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Abstract
Advances in memory capacity have allowed Database Management Systems

(DBMSs) to store large amounts of data in memory, thereby shifting the performance
bottleneck of query execution from disk accesses to CPU efficiency (i.e., instruction
count and cycles per instruction). One technique used to achieve such efficiency
in analytical applications is batch-oriented processing or vectorization: it reduces
interpretation overhead, improves cache locality, and allows for efficient loop opti-
mizations (e.g., loop unrolling, SIMD vectorization). For each vector (i.e., a batch of
tuples), the DBMS needs to track the set of valid tuples after a predicate application.
To that end, systems employ one of two data structures, or filter representations:
Selection Vectors (SelVecs) or Bitmaps. In this work, we analyze each approach’s
strengths and weaknesses to provide recommendations on how to implement vector-
ized operations. Through a wide range of micro-benchmarks, we determine that the
optimal implementation strategy is a function of many factors: the cost of iterating
through tuples, the cost of the operation itself, and how amenable it is to SIMD vec-
torization. Our analysis shows that Bitmaps perform better for operations that can
be efficiently vectorized using SIMD instructions but that SelVecs perform better on
all other operations due to a cheaper iteration logic.
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Chapter 1

Introduction and Background

DBMSs typically handle two broad classes of applications: Online Transaction Processing (OLTP)
and Online Analytical Processing (OLAP) applications. OLTP applications tend to be short-
running, write-heavy queries that only touch a few entries in a database. OLAP applications are
long-running, read-mostly queries that analyze large amounts of data. Due to the unique char-
acteristics of each class, storage engines (i.e., the component of the DBMS stores the data), and
query engines (i.e., the component that executes queries) must specialize storage formats and
database algorithms to efficiently handle OLAP or OLTP applications [35].

OLTP applications aim for fast access and update on individual entries. Therefore, to improve
cache performance, OLTP-specialized storage engines [1, 5, 7, 11], use a row-store (i.e., a storage
format that stores all the attributes of an entry contiguously in memory and in cache). OLAP ap-
plications, on the other hand, optimize for fast reads and computing on attributes across multiple
entries (e.g., to find the average value of an attribute across all tuples). OLAP-specialized storage
engines [4, 8, 9, 10], thus, use a column-store (i.e., a storage format that stores similar attributes
of different entries contiguously). Though most traditional DBMSs [5, 7] focused on OLTP ap-
plications and thus used row stores, column stores have resulted in significant performance gains
for OLAP applications [12, 35].

Besides the storage engine, disk-accesses were, historically, the performance bottleneck of
OLAP applications. For example, it takes around 1ns to perform random access in the L1 cache,
100ns for DRAM, and 17000ns for SSDs [6]. Disk accesses, thus, dominate the execution time
of any query whose data is primarily disk-resident. Recent advances in DRAM manufacturing
have exponentially decreased the price and increased the capacity of main-memory. The cost
of DRAM per GB was around $1000 in 2000, $10 in 2010, and less than $1 in 2020 [3]. This
dramatic decrease in cost, and the corresponding increase in capacity, have both obeyed Moore’s
Law [27]. It is now possible to store large databases entirely in DRAM. Rather than optimize for
disk access, the query engines of in-memory DBMSs (i.e., DBMSs whose data fits in memory)
must optimize for CPU efficiency by reducing instruction count and cycles per instruction when
executing queries.

The traditional query execution technique, the Iterator Model [19], is ill-suited for in-memory
DBMSs due to CPU efficiency reasons. It executes a query by interpreting the query plan. In this
model, each database operator implements a virtual next() function that returns the next tuple it
can generate; each expression (i.e. addition, multiplication) also provides an virtual evaluate()
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Figure 1.1: Sample SQL Query and Plan.

Figure 1.2: The Iterator Model on the sample SQL query – The code in red indicates virtual
function calls.

function that takes in a tuple and returns a value. Figure 1.2 showcases the Iterator model with
the sample query in Figure 1.1. The operators Scan A and Scan B iterate through their respective
tables and output the tuples to their parent operators. The filter only outputs tuples that satisfy
the WHERE clause. The join first builds a hash table, then probes it to find matches. For every
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Figure 1.3: The Vectorization Model with the Sample Query – The code is nearly identical
to that in Figure 1.2, except that it processes vectors.

tuple – of which there can be billions in an OLAP setting – the virtual function calls (marked
in red in the figure) constitute a significant overhead, which decreases CPU efficiency. Since
the 2000s, there has been much work dedicated to optimizing the CPU efficiency of in-memory
column stores for high-performance OLAP applications.

Manegold et al. proposed an alternative to the Iterator Model: the Materialization Model
[24]. In this model, rather than process and output one tuple at a time, each operator processes
all its input tuples, then outputs all its results to the next operator. The authors also introduce
specialized algorithms for each relational operator to exploit the columnar format of their system.
Although the Materialization Model removes the Iterator Model’s interpretation overhead, it can
become memory-bound due to frequent materializations (e.g., copies) of large columns. To solve
this issue, Boncz et al. proposed a middle ground between the Materialization and Iterator Model:
the Vectorization Model [15]. The thesis explores strategies for speeding up vectorized queries
(i.e., queries executed using the Vectorization Model). As such, we will dedicate the rest of this
chapter to an overview of the Vectorization Model. We discuss alternative query engine designs
and optimizations for in-memory analytical DBMSs in Chapter 5.

1.1 The Vectorization Model

The Vectorization Model is almost identical to the Iterator model except that it operates on
batches of T tuples or vectors (e.g., 2048 tuples at a time). The next() function returns vec-
tors and the evaluate() function operates on vectors too. Figure 1.3 showcases Vectorization
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(a) Unoptimized version. (b) Optimization version. There are two optimiza-
tions here: SIMD vectorization and loop unrolling
with a factor of 2. The code in green indicates Intel’s
AVX512 instructions.

Figure 1.4: A Vectorized Multiplication Function – The programmer usually writes only the
code on the left; the compiler can perform the optimizations on the right.

Model on the sample query in Figure 1.1; it is near identical to Figure 1.2. The difference is that
processing occurs one vector at at time rather than one tuple at a time.

