
DISK-ADAPTIVE REDUNDANCY:
tailoring data redundancy to disk-reliability
heterogeneity in cluster storage systems

Saurabh Kadekodi
CMU-CS-20-142

December 2020

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Gregory R. Ganger, Co-chair

K. V. Rashmi, Co-chair
Garth A. Gibson (CMU and Vector Institute)

Arif Merchant (Google Inc.)
Remzi Arpaci-Dusseau (University of Wisconsin-Madison)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2020 Saurabh Kadekodi

This research was sponsored by the National Science Foundation under grant number CNS-1956271, the De-
partment of Energy under grant number DESC0015234, the Department of Energy/National Nuclear Security
Administration under grant number DE-AC52-06NA25396, Google, and Intel.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government
or any other entity.

Keywords: reliability, durability, fault-tolerance, redundancy, distributed storage systems,
cluster storage systems, disks, HDD, erasure code, replication, heterogeneity

To all those who think that they aren’t good enough.

iv

Abstract

Large-scale cluster storage systems contain hundreds-of-thousands of hard
disk drives in their primary storage tier. Since the clusters are not built all at
once, there is significant heterogeneity among the disks in terms of their capacity,
make/model, firmware, etc. Redundancy settings for data reliability are generally
configured in a “one-scheme-fits-all” manner assuming that this heterogeneous
disk population has homogeneous reliability characteristics. In reality we observe
that different disk groups fail differently, causing clusters to have significantly
high disk-reliability heterogeneity. This dissertation paves the way for exploiting
disk reliability heterogeneity to tailor redundancy settings to different disk groups
for cost-effective, and arguably safer redundancy in large-scale cluster storage
systems.

Our first contribution is an in-depth data-driven analysis of disk reliability
of over 5.3 million disks across over 60 makes/models in three large production
environments (Google, NetApp and Backblaze). We observe that the strongest
disks can be over an order of magnitude more reliable than the weakest disks in
the same storage cluster. This makes today’s static redundancy schemes selection
either insufficient, or wasteful, or both. We identify and quantify the opportunity
of achieving lower storage cost along with increased data protection by means of
disk-adaptive redundancy.

Our next contribution is designing the heterogeneity-aware redundancy tuner
(HeART), an online tuning tool that guides selection of different redundancy set-
tings for long-term data reliability, based on observed reliability properties of
each disk group. By processing disk failure data over time, HeART identifies
the boundaries and steady-state failure rate for each deployed disk group by
make/model. Using this information, HeART suggests the most space-efficient
redundancy option allowed that will achieve the specified target data reliability.
HeART is evaluated using longitudinal disk failure logs from a large production
cluster with over 100K disks. Guided by HeART, the cluster could meet target
data reliability levels with much fewer disks than one-scheme-for-all approaches:
11–16% fewer compared to erasure codes like 10-of-14 or 6-of-9 and up to 33%
fewer compared to 3-way replication.

While HeART promises substantial space-savings, it is rendered unusable in
production settings of real-world clusters, because the IO load of transitions be-
tween redundancy schemes overwhelms the storage infrastructure (termed tran-
sition overload). Analysis on Google’s cluster traces shows transition overload
consuming 100% of the cluster IO bandwidth for weeks together, making transi-
tion overload a show-stopper for practical disk-adaptive redundancy. Building on
the insights drawn from our data-driven analysis, Pacemaker is the next contri-
bution of this dissertation; a low-overhead disk-adaptive redundancy orchestrator
that realizes HeART’s dream in practice. Pacemaker mitigates transition over-
load by (1) proactively organizing data layouts to make future transitions efficient,
(2) initiating transitions proactively in a manner that avoids urgency while not

compromising on space-savings, and (3) designing more IO efficient redundancy
transitioning mechanisms. Evaluation of Pacemaker with traces from four large
(110K–450K disks) production clusters (three from Google and one from Back-
blaze) shows that the transition IO requirement decreases to never needing more
than 5% cluster IO bandwidth (only 0.2–0.4% on average). Pacemaker achieves
this while providing overall space-savings of 14–20% (compared to using a static
6-of-9 scheme) and never leaving data under-protected.

The final contribution of this dissertation is the design and implementation of
disk-adaptive redundancy techniques from Pacemaker in the widely used Hadoop
Distributed File System (HDFS). This prototype re-purposes HDFS’s existing ar-
chitectural components for disk-adaptive redundancy, and successfully leverages
the robustness and maturity of the existing code. Moreover, the components that
are re-purposed are fundamental to any distributed storage system’s architecture,
and thus, this prototype also serves as a guideline for future systems that wish to
support disk-adaptive redundancy.

vi

Acknowledgments

My time at CMU has been highly rewarding primarily because of my advisors.
I have been extremely lucky to have had three fantastic advisors – Prof. Garth
Gibson, Prof. Greg Ganger and Prof. Rashmi Vinayak. Throughout these years
I was constantly amazed at their ability to convert my ordinary observations and
confused conversations into crisp and precise questions which eventually led to
the right answers. I spent my first three years learning the ropes of research under
Garth’s capable (and exciting) tutelage. I was apprehensive and anxious about
switching to a new advisor in my fourth year, but to Greg’s credit he put me at ease
right away. Rashmi’s addition as my co-advisor only strengthened our team. The
highlights of my Ph.D. are definitely the high-energy and intellectually stimulating
meetings that I had with my advisors each week. From Garth’s confidence in my
research abilities, to Greg’s thoughtful and compassionate mentorship, and finally
Rashmi’s perfectionist attitude have left a lasting impression on me. A large part
of the researcher, mentor and student that I am, and will be, is because of them. I
sincerely thank them for their time, encouragement, effort and support throughout
my Ph.D.

Many thanks to my industry collaborators and mentors – Larry Greenfield,
Arif Merchant and Keith Smith who have been extremely influential in letting
me work at their organizations and trusting me with analyzing their data. Much
of this thesis would not have materialized without their curiosity, support, and
curiosity. Special thanks to my committee member Prof. Remzi-Arpaci Dusseau
for always encouraging me and providing me with a much-needed listening ear
and invaluable advice, be it at hallway conversations during conferences or during
causal university visits.

I would like to thank my amazing peers at the Parallel Data Lab and TheSys
Lab. Special thanks to Francisco Maturana who has been a wonderful collab-
orator. His mathematical and analytical expertise has been crucial in the suc-
cessful publications that have come from this research. I would also like to thank
Juncheng Yang, Chirag Nagpal and Suhas Jayaram for their support and contribu-
tion to this research. The wonderful company of Rajat Kateja made my working
hours much more enjoyable. In addition to my wonderful peers and collabora-
tors, I also would like to thank the MS and MCDS students whom I have had the
privilege of mentoring throughout my Ph.D., and from whom I have learnt a lot.

Special thanks are due to the PDL staff. Chad Dougherty, Jason Boles, Mitch
Fraznos and Chuck Cranor have been available at any time of the day or night
to ensure that I am not blocked by technical issues or equipment unavailability. I
also want to thank Karen Lindenfelser and Joan Digney who have organized PDL
events flawlessly, and have helped numerous students, including me, in interfacing
with the right people. They also serve as a reminder that good people make
a good organization, and not just domain experts. The same compliment is
deserved by the amazing staff of the Computer Science Department. They have
been protectors and champions of us Ph.D. students, especially Deb Cavlovich.

My non-academic CMU family comprises of my friends from Indian Graduate
Student Association, especially the “Peace Band” who kept me sane through the
ups-and-downs of Ph.D. life. I would like to thank Choitali, Archu, Ajay, Deep-
anjana, Ishani, Prithvi, Satwik, Hridya, Sudharshan, Tushar, Dipan, Arnab, Ab-
hishikta, Dhivya, Abhilasha, Shounak, Nikita, Oguz, Tejas, Harsha, Alina, Shruti,
Priya, Avani and Aditya for fueling my life with music, theater, debates, and most
of all, lovely companionship.

I am indebted to Siddharth Singh and Purvasha Chakravarti who have pro-
vided me with unconditional love, affection, discussions and food. They have
boosted my confidence at every step of the way, for which I am extremely grate-
ful. In the same spirit I wish to thank Vaishnavh Nagarajan who has been a pillar
of support through my lowest phases. Vaishnavh’s maturity as a person, and as a
researcher is something I can only hope to achieve. I would like to thank Arushi
Vyas for brightening my days with her enthusiasm and optimism, and bringing
out the dancer in me through Zumba. Special appreciation for Abhishek for pro-
viding excellent coffee and laughing loudest at my jokes; Anuva for her caring
company, amazing food and Marathi banter; for Devdutta and Annesha who have
never said no to accompanying me on my whimsical travels. I will cherish the
time I was housemates with Harshad Shirwadkar, who has been providing the
perfect combination of musical and technical company for over 15 years. In sim-
ilar ways, I cannot forget the inspiring Indian classical music sessions that I had
with Rithisha Padmanabh and Devansh Zurale.

Apart from CMU there has been a network of friends in US and in In-
dia who have directly, or indirectly played an important role in helping me
achieve this milestone. I would like to thank my friends from PICT - Aditya,
Bhagyashree, Piyush, Shardul, Mihir, Sonia, Rishi, Pramod, Shubhangi, Ketaki,
Chirayu, Pranay, Ameya, Sanat, Sayali, Prashant, Anuj, Mugdha, Shrikanth, Neha
Mundada, Pavneet, Pranali, Harshad Keskar, Neha Mande, Parag and Shivam-
bika for all that you have taught me through numerous fun-filled conversations
and activities. I want to specially thank Sanyogita Ranade, Manan Dedhia and
Atreyee Maiti who have been the strongest supporters that anyone can ask for. I
have benefited tremendously from Sanyogita’s unwavering support and uncondi-
tional love. During my collaboration with NetApp ATG in Boston, Sanyogita and
Manan graciously hosted me for over a month. A sincere thank you for making
my experience in Boston a memorable one. I cannot forget the encouragement of
Sumit Malani. He has been a pillar of strength through various ups-and-downs
and his unshakeable belief in me drives me to do better with every opportunity.

While I had a support system that took care of me during my Ph.D., I cannot
discount the contribution of so many of my previous mentors and well-wishers
who have made it possible for me to undertake this journey. Special thanks to
Prof. Sunil Shende, who went out of his way to educate a bunch of naive students,
both in mathematics and in navigating graduate studies. Prof. Peter Dinda from
Northwestern also devoted a lot of time and effort during my Masters, and en-
couraged me to pursue a Ph.D. Before my Masters I was employed at Soft Corner.

viii

Being there definitely boosted my confidence and the familial culture at Soft Cor-
ner is one that I will always cherish and try to reproduce at every organization
that I am a part of. At Soft Corner I would particularly like to mention Shrikanth
Narayanan, Sanyogita Ranade, Ravi Damle, Vaiju Damle, Sanjeev Dharap, and
my parents Arun and Meenal for always encouraging me to take on challenges
and venture on unexplored paths. Ability of a company to take risks, and building
for the sake of learning are my two most important takeaways from Soft Corner.

Among my extended family - Anjali Nerlekar (Anjali aatya), my aunt, is the
first person I am very close to, who had done a Ph.D. Her personal and profes-
sional pursuits have been inspiring in so many ways, and I am certain they will
continue to do so in the future. She and her family Shashank, Mukul and Aseem
have been a solid support system throughout my graduate studies. In a similar
way, I have got unwavering support to pursue my dreams from my extended family
- Sonal maasi, Ameeta maasi, Atul maasa, Vinay kaka, Nikhil, Juhi, Saloni, Neha,
Kedar, Motimummy and Dadidada. I would also like to thank Deepa, Siddharth,
Megha, Andrew, Aditi, Rajnikant uncle and Jyoti aunty for adding fun, joy and
discussions to my life.

I am at a loss for words of how to thank my closest companion and my
academic partner-in-crime Shweta Jain. You shook me out of my comfort zone
and put me on the path of academic exploration. Your contribution to my success
is absolutely fundamental. Despite the distance, the arguments, the crying, if I
had to choose anyone to go on an academic journey with, it will always be you.

Finally, at the core of my complex and long support system is my family -
Arun, Meenal and Rohan. My parents, Arun and Meenal have been unimagin-
ably supportive throughout this arduous journey. They made sure that my energy
and focus was devoted to my Ph.D. Being computer professionals, it is my good-
fortune (and probably their misfortune) that I can discuss my research with them.
My work ethic is a direct consequence of having observed them over the years.
My brother Rohan has been the strongest source of stability throughout my Ph.D.
From entertaining research discussions, to discussing personal problems, to now
becoming my academic collaborator Rohan’s presence has always been instru-
mental, but more so during my Ph.D.

A heart-felt thank you to everyone that I have mentioned (which is by no
means a complete list). You have played a pivotal role in my Ph.D. adventure,
and I wish that such a wonderful support system was available to everyone. To all
my well-wishers, I will not let you down, and I hope to support you as you have
supported me.

ix

x

Contents

1 Introduction 1
1.1 Goals . 3
1.2 Contributions . 3

2 Background and motivation 5
2.1 Overview of cluster storage systems . 5

2.1.1 Hard disk drives are the primary storage devices 5
2.1.2 Disk failures are common . 6

2.2 Data reliability is achieved using data redundancy 6
2.2.1 Replication . 6
2.2.2 Erasure coding . 6
2.2.3 Metrics of data reliability . 7

2.3 Characterizing disk reliability over lifetime: the disk bathtub curve 8
2.4 Scheme selection problem for scalable storage 9

3 A case for disk-adaptive redundancy 11
3.1 Identifying the opportunity . 12

3.1.1 The Backblaze dataset . 12
3.1.2 Disk group formation and varying AFRs 13
3.1.3 Making the case for disk-adaptive redundancy 15

3.2 The Heterogeneity-Aware Redundancy Tuner (HeART) 18
3.2.1 Challenges . 19
3.2.2 HeART architecture . 19
3.2.3 Online anomaly detection . 20
3.2.4 Online change point detection . 21

3.3 Evaluating the HeART . 23
3.3.1 Implementation of the components . 24
3.3.2 Evaluation on the Backblaze dataset 24
3.3.3 Sensitivity analysis . 29

4 Disk reliability analysis in production environments 33
4.1 Longitudinal disk reliability datasets . 33
4.2 Observations and insights . 34

4.2.1 Useful life AFRs are wildly heterogeneous 34

xi

4.2.2 Disks have two distinct deployment patterns 35
4.2.3 AFRs rise gradually over time with no clear wearout 36
4.2.4 Useful life could have multiple phases 37
4.2.5 Infancy often short-lived . 38

5 Combating transition overload in disk-adaptive redundancy systems 41
5.1 Identifying and quantifying transition overload 41

5.1.1 Transition overload patterns . 41
5.1.2 Simple re-encoding cannot reduce transition overload 42

5.2 Pacemaker: eliminating transition overload . 42
5.2.1 Disk lifecycle under Pacemaker . 43
5.2.2 Key decisions . 44
5.2.3 Constraints . 44
5.2.4 Designing IO constraints on transitions 44
5.2.5 Design goals . 45

5.3 Design of Pacemaker . 46
5.3.1 Proactive-transition-initiator . 46
5.3.2 Rgroup-planner . 48
5.3.3 Transition-executor . 50

5.4 Evaluating Pacemaker . 52
5.4.1 Pacemaker on Google Cluster1 in-depth 53
5.4.2 Pacemaker on the other three clusters 55
5.4.3 Sensitivity analyses and ablation studies 59

6 Realizing disk-adaptive redundancy in practice 63
6.1 Background on HDFS architecture . 63
6.2 Incorporating Pacemaker in HDFS . 64

6.2.1 Realizing Dgroups in HDFS . 64
6.2.2 Realizing Rgroups in HDFS . 64
6.2.3 Incorporating the transition-executor in HDFS 65
6.2.4 Purging Rgroups . 66
6.2.5 Implementing Pacemaker’s IO constraints in HDFS 66
6.2.6 Evaluating Pacemaker equipped HDFS 66
6.2.7 Salient features of this architecture . 68

6.3 Guidelines for designing future disk-adaptive redundancy systems 69
6.3.1 Decoupling the data reliability target from the data redundancy target 69
6.3.2 Enhanced reliability monitoring mechanisms 70
6.3.3 Elevating the role of the redundancy management module 70
6.3.4 Maintaining separation between file, block and storage layers 70
6.3.5 Incorporating disk-adaptive redundancy awareness in existing compo-

nents . 71

7 Related work 73

xii

8 Conclusion and future directions 75
8.1 Conclusions . 75
8.2 Future work . 77

8.2.1 Scheduling background work better . 77
8.2.2 Deeper understanding of disk failure rates 78
8.2.3 Incorporating availability in disk-adaptive redundancy 78
8.2.4 Adaptive redundancy is not restricted to HDDs 78

A Failure rate estimation details 81

Bibliography 83

xiii

xiv

List of Figures

1.1 Subfigure (a) illustrates the assumption all disks fail similarly. Two 4-of-6
stripes are shown. Subfigure (b) shows the make-up of a modern storage clus-
ter. Each color represents a make/model with a distinct AFR, so the two 4-of-6
stripes may have very different reliability. 2

1.2 AFR heterogeneity observed in over 60 makes/models with a total disk popu-
lation of over 5.3 million HDDs deployed across Google, NetApp and Backblaze. 3

2.1 Continuous-time Markov chain used to calculate the MTTDL of a k-of-n era-
sure coded stripe. 8

2.2 The disk hazard curve (also known as the bathtub curve) showing disk relia-
bility over its lifetime. 9

3.1 AFR comparison between all 4TB disks grouped together and disk groups bro-
ken down by make/model. The AFR differences in make/model-based group-
ing enables disk-adaptive redundancy to perform finer-grained specialization
leading to higher benefits. 13

3.2 Cumulative raw AFR versus age (in days) for all six disk groups being analyzed. 14
3.3 Annualized failure rate (AFR) for the six disk groups that make up >90% of

the 100,000+ HDDs used for the Backblaze backup service [10]. Details of
each disk group are given in Table 3.1. 16

3.4 An abstract timeline of a disk group from deployment to failure or decommis-
sioning, with the three distinct periods. The notations below the timeline (rdef
and rDG) denote the redundancy scheme employed during the respective stage. 16

3.5 Schematic diagram of HeART. Components include an anomaly detector, an
online change point detector, and a redundancy tuner. 20

3.6 Total number of disks and number of disk failures by date for H-4B disks.
The step-wise jumps in the black curve represent incremental deployments.
The largest red spike represents the disks that failed on July 23, 2017, causing
anomalies A and B in Figure 3.7. 21

3.7 Raw and HeART-curated AFR curves for the H-4B disk group. Five spikes in
AFR (points A–E), which correspond to four (anomalous) bulk failure events,
are automatically filtered out by HeART. 22

3.8 HeART in action on all disk groups, showing successful identification of infant
mortality, useful life and wearout periods as well as automatic removal of
anomalies. 25

xv

3.9 AFR of the S-4 disk group using a sliding window of 30 days. The determined
useful life AFR value by HeART is conservative enough to subsume even the
30-day AFR values which vary more than the cumulative AFRs. 26

3.10 Overall space reduction achieved by HeART on the Backblaze dataset over
the complete lifetime of every disk group, for erasure codes as the default
redundancy mechanism. For a maximum scheme dimension of up to 2× rdef ,
we observe between 6 − 7.5% space reduction and for a maximum scheme
dimension of up to 4 × rdef , we observe between 10 − 12% space reduction,
translating to actual space savings of 40− 80 PBs. 29

3.11 The effect of varying Tflat (AFR flatness threshold) on the H-4B disk group’s
AFR curve. Larger Tflat implies a higher useful life AFR along with a larger
useful life period. The default value for Tflat in HeART is 0.5. 30

4.1 AFR spread for over 60 makes/models from NetApp, Google and Backblaze
binned by the age of the oldest disk. Each box corresponds to a unique
make/model, and at least 10000 disks of each make/model were observed
(outlier AFR values omitted). 34

4.2 Backblaze cluster showing trickle deployments. 35
4.3 Google Cluster2 showing step deployments. 35
4.4 Google Cluster1 showing a mix of trickle and step deployments. 36
4.5 Distribution of AFR calculated over consecutive non-overlapping six-month

periods for NetApp disks, showing the gradual rise of AFR with age (outliers
omitted). 36

4.6 A conceptual representation of an AFR curve showing multiple phases of use-
ful life. In contrast with the canonical representation shown in Figure 2.2,
the AFR curves observed in real-world cluster storage systems show a non-flat
useful life which can be divided into multiple adjacent phases of useful life,
each of which can employ a different redundancy scheme. 37

4.7 Approximation of useful life length for NetApp disks for 1-5 consecutive phases
of useful life and three different tolerance levels. Each useful-life phase is ap-
proximated by an uninterrupted sequence of days during which AFR remains
within the specified (atop graph) ratio between maximum and minimum AFRs.
Boxes represent the distribution of the combined length of all phases for dif-
ferent makes/models. The box labeled “age” represents the distribution of the
age of the oldest disk for different makes/models, which is an upper bound the
length of useful life. 38

5.1 Fraction of total cluster IO bandwidth needed to perform HeART-specified
transitions on Google Cluster1. HeART would require up to 100% of the cluster
bandwidth for extended periods. 42

5.2 Pacemaker architecture. 45
5.3 Detailed IO analysis and space savings achieved by Pacemaker-enabled adap-

tive redundancy on Google Cluster1. 54
5.4 Google Cluster2 transition IO, space-savings and individual Dgroup AFR curves. 56

xvi

5.5 Google Cluster3 transition IO, space-savings and individual Dgroup AFR curves. 57
5.6 Backblaze cluster transition IO, space-savings and individual Dgroup AFR

curves. 58
5.7 Pacemaker’s sensitivity to the peak-IO constraint. 60
5.8 Multiple useful-life phases . 60
5.9 Transition type distribution . 61

6.1 Pacemaker-enhanced HDFS architecture. 64
6.2 DFS-perf reported throughput for baseline, with one Datanode failure and one

Rgroup transition. 67
6.3 DFS-perf reported latency for baseline, with one Datanode failure and one

Rgroup transition. 67

xvii

xviii

List of Tables

3.1 The disk groups identified from the Backblaze dataset for reliability hetero-
geneity analysis. The disk group shorthand above is used to represent the
respective makes/models throughout the chapter. 12

3.2 A sample of the estimated savings achievable via disk-adaptive redundancy.
The space reductions obtained on H-4A disks by using redundancy schemes
with lower storage overhead while meeting the reliability target set by applying
the default redundancy scheme (rdef) on S-4 disks. 17

3.3 Comparison between length of infant mortality calculated statically (i.e. num-
ber of days >= 90 needed to reach AFRDGmin

+ a for each disk group, where
a is a tunable AFR buffer added on top of the observed AFR at the end of
infancy; set by default to 25% of the observed AFR) versus length of infant
mortality calculated by online change point detection. 23

3.4 Disk space saved by HeART by tuning the redundancy in the useful life of a
disk group according to the observed disk group-specific AFRs. The units for
MTTDLs is years. The cost savings are calculated for 3 default schemes: 10-of-
14 on AFR 4.01% disks, 6-of-9 on AFR 4.01% disks and 3-replication (i.e. 1-of-3)
on AFR 4.01% disks. Thus, the target reliability is the MTTDL of the respective
default redundancy schemes using a 4.01% AFR (the rdef table header). The
max dimension of the scheme permitted during useful life for each disk group
has at most twice the dimension of default redundancy scheme, i.e. 20 data
chunks for 10-of-14, 12 data chunks for 6-of-9 and 2 data chunks for 3-replication. 28

5.1 Definitions of Pacemaker’s terms. 43

xix

xx

Chapter 1

Introduction

Cluster storage systems (distributed storage systems within large data centers) are primary
components of cloud, Internet service, and data analytics infrastructures. With the explosion
of machine learning and rapid rise in big data analytics, data science, edge computing and
real-time systems, these cluster storage systems are continuously pressured for storage space.
For architects of such large-scale storage systems, a petabyte (PB) of free space translates to a
critically low free-space warning. In fact, analysts estimate that 175 zettabytes (1 ZB = 1024 PB)
of data will be generated annually by 2025, most of which will be stored in data centers [91].
These astronomical capacity requirements are fueled by an exponential rate-of-growth of data.
A 2016 study shows data in YouTube growing exponentially year-over-year from 2006 through
2016 [18]. A 2020 study echoes the incredibly high data ingest rate observation by describing
the ingest rate in Google Photos. Over 28 billion photos and videos are uploaded each
week, which translates to approximately 50000 photos and videos uploaded every second [13].
Although new data and hot/warm data is now often stored on Flash SSDs, cost considerations
will lead to the majority of data continuing to be stored on mechanical disks (HDDs) for the
foreseeable future [17, 18, 91].

In order to keep up with data growth, modern storage architectures often scale to huge
capacities by combining up to hundreds of thousands of storage devices into a single storage
system [34, 96, 110]. At such scales, device failures are common, and yet, data has to remain
reliable despite these failures. Data redundancy is the most common method to protect against
data loss in the face of failures [31, 34, 46, 77, 96]. While replication is often used to improve
performance for hot data, erasure coding has become the norm for cost-effectively storing
most data [29, 33, 46].

A primary goal when selecting a data redundancy scheme (e.g., 3-way replication vs 2-way
replication, or a wider erasure code vs. a narrower erasure code) is ensuring that it satisfies the
data reliability goal. Well-established and often-used equations [72, 103] exist for computing
the expected reliability for a redundancy scheme. The most commonly used reliability metric
is mean-time-to-data-loss (MTTDL) which is a function of the per-device annualized failure
rate (AFR; the commonly used alternative for mean-time-to-failure (MTTF)1), the number of
devices, and the mean-time-to-repair (MTTR). Redundancy settings are generally chosen as if

1AFR is the expected number of device failures in a typical year. AFR is a rate quantity, inversely proportional
to MTTF.

1

a) Traditional design assumes homogeneous disks

b) Modern cluster made up of heterogeneous disks

P P

P P

P P

P P

Figure 1.1: Subfigure (a) illustrates the assumption all disks fail similarly. Two 4-of-6 stripes are
shown. Subfigure (b) shows the make-up of a modern storage cluster. Each color represents a
make/model with a distinct AFR, so the two 4-of-6 stripes may have very different reliability.

all of the devices have the same AFR. This largely holds true for RAID arrays (tens of disks),
or even sizable NFS/CIFS file servers, or smaller cluster storage systems (hundreds of disks),
which often contain a uniform set of disks deployed all-at-once and removed before wearout.
Under this setting all data (see Fig. 1.1a) experiences the same level of data reliability.

