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Abstract
Many large-scale computations are nowadays computed using several processes,

whether on a single multi-core machine, or distributed over many machines. This
wide-spread use of concurrent and distributed technology is also driving innovations
in their underlying hardware. To design fast and correct algorithms in such settings,
it is important to develop a theory of concurrent and distributed computing that is
faithful to practice. Unfortunately, it is difficult to abstract practical problems into
approachable theoretical ones, leading to theoretical models that are too far removed
from reality to be easily applied in practice.

This thesis aims to bridge this gap by building a strong theoretical foundation
for practical concurrent and distributed computing. The thesis takes a two-pronged
approach toward this goal; improving theoretical analysis of well-studied settings,
and modeling new technologies theoretically.

In the first vein, we consider the problem of analyzing shared-memory concur-
rent algorithms such that the analysis reflects their performance in practice. A new
shared memory model that accounts for contention costs is presented, as well as a
tool for uncovering the way that a machine interleaves concurrent instructions. We
also show that the analysis of concurrent algorithms in more restricted settings can
be easy and accurate, by designing and analyzing a concurrent algorithm for nested
parallelism.

The second approach explored in this thesis to bridge the theory-practice gap
considers and models two emerging technologies. Firstly, we study non-volatile
random access memories (NVRAM) and develop a general simulation that can adapt
many classic concurrent algorithms to a setting in which memory is non-volatile and
can recover after a system fault. Finally, we study remote direct memory access
(RDMA) as a tool for replication in data centers. We develop a model that captures
the power of RDMA and demonstrate that RDMA supports heightened performance
and fault tolerance, thereby uncovering its practical relevance by formally reasoning
about it theoretically.
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Chapter 1

Introduction

As Moore’s law comes to an end, the continued advancement of computation increasingly relies
on the use of multiple processes. Nowadays, most phones and laptops have multiple CPUs, and
many large-scale computations are computed using several machines. We depend on multipro-
cess computation for the speed, reliability, and scalability we have grown to expect from our
day-to-day interactions with computers.

Multiprocess settings can be broadly divided into two categories; concurrent systems, which
handle the interaction of multiple processes on the same machine, and distributed systems, which
deal with communication among several machines. These two settings are generally modeled
differently, according to how processes communicate with each other; the shared-memory model
handles concurrent settings in which processes communicate by writing and reading from the
same memory, and the message-passing model is considered for settings in which processes
send each other messages, usually when distributed across separate machines. In either case,
however, many of the same challenges arise; different processes often operate at different speeds,
with the possibility of experiencing independent failures. Therefore the communication between
processes often lacks full information, as it is difficult to distinguish between a process that
is slow and a process that has experienced a fatal crash, and total order among the operations
of different processes is impossible to establish. Despite these challenges, it is of the utmost
importance to understand how to best use the multiprocess technology available to us, to continue
to improve computations that rely on concurrent and distributed settings.

To achieve such an understanding, concurrent and distributed computing have been studied
both in theory and in practice for decades. On the theory side, clean models have been developed
to abstract away messy details and help reason about multiprocess executions [76, 110, 116, 119,
131, 150, 155]. Many efficient algorithms, as well as impossibility results, have been estab-
lished with the help of this theoretical reasoning [29, 51, 77, 149]. On the practical side, decades
of studies, work, and expertise have yielded highly efficient libraries of concurrent data struc-
tures [144, 199, 231, 232]. In fact, such results have not been achieved in isolation, and the field
has greatly benefited from the mixing of theoretical and practical ideas. However, significant
gaps between theory and practice are still left unaddressed.

Key features are lost in the abstraction of real hardware into a theoretical model, and the-
oretical results can therefore often miss crucial practical considerations. For example, existing
theoretical models have difficulty capturing the running time of concurrent algorithms, and do
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not distinguish between different types of hardware that can greatly increase the space of possi-
ble algorithmic designs. Furthermore, lack of a theoretical understanding of new and developing
hardware features has led to missed opportunities in system design [13, 14].

In this thesis, we aim to bridge the gap between theory and practice in concurrent and dis-
tributed computing. Broadly speaking, we take two approaches to achieving this goal. Firstly,
we study classic concurrent architectures that have already been modeled in the literature for
decades, and refine the known model to allow for more accurate analysis of concurrent algo-
rithms. A known drawback of the classic shared-memory model is that, while it allows de-
veloping robust algorithms that are provably correct under any possible scenario, analyzing the
running time of these algorithms is extremely difficult. In fact, most works, after rigorously
proving an algorithm correct, evaluate its efficiency through empirical analysis alone [111, 112,
144, 235, 274]. It has been noted that relying so heavily on empirical analysis can lead to false
conclusions or to missed problematic scenarios unless done with extreme care [145]. We there-
fore aim to facilitate the theoretical analysis of running time for shared-memory algorithms. We
take a few approaches toward this goal; we first present a model that separates different causes
of asynchrony in the system, and we show that this model allows analyzing a protocol known as
exponential backoff, which was never analyzed in shared memory before. Secondly, we develop
a tool for viewing the behavior of concurrent executions on modern machines, thereby allowing
us to study these executions and learn important patterns. Finally, we show that analysis is some-
times possible using the classic model if we consider the context in which an algorithm is run. In
particular, we show that in a nested parallel computation, which imposes some structure on the
concurrent execution, it is possible to design and analyze provably efficient algorithms.

To be able to have theory that is meaningful in practice, it is important to model the real
capabilities of the hardware. However, this can be surprisingly challenging, since hardware is
ever changing and developing. Some technological advancements not only improve the speed of
processing power and memory, but fundamentally change the system behavior, or introduce new
possibilities altogether. Failing to model useful features of hardware can result in researchers
overlooking opportunities that these technologies can offer.

Our second approach to bridging the theory-practice gap therefore considers modeling emerg-
ing hardware that has features that were not accounted for in classic theoretical work. We focus
on two such technologies; non-volatile random access memory (NVRAM), and remote direct
memory access (RDMA).

NVRAM is a new memory technology that provides persistence at speeds comparable to
DRAM. It opens the potential to design persistent data structures that are much faster than the
ones that exist today, which normally rely on much slower disk technology. However, NVRAM
also opens up new challenges, since it cannot make caches persistent, meaning that simply run-
ning a concurrent algorithm in a system with NVRAM would lose any data stored on cache
upon a system fault. Care must be taken in designing algorithms that store enough data on main
memory to be able to recover after such a fault despite losing some data. NVRAM has been
heavily studied in recent years [44, 56, 60, 80, 89, 92, 136, 166, 201, 202]. We discuss models
for NVRAM [30, 59, 166], and present the first general simulation result that can convert any
concurrent algorithm designed in the classic shared-memory model into an algorithm that uses
NVRAM and can recover after a fault.

RDMA is a communication technology among machines in a data center that allows different
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machines to access each other’s memory without involving the host CPU. This capability is akin
to supporting shared-memory accesses among processes that normally communicate by sending
messages over a network. Communication over RDMA is also significantly faster than TCP/IP.
Given these features, RDMA-based systems have received considerable attention in recent years,
with fast RDMA-based distributed key-value stores and state machine replication systems being
designed [41, 106, 107, 170, 172, 173, 183, 250, 279]. We present the first theoretical model
that captures RDMA’s capabilities, and prove that it can enhance the fault tolerance of systems
that use it, as well as reduce the number of network round trips of communication required to
solve agreement problems among processes. We present several results that focus on scalability,
fault tolerance, and performance of agreement tasks. Finally, we use some of the ideas from
the theoretical work to build a state machine replication system that is faster than all previously
known systems, both in the common case and when handling failures. This therefore supports
the message of this thesis, that theoretical understanding of a problem can lead to better solutions
in practice.

The thesis is organized into three parts. The first presents new ways of analyzing concurrent
algorithms on classic hardware, the second studies NVRAM, and the third presents our contri-
butions on modeling and using RDMA. In the remainder of this chapter, we briefly summarize
the results of each part, and then discuss some preliminaries that are needed to understand the
technical contributions presented in the thesis.

1.1 Part 1: Contention in Shared Memory
The behavior of concurrent shared memory is difficult to predict. There are many factors that may
affect the performance of a given concurrent algorithm; from the number of processors available,
to the structure of the memory hierarchy, and even to how busy the machine is. It is fair to assume
that every time a concurrent algorithm runs, its behavior will be different. To reason about such
a chaotic setting, theoreticians often abstract away these concerns by considering an omnipotent
adversarial scheduler that determines the order of events in the system. A bound or a proof of
correctness must then hold under any schedule that the adversary chooses. In this way, we can
guarantee that any real execution will be at least as good as the theoretical bounds.

However, as it turns out, the theoretical guarantees that can be derived under such an adver-
sarial model are too pessimistic, and often fail to accurately represent observed behavior. For
example, a common class of concurrent algorithms, known as lock-free algorithms, provides
system-wide progress, but cannot guarantee that any specific process will succeed in its oper-
ations. Interestingly, these are often the algorithms of choice in practice; despite their weak
theoretical progress guarantees, they perform quite well in the majority of systems, displaying
quick progress for all participating processes.

This is reminiscent of the gap between theory and practice in other areas of computer sci-
ence. For example, many problems, like SAT solving and clustering, are known to be NP-hard,
but are solved efficiently by practitioners every day. To explain this, a different approach in the-
oretical computer science, known as Beyond Worst Case Analysis [257], restricts the allowable
inputs or input distributions. In concurrency, the difficulties stem from the worst-case adversarial
scheduler, so a ‘beyond worst case’ approach in concurrency means restricting the power of the
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scheduler.
For example, some work aims to relax the adversarial scheduling assumptions by replacing

the adversary with a random scheduler [15, 16], which picks the next process to take a step
according to some predetermined distribution over the processes. However, since real systems
are not actually random, such models can misrepresent the schedules that are likely to arise in
practice. Furthermore, even random schedulers cannot explain some basic practical phenomena
that stump adversarial analysis.

1.1.1 Analyzing Backoff
An interesting example of practical algorithms whose success cannot be explained by existing
models is in algorithms using exponential backoff. Backoff protocols, in which processes wait
for increasing amounts of time before retrying a failed operation, are known to significantly
improve the performance of many concurrent algorithms in practice [20, 148]. The idea behind
backoff is to reduce contention; when many processes attempt to access the same memory at
the same time, they are all delayed, and most of the attempted accesses fail. By waiting before
retrying, a process is less likely to encounter contention again in its next attempt. However, while
backoff is well understood in other settings [33, 52, 54, 117], shared-memory adversarial models
cannot explain the practical advantages that backoff brings. An adversary could simply stall all
processes until they all complete their backoff, and then proceed as if the backoff protocol were
not there at all. Random schedulers have also so far failed to model the possibility that a process
might prevent itself from participating in the protocol for a certain amount of time.

In Chapter 2, we address this issue by restricting the power of the scheduler in a different
way. The first step in finding the right restrictions is to understand what causes asynchrony in
the first place. The delays experienced by a process in a real system can be roughly divided into
three categories; the system delays, caused by interrupts, the hardware delays, caused by cache
coherence protocols and contention, and self-imposed delays, in which the algorithm itself waits,
as is done in backoff protocols. Usually, all of these concerns are grouped into one, and modeled
as the adversary; in our work, we separate them.

We define a modular model, in which at any point in time, each process belongs to exactly one
of three sets, corresponding to the source of the delay it is experiencing. Processes move from
one source of delay to another as they progress in the execution of their instructions, starting
at self-delay before they begin executing a shared instruction, moving to system delay once
a new instruction is invoked, then hardware delay as their instruction is being executed, and
finally moving back to self-delay after they complete an instruction. Different policies govern the
movement of processes among each of the categories of delay; if an adversary controls all three
categories, this model boils down to the classic adversarial scheduler. However, the adversary
can also be restricted to control just some of these categories, or can be given different power in
each.

For the purpose of our analysis in Chapter 2, we instantiate the modular model with the
following simple policies. Processes in the self-delay category control their own movement into
the system-delay category; they move there whenever they invoke a new instruction. We let an
adversary control the movement of processes from the system delay to the hardware delay. For
hardware delays, we define conflicts between process instructions, and assume a FIFO priority
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order; in every time step, every process p that does not conflict with anyone that started its
hardware delay before p gets to complete its instruction and move back to the self-delay category.
We say two instructions conflict if and only if they access the same location and one of them
intends to modify that memory location.1

In real machines, the hardware delay stage blocks the process; it cannot do anything else
while it experiences hardware delays due to contention. Thus, we charge the time a process
spends in the hardware delay phase as work that the process was forced to do. The total work
of an algorithm is calculated as the sum over all time steps of the number of processes in the
hardware delay phase. We describe this model in more detail in Section 2.2.