This batch-oriented processing provides several benefits. First, virtual function calls occur
for every T tuples, which amortizes their overhead by a factor of T . Second, materializing
T tuples at a time instead of all tuples eliminates the memory pressure of the Materialization
Model. Third, functions that operate on vectors, also known as vectorized primitives, are usually
amenable to loop optimizations (e.g., loop unrolling, SIMD vectorization) applied by either the
compiler or the programmer. Consider, for a example, the primitive shown in Figure 1.4a. It
multiplies the elements in a vector by a constant number, and stores the result in a new vector.
The loop of this primitive has independent iterations. Furthermore, the body of the loop only
contains a load, a multiplication, and a store, which can all operate on SIMD vectors. As a
result, the compiler or programmer can unroll and SIMD vectorize the loop. Figure 1.4b shows
one way to optimize the loop. The body now contains AVX512 instructions [22] that perform
that load, the multiplication, and the store, each operating on eight elements at a time. Besides,
the loop unrolling (by a factor of two) optimization reduces the cost of loop maintenance.

Despite these benefits, the Vectorization Model introduces a new challenge. Individual tuples
within a vector may be filtered out, meaning that subsequent operators should not process them.
For example, in Figure 1.3, the Join operator should not insert tuples that do no satisfy the WHERE
clause in the JoinHashTable. It should only insert selected tuples – those not filtered out. Next,
we discuss the methods used to identify selected tuples within a vector.

1.2 Filter Representation
A filter representation is the data structure used to identify selected tuples with a vector. Fig-
ure 1.5 displays the two common representations: Selection Vectors (SelVecs) and Bitmaps. A
SelVec stores a list of indices into the selected tuples. Tuples at an index stored within the
SelVec are selected; tuples without an index are implicitly filtered out. A Bitmap, on the other
hand, stores a list of bits. Its set bits indicate the selected tuples; its unset bits indicate filtered
out ones. In the rest of this thesis, we will use the noun filter to denote a particular instance of
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Figure 1.5: Filter Representation – Selection Vectors (left) index into selected tuples. Bitmaps
(right) are only set on selected rows.

either data structure.

1.2.1 Contribution
Previous works on vectorized execution have chosen a filter representation strategy without pro-
viding an experimental comparison of the two approaches. Vectorwise [40], and works derived
from it [23, 33, 34], rely on SelVecs. IBM DB2’s BLU [31] and the more recent VIP [29] rely on
Bitmaps for the intermediary results of a table scan’s WHERE clause filters, and SelVecs for other
relational operators. Nonetheless, we find that supporting both representations, and dynamically
choosing between them results in better performance than static implementations. Depending on
the specific primitive and on the selectivity (i.e., the ratio of selected tuples) of its input vector,
SelVecs can outperform Bitmaps and vice-versa. This work’s main contribution is a methodol-
ogy on how to optimize the performance of arbitrary vectorized primitives by taking into account
filter representation, selectivity, and loop optimizations. We also provide recommendations for
developers working on vectorized query engines on how to best implement primitives.

The remainder of this thesis is structured as follows. In Chapter 2, we analyze the factors that
influence the performance of vectorized primitive. We then derive insights for developers im-
plementing vectorized query processing in Chapter 3. Next, we use these insights on the OLAP
queries of the TPCH [37] benchmark and show the performance gains we obtain in Chapter 4.
Finally, we discuss related work in Chapter 5 and conclude in Chapter 6.
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Chapter 2

Computing on Filtered Vectors

The purpose of this chapter is to discuss the factors that influence the performance of vectorized
primitives. We first categorize the kinds of operations that primitives perform and the possible
ways to implement them. Afterward, we will present and explain the equation that quantifies
the performance of each implementation. Finally, we raise the main questions whose answers,
provided in Chapter 3, will determine how to implement primitives optimally.

2.1 Operations on Filtered Vectors

Figure 2.1 shows the two kinds of primitives we seek to optimize: Updates and Maps. Updates
apply a predicate function to the vector and modify the set of selected tuples accordingly. A
scan filter (i.e., WHERE clause) is an example of an update operation. On the other hand, Maps
keep the selected set but compute a new vector using a mapping function. A projection (i.e.,
SELECT clause) is an example of a map operation. There are other primitives, but these often have
side-effects (e.g., insertion in a hash table for joins or an array for sorting) and are, therefore,
not amenable to our optimizations for correctness reasons (e.g., Full Compute introduced in
Section 2.3). As such, we focus on side-effect-free primitives.

All relational operators are decomposable into a set of consecutive primitives. As mentioned
above, simple relational operators like scan filters or projections consist of one individual prim-
itive. Complex operators, like joins and aggregations, consist of multiple primitives. As a proof
of concept, we showcase, in detail, the example of join probes in Figure 2.2. The first primitive
computes the hashes of the input tuples; the result is a vector of hash values. It is, therefore, a
Map primitive. The second primitive performs a hash table lookup using the hashes to obtain
a vector of hash table entries. It is also a Map primitive. Due to hashing collisions, the entries
may not match the input, so the algorithm compares the join keys to filter out inexact matches.
For example, key 90’s hit in the hash table is an exact match, whereas key 73’s is not. The third
primitive performs this comparison; it is an Update primitive. The fourth primitive advances the
hash table chains to obtain the next entries (e.g., 85 follows 37); it is a Map primitive. The probe
then loops back to the comparison primitive to find exact matches (e.g., 85 now has an exact
match). The set of exact matches constitutes the output of the join probe.

Other relational operators (e.g., aggregations) are similarly decomposable.

7



(a) Update operation.

(b) Map operation.

Figure 2.1: Operations on Filtered Vectors – Updates change the set of selected tuple. Maps
apply a function to the set of selected tuples without updating the set. Selected input tuples are
in green. Selected output tuples are in blue.

2.2 Transitions

In between each primitive, operators may need to perform a transition (i.e., modifications to the
filter passed into the next primitive). We now discuss transitions and their associated cost. Most
of the time, this cost is non-existent because the same filter is passed on to the next primitive: the
transition is implicit. For example, the hashing primitive and the lookup primitive in Figure 2.2
have the same filter; the transition performs no modifications. On the other hand, the Chain Fol-
lowing primitive operates on entries that do not satisfy the comparison: the transition involves a
set difference. Set unions are another type of transition. Decomposed disjunctions [30] (shown
in Figure 2.3), for example, involve both set differences and unions. They decompose disjunctive
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Figure 2.2: Multi-Step Join Probe – The color green indicates selected items in the input vector.
Orange indicates hash table lookup hits. Blue indicates exact matches after key comparison;
these represent the output of the probe. Greyed out squares are filtered out tuples, or empty hash
table chains.