Unfortunately, the same reliability math doesn’t hold for modern large-scale storage sys-
tems because all devices don’t have the same AFR. With 100K+ disks deployed over time and
per-acquisition optimization of which disks to buy (e.g., lowest-cost-per-byte at each acqui-
sition time), there is a lot of heterogeneity. That is, the constituent devices in such systems
are of multiple makes/models and multiple device ages, and AFR values vary as a function of
both attributes [48, 56, 73] as is detailed in Chapters 3 and 4. This leads to different MTTDLs
which means different levels of reliability.

The MTTDL equations can still be used to guide decisions, as long as a sufficiently
high AFR value is used. For example, if the highest AFR value possible for any deployed
make/model at any age allowed (before decommissioning) is used, the computed MTTDL will
be a lower bound. Unfortunately, the range of possible AFR values in a deployed system is
quite large [48, 56, 73, 88] as shown in Chapter 4. For example, in our analysis, as shown
in Fig. 4.1, we observe the range to be over an order of magnitude in NetApp, Google and
Backblaze logs from double-digit AFRs to low single digit AFRs. Since the overall average
is much closer to the lower end of the AFR range, the highest value is a very conservative
over-estimate for most of the devices. The resulting MTTDLs are thus loose lower bounds,
leading decision-makers to use excessive redundancy.

Nonetheless, we are told by storage administrators of large-scale cluster storage systems
that such approaches, and other ad hoc conservative over-protection, are the norm. Such
approaches are problematic in two significant ways. First, they result in much higher cost
overheads (in the form of more disks with the associated dollar, environmental consequences)

2

10 2

10 1

100

101
AF

R
(%

)

Figure 1.2: AFR heterogeneity observed in over 60 makes/models with a total disk population
of over 5.3 million HDDs deployed across Google, NetApp and Backblaze.

than might otherwise be necessary. Second, and more insidious, they are still risky, because
it is unclear (until too late) how conservative one needs to be. For example, suppose that the
redundancy scheme shown in Fig. 1.1b is designed using the AFR of green disks. Suppose the
AFR of purple disks is higher than the green disks, and the AFR of the blue disks is lower than
the green disks. Then, the data in the top stripe is over-protected, whereas simultaneously, the
data in the bottom stripe is under-protected and at a higher risk of data loss compared to the
top stripe despite having the same redundancy scheme.

1.1 Goals

The overarching goal of this thesis is to enable highly-reliable cluster storage system that
handles the varying AFRs of different underlying devices, without excessive redundancy or
hidden risk of under-protecting data. The system must fulfill the following goals:

• Always meet data reliability target: ensure that the redundancy scheme used for data
continuously meets the data reliability target irrespective of which subset of disks the
data is stored on.

• Minimize overhead: keep the IO work associated with adaptive redundancy manage-
ment from interfering with foreground IO.

• Maximize space efficiency: avoid wasting space result from over-protecting data rel-
ative to target MTTDL and the specific disk AFRs.

1.2 Contributions

This dissertation makes five primary contributions. The first contribution is to identify the
opportunity of performing disk-adaptive redundancy by analyzing the disk-reliability hetero-

3

geneity observed in cluster storage systems across disks of different makes/models.
The second contribution is making the case for disk-adaptive redundancy by tailoring data

redundancy to the observed disk-reliability heterogeneity. Along with the required analysis,
we also evaluate our approach to disk-adaptive redundancy in a data-driven manner by archi-
tecting the Heterogeneity-Aware Redundancy Tuner (HeART). HeART is a disk-adaptive
redundancy system that replaces ad hoc “one-size-fits-all-devices” approaches to choosing re-
dundancy parameters by dynamically selecting them on the basis of continuously monitoring
underlying disk AFR behavior. HeART’s online algorithms are based on the disk reliability
analysis of a production storage cluster with over 100K disks. HeART could achieve target
data reliability levels with fewer disks than traditional approaches: 11–16% fewer compared to
erasure codes like 10-of-14 or 6-of-9 and 33% fewer compared to 3-way replication. The design
of HeART and associated analyses are described in Chapter 3.

The third contribution is an in-depth reliability analysis of over 5 million disks belong-
ing to over 60 makes/models across several clusters belonging to Google, NetApp and Back-
blaze. This analysis reconfirms the highly varying AFRs across different disk makes/models.
In addition we also highlight several important characteristics that directly affect the design
of disk-adaptive redundancy systems. Some of the insights were previously unknown, whereas
others redefine existing insights to provide a modern, and more comprehensive understand-
ing of disk reliability in modern large-scale storage clusters. The datasets and insights are
described in detail in Chapter 4.

While HeART promised substantial space-savings, it is rendered unusable in production
settings of real-world clusters, because the IO load of transitions between redundancy schemes
overwhelms the storage infrastructure (termed transition overload). The fourth contribution is
the design of Pacemaker: a low-overhead disk-adaptive redundancy orchestrator that
overcomes transition overload by (1) proactively organizing data layouts to make future
transitions efficient, (2) initiating transitions proactively in a manner that avoids urgency while
not compromising on space-savings, and (3) employing innovative IO-friendly transitioning
mechanisms to reduce transition IO. Evaluation of Pacemaker with traces from four large
(110K–450K disks) production clusters show that the transition IO requirement decreases to
never needing more than 5% cluster IO bandwidth (only 0.2–0.4% on average). Pacemaker
achieves this while providing overall space-savings of 14–20% and never leaving data under-
protected. Chapter 5 describes Pacemaker in detail.

The fifth and final contribution is the design and implementation of disk-adaptive
redundancy in the popular Hadoop Distributed File System (HDFS). This implementation
exercise is meant to show how an existing distributed storage system can be tweaked to support
disk-adaptive redundancy. This design re-purposes existing machinery in order to carry out
efficient redundancy transitions as outlined in Pacemaker. The re-purposed components are
fundamental to any distributed storage system’s architecture, and thus, this prototype also
serves as a guideline for other systems to support disk-adaptive redundancy. The details of
our design are presented in Chapter 6.

We start the rest of the dissertation with Chapter 2 giving the required background and
motivating disk-adaptive redundancy. The rest of the dissertation describes the above men-
tioned contributions in detail.

4

Chapter 2

Background and motivation

2.1 Overview of cluster storage systems

Large-scale distributed storage systems such as the Google File System [34], Colossus, Amazon
S3 [2], Microsoft Azure [19], etc. are composed of multiple cluster storage systems (also
called storage clusters). Each cluster is typically divided into multiple storage tiers, each
with a distinct purpose, such as the caching tier (also known as the hot tier for short-lived
or high-performance data), the primary storage tier (also known as the warm tier where the
bulk of the data that is actively in use and has moderate churn resides), the archival tier
(also known as the cold tier meant for backups), etc. Large-scale storage clusters can have
anywhere between tens to hundreds of thousands of storage devices in their primary storage
tier. Furthermore, most clusters in today’s large-scale distributed systems are designed in a
disaggregated manner, wherein the space on all the storage devices in the same tier is exposed
as a single, large addressable storage pool [52]. Data stored in such clusters is stored across
a number of storage devices. In most such clusters, clients access any given device directly
(via a storage network) or indirectly (via whichever networked storage-node it is attached to)
after contacting a logically-separate metadata service that maintains data location and other
information While details vary, this basic architecture enables large and time-varying numbers
of devices to be used effectively.

2.1.1 Hard disk drives are the primary storage devices

Owing to the economical price-point calculated in terms of dollars-per-terabyte ($/TB), the
primary storage tier of most of the large-scale storage clusters today is made up of hard
disk drives (HDDs). Throughout this dissertation, any reference to a storage device or a disk
implies a reference to a HDD. The storage capacity (space) of commonly used disks ranges
from anywhere between 4TB–14TB. The price dynamics are unlikely to change drastically in
the foreseeable future, ensuring that the bulk of the bytes in large-scale distributed systems
and cloud computing platforms will continue to be stored on HDDs [17, 18].

5

2.1.2 Disk failures are common

In large-scale storage clusters disk failures happen all the time [34, 85]. In fact, modern
distributed storage systems are designed for failures, which means that they treat failures as
the norm, and not an exception from the norm [34, 71, 96]. Storage devices exhibit two kinds
of failures: partial failures and fail-stops (complete failures). Partial failures might involve a
particular read or write failing because of a sector error or checksum failure. The disk as
a whole is still functional, and usually it remaps failed sectors to spare locations in order
to continue operation. In the case of fail-stop, the disk stops functioning altogether. This
dissertation focuses on data redundancy optimizations for fail-stop failures where all the data
from a disk is permanently lost when the disk fails.

2.2 Data reliability is achieved using data redundancy

Data redundancy is the most common approach to protect against permanent data loss
amongst continuous disk failures [10, 34, 46, 73, 77, 78, 84]. There are two common ways
of performing data redundancy.

2.2.1 Replication

Replication involves creating exact copies of the data on different disks as backup. Usually,
data is either duplicated (2-way replicated) or triplicated (3-way replicated). Replication not
only makes the data more durable, but also improves its availability since the redundant copies
of the data can be used to service reads in parallel.

The degraded mode read algorithm (i.e. the algorithm followed in case one of the disks on
which data is stored fails) for replication is very straightforward. The other copies of data are
referenced until the lost copy is replenished. There is a background process that continuously
monitors if data is under-redundant, and replenishes lost copies using the healthy copies of
data that are stored on other disks.

For hot data with certain access patterns, replication may be viewed as the right option for
performance, with the replication factor chosen to provide sufficient reliability. But, of course,
the cost consequence is a doubling or tripling of the number of disks needed. This makes
replication infeasible for majority of the data in modern storage clusters.

2.2.2 Erasure coding

Erasure code is a more space-efficient redundancy mechanism compared to replication. For
erasure coding a file, it is first broken into identically sized chunks of data where each chunk
is at most a few MBs. Every k chunks of data are then combined with n− k identically sized
parity chunks to form an n chunk stripe. For the popularly used maximum distance separable
(MDS) codes, any k chunks can be used to recover any of the n chunks. In this dissertation
we use the notation k-of-n scheme to indicate an erasure code with k data chunks and n− k
parity chunks per stripe. k and n are also known as the “dimension” and the “length” of

6

the erasure code. Erasure codes can also be denoted using the (n, k) notation. Both these
notations follow the standard notation employed in the coding theory literature. Replication
can also be denoted using this notation. For example, 3-replication can be denoted as a 1-of-3
erasure code. Although the description of the notation applies only to “systematic” codes, and
most of the erasure codes employed in storage systems are indeed systematic. We will use the
k-of-n notation in this dissertation.

The degraded mode read algorithm for erasure coding is more costly and complex com-
pared to that of replication. When a read is requested to a chunk that is missing because
the disk on which it was stored has failed, it triggers a process called data reconstruction.
Data reconstruction for MDS codes) involves reading any k of the remaining chunks from
the stripe that the missing chunk belongs to, after which the missing data is reconstructed
using the combination of parity and data chunks that are read. The reconstructed data is
then provided to the requesting client. Similar to replication, there is a background monitor
process that keeps checking for under-redundant data and issues reconstructions proactively
without being triggered by client reads.

It is increasingly common, in large-scale systems, to use erasure-coding (with k > 1) for
bulk and colder data. With erasure-coding, space efficiency (n

k
) for tolerating a given number

of failures is better. But, additional considerations arise regarding the amount of work involved
in recovering from a device failure—since k remaining chunks must be read to reconstruct
each lost chunk, too high a k will result in more work than desired and, potentially, full
recovery time that is too long. Schemes like 6-of-9 and 10-of-14 have been reported for real
deployments [29, 30, 31, 77, 78, 84], and Backblaze reports use of 17-of-20 [11].

2.2.3 Metrics of data reliability

Annualized failure rate (AFR)

Annualized failure rate (AFR) is the standard metric used to describe a disk’s fail-stop rate [24].
As the name suggests, it is the expected percentage of disks that will fail-stop in a given year
from a population of disks. We calculate AFR using the following formula:

AFR (%) =
fd

n1 + n2 + . . .+ nd

× 365× 100 (2.1)

where fd is the number of disks failed in d days (a sliding window of typically 30 to 60 days;
used to eliminate the jitter observed in instantaneous failure rates) and ni is the number of
disks operational during day i. Next, we will show how the AFR is used in the reliability
calculation of a redundancy scheme.

Mean time to data loss (MTTDL)

The standard metric used for reliability of data is mean time to data loss (MTTDL). MTTDL
is calculated based on two rates – mean time to failure (MTTF) and mean time to repair
(MTTR) [72, 103]. MTTF is a function of the disk’s AFR, while the MTTR is the time it
takes to reconstruct the lost data from the failed disk. In a large-scale cluster storage system,

7

0 1 . . . n-k DL

nλ

µ

(n− 1)λ

µ

(n− k − 1)λ

µ

(n− k)λ

Figure 2.1: Continuous-time Markov chain used to calculate the MTTDL of a k-of-n erasure
coded stripe.

multiple copies of the data exist, that too on distinct disks. Thus, the effort of reconstructing
the lost data of a failed disk is shared by numerous disks, which can be so efficient that the
time it takes to detect and take action upon a failed disk (approximately 15 minutes [31, 77, 78])
dominates the time taken to reconstruct all of its data [31]. This decouples the MTTR of the
disk from its storage capacity. Thus, in large cluster storage systems, the data reliability is
only a function of the disk’s MTTF (which is a function of its AFR).

When using erasure coding for fault tolerance, MTTDL is calculated at a stripe granularity.
A stripe is a set of fixed sized chunks that include both data and parity chunks as explained
in Section 2.2.2. Figure 2.1 shows the continuous-time Markov chain that is typically used for
calculating the MTTDL of a k-of-n stripe. Each state in the Markov chain represents number
of failed chunks in the stripe, starting with 0 and ending with DL to denote permanent data
loss. Each chunk of a stripe is stored on a separate disk, and for the purpose of calculating the
MTTDL, all disks are assumed to fail independent of each other. This simplifies the MTTDL
calculation since we can assume that disk failures and repairs are distributed exponentially
(in this case with a failure rate of λ). Each arrow to the right indicates failure rate, i.e. 1

MTTF

whereas each arrow to the left indicates repair rate, i.e. 1
MTTR

. The time to reach from state 0
to state DL is the MTTDL, and is usually denoted in tens-of-thousands to millions of hours.

2.3 Characterizing disk reliability over lifetime: the disk
bathtub curve

Disk reliability varies over its lifetime as shown in Figure 2.2. When the disk is in its infancy,
it suffers from infant mortality. Infant mortality is also referred to as “burn-in” failure rate,
and is an increased failure rate usually triggered due to new environment, workload pattern,
etc. Eventually the disk AFR plateaus into a low, stable failure rate regime. This regime
is called useful life. Infancy lasts 3–5 months whereas useful life lasts 3–4 years. Once the
disk is heavily used for approximately 4 years, it suffers from another phase of high AFR
similar to infancy. This phase of life is called wearout. When a disk is old enough to be
considered to be in its wearout phase, it is usually decommissioned before it fails. This way
the data on the disk can be copied over to other disks rather than performing the IO and
time-intensive data reconstruction once the disk fails. Moreover, during reconstruction the
data is vulnerable to being permanently lost if many such disks fail together. Chapters 3 and 5
contains various AFR curves from the different disk makes/models that we have analyzed to
facilitate disk-adaptive redundancy.

8

Reliability
requirement
(MTTDL)

AFR anomaly
detector

Change point
detector Redundancy tuner

Reliability-heterogeneity
aware redundancy layer

or

Useful life WearoutInfancy

A
FR

 (%
)

Age of disk
3-

5
m

on
th

s

3-
4

ye
ar

s

0, 0

Useful life WearoutInfancy

A
FR

 (%
)

Age of disk

3
to

 5

m
on

th
s

3
to

 4

ye
ar

s

0, 0

Infancy Useful life Wearout

rdef rDG rdef
Time

DG
deployed

DG
decommissioned

Reliability
requirement
(MTTDL)

AFR anomaly
detector

Change point
detector Redundancy tuner

or

Useful lifeInfancy

A
FR

 (%
)

Age of disk

3
to

 5

m
on

th
s

3
to

 4

ye
ar

s

0, 0

Wearout

Figure 2.2: The disk hazard curve (also known as the bathtub curve) showing disk reliability
over its lifetime.

2.4 Scheme selection problem for scalable storage

Generally, administrators determine the redundancy scheme to be used based on several
factors, including cost, performance, and data reliability. For long-term storage, protecting
data from loss is a critical constraint. Given the MTTDL and per-make/model AFR and
MTTR, the subset of redundancy scheme options that would achieve a target MTTDL can
be identified; the final selection can be based on the other considerations. Unfortunately,
this simple-sounding approach doesn’t work well for large-scale systems. Specifically, the
MTTDL equations rely on devices all conforming to the same stationary AFR value and the
administrator knowing that value; neither of which are true. Although it may be tempting
to use AFR values taken from manufacturer’s specifications, studies have shown that failures
rates observed in practice often do not match those [85]. More importantly, AFR values vary
significantly between makes/models as we will see in Chapters 3–5, and for devices of different
ages as described in Section 2.3. Given these two dimensions of AFR heterogeneity, using a
single redundancy scheme for all disks, and throughout each disk’s life is often wasteful,
but can also be dangerous. In order to improve data safety and cost-effectiveness a cluster
storage system needs to rethink its “one-scheme-fits-all” redundancy mechanism and employ
a more sophisticated approach that takes into account the aforementioned dimensions of AFR
hetereogeneity.

9

10

Chapter 3

A case for disk-adaptive redundancy

Large cluster storage systems almost always include a heterogeneous mix of storage de-
vices, even when using devices that are all of the same type (e.g., Flash SSDs or mechanical
HDDs). Commonly, this heterogeneity arises from incremental deployment combined with
per-acquisition optimization of which make/model to acquire (such as targeting the lowest
$/TB option available at the time, or requiring the largest capacity disks). As a result, a given
cluster storage system can easily include several makes/models, each in substantial quantity.
The storage clusters we evaluated had between 3–10 makes/models of disks deployed over a
span of a few years. As disks age, or as technology advances, it is common to retire or decom-
mission older disk models and replace them with newer, more advanced variants. Chapter 4
has more details about the composition of the different clusters evaluated in this thesis. Beyond
performance and capacity differences, disks can also have substantially different reliabilities.

Despite such differences, the degree of redundancy employed in cluster storage systems
for the purpose of long term data reliability (e.g., the degree of replication or erasure code
parameters) is generally configured as if all of the devices have the same reliability as described
in Section 2.4. Unfortunately, this approach leads to configurations that are overly resource-
consuming, overly risky, or a mix of the two. For example, if the redundancy settings are
configured to achieve a given data reliability target (e.g., a specific mean-time-to-data-loss:
MTTDL) based on the highest AFR of any device make/model, then too much space will be
used for redundancy associated with data that is stored fully on lower AFR makes/models.
Continuing this example, our evaluations show that the overall wasted capacity can be up to
16% compared to uniform use of erasure code settings stated as being used in real large-scale
storage clusters [31, 77, 78, 84] and up to 33% compared to using 3-replication for all data—the
direct consequence is increased cost, as more disks are needed. If redundancy settings for
all data are based on lower AFRs, on the other hand, then data stored fully on higher-AFR
devices is not sufficiently protected to achieve the target MTTDL.

This chapter lays the foundation of performing disk-adaptive redundancy by tailoring re-
dundancy to the observed disk-reliability heterogeneity. We start by first describing the oppor-
tunity of performing disk-adaptive redundancy by analyzing disk failure logs of a production
cluster storage system with over 100K+ HDDs. This is followed by the design, implemen-
tation and evaluation of a disk-adaptive redundancy system called the Heterogeneity-Aware

11

Make/Model
Disk group
shorthand

of
disks

Oldest
disk age

Seagate ST4000DM000 S-4 37015 5 yrs
HGST HMS5C4040ALE640 H-4A 8715 4.77 yrs
HGST HMS5C4040BLE640 H-4B 15048 4.2 yrs
Seagate ST8000DM002 S-8C 9885 1.99 yrs
Seagate ST8000NM0055 S-8E 14395 1.2 yrs
Seagate ST12000NM0007 S-12E 21581 8 mts

Table 3.1: The disk groups identified from the Backblaze dataset for reliability heterogeneity
analysis. The disk group shorthand above is used to represent the respective makes/models
throughout the chapter.

Redundancy Tuner (HeART) on the cluster we analyzed1.

3.1 Identifying the opportunity

We adopt a data-driven approach to support the case of disk-adaptive redundancy. In this
section we make our case by detailing the opportunity of tailoring redundancy to AFR het-
erogeneity and estimate the space overhead reductions that can be achieved by using disk-
adaptive redundancy.

3.1.1 The Backblaze dataset

Our analysis is based on an open source dataset from a data backup organization, Back-
blaze [10]. This dataset consists of over 5 years of disk reliability statistics from a production
cluster storage system with over 100,000 HDDs. Each HDD has a unique serial number, and
the first day on which that serial number appears is the birthday of that disk and the last
day on which a disk is seen is considered its expiry. Table 3.1 shows the six make/model disk
groups that make up over 90% of the Backblaze deployment, with their population size, the
age of their oldest disk, and the shorthand names we will use throughout this dissertation.

We use the standard metric annualized failure rate (AFR) to describe a disk’s failure be-
havior [24, 90]. Recall from Section 2.2.3 that AFR is the expected percentage of disk failures
in a given year. Note that the AFR calculation is dependent on the number of days a disk
was in operation. This can be tricky to estimate from the Backblaze dataset since the “death”
of a disk in this dataset may also indicate its decommissioning, which may or may not imply
its failure. We argue that, in the case of Backblaze, the date of decommissioning a disk only
affects the absolute date at which it would have fail-stopped, but does not affect its rate of
failure. Backblaze adopts a proactive disk replacement strategy that is driven by monitor-
ing a combination of five S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology)

1The concept of disk-adaptive redundancy and HeART were published at the USENIX Conference on File
and Storage Technologies (FAST), 2019 [48]

12

0 250 500 750 1000 1250 1500 1750
Age (days)

0

1

2

3

4

5

6

7

8

9

AF
R

(%
)

4TB-ALL raw AFR data
S-4 raw AFR data
H-4A raw AFR data
H-4B raw AFR data

Figure 3.1: AFR comparison between all 4TB disks grouped together and disk groups broken
down by make/model. The AFR differences in make/model-based grouping enables disk-
adaptive redundancy to perform finer-grained specialization leading to higher benefits.

statistics. Backblaze uses S.M.A.R.T. 5 (Reallocated Sectors Count), S.M.A.R.T. 187 (Reported
Uncorrectable Errors), S.M.A.R.T. 188 (Command Timeout), S.M.A.R.T. 197 (Current Pending
Sector Count) and S.M.A.R.T. 198 (Uncorrectable Sector Count) as indicators that a disk is
about to fail [9]. The increased probability of failure indicated by grown defects in a disk is
supported by several previous studies [12, 56, 73, 87]. In fact, Pinheiro et al. [73] show that the
critical threshold for several S.M.A.R.T. attributes before their imminent failure is one—that
is, the probability of failure of a disk in the next two months increases manifold when any of
these S.M.A.R.T. attributes show a value greater than zero. Ma et al. [56] also show the high
likelihood of disk failure by monitoring the reallocated sectors count (S.M.A.R.T. attribute 5),
which is one of the signals used by Backblaze as a disk replacement indicator. Therefore, we
believe that Backblaze’s proactive disk replacement rate is a reasonable approximation for the
actual disk failure rate.

3.1.2 Disk group formation and varying AFRs

To effectively exploit heterogeneity in AFRs of different disk groups, we need to categorize
the disks using some parameter that (1) groups disks with similar AFRs together and (2) has
substantially different AFRs across groups. In whichever manner we choose to group the
disks, in order to gain statistical confidence in the AFR value, we need to ensure that each
disk group has a sizeable population. Our definition of a sizeable population is approximately
10,000 or more disks. This is in line with disk populations considered in previous reliability
studies [56, 57, 73]. We identify the following four ways to categorize disks:

• By make/model: Economies of scale result in large quantities of disks being purchased
from the same vendor. Prior studies have shown that AFR may vary significantly by
vintage [26, 56, 73].

13

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14
AF

R
(%

)
S-4 raw AFR data

(a) S-4

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

H-4A raw AFR data

(b) H-4A

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

H-4B raw AFR data

(c) H-4B

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

S-8C raw AFR data

(d) S-8C

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

S-8E raw AFR data

(e) S-8E

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

S-12E raw AFR data

(f) S-12E

Figure 3.2: Cumulative raw AFR versus age (in days) for all six disk groups being analyzed.

14

• By capacity: Grown defects can be a function of disk capacity, thus causing disks of
similar capacity to fail at a similar rate.

• By operational conditions: Disks that share similar vibration or temperature experi-
ences may cause them to fail similarly. Thus, chassis placement and other operational
conditions may influence failure rates.

• By usage: Increased space utilization or higher I/O rates may result in different disks
showing different failure characteristics.

Unfortunately not all datasets have access to the operational conditions or usage patterns.
In the data we analyzed, we only had disk vintage information, and therefore we can only
analyze grouping on the basis of make/model or capacity.

Disk groups based on disk capacity

Figure 3.1 shows the AFR by considering all 4TB disks as one disk group (red curve with
circular marks) and the AFRs of the three make/models of 4TB disks as individual disk
groups (black curves). We see significant differences between AFRs when disks are grouped
by make/model, suggesting that grouping by capacity is insufficient.

Disk groups based on disk make/model

Figure 3.2 shows the make/model-based AFR curves for the six disk groups, each with ≈10000
HDDs. Incidentally, these makes/models make up more than 90% of the Backblaze dataset.
We can observe that there is significant heterogeneity across the different AFR curves across
all three phases of the bathtub curve: infancy, useful life and wearout. Between grouping by
capacity versus grouping by make/model, it appears that grouping by make/model is the better
grouping strategy as it allows for more fine-grained control over exploiting disk-reliability
heterogeneity.

Among the disks that show all three phases of a disk’s life (Figs. 3.2(a), 3.2(b) and 3.2(c)),
S-4 are the oldest disks in the cluster followed by H-4A and then H-4B. The rest of the disks
(Figs. 3.2(d), 3.2(e) and 3.2(f)) only show infancy and start of useful life.