We show that with this restriction on the allowable schedules, we can now analyze what has
evaded rigorous characterization in the past; we provide the first analysis of backoff protocols in
shared memory. In particular, we consider a simple contended scenario; n processes attempt to
update the same location, each repeatedly trying until the first time it succeeds. We show that
this simple protocol costs Ω(n3) total work until all processes terminate if no backoff is used.
However, if classic exponential backoff is applied, then Θ(n2 log n) work suffices. Thus, we are
able to capture a theoretical separation between the naïve protocol and one that uses backoff.

Equipped with this insight, we then present a new backoff protocol that achieves better per-
formance under our model than classic exponential backoff. The idea of this protocol is to make
use of read instructions, which cause less conflicts and therefore spend less time in the hardware
delay phase, to gauge the amount of contention in the system. In every new iteration of the proto-
col, a process flips a coin to determine whether to try to update the memory location or to simply
read it. Its probability for heads is then adjusted depending on what it observed when accessing
that location. We show that this simple idea improves on the work bound for this protocol; our
algorithm, called adaptive probabilities, allows all processes to successfully update the same
memory location within O(n2) work.

1.1.2 Measuring Real Schedules

The hardware delays that lead to contention are poorly understood, and can actually differ de-
pending on the architecture on which an algorithm is run. While the hardware-delay policy we
used in Chapter 2 provides one general way to model these delays, we could benefit from hav-
ing a deeper understanding. Such an understanding could directly lead to better analyses, by
abstracting it into a contention model and plugging it into the modular framework of Chapter 2.

To address this need, in Chapter 3 we present a tool, called Severus, that helps to view and
analyze schedules produced by real hardware executions [50]. A user can run this tool on their
own machine, and use the results to tailor their model assumptions to that machine to arrive at
better predictive models. Through the development of this tool, and by analyzing the schedules
of different machines, we also uncovered phenomena that are counter-intuitive, and were not
documented before. In particular, we study contended executions on non-uniform memory ac-
cess (NUMA) architectures. In NUMA architectures, which are now commonplace, cores are

1This conflict definition reflects cache coherence protocols, which allow a memory location to be held in ‘shared
mode’ by several processes at once if they are all just reading the memory, but requires ‘exclusive mode’ for any
process whose instruction will modify that location. Similar conflict models have been used in the past [116].
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organized into groups called nodes, and each node has cache as well as main memory. All cores
can access all shared caches and memory, through an interconnect network between the nodes.
However, accesses to cache and memory in a core’s own node (local accesses) are faster than
accesses to the cache or memory of a different node (remote accesses).

We run Severus on two different NUMA machines; the first is an AMD machine with 8
NUMA nodes, and the second is an Intel machine with 4 NUMA nodes. Each machine employs
a different cache coherence protocol. Interestingly, we show that, while the machines exhibit
seemingly very different scheduling patterns, some key phenomena remain the same. For ex-
ample, we show that in highly-contended workloads, a process’s throughput increases when it
accesses memory that is physically far from it (i.e., on a different NUMA node, thus requiring
a higher latency). We also show that in general, regardless of how long an execution is run, the
schedules on both machines are not fair, i.e., some processes are perpetually biased against, and
get less opportunities to modify a contended memory location.

Creating a tool such as Severus is highly non-trivial. The difficulty can be thought of as a
Schrodinger’s Cat problem; the mere act of trying to observe the schedule of concurrent oper-
ations can significantly perturb it. Indeed, accessing a global timestamp to indicate the order
of instructions can take tens of nanoseconds (whereas faster instructions take just a handful of
nanoseconds) and can be highly contended. Thus, the order of instructions as documented by
any timestamping mechanism is not very reflective of the order that would have occurred without
the timestamps. We carefully avoid this problem by using the values that processes write into the
contended memory itself to establish order; each process writes its own id, and uses a local log
to document the id that was in the memory each time it reads that location. We later reconstruct a
global ordering by merging the local logs. We believe that this work can lead to an understanding
of how contention truly affects workloads, and can allow us to abstract our observations into an
accurate contention model.

1.1.3 Leveraging Structure in Nested Parallel Programs
In Chapter 4, we take a different approach for improving the analysis of concurrent algorithms.
We note that sometimes, understanding the underlying hardware and modifying the model ac-
cordingly isn’t necessary for achieving meaningful analyses of concurrent algorithms; there may
be other factors that limit the possible schedules that an algorithm must handle. Although con-
current shared memory can be chaotic and difficult to model, sometimes we use concurrent
algorithms in a context that is more structured.

As a concrete example, consider concurrent algorithms that are used within a nested paral-
lel program. Nested parallelism is widely used in many systems to take advantage of inherent
parallelism in a task, and is broadly available in a number of modern programming languages
and language extensions [79, 120, 124, 159, 161, 181, 199, 203]. In a nested parallel program,
new parallel tasks can be created and removed using programming primitives, which govern the
number of processes that may participate in the execution; fork and async create new parallel
tasks, allowing new processes to join the computation to execute these tasks. Similarly, the join
and finish primitives represent synchronization points, where parallel tasks are merged, termi-
nating the processes that executed them. In this way, these programs impose a structure of their
own on a concurrent execution.
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Nested parallel computations can be modeled by a series-parallel directed acyclic graph, or
sp-dag, where the vertices represent parallel tasks, and edges represent dependencies between
them. A task cannot be executed unless all tasks that it depends on have completed; that is, all
vertices with edges into a vertex v must complete their execution before v can begin. To effi-
ciently run a nested parallel computation, an efficient sp-dag data structure must be implemented,
which allows creating new tasks and keeping track of the number of dependencies remaining on
each task.

In Chapter 4, we design an sp-dag structure that, when used in nested parallel programs,
guarantees that all operations on it complete in amortized constant time, even when accounting
for contention. Such a result was not known before; indeed, there was reason to believe that
this would be impossible. The key algorithm behind an sp-dag data structure is a concurrent
counter for the remaining dependencies on each vertex. This counter should be incremented
by different processes when new dependencies are spawned, and decremented when dependent
tasks are completed. However, there is a known lower bound showing that, when accounting for
contention, any concurrent counter among n processes requires Ω(n) stalls for some process p.
That is, in any execution, for some process p, Ω(n) processes must access the same location as p
since p executed its previous instruction [116].

Crucially, for sp-dags, we do not need the full interface of a counter. In particular, the impor-
tant part is only to know when a vertex in the dag has zero dependencies remaining, but we do
not care about the precise count at all times. This allows us to circumvent the lower bound and
use a data structure known as a scalable non-zero indicator (SNZI), which only gives an indica-
tion of whether or not the current count on it is zero [111]. While the SNZI data structure was
previously introduced as a way to reduce contention when implementing counters, no contention
analysis was provided. In Chapter 4, we extend and modify the original SNZI data structure and
show that, when used in an sp-dag for nested parallel computations, our version of it guarantees a
constant amortized number of contention stalls per increment and decrement. This data structure
is the key component that makes our larger sp-dag data structure achieve these guarantees.

The work presented in Chapter 4 highlights the importance of remembering the context in
which an algorithm will be run when designing and analyzing it.

1.2 Part 2: Non Volatile Memory
The theory of multiprocessor systems not only needs to accurately reflect technology that has
existed for many years, but also must adapt to changing features. In Part II of this thesis, we
consider non-volatile random access memory (NVRAM) and use theoretical models to find con-
structions that make use of its new features to improve concurrent algorithms.

NVRAM refers to a class of new main memory technologies that offer byte-addressable
persistent memory at speeds comparable with DRAM. That is, upon a system fault (e.g., loss of
power) in a machine with NVRAM, data stored in main memory will not be lost. This in contrast
to previous non-volatile disks, which are around 3 orders of magnitude slower to access, and are
accessed at a much coarser granularity. NVRAM now co-exists with DRAM on the newest Intel
machines, and may largely replace or augment DRAM in the future. Thus, NVRAM yields
a new model and opportunity for programs running on such machines—we could potentially
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persist programs and data significantly faster than before.
However, without further technological advancements, caches and registers are expected to

remain volatile, losing their contents upon a crash. This creates a challenge when programming
with NVRAM for persistence. Simply running a program that was built for DRAM on NVRAM
does not make it able to recover after a system fault, since some of its data would have been
stored on registers and cache, and would therefore be lost. Furthermore, running programs built
for persistence on disk doesn’t work either; many updates can be done atomically on disk because
of its the block-granularity, and updates never unintentionally overwrite its previous contents.
This is not the case on NVRAM. Thus, the key question remains—how can we take advantage
of persistent main memory to make a program recover after a fault?

There has been a surge of recent work designing algorithms and transactional memories that
use NVRAM to recover after a system fault [74, 89, 92, 100, 122, 219, 278]. Redesigning
programs to be persistent involves two parts; first, we must ensure that the state of memory after
a fault is consistent, that is, could have resulted from an execution without a fault. However, even
if the state of main memory is consistent, this might not be enough to be able to continue the
execution after the system faults. In particular, when a program runs, it relies on key data like
the program counter and the return value of function calls to determine what to do next. If this
information is lost, the program cannot continue. Therefore, the second component for making
programs persistent is ensuring that programs can continue their execution approximately where
they left off.

In general, keeping the memory in a consistent state can be easy; for lock-free algorithms,
for example, it is enough to flush every memory location accessed, immediately after accessing
it [166]. However, we should aim to minimize injected flush instructions, since flushes are
notoriously expensive. Nevertheless, we must be careful not to flush too little, since this can
lead to an inconsistent state of memory, from which it is impossible to recover after a crash. The
problem of flushing just enough to maintain correctness has been the subject of significant work
in recent years [89, 100, 122, 123, 202].

1.2.1 Delay-Free Persistent Simulations
In Chapter 5, we focus on addressing the second issue; how to ensure that we can continue the
execution of a persistent program after a system fault, even if we can ensure that the state of
memory is consistent. To decouple the two concerns, we adopt the Parallel Persistent Memory
(PPM) model of Blelloch et al. [59]. This model assumes that all shared memory accesses are
done directly on persistent memory, thereby guaranteeing that the memory is in a consistent state
at all times. However, the model assumes that each process owns a private ephemeral memory
that, like caches and registers on real machines, loses its contents upon a fault. The process
can write any local variables on its ephemeral memory, and register values like the program
counter and return values of shared-memory instructions are stored on its ephemeral memory.
The process can decide to persist values in its ephemeral memory by writing them on persistent
memory.

The problem of continuing the execution after a fault can be challenging, especially in the
concurrent setting. Concurrent algorithms are designed under the assumption that each instruc-
tion in them is executed exactly once. Repeating an instruction or skipping it altogether can
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easily damage the safety of an algorithm. Furthermore, when designing persistent algorithms
that can continue executing after a fault, it is desirable to minimize the changes that are made;
decades of research into concurrent algorithms have led to designs that are highly optimized. It
is therefore preferable to keep the old algorithms as a base, and change their structure as little as
possible.

Our approach to solving this problem is to create persistent linked simulations, which replace
each instruction of the original non-persistent version of an algorithm with a simulation that has
the same effect. This helps maintain the original algorithm’s structure. The simulation ensures
that instructions are only repeated after a fault if it is safe to do so. Our main result is showing that
for any concurrent program written with compare-and-swap (CAS) and read instructions, there
is a simulation of it that introduces only constant overhead, and allows recovering to the same
place in the execution within a constant number of steps. That is, our simulations are virtually
delay free. We also show how to optimize this simulation to be efficient in practice, by reducing
the overhead as much as possible.

1.3 Part 3: Remote Direct Memory Access
Another interesting technology that offers non-traditional features is Remote Direct Memory
Access (RDMA). Although RDMA has been available for a while, it has mostly been used just
for high performance computing, and has only recently been adopted in data centers. RDMA
allows fast read and write access to a remote machine’s memory by bypassing the remote CPU.
Given this capability, researchers are working on understanding how to best use RDMA for fast
communication. Many recent papers in the systems community have shown large performance
benefits gained by replacing standard messaging technology with RDMA-based versions [42,
106, 171, 173, 250, 279]. However, it has so far been unclear whether these speedups are due
to a fundamental difference between RDMA and previous hardware generations. In fact, recent
work has shown that classic messaging remote procedure calls can be adapted to achieve almost
the same performance as new RDMA-based algorithms [174].

In Part III of the thesis, we make steps towards a theoretical understanding of RDMA technol-
ogy. Notably, this part of the thesis departs from the concurrent shared-memory setting in favor
of a distributed setting in which processes are on physically separate machines. Such a setting is
usually modeled with message passing, where processes communicate by sending and receiving
messages over an asynchronous network. However, RDMA challenges this assumption, since it
allows processes to also communicate via direct memory accesses. We therefore first focus on
faithfully modeling RDMA’s capabilities.