Figure 2.3: Decomposed Disjunctions – We apply the first clause (in orange) on all input tuples.
In the second step, however, we only apply the second clause (in red) on those tuples that do not
pass the first clause. In the third step, we take the union between the two outputs. The output
tuples are in blue.

WHERE clauses into a sequence of primitives – one each for each conditional term. Each primi-
tive operates on only tuples that have not satisfied the previous conditional terms, hence the set
differences. The final filter consists of tuples that satisfy at least one primitive, hence the unions.

To the best of our knowledge, transitions are either implicit or take the form of set differences
(for elements that do not pass the previous predicate) and unions (to obtain the final result). These
operations are efficient to implement with Bitmaps by leveraging single-cycle bitwise AVX512

9
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Figure 2.4: Transition Overheads – The overheads are 3.55% and 4.06% for Bitmaps and
SelVecs respectively.

instructions [22] that operate on 512 bits at a time. Efficiently implementing set operations on
SelVecs is more complicated. Whenever necessary, Updates can write to one additional SelVec
for tuples that do not pass the filter; this second SelVec implicitly corresponds to the result of
a set difference. Note that it does not overlap with the first SelVec, so a union of any of their
subsets is just an array append, a fast operation that can leverage SIMD instructions.

To show that the overhead of these set operations is similar and negligible for both Bitmaps
and SelVecs, we run an experiment that performs the decomposed disjunction shown in Fig-
ure 2.3. We synthetically generate the data so that each tuple has a 50% chance of satisfying
either conditional terms, the average case scenario. The data contains around 2000000 tuples
split into 1000 vectors. The results are shown in Figure 2.4. The overheads are negligible; they
are also nearly equal (3.55% and 4.06% for Bitmaps and SelVecs, respectively). The representa-
tion, therefore, matters little when it comes to transitions. Given this, we will focus on optimizing
primitives and will ignore transition costs.

2.3 Compute Strategies
A compute strategy determines the implementation of Map and Update primitives. We consider
three compute strategies: (1) Selective, (2) Full, and (3) Mixed Compute. Selective Compute
only applies the given functions on selected tuples, whereas Full Compute applies them on all
tuples. Figure 2.5 shows each approach’s effect. The Selective Compute strategy (Figure 2.5a)
leaves undefined values because it does not operate on filtered out entries, whereas the Full
Compute strategy (Figure 2.5b) operates of every tuple and thus produces a result for each. As
we show in Chapter 3, although Full Compute usually performs more work, it benefits from
SIMD vectorization, simple loop structure (for loop unrolling and interleaving), and easy branch
prediction. To exploit this trade-off, the third strategy, Mixed Compute, switches from Full
Compute to Selective Compute when the selectivity (i.e., the ratio of selected tuples) goes below
a threshold. The next chapter will show how to derive this threshold experimentally.

On Update primitives, Full Compute first finds the set of all tuples in the vector that pass
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(a) Selective Compute. An x indicates an uninitialized value.

(b) Full Compute. There are no uninitialized values

Figure 2.5: Compute Strategies

the predicate, regardless of the input filter. The final filter is the intersection of this intermediary
filter and the input filter. This process is shown in Figure 2.6. Notice how the intermediary
filter contains elements filtered out of the input vector (e.g., 100 and 200). The intersection is,
thus, necessary to remove these elements from the final output. Bitmap intersection is efficient
thanks to the AVX512 and instruction that intersects 512 bits in one cycle [22], but SelVecs
require a slow intersection of sorted sets [21]. Thus, Full Compute is not efficiently compatible
with SelVecs on Update primitives. This incompatibility will become important when choosing
a strategy to implement.

Furthermore, for Updates with SelVecs, there is another implementation decision: Condi-
tional versus Unconditional Store. Figure 2.7 shows these options. Both primitives attempt to
select the values less than a given input constant. They differ only in how they update the SelVec
(code in green). The Conditional Store (Figure 2.7a) updates the SelVec when the condition is

11



Figure 2.6: Update with Full Compute – The leftmost vector is the input vector; its selected
elements are shown in green. The middle vector is the intermediary output of the full compute;
its selected elements are shown in orange. The last vector has the intersection of the input filter
and the intermediary filter; its selected elements are shown in blue.

true. The Unconditional Store (Figure 2.7b) always the updates the SelVecs, but only increments
the write index when the condition is true. We do not focus on this decision, for it has been stud-
ied extensively before [33, 34]. Previous work identified branch mispredictions costs as the main
factor influencing this decision. The Conditional Store implementation is competitive when the
same branch is taken around 90% of the time or more, meaning that less than 10%, or more than
90% of tuples satisfy the condition. All the experiments in this thesis use the optimal strategy on
Update primitives that use SelVecs.

Given a compute strategy and a filter representation, the next section provides a framework
for analyzing the performance of any vectorized primitive.

2.4 Primitive Performance

This section analyzes the performance of primitives according to their implementations. Our
primitive implementations follow one of the patterns shown in Figure 2.8. This listing shows
the strategies to multiply a vector by a constant (a Map primitive) along with their optimized
versions using SIMD instructions: Full Compute (which does not depend on representation),
Selective Compute with SelVecs, and Selective Compute with Bitmaps. In each instance, the
code is a loop divided in two parts: the iteration logic (code in red), and the core operation (code
in green). The core operation (e.g., multiplication by a constant) is independent of the strategy.
On the other hand, the iteration logic is strategy dependent; it determines how to iterate through
tuples – whether selected ones in the case of Selective Compute or all tuples in the case of Full
Compute – to perform the core operation and store its result.

The equation in Figure 2.9 shows the formula to compute the running time of a primitive.
The first equality indicates that the total running time is equal to the number of tuples processed
multiplied by the time spent per tuple. The second equality splits the time spent per tuple in
two: the time dedicated to the iteration logic, and the time dedicated to the core operation. This

12



(a) Conditional Store. We only update the SelVec when the condition is satisfied
(code in green).

(b) Unconditional Store. We always update the SelVec regardless of the condition
(code in green). The condition determines whether to increment the write index or
not.