3.1.3 Making the case for disk-adaptive redundancy

The goal of disk-adaptive redundancy is to reduce storage overhead by tailoring the redun-
dancy scheme employed to the failure rate of a disk group. The adaptivity comes from
explicitly factoring in the disk group-specific AFR values in deciding the appropriate redun-
dancy scheme for each disk group. Based on the canonical bathtub curve (Figure 2.2), and the
AFR curves shown in Figure 3.2, we conclude that the safest stage to apply lower redundancy
(without the risk of missing their reliability target) during a disk group’s lifetime is in its useful
life (stable operation period). Despite the AFR in useful life appearing lower than AFRs in
infancy and wearout (which might suggest lower opportunity to exploit AFR heterogeneity),
it ensures data safety because of the flatness of AFR and lonegevity of the useful life period
compared to infancy or wearout. Moreover, it is not immediately clear that tailoring redun-
dancy to infancy and wearout will achieve much benefit because the low cost due to lower

15

S-4 H-4A H-4B S-8C S-8E S-12E
Disk group (make/model)

0

1

2

3

4

AF
R

(%
)

Figure 3.3: Annualized failure rate (AFR) for the six disk groups that make up >90% of the
100,000+ HDDs used for the Backblaze backup service [10]. Details of each disk group are
given in Table 3.1.

Reliability
requirement
(MTTDL)

AFR anomaly
detector

Change point
detector Redundancy tuner

Reliability-heterogeneity
aware redundancy layer

or

Useful life WearoutInfancy

A
FR

 (%
)

Age of disk

3-
5

m
on

th
s

3-
4

ye
ar

s

0, 0

Useful life WearoutInfancy

A
FR

 (%
)

Age of disk

3
to

 5

m
on

th
s

3
to

 4

ye
ar

s

0, 0

Infancy Useful life Wearout

rdef rDG rdef
Time

Deployment Failure /
Decommissioning

Reliability
requirement
(MTTDL)

AFR anomaly
detector

Change point
detector Redundancy tuner

or

Useful lifeInfancy

A
FR

 (%
)

Age of disk

3
to

 5

m
on

th
s

3
to

 4

ye
ar

s

0, 0

Wearout

HeART
Disk health

monitoring data

Figure 3.4: An abstract timeline of a disk group from deployment to failure or decommission-
ing, with the three distinct periods. The notations below the timeline (rdef and rDG) denote
the redundancy scheme employed during the respective stage.

redundancy is a function of the AFR value and the period of time for which that lower redun-
dancy can be exercised. Since infancy and wearout are short-lived, it does not make sense
to risk data safety at the potential of incremental benefit. Figure 3.3 shows the average AFRs
during the useful life for the 6 HDD make/model-based disk groups that make up more than
90% of the Backblaze dataset. The highest failure rate is over 3.5× greater than the lowest,
and no two are the same.

Figure 3.4 shows the abstract timeline of a disk group, where r denotes the redundancy
scheme applied in each stage. Since all cluster storage systems today use some redundancy
scheme whose resilience is acceptable to them, we assume that to be the default redundancy
scheme. Since infancy and wearout periods have higher and less stable AFRs compared to use-
ful life, for every disk group, disk-adaptive redundancy should employ the default redundancy
scheme for all infancy and wearout periods. This is shown as rdef in Figure 3.4. disk-adaptive
redundancy suggests lower redundancy than the default scheme only during the useful life
period, during which AFR values are relatively stable.

We use the standard metric mean time to data loss (MTTDL) for measuring the reliabil-
ity of data employed in cluster storage systems. As described in Section 2.2.3, MTTDL is
proportional to AFR.

When a disk group enters its useful life period, a disk-adaptive redundancy system should
choose a redundancy scheme (rDG) that meets the following conditions:

16

Disk groups rdef = 10-of-14 rdef = 6-of-9 rdef = 1-of-3

DG AFR rDG Cost↓ rDG Cost↓ rDG Cost↓

S-4 3.29% 10-of-14 NA 6-of-9 NA 1-of-3 NA
H-4A 0.92% 20-of-24 14% 12-of-15 16% 2-of-4 33%

Table 3.2: A sample of the estimated savings achievable via disk-adaptive redundancy. The
space reductions obtained on H-4A disks by using redundancy schemes with lower storage
overhead while meeting the reliability target set by applying the default redundancy scheme
(rdef) on S-4 disks.

1. is as reliable as rdef , i.e. MTTDLrDG ≥ MTTDLrdef

2. tolerates at least as many failures as rdef
According to condition 1 above, we need to set a target MTTDL in order to compare

the resilience of different redundancy schemes. Although prior studies have shown MTTDL
targets to be as low as 10,000 years [83], in order to ensure that we do not regress on reliability
that disks in our dataset can currently offer, we set the target MTTDL to be the MTTDL of
the default redundancy scheme applied on the disk group with the highest AFR. S-4 is the
disk group with highest useful life AFR in the Backblaze dataset (refer Figure 3.3). Therefore,
for every default redundancy scheme, we will use S-4’s MTTDL for that scheme as the target
MTTDL.

Multiple redundancy schemes can achieve the same or similar MTTDL values. These
schemes can differ in their dimension (k) or the number of parity chunks per stripe (n − k)
or both. It is well known that, generally speaking, schemes with a higher dimension (wide
schemes) can provide the same MTTDL with lower space overhead compared to narrower
schemes as described in Section 2.2.2 and Section 2.2.3. However, wide schemes consume
significantly higher cluster bandwidth for reconstruction, since many more disks have to be
accessed when performing reconstruction of failed data [46, 77, 78, 84]. The cluster bandwidth
consumed during reconstruction is a major concern in erasure-coded storage systems. This
has been highlighted in several works in the past [46, 77, 78, 84] and is consistent with our
discussions with cluster storage system administrators. We, therefore, limit our cost reduction
analysis to schemes with at most 2× the dimension (i.e., parameter k) of the default redun-
dancy scheme. This is a limit we have set based on our communication administrators of
large-scale cluster storage systems.

Table 3.2 shows space-savings for one disk group (H-4A) as an example. We will first
highlight the space reduction when erasure coding schemes are used as the default, focusing
on the 10-of-14 and 6-of-9 schemes known to have been used in large data centers [31, 77,
78, 84]. For 10-of-14 as the default scheme, the MTTDL difference between H-4A and S-
4 disks is over 580×. Thus, we can choose a weaker redundancy scheme (a scheme with
lower storage overhead n

k
), so long as conditions 1 and 2 above are fulfilled. In fact, the high

AFR differences allow us to use the longest allowed optimized scheme (2× the dimension of
the default redundancy scheme) for H-4A disks, i.e. 20-of-24 leading to a useful life space
reduction of 14%. Similarly, when using 6-of-9 as the default scheme, the MTTDL difference

17

between H-4A and S-4 is over 160×. This again allows us to choose the longest scheme for
H-4A when rdef = 6-of-9, i.e. 12-of-15, providing a space reduction of 16%.

For rdef = 3-replication (recall that, under the n-of-k notation introduced in Section 2.2.2,
3-replication is denoted as the 1-of-3 erasure code), we can tune the redundancy on H-4A disks
to 2-of-4 to respect our 2× default stripe dimension limit and still achieve an MTTDL that is
approximately 11× that of S-4’s MTTDL. Using a 2-of-4 scheme leads to a 33% reduction in
disk space.

Large internet services companies try very hard to minimize free space (as low as 5%,
according to some administrators) in order to minimize capital and operating costs. We are
told that space-savings translate directly into reduced numbers of disks needed, and even
modest space-savings (e.g., 10%) would build a solid case for tailoring redundancy schemes to
heterogeneous disk AFRs.

We note that much of the reduction in storage overhead arises from allowing schemes up
to 2× in dimension (i.e., parameter k). However, simply employing an erasure code with twice
the dimension for all data is not generally a suitable solution. First, the AFR for certain disk
groups might be high enough to make schemes with 2× dimension not acceptable causing
them to miss the target reliability. Second, and more broadly, the reconstruction overheads
can be unacceptable. For popular schemes employed in practice, the amount of cluster band-
width required for reconstruction is proportional to k×AFR, where k is the dimension of the
scheme. The stable and lower AFR during a disk group’s useful life period allows the IO
generated for reconstruction to be contained even if wider schemes are employed, which is
another reason why disk-adaptive redundancy optimizes redundancy schemes only during a
disk group’s useful life. Using wider schemes on data stored on disk groups in their infancy
and wearout stages would exacerbate the cluster bandwidth consumption for reconstruction
due to higher failure rates in these stages.

This leads us to the design of a disk-adaptive redundancy system that can dynamically
tailor the data redundancy to the observed disk failure rates. Online (real-time) use of ob-
served disk reliability requires careful design. disk-adaptive redundancy uses robust statistical
approaches to identify not only a useful life AFR estimate for each disk group, but also the
transitions between deployment stages: infancy→useful life→wearout, as in bathtub curve
visualizations. The next section describes the challenges, design and architecture of the first
disk-adaptive redundancy system HeART: the Heterogeneity-Aware Redundancy Tuner.

3.2 The Heterogeneity-Aware Redundancy Tuner (HeART)

HeART is an online tool for guiding exploitation of reliability heterogeneity among disks to
reduce the space overhead (and hence the cost) of data reliability HeART uses failure data
observed over time to empirically quantify each disk group’s reliability characteristics and
determine minimum-capacity redundancy settings that achieve specified target data reliability
levels. This section describes the challenges, design and implementation of HeART. We also
quantify the cost reductions achieved by HeART for the Backblaze dataset.

18

3.2.1 Challenges

There are several challenges in practically exploiting the opportunity presented in Section 3.1.

Challenge 1: Function online and be quick

In making our case for HeART, we made use of the complete failure information (e.g., the full
bathtub curve) for the disk groups. This helped in clearly identifying the 3 stages of a disk
group’s lifetime and AFR values in each of the stages. In practice, however, AFR values for
disk groups deployed in cluster storage systems can only be known in an online fashion (i.e.,
as a continuous stream of reliability data, as it is observed). Furthermore, the crux of the cost
reduction from HeART comes from quickly tuning the redundancy scheme as soon as we are
confident of a disk group having entered its useful life period. Thus, our first challenge in
building HeART is that it needs to function in an online fashion taking a continuous stream
of disk health data as input and quickly react to the changes in the failure rate.

Challenge 2: Be accurate

It is important to correctly identify the three different stages of the bathtub curve for each
disk group (recall Figure 2.2). If we are hasty in declaring the end of the infancy period
or lax in identifying end of useful life, we might not meet the reliability target because of
having tailored the redundancy to a relatively low failure rate during the useful life period. In
contrast, if we are too lax about declaring end of infancy or too hasty in declaring onset of
the wearout stage, the opportunity of cost reduction will diminish.

Challenge 3: Filter-out anomalies

Events such as power outages, natural disasters or human error can cause large numbers of
disks to fail at once It is important to distinguish between an accidental rise in AFR due to
such anomalous events versus the rise in AFR due to onset of the wearout stage. Our third
challenge is to perform AFR anomaly detection to avoid prematurely declaring end of useful
life, consequently reducing the window of opportunity for cost reduction. At the same time,
HeART needs to exercise caution so as to not treat a genuine rise in AFR as an anomaly,
which risks not meeting reliability targets.

3.2.2 HeART architecture

Figure 3.5 shows the primary components of HeART. HeART assumes the existence of a
disk health monitoring/logging mechanism already in place, which is common in large-scale
cluster storage deployments. From the time of deployment till the end of infancy, the default
redundancy scheme (rdef) is used to protect the data stored on a disk group. Periodically, disk
health data for each disk group is passed through an anomaly detector. Following an anomaly
check, the cumulative AFR of every disk group is passed through a change point detector, which
checks if a transition to different phase of life has occurred. Once the change point detector
announces start of the useful life period, HeART suggests a new redundancy mechanism for

19

Reliability
requirement
(MTTDL)

AFR anomaly
detector

Change point
detector Redundancy tuner

Reliability-heterogeneity
aware redundancy layer

or

Useful life WearoutInfancy

A
FR

 (%
)

Age of disk

3-
5

m
on

th
s

3-
4

ye
ar

s

0, 0

Useful life WearoutInfancy

A
FR

 (%
)

Age of disk

3
to

 5

m
on

th
s

3
to

 4

ye
ar

s

0, 0

Infancy Useful life Wearout

rdef rDG rdef
Time

DG
deployed

DG
decommissioned

Reliability
requirement
(MTTDL)

AFR anomaly
detector

Change point
detector Redundancy tuner

or

Useful lifeInfancy

A
FR

 (%
)

Age of disk

3
to

 5

m
on

th
s

3
to

 4

ye
ar

s

0, 0

Wearout

HeART
Disk health

monitoring data

Figure 3.5: Schematic diagram of HeART. Components include an anomaly detector, an
online change point detector, and a redundancy tuner.

the useful life of the disk group (rDG). It computes a determined useful life AFR (AFRDG),
which is the AFR at the end of infancy padded with a tunable buffer, and uses it to calculate
MTTDLrDG for different redundancy scheme (rDG) options. The buffer is introduced to
tolerate the fluctuation of AFR during the useful life period (see Section 3.3.3). HeART keeps
checking for anomalies and change points throughout the useful life period. When the change
point detector marks the end of useful life, HeART raises an alert to reset the redundancy
scheme to rdef to handle the increased AFR during wearout, as was handled in the absence
of HeART.2

The remainder of this section describes our approach to addressing the above mentioned
challenges. We leverage established tools and algorithms from online services and time-series
analysis literature. While other options may perform even better, our evaluations indicate
that these established tools are effective. We show the efficacy of HeART using the Backblaze
dataset in Section 3.3.

3.2.3 Online anomaly detection

Incidents like losing power to a rack of disks, a natural disaster, or an accident, can cause
a large number of failures resulting in a sudden rise in AFR. Such bulk failures can easily
exceed the limits of any reasonable redundancy scheme, so administrators seek to mitigate
them by defining appropriate failure domains and spreading data+redundancy across the
failure domains [77, 78]. Such failures are not reflective of the true rise in AFR because of
wearout, and therefore HeART considers these incidents as anomalies. It is important to note
that the benefits we extract from exploiting the reliability heterogeneity are proportional to
the length of the useful life period, and therefore prematurely announcing wearout stage due
to an anomaly would significantly diminish achievable gains.

We use the H-4B disks as a motivating example for anomaly detection (shown in Fig-
ure 3.7). The raw AFR curve (red curve) shows that just after a few days into its useful life,
there are large spikes in the AFR curve for drives that are about 235 days old (point A) and

2We note that the current architecture of HeART determines one useful life AFR for all disks belonging to a
disk group and does not handle changes in the intra-disk-group reliability distribution over time.

20

2014-03-27
2014-10-13

2015-05-01
2015-11-17

2016-06-04
2016-12-21

2017-07-09
2018-01-25

Date

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f d
isk

s r
un

ni
ng

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f d
isk

s f
ai

le
d

Cumulative disks running
H-4B failures by date

Figure 3.6: Total number of disks and number of disk failures by date for H-4B disks. The
step-wise jumps in the black curve represent incremental deployments. The largest red spike
represents the disks that failed on July 23, 2017, causing anomalies A and B in Figure 3.7.

380 days old (point B). Further along, we observe three more spikes that are in succession for
disks that are about 1200 days old (points C, D and E). The failures corresponding to points
A and B are all caused because of 322 drives failing on one particular date. Here, failure of
disks of two different ages correspond to a failure event on the same day because these disks
were deployed on different dates. Figure 3.6 shows the total number of disks running and
the per-day number of disk failures of H-4B as a function of the date. The left y-axis shows
the cumulative disks of H-4B running on each day. The steps in the black curve show the
incremental deployments of H-4B disks. The right y-axis shows the number of H-4B disks
failing on each day (red curve). The tallest red spike in Figure 3.6 corresponds to points A
and B from Figure 3.7. Points C, D and E occurred because of disks failing on different days.

In the absence of anomaly detection, HeART would have incorrectly concluded that the
disk group’s wearout stage began as early as point A.

3.2.4 Online change point detection

We refer to a transition in the AFR curve of a disk group as a change point. There are two
major change points for each disk group: end of infant mortality stage and the onset of the
wearout stage. This subsection describes our methods of identifying the two change points.

Onset of useful life period. HeART uses prior studies about infant mortality in HDDs
along with change point detection to decide a disk group’s end of infancy. Prior studies
performed on the Google and EMC disk fleets [56, 73] have shown that infant mortality lasts
for approximately one quarter. Therefore, in order to be conservative, HeART exempts the
first quarter from being assessed for end of infant mortality. Since disk reliability data is
collected periodically, each time data is collected after the first 90 days, we run change point

21

0 250 500 750 1000 1250 1500 1750
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

A
B C, D, E

H-4B raw AFR data
H-4B auto-curated non-anomalous AFR data

Figure 3.7: Raw and HeART-curated AFR curves for the H-4B disk group. Five spikes in AFR
(points A–E), which correspond to four (anomalous) bulk failure events, are automatically
filtered out by HeART.

detection on the AFR curve generated by a sliding window of the past 30 days. HeART
declares end of infancy if the last change point marked by the detector is over 30 days old,
and the failure rate during the last 30 days is relatively constant. More precisely, HeART
declares end of infancy when the difference between the observed maximum and minimum
AFR values in at least 30 days past the last change point is less than a certain threshold Tflat.
Tflat is the threshold for flatness and is a tunable parameter in HeART. Sensitivity to Tflat is
evaluated in Section 3.3.3. Note that HeART takes a conservative approach in declaring the
onset of the useful life period of a disk group in order to increase confidence about reducing
redundancy for data stored on that disk group.

In order to evaluate the accuracy of HeART’s online change point detection approach, we
compare the HeART-determined length of infancy with the true length of infancy (calculated
using the lifetime AFR curve for every disk group, which is not possible in production, since it
would require knowing the future). In particular, the true length of infancy of each disk group
that we choose to compare with is lowest cumulative AFR plus the AFR buffer (AFRDGmin

+a)
that is observed by each disk group in its entire lifetime. The disk group’s infancy would have
definitely ended before this point, and its disks would have safely ventured into their useful
lives. Table 3.3 compares the number of days taken by each disk group to reach infant
mortality using online change point detection and the true length of infancy. Although it
might appear at first that HeART’s online change point detector is undershooting the change
points in disk groups S-4, H-4A and S-8C, making data residing on those disks unsafe, it
is important to note that the true infancy is considering the lowest AFR +a during a disk
group’s lifetime. HeART sets the useful life AFR to a value that is comfortably higher than
AFRDGmin

+ a, as shown in the evaluation in Figure 3.8 and explained in Section 3.3.2.
Furthermore, HeART allows cluster storage admins to increase the value of a according to

22

DG AFRDGmin
+ a Age until AFRDGmin

+ a HeART-determined infancy

S-4 3% 91 days 90 days
H-4A 0.82% 91 days 90 days
H-4B 1.18% 90 days 91 days
S-8C 1.25% 90 days 92 days
S-8E 1.33% 94 days 90 days
S-12E 1.79% 101 days 106 days

Table 3.3: Comparison between length of infant mortality calculated statically (i.e. number of
days >= 90 needed to reach AFRDGmin

+ a for each disk group, where a is a tunable AFR
buffer added on top of the observed AFR at the end of infancy; set by default to 25% of the
observed AFR) versus length of infant mortality calculated by online change point detection.

their respective safety standards, which makes HeART choose a higher (and thus safer) AFR
for useful life. On the other hand, overshooting the start of useful life is completely safe. It
only affects the benefits we can reap (that too by an insignificant amount even if the end of
infancy overshoots the actual end of infancy by a few weeks), but does not affect correctness,
i.e. does not have an effect on the probability of data loss.

End of useful life period. Unlike the safety net present despite being lax in detecting end
of infancy, being lax in declaring the end of useful life period (i.e., onset of wearout) can risk
in HeART not meeting the intended reliability target. Hence, HeART takes a conservative
approach and marks the end of useful life for the first AFR observed that is greater than
the determined useful life AFR. Since HeART checks for anomalous AFR fluctuations before
checking for change points, if the anomaly detection phase does not filter out an increase
in AFR, HeART assumes it to be a true increase in AFR. Thus, here too HeART takes a
conservative approach and errs on the side of exiting the useful life period early and reverting
to the default redundancy scheme. Although the H-4A graph in Figure 3.2(b) appears to
show a sudden, huge rise in AFR, we believe that it is an artifact of Backblaze’s recording
of decommissioned disks as failed, based on the device removal pattern seen in the failure
data. Data from more sources are needed to confirm this hypothesis. If some disks do exhibit
such transitions, then strategies for predicting failures (and wearout onset), such as by using
S.M.A.R.T. statistics [6, 57, 114, 120], will be needed to use any but the most conservative
redundancy schemes.

3.3 Evaluating the HeART

This section describes implementation details of various components that make up HeART
and presents an evaluation of HeART on the Backblaze dataset.

23

3.3.1 Implementation of the components

Our current implementation of HeART leverages existing, standard algorithms for anomaly
detection and change point detection. Employing more sophisticated algorithms might lead
to even better results.

Anomaly detector: For anomaly detection, our current implementation of HeART uses
the RRCF algorithm [4] exposed by Amazon’s data analytics service offering called Kinesis [3].3

A Kinesis application running the RRCF algoritm keeps polling a Kinesis data stream for new
data. As soon as the disk health monitoring system makes the reliability data available, it
is uploaded to the Kinesis data stream. The Kinesis application pulls the data from the
data stream, runs the anomaly detection on the data, and produces the output also as a
stream. The output contains an anomaly scores produced by the RRCF algorithm. Potential
anomalies identified by RRCF have a higher anomaly score than data that the algorithm
considers non-anomalous. RRCF generates the anomaly score based on how different the
new data is compared to the recent past. For consistency with change point detection, we
set the window size of the recent past to be one month. If the anomaly score is above a
certain threshold, HeART considers that snapshot of reliability data as anomalous. RRCF
advises to only consider the highest anomaly scores as true anomalies [4]. The anomaly score
threshold is a tunable parameter in HeART. Lowering the score makes HeART more sensitive
to fluctuations in AFRs.

Change point detector: Our current implementation of HeART uses a standard window-
based change point detection algorithm, which compares the discrepancy between adjacent
sliding windows within the AFR curve to determine if a change point has been encountered.
In particular, we employ the Ruptures library for online change point detection [104, 105]. We
set the sliding window size to one month, because AFRs at a lower granularity than a month
are jittery.

3.3.2 Evaluation on the Backblaze dataset

Identifying useful life period

Figure 3.8 shows the results from HeART running on all 6 disk groups of the Backblaze
dataset. HeART accurately identifies the infancy, useful life and wearout stages of the S-4,
H-4A and H-4B disk groups shown in Figs. 3.8(a), 3.8(b) and 3.8(c), respectively. For the
S-8C, S-8E and S-12E disk groups (Figs. 3.8(d), 3.8(e) and 3.8(f)), HeART identifies the end
of infancy and correctly shows that they are still in their useful life. The width of the shaded
region of each disk group highlights the “savings region", i.e. the useful life period determined
by HeART for which HeART potentially suggests a lower redundancy scheme. The height of
the shaded region in Figure 3.8 denotes the AFR values protected by the useful life AFR value
determined by HeART for that disk group.

It is important to note that even though Figure 3.8 shows cumulative AFR behavior,
HeART performs anomaly detection and online change point detection on AFRs calculated
using monthly sliding windows. Thus, not only is the cumulative AFR always inside the

3We use Amazon’s anomaly-detection-as-a-service so as to avoid re-implementing a state-of-the-art algorithm.

24

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14
AF

R
(%

)

4.01%

Savings region

S-4 raw AFR data
S-4 auto-curated AFR data
Determined useful life AFR

(a) S-4 with HeART-determined AFR

H-4A raw AFR data
H-4A auto-curated AFR data
Determined useful life AFR

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

1.82%

Savings region

(b) H-4A with HeART-determined AFR

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

2.04%

Savings region

H-4B raw AFR data
H-4B curated AFR data
Determined useful life AFR

(c) H-4B with HeART-determined AFR

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

2.07%

Savings
 region

S-8C raw AFR data
S-8C auto-curated AFR data
Determined useful life AFR

(d) S-9C with HeART-determined AFR

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

2.48%

Savings
 region

S-8E raw AFR data
S-8E auto-curated AFR data
Determined useful life AFR

(e) S-8E with HeART-determined AFR

0 500 1000 1500
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

2.44%

Savings region

S-12 raw AFR data
S-12 auto-curated AFR data
Determined useful life AFR

(f) S-12 with HeART-determined AFR

Figure 3.8: HeART in action on all disk groups, showing successful identification of infant
mortality, useful life and wearout periods as well as automatic removal of anomalies.

25

0 250 500 750 1000 1250 1500 1750
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

4.01%

Savings region

S-4 raw AFR data
Determined useful life AFR

Figure 3.9: AFR of the S-4 disk group using a sliding window of 30 days. The determined
useful life AFR value by HeART is conservative enough to subsume even the 30-day AFR
values which vary more than the cumulative AFRs.

shaded region, but the instantaneous failure rate for any 30-day period is also less than the
determined AFR value. In fact, the first rise in the instantaneous failure rate is what deter-
mines the end of the useful life period. Figure 3.9 shows the instantaneous failure rate of S-4
disks being lower than the determined useful life AFR value throughout the useful life period.

In contrast to S-4 (Figure 3.8(a)), the H-4A (Figure 3.8(b)) and H-4B (Figure 3.8(c)) disk
groups have a sudden occurrence of their respective wearout stages. The quick reactivity
requirement explained in Section 3.2.1 comes into effect for these disk groups. How quickly
HeART reacts to changes in the AFR is determined by how quickly failure data is provided
to HeART. Since Backblaze maintains daily snapshots of disk health, the quickest reaction
to an increased failure rate is on the day that the failures occur. In our evaluation, HeART
successfully identifies the increased AFR on the very day it was provided with the increased
AFR data.

Anomaly detection

As explained in Section 3.2.3, the anomaly detector successfully detects five anomalies in
the lifetime of H-4B disks. Additionally, two anomalies are also detected for the H-4A disks.
Correctly identifying anomalous events increased the identified useful life period of H-4B
disks by over 5×. In the absence of anomaly detection, the end of useful life period would
have been incorrectly identified at age 235 days (shown by point A in Figure 3.7).

Cost savings per disk group

Table 3.4 summarizes the cost savings of employing disk group specific redundancy in their
respective useful lifespans. Disk groups with similar AFRs are grouped together. As discussed
in Section 3.1, we restrict the dimension (k) of the optimized schemes to at most 2× that of

26

the default redundancy scheme (rdef). In each case of rdef , we set the target reliability to the
MTTDL achieved by using the highest-AFR disk group, which in the case of Backblaze are
the S-4 disks.