When designing a new theoretical model, it can be difficult to decide what details to account
for, and which ones should be ignored in the name of keeping the model clean, intuitive, and use-
ful. In this thesis, we focus on modeling the shared-memory power of remote memory accesses,
as well as some other key features: RDMA’s ability to dynamically open and destroy connec-
tions, its secure nature, and the cost of maintaining multiple connections. We assume we have
a fully-connected message-passing network, on top of which we are allowed to pick shared-
memory edges (representing RDMA links) to add, thus making it a hybrid network. We also
allow algorithms to specify different access permissions to different parts of the memory, and
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to change the shared-memory edges dynamically. We call this model the message-and-memory,
or M&M, model, as it unites two very well studied communication models from the literature;
message passing and shared memory. Interestingly, the simplicity of the M&M model means that
it can be applicable not only to RDMA, but to several other memory and message technologies,
including disaggregated memory and GenZ.

Using the M&M model, we show that there is a fundamental advantage to using an RDMA
network over message-passing-only networks. We do so by considering the classic consensus
problem as a lens through which to study RDMA. In consensus, the goal is for several processors
to agree on the same output, despite network asynchrony and the possible failures of some of
the processes. Well known bounds have shown that in message passing, consensus cannot be
solved if half or more of the processes in the network have crashed, or if a third or more of the
processors in the network experience Byzantine failures (i.e. behave maliciously). In Chapters 7
and 8, we present algorithms in the M&M model that solve consensus in a more fault-tolerant
manner; we can tolerate more than half of the network processes crashing, and more than a third
of the network processes being Byzantine. The focus of these two chapters is slightly different,
with Chapter 7 considering how to use RDMA while scaling to large networks, and Chapter 8
focusing on harnessing the full power RDMA can bring to a small well-connected network.

1.3.1 Scaling to Large Networks
In Chapter 7, we consider how to increase the fault tolerance of consensus algorithms in large
message-and-memory networks.

Shared-memory systems have worse scalability than message-passing systems due to hard-
ware limitations. For example, a typical shared-memory system today has tens to thousands of
processes, while message-passing systems can be much larger (e.g., map-reduce systems with
tens of thousands of hosts [102], peer-to-peer systems with hundreds of thousands of hosts, the
SMTP email system and DNS with hundreds of millions of hosts, etc). This limitation is also
apparent in RDMA networks. If a single node in the network maintains many open RDMA
connections, significant slowdowns can be observed for RDMA operations on that node.

To model efficient networks with many nodes, we therefore think of an RDMA-enabled sys-
tem as a system in which all machines can communicate with each other over message passing
(all-to-all links), but only subsets of the system can share memory. Under this model, we con-
sider the problem of crash-tolerant consensus, and show that even with a few shared-memory
connections, consensus can be solved with higher fault tolerance than is achievable with mes-
sage passing alone.

Our approach is to first show a consensus algorithm that operates on an M&M network, mak-
ing use of shared-memory edges that are available, but which guarantees correctness regardless
of how many shared-memory connections it has. The key insight is that shared memory can
solve crash-tolerant consensus in a system where arbitrarily many processes may fail, whereas
message-passing networks require a majority of the processes to be active. We therefore run a
message-passing algorithm in the network, but have each process run a shared-memory consen-
sus algorithm with its shared-memory neighbors in each round to agree on their values. Each
process then sends not only its own message, but also the messages of its neighbors.

Thus, the fault tolerance of our algorithm depends on the shared-memory connections of
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the graph. In particular, we show that the fault tolerance achieved in a given M&M network G
depends on the vertex expansion ratio of G. The vertex expansion ratio of a graph is a measure
of how well connected the graph is. There are known graph constructions that guarantee high
vertex expansion and low maximum degree. Thus, using such a construction to choose the
shared-memory connections in an M&M network yields a highly fault tolerant, highly scalable
consensus algorithm.

1.3.2 Dynamic Permissions in Small Networks
In Chapter 8, we focus on small networks that can handle all-to-all RDMA connections with-
out slowdowns. We consider the power that RDMA can bring not only from simply sharing
memory, but also from its ability to provide dynamic access permissions to different parts of the
memory. We show that RDMA can improve the fundamental trade-off between fault tolerance
and performance that exists in message-passing and shared-memory algorithms.

In particular, each process in an RDMA network can divide its memory into regions, and
can choose, for each region r and each process p in the system, whether to give read access,
write access, both, or neither for p to access r. We study how this feature helps in solving
two variants of consensus; a crash-tolerant version like the one considered in Chapter 7, and a
Byzantine-tolerant version, which tolerates processes that become malicious and actively try to
break the protocol. For both types of consensus, we consider two metrics; the number of process
failures that can be tolerated, and the best-case, or common-case, running time that is achievable.
Common-case running time is a measure of how quickly a process can reach a decision in an
instance of consensus in an execution in which no failures happen and messages are synchronous.
However, the protocol must be able to tolerate failures and asynchrony, and can’t know a priori
that it will be experiencing a good run. This way of measuring the performance of a consensus
algorithm is important in practice, since, while protocols must be designed to tolerate worst-case
conditions, most of the time the network is well-behaved.

We show that dynamic permissions in RDMA can be leveraged to achieve better common-
case performance than what is possible in shared memory systems, while achieving better fault
tolerance than what is possible in message-passing systems. This is true for both the crash-
tolerant and the Byzantine-tolerant versions of the problem. That is, RDMA can leverage its
shared memory and permission features to get the best of both worlds between shared memory
and message passing.

More specifically, we measure common-case running time by the number of network delays
it takes until the first process reaches a decision on the consensus value. A network delay is the
amount of time it takes for a message sent by some process p to be received by some process q.
Since the network might be asynchronous, the actual time a single network delay takes may vary
greatly. However, network delays give a good way to measure the amount of communication
required in a protocol, without relying on specific network parameters.

For Byzantine-tolerant consensus, we show that it is possible to have an algorithm that toler-
ates f Byzantine failures in a system with n ≥ 2f + 1 processes, that reaches it decision withing
two network delays. The best possible solution in message passing can only work in a network
with n ≥ 3f + 1 processes, and can reach its decision also within two network delays [31]. In
shared memory, it was not known how to solve Byzantine consensus. We show it is possible to
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solve with n ≥ 2f + 1, but would require at least four network delays. Similarly, for crash-
tolerant consensus, we present an algorithm in the M&M model that tolerates f < n failures
and terminates in two network delays in the common case. This matches the best possible fault
tolerance of shared memory and the best possible performance of message passing, while each
of the classic model cannot match our algorithm in the other metric.

For both crash- and Byzantine-tolerant consensus, the key to achieving this high common-
case performance is the ability to dynamically change permissions. In both, this ability is used
to give exclusive write access to some memory region to a single process at a time. That process
is considered the leader while it holds the exclusive write permission. If the leader is suspected
by some other process to have failed, its exclusive permission is revoked. However, if not, the
leader can reach a decision very quickly, as long as it succeeds in writing its value without its
permission being revoked.

Thus, in Chapters 7 and 8, we prove that RDMA is indeed more powerful than classic com-
munication primitives, thereby giving strong motivation to continue to use and develop RDMA
technology. Follow-up work uses insights from the results presented in Chapter 8 to design a
state machine replication system that significantly outperforms competitors [14].

1.3.3 State Machine Replication with RDMA
In Chapter 9, we put our theory to the test, and implemented an RDMA-based state machine
replication (SMR) system using the ideas developed in our theoretical work. In particular, in
Chapter 8, we showed that crash-tolerant consensus can be solved in RDMA in two network
delays, which can also be thought of as a single round trip, in the common case. We use this
insight to guide our design of the SMR system.

To understand SMR, consider the following client-server setting: a server maintains a state
machine, and handles client requests in the form of state machine operations. The server orders
client requests and executes them on the state machine, replying to the client with the output of
their state machine operations. In this setting, if the server experiences a failure or slowdown,
the entire system becomes unavailable, with client requests going unanswered, until the server
is recovered. In many applications, the risk of long periods of unavailability is too high. In
such cases, state machine replication (SMR) is often implemented to boost availability. The
idea behind SMR is to have not one, but several servers, which replicate client requests among
themselves and coordinate to agree on the order in which these requests should be serviced.
Then, each server locally keeps an up-to-date copy of the state machine. Now, if one server fails,
the other servers can take over the execution, masking most of the recovery time from the client.

At its core, an SMR system relies on a consensus protocol that is executed among the servers
to agree on requests. This is where insights from our theoretical work comes in, since we studied
consensus in RDMA and understood how to design a highly efficient algorithm in Chapter 8.

However, unlike the single-shot consensus protocol presented in Chapter 8, an SMR consen-
sus protocol is long-lived. That is, instead of agreeing on a single value, the consensus protocol
is continuously used to agree on consecutive values as more requests enter the system. While a
single-shot consensus protocol can be repeatedly used to implement a long-lived version, such
an approach neglects many opportunities to optimize along the way. Furthermore, while the con-
sensus algorithm of Chapter 8 only ensured that the first process reach a decision quickly, in an
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SMR system, it is important that all processes know the decision value and update their state
machines accordingly. The protocol used for Mu, the SMR system in Chapter 9, therefore uses
insights from the theoretical work, but is carefully designed to optimize for practical concerns.

Indeed, we optimize Mu not only for common-case executions, in which we ensure the la-
tency is just that of a single RDMA write operation, but also for fail-over time. That is, we
ensure that when a server, and, in particular, the leader server of the protocol fails, a new leader
takes over as quickly as possible. Fail-over time is composed of two factors; the first is failure
detection, i.e., recognizing that a failure happened in the first place, and the second is leader
election, i.e., choosing a server to be the new leader and having that new leader restart the execu-
tion. Failure detection depends on the variance in network and process latency that is expected,
since detecting failures too eagerly can result in false positives. We develop a failure detection
mechanism that depends only on process speed variance and not that of the network, thereby
allowing us to detect failures much more quickly than other systems. For leader election, our
main bottleneck is switching RDMA permissions, as discussed in Chapter 8. We study various
ways of implementing permission switches in RDMA, and show it is possible to accomplish in
only a couple of hundreds of microseconds.

Our resulting implementation outperforms state-of-the-art RDMA-based competitors by a
factor of 2.5−6× in the common case, and by more than an order of magnitude when recovering
from server failures. This highlights the impact that reasoning about algorithms in theory can
have on practical performance.

1.4 Summary of Contributions
In summary, this thesis narrows the gap between theory and practice in concurrent and distributed
computing. Its key contributions are as follows.

Analyzing Concurrent Algorithms. We improve our ability to accurately analyze the running
time of concurrent shared-memory algorithms. This is achieved through three approaches: (1) we
present a new modular model for calculating contention costs in shared-memory algorithms and
demonstrate its effectiveness by analyzing and improving exponential backoff; (2) we present
a tool for tracing the operation schedule produced on real machines in a variety of workloads;
and (3) we demonstrate that accurate analysis of concurrent algorithms is possible in structured
settings by designing and analyzing a provably efficient series-parallel dag structure for nested
parallel computations.

NVRAM. We study the Parallel Persistent Memory (PPM) model of NVRAM [59], and present
the first general simulation that can convert any concurrent algorithm that uses atomic Read and
CAS into a persistent algorithm. The PPM model decouples concerns of memory consistency
after a fault from detectability [122], or the ability to continue an execution after the fault. Thus,
our simulation is a general way to achieve detectability for concurrent algorithms. We intro-
duce the notions of computation and recovery delays as measurements of the overhead of such a
simulation, prove that our simulation is both computation- and recovery-delay free, and present
optimizations that make the simulation more practical and work for a large class of algorithms.
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Message Passing Shared Memory
RDMA

(large networks)
RDMA

(small networks)
Crash

fault tolerance f < n/2 f < n f < (1− 1
2h

) · n f < n

Byzantine
fault tolerance f < n/3 f < n/2 ? f < n/2

Complexity 2 ≥ 3 ? 2

Table 1.1: Summary of previously-known and new RDMA results on consensus fault tolerance and com-
plexity. Comparing the message-passing and shared-memory models to the M&M RDMA model. New
results presented in this thesis are in blue. Complexity is measured in message delays in common-case ex-
ecutions. n and f represent the number of processes in the system and the maximum number of failures,
respectively, and h is the vertex expansion ratio of the underlying shared memory graph in an RDMA
network.

RDMA. Finally, we present the Message-and-Memory (M&M) model, a model that combines
features of the message-passing and the shared-memory models, and which captures the capa-
bilities of RDMA in data centers. We prove that the M&M model can tolerate more failures
when solving consensus than is possible in the message-passing model, and that solutions for the
consensus problem can be more efficient and more scalable in the M&M model than in shared
memory. Along the way, we prove new results for the Byzantine fault tolerance and efficiency
of consensus in the shared-memory model. Table 1.1 summarizes these results. Furthermore,
we demonstrate that the M&M model indeed captures practical concerns by implementing an
RDMA-based state-machine replication (SMR) system using the insights gained from our the-
oretical study of the M&M model. Our SMR system, Mu, can replicate requests at least 3×
faster than other state-of-the-art systems, and can recover from server failures at least an order of
magnitude faster.

1.5 Model and Preliminaries
This thesis considers the shared memory concurrent setting and some of its variants. In this
section, we present the classic shared memory model, which will form the basis for all the models
we consider.