Figure 2.7: Conditional versus Unconditional Store – Both listings select the elements within
the input vector (first parameter) that are less than the second parameter. Initially, the SelVec
(third parameter) contains selected indices of the input vector. In the end, it only contains those
that pass the predicate.

formula provides a framework to analyze any vectorized primitive. Let us consider how each of
the three factors in the second equality relates to implementation strategies.

Number of Tuples Processed: Selective Compute processes only selected tuples; Full Com-
pute processes every tuple. Thus, the lower the selectivity (i.e., the ratio of selected tuples), the
more wasteful Full Compute is.

Iteration Logic Time per Tuple: Full Compute, while processing more tuples, has the sim-
plest iteration logic because it does not aim to identify the selected ones. For Selective Compute,
iterating over a Bitmap (e.g., Figure 2.8b) is more expansive than iterating over a SelVec (e.g.,
Figure 2.8c) because of the bit operations required by Bitmaps. Optimizations like loop unrolling
and SIMD vectorization can further decrease the iteration logic time per tuple, but they are only
available for Full Compute and SelVecs. The Bitmap’s selective iteration logic is too complex to
perform such optimizations.

Core Operation Time per Tuple: The core operation is the same for all strategies. The only
way to reduce its contribution to the running time is through data-parallel SIMD instructions,
which are only available with Full Compute and Selective Compute with SelVecs. There are,
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(a) Full Compute. This function iterates through all elements, including filtered out
ones.

(b) Selective Compute with a Bitmap. The iteration logic is adapted from [18]. The
logic is not amenable to SIMD vectorization.

(c) Selective Compute with a SelVec. Reading an element involves an indirection to
first obtain its index. In the SIMD code, the gather instruction handles this indi-
rection. The last scatter is only necessary to maintain consistent indices between
the input and output vector during multi-step Map operations. It should otherwise be
avoided due to its slowness.

Figure 2.8: Implementing Vector Primitives – The code in green indicates the core operation
(multiplication). The code in red indicates iteration logic.

however, situations where SIMD vectorization provides little gain or even hurts performance.
Consider the example in Figure 2.10. This function selects an element from one of two vectors
depending on the value in a third boolean vector. It corresponds to a relational CASE statement.
For each loop iteration, the SISD code (Figure 2.10a) only executes one branch. The SIMD
code (Figure 2.10b) executes all branches and relies on SIMD masking to set the correct vector
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Figure 2.9: The Primitive Performance Equation

(a) SISD code.

(b) SIMD code.

Figure 2.10: SISD Branching Code versus SIMD – Both listings select elements from one
of vec1, or vec2 depending on the condition. In the SISD code, only one branch is executed
every iteration. In the SIMD code, we rely on masking to select which vector to load from, but
all instructions are executed at every iteration.

lanes; it ends up executing more instructions that the SISD code, which reduces the benefits
data-parallelism. In general, core operations benefit most from SIMD vectorization when they
only contain straight-line (i.e., no branches), arithmetic, and bitwise instructions.

The explanation above raises three questions that can allow us to determine the optimal strat-
egy for any primitive: What is the input vector’s selectivity? Can we use data-parallelism to
perform the core operations on multiple elements at a time? Does the core operation contain
instructions that make data-parallelism inefficient (e.g., branching)? The next chapter experi-
mentally derives the best strategies according to the answers to these questions.
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Strategy Name Representation Compute SIMD Compatibility
SelVecPartial Selection Vectors Selective None Update and Map
SelVecManual Selection Vectors Selective Manually Written Update and Map
BitmapPartial Bitmaps Selective None Update and Map
BitmapFull Bitmaps Full Auto Vectorization Update and Map
BitmapFullManual Bitmaps Full Manually Written Update and Map
Full Either Full Auto Vectorization Map
FullManual Either Full Manully Written Map

Table 3.1: Implemented Strategies – For the SIMD columns, ‘Auto Vectorization’ indicates
that we rely on compiler auto vectorization, whereas ‘Manually written’ indicates that we write
SIMD code ourselves using intrinsics. On the compatibility column, Update operations cannot
use both Full Compute and Selection Vectors, which explains the last two entries.

Chapter 3

Optimal Strategies

In this chapter, we aim to derive the optimal execution strategy for any given primitive exper-
imentally. In doing so, we will provide a decision tree that developers can use to guide the
implementation of vectorized primitives.

The chapter is divided into a series of experiments based on the questions raised in Section 2.4
to determine the optimal strategy for a given primitive. Table 3.1 summarizes all the strategies
we implemented. As noted before, there is no Full Compute strategy for Updates that works
with SelVecs. Update experiments will thus always use a Bitmap for Full Compute; For Map
experiments, the representation is irrelevant because Full Compute neither reads nor updates the
filter. In addition to relying on compiler auto-vectorization, we also experimented with manual
vectorization (e.g., with SelVecManual) for straight-line arithmetic and bitwise operations (as in
Section 3.3).

We run the experiments on an Intel Xeon Platinum 8124M CPU @ 3.00GHz with AVX512
support. We use the NoisePage DBMS [17], with a read-only column store as its storage engine,
compiled with clang version 9 [2].

In each experiment, we synthetically generate the data and manually vary the selectivity of
each primitive’s input vector from 0.0 to 1.0 in increments of 0.05 to show the impact selectivity
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(a) Update operation corresponding to
WHERE country < ‘Japan’
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(b) Map operation corresponding to
SELECT POSITION(‘a’ in country).

Figure 3.1: Variable Length Data – Country names are all short strings that highlight the fact
that even cheap variable-length operations should avoid full compute.

has on what the optimal strategy is. For example, we set a random 25% of bits in a Bitmap to
obtain filter with a selectivity of 0.25. Each experiment executes its primitive on enough vectors
to obtain a stable average running time. For example, fast primitives are executed in the order of
106 times, whereas the slower ones are executed in the order of 104 or 105 times. Map primitives
materialize their results on a vector in-memory, but Update primitives only modify the input filter
without materializing a new vector.

3.1 Non Data-Parallel Core Operations

First, we consider core operations that are not data-parallel. These are the operations where it is
impossible to use SIMD instructions to process multiple tuples at a time. We experiment on two
kinds of such operations: those that operate on variable-length data (e.g., string operations) and
those that use instructions without a SIMD counterpart (e.g., integer division, modulo).