It is important to note that the useful life AFRs determined by HeART are higher than the
useful life AFRs shown in Figure 3.3. Recall from Section 3.2.2, that HeART adds a (tunable)
buffer above the useful life AFR determined at the end of infancy (which is an additional 25%
by default). HeART chooses to be conservative in determining a useful life AFR value to
ensure that reliability targets are comfortably met and to elongate the length of the useful life
period to maximize benefits.

As in Section 3.1, we exemplify the space reduction for erasure coding schemes using
10-of-14 and 6-of-9 schemes, which are known to have been employed in large-scale data
centers [31, 77, 78, 84].

First, we evaluate using 10-of-14 as the default redundancy scheme. 10-of-14 has the lowest
storage overhead (1.4×) among the default redundancy schemes we evaluate, making it the
hardest to find schemes that meet the target MTTDL and reduce overhead even further.
Despite these constraints, HeART enables a 14% space reduction for H-4A, H-4B and S-8C
disks by suggesting a 20-of-24 scheme and a reduction of 11% for S-8E and S-12E disks
by suggesting a 17-of-21 scheme. Recall that the redundancy scheme selection is done by
shortlisting schemes that fulfill the two criteria described in Section 3.1.3. From the shortlisted
schemes, HeART chooses the scheme with the lowest storage overhead to achieve maximum
space-savings.

Next, we measure HeART’s performance when using 6-of-9 as the default redundancy
scheme. We observe a space reduction of 16% on H-4A, H-4B and S-8C disks by using the
maximum allowed 12-of-15 redundancy scheme. For S-8E and S-12E disks, HeART suggests a
narrower 10-of-13 scheme compared to the above three disk groups in order to address their
relatively higher determined AFR values, leading to a space reduction of 13%.

Finally, we also include the cost reduction for the canonical redundancy scheme, 3-
replication, for completeness. We see that HeART enables 33% space reduction for all disk
groups. We note that if replication is employed primarily for availability, that data may not be
a candidate for tuning redundancy through HeART.

For H-4A, H-4B and S-8C disks, HeART chose the 2× max stripe-length for all three
evaluated default redundancy schemes, extracting the maximum cost reduction (as explained
in Table 3.2). Even with the maximum allowed stripe length, the MTTDLs for the above disks
are approximately 2.5× higher than the target MTTDL value, suggesting further storage cost
reductions if one is allowed even wider schemes.

Overall cost reduction

To highlight the overall cost reduction achieved on the Backblaze disk fleet, we show the
capacity-weighted cost savings in Figure 3.10. This cost reduction is over the whole lifetime
of the disks (including the unoptimized infancy and wearout periods) and for all six disk
groups (including the unoptimized S-4 disks). We only show the benefits for the erasure
coding schemes we evaluated, leaving out 3-way replication, since erasure codes are the more
popular choice for data durability. The overall cost reduction achieved with the maximum

27

Disk groups rdef =MTTDL10−of−14
4.01%AFR = 1.46E + 21

DG AFR MTTDLrdef rDG MTTDLrDG Cost↓
S-4 4.01% 1.46E + 21 10-of-14 1.46E + 21 NA

H-4A 1.82% 7.57E + 22 20-of-24 3.56E + 21 14%

H-4B 2.04% 4.28E + 22 20-of-24 2.01E + 21 14%
S-8C 2.07% 3.98E + 22 20-of-24 1.87E + 21 14%

S-8E 2.48% 1.61E + 22 17-of-21 1.58E + 21 11%
S-12E 2.44% 1.75E + 22 17-of-21 1.72E + 21 11%

Disk groups rdef =MTTDL6−of−9
4.01%AFR = 3.31E + 16

DG AFR MTTDLrdef rDG MTTDLrDG Cost↓
S-4 4.01% 3.31E + 16 6-of-9 3.31E + 16 NA

H-4A 1.82% 7.80E + 17 12-of-15 7.20E + 16 16%

H-4B 2.04% 4.94E + 17 12-of-15 4.56E + 16 16%
S-8C 2.07% 4.66E + 17 12-of-15 4.30E + 16 16%

S-8E 2.48% 2.26E + 17 10-of-13 3.99E + 16 13%
S-12E 2.44% 2.41E + 17 10-of-13 4.26E + 16 13%

Disk groups rdef =MTTDL1−of−3
4.01%AFR = 6.36E + 12

DG AFR MTTDLrdef rDG MTTDLrDG Cost↓
S-4 4.01% 6.36E + 12 1-of-3 6.36E + 12 NA

H-4A 1.82% 6.80E + 13 2-of-4 1.70E + 13 33%

H-4B 2.04% 4.83E + 13 2-of-4 1.21E + 13 33%
S-8C 2.07% 4.62E + 13 2-of-4 1.16E + 13 33%

S-8E 2.48% 2.69E + 13 2-of-4 6.72E + 12 33%
S-12E 2.44% 2.82E + 13 2-of-4 7.06E + 12 33%

Table 3.4: Disk space saved by HeART by tuning the redundancy in the useful life of a disk
group according to the observed disk group-specific AFRs. The units for MTTDLs is years.
The cost savings are calculated for 3 default schemes: 10-of-14 on AFR 4.01% disks, 6-of-9 on
AFR 4.01% disks and 3-replication (i.e. 1-of-3) on AFR 4.01% disks. Thus, the target reliability
is the MTTDL of the respective default redundancy schemes using a 4.01% AFR (the rdef
table header). The max dimension of the scheme permitted during useful life for each disk
group has at most twice the dimension of default redundancy scheme, i.e. 20 data chunks for
10-of-14, 12 data chunks for 6-of-9 and 2 data chunks for 3-replication.

28

(14, 10) (9, 6)
Default redundancy schemes

0

5

10

15

20

Ov
er

al
l d

isk
 sa

vi
ng

s (
%

) Max dimension = 2x rdef

Max dimension = 4x rdef

0

25

50

75

100

125

150

Ov
er

al
l d

isk
 sa

vi
ng

s (
PB

)

Figure 3.10: Overall space reduction achieved by HeART on the Backblaze dataset over the
complete lifetime of every disk group, for erasure codes as the default redundancy mechanism.
For a maximum scheme dimension of up to 2 × rdef , we observe between 6 − 7.5% space
reduction and for a maximum scheme dimension of up to 4 × rdef , we observe between
10− 12% space reduction, translating to actual space savings of 40− 80 PBs.

stripe dimension being 2× the default redundancy scheme is approximately 6% when using
10-of-14 and approximately 7.5% when using 6-of-9 as the default. If we relax the constraint
of the maximum stripe dimension to 4× the dimension of the default redundancy scheme, we
can expect to achieve between 10 − 12% overall space reduction. These modest percentage
savings translate to significant savings in terms of actual storage space in large-scale clusters.
For example, as shown on the right-side y-axis in Figure 3.10, savings in storage space for the
the Backblaze cluster range between 40− 80 PBs.

3.3.3 Sensitivity analysis

There are several configuration parameters that govern the behavior of HeART, of which most
are dependent on the ready-made tools we have used for different components of our system
(e.g., the threshold for anomaly scores when using RRCF for anomaly detection). There are,
however, two fundamental parameters that are independent of which anomaly detector or
change point detector is used.

Before going into the details about the two parameters, we note that the modulation of
both the parameters only has an effect on the gains that our optimization can yield. Neither of
them affects correctness of our framework or protection of data in any way. This allows operators
of cluster storage systems to start with conservative values, observe the AFR behavior of their
disks and accordingly choose apt values to minimize their costs without the risk of missing
their reliability target. We next discuss the two parameters.

29

0 250 500 750 1000 1250 1500 1750
Age (days)

0

2

4

6

8

10

12

14

AF
R

(%
)

AFR = 1.86%, Useful life = 1101 days

Tflat=0.5

AFR = 1.51%, Useful life = 277 days

Tflat=0.3

H-4B curated AFR data
Determined useful life AFR

Figure 3.11: The effect of varying Tflat (AFR flatness threshold) on the H-4B disk group’s AFR
curve. Larger Tflat implies a higher useful life AFR along with a larger useful life period. The
default value for Tflat in HeART is 0.5.

Flatness parameter (Tflat)

Tflat is used to deduce the end of the infant mortality period. As mentioned in Section 3.2.4,
the end of infancy is defined as the first 30+ day period beyond the change point detected
after the first quarter such that the difference between maximum and minimum observed AFR
is below the threshold Tflat. Thus, Tflat essentially determines the flatness in the AFR curve
for a given period. Currently, we define Tflat to be 0.5. A larger Tflat value will reduce the
length of infancy until it reaches 90 days, beyond which it will have no effect. A lower Tflat

will enforce a stricter flatness criteria, typically causing end of infancy to be declared late.
Ending infancy sooner potentially causes HeART to choose a larger value as the determined
useful life AFR. This, in turn causes HeART to choose a stronger redundancy scheme (with
higher space overhead) compared to one that would have been chosen with the determined
AFR value derived as a result of a lower Tflat value. This reduces the achievable savings
within the useful life period of the disk group. As a tradeoff, we get a larger useful life period
with a larger Tflat, since not only does infancy end sooner, but also the onset of wearout stage
is postponed, since the increased useful life AFR now has higher tolerance to AFR variances
throughout the useful life.

Figure 3.11 shows the effect of varying Tflat on H-4B disks. We show the results for two
different values Tflat = 0.3 and Tflat = 0.5. When Tflat was set to 0.3, we can see HeART
declaring end of infancy at close to 100 days. Despite the buffer added to the determined
useful life AFR at the end of infancy, the fluctuation in monthly AFRs caused a spike on day
394 to rise above the determined useful life AFR, causing HeART to announce end of useful
life. In contrast, when Tflat = 0.5, infancy was declared to end on day 91, and the determined
AFR value was high enough to tolerate the spike on day 394, increasing the useful life period

30

by a significant amount.

Useful life AFR buffer

The AFR buffer is the conservative padding added to the useful life AFR determined at the
end of infancy. Currently, the useful life AFR is determined as the AFR value at the end
of infancy plus an additional buffer, the tunable AFR buffer parameter. The choice of the
buffer value has similar tradeoffs to the flatness parameters discussed above. A high buffer
value implies a more conservative approach to setting the determined useful life AFR. This
will prolong the useful life period, but restrict the tuning of the redundancy scheme due to
the high useful life AFR value determined (and thus reducing benefits). In contrast, setting a
low buffer value will shorten the useful life period but allow more cost reductions during the
useful life. Operators can set the buffer based on AFR fluctuations observed in their storage
systems, which can stem anywhere from workload patterns to operational conditions.

By robustly estimating per-disk-group AFRs and selecting the best redundancy settings for
each, HeART avoids the space-inefficiency of one-size-fits-all redundancy schemes. Analysis
of failure data for a large-scale production storage cluster shows that using HeART could
achieve target data reliabilities with 11–33% fewer disks than popular configurations, offering
huge potential cost savings.

While HeART outlines the potential benefits and describes the associated policies and al-
gorithms for performing disk-adaptive redundancy, it refrains from describing the systemic
techniques that should be used to carry out redundancy transitions from one scheme to an-
other. We will observe in Chapter 5 that sophisticated mechanisms need to be used to perform
disk-adaptive redundancy efficiently. But first, we analyze large production cluster storage sys-
tems consisting of millions of disks from three large organizations in Chapter 4. This analysis
will prove crucial in informing the design of efficient disk-adaptive redundancy.

31

32

Chapter 4

Disk reliability analysis in production
environments

We examine disk reliability and deployment characteristics of over 5 million HDDs, cov-
ering over 60 makes/models, by analyzing multi-year logs from real-world environments.
This chapter presents key insights that inform our understanding of the sources of transi-
tion overload (urgent bursts of redundancy transition IO; described in Chapter 5) and chal-
lenges/opportunities for a robust disk-adaptive redundancy solution which is described in the
next chapter.

4.1 Longitudinal disk reliability datasets

The largest dataset comes from NetApp and contains information about disks deployed in
filers (file servers). Each filer reports the health of each disk periodically (typically once a
fortnight) using their AutoSupport [51] system. We analyzed the data for a subset of their
deployed disks, which included over 50 makes/models and over 4.3 million disks total.

The other datasets come from large storage clusters deployed at Google and the Backblaze
Internet backup service. Although the basic disk characteristics (e.g., AFR heterogeneity and
the AFR behavior discussed below) are similar to the NetApp dataset, these datasets also
capture the evolution and behavior in our target context (large-scale disaggregated storage
clusters). The particular Google clusters shown were selected based on their longitudinal data
availability, but were not otherwise screened for favorability. Google Cluster1’s disk population
over three years included ≈350K disks of 7 makes/models. Google Cluster2’s population over
2.5 years included ≈450K disks of 4 makes/models. Google Cluster3’s population over 3 years
included ≈160K disks of 3 makes/models. The Backblaze cluster’s population since 2013 has
included over 110K disks of 7 makes/models ranging from 4TB to 12TB. A subset of this
dataset was also evaluated by HeART as shown in Chapter 3. For each cluster, the multi-year
log records (daily) all disk deployment, failure, and decommissioning events from birth of the
cluster until the date of the log snapshot.

33

10 2

10 1

100

101
AF

R
(%

)

[0, 3) [3, 4) [4, 5) [5, 6)
Age of oldest disk (years)

NetApp
Backblaze
Google

Figure 4.1: AFR spread for over 60 makes/models from NetApp, Google and Backblaze binned
by the age of the oldest disk. Each box corresponds to a unique make/model, and at least
10000 disks of each make/model were observed (outlier AFR values omitted).

4.2 Observations and insights

The insight for disk-adaptive redundancy systems

At such large scales space-savings of even 1% affects at least 1000 disks. Thus, optimizations
such as disk-adaptive redundancy, which promise close to 20% space-savings directly translate
to requiring tens-of-thousands of fewer disks, which dramatically reduces energy and storage
costs.

4.2.1 Useful life AFRs are wildly heterogeneous

Figure 4.1 captures the range of AFRs that we observed in our analysis over disks of various
ages. The highest useful life AFRs observed are close to two orders of magnitude compared
to the lowest useful life AFRs across the 60 makes/models we analyzed across three organiza-
tions; NetApp, Google and Backblaze. Analyzed disks consist of both consumer and enterprise
grade disks (most disks are enterprise). The proprietary nature of our data prevents us from
disclosing the actual make/model or population of each disk type.

The insight for disk-adaptive redundancy systems

The concept of disk-adaptive redundancy rests on exploiting reliability heterogeneity to have
different redundancy for different sub-populations of disks. The observation that AFRs across
different makes/models differs by orders of magnitude, and that this AFR heterogeneity is
ubiquitous suggests that disk-adaptive redundancy is a useful approach that is applicable for
most large-scale storage clusters.

34

Figure 4.2: Backblaze cluster showing trickle deployments.

Figure 4.3: Google Cluster2 showing step deployments.

4.2.2 Disks have two distinct deployment patterns

Trickle deployment

Trickle-deployed disks are added to a cluster a-few-at-a-time (by the tens and hundreds), but
frequently (weekly or even daily). Trickle-deployed disks may belong to different makes/models.
Figure 4.2 shows the Backblaze storage cluster which is entirely trickle-deployed.

Step deployment

Step-deployment introduces many thousands of disks into the cluster “at once” (over a span
of a few days), followed by potentially months of no new step-deployments. Disks of a step
are typically of the same make/model. Figure 4.3 shows one of the Google clusters that is
step-deployed.

Mix of trickle and step deployments

A cluster may be entirely trickle-deployed (like the Backblaze cluster) or entirely step-deployed
(like one of the Google clusters), but more often than not, it is usually a mix of the two.
Figure 4.4 shows one of the Google clusters that has three of its seven make/models trickle-
deployed and the remaining four makes/models step-deployed.

35

Figure 4.4: Google Cluster1 showing a mix of trickle and step deployments.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Age (years)

0

2

4

A
FR

 (
%

)

Figure 4.5: Distribution of AFR calculated over consecutive non-overlapping six-month peri-
ods for NetApp disks, showing the gradual rise of AFR with age (outliers omitted).

The insight for disk-adaptive redundancy systems

Disk deployment strategies are typically a consequence of disk procurement strategies. On
one hand, it might be more cost-effective to purchase disks in bulk (i.e. step), which would
then cause them to be deployed in bulk, because they have been purchased already. Whereas,
there might be a need of specific disks of a certain capacity which might not have been
manufactured, or available in bulk, and therefore are purchased, and deployed as they are
made available (i.e trickle). Nevertheless, the nature of disk deployment reflects on how they
need to transition to different redundancy schemes. Specifically, since trickle-deployed disks
are deployed a-few-at-a-time, and since redundancy transitions are a function of disk age (as
explained in Section 3.1.2) trickle-deployed disks transition a-few-at-a-time. In contrast, since
step-deployed disks are deployed in bulk, they require transitioning in bulk. Although disk
deployment pattern can be chosen in order to benefit disk-adaptive redundancy, in this work
we do not recommend or change the deployment pattern, but in fact we design optimizations
for transitioning based on the observed deployment pattern (explained in Section 5.3.3).

4.2.3 AFRs rise gradually over time with no clear wearout

The folklore of a single, flat useful life transitioning to a steep wearout phase was not observed
in the disk populations we studied. Rather, in general, it was observed that AFR curves rise
gradually as a function of disk age. Figure 4.5 shows the gradual rise in AFR over six month
periods of disk lifetimes. Each box represents the AFR of disks whose age corresponds to the

36

Figure 4.6: A conceptual representation of an AFR curve showing multiple phases of useful life.
In contrast with the canonical representation shown in Figure 2.2, the AFR curves observed
in real-world cluster storage systems show a non-flat useful life which can be divided into
multiple adjacent phases of useful life, each of which can employ a different redundancy
scheme.

six-month period denoted along the X axis. AFR curves for individual makes/models (e.g.,
Figs. 5.3(c) and 5.3(d)) are consistent with this aggregate illustration. Importantly, none of
the over 60 makes/models from Google, Backblaze and NetApp displayed sudden onset of
wearout1.

The insight for disk-adaptive redundancy systems

Gradual increases in AFR, rather than a sudden rise in AFR suggests that one could anticipate
disks approaching an AFR threshold. This enables disk-adaptive redundancy systems to act
proactively, rather than reactively to increase redundancy such that data is never left under-
protected.

4.2.4 Useful life could have multiple phases

Figure 4.6 shows a conceptual representation of an AFR curve with multiple useful life phases.
Unlike the canonical AFR curve shown in Figure 2.2, the AFR curves observed in real-world
deployments (for example Figures 5.3(c), 5.4(b)) show a non-flat, gradually increasing AFR
during useful life. Given the gradual rise of AFRs, useful life can be decomposed into multiple,
piece-wise constant phases.

Figure 4.7 shows an approximation of the length of useful life when multiple phases are
considered. Each box in the figure represents the distribution over different make/models of
the approximate length of total useful life (i.e. including all phases). Useful life is approximated
by considering the longest period of time which can be decomposed into multiple consecutive
phases (number of phases indicated by the bottom X-axis) such that the ratio between the

1Figures 3.2(b) and 3.8(b) in Chapter 3 show that AFR rises suddenly during wearout. This is not due to
a sudden increase in AFR, but is in fact due to the AFR being calculated by the failed disks counting both
failed and decommissioned disks. This is because the Backblaze dataset used in Chapter 3 did not differentiate
between failed and decommissioned disks. Since decommissioning events are usually bulk events wherein large
batches of disks are discontinued together, it appears as though there is a sudden increase in AFR.

37

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Age
Number of useful life phases

0

1000

2000

d
a
y
s

2 3 4
Tolerance: AFR ratio (max / min)

Figure 4.7: Approximation of useful life length for NetApp disks for 1-5 consecutive phases
of useful life and three different tolerance levels. Each useful-life phase is approximated
by an uninterrupted sequence of days during which AFR remains within the specified (atop
graph) ratio between maximum and minimum AFRs. Boxes represent the distribution of the
combined length of all phases for different makes/models. The box labeled “age” represents
the distribution of the age of the oldest disk for different makes/models, which is an upper
bound the length of useful life.

maximum and minimum AFR in each phase is under a given tolerance level (indicated by the
top X-axis). The last box indicates the distribution over make/models of the age of the oldest
disk, which is an upper bound to the length of useful life. As shown by Figure 4.7, the length
of useful life can be significantly extended (for all tolerance levels) by considering more than
one phase. Furthermore, the data show that a small number of phases suffice in practice, as
the approximate length of useful life changes by little when considering four or more phases.

The insight for disk-adaptive redundancy systems

Having multiple phases of useful life implies potentially multiple redundancy transitions to
take adequate advantage of lower redundancy when in phases of life where AFR is low. At the
same time, each additional transition has more IO associated with it, and therefore whether to
optimize redundancy for each phase of useful life is a trade-off between IO and the resultant
space-savings.

4.2.5 Infancy often short-lived

Disks may go through (potentially) multiple rounds of so-called “burn-in” testing. The first
tests may happen at the manufacturer’s site. There may be additional burn-in tests done at
the deployment site allowing most of the infant mortality to be captured before the disk is
deployed in production. For the NetApp and Google disks, we see the AFR drop sharply
and plateau by 20 days for most of the makes/models. Figures 5.3, 5.4 and 5.5 exhibit this
property. In contrast, the Backblaze disks display a slightly longer and higher AFR during
infancy, which can be directly attributed to their less aggressive on-site burn-in as shown in
the AFR curves from Figure 5.6.

38

The insight for disk-adaptive redundancy systems

A short-lived infancy implies a larger fraction of the disk lifetime (once it is deployed) to be
spent in optimized redundancy, and thus an opportunity for higher space-savings.

Pacemaker’s design is heavily influenced from different deployment patterns, gradual onset of
wearout and multiple useful life phases to combat an important IO problem called transition
overload while still maximizing the benefits of disk-adaptive redundancy. This is detailed in
the next chapter.

39

40

Chapter 5

Combating transition overload in
disk-adaptive redundancy systems

Adapting redundancy involves dynamic transitioning of redundancy schemes, because AFRs
must be learned from observation of deployed disks and because AFRs change over time
due to disk aging. Changing already encoded data from one redundancy scheme to another,
for example from an erasure code with parameters k1-of-n1 to k2-of-n2 can be exorbitantly
IO intensive. Although HeART laid the foundation of disk-adaptive redundancy (Chapter 3),
its design suffers from overwhelming bursts of urgent transition IO when applied to real-
world storage clusters. We refer to this as the transition overload problem. This chapter
introduces Pacemaker 1, a new disk-adaptive redundancy orchestration system that exploits
insights from the aforementioned analyses from Chapter 4 to realize the dream of safe disk-
adaptive redundancy without transition overload.

5.1 Identifying and quantifying transition overload

HeART is designed to perform redundancy transitions as a reaction to AFR changes. There-
fore, by the time transition to increase redundancy is issued in response to a rise in AFR, the
data is already under-protecte. And it will continue to be under-protected until that transi-
tion completes. Simple rate-limiting to reduce urgent bursts of IO would only exacerbate this
problem causing data-reliability goals to be violated for even longer. Indeed, as illustrated in
Figure 5.1, around 2019-09 data was under-protected for over a month, even though the entire
cluster’s IO bandwidth (100%) was used solely for redundancy transitions.

5.1.1 Transition overload patterns

Two common transition overload patterns are observed. First is in the case of trickle deploy-
ments described in Section 4.2.2 where disks are added a-few-at-a-time but frequently. A
statistically confident AFR observation requires thousands of disks. Thus, by the time it is

1Pacemaker was published at the USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2020 [49].

41

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100
To

ta
l I

O
pe

r d
ay

 (%
)

Transition IO Num disks (right axis)

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

Figure 5.1: Fraction of total cluster IO bandwidth needed to perform HeART-specified tran-
sitions on Google Cluster1. HeART would require up to 100% of the cluster bandwidth for
extended periods.

known that AFR for a specific make/model and age is too high for the redundancy used, the
oldest thousands of that make/model will be past that age. At that point, all of those disks
need immediate transition. Second is in the case of step deployments described in Section 4.2.2
where disks are added in bulk, but occasionally. Steps have sufficient disks for statistically
confident AFR estimation. However, when a step reaches an age where the AFR is too high
for the redundancy used, all disks of the step need immediate transition.

5.1.2 Simple re-encoding cannot reduce transition overload

An enticing solution that might appear to mitigate transition overload is to adapt redundancy
schemes only by removing parities in low-AFR regimes and adding parities in high-AFR
regimes. While this solution eliminates transition IO when reducing the level of redundancy,
it does only marginally better when redundancy needs to be increased, because new parity
creation cannot avoid reading all data chunks from each stripe. What makes this worse is
that transitions that increase redundancy are time-critical, since delaying them would miss
the MTTDL target and leave the data under-protected. Moreover, addition / removal of a
parity chunk massively changes the stripe’s MTTDL compared to addition / removal of a data
chunk. For example, a 6-of-9 MTTDL is 10000× higher than 6-of-8 MTTDL, but is only
1.5× higher than 7-of-10 MTTDL. AFR changes would almost never be large enough to safely
remove a parity, given default schemes like 6-of-9, eliminating almost all potential benefits of
disk-adaptive redundancy.

5.2 Pacemaker: eliminating transition overload

Pacemaker is an IO efficient redundancy orchestrator for storage clusters that support disk-
adaptive redundancy. In this section, first chronicle a disk’s lifecycle, introducing the termi-
nology that will be used in the rest of the chapter (defined in Table 5.1). Following this, we will
outline the constraint-based approach used by Pacemaker in combating transition overload.
Finally, we will identify Pacemaker’s key design goals which aid in understanding the details
of its architecture in the next section.

42

Term Definition

Dgroup Group of disks of the same make/model.
Transition The act of changing the redundancy scheme.
RDn transition Transition to a lower level of redundancy.
RUp transition Transition to a higher level of redundancy.
peak-IO-cap IO bandwidth cap for transitions.
average-IO-cap IO bandwidth cap for transitions averaged over

the total IO done during a disk’s lifetime.
Rgroup Group of disks using the same redundancy

with placement restricted to the group of disks.
Rgroup0 Rgroup using the default one-scheme-fits-all

redundancy used in storage clusters today.
Unspecialized disks Disks that are a part of Rgroup0.
Specialized disks Disks that are not part of Rgroup0.
Canary disks First few thousand disks of a trickle-deployed

Dgroup used to learn AFR curve.
Tolerated-AFR Max AFR for which redundancy scheme meets

reliability constraint.
Threshold-AFR The AFR threshold crossing which triggers

an RUp transition for step-deployed disks.

