StaRR-NIC/xup_vitis_network_example/blob/starrnic/Notebooks/measure_exp.py
https://www.netronome.com/media/redactor_files/WP_NFP_Programming_Model.pdf
https://www.netronome.com/media/redactor_files/WP_NFP_Programming_Model.pdf
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://aws.amazon.com/ec2/nitro
https://aws.amazon.com/ec2/nitro
https://www.intel.com/content/www/us/en/products/sku/193920/intel-fpga-pac-n3000/specifications.html
https://www.intel.com/content/www/us/en/products/sku/193920/intel-fpga-pac-n3000/specifications.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/ethernet-switches-pr?lx=LbHvpR&topic=Networking%20-%20Cloud#page=1
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/ethernet-switches-pr?lx=LbHvpR&topic=Networking%20-%20Cloud#page=1
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/ethernet-switches-pr?lx=LbHvpR&topic=Networking%20-%20Cloud#page=1
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://doi.org/10.1002/j.1538-7305.1962.tb03990.x


[10] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando
Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast programmable match-action process-
ing in hardware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
SIGCOMM ’13, page 99–110, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2486001.2486011.

[11] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon Berger, Gal
Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall.
Drmt: Disaggregated programmable switching. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, page 1–14, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3098822.3098823.

[12] Charles Clos. A study of non-blocking switching networks. The Bell System Technical Journal,
32(2):406–424, 1953. doi:10.1002/j.1538-7305.1953.tb01433.x.

[13] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005. URL: https://www.
sciencedirect.com/science/article/pii/S0196677403001913, doi:https://
doi.org/10.1016/j.jalgor.2003.12.001.

[14] William James Dally and Brian Patrick Towles. Principles and practices of interconnection networks.
Elsevier, 2004.

[15] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li, Zijian Zhang, Tong Yun, Ying Wan,
and Bin Liu. Enabling in-situ programmability in network data plane: From architecture to language.
In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pages
635–649, Renton, WA, April 2022. USENIX Association. URL: https://www.usenix.org/
conference/nsdi22/presentation/feng.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike An-
drewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa,
Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov,
Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan
Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure accelerated networking: Smart-
NICs in the public cloud. In 15th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 18), pages 51–66, Renton, WA, April 2018. USENIX Association. URL:
https://www.usenix.org/conference/nsdi18/presentation/firestone.

[17] Alex Forencich, Alex C Snoeren, George Porter, and George Papen. Corundum: An open-source
100-gbps nic. In 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 38–46. IEEE, 2020.

[18] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. Multi-resource fair queueing for packet
processing. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’12, page 1–12, New York,
NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2342356.2342358.

12

https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/3098822.3098823
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://www.sciencedirect.com/science/article/pii/S0196677403001913
https://www.sciencedirect.com/science/article/pii/S0196677403001913
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/https://doi.org/10.1016/j.jalgor.2003.12.001
https://www.usenix.org/conference/nsdi22/presentation/feng
https://www.usenix.org/conference/nsdi22/presentation/feng
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1145/2342356.2342358


[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and
Ion Stoica. Netcache: Balancing key-value stores with fast in-network caching. In Proceedings of the
26th Symposium on Operating Systems Principles, SOSP ’17, page 121–136, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3132747.3132764.

[20] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford. Hula: Scalable
load balancing using programmable data planes. In Proceedings of the Symposium on SDN Research,
SOSR ’16, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/
2890955.2890968.

[21] Moein Khazraee, Alex Forencich, George C. Papen, Alex C. Snoeren, and Aaron Schulman. Rosebud:
Making fpga-accelerated middlebox development more pleasant. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 3, ASPLOS 2023, page 586–605, New York, NY, USA, 2023. Association for Computing
Machinery. doi:10.1145/3582016.3582067.

[22] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella. PANIC: A High-
Performance programmable NIC for multi-tenant networks. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 243–259. USENIX Association, November 2020.
URL: https://www.usenix.org/conference/osdi20/presentation/lin.

[23] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and Karan Gupta. Offloading
distributed applications onto smartnics using ipipe. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19, page 318–333, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3341302.3342079.

[24] Sheng Liu, Theophilus A. Benson, and Michael K. Reiter. Efficient and safe network updates with suffix
causal consistency. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3302424.3303965.

[25] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17, page 15–28, New York, NY,
USA, 2017. Association for Computing Machinery. doi:10.1145/3098822.3098824.

[26] M.J. Narasimha. The batcher-banyan self-routing network: universality and simplification. IEEE
Transactions on Communications, 36(10):1175–1178, 1988. doi:10.1109/26.7538.

[27] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter, Rastislav Bodik,
and Thomas Anderson. Floem: A programming system for nic-accelerated network applications.
In Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation,
OSDI’18, page 663–679, USA, 2018. USENIX Association.

[28] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions for
network update. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM ’12, page 323–334, New York,
NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2342356.2342427.

13

https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/3582016.3582067
https://www.usenix.org/conference/osdi20/presentation/lin
https://doi.org/10.1145/3341302.3342079
https://doi.org/10.1145/3302424.3303965
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1109/26.7538
https://doi.org/10.1145/2342356.2342427


[29] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-Tse Chuang,
Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick McKeown. Programmable
packet scheduling at line rate. In Proceedings of the 2016 ACM SIGCOMM Conference, SIGCOMM
’16, page 44–57, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/
2934872.2934899.

[30] Kizheppatt Vipin and Suhaib A. Fahmy. Fpga dynamic and partial reconfiguration: A survey of
architectures, methods, and applications. ACM Comput. Surv., 51(4), jul 2018. doi:10.1145/
3193827.

[31] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda. Isolation mech-
anisms for High-Speed Packet-Processing pipelines. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 1289–1305, Renton, WA, April 2022. USENIX
Association. URL: https://www.usenix.org/conference/nsdi22/presentation/
wang-tao.

[32] Xilinx. open-nic. [Online; accessed 29. Mar. 2023]. URL: https://github.com/Xilinx/
open-nic.

[33] Xilinx. xup vitis network example, April 2023. [Online; accessed 2. Apr. 2023]. URL: https:
//github.com/Xilinx/xup_vitis_network_example.

[34] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Piasetzky, Arvind Krishnamurthy, and
Ang Chen. Runtime programmable switches. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 651–665, Renton, WA, April 2022. USENIX Association.
URL: https://www.usenix.org/conference/nsdi22/presentation/xing.

14

https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/3193827
https://doi.org/10.1145/3193827
https://www.usenix.org/conference/nsdi22/presentation/wang-tao
https://www.usenix.org/conference/nsdi22/presentation/wang-tao
https://github.com/Xilinx/open-nic
https://github.com/Xilinx/open-nic
https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example
https://www.usenix.org/conference/nsdi22/presentation/xing

	Introduction
	Background
	Design space exploration
	Requirements
	Meeting the requirements

	Prototype Implementation & Microbenchmarks