3.1.1 Variable Length Data

We first analyze the performance of operations on variable-length data, as is often the case for
string operations (e.g., string comparison, sub-string). Let us consider the factors in Figure 2.9.
Here, the core operation executes a variable number of instructions depending, for example, on
the length of the input strings. As we show in the next experiment, it dominates the iteration
logic time, even for short strings. Because data parallelism is not available, the core operation
time per tuple is the same across all strategies. The principal factor that differentiates strategies
is, therefore, the number of tuples processed, which favors Selective Compute strategies over
Full Compute ones.

To confirm this intuition, we run a micro-benchmark using simple string operations on short
strings. The Update micro-benchmark performs string comparison, and the Map micro-benchmark
performs character location. The strings are all short country names (e.g., USA, Senegal, China).

18



0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

3500

7000

10500

14000
Ti

m
e 

pe
r 

Ve
ct

or
 (

ns
)

BitmapFull BitmapPartial SelVecPartial

(a) Update operation corresponding to
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(b) Map operation corresponding to
SELECT col1 / col2.

Figure 3.2: Integer Division.

The purpose is to show that the number of tuples processed is the principal performance factor,
even for relatively cheap variable-length operations.

The results are shown in Figure 3.1. We see that Full Compute (with BitmapFull or Full)
consistently performs worst because it processes more tuples, except at full selectivity. At full
selectivity, Full Compute and Selective Compute process the same number of tuples, but the
former slightly benefits from a simpler iteration logic. We also see that the performance of
SelVecPartial is similar to that of BitmapPartial, despite the former’s simpler iteration logic,
meaning that the core operation is the dominating cost.

The optimal strategy in this scenario is SelVecPartial. It processes fewer tuples than Full
Compute strategies and has a slightly cheaper iteration logic than BitmapPartial (though the
performance difference is small). Full Compute is only marginally competitive at full selectivity;
its benefits are mostly negligible; the more expansive the core operation, the worse Full Compute
becomes.

3.1.2 Integer Division
Second, we analyze the integer division instruction as it does not have a SIMD counterpart. Let
us consider the factors in Figure 2.9. Integer division is so expansive that the iteration logic time
is negligible compared to the core operation time. Because data parallelism is not available, its
cost per tuple is the same across all strategies. Once again, the main factor that differentiates
strategies is the number of tuples processed, which favors Selective Compute.

The micro-benchmarks of this section evaluate an Update and a Map primitive that both
contain an integer division. The results are shown in Figure 3.2. The explanation of its results is
similar to Figure 3.1’s: the cost of the integer division and the unavailability of data-parallelism
make Full Compute inefficient. SelVecPartial is, once again, the optimal strategy, but only has a
slight edge over BitmapPartial due to the former’s simpler iteration logic.

We conclude that the number of tuples processed in the dominant performance factor for
non-data-parallel primitives, making Full Compute impractical. Because of the small impact of
iteration logic time, SelVecPartial has a small performance edge over BitmapPartial, but devel-
opers can choose either representation without much affecting performance.
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(a) Update operation corresponding to
WHERE col1 < val1 && col2 < val2.
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(b) Map operation corresponding to
SELECT col1 < val1 && col2 < val2.
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(c) Update operation corresponding to
WHERE col1 < val1 || col2 < val2.
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(d) Map operation corresponding to
SELECT col1 < val1 || col2 < val2.

Figure 3.3: Branching Operations – Each operation contains one branch because of boolean
short-circuiting.

3.2 Inefficient Data Parallelism

To study the effect of inefficient use of SIMD instructions, we now consider core operations with
branching code. Chapter 4 will discuss primitives that contain pointer manipulation and several
memory accesses. SIMD strategies (e.g., BitmapFull) benefit from processing multiple tuples at
a time, but suffer from executing more code than SISD strategies (e.g., SelVecPartial). Their core
operation time per tuple may even decrease depending on the branching structure (e.g., having
to execute all branches of a switch statement). Thus, if Full Compute can outperform Selective
Compute at all, it will do so at the highest selectivities because the small reduction in time spent
per tuple cannot compensate for the higher number of tuples processed. Among SISD strategies,
SelVecPartial will outperform BitmapPartial due to its simple iteration logic.

To determine the impact of a single branch within the core operation, we implemented prim-
itives that perform logical and/or operations. Due to boolean short-circuiting, these primitives
will contain exactly one branch. We have confirmed that the compiler manages to auto-vectorize
Full Compute strategies. The results are shown in Figure 3.3. We can see that Full Compute is
either always the worst strategy (e.g., in Figure 3.3c), or only competitive at high selectivities
(>= 0.85 in Figure 3.3d). To confirm that branching is indeed responsible for the poor perfor-
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(a) Update operation corresponding to
WHERE col1 < val1 & col2 < val2.
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(b) Map operation corresponding to
SELECT col1 < val1 & col2 < val2.

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

1000

2000

3000

4000

Ti
m

e 
pe

r 
Ve

ct
or

 (
ns

)

BitmapFull BitmapPartial SelVecPartial

(c) Update operation corresponding to
WHERE col1 < val1 | col2 < val2.
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(d) Map operation corresponding to
SELECT col1 < val1 | col2 < val2.

Figure 3.4: Bitwise Operations – The increase in performance compared to Figure 3.3 is due
to the lack of branching.

mance of Full Compute, we implemented branch-less primitives with bitwise and/or operations
rather than logical ones. The results are in Figure 3.4. Full Compute now outperforms Selec-
tive Compute for selectivities <= 0.2, confirming that branching code significantly hurts SIMD
strategies’ performance.

In conclusion, though Full Compute can sometimes be competitive at the highest selectivities,
we recommend, for the sake of simplicity, the SelVecPartial strategy.

3.3 Straight-Line and Data-Parallel Core Operations

We now consider core operations with Straight-line and data-parallel (SLDP) code, i.e., non-
branching code that can efficiently leverage SIMD instructions. Primitives that only perform
arithmetic (without integer division) and bitwise instructions fall under this category. Let us con-
sider the equation in Section 2.4 to analyze the performance of each strategy in this scenario.
Full Compute strategies (e.g., BitmapFull, Full) can leverage SIMD instructions to significantly
reduce the iteration logic and core operation time per tuple. AVX512 [22] integer addition in-
structions, for example, performs 8 parallel 64-bit additions in a single cycle. We, therefore,
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Figure 3.5: SNBS Update Operations – For Updates, SelVecManual relies on the
compress store SIMD instruction rather than on scatter, which reduces its overhead.

expect Selective Compute strategies to only be competitive when the selectivity is very low,
meaning that Full Compute processes far more tuples. SelVecManual is the exception: it is a Se-
lective Compute strategy that uses SIMD instructions. Its gain in iteration logic time is, however,
not as high as that of Full Compute strategies because it uses a gather instruction [22] to collect
the elements at the selected indices (shown in Figure 2.8c). The higher the core operations time
per tuple, the less important the gather overhead because iteration logic time becomes more
and more insignificant. Thus, we expect SelVecManual to be competitive with Full Compute
at medium or below selectivities depending on the core operation. The next experiments will
quantify the differences between each strategy.