Table 5.1: Definitions of Pacemaker’s terms.

5.2.1 Disk lifecycle under Pacemaker

Throughout its life, each disk under Pacemaker simultaneously belongs to a Dgroup and an
Rgroup. There are as many Dgroups in a cluster as there are unique disk makes/models.
Rgroups on the other hand are a function of redundancy schemes and placement restrictions.
Each Rgroup has an associated redundancy scheme, and its data (encoded stripes) must
reside completely within that Rgroup’s disks. Multiple Rgroups can use the same redundancy
scheme, but no stripe may span across Rgroups. The Dgroup of a disk never changes, but a
disk may transition through multiple Rgroups during its lifetime. At the time of deployment
(or “birth”), the disk belongs to Rgroup0, and is termed as an unspecialized disk. Disks in
Rgroup0 use the default redundancy scheme, i.e. the conservative one-scheme-fits-all scheme
used in storage clusters that do not have disk-adaptive redundancy. The redundancy scheme
employed for a disk (and hence its Rgroup) changes via transitions. The first transition any
disk undergoes is an RDn transition. A RDn transition changes the disk’s Rgroup to one with
lower redundancy, i.e. more optimized for space. Whenever the disk departs from Rgroup0, it
is termed as a specialized disk. Disks depart from Rgroup0 at the end of their infancy. Since
infancy is short-lived (Section 4.2.5), Pacemaker only considers one RDn transition for each
disk.

The first RDn transition occurs at the start of the disk’s useful life, and marks the start
of its specialization period. As explained in Section 4.2.4, a disk may experience multiple

43

useful life phases. Pacemaker performs a transition at the start of each useful-life phase. After
the first (and only) RDn transition, each subsequent transition is an RUp transition. An RUp
transition changes the disk’s Rgroup to one with higher redundancy, i.e. less optimized for
space, but the disk is still considered a specialized disk unless the Rgroup that the disk is being
RUp transitioned to is Rgroup0. The space-savings (and thus cost-savings) associated with
disk-adaptive redundancy are proportional to the fraction of life the disks remain specialized
for.

5.2.2 Key decisions

To adapt redundancy throughout a disk’s lifecycle as chronicled above, three key decisions
related to transitions must be made

1. When should the disks transition?

2. Which Rgroup should the disks transition to?

3. How should the disks transition?

5.2.3 Constraints

The above decisions need to be taken such that a set of constraints are met. An obvious
constraint, central to any storage system, is that of data reliability. The reliability constraint
mandates that all data must always meet a predefined target MTTDL. Another important
constraint is the failure reconstruction IO constraint. This constraint bounds the IO spent on
data reconstruction of failed disks, which as explained in Section 2.2.3 is proportional to AFR
and scheme width. This is why wide schemes cannot be used for all disks all the time, but
they can be used for low-AFR regimes of disk lifetimes (as discussed in Section 3.1.3).

Existing approaches to disk-adaptive redundancy make their decisions on the basis of
only these constraints [48], but fail to consider the equally important IO caused by redundancy
transitions. Ignoring this causes the transition overload problem, which proves to be a show-
stopper for disk-adaptive redundancy systems. Pacemaker treats transition IO as a first class
citizen by taking it into account for each of its three key decisions. As such, Pacemaker
enforces carefully designed constraints on transition IO as well.

5.2.4 Designing IO constraints on transitions

Apart from serving foreground IO requests, a storage cluster performs numerous background
tasks like scrubbing and load balancing [12, 67, 87]. Redundancy management is also a back-
ground task. In current storage clusters, redundancy management tasks predominantly consist
of performing data redundancy (e.g. replicating or encoding data) and reconstructing data of
failed or otherwise unavailable disks. Disk-adaptive redundancy systems add redundancy
transitions to the list of IO-intensive background tasks.

There are two goals for background tasks: Goal 1: they are not too much work, and Goal
2: they interfere as little as possible with foreground IO. Pacemaker applies two IO constraints
on background transition tasks to achieve these goals: (1) average-IO constraint and (2) peak-IO

44

P

P P

P

PACEMAKER
Proactive-

transition-initiator

Rgroup-planner

FS Metadata
service

Disk health
monitoring service

Change point
detector

AFR curve learner

Transition-executor

new Rgroup,
disks

de
pl

oy
m

en
t,

co
nf

ig
 d

at
a

new AFR,
old AFR

di
sk

 fa
ilu

re
s

failure data

IO

pl
ac

em
en

t c
ha

ng
es

PA
C

EM
A

K
ER

 M
et

ad
at

a disks

rate limit, IO
Rate-limiter

Figure 5.2: Pacemaker architecture.

constraint. The average-IO constraint achieves Goal 1 by allowing storage administrators to
specify a cap on the fraction of the IO bandwidth of a disk that can be used for transitions
over its lifetime. For example, if a disk can transition in 1 day using 100% of its IO bandwidth,
then an average-IO constraint of 1% would mean that the disk will transition at most once
every 100 days. The peak-IO constraint achieves Goal 2 by allowing storage administrators
to specify the peak rate (defined as the peak-IO-cap) at which transitions can occur so as to
limit their interference with foreground traffic. Continuing the previous example, if the peak-
IO-cap is set at 5%, the disk that would have taken 1 day to transition at 100% IO bandwidth
would now take at least 20 days. The average-IO constraint and the peak-IO-cap can be
configured based on how busy the cluster is. For example, a cluster designed for data archival
would have a lower foreground traffic, compared to a cluster designed for serving ads or
recommendations. Thus, low-traffic clusters can set a higher peak-IO-cap resulting in faster
transitions and potentially increased space-savings.

Although not explored as a part of this work, the IO constraints can also be specified in a
richer manner than just providing single percentage numbers for the average-IO and peak-IO
constraints. For example, it is well known that storage clusters suffer from diurnal foreground
workload patterns. This allows for specifying the IO constraints such that the redundancy
transitions are scheduled with a higher bandwidth during low foreground workload, and with
a lower bandwidth during high foreground workload.

5.2.5 Design goals

The key design goals are to answer the three questions related to transitions such that the
space-savings are maximized and the following constraints are met: (1) reliability constraint

45

on all data all the time, (2) failure reconstruction IO constraint on all disks all the time, (3)
peak-IO constraint on all disks all the time, and (4) average-IO constraint on all disks over
time.

5.3 Design of Pacemaker

Figure 5.2 shows the high level architecture of Pacemaker and how it interacts with some
other components of a storage cluster. The three main components of Pacemaker correspond
to the three key decisions that the system makes as discussed in Section 5.2. The first main
component of Pacemaker is the proactive-transition-initiator (Section 5.3.1), which deter-
mines when to transition disks using the AFR curves and the disk deployment information.
The information of the transitioning disks and their observed AFR is passed to the Rgroup-
planner (Section 5.3.2), which chooses the Rgroup to which the disks should transition. The
Rgroup-planner passes the information of the transitioning disks and the target Rgroup to the
transition-executor (Section 5.3.3). The transition-executor addresses how to transition the
disks to the planned Rgroup in the most IO-efficient way.

Additionally, Pacemaker also maintains its ownmetadata and a simple rate-limiter . Pace-
maker metadata interacts with all of Pacemaker’s components and also the storage cluster’s
metadata service. It maintains various configuration settings of a Pacemaker installation along
with the disk deployment information that guides transition decisions. The rate-limiter rate-
limits the IO load generated by any transition as per administrator specified limits. Other
cluster components external-to-Pacemaker that inform it are the AFR curve learner and the
change point detector. As is evident from their names, these components learn the AFR curve
of each Dgroup and identify change points for redundancy transitions. The AFR curve learner
receives failure data from the disk health monitoring service, which monitors the disk fleet and
maintains their vitals.

5.3.1 Proactive-transition-initiator

Proactive-transition-initiator’s role is to determine when to transition the disks. Below we
explain Pacemaker’s methodology for making this decision for the two types of transitions
(RDn and RUp) and the two types of deployments (step and trickle).

Deciding when to RDn transition a disk

Recall that a disk’s first transition is an RDn transition. As soon as proactive-transition-
initiator observes (in a statistically accurate manner) that the AFR has decreased sufficiently,
and is stable, it performs an RDn transition from the default scheme (i.e., from Rgroup0)
employed in infancy to a more space-efficient scheme. This is the only RDn transition in a
disk’s lifetime.

46

Deciding when to RUp transition a disk

RUp transitions are performed either when there are too few disks in any Rgroup such that
data placement is heavily restricted (which we term purging an Rgroup), or when there is a rise
in AFR such that the reliability constraint is (going to be) violated. Purging an Rgroup involves
RUp transitioning all of its disks to an Rgroup with higher redundancy. This transition isn’t an
imminent threat to reliability, and therefore can be done in a relaxed manner without violating
the reliability constraint as explained in Section 5.3.3.

However, most RUp transitions in a storage cluster are done in response to a rise in AFR.
These are challenging with respect to meeting IO constraints due to the associated risk of
violating the reliability constraints whenever the AFR rises beyond the AFR tolerated by the
redundancy scheme (termed tolerated-AFR).

In order to be able to safely rate-limit the IO load due to RUp transitions, Pacemaker takes
a proactive approach. The key is in determining when to initiate a proactive RUp transition
such that the transition can be completed before the AFR crosses the tolerated-AFR, while ad-
hering to the IO and the reliability constraints without compromising much on space-savings.
To do so, the proactive-transition-initiator assumes that its transitions will proceed as per the
peak-IO constraint, which is ensured by the transition-executor. Pacemaker’s methodology for
determining when to initiate a proactive RUp transition is tailored differently for trickle versus
for step deployments, since they raise different challenges.

Proactive-transition-initiator for trickle-deployed disks

For trickle-deployed disks, Pacemaker considers two category of disks: (1) first disks to be
deployed from any particular trickle-deployed Dgroup, and (2) disks from that Dgroup that
are deployed later.

Pacemaker labels the first C deployed disks of a Dgroup as canary disks, where C is a
configurable, high enough number of disks to yield statistically significant AFR observations.
For example, based on our disk analyses, we observe that C in low thousands (e.g., 3000) is
sufficient. The canary disks of any Dgroup are the first to undergo the various phases of life
for that Dgroup, and these observations are used to learn the AFR curve for that Dgroup. The
AFR value for the Dgroup at any particular age is not known (with statistical confidence) until
all canary disks go past that age. Furthermore, due to the trickle nature of the deployment,
the canary disks would themselves have been deployed over weeks if not months. Thus, AFR
for the canary disks can be ascertained only in retrospect. Pacemaker never changes the
redundancy of the canary disks to avoid them from ever violating the reliability constraint.
This does not significantly reduce space-savings, since C is expected to be small relative to
the total number of disks of a Dgroup (usually in the tens of thousands).

The disks that are deployed later in any particular Dgroup are easier to handle, since the
Dgroup’s AFR curve would have been learned by observing the canaries. Thus, the date at
which a disk among the later-deployed disks needs to RUp to meet the reliability constraints
is known in advance by the proactive-transition-initiator, which it uses to issue proactive RUp
transitions.

Although less probable, it might happen that the canaries have an AFR behavior that is

47

different from the disks that follow the canaries because of some failure behavior that was
introduced as a function of the disk’s manufacturing batch, instead of its make/model. To
prevent from making data under-reliable in such scenarios, even though the AFR curve has
been learned from the canaries, Pacemaker continuously monitors the AFR curve of all disks
in the storage cluster at all times. Any indication that the AFR is rising beyond what can
be tolerated for any subset of disks will cause Pacemaker to RUp transition those disks even
though it might mean violating its IO constraints.

Proactive-transition-initiator for step-deployed disks

Recall that in a step deployment, most disks of a Dgroup may be deployed within a few days.
So, canaries are not a good solution, as they would provide little-to-no advance warning about
how the AFR curve’s rises would affect most disks.

Pacemaker’s approach to handling step-deployments is based on two properties: (1) Step-
deployments have a large number of disks deployed together, leading to a statistically accu-
rate AFR estimation; (2) AFR curves based on a large set of disks tend to exhibit gradual,
rather than sudden, AFR increases as the disk ages (Section 4.2.3). Pacemaker leverages
these two properties to employ a simple early warning methodology to predict a forthcom-
ing need to RUp transition a step well in advance. Specifically, Pacemaker sets a threshold,
termed threshold-AFR, which is a (configurable) fraction of the tolerated-AFR of the current
redundancy scheme employed. For step-deployments, when the observed AFR crosses the
threshold-AFR, the proactive-transition-initiator initiates a proactive RUp transition.

5.3.2 Rgroup-planner

The Rgroup-planner’s role is to determine which Rgroup should disks transition to. This involves
making two interdependent choices: (1) the redundancy scheme to transition into, (2) whether
or not to create a new Rgroup.

Choice of the redundancy scheme

At a high level, the Rgroup-planner first uses a set of selection criteria to arrive at a set of
viable schemes. It further narrows down the choices by filtering out the schemes that are not
worth transitioning to when the transition IO and IO constraints are accounted for.

Selection criteria for viable schemes. Each viable redundancy scheme has to satisfy the following
criteria in addition to the reliability constraint:

1. must satisfy the minimum number of simultaneous failures per stripe (i.e., n− k).

2. must not exceed the maximum allowed stripe dimension (k).

3. must have its expected failure reconstruction IO (AFR × k × disk-capacity) be no higher
than was assumed possible for Rgroup0 (since disks in Rgroup0 are expected to have
the highest AFR).

4. must have a recovery time in case of failure (MTTR) that does not exceed the maxi-
mum MTTR (set by the administrator when selecting the default redundancy scheme

48

for Rgroup0).

Determining if a scheme is worth transitioning to. Whether the IO cost of transitioning to a
scheme is worth it or not and what space-savings can be achieved by that transition is a
function of the number of days disks will remain in that scheme (also known as disk-days).
This, in turn, depends on (1) when the disks enter the new scheme, and (2) how soon disks will
require another transition out of that scheme.

The time it takes for the disks to enter the new scheme is determined by the transition IO
and the rate-limit. When the disks will transition out of the target Rgroup is dependent on the
future and can only be estimated. For this estimation, the Rgroup-planner needs to estimate
the number of days the AFR curve will remain below the threshold that forces a transition
out. This needs different strategies for the two deployment patterns (trickle and step).

Recall that Pacemaker knows the AFR curve for trickle-deployed disks (from the canaries)
in advance. Recall that step-deployed disks have the property that the AFR curve learned from
them is statistically robust and tends to exhibit gradual, as opposed to sudden AFR increases.
The Rgroup-planner leverages these properties to estimate the future AFR behavior based on
the recent past. Specifically, it takes the slope of the AFR curve in the recent past2 and uses
that to project the AFR curve rise in the future.

The number of disk-days in a scheme for it to be worth transitioning to is dictated by the
IO constraints. For example, let us consider a disk running under Pacemaker that requires a
transition, and Pacemaker is configured with an average-IO constraint of 1% and a peak-IO-
cap of 5%. Suppose the disk requires 1 day to complete its transition at 100% IO bandwidth.
With the current settings, Pacemaker will only consider an Rgroup worthy of transitioning to
(assuming it is allowed to use all 5% of its IO bandwidth) if at least 80 disk-days are spent
after the disk entirely transitions to it (since transitioning to it would take up to 20 days at the
allowed 5% IO bandwidth).

From among the viable schemes that are worth transitioning to based on the IO con-
straints, the Rgroup-planner chooses the one that provides the highest space-savings.

Decision on Rgroup creation.

Rgroups cannot be created arbitrarily. This is because every Rgroup adds placement restric-
tions, since all chunks of a stripe have to be stored on disks belonging to the same Rgroup.
Therefore, Rgroup-planner creates a new Rgroup only when (1) the resulting placement pool
created by the new Rgroup is large enough to overcome traditional placement restrictions such
as “no two chunks on the same rack3”, and (2) the space-savings achievable by the chosen
redundancy scheme is sufficiently greater than using an existing (less-space-efficient) Rgroup.

The disk deployment pattern also affects Rgroup formation. While the rules for whether to
form an Rgroup remain the same for trickle and step-deployed disks, mixing disks deployed
differently impacts the transitioning techniques that can be used for eventually transitioning
disks out of that Rgroup. This in turn affects how the IO constraints are enforced. Specifically,

2Pacemaker uses a 60 day (configurable) sliding window with an Epanechnikov kernel, which gives more
weight to AFR changes in the recent past [41].

3Inter-cluster fault tolerance remains orthogonal to and unaffected by Pacemaker.

49

for trickle deployments, creating an Rgroup for each set of transitioning disks would lead to
too many small-sized Rgroups. So, for trickle-deployments, the Rgroup-planner creates a new
Rgroup for a redundancy scheme if and only if one does not exist already. Creating Rgroups
this way will also ensure that enough disks (thousands) will go into it to satisfy placement
restrictions. Mixing disks from different trickle-deployments in the same Rgroup does not
impact the IO constraints, because Pacemaker optimizes the transition mechanism for few
disks transitioning at a time, as is explained in Section 5.3.3. For step-deployments, due
to the large fraction of disks that undergo transition together, having disks from multiple
steps, or mixing trickle-deployed disks within the same Rgroup, creates adverse interactions
(discussed in Section 5.3.3). Hence, the Rgroup-planner creates a new Rgroup for each step-
deployment, even if there already exists one or more Rgroups that employ the chosen scheme.
Each such Rgroup will contain many thousands of disks to overcome traditional placement
restrictions. Per-step Rgroups also extend to the Rgroup with default redundancy schemes,
implying a per-step Rgroup0. Despite having clusters with disk populations as high as 450K
disks, Pacemaker’s restrained Rgroup creation led to no cluster ever having more than 10
Rgroups.

Rules for purging an Rgroup.

An Rgroup may be purged for having too few disks. This can happen when too many of its
constituent disks transition to other Rgroups, or they fail, or they are decommissioned leading
to difficulty in fulfilling placement restrictions. If the Rgroup to be purged is made up of
trickle-deployed disks, the Rgroup-planner will choose to RUp transition disks to an existing
Rgroup with higher redundancy while meeting the IO constraints. For step-deployments,
purging implies RUp transitioning disks into the more-failure-tolerant RGroup (RGroup0) that
may include trickle-deployed disks.

5.3.3 Transition-executor

The transition-executor’s role is to determine how to transition the disks. This involves choosing
(1) the most IO-efficient technique to execute that transition, and (2) how to rate-limit the
transition at hand. Once the transition technique is chosen, the transition-executor executes
the transition via the rate-limiter as shown in Figure 5.2.

Transition techniques

Suppose the data needs to be conventionally re-encoded from a kcur-of-ncur scheme to a
knew-of-nnew scheme. The IO cost of conventional re-encoding involves reading–re-encoding–
writing all the stripes whose chunks reside on each transitioning disk. This amounts to
a read IO of kcur×disk-capacity (assuming almost-full disks), and a write IO of kcur×disk-
capacity×nnew

knew
for a total IO > 2× kcur×disk-capacity for each disk.

In addition to conventional re-encoding, Pacemaker supports two new approaches to
changing the redundancy scheme for disks and selects the most efficient option for any given

50

transition. The best option depends on the fraction of the Rgroup being transitioned at once.

Type 1 (Transition by emptying disks). If a small percentage of an Rgroup’s disks are being
transitioned, it is more efficient to retain the contents of the transitioning disks in that Rgroup
rather than re-encoding. Under this technique, the data stored on transitioning disks are
simply moved (copied) to other disks within the current Rgroup. This involves reading and
writing (elsewhere) the contents of the transitioning disks. Thus, the IO of transitioning via
Type 1 is at most 2×disk-capacity, independent of scheme parameters, and therefore at least
kcur× cheaper than conventional re-encoding.

Type 1 can be employed whenever there is sufficient free space available to move the
contents of the transitioning disks into other disks in the current Rgroup. In the case of
trickle-deployments, the steady deployment of a-few-disks-at-a-time ensures that disk space
is created in the Rgroup at approximately the same rate as it is removed from the Rgroup
because of the transitioning disks. Thus, this is the preferred transition method for trickle-
deployed disks. Once the transitioning disks are empty, they can be removed from the current
Rgroup and added to the new Rgroup as “new” (empty) disks.

Type 2 (Bulk transition by recalculating parities). If a large fraction of disks in an Rgroup need
to transition together, it is more efficient to transition the entire Rgroup rather than only
the disks that need a transition at that time. Most cluster storage systems use systematic
codes4 [19, 31, 33, 65], wherein transitioning an entire Rgroup involves only calculating and
storing new parities and deleting the old parities. Specifically, the data chunks have to be only
read for computing the new parities, but they do not have to be re-written. In contrast, if only
a part of the disks are transitioned, some fraction of the data chunks also need to be re-written.
Thus, the IO cost for transitioning via Type 2 involves a read IO of kcur

ncur
×disk-capacity, and

a write IO of only the new parities, which amounts to a total IO of nnew−knew

knew
× kcur

ncur
×disk-

capacity for each disk in the Rgroup. This is at most 2 × kcur
ncur

×disk-capacity, which makes it
at least ncur× cheaper than conventional re-encoding.

Selecting the most efficient approach for a transition

For any given transition, the transition-executor selects the most IO-efficient of all the viable
approaches. Almost always, trickle-deployed disks use Type 1 because they transition a-few-
at-a-time, and step-deployed disks use Type 2 because Rgroup-planner maintains each step
in a separate Rgroup.

Choosing how to rate limit a transition

Irrespective of the transitioning techniques, the transition-executor has to resolve the compet-
ing concerns of maximizing space-savings and minimizing risk of data loss via fast transitions,
and minimizing foreground work interference by slowing down transitions so as to not over-
whelm the foreground IO. Arbitrarily slowing down a transition to minimize interference is

4In systematic codes, the data chunks are stored in unencoded form. This helps to avoid having to decode
for normal (i.e., non-degraded-mode) reads.

51

only possible when the transition is not in response to a rise in AFR. This is because a rising
AFR hints at the data being under-protected if not transitioned to a higher redundancy soon.
In Pacemaker, a transition without an AFR rise occurs either when disks are being RDn tran-
sitioned at the end of infancy, or when they are being RUp transitioned because the Rgroup
they belong to is being purged. For all the other RUp transitions, Pacemaker carefully chooses
how to rate limit the transition.

Determining how much bandwidth to allow for a given transition could be difficult, given
that other transitions may be in-progress already or may be initiated at any time (we do ob-
serve concurrent transitions in our evaluations). So, to ensure that the aggregate IO of all
ongoing transitions conforms to the peak-IO-cap cluster-wide, Pacemaker limits each transi-
tion to the peak-IO-cap within its Rgroup. For trickle-deployed disks, which share Rgroups,
the rate of transition initiations is consistently a small percentage of the shared Rgroup, al-
lowing disk emptying to proceed at well below the peak-IO-cap. For step-deployed disks, this
is easy for Pacemaker, since a step only makes one transition at a time and its IO is fully con-
tained in its separate Rgroup. The transition-executor’s approach to managing peak-IO on a
per-Rgroup basis is also why the proactive-transition-initiator can safely assume a rate-limit of
the peak-IO-cap without consulting the transition-executor. If there is a sudden AFR increase
that puts data at risk, Pacemaker is designed to ignore its IO constraints to continue meeting
the reliability constraint—this safety valve was never needed for any cluster evaluated.

After finalizing the transitioning technique, the transition-executor performs the necessary
IO for transitioning disks (read, writes, parity recalculation, etc.). We find that the components
required for the transition-executor are already present and adequately modular in existing
distributed storage systems. In Section 6, we show how we implement Pacemaker in HDFS
with minimal effort.

Note that this design is for the common case where storage clusters are designed for a
single dedicated storage service. Multiple distinct distributed storage services independently
using the same underlying devices would need to coordinate their use of bandwidth (for their
non-transition related load as well) in some way, which is outside the scope of this dissertation.

5.4 Evaluating Pacemaker

Pacemaker-enabled disk-adaptive redundancy using is evaluated on production logs from four
large-scale real-world storage clusters, each with hundreds of thousands of disks. This eval-
uation has four primary takeaways: (1) Pacemaker eliminates transition overload, never using
more than 5% of cluster IO bandwidth (0.2–0.4% on average) and always meets target MTTDL,
in stark contrast to prior work approaches that do not account for transition IO load; (2) Pace-
maker provides more than 97% of idealized-potential space-savings, despite being proactive,
reducing disk capacity needed by 14–20% compared to one-size-fits-all; (3) Pacemaker’s be-
havior is not overly sensitive across a range of values for its configurable parameters; (4)
Pacemaker copes well with the real-world AFR characteristics explained in Chapter 4. For
example, it successfully combines the “multiple useful-life phases” observation with efficient
transitioning schemes. This evaluation also shows Pacemaker in action by measuring disk-
adaptive redundancy in Pacemaker-enhanced HDFS.

52

Evaluation methodology.

Pacemaker is simulated chronologically for each of the four cluster logs described in Section
4: three clusters from Google and one from Backblaze. For each simulated date, the simulator
changes the cluster composition according to the disk additions, failures and decommissioning
events in the log. Pacemaker is provided the log information, as though it were being captured
live in the cluster. IO bandwidth needed for each day’s redundancy management is computed
as the sum of IO for failure reconstruction and transition IO requested by Pacemaker, and is
reported as a fraction of the configured cluster IO bandwidth (100MB/sec per disk, by default).

Pacemaker was configured to use a peak-IO-cap of 5%, an average-IO constraint of 1% and
a threshold-AFR of 75% of the tolerated-AFR, except for the sensitivity studies in Section 5.4.3.
For comparison, we also simulate (1) an idealized disk-adaptive redundancy system in which
transitions are instantaneous (requiring no IO) and (2) the prior state-of-the-art approach
(HeART) for disk-adaptive redundancy. For all cases, Rgroup0 uses 6-of-9, representing a
one-size-fits-all scheme reported in prior literature [31]. The required target MTTDL is then
back-calculated using the 6-of-9 default and an assumed tolerated-AFR of 16% for Rgroup0.
These configuration defaults were set by consulting storage administrators of clusters we
evaluated.

5.4.1 Pacemaker on Google Cluster1 in-depth

Figure 5.3(a) shows the IO generated by Pacemaker (and disk count) over the ≈3-year lifetime
of Google Cluster1. Over time, the cluster grew to over 350K disks comprising of disks
from 7 makes/models (Dgroups) via a mix of trickle and step deployments. Figure 5.3(c)
and Figure 5.3(d) show AFR curves of 2 of the 7 Dgroups (obfuscated as G-1 and G-2 for
confidentiality) along with how Pacemaker adapted to them at each age. G-1 disks are trickle-
deployed whereas G-2 disks are step-deployed. The other 5 Dgroups are omitted due to lack
of space. Figure 5.3(b) shows the corresponding space-savings (the white space above the
colors).