Processes and Instructions. We assume a system of n asynchronous processes, P = {p1 . . . pn},
that communicate with each other by executing machine instructions on shared memory. Shared
memory machine instructions may be atomic read, write, compare-and-swap (CAS), test-and-set
(TAS), or fetch-and-add (FAA) instructions. A write(X, val) updates the contents of memory
location X to val. A CAS(X, old, new) updates the contents of memory location X to new if
it contains old, and returns true in this case. Otherwise, the contents of X do not change, and
the CAS returns false. We say that a CAS is successful if it returned true. A FAA(X,num)
increments the value in X by num, and returns the value stored in X before the increment. A
TAS(X) sets the value of X to 1, and returns the previous value of X . The TAS instruction
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operates on booleans; the value of X may only ever be 0 or 1. An atomic read(X) returns the
value most recently written by a write, TAS, FAA, or successful CAS instruction on memory
location X . Other shared memory instructions are possible, but are not considered in this thesis.
Processes may also execute local read and write instructions. Local instructions are non-racy;
if a process pi executes a local instruction on memory location `, ` cannot be accessed by any
other process until pi explicitly makes ` shared. The execution of an instruction by a process pi
is sometimes referred to as pi taking a step.

The ABA-problem. Usually, CAS instructions are used in conjuction with read instructions; a
memory location X is read by process p, and the return value of the read instruction is then used
as the ‘old’ value argument for the following CAS instruction by p onX . It is often convenient to
think of a CAS instruction as failing if and only if X’s value did not change since p’s most recent
read ofX . However, this does not always hold; it could be the case that after p read a value v from
X , X’s value changed to some v′ and then back to v before p executed its CAS. This scenario is
called the ABA-problem2. To be more precise, we say that the ABA-problem occurs if a value that
already appeared in some memory location X is written or CASed into X again at a later time.
We note, however, that this scenario can be avoided in practice if a sequence number is attached
to each value that is written or CASed on each location X , therefore preventing repeated values.
Therefore, it is common to assume ABA-freedom, i.e., that the ABA problem cannot occur.

Executions. An execution is a sequence of atomic steps during the run of a program. There are
a few levels of abstraction at which one can view an execution. We begin by discussing low-level
executions. An low-level execution is a sequence of processes, representing the order in which
processes took steps. One can also view this as a sequence of steps, where each step specifies
the process that executed it, the memory location on which it was executed, the instruction that
was executed, and its arguments. A legal low-level execution E is one in which each instruction
i in E returns the correct value assuming that the state of the memory it accesses is the state that
results from executing the sequence of steps in E up to i.

Objects. We often consider algorithms that implement concurrent objects, which can intu-
itively be thought of as data structures. An object has a sequential specification, which defines a
set of operation types that can be called on it, and specifies the expected behavior of each opera-
tion type when executed sequentially. An implementation of an object is a set of algorithms, one
per operation type of the object.

Processes interact with objects through events. There are two types of events: an invoca-
tion of an operation type op of an object o with input value val, denoted inv(o, pi, op, val),
and the response of the last operation type invoked by pi on o, with return value res, denoted
res(o, pi, op, res).

High Level Executions and Operations. A high-level execution is a sequence of events. A
response r is said to match an invocation i in a high-level execution E if r is the first reponse

2The name A-B-A represents the different values written in memory location X .
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after i in E that has the same process, operation type and object as i. An operation in a high-
level execution E is an invocation of an operation type in E with its matching response, if it
exists. An operation can be thought of as an instantiation of an operation type3. We say an
operation is pending in a high-level execution E if it has been invoked but has not received
a matching response in E. An operation is complete in E if it has both an invocation and a
matching response. Given two operations op1 and op2 in E, we say that op1 happens before
op2, denoted op1 <H op2, if op1’s matching response is before op2’s invocation in E. If neither
op1 <H op2 nor op2 <H op1, we say that op1 and op2 are concurrent.

Note that an low-level execution that contains object operations can be mapped to a high-level
execution by placing invocation and response events immediately before (resp. after) the first
(resp. last) instructions of the corresponding operation, and then removing all steps. A single
high-level execution could map to several low-level executions, where the steps of individual
operations are interleaved differently. When the context is clear or unimportant, we refer to
low-level executions and high-level execution collectively as executions.

Execution Projections. The projection of an execution E onto a process pi, denoted by E|pi,
is the subexecution of E that contains exactly all of the steps or events that involve pi. Similarly,
the projection of E onto an object o, denoted by E|o is the subexecution of E that contains
exactly all of the steps or events that were applied on o (for steps in an low-level execution, o
is a memory location rather than an implemented object). We say that a sequential high-level
execution is legal if, for each object o, E|o satisfies the sequential specification of o. Note that
this definition of legality applies to high-level executions only, and is different from the definition
of a legal low-level execution.

Properties of (High-Level) Executions. A high-level execution is said two be sequential if
each invocation is immediately followed by a matching response. Note that in this case, the hap-
pens before relationship is a total order on the operations of a high level execution. We say that a
sequential high-level execution is legal if, for each object o, E|o satisfies the sequential specifica-
tion of o. Note that this definition of legality applies to high-level executions only, and is different
from the definition of a legal low-level execution. A completion of a high-level execution E is
a high-level execution E ′ in which, for each pending operation in E, a matching response is
appended at the end of E. We say that two low-level executions or high-level executions E and
E ′ are equivalent if, for each process pi, E|pi = E ′|pi.

Linearizability. We say that a high-level executionis linearizable if there is a way to order the
operations that respects their happens-before relationship and yields a legal sequential execution.
More formally, execution E is linearizable if there exists a completion E ′ of E and a legal se-
quential execution S such that (1) S and E ′ are equivalent, and (2) <E′⊆<S [155]. Intuitively,
a linearizable high-level execution is one in which each operation appears to take effect instan-
taneously at some point between its invocation and response. An implementation of an object is

3In a slight abuse of terminology, we sometimes refer to operation types simply as operations when the context
is clear.
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linearizable if all possible executions that can be produced by processes executing its operation
algorithms are linearizable.

Adversarial Scheduler. Asynchrony is modeled by an adversarial scheduler, which, at every
point in the execution, determines which process will execute the next instruction. Formally, the
adversary is a function from the set of low-level executions to the set of processes, which, given
an low-level execution, outputs a process. The power of the adversary can be controlled by spec-
ifying the amount of information it gets as the input low-level execution; instead of specifying
the instruction, location, process, and arguments of every step in the low-level execution, some
subset of these can be specified, thereby giving the adversary less power. An oblivious adversary
is one that recieves only the process id for each step in the execution. An adaptive adversary
receives full information.

Progress Conditions. An implementation of an object o is lock-free if, in every infinite execu-
tion of the operations of o, infinitely many operations complete. An implementation of an object
o is wait-free [149] if, in every infinite execution of the operations of o, every process completes
infinitely many operations. Note that the key difference is that lock-freedom guarantees global
progress in the system, since not all processes can get stuck forever, whereas wait-freedom guar-
antees local progress, in that no process can get stuck [150].
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Chapter 2

Analyzing Backoff

2.1 Introduction

Exponential backoff protocols are commonly used in many settings to avoid contention on a
shared resource. They appear in transactional memory [261], communication channels [52, 53,
117, 118], radio and wireless networks [33, 35], local area networks [230], and even shared
memory algorithms [20, 148]. Many backoff protocols have been developed and proved efficient
for these communication tasks. The general setting is that many processes want to send a message
over a channel (or a network), but the transmission fails if more than one message is sent at the
same time. Usually, transmissions are assumed to happen in synchronous rounds, and time is
measured by the number of rounds until all messages are successfully transmitted. A round is
wasted if more than one process attempts to transmit, but the cost remains constant regardless of
how many processes attempted to transmit in that round.

The situation is different in a shared memory setting. If many processes attempt to access
the same memory location, they all suffer contention, which slows down their response time, and
becomes worse as the number of conflicting processes increases. For example, if n processes all
access the same memory location at the same time, they queue up behind one another, causing
Θ(n) ‘wait time’ for each process on average, for a total of Θ(n2) total wait time, or work.
Several theoretical models have been developed to try to capture these costs [110, 113, 131, 132,
146]. However, none of these models have been applied to analyze backoff protocols. The reason
is, at least in part, that these models are not well suited for the task. In general, shared memory
contention and performance are more difficult to model than channel communication because of
the inherent asynchrony in shared memory systems.

Asynchrony in shared memory algorithms is usually modeled by assuming a powerful ad-
versary that determines the schedule of instructions. Known models capturing contention, like
those of Dwork, Herlihy, and Waarts [110] and Fich, Hendler and Shavit [113], while accounting
for contention cost, give too much power to the adversary to be able to get any meaningful worst
case bounds on backoff protocols. The model of Dwork et al. assumes every instruction has an
invocation and a response, and each instruction suffers contention equivalent to the number of
responses to other instructions that occurred between its own invocation and response. Fich et
al. assign cost differently; in particular, they assume only modifying instructions that immedi-
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ately precede a given instruction i can have an effect on i’s running time. However, both models
still allow an adversary to control when instructions’ responses appear in the execution. This
means that while these models are reasonable for obtaining lower bounds, they are impractical
for attaining meaningful upper bounds. Because of the great power the adversary is given, the
advantage of backoff protocols is lost; the adversary can simply wait for processes that are back-
ing off to invoke their next operation, at which point it regains full control, and can determine
the conflicts in the execution with as much flexibility as if no backoff was ever attempted.

Further work by Hendler and Kutten [146] restricts the power of the adversary in an attempt
to capture more likely executions. They present a model similar to that of Dwork et al. [110],
but add the notion of k-synchrony on top of it. This requirement states that an execution is k-
synchronous if in any subexecution, no process can do k+1 operations before all other processes
do at least one. This property, while attractively simple, does not succeed in capturing all possible
real executions. Asynchrony in real systems often arises from processes being swapped out. In
such cases, one process can be delayed a great deal with respect to the others, and no reasonable
value of k allows for such delays.

All of these models have an additional problem: there is no clear notion of time. This further
complicates the analysis of time-based protocols such as exponential delay, where processes
delay themselves for increasingly longer amounts of time.

A different line of work aiming to create a more realistic model for shared memory has
focused on relaxing the adversarial scheduler to a stochastic one, leading to tractable analysis
of the step complexity of some lock-free algorithms [15, 16]. However, this line of work also
relies on strong assumptions on the behavior of the scheduler. In the next chapter, we study
the schedules produced in practice and show that such assumptions do not always reflect real
executions. Furthermore, such stochastic assumptions on the adversary have so far not directly
accounted for contention, rendering the analysis of backoff under this model meaningless.

In spite of the difficulty of theoretically analyzing backoff, these protocols have been shown
to be effective in combatting shared memory contention. Many systems benefit greatly from the
application of an exponential backoff protocol for highly contented memory [20, 135, 148, 227,
233]. For about 30 years, exponential delay has been successfully used in practice to significantly
reduce running time in algorithms that suffer from contention in shared memory.

In this chapter, we take a first step towards closing this gap between theory and practice. We
define a model for analyzing contention in shared memory protocols, and use it to analyze back-
off. Our model allows for asynchrony, but maintains a clear notion of time. We do this by giving
the adversary full power on one part of the processes’ delay, but taking it away in another part.
In particular, we allow each process to have up to one ready instruction, and the adversary de-
termines when to invoke, or activate, each ready instruction. However, once active, instructions
have a priority order that the adversary can no longer control. This models the difference between
delays caused by the system between instructions of a process (e.g. caused by an interrupt), and
delays incurred after the instruction has been invoked in the hardware (assuming an instruction
cannot be interrupted midstream). We then define time steps, in which all active instructions
attempt to execute. Furthermore, we define conflicts between instructions; two conflicting in-
structions cannot be executed in the same time step. An active instruction will be executed in the
first time step in which it does not conflict with any higher-priority instruction. In this chapter, we
define conflicts as follows: modifying instructions (such as compare-and-swap) conflict with all
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other instructions on the same location, but any two non-modifying instructions do not conflict.
This reflects the fact that in modern systems, multiple reads to the same location can go through
in parallel, but a modifying instruction requires exclusive access to the memory, sequentializing
other instructions behind it. This is due to cache coherency protocols. which allow cache lines to
be read in shared mode by several processes at once. However, our model allows any definition
of conflicts to be plugged in, and can therefore adapt to different architectural concerns.

We then consider a situation in which n processes want to update the same memory location.
Such a situation arises often in the implementations of various lock-free data structures such
as counters and stacks. We use our model to analyze various protocols that achieve such an
update. We first show that a naïve approach, which uses a simple read-modify-write loop with
no backoff, can lead to a total of Ω(n3) work, while a classic exponential delay protocol improves
that to Θ(n2 log n). To the best of our knowledge, this is the first analysis of exponential delay
for shared memory. Perhaps surprisingly, we show that this protocol is suboptimal. We propose
a different protocol, based on adapting probabilities, that achieves O(n2) work.