We implemented Update and Map primitives in which the core operation contains single-
cycle arithmetic and bitwise instructions. We progressively increase the number of such in-
structions to increase the core operations time per tuple and quantify the selectivity thresholds
above which Full Compute strategies become faster than Selective Compute ones. The results
are shown in Figures 3.5 and 3.6 (for Updates and Maps). The selectivity thresholds for each
graph are respectively in Figures 3.7a and 3.7b. Let us analyze the results in detail:

• In all experiments, SelVecPartial performs better than BitmapPartial. As explained in the
previous chapter, this is only due to a simpler iteration logic.

• SelVecManual is always the best Selective Compute strategy because it uses data-parallelism
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Figure 3.6: SNBS Map Operations – For Maps, SelVecManual relies on the scatter SIMD
instruction, which explains why it initially does not perform better than SelVecPartial.
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Figure 3.7: Mixed Compute Thresholds – The Full Compute strategies are BitmapFullManual
and FullManual because compiler auto-vectorization does not consistently use AVX512 registers.

to reduce the time spent per tuple.
• Manual Vectorization (with FullManual and BitmapFullManual) sometimes performs much
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better than Auto-Vectorization (with Full and BitmapFull). For example, in Figure 3.5’s
graph for NumOps=13, BitmapFullManual is 1.8 times faster than BitmapFull. With further
investigation of the generated code, we discovered that the compiler is overly conservative
when it comes to using AVX512. AVX512 registers result in decreased CPU frequency
[26], so the compiler is careful not always to use them. It often uses AVX2 registers in-
stead. We, on the other hand, always use AVX512.

• The thresholds for SelVecPartial and BitmapPartial, shown in Figures 3.7a and 3.7b, prove
that these strategies are only competitive with Full Compute at low selectivities (<= 0.2)
because, as explained above, they do not use SIMD instructions.

• The threshold for SelVecManual, on the other hand, increases with the number of oper-
ations because its iteration logic overhead becomes more and more insignificant as the
core operation time increases. SelVecManual thus benefits from data-parallelism while
processing fewer tuples than Full Compute strategies. The iteration logic difference is
never entirely negligible, though; the threshold is medium at best (0.5 at 15 operations in
Figure 3.7a).

This analysis shows the importance of Mixed Compute: we should use Selective Compute
below the selectivity thresholds, and Full Compute otherwise. The next section details our im-
plementation of Mixed Compute.

3.4 Implementing Mixed Compute

The previous section showed that for a given SLDP primitive, there is a threshold below which
SelVecManual is optimal and above which BitmapFullManual and FullManual are optimal for
Updates and Maps respectively. To find this threshold, we can run a micro-benchmark similar
to the one in Figure 3.7. The lowest selectivity at which the runtime of Full Compute strategies
exceeds that of Selective Compute strategies represents the Mixed Compute threshold for a given
primitive. In summary, the optimal SLDP strategy is as follows:

• For Maps: Full or FullManual when the selectivity is above the threshold, and SelVecMan-
ual when the selectivity is below the threshold.

• For Updates: BitmapFull or BitmapFullManual when the selectivity is above the threshold,
and SelVecManual when the selectivity is below the threshold. Note that the BitmapFull
and SelVecManual have different filter representations. There is a small cost associated
with the conversion from Bitmap to SelVec, but, in practice, other operations always fol-
low an update (e.g., there is a projection after a scan filter). The subsequent operations
often amortize the conversion cost. For small queries, in which the amortization does not
neutralize the conversion cost, BitmapPartial can slightly outperform SelVecManual be-
cause it maintains the Bitmap representation. Nonetheless, as we show in Chapter 4, its
gains are mostly negligible.
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Figure 3.8: The Summary Decision Tree – It summarizes the results in this chapter.

3.5 Vectorization Decision Tree
The decision tree in Figure 3.8 summarizes the results of this chapter. It uses the experiments
above to derive the optimal implementation strategy depending on the core operation and the
input selectivity of a given primitive. The Data-Parallel node, the Effecient Data-Parallelism
respectively use the results in Section 3.1 and Section 3.2 that designated SelVecPartial as the
optimal strategy. The Operation Type and Above Threshold nodes use the results in Section 3.3
and Section 3.4 that designed a Mixed Compute strategies for each primitive type (Update or
Map).

The tree assumes that the system developer implements all representations and compute
strategies. The total number of variants of each primitive will be extensive, which constitutes
a costly engineering endeavor. To remedy this cost, we note that the BitmapPartial strategy
does not perform significantly worse than SelVecPartial or SelVecManual at most selectivities.
Developers can, thus, focus on focus on the Bitmap representation without losing too much per-
formance. Switching between Full and Selective Compute is critical, though; the performance
gain is too significant.
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Chapter 4

Experimental Evaluation

We now evaluate the benefits of the decision tree in Chapter 3. For this evaluation, we imple-
mented the strategies for a subset of queries from the TPCH benchmark, a decision support sys-
tem workload that simulates an OLAP environment [37]. We use a scale factor of 10 (∼10 GB).
The hardware setup is unchanged from the previous chapter. We use the columnar storage engine
of the NoisePage DBMS [17]. The string columns are all dictionary compressed for faster pro-
cessing [14]. Whenever the compiler (clang [2]) failed to SIMD vectorize a primitive that should
be data-parallel or used AVX2 instead of AVX512, we hand-wrote SIMD code using AVX512
intrinsics [22].

Each query contains primitive with side-effects (e.g., hash table insertion), and primitives
without side-effects (e.g., multiplication of two columns). Given that this thesis focuses on side-
effect-free primitives, we report two metrics for each query: the running time of the whole query
and the running time of the side-effect free primitives within the query. The output of each query
is materialized in memory and printed to the standard output; no network transfer occurs.