All disks enter the cluster as unspecialized disks, i.e. Rgroup0 (dark gray region in the
Figure 5.3(a) and left gray region of Figs. 5.3(c) and 5.3(d)). Once a Dgroup’s AFR reduces
sufficiently, Pacemaker RDn transitions them to a specialized Rgroup (light gray area in Fig-
ure 5.3(a)). Over their lifetime, disks may transition through multiple RUp transitions over
the multiple useful-life phases. Each transition requires IO, which is captured in blue in Fig-
ure 5.3(a). For example, the sudden drop in the unspecialized disks, and the blue area around
2018-04 captures the Type 2 transitions caused when over 100K disks RDn transition from
Rgroup0 to a specialized Rgroup. The light gray region in Figure 5.3(a) corresponds to the
time over which space-savings are obtained, which can be seen in Figure 5.3(b).

Many transitions with no transition overload

Pacemaker successfully bounds all redundancy management IO comfortably under the con-
figured peak-IO-cap throughout the cluster’s lifetime. This can be seen via an imaginary
horizontal line at 5% (the configured peak-IO-cap) that none of the blue regions goes above.

53

G-1eA
G-2eA

G-2eB

G-1eB
G-3eC
G-6eB

(a) Redundancy management IO due to Pacemaker over its 2.5+ year lifetime broken down by IO type. This is
identical to Figure ?? with the left Y-axis only going to 20% to show the detailed IO activity in the cluster.

G-1eA
G-2eA

G-2eB

G-1eB
G-3eC
G-6eB

Space-savings

6-of-9

30-of-33

6-of-9

10-of-13

11-of-14

(b) Space-savings due to Pacemaker. Each colored region represents the fraction of cluster capacity that is
using a particular redundancy scheme. 6-of-9 is the default redundancy scheme (Rgroup0’s).

G-1eA G-1eB

(c) G-1 (step) AFR curve

G-2eA G-2eB

(d) G-2 (trickle) AFR curve

2018-02
2018-08

2019-02
2019-08

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(e) G-6 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(f) G-4 (trickle) AFR curve

2019-08
2019-11

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(g) G-8 (step) AFR curve

2018-02
2018-08

2019-02
2019-08

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(h) G-5 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(i) G-3 (trickle) AFR curve

Figure 5.3: Detailed IO analysis and space savings achieved by Pacemaker-enabled adaptive
redundancy on Google Cluster1.

54

Recall that Pacemaker rate-limits the IO within each Rgroup to ensure simultaneous transi-
tions do not violate the cluster’s IO cap. Events G-1eA and G-2eA are examples of events
where both G-1 and G-2 disks (making up almost 100% of the cluster at that time) request tran-
sitions at the same time. Despite that, the IO remains bounded below 5%. G-3eC and G-6eB
also show huge disk populations of G-3 and G-6 Dgroups (AFRs not shown) requesting almost
simultaneous RUp transitions, but Pacemaker’s design ensures that the peak-IO constraint is
never violated. This is in sharp contrast with HeART’s frequent transition overload, shown in
Figure 5.1.

Disks experience multiple useful-life phases

G-1, G-3, G-6 and G-7 disks experience two phases of useful life each. In Figure 5.3(a),
events G-1eA and G-1eB mark the two transitions of G-1 disks through its multiple useful
lives as shown in Figure 5.3(c). In the absence of multiple useful-life phases, Pacemaker
would have RUp transitioned G-1 disks to Rgroup0 in 2019-05, eliminating space-savings for
the remainder of their time in the cluster. Section 5.4.3 quantifies the benefit of multiple
useful-life phases for all four clusters. While Pacemaker exploits multiple useful-life phases,
its IO constraints prevent it from changing redundancy in reaction to all AFR fluctuations
(for example, the AFR jitter observed between points G-1eA and G-2-eB for G-1 disks, and
between G-2eA and G-2eB disks for G-2 disks). The decomposition of an AFR curve into only
a handful of useful-life phases prevents the storage cluster from getting overwhelmed with the
IO caused due to redundancy transitions.

MTTDL always at or above target

Along with the AFR curves, Figs. 5.3(c) and 5.3(d) also show the upper bound on the AFR for
which the reliability constraint is met (top of the gray region). Pacemaker sufficiently protects
all disks throughout their life for all Dgroups across evaluated clusters.

Substantial space-savings achieved

Pacemaker provides 14% average space-savings (Figure 5.3(b)) over the cluster lifetime to date.
Except for 2017-01 to 2017-05 and 2017-11 to 2018-03, which correspond to infancy periods
for large batches of new empty disks added to the cluster, the entire cluster achieves ≈20%
space-savings. Note that the apparent reduction in space-savings from 2017-11 to 2018-03 isn’t
actually reduced space in absolute terms. Since Figure 5.3(b) shows relative space-savings, the
over 100K disks deployed around 2017-11, and their infancy period makes the space-savings
appear reduced relative to the size of the cluster.

5.4.2 Pacemaker on the other three clusters

Figs. 5.4(a), 5.5(a), 5.6(a) compares the transition IO incurred by Pacemaker to that for
HeART [48] for Google Cluster2, Google Cluster3 and Backblaze respectively, along with
the corresponding space-savings achieved by Pacemaker. While clusters using HeART would
suffer transition overload, the same clusters under Pacemaker always had all their transition

55

30-of-33

6-of-9 6-of-9

10-of-13

HeART

Pacemaker

Space-savings

C
ap

ac
ity

(%
)

IO
 /

da
y

(%
)

IO
 /

da
y

(%
)

N
um

 d
is

ks
N

um
 d

is
ks

(a) Google Cluster2

2017-08
2018-02

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(b) G-1 (step) AFR curve

2018-02
2018-08

2019-02
2019-08

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(c) G-5 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(d) G-3 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(e) G-4 (step) AFR curve

Figure 5.4: Google Cluster2 transition IO, space-savings and individual Dgroup AFR curves.

56

HeART

6-of-9

Pacemaker

30-of-33

IO
 /

da
y

(%
)

15-of-18

C
ap
ac
ity
(%
)

6-of-9

10-of-13Space-savings

IO
 /

da
y

(%
)

N
um

 d
is

ks
N

um
 d

is
ks

(a) Google Cluster3

2016-08
2017-02

2017-08
2018-02

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(b) G-2 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(c) G-4 (step) AFR curve

2016-08
2017-02

2017-08
2018-02

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(d) G-1 (step) AFR curve

Figure 5.5: Google Cluster3 transition IO, space-savings and individual Dgroup AFR curves.

57

HeART

Pacemaker

Space-savings

C
ap

ac
ity

(%
)

IO
 /

da
y

(%
)

IO
 /

da
y

(%
)

30-of-33

6-of-9 6-of-9

13-of-16

27-of-30 15-of-18

N
um

 d
is

ks
N

um
 d

is
ks

(a) Backblaze Cluster

2013-08
2014-08

2015-08
2016-08

2017-08
2018-08

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(b) S-4 (trickle)

2013-08
2014-08

2015-08
2016-08

2017-08
2018-08

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(c) H-4A (trickle)

2014-08
2015-08

2016-08
2017-08

2018-08
2019-08

0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(d) H-4B (trickle)

2016-08
2017-08

2018-08
2019-08

0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(e) S-8C (trickle)

2017-08
2018-08

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(f) S-8E (trickle)

2018-08
2019-08

0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(g) S-12E (trickle)

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(h) H-12E (trickle)

Figure 5.6: Backblaze cluster transition IO, space-savings and individual Dgroup AFR curves.

58

IO under the peak-IO-cap of 5%. In fact, on average, only 0.21–0.32% percent of the cluster
IO bandwidth was used for transitions. The average space-savings for the three clusters are
14–20%.

Google Cluster2

Figure 5.4(a) shows the transition overload and space-savings in Google Cluster2 and the
corresponding space-savings. All Dgroups in Google Cluster2 are step-deployed. Thus, it is
not surprising that Figure 5.9 shows that over 98% of the transitions in Cluster2 were Type 2
transitions (bulk parity recalculation). Cluster2’s disk population exceeds 450K disks. Even
at such large scales, Pacemaker obtains average space-savings of almost 17% and peak space-
savings of over 25%. This translates to needing 100K fewer disks.

Google Cluster3

Google Cluster3 (Figure 5.4(a)) is not as large as Cluster1 or Cluster2. At its peak, Cluster3 has
a disk population of approximately 200K disks. But, it achieves the highest average space-
savings (20%) among clusters evaluated. Like Cluster2, Cluster3 is also mostly step-deployed.

Backblaze Cluster

Backblaze (Figure 5.6(a)) is a completely trickle-deployed cluster. The dark grey region across
the bottom of Figure 5.6(a)’s Pacemaker plot shows the persistent presence of canary disks
throughout the cluster’s lifetime. Unlike the Google clusters, the transition IO of Backblaze
does not produce bursts of transition IO that lasts for weeks. Instead, since trickle-deployed
disks transition a-few-at-a-time, we see transition work appearing continuously throughout
the cluster lifetime of over 6 years. The rise in the transition IO spikes in 2019, for HeART, is
because of large capacity 12TB disks replacing 4TB disks. Unsurprisingly, under Pacemaker,
most of the transitions are done using Type 1 (transitioning by emptying disks) as shown in
Figure 5.9. The average space-savings obtained on Backblaze are 14%.

5.4.3 Sensitivity analyses and ablation studies

Sensitivity to IO constraints

The peak-IO constraint governs Figure 5.7, which shows the percentages of optimal space-
savings achieved with Pacemaker for peak-IO-cap settings between 1.5% and 7.5%. A peak-
IO-cap of up to 7.5% is used in order to compare with the IO percentage spent for existing
background IO activity, such as scrubbing. By scrubbing all data once every 15 days [12],
the scrubber uses around 7% IO bandwidth, and is a background work IO level tolerated by
today’s clusters.

The Y-axis captures how close the space-savings are for the different peak-IO-caps com-
pared to “Optimal savings”, i.e. an idealized system with infinitely fast transitions. Pace-
maker’s default peak-IO-cap (5%) achieves over 97% of the optimal space-savings for each of
the four clusters. For peak-IO constraint set to <=2.5%, some RUp transitions in Google

59

1.5% 2.5% 3.5% 5% 7.5%
Pacemaker's peak-IO-cap

0

25

50

75

100

%
 o

pt
im

al
 sa

vi
ng

s

(G
oo

gl
e

Cl
us

te
r1

)

(G
oo

gl
e

Cl
us

te
r1

)

(G
oo

gl
e

Cl
us

te
r1

)

97
.9

98
.4(G

oo
gl

e
Cl

us
te

r2
)

(G
oo

gl
e

Cl
us

te
r2

)

98
.6

98
.7

98
.7

97 98
.1

98
.4

98
.6

98
.8

97
.5

97
.6

97
.6

97
.6

97
.6

Google Cluster1 Google Cluster2 Google Cluster3 Backblaze

Figure 5.7: Pacemaker’s sensitivity to the peak-IO constraint.

GoogleC1
GoogleC2

GoogleC3
Backblaze

0.0

0.5

1.0

1.5
Op

tim
ize

d
di

sk
-d

ay
s

1.
1x

1.
28

x

1.
33

x

1.
03

x
Figure 5.8: Multiple useful-life phases

Cluster1 and Cluster2 become too aggressively rate-limited causing a subsequent AFR rise to
violate the peak-IO constraints. We indicate this as a failure, and show it as “ϕ”. The same
situation happens for Google Cluster1 at 3.5%.

Sensitivity to threshold-AFR

The threshold-AFR determines when proactive RUp transitions of step-deployed disks are
initiated. Conceptually, the threshold-AFR governs how risk-averse the admin wants to be.
Lowering the threshold would trigger an RUp transition when disks are farther away from the
tolerated-AFR (more risk-averse), and vice-versa. We evaluated Pacemaker for threshold-AFRs
of 60%, 75% and 90% of the respective Rgroups’ tolerated-AFRs. We found that Pacemaker’s
space-savings is not very sensitive to threshold-AFR, with space-savings only 2% lower at 60%
than at 90%. Data remained safe at each of these settings, but would become unsafe with
higher values.

Contribution of multiple useful-life phases

Figure 5.8 compares the increased number of disk-days spent in specialized Rgroups because
of considering multiple useful-life phases. In the best case, Google Cluster2 spent 33% more
disk-days in specialized redundancy, increasing overall space-savings from 16% to 19%. Note
that in large-scale storage clusters, even 1% space-savings are considered substantial as it
represents thousands of disks.

60

GoogleC1
GoogleC2

GoogleC3
Backblaze

0

20

40

60

80

100

Tr
an

sit
io

n
ty

pe
 sp

lit

Type 1 Type 2

Figure 5.9: Transition type distribution

Contribution of transition types

By proactively keeping step-deployed disks in distinct Rgroups and using specialized tran-
sitioning schemes whenever possible, instead of using simple re-encoding for all transitions,
Pacemaker reduces total transition IO by 92–96% for the four clusters. Figure 5.9 shows what
percentage of transitions were done via Type 1 (disk emptying) vs. Type 2 (bulk parity recal-
culation). As expected, Google clusters rely more on Type 2 transitions, because most disks
are step-deployed. In contrast, the Backblaze cluster is entirely trickle-deployed and hence
mostly uses Type 1 transitions. The small percentage of Type 2 transitions in Backblaze occur
when Rgroups are purged.

Chapter 3 and Chapter 5 have detailed the design principles and algorithms needed for a
disk-adaptive redundancy system. In the next chapter we put these design principles to test
by incorporating some of these principles in an existing distributed storage system.

61

62

Chapter 6

Realizing disk-adaptive redundancy in
practice

In this chapter, we describe the building of a prototype that implements Pacemaker (Chapter 5)
in the popularly (and commercially) used Hadoop distributed file system (HDFS) [96]. The in-
tent of this implementation exercise is twofold. First, we describe what changes are required to
incorporate disk-adaptive redundancy in an existing distributed storage system. Second (and
more broadly), inspired by the insights gained from our implementation exercise, we describe
important architectural elements meant to inform the architecture and implementation of fu-
ture cluster storage systems that aim to natively support disk-adaptive redundancy. We built
our prototype using HDFS v3.2.0, which natively supports erasure coding. Our prototype
is open-sourced and is available at https://github.com/thesys-lab/pacemaker-hdfs.
git.1.

6.1 Background on HDFS architecture

HDFS is a popular open source distributed file system, widely employed in the industry for
storing large volumes of data. HDFS draws heavy inspiration from the Google File System
(GFS) [34, 96]. has a central metadata server called Namenode (Namenode, akin to the master
node in GFS) and a collection of servers containing the data stored in the file system, called
Datanodes (Datanode, akin to chunkservers in GFS). Clients interact with the Namenode only
to perform operations on file metadata (containing a collection of the Datanodes that store
the file data). Clients directly request the data from the Datanodes. Each Datanode stores
data on its local drives using a local file system such as Ext4 [20, 58].

1We note that this prototype is solely from a functional perspective, and not for production use since it is not
optimized from the performance perspective. This is because the performance metrics for practical disk-adaptive
redundancy are dependent on large storage clusters with tens of thousands of disks; a setup that is difficult to
replicate in an academic context.

63

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git

Figure 6.1: Pacemaker-enhanced HDFS architecture.

6.2 Incorporating Pacemaker in HDFS

This section describes how key components of Pacemaker are realized in HDFS. This is meant
to be a guideline of the changes required to convert an existing distributed storage system
which does not perform disk-adaptive redundancy into one that can perform efficient disk-
adaptive redundancy.

6.2.1 Realizing Dgroups in HDFS

This design makes a simplifying assumption that all disks belonging to a Datanode are of the
same Dgroup and are deployed together (this could be loosened easily). Under this simplifying
assumption, conceptually, an Rgroup would consist of a set of Datanodes that need to be
managed independent of other such sets of Datanodes as shown in Fig 6.1.

6.2.2 Realizing Rgroups in HDFS

The Namenode maintains a DatanodeManager, which is a gateway for the Namenode to in-
teract with the Datanodes. The DatanodeManager maintains a list of the Datanodes, along
with their usage statistics. The DatanodeManager also contains a HeartBeatManager which
handles the periodic keep-alive heartbeats from Datanodes. A natural mechanism to realize
Rgroups in HDFS is to have one DatanodeManager per Rgroup. Note that the sets of Datan-
odes belonging to the different DatanodeManagers are mutually exclusive. Implementing
Rgroups with multiple DatanodeManagers has several advantages.

64

6.2.3 Incorporating the transition-executor in HDFS

Type 1 (transitioning by emptying disks)

An important part of Pacemaker functionality is transitioning Datanodes between Rgroups.
Recall from Section 5.3.3 that one of Pacemaker’s preferred way of transitioning trickle-
deployed disks across Rgroups is by emptying the disks. In HDFS, the planned removal
of a Datanode from a HDFS cluster is called decommissioning. Pacemaker equipped HDFS
re-uses decommissioning to remove a Datanode from the set of Datanodes managed by one
DatanodeManager and then adds it to the set managed by another, effectively transitioning a
Datanode from one Rgroup to another.

Type 2 (transitioning by bulk parity re-calculation)

Type 2 transitions are meant to transition the entire Rgroup from one redundancy scheme to
another. Type 2 transitions are usually observed when transitioning step-deployed disks as
mentioned in Section 5.3.3. Type 2 transitions in Pacemaker equipped HDFS has two parts:
add Datanodes in Rgroup A into Rgroup B and change the encoding scheme of files and
directories in Rgroup A to that of Rgroup B. There are some challenges in implementing this
in HDFS. First, in the currently supported erasure coding version in HDFS (called “Striped”),
data blocks are split into smaller “cells”. A collection of these cells across HDFS data blocks in
different Datanodes form a stripe. This complicates the process of transitioning at the HDFS
block level because doing so might affect multiple stripes together causing data inconsistency.
Second, transitioning the entire file should reflect as though it happened atomically even
though the actual transitioning happens stripe-by-stripe. Third, changing the erasure coding
scheme should respect the block placement policy of the target Rgroup. Finally, throughout
the transitioning process there should be continued forward progress, i.e. the transitioning
and transitioned data should be able to be read by clients at all times.

To overcome those challenges, we come up with the following design. First, we set the cell
size to be the HDFS block size. That means the whole block is a single cell, which simplifies
the transitioning implementation, which (conceptually) can now happen at the HDFS block
level. This is a reasonable assumption, and is only a stop-gap requirement since an erasure
coding implementation where an entire HDFS block is an erasure coded block is proposed (as
the “Contiguous” method) and is the development pipeline [32]. Second, we create temporary
shadow inode using the snapshot feature in HDFS, and perform the transitioning from the
original file to the newly created shadow file. This mechanism ensures forward progress by
allowing clients to keep reading the previous file throughout the transitioning period. At
the end of transitioning, we rename the shadow file to the original file, which ensures the
atomicity of the transitioning operation. Third, we only transfer those necessary blocks to
form new stripes and respect the requirement of the block placement policy in target Rgroup.
That can minimize the data transfer during Type 2 transitions. Fourth, we re-use the existing
reconstruction mechanism of the erasure coding module in HDFS to compute new parity
blocks according to the erasure coding scheme in the target Rgroup. Finally, we update the
metadata in Namenode and delete those blocks are not useful including old parity blocks and
the old copy of transferred blocks.

65

6.2.4 Purging Rgroups

When a Dgroup’s Datanode population drops below a threshold, Pacemaker purges the Rgroup
and moves the Datanodes to the next most space efficient Rgroup. The Rgroup purging pro-
cess is conceptually the same as transitioning all Datanodes to another Rgroup as discussed
above. A caveat is that because newly introduced Datanodes are empty when they join an
Rgroup, bulk Datanode retirement may cause load imbalance. Pacemaker suggests explic-
itly suggests calling the HDFS load balancer after every retirement (and even periodically if
afforded), whose job is to balance the data between data-rich Datanodes to the data-poor
Datanodes.

6.2.5 Implementing Pacemaker’s IO constraints in HDFS

Handling the average-IO constraint

Recall from Section 5.2.4 that Pacemaker has a average-IO constraint that caps the average
IO spent on redundancy transitions over the lifetime of a disk. The average-IO constraint can
be easily incorporated into HDFS through the DatanodeManager. Each DatanodeManager
maintains per-Datanode metrics such as the amount of IO performed, the load (im)balance,
etc. By adding “transition-IO” as another metric that is tracked by the DatanodeManager, we
can easily keep track of how much IO is spent over the lifetime of a Datanode (and thus the
disks attached to that Datanode).

Handling the peak-IO constraint

The large data movement involved in both Type 1 and Type 2 result in significant use of the
network bandwidth. Recall from Section 5.2.4 that Pacemaker’s design includes a peak-IO
constraint that puts a cap on the rate at which transitions can happen so as to minimize inter-
ference with foreground IO traffic, which if not done could negatively affect both throughput
and latency.

To implement the peak-IO constraint in Pacemaker equipped HDFS, our design uses the
wait-based data transfer throttler, which is originally used in sending and receiving data
blocks, journaling, and image transferring. To make use of the throttler in Type 1 and Type
2 transitions, a custom decorator is developed on top of of Javas output stream which has a
rate-limiter embedded in it. In Pacemaker equipped HDFS, we wrap the output stream that
is used to perform Type 1 and Type 2 transitions by the decorated custom throttler. Finally,
given a configured peak-IO cap, the throttled output stream can automatically control the data
transfer speed to fulfill the configured bandwidth requirement to meet the peak-IO constraint
and ensure predictable performance.

6.2.6 Evaluating Pacemaker equipped HDFS

This section describes basic experiments with the Pacemaker equipped HDFS, focusing on its
functioning and operation. Note that Pacemaker is designed for longitudinal disk deployments
over several years, a scenario that cannot be reproduced identically in laboratory settings.

66

0 200 400 600 800
Time (sec)

0

1000

2000

Th
ro

ug
hp

ut
 (M

B/
se

c)

St
op

 D
N

Failure
Baseline Failure

0 200 400 600 800
Time (sec)

Be
gi

n
tra

ns
iti

on

En
d

of
 tr

an
sit

io
n

Relaxed Rgroup Transition
Baseline Relaxed Rgroup Transition

Figure 6.2: DFS-perf reported throughput for baseline, with one Datanode failure and one
Rgroup transition.

0 200 400 600 800 1000 1200
Time (sec)

0

50

100

150

200

250

300

350

400

La
te

nc
y

(m
illi

se
co

nd
)

Baseline

0 200 400 600 800 1000 1200
Time (sec)

0

50

100

150

200

250

300

350

400

La
te

nc
y

(m
illi

se
co

nd
)

St
op

 D
N

Failure

0 200 400 600 800 1000
Time (sec)

0

50

100

150

200

250

300

350

400

La
te

nc
y

(m
illi

se
co

nd
)

Be
gi

n
tra

ns
iti

on

En
d

of
 tr

an
sit

io
n

Relaxed Rgroup Transition

Figure 6.3: DFS-perf reported latency for baseline, with one Datanode failure and one Rgroup
transition.

Hence, these HDFS experiments are aimed to display that integrating Pacemaker with an
existing storage system is straightforward, rather than on the long-term aspects like overall
space-savings or transition IO behavior over cluster lifetime as evaluated via simulation in
Chapter 5.

The HDFS experiments run on a PRObE Emulab cluster housed at Carnegie Mellon
University [35]. Each machine has a Dual-Core AMD Opteron Processor, 16GB RAM, and
Gigabit Ethernet. We use a 21-node cluster running HDFS 3.2.0 with one Namenode and
20 Datanodes. Each Datanode has a 10GB partition on a 10000 RPM HDD for a total cluster
size of 200GB. We statically define the cluster to be made up of two Rgroups of ten Datanodes
each, one using the 6-of-9 erasure coding scheme and the other using a 7-of-10 scheme. DFS-
perf [38], a popular open-source HDFS benchmark is used, after populating the cluster to 60%
full. Each DFS-perf client sequentially reads one file over and over again (size=768MB), for
a total read size of about 1.75TB over 40 iterations. We use 60 DFS-perf clients, running on
20 nodes separate from the HDFS cluster.

We focus on the behavior of a Datanode as it transitions between Rgroups, compared
with baseline HDFS performance (where all Datanodes are healthy) and its behavior while
recovering from a failed Datanode. Figure 6.2 shows the client throughput after the setup
phase, followed by a noticeable drop in client throughput when a Datanode fails (emulated by

67

stopping the Datanode). This is caused by the reconstruction IO that recreates the data from
the failed node. Read latency exhibits similar behavior as shown in Figure 6.3. Eventually,
throughput settles at about 5% lower than prior to failure, since now there are 19 Datanodes.
The Relaxed Rgroup Transition refers to the customized throttlable output stream that imple-
ments the peak-IO constraint as explained in Section 6.2.5. The impact of throttling seen in
both throughput and latency when comparing the sudden non-throttled recovery (which is an
emulation of sudden transitions shown via the “Failure” plots in Figure 6.2 and Figure 6.3) to
the throttled transitions (shown via the “Relaxed Rgroup Transition” plots in the same figures).
The gradual reduction of throughput and gradual increase of latency maintains predictable
performance for on-going foreground tasks.

Figure 6.2 also shows client throughput when a node is RDn transitioned from 6-of-9 to
7-of-10. There is minor interference during the transition, which can be attributed to the data
movement that HDFS performs as a part of decommissioning. The transition requires less
work than failed node reconstruction, yet takes longer to complete because Pacemaker limits
the transition IO. Eventually, even though 20 Datanodes are running, the throughput is lower
by ≈5% (one Datanode’s throughput). This happens because Pacemaker empties the Datanode
before it moves into the new Rgroup, and load-balancing data to newly added Datanodes
happens over a longer time-frame. Experiments with RUp transition showed similar results.

6.2.7 Salient features of this architecture

Right level of control and view of the system.

Since the DatanodeManager resides below the block layer, when the data needs to be moved
for redundancy adaptations, the logical view of the file remains unaffected. Only the mapping
from HDFS blocks to Datanodes gets updated in the inode. The statistics maintained by the
DatanodeManager can be used to balance load across Rgroups.