The key to this improvement stems from using read operations to get a more accurate estimate
of the contention that the process is facing. Recall that in our model, reads can go through in
parallel, while modifying instructions conflict with others. In our protocol, instead of delaying
for increasingly long periods of time when faced with recurring contention, a process becomes
increasingly likely to choose to read rather than write. Intuitively, reading the value of a memory
location allows a process to gauge the level of contention it’s facing by comparing the new value
to the previous value it read. Each process keeps a write-probability that it updates after every
operation. It uses this probability to determine its next instruction; i.e. whether it will attempt
a compare-and-swap or only read. If the value of the memory does not change between two
consecutive reads, the process raises its write-probability. Otherwise, the process lowers it. This
constant feedback, and the possibility of raising the probability back up when necessary, is what
allows this protocol to do better than exponential delay.

In summary, the contributions presented in this chapter are as follows:
• We define a new time-based cost model to account for contention in shared memory;
• We provide the first analysis of the commonly used exponential delay protocol; and
• We propose a new backoff protocol that is asymptotically better than the classic one.

2.2 Model

Our model aims to separate delays caused by contention from other delays that may occur in
shared memory systems. In most known shared memory models, all types of delays (or causes
of asynchrony) are grouped into one, and are treated by assuming an adversary that controls
the order of execution. However, we note two predictable sources of delay: (1) processes often
engage in local work that does not affect the scheduling of others, and (2) once an instruction
is invoked in hardware, while its performance can greatly vary due to the architecture and con-
tention, it is relatively predictable. In this chapter, we model this delay in a simple way, and in
the next chapter, we delve into how architectural design can affect it. Since local instructions do
not affect the scheduling of other processes, in this chapter, we use the word instructions to refer
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to only those on shared memory.
Each process p ∈ P may have up to one pending instruction It(p) at any time t. p may

be in one of three states at any point in time, depending on its progress in executing its current
instruction: idle, ready, or active. p is idle if it currently has no pending instruction. This
could mean that p is executing some local work (recall that we don’t consider local work as
instructions), or that p is executing the delay prescribed by some backoff protocol. Once p
finishes its local work, it invokes an instruction and moves to the ready state. The ready processes
represent processes with instructions that are ready to run, but have not yet been invoked in the
hardware; the instruction might be delayed because the calling process is swapped out, failed or
otherwise delayed by the system. Finally, a process is active if its instruction has already started
executing in the hardware, and is now delayed by contention (e.g. executing the cache coherency
protocol).

In this way, the processes in the system at a time t are partitioned into three subsets: an
unordered set of idle processes Dt, an unordered set of ready processes Rt and an ordered set
of active processes At. Recall that each process p in Rt and At has exactly one instruction
ip, t associated with it. We therefore sometimes refer to the elements of Rt or At as instructions
instead of processes. There is a priority order, denoted<, among instructions inAt. Furthermore,
to model contention, we define conflicts between instructions. For any pair of operations i, j ∈ It,
the predicate C(i, j) is true if i conflicts with j, and is false otherwise.

In each time step t, each process may undergo at most one of the following transitions: it
may move from Dt to Rt+1, from Rt to At+1, or from At to Dt+1. The factors that determine
each transition are different for each set. Moving from D to R is determined by the process
itself; when a process completes its local work, it may invoke its next shared memory instruction,
thereby moving itself fromD toR. When a process is in the ready set, its movement is controlled
by an adversarial scheduler. More specifically, the adversary chooses a (possibly empty) subset
St ∈ Rt to activate. It gives a priority order among the instructions in St, and adds them to
A. There is a merging policy that determines the priority of the elements of St with respect to
the instructions already in At. This merging policy is deterministic, and maintains the invariant
that if, for some instructions i, j ∈ At, i < j and both i and j are in At+1, then i < j in At+1.
That is, regardless of the new instructions added to A in time step t, the relative priorities of At
do not change. Similarly, elements of St maintain their relative priorities assigned to them by
the adversary when they are merged into A. Thus, the adversary can determine the priorities of
instructions when it activates them, but has no control over them once it does so.

Finally, in time step t, we define the set of executed instructions to be Et = {i ∈ At|@j ∈
At.C(i, j) ∧ j < i}. That is, an instruction i ∈ At is executed in time t if and only if there is no
other instruction in At that conflicts with i and is ahead of i in the priority order. The processes
that invoked the instructions in Et are the ones that transition from At to Dt+1 at time t.

For the purpose of this chapter, we say that C(i, j) is true if and only if i and j both access
the same memory location and at least one of them is a modifying instruction. This function can
also represent other types of conflicts, such as false sharing, depending on the behavior of the
system we want to model. Furthermore, the merging policy considered in this chapter is simple
FIFO ordering; the instructions of St get added behind all instructions already in At.

Execution historiess are defined similarly in this model as they are in Section 1.5. An execu-
tion history, or simply execution, E is a sequence of the instructions executed by processes in the
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system, which defines a total order on the instructions. This total order must be an extension of
the partial order defined by time steps; that is, for any two instructions i and j, executed in time
t and t′ respectively, if t < t′ then i appears before j in E.

We consider two measurements of efficiency for algorithms evaluated by this model. One
measurement is immediate: we say the running time of an execution is the number of time steps
taken until termination. Another measurement is called work. Intuitively, this measures the total
amount of cycles that all processes spent on the execution. We say that a process spends one
cycle for every time step t in which It(p) ∈ At. Thus, the amount of work taken by an execution
is given by the sum over all time steps t of the size of At (i.e. W =

∑
t |At|). All of the bounds

in this chapter are given in terms of work. We feel that work better represents the demands of
these protocols on the resources of the machine, as inactive processes could be asleep or making
progress on some unrelated task.

Adversary. We assume an oblivious adversary [32]. That is, the adversary does not see pro-
cesses’ local values before making them active, and thus cannot make decisions based on that
knowledge. Such values include the results of any random coin flips and the type of operation
that the process will perform. The adversary can, however, know the algorithm that the processes
are following and the history of the execution so far. We also assume that once an instruction is
made active, the adversary may see its local values. However, at that point, the adversary is no
longer allowed to make changes to the priorities, and thus cannot use that knowledge.

Protocols. In the rest of this chapter, we analyze and compare different backoff protocols. To
keep the examples clean and the focus on the backoff protocols themselves rather than where they
are used, we consider a simple use case: a read-modify-write update as defined in Algorithm 2.1.

An update attempt by process p is one iteration of Algorithm 2.1. In every update attempt, p
reads the current value, then uses the Modify function provided to it to calculate the new value
it will use for its CAS instruction. The Modify function can represent any change a process
might need to make in an algorithm that uses such updates. A successful update attempt is one in
which the CAS succeeds and the loop exits. Otherwise, we say that the update attempt failed. For
simplicity, we assume that every CAS instruction has a distinct vn, and thus an update attempt
fails if and only if there was a successful CAS by a different process between its read and its
CAS. This assumption is also known as ABA-freedom. Note that such an update protocol is
commonly used in the implementation of shared objects such as counters and stacks.

1 update(x, modify){
2 while true { //one iteration is an update attempt
3 currentVal = Read(x);
4 val = modify(currentVal);
5 if CAS(x, currentVal, val){ return; } } }

Figure 2.1: Update Loop
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1 update(x, modify){
2 maxDelay = 1;
3 while true { //one iteration is an update attempt
4 currentVal = Read(x);
5 val = modify(currentVal);
6 if (CAS(x, currentVal, val)){ return;}
7 maxDelay = 2· maxDelay;
8 d = rand(1, maxDelay);
9 wait d steps; } }

Figure 2.2: Exponential Delay

2.3 Exponential Backoff

Exponential backoff protocols are widely used in practice to improve the performance of shared-
memory concurrent algorithms [20, 148, 227]. However, to the best of our knowledge, there
has been no running time analysis of these algorithms that shows why they do so well. In this
section, we provide the first analysis of the standard exponential delay algorithm for concurrent
algorithms.

In general, the exponential backoff protocol works as follows. Each process starts with a
maxDelay of 1 (or some other constant), and attempts an update. If it fails, it doubles its maxDe-
lay, and then picks a number d uniformly at random in the range [1,maxDelay]. It then waits
d time units, and attempts another update. We refer to this approach as the exponential delay
protocol.

Exponential delay is common in the literature and is applied in several settings to reduce
running time; for example, Mellor-Crummey and Scott use it for barriers [227], Herlihy uses it
between successive attempts of lock-free operations [148], and Anderson used it for spin locks
[20]. The pseudo-code for exponential delay on an update protocol is given in Algorithm 2.2.

Using our model, as defined in section 5.2, we show that in an asynchronous but timed setting,
the exponential delay protocol does indeed significantly improve the running time. In particular,
we show that for n processes to each successfully update the same memory location once, the
naïve (no-backoff) approach requires Θ(n3) work, but using exponential delay, this is reduced
to Θ(n2 log n). For simplicity, we assume that each process only needs to successfully write
once; after its first successful write, it will not rejoin the ready set. To show the upper bound for
exponential delay, we rely on one additional assumption, which is not used in the proofs of the
lower bounds.
Assumption 2.3.1. In any time step t where the active set At is empty and the ready set Rt is
not, the adversary must move a non-empty subset of Rt to At.

Analyzing the Naïve Protocol. We consider n processes trying to update the same memory
location using a naïve update loop with no backoff. The pseudocode of this protocol is given in
Algorithm 2.1. To give a lower bound for this protocol, we imagine a very simple adversarial
behavior; whenever any instruction is ready, the adversary immediately activates it. Note that
this is not a contrived or improbable adversary. Nevertheless, this scheduling strategy is enough
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to show a Ω(n3) work bound.
The intuition is as follows: the active set has around n instructions at all times. A successful

update attempt can only happen about once every n time steps, because CAS attempts always
conflict, and the active queue is long. The average process will thus have to make around n/2
update attempts before succeeding, and wait around n/2 time steps for each one, thus needing
Ω(n2) work. This gives us the bound of Ω(n3) work for all processes together.
Theorem 2.3.2. The naïve update protocol requires Ω(n3) work for n processes to each success-
fully update one location once.

Proof. Consider an adversary that simply activates every instruction as soon as it becomes ready,
and assume that n instructions are ready at the start. Recall that an update attempt can only
succeed if there was no successful CAS by any other process between that update attempt’s read
and CAS instructions. Furthermore, all CAS instructions conflict with each other, and for a CAS
attempt to be successful, there have to be no other successful CAS instructions while it waits in
the active set to be executed.

We partition the execution into rounds. Each round has exactly one successful CAS in it (the
ith successful CAS is in round Ri), and ends immediately after this CAS. The execution ends
after round Rn. Note that R1 is short; all processes start with their read instructions, which takes
one time step since reads do not conflict with each other, and in the next time step there is a
successful CAS. However, after R1, all processes that have not yet terminated will have a failed
CAS instruction in each round. In particular, every round Ri for i ≥ 2 has at least n − i failed
CAS attempts in it.

We denote by Load(Ri) the minimum number of instructions in the active set at any time step
in Ri, and by Length(Ri) the total number of time steps in round Ri. Note that for each round
Ri, Load(Ri) ≥ n − i. This is because, in the naïve update attempt policy, no time is spent in
the idle phase, and by assumption in this proof, the adversary immediately activates each ready
instruction. So each process immediately returns to the active set with a new instruction after
leaving the active set. Furthermore, as argued above, each round Ri has at least n− i failed CAS
attempts, and since all CAS attempts conflict, this means that Length(Ri) ≥ n− i.

Recall that the work of an execution is equal to the sum over all time steps of the size of the
active set. Thus, we sum over all rounds and all time steps in them, to get

W ≥
n∑
i=1

Load(Ri) · Length(Ri) ≥
n∑
i=1

(n− i)2 >

n/2∑
i=1

(n
2

)2

∈ Ω(n3).

2.3.1 Analyzing Exponential Delay

Recall that delays executed by process p during the protocol translate to time steps p spends in
the idle set before becoming ready.

The Lower Bound. To show a lower bound of Ω(n2 log n) on the running time of an update
loop using the exponential delay protocol, we simply need to present a strategy for the adversary
that forces the algorithm to take that long.
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Theorem 2.3.3. The standard exponential delay algorithm takes Ω(n2 log n) work for n pro-
cesses to each successfully update one location once.

Proof. Consider an adversary that simply places every operation in the active set as soon as it
becomes ready, and assume that n operations are ready at the start. Recall that work is defined
as the sum over all time steps of the length of the active set.

For every process p, let Mr be p’s maxDelay and Dr be its actual delay after its rth update
attempt. Note that the adversary’s strategy is to activate p immediately after Dr steps. However,
regardless of Dr, in this proof we only start charging work for p’s presence in the active set Mr

steps after its rth update attempt, or we charge zero if the process already finished afterMr steps.
Thus, we actually charge for less work than is being done in reality.