4.1 Q1: High Selectivity SLDP primitives

Figure 4.1 shows the SQL code of the Q1 query. It contains a single SLDP filter in its WHERE
clause; its selectivity is consistently above 0.95 for the vectors from the lineitem table. Its
SELECT clause contains multiple arithmetic SLDP operations followed by side-effect-full aggre-
gation and order-by operators that dominate the running time. Before the aggregation, there is
an SLDP primitive that hashes the GROUP BY keys. Because the selectivity is high and the query
is SLDP-heavy, our decision tree favors SIMD vectorized Full Compute strategies. Besides,
switching between strategies is not required.

The results for the strategies we implemented are shown in Figure 4.2. We omit the Mixed
strategies’ measurements because no switching ever occurs in the query plan; they have the same
running times as BitmapFull. Figure 4.2a shows the running time of the primitives we optimized.
As predicted by our decision tree, the SIMD Full Compute strategy, BitmapFull, best optimizes
these primitives. It outperforms BitmapPartial and SelVecPartial (which have SISD primitives)
by 1.6×, and SelVecManual (which has manually written SIMD primitives) by 1.3×.

The total running times (Figure 4.2b) are mostly the same for all queries for two reasons.
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Figure 4.1: The TPCH Q1 query.
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Figure 4.2: Q1 Performance

First, the side-effect-full aggregation, which we do not try to optimize, is the query’s dominant
component. Second, Intel’s implementation of AVX512 instructions decreased CPU speed. This
effect explains why clang limits their usage to avoid performance degradations [26]. Compare,
for example, the BitmapPartial and BitmapFull strategies. They both have the same code for
the side-effect-full primitives, but BitmapFull performs them in 838ms, whereas BitmapPartial
performs them in 739ms. Naively avoiding AVX512 instructions is not the solution; AVX2
uses vectors that have half the width of AVX512’s, which slows down the execution of SLDP
primitives. Careful analysis is thus required to balance the benefits and disadvantages of AVX512
instructions. This analysis is left as future work.
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Figure 4.3: The TPCH Q6 query.

BitmapPartial

BitmapFull

SelVecPartial

SelVecManual

BitmapFull +
 SelVecPartial

BitmapFull +
 SelVecManual

BitmapFull +
 BitmapPartial

Strategy

0

59

118

177

236

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(a) Running time of side-effect free primitives.

BitmapPartial

BitmapFull

SelVecPartial

SelVecManual

BitmapFull +
 BitmapPartial

BitmapFull +
 SelVecPartial

BitmapFull +
 SelVecManual

Strategy

0

64

128

192

256

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(b) Total running time.

Figure 4.4: Q6 Performance. The + notation indicates mixed strategies.

4.2 Q6: Mixed Selectivity SLDP Primitives

Figure 4.3 shows the SQL code of the Q6 query. Its WHERE contains five SLDP filters, and
its SELECT one arithmetic SLDP projection followed by an aggregation. For all vectors, the
second filter leads to a selectivity below 0.15, triggering a threshold-based switch. Thus, our
decision tree favors a mixed strategy: BitmapFull at high selectivities, and SelVecManual at low
selectivities.

The results are shown in Figure 4.4. Figure 4.4a shows the running time of the primitives
we optimized. This graph confirms the necessity of the caveat we raised in Section 3.4: the
cost of converting from Bitmaps to SelVecs makes BitmapFull+SelVecManual slightly more ex-
pansive than BitmapFull+BitmapPartial by 0.3%, even though SelVecManual performs better
than BitmapPartial on the individual primitives in this query. This difference is insignificant, so
our decision tree does not take it into account. The BitmapFull+SelVecPartial strategy also suf-
fers from the conversion overhead, but the difference only amounts to 2%. All mixed strategies
perform better than non-mixed ones. BitmapFull+BitmapPartial and BitmapFull+SelVecManual
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Figure 4.5: The TPCH Q4 query.

are faster than BitmapFull by 1.3× because Full Compute becomes wasteful after the selectiv-
ity drops below 0.15. The SIMD SelVecManual strategy is slower by 1.04× because it is only
suboptimal in the first two filters of the WHERE clause. The SISD Selective Compute strategies
BitmapPartial and SelVec Partial are slower by 1.6× and 1.4× because they do not take advan-
tage SIMD instructions for SLDP operations.

Figure 4.4b shows the total running time that includes the side-effect-full aggregation primi-
tive. This primitive only accounts for a small portion of the running time, so we do not observe
the slowdown caused by AVX512 registers. In SLDP-dominated queries like Q6, the benefits of
AVX512 outweigh its disadvantages.

4.3 Q4: Low Selectivity, Inefficient Data Parallelism
Figure 4.5 shows the SQL code of the Q4 query. It is a join of two tables (lineitem and orders)
followed an aggregation and an order-by operator. The join’s left side (from the orders table)
has two SLDP filters that reduce the selectivity to 0.3 and 0.1, respectively, and an SLDP hashing
primitive before insertion into the join hash table. Its right side (from the lineitem table) has
a filter with a selectivity > 0.6 and a join probe that contains the multiple primitives shown in
Figure 2.2. Although the probe’s hashing primitive is an SLDP operation, its other primitives
contain multiple indirect lookups (e.g., accessing hash table entries or the keys within those
entries for exact comparison). Because these operations are called in a loop to find all potential
matches during the join, they constitute the bulk of the running time. Unfortunately, their data-
parallel versions are inefficient. For example, the comparison primitive, which we manually
implemented for the SelVecManual strategy, contains three gather instructions: one to collect
the keys from the right side of the join, one to collect the hash table entries, and one to collect
the keys within the hash table entries for comparison. SIMD instructions can cause performance
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Figure 4.6: Q4 Performance

degradations in these primitives. Thus, we predict that we should use BitmapFull to perform the
SLDP filters and hashing, then switch to using SelVecPartial, not the SIMD SelVecManual, for
the complex primitives within the join probe.