Minimizing changes to the HDFS architecture and maximizing re-purposing of existing
HDFS mechanisms

This design obviates the need to change HDFS’s block placement policy, since it is imple-
mented at the DatanodeManager level. Block placement policies are notoriously hard to get
right. Moreover, block placement decisions are affected by fault domains and network topolo-
gies, both of which are orthogonal to the goals of Pacemaker, and thus best left untouched.
Likewise, the code for reconstruction of data from a failed Datanode need not be touched,
since all of the reads (to reconstruct each lost chunk) and writes (to store it somewhere else)
will occur within the set of nodes managed by its DatanodeManager. Existing mechanisms for
adding and decommissioning nodes managed by the DatanodeManager can be re-purposed
for Pacemaker’s Type 1 transitions (described below).

Flexible Rgroup-specific customizations are possible

This design allows for flexibility to add Rgroup-specific functionality in the future. For exam-
ple, reliability tiering could be performed by allowing sets of Rgroups have different reliability

68

targets. No architectural change would have to be done in order to enable this functionality.

Cost of maintaining multiple DatanodeManagers is small

Each DatanodeManager maintains two threads: a HeartbeatManager and a DatanodeAdmin-
Manager. The former tracks and handles heartbeats from each Datanode, and the latter
monitors the Datanodes for performing decommissioning and maintenance. The number of
DatanodeManager threads in the Namenode will increase from two to 2× the number of
Rgroups. Fortunately, even for large clusters, we observe that the number of Rgroups would
not exceed the low tens (Section 6.2.6). The Namenode is usually a high-end server compared
to the Datanodes, and an additional tens of threads shouldn’t affect performance.

File access interface remains unchanged

Pacemaker does not change the file manipulation API or client access paths. But, there is
one corner-case related to transitions when file reads can be affected internally. To read a
file, a client queries the Namenode for the inode and caches it. Subsequently, the reads are
performed directly from the client to the Datanode. If the Datanode transitions to another
Rgroup while the file is still being read, the HDFS client may find that that Datanode no
longer has the requested data. But, because this design uses existing HDFS decommissioning
for transitions, the client software knows to react by re-requesting the updated inode from the
Namenode and resuming the read.

6.3 Guidelines for designing future disk-adaptive redun-
dancy systems

In this section, we describe the insights gleaned from our exercise of incorporating Pacemaker
into HDFS. These insights are meant to serve as guidelines for designing new cluster storage
systems that intend to support disk-adaptive redundancy.

6.3.1 Decoupling the data reliability target from the data redundancy
target

Today’s cluster storage systems are designed to specify the redundancy scheme for the data
in order to achieve the target reliability level. Disk-adaptive redundancy systems require the
flexibility of changing the redundancy schemes dynamically while still meeting the target re-
liability. Therefore, a cluster storage system that intends to support disk-adaptive redundancy
should decouple the layer that sets the target reliability from the layer that chooses the de-
sired redundancy scheme. Moreover, applications should be only allowed to specify the target
reliability, and the cluster storage system should have the freedom to choose the required
redundancy scheme.

69

6.3.2 Enhanced reliability monitoring mechanisms

Disk-adaptive redundancy described in this dissertation groups disks according to make/model
in order to construct a bathtub curve. This grouping is static, and is inspired by prior
literature [56, 73] that suggests disk vintage plays an important role in disk failure behavior.
But, there could be other parameters that could additionally aid in grouping disks that fail
similarly. For example, the disk manufacturing batch, manufacturing facility, firmware version
etc. A disk-adaptive redundancy system should ideally look at all such groupings and monitor
all of their bathtub curves simultaneously in order to be as safe as possible when making
redundancy decisions.

6.3.3 Elevating the role of the redundancy management module

The redundancy management module in current storage clusters is primarily responsible for
striping and failed data reconstruction. Its role becomes much more central, and arguably
even more critical when supporting disk-adaptive redundancy. It needs to have the compo-
nents that HeART and Pacemaker have, for instance:

• a change-point detector

• an anomaly detector

• a proactive transition initiator

• a redundancy planner

• a transition executor

In terms of the actions it supports, along with reconstruction and striping, the redundancy
management module should keep track of:

• The AFR curves of all disks throughout their lifetimes grouped by different parameters
as explained above.

• The different Rgroups and their composition.

• Scheduling the redundancy transition tasks along with the reconstruction tasks.

• Monitoring and building the AFR curve by keeping track of the canary disks.

6.3.4 Maintaining separation between file, block and storage layers

Current HDFS architecture maintains a separation of the file layer (which maintains the names-
pace of the file system), the block layer (which maintains the logical blocks and their locations
on the different Datanodes and the Datanode layer (which maintains all the Datanodes and
their vitals). This separation is critical for a seamless implementation of disk-adaptive redun-
dancy in HDFS. In particular, as alluded to in Section 6.2.7, incorporating Rgroups by replicat-
ing the DatanodeManager allowed HDFS to observe disk-reliability-heterogeneity seamlessly
without the clients requiring any knowledge that HDFS was supporting disk-adaptive redun-
dancy, or changing in their file access interface in any way.

70

6.3.5 Incorporating disk-adaptive redundancy awareness in existing com-
ponents

Several existing components of existing cluster storage systems can aid in efficiently perform-
ing disk-adaptive redundancy if they are made aware of disk-reliability-heterogeneity. This
subsection describes some of these components in detail.

Making data placement aware of changing redundancy

Currently data placement algorithms are orthogonal to the redundancy decisions other than
accounting for different fault domains for ensuring data safety. Disk-adaptive redundancy
systems built using our design of Pacemaker equipped HDFS can work without requiring
any changes to the core placement algorithm. But disk-adaptive redundancy can in fact be
made more efficient by making the placement module aware of the redundancy management
module. In particular, by placing related data in disks that are of a similar age, if (and when)
data gets deleted or moved, disks of a similar age will have more space available in them with
minimal data movement. This is advantageous for example in the case of decommissioning,
which require disks of a similar age to be emptied together. Another example is in the case
of Type 1 transitions; data is moved from the transitioning disk onto other disks of the same
Rgroup. By having age-aware data movement, if data is moved from the older disks that
are transitioning onto younger disks, a disk-adaptive redundancy system can avoid having to
move the same data repeatedly.

Coupling scrubbing with redundancy transitions

HDDs suffer from adjacent track interference, where data written in one track can end up dis-
torting the data on adjacent tracks. This problem is exacerbated in modern HDDs with higher
capacity where tracks are packed even closer. Scrubbing is employed to prevent adjacent track
interference from causing irrecoverable data loss. Scrubbing is the act of strengthening the
signal-to-noise ratio by reading, checking (via checksum) and rewriting data to the same lo-
cation. Disks in large scale storage clusters are scrubbed every fortnight on average [12].

Pacemaker’s proactive-transition-initiator can schedule transitions well in advance of the
age that the disks should transition by. Since scrubbing already performs the task of reading
data and verifying its contents, if the proactive-transition-initiator has identified that certain
disks need to transition to a new redundancy scheme, they can piggyback the reads required
for the transitioning with the scrubbing cycle. This will drastically reduce the IO specifically
issued for redundancy transitions and yet keep the data adequately reliable. Such an opti-
mization cannot use scrubbing as it currently happens in existing systems, since scrubbing
happens on a per-disk basis independent of other disks. For allowing redundancy transitions
to utilize scrubbing, there will need to be new coordinated scrubbing algorithms that scrub
related data that can be re-encoded.

71

Incorporating disk-adaptive redundancy into disk deployment

Disks are deployed either as trickle or step (described in Section 4.2.2) as observed in the
clusters that are studied as a part of this research. Deployment strategies are currently un-
aware of disk-adaptive redundancy because today’s cluster storage systems do not perform
disk-adaptive redundancy. As per our conversations with system administrators, today’s disk
deployment decisions are largely driven by need (i.e. the capacity or spindle requirement of
a cluster) or surplus procurement (i.e. more disks were purchased than were needed, which is
driven by financial situations).

Disk deployment patterns can play a crucial role in the smooth functioning of a storage
cluster that supports disk-adaptive redundancy as seen in Section 4.2.2. If there is inter-
mingling of trickle-deployed and step-deployed disks of the same make/model, it prevents
Pacemaker from using the more IO-efficient Type 2 on all disks of that make/model since all
of its disks are not deployed in steps. In addition to whether to deploy disks as trickle or
in steps, a disk-adaptive redundancy aware disk deployment strategy should also take into
consideration the rate at which disks should be deployed. Spacing out the steps appropriately,
whereas having a steady deployment for a trickle-deployed make/model are both decisions
that can benefit disk-adaptive redundancy significantly. For example, Type 1 transition moves
data from the transitioning disk to another in the same Rgroup. This transitioning method
implicitly assumes that, in steady state, disks will always enter the Rgroup at the same rate
that disks leave the Rgroup. Suppose a trickle-deployed make/model has an arbitrary deploy-
ment schedule, it can lead to Type 1 transitions not finding enough disk space to move data
to, causing them to perform the expensive read–re-encode–write operation for performing the
redundancy transition.

72

Chapter 7

Related work

We first talk about the broad category of related works which aim to optimize resources for
more efficient redundancy management in distributed storage systems. Erasure coding itself
is an optimization over replication [82, 109, 113] as it has a lower storage overhead than
replication for the same amount of reliability as explained in Section 2.2. Even within erasure
coding, there are works that reduce the cost of reconstruction via (1) reducing the amount
of data transfer using techniques such as caching, batching, etc. [14, 23, 63], (2) reducing the
amount of data accessed during reconstruction (e.g., [28, 43, 46, 70, 84, 108, 113, 115]) using
techniques such as additional parities per stripe, or (3) designing new codes that contact more
servers but download less data (e.g., [25, 39, 44, 68, 76, 78, 79, 80, 92, 93, 94, 99, 100, 106].

The closer related works can be classified into disk reliability studies that identify reliability
heterogeneity, techniques to predict disk failures using reliability data, systems that reduce
excess reliability and systems that automate redundancy scheme selection.

Various systems include support for multiple redundancy schemes, allowing different
schemes to be used for different data [27, 33]. Thereska et al. [102] built a self-prediction
capability in cluster storage systems to assist in making informed redundancy and data place-
ment decisions by answering what-if questions. It differs from disk-adaptive redundancy in
that it does not perform and adapt to online analysis of reliability characteristics, relying
on pre-knowledge of reliability metrics. Keeton et al. [50] built an optimization framework
that automatically provided data dependability solutions to protect against site-level disasters
by using information like workload patterns, and cost of recovery. This work also assumes
prior knowledge of failure rates. In [15], the authors discuss an inter-file chunk compression
mechanism prior to performing redundancy, and choose different redundancy schemes for the
different data chunks based on how much data is going to get lost in case a chunk is lost.
disk-adaptive redundancy differs from such systems by assuming no prior knowledge of data
or disk AFRs (i.e. monitored in-the-field), and focusing on efficiently adapting redundancy to
different and time-varying AFRs of disks.

Numerous studies have been conducted to characterize disk failures [12, 26, 42, 47, 56,
72, 73, 85, 86, 87, 95]. Among the studies conducted on large production systems, Shah
and Elerath [26, 95], Pinheiro et al. [73] and Ma et al. [56] independently verify that failure
rates are highly correlated with disk manufacturers. These studies were conducted on the
NetApp, Google and EMC disk fleets, respectively. Schroeder and Gibson also conducted a

73

similar reliability study on disks from a high performance computing environment [85], not
only highlighting reliability heterogeneity between disks deployed across systems, but also
pointing out that disk datasheet reliability is very different from reliability observed in the
field. Recently, Schroeder et al. [88] highlighted the heterogeneity in the reliability of different
SSD technologies from four different manufacturers. Also, Schroeder et al. [87] reported
heterogeneity of partial disk failures (sector errors) across makes/models for NetApp’s disk
fleet.

There have been numerous works that predict disk failures [40, 66, 98, 107, 118]. Among
the more recent ones, Mahdisoltani et al. [57] use machine learning techniques to predict
occurrence of partial disk errors using S.M.A.R.T. data. Anantharaman et al. [6] use random
forests and recurrent neural networks to predict remaining useful life for HDDs. Both studies
were performed on the Backblaze dataset.

Tempo [97] is a system that proactively creates replicas to ensure high durability in wide-
area network distributed systems. It does this economically by allowing the user to specify
a maximum maintenance bandwidth, and its design revolves around the efficient use of a
distributed hash table. Carbonite [23] is a replica maintenance solution for distributed storage
systems spread over the Internet, which makes efficient use of bandwidth in maintaining
redundancy in the face of transient failures.

The Recovery Oriented Computing (ROC) project [71] suggests that faster recovery by
reducing MTTR may result in requiring lower reliability than what is conventionally used.
This in turn will reduce storage cost. Another method of reducing reliability requirement is
by having a lower window of vulnerability, for example Byzantine Fault Tolerance [21] or by
using innovative data placement techniques [53]. All these methods are static and do not
capture, or react to the heterogeneity observed in large-scale cluster storage systems.

Reducing the impact of background IO, such as for data scrubbing, on foreground IO is a
common research theme. [5, 8, 54, 55, 67, 89]. Pacemaker converts otherwise-urgent bursts of
transition IO into proactive background IO, which could then benefit from these works.

While several works have considered the problem of designing erasure codes that allow
transitions using less resources, existing solutions are limited to specific kinds of transitions
and hence are not applicable in general. The case of adding parity chunks while keeping the
number of data chunks fixed can be viewed [64, 75, 80] as the well-studied reconstruction
problem, and hence the codes designed for optimal reconstruction (e.g., [25, 37, 69, 76, 80,
106]) would lead to improved resource usage for this case. Several works have studied the case
where the number of data nodes increases while the number of parity nodes remains fixed
[45, 74, 111, 116, 119]. In [112], the authors propose two erasure codes designed to undergo a
specific transition in parameters.

In [60], the authors propose a general theoretical framework for studying codes that enable
efficient transitions for general parameters, called “Convertible Codes”. The authors derive
lower bounds on the IO cost of transitions as well as describe optimal code constructions for
certain specific parameters [60]. However, none of the existing practical code constructions are
applicable for the diverse set of transitions needed for disk-adaptive redundancy in real-world
storage clusters. There have been more recent theoretical works on convertible codes [59, 61],
which seem promising for disk-adaptive redundancy systems. However, the role of recently
proposed convertible codes in disk-adaptive redundancy systems remains to be explored.

74

Chapter 8

Conclusion and future directions

8.1 Conclusions

Disk-adaptive redundancy is the act of dynamically tailoring data redundancy to observed
disk failure rates while always meeting a desired reliability target. Current cluster storage
systems choose a redundancy scheme based on a static guesstimate of the disk’s annualized
failure rates (AFR). By assuming all disks fail similarly, the AFR guesstimate is usually a
conservative upper bound on the fraction of disks that could fail based off of a combination of
specification sheets, historical observations, literature and intuition. Unfortunately, this leads
to redundancy schemes that are overly wasteful, but on occasion can also prove inadequate if
there is a subset of disks that violates the AFR guesstimate assumptions due to environmental
or workload factors, which cannot be determined apriori.

This dissertation takes a closer look at disk AFRs by observing over 5.3 million hard disk
drives (HDDs) across three large production environments: Google, NetApp and Backblaze.
The first conclusion that our work draws is that different disks fail differently. In particular, we
group disks by make/model owing to the manufacturing differences that they are subjected to,
and observe that disks from different makes/models have AFRs that differ from each other by
over an order of magnitude despite being deployed in the same storage cluster. Additionally,
by incorporating the well-studied AFR curve over a disk’s lifetime (bathtub curve or hazard
curve), this work discards the conventionally used single-number AFR representation. Instead
it suggests a rich AFR representation that not only varies by disk make/model but also varies
as a function of the disk’s age.

Disk-adaptive redundancy utilizes the aforementioned rich AFR representation to design a
redundancy orchestrator for cluster storage systems that dynamically tailors data redundancy
to the observed AFR differences. A major redesign of a component as core as its redundancy
management module (which has matured over the last several decades) requires the benefit of
the proposed change to significantly outweigh the cost. In this research we carefully design
systems: HeART and Pacemaker and demonstrate that even in storage clusters with several
hundred thousand disks, disk-adaptive redundancy systems can provide approximately 20%
space-savings. This translates to tens-of-thousands of fewer disks with minimal IO cost (less
than 0.1% on average, and less than 5% in the peak) and with no compromise on reliability.

75

In addition to the substantial space-savings, disk-adaptive redundancy is safer. Today’s
static redundancy scheme selection process (explained in 2) places an inherent upper bound
on the AFR that can be tolerated across all deployed disks. Specifically, the highest AFR
tolerated by the most conservative scheme that still meets the target MTTDL acts as the
upper bound of the AFR that can be tolerated in that cluster. If a disk make/model violates
the AFR upper bound because of a manufacturing defect, or because of a bad firmware
upgrade, it causes panic. According to the incidents narrated to us by storage administrators
of large-scale cluster storage systems, today’s state-of-the-art solution to minimize data loss in
case of manufacturing-induced bugs or firmware-induced failures is quick human intervention.
A disk-adaptive redundancy system is designed to react to increases in AFR by automatically
increasing the redundancy, that too without any human intervention. This is not to say that
any AFR rise is tolerable by disk-adaptive redundancy systems, because after some amount of
rise (due to the inability to have infinitely many copies), the constraint-driven approach will
fail at which point human intervention will be necessary, but this situation is unavoidable no
matter how sophisticated the redundancy management techniques are.

One could argue that the constraint-driven system design is too human-dependent, and
could lead to disastrous consequences if the constraints aren’t correctly specified. While this
could occur, we argue that the constraint-based design provides adequate transparency which
is necessary for dealing with a component as core, and as important as redundancy manage-
ment. Since data safety is directly dependent on redundancy, system designers and adminis-
trators tend to be paranoid about being able to achieve, and “see” that they can achieve the
desired reliability. A constraint-based design provides a window through which the system’s
designers and administrators can observe the different rules governing the system. In order
to prevent catastrophic situations, the constraint-specification for a disk-adaptive redundancy
system could afford to have several levels of checks-and-balances since the constraints have to
be specified ideally only once and tweaked very rarely.

Disk-adaptive redundancy provides a symbiotic solution for disk manufacturers and disk
users. HDDs are incredibly complex hardware devices, and the disk manufacturing research
and industry has seen unprecedented innovation to build today’s HDD. This complexity makes
it virtually impossible for a disk manufacturer to guarantee that there won’t be unforeseen
failures for a HDD in production. By having an adaptive solution that is designed to meet
data reliability targets under changing AFRs, the disk manufacturers have a lower risk angry
users complaining about data loss (and more seriously, a lower risk of litigation) due to a
higher-than-expected rate of disk failures. On the flip side, the disk users can also heave a
sigh of relief with the knowledge that if an unforeseen AFR rise occurs, that the system will
react to it automatically to keep data safe. Additionally, it also creates an interesting economic
incentive structure for manufacturing HDDs. Since a disk-adaptive redundancy system would
require lower redundancy for disks having higher reliability, the reduced cost could be used as
an incentive to achieve higher reliability; essentially disks could be priced based on the lowest
reliability they can guarantee, while at the same time not facing the risk data loss in case this
guarantee is violated.

Finally, we reflect on the impact of the software-only optimization provided by disk-
adaptive redundancy in an era where innovation in hardware is leading the path to achieve
lower storage cost. Data in large-scale storage clusters is growing at an alarming rate and will

76

continue to do so with large migrations of businesses and data repositories to the cloud [91].
This puts serious space pressure on many (if not all) of the large-scale storage clusters. Further-
more, most of the data being stored is warm or cold data, which is accessed occasionally, but
needs to be highly durable. Lowering the storage and energy costs of storing this data without
compromising data reliability is one of the main motivations behind public clouds offering
low-cost data archival solutions such as Amazon Glacier [1] and Google Cold Storage [36].
These offerings are driven by innovation in hardware via high-density storage devices such as
shingled magnetic recording disks (SMR), heat-assisted magnetic recording disks (HAMR) and
bit-patterned media recording disks (BPMR). More radical hardware inventions for solving the
cold data storage problem (that are not yet commercially available) include projects such as
Project Silica that aims to use glass as a high-density storage medium for cold data [7, 22, 81],
and DNA storage [16], which aims to store data in synthesized DNA strands. All of these
innovations require over a decade of research, with specialized machinery costing billions of
dollars, as is evident through recently commercialized technologies such as SMR and HAMR.
In contrast, disk-adaptive redundancy is a completely software driven solution for the afore-
mentioned problem that provides space-savings in the same range as SMR disks (≈20% fewer
disks; tens-of-thousands of fewer storage devices per cluster). Moreover, through our exercise
of incorporating Pacemaker in HDFS, we show that today’s distributed storage systems can
be easily modified to support disk-adaptive redundancy. We also provide recommendations
for re-imagining existing components in order to build a distributed storage system that sup-
ports disk-adaptive redundancy out of the box. These recommendations are focused changes
and do not require redesigning the entire distributed storage system from scratch. Finally,
disk-adaptive redundancy is an optimization technique that is fundamentally applicable to all
storage devices currently present, and those that will be invented in the future. Theoretically,
it even supports redundancy performed on tiered storage clusters where different storage me-
dia are used to service different performance requirements, but the data on any of those tiers
has to maintain a target reliability. This makes disk-adaptive redundancy a robust solution
for a timely problem.

8.2 Future work

While this thesis has shed light on existing AFR heterogeneity, and how it can be exploited
using to attain significant benefits, the exploration of disk-adaptive redundancy is not over by
any means. In this section we outline a set of promising future directions that we believe will
further enhance disk-adaptive redundancy and make it even more pervasive.

8.2.1 Scheduling background work better

Redundancy transitions can result in substantial IO. Pacemaker through its proactive-transition-
initiator and transition-executor has shown ways in which the transition overload can be mit-
igated. In addition, there are several already existing IO intensive background tasks on which
redundancy management tasks can be piggybacked in order to further minimize, or even
eliminate the need of explicitly issuing IO for redundancy transitions. Examples of existing

77

background tasks include scrubbing, load-balancing, decommissioning and file system level
garbage collection such as segment cleaning for log-structured file systems. As explained in
Section 6.3.5, it might require innovating algorithms for these tasks which allow redundancy
management to be done along with existing background tasks. Research in this direction will
allow for more efficient disk-adaptive redundancy systems.

8.2.2 Deeper understanding of disk failure rates

This thesis has thrown light on the advantages of treating AFR as a dynamically changing
quantity as against the current norm of treating it as a static number. With data reliability at
stake, and substantial space-savings possible, it is incumbent upon a disk-adaptive redundancy
system to have a robust understanding of disk failure rates. In particular, a disk-adaptive
redundancy system has to correctly group disks that fail similarly, and have an understanding
of how the AFR changes over time. HeART and Pacemaker are built on the current knowledge
of disk AFRs, which primarily consider age and make/model as the primary dimensions along
with AFR is quantified. Anecdotal evidence and conversations with storage administrators
are pointing to environmental metrics such as temperature and vibration, and usage based
metrics such as IO workload, seeks, etc. as influential parameters that affect disk AFRs.
Understanding effect of these metrics on AFR, along with formulating how these metrics can
be combined in order to best group disks that fail similarly will help in extracting the most
benefit, while exercising the safest approach for disk-adaptive redundancy.

8.2.3 Incorporating availability in disk-adaptive redundancy

Data is kept redundant for two reasons: durability and availability. This dissertation has
explored disk-adaptive redundancy for durability in depth. The purpose of redundancy for
availability is to ensure data access even when servers are inaccessible due to events such as
software upgrades or network partitioning. The scheme selection process follows a constraint
based approach in filtering out infeasible schemes that disks could transition to. In addition
to the existing IO and reliability constraints, an availability-aware disk-adaptive redundancy
system would also have an availability constraint for scheme selection. One could use different
families of codes to achieve the same instead of just tuning the parameters of traditionally
used Reed-Solomon codes for example Piggyback codes [80], Regenerating codes [76], Locally
Reconstructable Codes [46] etc.

8.2.4 Adaptive redundancy is not restricted to HDDs

The concept of adaptive redundancy transcends HDDs. The obvious extension is to other
storage devices such as solid state disks (SSD) and non-volatile memory (NVM). Schroeder
et al. [88] recently showed that different Flash SSD makes/models exhibit substantial failure
rate differences similar to HDDs. Modeling disk-adaptive redundancy for new device types
comes with their own challenges. For example, SSDs have been shown to have a different
bathtub curve shape compared to HDDs [62]. We cannot comment on the nature of the
bathtub curve for NVMs, since they are still too young for us to know of how their AFR

78

varies over their lifetime. Nevertheless, no matter how the AFR changes, it is highly likely
that adaptive redundancy systems can help keep data safe on these devices and provide cost-
effective redundancy.

79

80

Appendix A

Failure rate estimation details

This section describes how we calculate failure rates for each Dgroup based on the disks’ age
using empirical data.

In the storage device reliability literature, the failure rate over a period of time is typically
expressed in terms of Annualized Failure Rate (AFR), and calculated as:

AFR (%) =
d

E
× 100, (A.1)

where d is the number of observed disk failures, and E is the sum of the exposure time of each
disk, measured in years. The exposure time of a disk is the amount of time it was on operation
(i.e., deployed and had not failed nor been retired) during the period in consideration, and it
is typically measured at the granularity of days.

If the time to failure is exponentially distributed, then Formula A.1 corresponds to the
maximum likelihood estimate for the rate parameter of the exponential distribution. Due to
the memoryless property of this distribution, such a formula would be appropriate only if we
assume that failure rate is constant with respect to time or device age. Thus, Eq. A.1 is useful
for estimating AFR over long and stable periods of time, but makes it hard to reason about
changes in AFR over time. Therefore, in this work, we estimate AFR using the following
approach.

Assume that the lifetime (time from deployment to failure) of each disk is an i.i.d. discrete
random variable T with cumulative density function F and probability mass function f . The
failure rate (also known as hazard rate) [103] of this distribution is given by:

h(t) = f(t)/(1− F (t)). (A.2)

The cumulative hazard defined as H(t) =
∑t

i=0 h(i) is commonly estimated using the Nelson-
Aalen estimator:

Ĥ(t) =
t∑

i=0

di
ai

for t ∈ {0, . . . ,m}, (A.3)

where di is the number of disks that failed during their i-th day, ai is the number of disks that
were in operation at the start of their i-th day, and m is the age in days of the oldest observed

81

disk drive. An estimate for the failure rate can be obtained by applying the so-called kernel
method [101]:

ĥ(t) =
m∑
i=0

di
ai
K(t− i), for t ∈ {0, . . . ,m}, (A.4)

where K(·) is a kernel function. Formula A.4 can be considered as a smoothing over the
increments of Formula A.3. For our calculations, we utilized an Epanechnikov kernel [41] with
a bandwidth of 30 days (the Epanechnikov kernel is frequently used in practice due to its good
theoretical properties).