Note that at time step t, there will be n − dt processes in the active set, where dt is the
number of processes that are done by time t or are delayed at time t. Then note that any single
process p can only do at most one update attempt per n time steps. This is because all update
attempts contain a CAS, and thus conflict with each other under our model. Furthermore, after p
executes one update attempt, it must delay for maxDelay time steps, and then wait behind every
other instruction in the active set. The active set starts with n instructions at the beginning of the
execution. This also means that successful CAS instructions happen at most once every n time
steps.

Every time a process executes an update attempt, assuming it does not terminate, it doubles
its maxDelay. As noted above, for every process p, this happens about once every n time steps.
As delays grow, there are proportionally many processes that are delayed at any given time t. We
can model this as dt ≤ 2dt/ne+1. We now calculate the amount of work W this execution will
take.

W =
∑
t

|At| =
∑
t

max{n− dt, 0}

≥
∑
t

max{n− 2dt/ne+1, 0}

= n · (n− 4) + n · (n− 8) + . . .+ n · (n− n)

= Ω(n2 log n).

The Upper Bound. Recall that for the purpose of this analysis, we use Assumption 2.3.1.
Given this assumption, we show that once every process’s max delay reaches 12n, the algorithm
terminates within O(n log n) work w.h.p.. This is because sufficiently many time slots are empty
to allow quick progress. Thus, the adversary can only expand the work while not all processes’
maxDelays have reached at least 12n. We show that the adversary cannot prevent this from
happening for more than O(n2 log n) work w.h.p..
Lemma 2.3.4. Consider n processes attempting to update the same memory location, using the
exponential delay algorithm, and assume all of them have a max delay of at least S by some time
t. Then in any segment of length S starting after time t in the execution, there will be at most 2n
update attempts in expectation and w.h.p..

Proof. For each process p, let R(p, k) be the event that process p was ready with a new update
attempt k times during the segment.
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Then the probability that p will attempt k updates in the segment is bounded by:

P [R(p, k)] ≤
k∏
j=1

S

2j−1 · S
=

k∏
j=1

1

2j−1
=

1

2k(k−1)/2

The above calculation assumes that every time p attempts to execute and then restarts its
delay, it gets to start over at the beginning of the segment. This assumption is clearly too strong,
and means that in reality the probability of attempting k updates within one segment decays even
faster as k grows. However, for our purposes, this bound suffices. Furthermore, note that the
probability that any single process p is ready at least 2 · (

√
log n+ 1) times is:

P [R(p, 2 · (
√

log n+ 1))] ≤ 1

2(
√

logn+1)
√

logn
<

1

n
.

Thus, no process will be ready in any one segment more than O(
√

log n) times w.h.p.. Let N
be the number of update attempts by all the processes during the segment. We can calculate the
expected number of update attempts in the segment as follows:

E[N ] <
S∑
k=1

n · P [Ri(p, k)] = n
S∑
k=1

1

2k(k−1)/2
<

7

4
n

Using Hoeffding’s inequality, we can similarly bound the number of update attempts in the
segment with high probability:

P (X − E[X] ≥ δ) ≤ exp(− 2n2δ2∑n
i=1(maxi−mini)2

)

P (X ≥ 15

8
) ≤ exp(− n2

32n(
√

log n)2
)

= exp(− n

32 log n
)

Therefore, the number of update attempts ready by processes with max delay at least S during
any segment of length S is bounded by 15

8
n < 2n in expectation and with high probability.

Lemma 2.3.5. Consider n processes attempting to update the same memory location, using the
exponential delay algorithm. Within O(n log n) time steps and O(n2 log n) work, all processes
will have a max delay of at least 12n, with high probability.

Proof. We partition the set of processes P into three subsets – small-delay, large-delay and
done – according to the processes’ state in the execution, and update these sets as the execution
proceeds.

For a given time step t, let St be the set of small-delay processes, whose max delay is small,
i.e. maxDelay < 12n. Similarly, let Lt be the set of large-delay processes whose, max delay is
large, i.e. maxDelay ≥ 12n, and let Dt be the set of processes that are done (i.e., have already
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CASed successfully and terminated by time t). Note that S0 = P , L0 = D0 = ∅, that is, at the
beginning of the execution, all processes have a small max delay. Furthermore, by definition, the
execution ends on the first time step t such that Dt = P and St = Lt = ∅.

We want to bound the amount of work in the execution until the first time step t such that
Lt ∪ Dt = P . To do so, we need to show that small-delay processes make progress regularly.
That is, we need to show that the adversary cannot prevent small-delay processes from raising
their delays by keeping them in the ready set for long. By Assumption 2.3.1, if only small-delay
processes are in the ready set Rt at some time t, then the adversary must activate at least one
of them. Thus, we show that in any execution, a constant fraction of the time steps have no
large-delay processes ready.

We split up the execution into segments of length 12n time steps each. By Lemma 2.3.4, in
each such segment St that starts at time t, there are at most 2|Lt| update attempts by processes
in Lt with high probability. Thus, even if |Lt| = Θ(n), in every segment of size 12n, there is
a constant fraction of time steps (at least 10n with high probability) in which no process in Lt
is ready. Furthermore, note that since their max delays are < 12n, every process in St must be
ready at least once in every segment. Recall that the adversary must make at least one instruction
active in every step in which there is at least one instruction that is ready. Thus, allowing for
processes in St to ‘miss’ the empty time steps in one segment, we have the following progress
guarantee: at least once every two segments of length 12n, at least n instructions of processes
with small delays will be executed.

Note that every process needs to execute log 12n instructions in order to have a large delay.
Therefore, for all processes to arrive at a large delay, we need n log 12n executions of instructions
that belong to processes with a small delay. By the above progress guarantee, we know that every
24n time steps, at least n such instructions are executed. Thus, in at most 24n log 12n time steps,
all processes will reach a delay of at least 12n, with high probability. Note that in every time step
t, there can be at most n instructions in the active set, At. Thus, the total work for this part of the
execution is bounded by W =

∑24n log 12n
t |At| = O(n2 log n) with high probability.

Lemma 2.3.6. Consider n processes attempting to update the same memory location, using the
exponential delay algorithm. If the max delay of every process is at least 12n, then the algorithm
will terminate within O(n log n) additional work with high probability.

Proof. We can apply the analysis of linear probing in hash tables [185] to this problem. Every
process has to find its own time slot in which to execute its instruction, and if it collides with
another process on some time slot, it will remain in the active set, and try again in the next one.

We think of the update attempts of the processes as elements being inserted into a hash table,
and the time slots as the bins of the hash table. If a process’s instruction collides with another’s
then it will ‘probe’ the next time slot, until it finds an empty slot in which to execute. Counting
the number of probes that each instruction does gives us exactly the amount of work done in the
execution.

For the purpose of this analysis, we assume that an update attempt succeeds if and only if
neither its read nor its CAS collide with any other instruction. If either one of them does, we
assume that this process will have to try again. Furthermore, since each update attempt involves
two instructions, we put two time slots in a bin; that is, we assume the number of bins is half of
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the minimum max delay of the processes (in this case, we know all processes have max delay
≥ 12n). Thus, we effectively double the load factor in our analysis to account for the two
instructions of the update attempts.

Thus, if we have k ≤ n update attempts, and all of their processes have max delay at least m,
then the maximum amount of work for one update attempt of any process is at most the number
of probes an element would require to be inserted into a hash table with load factor α = 2k/m.

We start with n processes participating, all of them having a max delay of at least 12n. By
Lemma 2.3.4, we know that there are at most 2n update attempts in 12n time steps, with high
probability. Thus, our load factor is α = (2 · 2n)/12n = 1/3. Let Xi be the amount of work that
process pi does for one update attempt. Let X = 1

n

∑
iE[Xi]. It is well known [185] that in this

case, the expected number of probes an insertion does in linear probing is at most

E[X] =
1

2

(
1 +

(
1

1− α

)2
)

=
1

2

(
1 +

9

4

)
=

13

8
.

Thus, by Markov’s inequality,

P [X ≥ 15

8
] ≤ 8E[X]

15
=

13

15
.

Thus, X < 15
8

with probability at least 2
15

. Note that the amount of work per process is integral
and at least one (when it experiences no collisions). Therefore, a simple averaging argument
shows that at least 1

8
of the processes cost only 1, and thus experience no collisions, with prob-

ability at least 2
15

. Any process that experiences no collisions terminates in that step. Therefore,
with constant probability, a constant fraction of the processes terminate out of every n update
attempts.

We can imagine repeatedly having rounds in which the remaining processes are inserted into
a hash table of size. Note that the expected cost for n processes to do one update attempt is at
most 16n

13
. Furthermore, note that this cost is in reality even better, since process delays increase

and the number of inserted instructions decreases, both causing less collisions as the load factor
α decreases. However, even if we do not take the decreasing load factor into account, a constant
factor of the processes terminate in every such ‘round’. Note that since we do not account for the
improvements from the previous rounds when calculating the expected cost of round i, the rounds
are independent. Thus, we can apply the Chernoff bound to show that within O(log n) rounds,
all processes successfully update, costing a total of O(n log n) work with high probability.

The lemmas above immediately lead to the following theorem.
Theorem 2.3.7. The standard exponential delay algorithm takes O(n2 log n) work with high
probability for n processes to each successfully update the same location once.

2.4 A New Approach: Adaptive Probability
We present a new protocol that beats the standard exponential delay protocol under our model.
The pseudocode for our algorithm is given in Algorithm 2.3. We say that every iteration of the
while loop executed by process p is an update attempt, or a step by p.
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Each process maintains a probability prob, which it updates in every step. All processes start
with prob = 1. Each process also keeps track of the value val that was returned by its most
recent read. On each step, p tries to CAS with probability prob into location xand if successful
it is done. Otherwise it re-reads the value at x and if changed (indicating contention) it halves its
probability, and if not changed it doubles its probability. Intuitively, this protocol lets processes
receive more frequent feedback on the state of the system than exponential delay (by reading
the contended memory), and hence processes can adjust to different levels of contention faster.
Furthermore, ‘backing-on’ allows processes to recover more quickly from previous high loads.
Since reads do not conflict with each other in our model, reads between CASes are coalesced into
a single time step, and do not significantly affect work, as our analysis will show. In particular,
we show that for n processes to successfully update a single memory location following our
protocol, it takes O(n2) work in expectation and with high probability.

1 update(x,modify){
2 currentVal = Read(x);
3 prob = 1;
4 while true { //one iteration is an update attempt
5 heads = flip(prob);
6 if (heads) {
7 val = modify(currentVal);
8 if (CAS(x,currentVal, val)){ return; }
9 newVal = Read(x);

10 if (newVal == currentVal){
11 prob = max(1, 2·prob);
12 } else {
13 prob = prob/2;
14 currentVal = newVal; } } } }

Figure 2.3: Adaptive Probability

2.4.1 Analysis
The most important factor for understanding the behaviour of our algorithm is the CAS-probabilities
of the processes. These probabilities determine the expected number of reads and CAS attempts
each process does during the execution, and thus they greatly influence the overall work.

We first analyze an execution for a single process in isolation, and then consider the progress
of the execution as a whole, when all processes participate. Consider any process p ∈ P as it
executes Algorithm 2.3. Let E be any legal execution, and E|p be the execution restricted to
only p’s instructions. For the rest of this discussion, and for the proof of Lemma 2.4.1, when we
discuss numbered steps, we mean p’s steps in E|p. Recall that a step is defined to be a single
iteration of the while loop (or a single update attempt), and thus every step may contain more
than one instruction. For every process p ∈ P , we define p’s state at step t, s(t), to be i if
p’s probability at step t is 2−i. Note that p’s state is never the same in two consecutive steps.
Furthermore, as long as p doesn’t terminate, p’s state can only change by one in every step. That
is, if s(t) = i, then s(t+ 1) = i+ 1 or s(t+ 1) = i− 1. We can model a process p’s states over
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Figure 2.4: Simple state transition system for one process’s execution. The transitions p can make are
labeled with their name and their transition probability. The probability ρ is determined by the adversary.

the execution using a simple state transition system (Figure 2.4). In addition to these states, we
need one state in the chain to represent p terminating.

The transition probabilities between p’s probability states depend on the other processes in
the system. Note that in our algorithm, p decreases its probability in step t, or transitions to the
right, if and only if there has been a successful update by some other process between p’s read and
its CAS. Otherwise, p’s state transition will depend on its own CAS-probability—if it CASes, its
successfully updates and terminates, and otherwise it goes left. Thus, p’s state transition depends
on whether other processes successfully update. This is heavily controlled by the adversary.

Recall that we assume an oblivious adversary. That is, the adversary cannot base its decision
of which processes to activate on their local values. In particular, that means that we do not allow
the adversary to know the result of a process’s coin flips, and thus whether it will read or CAS
in the next step. However, we do allow the adversary to observe the instruction being done once
that instruction is in the active set, and thus keep track of each process’s history to know its state
at every time step.