The results are shown in Figure 4.6. Figure 4.6a shows the running time of the primitives
we optimized. Our predicted strategy, BitmapFull+SelVecPartial, is indeed the optimal one,
closely followed by BitmapFull+BitmapPartial, which also switches from SIMD to SISD code
for complex primitives. Notice the performance degradation caused by SIMD vectorization,
as mentioned in Section 3.2. Unlike the previous queries’ results, BitmapFull+SelVecPartial
performs better than the BitmapFull+SelVecManual by 1.1× because the latter relies on SIMD
vectorization for complex primitives. BitmapFull is also slightly worse (by 1.04×). Its per-
formance degradation is attenuated by the fact that it requires fewer gather instructions than
SelVecManual (e.g., one instead of three in the comparison primitive), relying instead on faster
vector load instructions to load all elements in a vector, whether they are selected or not. The
SISD Selective Compute strategies BitmapPartial and SelVecPartial are, respectively, 1.1× and
1.05× worse because they do not optimize SLDP primitives.

The results in Figure 4.6a mostly reflect those in Figure 4.2a. AVX512 registers, once
again, cause a slowdown in SIMD implementations, causing, for example, BitmapFull to become
slower than BitmapPartial even though they share the same code for side-effect-full primitives.
Here, the disadvantages of AVX512 outweigh its benefits on the full query.

4.4 Summary

Our analysis shows that our results in Chapter 3 provide us with the best implementation for each
query. The downside is that it requires a wide variety of variants for each primitive because any
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strategy can be optimal under specific scenarios. We see, however, that Bitmap only strategies
(e.g., BitmapFull, or BitmapFull+BitmapPartial) perform nearly as well as the optimal ones in
the queries above. Developers can thus discard the SelVec representation to save engineering
effort without losing too much performance.
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Chapter 5

Related Works

5.1 Optimizing Analytical Queries for DBMSs

Besides the Vectorization and Materialization model introduced in Chapter 1, much work has
been dedicated to optimizing analytical queries on column store DBMSs. Abadi et al. studied
the effect of materialization strategies (i.e. late or early materialization) on query performance
[13]. All experiments in this paper use late materialization and rely on filters to keep track of
valid tuples. Nonetheless, Abadi et al. found that the optimal materialization strategy depends on
selectivity and on the exact operations performed on tuples [13]. Stonebraker et al. studied com-
pression as way to optimize both data storage and query execution in column stores [36]. Abadi
et al. performed an extensive evaluation of various compressions schemes [14]. The experiments
in Chapter 4 rely only on dictionary compression.

Researchers have also used SIMD vectorization to optimize relational algorithms. Zhou and
Ross optimized scans and nested loop joins using techniques most similar to our BitmapFull-
Manual implementation. Ross further applied SIMD vectorization hash tables probes [32]. Inoue
et al. and Chhugani et al. proposed sorting algorithms using SIMD instructions [16, 20]. The re-
lational order-by operators, sort-merge joins, and sorting aggregations can all use these efficient
sorting algorithms.

Raman et al. and Willhalm et al. combined this body of work and built full commercial
DBMSs using column stores with compression and SIMD vectorization techniques to optimize
table scans [31, 38]. Polychroniou and Ross further built a system using SIMD vectorization on
all relational operators [29]. These systems make a static filter representation decision: Bitmaps
for table scans, and SelVecs for other operations.

Along with the Vectorization Model, the current state-of-the-art execution technique is the
Data-Centric Query Compilation technique pioneered by Neumann [28]. This technique splits a
given query plan into several pipelines and compiles them individually. A pipeline is a sequence
of relational operators that do not materialize their result set followed by a pipeline-breaker –
an operator that does materialize its result set (e.g., to build a hash table or sort tuples). This
approach’s benefits are: (1) eliminate interpretation overhead by compiling specialized code and
(2) maximize cache locality by keeping tuples in the registers or the L1 cache for entire pipelines.
Our system uses the relaxed operator fusion technique [25], which combines data-centric code
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generation with the Vectorization Model. It generates code that operates on vectors of tuples,
thereby eliminating the interpretation overhead and optimizing cache locality while maintaining
all the Vectorization Model’s benefits.

5.2 Primitive Optimization
There has been previous work dedicated to optimizing primitives in the Vectorization Model.
They mostly differ from this thesis in that they do not consider the impact of filter representation
in their performance. We now discuss this work and how they relate to our proposed method.

Sompolski et al. compared the cost of vectorization to data-centric query compilation [34]
and combined the two approaches to generate new vectorized primitive at runtime, which is
the method we use in Section 3.3. Using only the SelVec representation, the authors compare
vectorized primitives’ performance under various compute strategies (e.g., Full versus Selective
Compute, Conditional versus Unconditional Store). They, however, do not provide a way to
switch between these strategies.

Kersten et al. performs a similar analysis for whole queries in addition to individual primitives
[23]. They developed a SIMD implementation of primitives using Selection Vectors, just like
our SelVecManual strategy. Like ours, their implementation was effective on compute-heavy
queries (e.g., Q6 in Section 4.2) and ineffective on memory access-heavy queries (e.g., Q4 in
Section 4.3).

Răducanu et al. recognized the importance of switching compute strategy at run-time [33].
For each operation, the authors implement several flavors (i.e., different ways to perform the
same operations). They then use reinforcement learning (RL) to switch between the best flavors
dynamically at runtime. This approach is more general than our micro-benchmarks because it
takes into account changes in system load. SelVec is the only representation considered, limiting
the range of adaptivity on Update tasks. Besides, our decision tree provides more explainability
than RL techniques. As future work, we could employ a similarly dynamic strategy to determine
our thresholds.

34



Chapter 6

Conclusion

This work analyzed the impact of filter representation (i.e., Bitmap vs. SelVec) and compute
strategy (i.e., Full vs. Selective Compute) on the performance of the vectorized primitives in
an in-memory analytical DBMS. We identified the factors that influence performance: number
of tuples processed, iteration logic, and core operation time per tuple. We explained how each
combination of representation and compute strategy balances between these three factors. Full
Compute has the cheapest iteration logic, processes all tuples, but spends less time on each tuple
when SIMD vectorization is possible. Full Compute is, however, only available with Bitmaps on
Update primitives. Selective Compute with SelVecs has a cheaper iteration logic than Selective
Compute with Bitmaps, and is more amenable to SIMD vectorization. We confirmed these ob-
servations with several micro-benchmarks, and created a decision tree to help systems developers
find the optimal implementation of arbitrary side-effect-free primitives. Finally, we showcased
the benefits of our analysis on OLAP queries with multiple primitives and consistently achieved
the best performance. Our performance gains over the best techniques that do not adapt filter
representation and compute strategy can be up to 1.3×.
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