A big advantage of this approach is that it is nonparametric, meaning that it does not
assume that the lifetime T follows any particular distribution. This allows Pacemaker to adapt
and work effectively with a wide arrange of storage devices with vastly different failure rate
behaviors.

82

Bibliography

[1] Amazon. Amazon Glacier. https://aws.amazon.com/glacier, . 8.1

[2] Amazon. Amazon Simple Storage Service (S3). https://aws.amazon.com/s3, . 2.1

[3] Amazon. Kinesis. https://aws.amazon.com/kinesis, . 3.3.1

[4] Amazon. Robust Random Cut Forest. https://docs.aws.amazon.com/
kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest.html, . 3.3.1

[5] George Amvrosiadis, Angela Demke Brown, and Ashvin Goel. Opportunistic storage
maintenance. In ACM Symposium on Operating Systems Principles (SOSP), 2015. 7

[6] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav. Large Scale Predictive Analytics
for Hard Disk Remaining Useful Life Estimation. In IEEE International Conference on
Big Data, 2018. 3.2.4, 7

[7] Patrick Anderson, Richard Black, Ausra Cerkauskaite, Andromachi Chatzieleftheriou,
James Clegg, Chris Dainty, Raluca Diaconu, Rokas Drevinskas, Austin Donnelly, Alexan-
der L Gaunt, et al. Glass: A new media for a new era? In USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage), 2018. 8.1

[8] Eitan Bachmat and Jiri Schindler. Analysis of methods for scheduling low priority disk
drive tasks. In ACM SIGMETRICS Performance Evaluation Review, 2002. 7

[9] Backblaze. HDD SMART Stats. https://www.backblaze.com/blog/
what-smart-stats-indicate-hard-drive-failures. 3.1.1

[10] Backblaze. Disk Reliability Dataset. https://www.backblaze.com/b2/
hard-drive-test-data.html, 2013-2018. (document), 2.2, 3.1.1, 3.3

[11] Backblaze. Erasure coding used by Backblaze. https://www.backblaze.com/blog/
reed-solomon/, 2013-2018. 2.2.2

[12] Lakshmi N Bairavasundaram, Garth R Goodson, Shankar Pasupathy, and Jiri Schindler.
An analysis of latent sector errors in disk drives. In ACM SIGMETRICS Performance
Evaluation Review, 2007. 3.1.1, 5.2.4, 5.4.3, 6.3.5, 7

[13] Shimrit Ben-Yair. Updating Google Photos storage policy to build for the future. https:
//blog.google/products/photos/storage-changes/, 2020. 1

[14] Ranjita Bhagwan, Kiran Tati, Yuchung Cheng, Stefan Savage, and Geoffrey M Voelker.
Total recall: System support for automated availability management. In USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), 2004. 7

83

https://aws.amazon.com/glacier
https://aws.amazon.com/s3
https://aws.amazon.com/kinesis
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/sqlrf-random-cut-forest.html
https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures
https://www.backblaze.com/blog/what-smart-stats-indicate-hard-drive-failures
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://blog.google/products/photos/storage-changes/
https://blog.google/products/photos/storage-changes/

[15] Deepavali Bhagwat, Kristal Pollack, Darrell DE Long, Thomas Schwarz, Ethan L Miller,
and J-F Pâris. Providing high reliability in a minimum redundancy archival storage sys-
tem. In IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS), 2006. 7

[16] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and
Karin Strauss. A dna-based archival storage system. In International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.
8.1

[17] Eric Brewer. Spinning Disks and Their Cloudy Future. https://www.usenix.org/
node/194391, 2018. 1, 2.1.1

[18] Eric Brewer, Lawrence Ying, Lawrence Greenfield, Robert Cypher, and Theodore T’so.
Disks for data centers. Technical report, Google, 2016. 1, 2.1.1

[19] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McK-
elvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Windows
azure storage: a highly available cloud storage service with strong consistency. In ACM
Symposium on Operating Systems Principles (SOSP), 2011. 2.1, 5.3.3

[20] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. Ext4: The next generation of
ext2/3 filesystem. In Linux Storage and Filesystem Workshop, 2007. 6.1

[21] Miguel Castro and Barbara Liskov. Proactive recovery in a byzantine-fault-tolerant
system. In USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2000. 7

[22] Andromachi Chatzieleftheriou, Ioan Stefanovici, Dushyanth Narayanan, Benn Thomsen,
and Antony Rowstron. Could cloud storage be disrupted in the next decade? In USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage), 2020. 8.1

[23] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weatherspoon,
M Frans Kaashoek, John Kubiatowicz, and Robert Morris. Efficient Replica Maintenance
for Distributed Storage Systems. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2006. 7

[24] Gerry Cole. Estimating drive reliability in desktop computers and consumer electronics
systems. Seagate Technology Paper TP, 2000. 2.2.3, 3.1.1

[25] Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu, Martin J. Wainwright, and Kan-
nan Ramchandran. Network coding for distributed storage systems. IEEE Transactions
on Information Theory, 2010. 7

[26] Jon Elerath. Hard-disk drives: The good, the bad, and the ugly. Communication of ACM,
2009. 3.1.2, 7

[27] erasure code ceph documentation. Erasure code Ceph Documentation. https://docs.
ceph.com/docs/master/rados/operations/erasure-code/, (accessed September
25, 2019). 7

[28] Kyumars Sheykh Esmaili, Lluis Pamies-Juarez, and Anwitaman Datta. Core: Cross-object
redundancy for efficient data repair in storage systems. In IEEE International Conference

84

https://www.usenix.org/node/194391
https://www.usenix.org/node/194391
https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/

on Big Data, 2013. 7

[29] Facebook. HDFS RAID. http://www.slideshare.net/ydn/hdfs-raid-facebook. 1,
2.2.2

[30] Andrew Fikes. Storage architecture and challenges. Talk at the Google Faculty Summit,
2010. 2.2.2

[31] Daniel Ford, François Labelle, Florentina I Popovici, Murray Stokely, Van-Anh Truong,
Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in Globally Distributed
Storage Systems. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2010. 1, 2.2.2, 2.2.3, 3, 3.1.3, 3.3.2, 5.3.3, 5.4

[32] Apache Software Foundation. HDFS Erasure Coding Phase II – EC with contiguous lay-
out. https://issues.apache.org/jira/browse/HDFS-8030, 2016 (accessed Novem-
ber 5, 2020). 6.2.3

[33] Apache Software Foundation. HDFS Erasure Coding. https://hadoop.apache.org/
docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html,
2017 (accessed November 5, 2020). 1, 5.3.3, 7

[34] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google file system. In ACM SIGOPS
Operating Systems Review, 2003. 1, 2.1, 2.1.2, 2.2, 6.1

[35] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd. Probe: A thousand-node
experimental cluster for computer systems research. USENIX; login, 2013. 6.2.6

[36] Google. Google Cold Storage. https://cloud.google.com/storage/archival. 8.1

[37] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the locality
of codeword symbols. IEEE Transactions on Information Theory, 2012. 7

[38] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez, Zhao Zhang, Shuai Wang,
Yihua Huang, Scott Shenker, Ion Stoica, and Patrick PC Lee. DFS-PERF: A scalable
and unified benchmarking framework for distributed file systems. EECS Dept., Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-133, 2016. 6.2.6

[39] Venkatesan Guruswami, Satyanarayana V Lokam, and Sai Vikneshwar Mani Jayaraman.
-msr codes: Contacting fewer code blocks for exact repair. IEEE Transactions on Infor-
mation Theory, 2020. 7

[40] Greg Hamerly, Charles Elkan, et al. Bayesian approaches to failure prediction for disk
drives. In International Conference on Machine Learning (ICML), 2001. 7

[41] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Kernel smoothing methods. In
The elements of statistical learning. Springer, 2009. 2, A

[42] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine, Bill Kramer, and Franck Cap-
pello. Modeling and tolerating heterogeneous failures in large parallel systems. In ACM
/ IEEE High Performance Computing Networking, Storage and Analysis (SC), 2011. 7

[43] Yuchong Hu, Henry CH Chen, Patrick PC Lee, and Yang Tang. Nccloud: applying
network coding for the storage repair in a cloud-of-clouds. In USENIX File and Storage
Technologies (FAST), 2012. 7

85

http://www.slideshare.net/ydn/hdfs-raid-facebook
https://issues.apache.org/jira/browse/HDFS-8030
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://cloud.google.com/storage/archival

[44] Yuchong Hu, Patrick PC Lee, and Xiaoyang Zhang. Double regenerating codes for
hierarchical data centers. In IEEE International Symposium on Information Theory (ISIT),
2016. 7

[45] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and Pan Zhou. Generalized optimal
storage scaling via network coding. In IEEE International Symposium on Information
Theory (ISIT), 2018. 7

[46] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, Sergey Yekhanin, et al. Erasure Coding in Windows Azure Storage.
In USENIX Annual Technical Conference (ATC), 2012. 1, 2.2, 3.1.3, 7, 8.2.3

[47] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are disks the
dominant contributor for storage failures?: A comprehensive study of storage subsystem
failure characteristics. ACM Transactions on Storage (TOS), 2008. 7

[48] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger. Cluster storage systems gotta
have HeART: improving storage efficiency by exploiting disk-reliability heterogeneity. In
USENIX File and Storage Technologies (FAST), 2019. 1, 1, 5.2.3, 5.4.2

[49] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng Yang,
KV Rashmi, and Gregory R Ganger. {PACEMAKER}: Avoiding heart attacks in storage
clusters with disk-adaptive redundancy. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020. 1

[50] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jeffrey S Chase, John Wilkes, et al.
Designing for disasters. In USENIX File and Storage Technologies (FAST), 2004. 7

[51] Larry Lancaster and Alan Rowe. Measuring real-world data availability. 2001. 4.1

[52] Sergey Legtchenko, Hugh Williams, Kaveh Razavi, Austin Donnelly, Richard Black, An-
drew Douglas, Nathanaël Cheriere, Daniel Fryer, Kai Mast, Angela Demke Brown, et al.
Understanding rack-scale disaggregated storage. In USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2017. 2.1

[53] Witold Litwin and Thomas Schwarz. LH* RS: A high-availability scalable distributed
data structure using Reed Solomon codes. In ACM International Conference on Manage-
ment of Data (SIGMOD), 2000. 7

[54] Christopher R Lumb, Jiri Schindler, Gregory R Ganger, David F Nagle, and Erik Riedel.
Towards higher disk head utilization: extracting free bandwidth from busy disk drives.
In USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2000. 7

[55] Christopher R Lumb, Jiri Schindler, Gregory R Ganger, et al. Freeblock scheduling
outside of disk firmware. In USENIX File and Storage Technologies (FAST), 2002. 7

[56] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness, Guanlin Lu, Darren Sawyer,
Surendar Chandra, and Windsor Hsu. RAIDShield: characterizing, monitoring, and
proactively protecting against disk failures. ACM Transactions on Storage (TOS), 2015. 1,
3.1.1, 3.1.2, 3.2.4, 6.3.2, 7

[57] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. Proactive error predic-
tion to improve storage system reliability. In USENIX Annual Technical Conference (ATC),

86

2017. 3.1.2, 3.2.4, 7

[58] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas,
and Laurent Vivier. The new ext4 filesystem: current status and future plans. In Linux
Symposium, 2007. 6.1

[59] Francisco Maturana and K. V. Rashmi. Bandwidth cost of code conversions in distributed
storage: Fundamental limits and optimal constructions. arXiv preprint arXiv:2008.12707,
2020. 7

[60] Francisco Maturana and K. V. Rashmi. Convertible codes: new class of codes for efficient
conversion of coded data in distributed storage. In Innovations in Theoretical Computer
Science Conference, (ITCS), 2020. 7

[61] Francisco Maturana, V. S. Chaitanya Mukka, and K. V. Rashmi. Access-optimal linear
MDS convertible codes for all parameters. In IEEE International Symposium on Informa-
tion Theory (ISIT), 2020. 7

[62] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A large-scale study of flash
memory failures in the field. ACM SIGMETRICS Performance Evaluation Review, 2015.
8.2.4

[63] James W Mickens and Brian D Noble. Exploiting availability prediction in distributed
systems. In USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2006. 7

[64] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed parity generation in MDS storage
codes. In IEEE International Symposium on Information Theory (ISIT), 2018. 7

[65] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen
Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4: Face-
book’s warm BLOB storage system. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014. 5.3.3

[66] Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado. Hard drive fail-
ure prediction using non-parametric statistical methods. In Springer Artificial Neural
Networks and Neural Information Processing (ICANN/CONIP, 2003. 7

[67] Alina Oprea and Ari Juels. A Clean-Slate Look at Disk Scrubbing. In USENIX File and
Storage Technologies (FAST), 2010. 5.2.4, 7

[68] D Papailiopoulos, A Dimakis, and V Cadambe. Repair optimal erasure codes through
Hadamard designs. IEEE Transactions on Information Theory, 2013. 7

[69] Dimitris S. Papailiopoulos and Alexandros G. Dimakis. Locally repairable codes. IEEE
Transactions on Information Theory, 2014. 7

[70] D.S. Papailiopoulos and A.G. Dimakis. Locally repairable codes. In IEEE International
Symposium on Information Theory (ISIT), 2012. 7

[71] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James
Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Merzbacher, et al.
Recovery-oriented computing (roc): Motivation, definition, techniques, and case studies.
Technical report, Technical Report UCB//CSD-02-1175, UC Berkeley Computer Science,

87

2002. 2.1.2, 7

[72] David A Patterson, Garth Gibson, and Randy H Katz. A case for redundant arrays
of inexpensive disks (RAID). In ACM International Conference on Management of Data
(SIGMOD), 1988. 1, 2.2.3, 7

[73] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure Trends in a
Large Disk Drive Population. In USENIX File and Storage Technologies (FAST), 2007. 1,
2.2, 3.1.1, 3.1.2, 3.2.4, 6.3.2, 7

[74] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini, and Amit K. Jha. On adaptive
distributed storage systems. In IEEE International Symposium on Information Theory
(ISIT), 2015. 7

[75] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Enabling node repair in any erasure
code for distributed storage. In IEEE International Symposium on Information Theory
(ISIT), 2011. 7

[76] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Optimal exact-regenerating codes
for distributed storage at the MSR and MBR points via a product-matrix construction.
IEEE Transactions on Information Theory, 2011. 7, 8.2.3

[77] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A Solution to the Network Challenges of Data Recovery in Erasure-coded
Distributed Storage Systems: A Study on the Facebook Warehouse Cluster. In USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage), 2013. 1, 2.2, 2.2.2, 2.2.3,
3, 3.1.3, 3.2.3, 3.3.2

[78] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and Kannan
Ramchandran. A hitchhiker’s guide to fast and efficient data reconstruction in erasure-
coded data centers. ACM Special Interest Group on Data Communication (SIGCOMM),
2014. 2.2, 2.2.2, 2.2.3, 3, 3.1.3, 3.2.3, 3.3.2, 7

[79] K V Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B Shah, and Kannan Ramchan-
dran. Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for I/O,
Storage, and Network-bandwidth. In USENIX File and Storage Technologies (FAST), 2015.
7

[80] KV Rashmi, Nihar B Shah, and Kannan Ramchandran. A piggybacking design frame-
work for read-and download-efficient distributed storage codes. IEEE Transactions on
Information Theory, 2017. 7, 8.2.3

[81] Microsoft Research. Project Silica. https://www.microsoft.com/en-us/research/
project/project-silica. 8.1

[82] Rodrigo Rodrigues and Barbara Liskov. High availability in dhts: Erasure coding vs.
replication. In Springer International Workshop on Peer-to-Peer Systems (IPTPS), 2005. 7

[83] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif Merchant, and Susan Spence. FAB:
building distributed enterprise disk arrays from commodity components. In International
Conference on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), 2004. 3.1.3

88

https://www.microsoft.com/en-us/research/project/project-silica
https://www.microsoft.com/en-us/research/project/project-silica

[84] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexan-
dros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-
phants: Novel erasure codes for big data. In International Conference on Very Large Data
Bases (VLDB), 2013. 2.2, 2.2.2, 3, 3.1.3, 3.3.2, 7

[85] Bianca Schroeder and Garth A Gibson. Disk failures in the real world: What does an
MTTF of 1,000,000 hours mean to you? In USENIX File and Storage Technologies (FAST),
2007. 2.1.2, 2.4, 7

[86] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale computers.
In Journal of Physics: Conference Series. IOP Publishing, 2007. 7

[87] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding latent sector
errors and how to protect against them. ACM Transactions on Storage (TOS), 2010. 3.1.1,
5.2.4, 7

[88] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Reliability in Production:
The Expected and the Unexpected. In USENIX File and Storage Technologies (FAST),
2016. 1, 7, 8.2.4

[89] Thomas JE Schwarz, Qin Xin, Ethan L Miller, Darrell DE Long, Andy Hospodor, and
Spencer Ng. Disk scrubbing in large archival storage systems. In IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems (MASCOTS), 2004. 7

[90] Seagate. Hard disk drive reliability and MTBF / AFR. http://knowledge.seagate.
com/articles/en_US/FAQ/174791en. 3.1.1

[91] Seagate. The Digitization of the World From Edge to Core. https:
//www.seagate.com/files/www-content/our-story/trends/files/
idc-seagate-dataage-whitepaper.pdf, 2018. 1, 8.1

[92] Nihar B Shah. On minimizing data-read and download for storage-node recovery. IEEE
Communications Letters, 2013. 7

[93] Nihar B Shah, K Vinayak Rashmi, P Vijay Kumar, and Kannan Ramchandran. Dis-
tributed storage codes with repair-by-transfer and nonachievability of interior points on
the storage-bandwidth tradeoff. IEEE Transactions on Information Theory, 2011. 7

[94] Nihar B Shah, KV Rashmi, P Vijay Kumar, and Kannan Ramchandran. Interference
alignment in regenerating codes for distributed storage: Necessity and code construc-
tions. IEEE Transactions on Information Theory, 2011. 7

[95] Sandeep Shah and Jon G Elerath. Disk drive vintage and its effect on reliability. In IEEE
Reliability and Maintenance Symposium (RAMS), 2004. 7

[96] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. The hadoop
distributed file system. In IEEE/NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST), 2010. 1, 2.1.2, 6, 6.1

[97] Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon Chun, Hakim Weatherspoon,
Robert Tappan Morris, M Frans Kaashoek, and John Kubiatowicz. Proactive Replication
for Data Durability. In Springer International Workshop on Peer-to-Peer Systems (IPTPS),

89

http://knowledge.seagate.com/articles/en_US/FAQ/174791en
http://knowledge.seagate.com/articles/en_US/FAQ/174791en
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

2006. 7

[98] Brian D Strom, SungChang Lee, George W Tyndall, and Andrei Khurshudov. Hard disk
drive reliability modeling and failure prediction. IEEE Transactions on Magnetics, 2007.
7

[99] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Zigzag codes: MDS array codes with
optimal rebuilding. IEEE Transactions on Information Theory, 2013. 7

[100] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Access versus bandwidth in codes for
storage. IEEE Transactions on Information Theory, 2014. 7

[101] Martin A. Tanner and Wing Hung Wong. The estimation of the hazard function from
randomly censored data by the kernel method. Annals of Statistics, 1983. A

[102] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie, Dushyanth Narayanan, and Gre-
gory R Ganger. Informed data distribution selection in a self-predicting storage system.
In IEEE International Conference on Autonomic Computing (ICAC), 2006. 7

[103] Kishor Trivedi. Probability and Statistics with Reliability, Queueing, and Computer Science
Applications. Wiley, 2001. 1, 2.2.3, A

[104] Charles Truong, Laurent Oudre, and Nicolas Vayatis. A review of change point detection
methods. In arXiv:1801.00718v1 [cs.CE], 2018. 3.3.1

[105] Charles Truong, Laurent Oudre, and Nicolas Vayatis. ruptures: change point detection
in python. In arXiv:1801.00826v1 [cs.CE], 2018. 3.3.1

[106] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Biren-
jith Sasidharan, P Vijay Kumar, Alexandar Barg, Min Ye, Srinivasan Narayanamurthy,
et al. Clay codes: Moulding {MDS} codes to yield an {MSR} code. In USENIX File and
Storage Technologies (FAST), 2018. 7

[107] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-Leung Tsui. A two-step para-
metric method for failure prediction in hard disk drives. IEEE Transactions on industrial
informatics, 2014. 7

[108] Zhiying Wang, Alexandros G Dimakis, and Jehoshua Bruck. Rebuilding for array codes
in distributed storage systems. In IEEE Globecom Workshops, 2010. 7

[109] Hakim Weatherspoon and John D Kubiatowicz. Erasure coding vs. replication: A quan-
titative comparison. In Springer International Workshop on Peer-to-Peer Systems (IPTPS),
2002. 7

[110] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2006. 1

[111] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-efficient scaling schemes for
distributed storage systems with CRS codes. IEEE Transactions on Parallel and Distributed
Systems, 2016. 7

[112] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. A tale of two erasure
codes in HDFS. In USENIX File and Storage Technologies (FAST), 2015. 7

90

[113] Liping Xiang, Yinlong Xu, John CS Lui, and Qian Chang. Optimal recovery of single
disk failure in rdp code storage systems. ACM SIGMETRICS Performance Evaluation
Review, 2010. 7

[114] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang, Peng
Li, Keceng Jiang, Wenchi Zhang, Jian-Guang Lou, et al. Improving service availability
of cloud systems by predicting disk error. In USENIX Annual Technical Conference (ATC),
2018. 3.2.4

[115] Liuqing Ye, Dan Feng, Yuchong Hu, Xueliang Wei, and Yuzhuo Zhang. STC: Sub-
packetization tunable codes for fast recovery. Journal of Systems Architecture, 2020. 7

[116] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and Pan Zhou. Toward optimal storage
scaling via network coding: from theory to practice. In IEEE Conference on Computer
Communications, (INFOCOM), 2018. 7

[117] Zhe Zhang, Andrew Wang, Kai Zheng, G Uma Maheswara, and B Vinayakumar. Intro-
duction to hdfs erasure coding in apache hadoop. blog.cloudera.com, 2015.

[118] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng. Predicting disk failures with
HMM-and HSMM-based approaches. In Springer Industrial Conference on Data Mining
(ICDM), 2010. 7

[119] Weimin Zheng and Guangyan Zhang. Fastscale: accelerate RAID scaling by minimizing
data migration. In USENIX File and Storage Technologies (FAST), 2011. 7

[120] Bingpeng Zhu, Gang Wang, Xiaoguang Liu, Dianming Hu, Sheng Lin, and Jingwei Ma.
Proactive drive failure prediction for large scale storage systems. In IEEE/NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), 2013. 3.2.4

91

	1 Introduction
	1.1 Goals
	1.2 Contributions

	2 Background and motivation
	2.1 Overview of cluster storage systems
	2.1.1 Hard disk drives are the primary storage devices
	2.1.2 Disk failures are common

	2.2 Data reliability is achieved using data redundancy
	2.2.1 Replication
	2.2.2 Erasure coding
	2.2.3 Metrics of data reliability

	2.3 Characterizing disk reliability over lifetime: the disk bathtub curve
	2.4 Scheme selection problem for scalable storage

	3 A case for disk-adaptive redundancy
	3.1 Identifying the opportunity
	3.1.1 The Backblaze dataset
	3.1.2 Disk group formation and varying AFRs
	3.1.3 Making the case for disk-adaptive redundancy

	3.2 The Heterogeneity-Aware Redundancy Tuner (HeART)
	3.2.1 Challenges
	3.2.2 HeART architecture
	3.2.3 Online anomaly detection
	3.2.4 Online change point detection

	3.3 Evaluating the HeART
	3.3.1 Implementation of the components
	3.3.2 Evaluation on the Backblaze dataset
	3.3.3 Sensitivity analysis

	4 Disk reliability analysis in production environments
	4.1 Longitudinal disk reliability datasets
	4.2 Observations and insights
	4.2.1 Useful life AFRs are wildly heterogeneous
	4.2.2 Disks have two distinct deployment patterns
	4.2.3 AFRs rise gradually over time with no clear wearout
	4.2.4 Useful life could have multiple phases
	4.2.5 Infancy often short-lived

	5 Combating transition overload in disk-adaptive redundancy systems
	5.1 Identifying and quantifying transition overload
	5.1.1 Transition overload patterns
	5.1.2 Simple re-encoding cannot reduce transition overload

	5.2 Pacemaker: eliminating transition overload
	5.2.1 Disk lifecycle under Pacemaker
	5.2.2 Key decisions
	5.2.3 Constraints
	5.2.4 Designing IO constraints on transitions
	5.2.5 Design goals

	5.3 Design of Pacemaker
	5.3.1 Proactive-transition-initiator
	5.3.2 Rgroup-planner
	5.3.3 Transition-executor

	5.4 Evaluating Pacemaker
	5.4.1 Pacemaker on Google Cluster1 in-depth
	5.4.2 Pacemaker on the other three clusters
	5.4.3 Sensitivity analyses and ablation studies

	6 Realizing disk-adaptive redundancy in practice
	6.1 Background on HDFS architecture
	6.2 Incorporating Pacemaker in HDFS
	6.2.1 Realizing Dgroups in HDFS
	6.2.2 Realizing Rgroups in HDFS
	6.2.3 Incorporating the transition-executor in HDFS
	6.2.4 Purging Rgroups
	6.2.5 Implementing Pacemaker's IO constraints in HDFS
	6.2.6 Evaluating Pacemaker equipped HDFS
	6.2.7 Salient features of this architecture

	6.3 Guidelines for designing future disk-adaptive redundancy systems
	6.3.1 Decoupling the data reliability target from the data redundancy target
	6.3.2 Enhanced reliability monitoring mechanisms
	6.3.3 Elevating the role of the redundancy management module
	6.3.4 Maintaining separation between file, block and storage layers
	6.3.5 Incorporating disk-adaptive redundancy awareness in existing components

	7 Related work
	8 Conclusion and future directions
	8.1 Conclusions
	8.2 Future work
	8.2.1 Scheduling background work better
	8.2.2 Deeper understanding of disk failure rates
	8.2.3 Incorporating availability in disk-adaptive redundancy
	8.2.4 Adaptive redundancy is not restricted to HDDs

	A Failure rate estimation details
	Bibliography