Therefore, the adversary can decide which instructions to activate given the probability states
of their process. In particular, when considering a single process p’s state transition, the adversary
can decide how many processes it activates between two consecutive steps of p and how likely
those processes are to successfully update. Thus, we can abstract the adversary’s power by saying
it can pick any probability ρ for how likely the state will go right, i.e., conflict with another
process and decrease its probability. Note that in reality, if all participating processes are using
the same protocol, the adversary will be more restricted than this, however despite the power we
are giving the adversary this abstraction still allows us to prove the first important lemma of our
analysis.
Lemma 2.4.1. Every process executes at most 4 CAS attempts in expectation before terminating.

For this Lemma, we will focus on any one process p ∈ P , and track its movement in the
state transition system during a given execution E. In the rest of this section, unless otherwise
indicated, all analysis refers to process p and execution E of Algorithm 2.3.

We denote by R(i) the number of ‘right’ state transitions of p from state i to state i + 1 in
E, and by L(i) the number of ‘left’ state transitions of p from i to i − 1 in E. We first make an
observation about these state transitions.
Observation 2.4.2. For every state i, L(i+ 1) ≤ R(i) + 1.

That is, the number of transitions from i + 1 to i is at most the number of transitions from
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i to i + 1, plus 1. This can be easily seen by considering, for every time p transitions from i to
i + 1, how it got to state i. p starts at state 0. Thus, for every state i > 0, the first time p reaches
state i + 1 is by going right from state i. However, for every subsequent time p transitions right
from i to i+ 1, it must have, at some point, gone left from i+ 1 to i. Thus, the number of times p
transitions from i to i+ 1 is at most one more than the number of times it transitions from i+ 1
to i.

Proof of Lemma 2.4.1. Consider execution E|p; that is, the execution E restricted to just the
instructions of p, and let CE be the number of CAS attempts in this execution. We partition E|p
into two buckets, and analyze each separately; for every state i, we place the first time p reaches
i into the first bucket, denoted Init, and place every remaining instruction in the execution into
the second bucket, called Main. Thus, CE = CI +CM , where CI and CM correspond to the cost
(number of CAS attempts) of Init and Main respectively.

Note that Init corresponds to an execution in which p only goes down in probability. In every
state i it reaches, it has probability 1

2i
of attempting a CAS, and thus expected cost of 1

2i
for that

state. Thus, we can easily calculate its expected cost.

E[CI ] =
∞∑
i=0

2−i ≤ 2.

We now consider the Main bucket of the execution E|p. There are two random variables that
affect the steps that p takes. The adversary can affect whether p goes right or not, by picking a
value for ρ (see Figure 2.4). However, if p does not go right, then only p’s coin flip determines
whether it will go left or leave (this is independent of any choice of the adversary). We will
charge the right transitions, that the adversary can affect, against the left-or-leave transition that
the adversary cannot. We can do this since for every left transition from a state i in the main
bucket, there is at most one corresponding right transition from i when it goes back to the right
through state i (there might be none if it terminates at a position to the left).

We define D to be the sequence of times t in Main in which p does not go right, and use j to
indicate indices into this sequence (to avoid confusion with i for state and t for position in E|p).
Let CM,j to be the random variable for the remaining cost of Main, after the jth step in D, but
not including the final successful CAS. If just before the jth step in D, the process is at state i,
there is a cj = 1

2i
probability that the process will CAS and terminate. Thus, there is a 1 − cj

probability that the execution will continue. We let Rj be the random variable indicating that the
future right transition assign to j does a CAS. The expected cost (probability) of CASing when
going right from state i is 1

2i
, but since there might not be a future right transition, E[Rj] ≤ cj .

We now have the following recurrence for the expectation of CM,j:

E[CM,j] = E[Rj] + (1− cj)E[CM,j+1]

≤ cj + (1− cj)E[CM,j+1]

The cj’s represent the results of independent coin flips, and therefore the expectations can be
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multiplied. We therefore have:

E[CM,1] ≤ c1 + (1− c1) · E[CM,2]

= c1 + (1− c1)(c2 + (1− c2)(c3 + (1− c3)(. . .)))

= 1− (1− c1) + (1− c1) · c2 + (1− c1)(1− c2) · c3 + . . .

= 1− (1− c1)(1− c2) + (1− c1)(1− c2) · c3 + . . .

= 1− (1− c1)(1− c2)(1− c3) . . .

≤ 1

Recall that in addition to this cost, there is exactly one successful CAS that causes p to
terminate, so CM = CM,1 + 1. Adding this to the cost of the two buckets of the execution, we
can bound the total expected cost of E|p by E[CE] = E[CI + CM ] ≤ 2 + 1 + 1 = 4.

We now consider the total number of steps that p does in E. Recall that a step, or an update
attempt, is defined as an iteration of the loop in Algorithm 2.3, even if the process doesn’t ex-
ecute a CAS. We first show that the maximum number of steps of p depends on the number of
successful updates by other processes. For this purpose, we stop considering E|p in isolation,
and instead look at the execution E as a whole.
Lemma 2.4.3 (Throughput lemma). For any process p and state i, let t and t′ be two times in E
at which p executes a read instruction that causes it to transition to state i. Then the number of
steps p takes between t and t′ is at most 2k, where k is the number of successful updates in the
execution between t and t′.

Proof. Let E ′ ⊆ E be a sub-execution where the first and last instructions in E ′ are by process
p, and both bring p to state i. Let k be the number of successful updates that occur during E ′.

We say that p observes a successful update w if p decreased its probability due to the value
written by w. We note that for p to return to a state i, it has to raise its probability exactly as
many times as it decreases it, when counting starting at the last time it was at state i. Note that
p can only decrease its probability if it observes a new successful update. Since it must change
its probability on every step, p raises its probability on every step where it does not observe a
new update. Thus, one observed update’s effect gets ‘canceled out’ by one update attempt of p
in which it did not observe any successful updates. Clearly, p can observe at most k successful
updates during E ′. Thus, it can make at most k update attempts raising its probability, for a total
of at most 2k steps during E ′.

Corollary 2.4.4. Every process makes at most 2n update attempts during an execution of Algo-
rithm 2.3, where n is the number of successful updates in the execution.

Proof. Consider any process p ∈ P and recall that every process starts the execution at state
i = 0. At this state, p has probability 1 of attempting a CAS. If, at any time, p is in state 0,
and no successful update happens before its next step, then p succeeds and terminates. Note that
there are at most n − 1 successful updates by other processes during p’s execution, since each
process only updates once. By Lemma 2.4.3, if p takes 2n− 2 steps without terminating, then p
is back at state 0, and all other processes have executed successful updates. Thus, p’s next step
is a CAS that succeeds, since all other processes have terminated. Therefore, p can make at most
2n update attempts before it succeeds.
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We are now ready to analyze the entire execution.
Theorem 2.4.5. Algorithm 2.3 takes O(n2) work in expectation for n processes to each success-
fully update the same location once.

Proof. Note that by Corollary 2.4.4, every process executing Algorithm 2.3 does at most O(n)
instructions until it terminates. Thus, in the entire execution, there are O(n2) instructions. Fur-
thermore, by Lemma 2.4.1, only O(n) of these are CAS attempts in expectation. The rest must
be read instructions.

Recall that W =
∑

t |At|, and that for all times t, |At| ≤ n. Furthermore, recall that CAS
instructions conflict with every other instruction, but read instructions do not conflict with each
other. Thus, a CAS instruction w executed at time t can cause every instruction i ∈ At such that
i <A w to be delayed one time step. There are at most O(n) such delayed instructions per CAS
instruction. In addition, any read instruction will be active for exactly one time step if there is no
CAS instruction in front of it. Thus, we have: W = O(n) ·O(n) +O(n2) = O(n2).

We can extend our results to be with high probability. For this, the key is to show that there
is a linear number of CAS attempts with high probability in every execution, and then the rest of
the results carry through.
Lemma 2.4.6. There are O(n) CAS attempts in any execution with high probability.

Proof. We first show that, with high probability, no process attempts more than O(log n) CAS
instructions. To do this, we define an indicator variable Xi = 1 if p executes a CAS instruction
in its ith update attempt, and Xi = 0 otherwise. Note that Xi is independent from Xj for all
i 6= j. Furthermore, let X =

∑
iXi. In Lemma 2.4.1, we show that E[X] ≤ 4. We can now use

the Chernoff inequality to bound the probability of a single process attempting more than c log n
CAS instructions for any constant c.

P [X > (1 + c log n) · 4] ≤ e
−4c logn

3 =
1

n4c/3

Thus, every process attempts at most O(log n) CAS instructions w.h.p. We can now use this
bound on the number of CAS attempts per process when bounding the probability of getting
more than a linear number of CAS attempts in the system in any execution.

We can now number the processes, and define, for each process pi, Yi = wi where wi is
the number of CAS attempts pi executes in E. We assume that for every i, Yi ∈ [0, c log n] for
some constant c. Let Ȳ = 1/n

∑n
i=1 Yi. Then by Lemma 2.4.1, E[Ȳ ] = 4. Plugging this into

Hoeffding’s inequality, we get

P [Ȳ ≥ 5] ≤ e
−2n

c log2 n

Therefore, with high probability, there are at most 5n CAS attempts in the execution E.

We thus have the following theorem.
Theorem 2.4.7. Algorithm 2.3 takes O(n2) work in expectation and with high probability for n
processes to each successfully update the same location once.
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2.5 Related Work: Other Contention Models
Contention has been the subject of a substantial amount of previous work. Many researchers
noted its effect on the performance of algorithms in shared memory and used backoff to mitigate
its cost [20, 135, 148, 227]. Anderson [20] used exponential delay to improve the performance
of spin locks. Herlihy [148] used a very similar exponential delay protocol in read-modify-write
loops of lock-free and wait-free algorithms. However, all of these studies, while showing empir-
ical evidence of the effectiveness of exponential delay, do not provide any theoretical analysis.

Studying the effect of contention in theory requires a good model to account for its cost.
Gibbons, Matias and Ramachandran first introduced contention into PRAM models [131, 132].
They observed that the CRCW PRAM is not realistic, and instead defined the QRQW PRAM.
This model allows for concurrent reads and writes, but queues them up at every memory location,
such that the cost incurred is proportional to the number of such operations on location. Their
model also allows processes to pipeline instructions. That is, processes are allowed to have
multiple instructions enqueued on the memory at the same time. Instructions incur a delay at
least as large as the length of the queue at the time they join.

Dwork, Herlihy and Waarts [110] defined memory stalls to account for contention. In their
model, each atomic instruction on a base object has an invocation and a response. An instruc-
tion experiences a stall if, between its invocation and response, another instruction on the same
location receives its response. Thus, if many operations access the same location concurrently,
they could incur many stalls, capturing the effect of contention. In this model, the adversary
is given more power than in ours. In particular, we can imagine our model’s ‘activation’ of an
instruction as its invocation. Our model then allows the adversary to control the order of invo-
cations of the instructions, but not their responses. Furthermore, Dwork et al.’s model does not
distinguish between different types of instructions—all are assumed to conflict if they are on the
same location. Thus, our model is similar to a version of Dwork et al.’s model that restricts the
allowed executions according to instructions’ invocation order and only considers conflicts with
modifying instructions. However, they still cannot deal with exponential delay since they have
no direct measure of time.

Fich, Hendler and Shavit [113] defined a different version of memory stalls, based on Dwork
et al.’s work. Their model distinguishes between instructions, or events, that may modify the
memory and ones that may not. An instruction is only slowed down by modifying instructions
done by different processes on the same memory location. They show a lower bound on the
number of stalls incurred by a single instruction in any implementation of a large class of objects.
In our model, we consider the same types of conlicts as Fich et al. do. However, Fich et al. use
the same fully adversarial model as in Dwork et al.’s work. Thus, our model allows only a subset
of the executions allowed by theirs. However, even given the same execution, the two models do
not assign it the same cost. In particular, in Fich et al.’s model, the only instructions that stall a
given instruction i are the modifying instructions immediately preceding it. Thus, if there is at
least one read instruction between any constant number of modifying instructions, each will only
suffer a constant number of stalls. The same is not true for our model.

Further work in this area was done by Hendler and Kutten [146]. Their work introduces a
model that restricts the power of the advsersary. They define the notion of k-synchrony, which, in-
tuitively, states that no process is allowed to be more than a k factor faster than any other process.
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They consider a model which assigns a cost to a given linearized execution by considering the
dependencies between the instructions. While in their analysis they assume that all instructions
on the same location contend, they discuss the possibility of treating read instructions differently
than writes.

Atalar et al. [26] also address conflicts in shared memory and their effect on algorithm per-
formance. They consider a class of lock-free algorithms whose operations do some local work,
and then repeat a ‘Read-CAS loop’ (similar to our definition of an update attempt) until they
succeed. Their proposed model divides conflicts into two types; hardware and logical conflicts.
This division is reminiscent of our model’s ready vs. active instructions. However, the two
classifications do not address the same sources of delays.

Contention has been studied in many settings other than shared memory as well. Bar-Yehuda,
Goldreich and Itai [35] applied exponential backoff to the problem of broadcasting a message
over multi-hop radio networks. In this setting, there are synchronous rounds in which nodes on a
graph may transmit a message to all of their neighbors. A node gets a message in a given round
if and only if exactly one of its neighbors transmitted in that round. They show that using ex-
ponential backoff, broadcast can be solved exponentially faster than any deterministic broadcast
algorithm. Radio networks have since been extensively studied, and many new algorithms using
backoff have been developed [34, 129, 140].

Similar backoff protocols have been considered for communication channels. Bender et al.
[52] consider a simple channel with adversarial disruptions. They show that using a back-
off/back-on approach, in which probability of transmission is allowed to rise in some cases,
achieves better throughput. This is similar to the approach taken by our adaptive probability
protocol. An in-depth study of backoff on multiple access channels is given by Bender et al. in
[53]. They introduce a new backoff protocol which achieves good throughput, polylog transmis-
sion attempts, and robustness to a disruptive adversary. Further work has been done on different
varieties of communication channels [33, 54, 117, 118].

The models considered in these papers are similar to each other (with some variations on
the initial state of the system, how collisions are handled, and the adversary’s power), but differ
from shared memory in several important ways. Firstly, these communication networks generally
assume synchronous rounds, whereas this is not reasonable for shared memory. Furthermore,
unlike shared memory, running time in networks and communication channels is measured by the
number of rounds for an algorithm to complete, regardless of how many transmissions are sent
per round. However, in shared memory the cost grows with the number of attempted operations.
Another difference is the behavior upon collision; in shared memory, one modifying operation
still goes through, and slows down the rest, whereas in other communication models, no message
can be transmitted in that round. Furthermore, a single ‘message’ in shared memory can take
multiple steps (such as an update that is implemented with two instructions). These differences
make it hard to apply results from other models directly to shared memory.
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Chapter 3

Measuring Scheduling Patterns under
Contention

3.1 Introduction

Creating pragmatic concurrent programs is essential for making the best use of modern mul-
ticore systems. When considering what constitutes a pragmatic program, designers often aim
for high throughput, but another important feature is fairness among the cores participating in
the algorithm. Fairness is sometimes a goal in its own right, such as in multicore web servers
and other applications where each individual core’s responsiveness is important. Even outside
of such use cases, fairness can be important as a prerequisite for performance. Parallel pro-
grams in which work is statically assigned to cores, as is routine when using POSIX Threads1 or
OpenMP2, often have synchronization barriers, at which point the last core to complete its work
is the performance bottleneck. Such programs run faster if there is fairness among cores.

A large body of work has focused on designing algorithms that are lock-free or have other
fairness guarantees [20, 58, 149, 227, 274]. However, as already discussed earlier in this the-
sis, due to a lack of an understanding of memory operation scheduling, lock-free algorithms are
typically designed with an adversarial scheduler in mind, meaning memory operations can hap-
pen in any order consistent with the memory model. While this guarantees correctness on any
hardware, it leads to overly pessimistic predictions of performance and fairness.

A recent line of work aims to relax adversarial scheduling assumptions to better reflect reality
[15, 16, 26, 27, 43, 150]. It is well-known that if the hardware schedule guarantees fairness
properties, then algorithms can be faster, simpler, and more powerful [43, 109, 223]. However,
it is unclear whether such assumptions are realistic. Thus, to understand the performance of
lock-free algorithms, we must study the scheduling of memory operations in hardware.

Let us first consider the kinds of demands that most concurrent lock-free algorithms make on
the scheduler. Many lock-free algorithms have the structure shown in Algorithm 3.1 [16, 27]. All
cores run parallel work (line 3), that they do independently, and then synchronize in an atomic
modify section (lines 4–7). Note that this atomic modify section is similar to the update attempt

1https://ieeexplore.ieee.org/document/8277153/
2https://www.openmp.org
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1 success = false
2 while true{
3 parallel_work();
4 while (not success) {
5 currentVal = Read(x);
6 val = modify(currentVal);
7 success = CAS(x, currentVal, val); } }

Figure 3.1: Generic lock-free algorithm (simplified)

considered in Chapter 2. In this section, a core executes a modification of location x that must
not be interrupted by any other core’s modification of x. Thus, the ordering, or schedule, of reads
and CASes of x has a large impact on the fairness and performance of the algorithm. Intuitively,
a good schedule has:
• Long-term fairness: we want each core to perform the same number of read and successful

CAS instructions over any sufficiently long period of time.
• Short-term focus: for performance, whenever a core reads x, we want it to execute its

following CAS without other cores performing any read or CAS instructions in between.
Having outlined what a good memory operation schedule looks like, we ask: what do memory

operation schedules look like on modern hardware? Do practical schedules have the fairness and
focus properties we want for lock-free algorithms?

Unfortunately, this is a difficult question to answer because the complexity of modern mem-
ory hierarchies makes scheduling patterns difficult to predict. Design decisions in aspects such as
the cache coherence protocol and non-uniform memory access (NUMA) can have a drastic im-
pact on the schedule. However, exactly how different designs correspond to scheduling patterns
is unclear, especially when multiple features interact with one another.

For example, it is well known that the latency of a local-node cache hit is much lower than
that of a remote-node cache hit [138]. This encourages the design of NUMA-aware algorithms
[58, 69, 70, 210] that minimize remote-node memory accesses. However, recent work on ar-
bitration policies in the processor-interconnect [269] shows that when most but not all memory
accesses are local—which is exactly the situation for many NUMA-aware algorithms—hardware
can unfairly bias the schedule towards remote nodes. Thus we see that a NUMA architecture can
yield unexpected schedules.

3.1.1 Our Contributions

In this chapter, we provide a way to test the schedules produced by today’s machines and find
patterns that can be important for fairness and performance. To do so, we introduce a benchmark-
ing tool, called Severus, that allows the user to specify a workload, and tracks the execution trace
produced. We show how to use Severus to understand the scheduling patterns of two modern
NUMA machines, and provide a plotting library that helps intuitively visualize the results.

Severus allows the user to play with several parameters of the execution, including which
threads participate in a run, what locations are accessed, how much local work each thread
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does, and how long each thread waits between two consecutive operations. With this flexibil-
ity, Severus can simulate the workloads that are most relevant to the user’s application.

We describe Severus and use it to demonstrate the following takeaways:
• Operation schedules are not fair by default.
• Uniform random scheduling assumptions do not accurately reflect real schedules.
• The amount of local work a thread does in a lock-free algorithm, particularly the length

of the atomic modify section, has a large but hard-to-predict impact on the algorithm’s
performance.

• The details of these effects are different on each platform, but these details can be revealed
by tools such as Severus.

We believe that these new findings can guide both the design of new pragmatic concurrent algo-
rithms on existing machines and the development of new memory architectures that enable faster
and more fair concurrent executions.

We reach the above takeaways by studying the memory operation scheduling patterns of two
NUMA machines: an AMD Opteron 6278 and an Intel Xeon CPU E7-8867 v4. These two
machines exhibit different architectural designs: the Intel has four equidistant nodes and uses a
hierarchical cache coherence protocol, whereas the AMD is arranged in eight nodes, with two
different distances between them, and employs a flat cache coherence mechanism. We show
how these design choices translate to differences in schedules. While the scheduling patterns
remain mostly round-robin on AMD regardless of the cores participating in a run, on Intel, the
schedule changes drastically depending on whether cores from more than one node are running.
Interestingly, both machines show higher throughput for cores that access remote contended
memory. We characterize workloads in which this phenomenon is prominent, and show how this
unfairness changes as certain parameters of the program are varied.

3.2 Background and Machine Details

3.2.1 NUMA Architectures
NUMA architectures are everywhere in modern machines. Cores are organized into groups called
nodes, and each node has cache as well as main memory (see Figure 3.2). Within a node, cores
may have one or two levels of private cache, and a shared last level cache. Each core can often
be split into two logical threads, called hyperthreads. All cores can access all shared caches and
memory, through an interconnect network between the nodes. However, accesses to cache and
memory in a core’s own node (local acceses) are faster than accesses to the cache or memory of
a different node (remote accesses).

3.2.2 Lock-Free Algorithms and Scheduling
Lock-free algorithms guarantee that progress is made in the algorithm regardless of the number of
threads participating or their relative speeds. The correctness of lock-free algorithms is typically
proved under an adversarial model, whereby a powerful adversary determines the schedule of
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atomic operations on each location, thus controlling who succeeds and who fails at any time. The
adversarial model produces robust algorithms, but lacks predictive capabilities for performance.
Usually, the best performance guarantees that can be proven under an adversarial scheduler are
embarrassingly pessimistic.

Memory

Cache

Memory

Cache

Memory

Cache

Memory

Cache

CPUs

CPUs

CPUs

CPUs

Interconnect

NUMA Node 1NUMA Node 0

NUMA Node 2 NUMA Node 3

Figure 3.2: NUMA architecture with 4 NUMA
nodes.

Thus, recent work in lock-free algorithms
proposes different scheduling models, with
the goal of being able to analytically predict
performance. Common alternative models in-
clude that the scheduler picks the next thread
uniformly at random [16, 150], or with some
predetermined distribution [15]. The goal of
our work is to test whether such assumptions
are reasonable, and to understand what factors
of modern architectures most affect the opera-
tion scheduling, and which most affect perfor-
mance.

3.2.3 Machines Used
We test our benchmark on two different
NUMA architectures; an Intel Xeon CPU E7-
8867 v4 machine with 4 nodes and 72 cores
with Quick Path Interconnect technology, and an AMD Opteron 6278 machine with 8 nodes and
32 cores, using HyperTransport. Throughout this chapter, we refer to these machines as simply
Intel and AMD respectively. Both machines have a per-core L1 and L2 cache (shared among a
pair of hyperthreads), and a shared L3 cache on each node. The details of the two machines are
shown in Table 3.1. The Intel machine’s interconnect layout is fully connected, and therefore
all nodes are at the same distance from one another. However, this is not the case for the AMD
machine, in which there are two different distances among the nodes. The AMD node layout and
distance matrix is shown in Figure 3.3.

N0 N1 N2 N3 N4 N5 N6 N7

N0 0 1 1 2 1 2 1 2
N1 1 0 2 1 1 2 2 1
N2 1 2 0 1 1 1 1 1
N3 2 1 1 0 1 1 2 2
N4 1 1 1 1 0 1 1 2
N5 2 2 1 1 1 0 2 1
N6 1 2 1 2 1 2 0 1
N7 2 1 1 2 2 1 1 0

N1

N0 N4 N3

N5N2N6

N7

Figure 3.3: AMD node layout and distance matrix.

Both machines have an atomic compare-
and-swap (CAS) instruction and an atomic
fetch-and-increment (F&I) or fetch-and-add
(F&A, also called xadd) instruction. A CAS
instruction takes in a memory word, an old
value old, and a new value new, and changes
the word’s value to new if the previous value
was old. In this case, it returns true, and is
said to succeed. Otherwise, the CAS does not
change the memory word. It returns false and
we say that it fails. The F&I instruction takes
in a memory word and increments its value. It
always returns the value of the word immedi-
ately before the increment. Both the CAS and the F&I instructions fully sequentialize accesses.
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Table 3.1: Machine details.

SPECS INTEL AMD

CPU family Xeon E7-8800 Operton 6200
Sockets 4 4
Nodes 4 8
Cores 72 32

Hyperthreading 2-way 2-way
Frequency 1200-3300 MHz 2400 MHz
L1i Cache 32k 16k
L1d Cache 32k 64k
L2 Cache 256k 2048K
L3 Cache 46080K 6144K

Coherence protocol MESIF MOESI

3.3 The Benchmark

Severus provides many settings to simulate the behavior of a large range of applications. For
clarity, we begin by describing one simple setting, and then show ways to extend it.

At its core, Severus simply has all threads contend on updating a single memory location, ei-
ther with a read-modify-CAS loop, or with an F&A. We measure throughput; how many changes
to the memory location were made. To retain information about the execution, we also have a
logging option, in which we have each thread record the values it observed on the shared loca-
tion every time the thread accesses it. For the F&A case, simply recording these numbers allows
us to reconstruct the order in which threads incremented the shared variable. For a CAS-based
benchmark, we can control what values the threads write into the shared variable. To allow re-
construction of the execution order, we have each thread CAS in its own id and a timestamp.
In this way, when threads record the values they observed, they are in effect recording which
thread was the last one to modify the variable with a successful CAS. From this information, we
obtain a total order of successful CASes, and a partial order on the reads and unsuccessful CAS
attempts.

Severus provides parameters to modify the basic benchmark to reflect different workloads,
including the following settings.
• The number of shared variables contended on.
• Which node each shared variable is allocated on.
• Which threads participate.
• For each thread, which shared variables it should access.
• Length of execution.
• Whether or not the threads should log execution information. Turning this option off helps

optimize space usage.
• For CAS-based tests, delays can be injected between a read operation and the following
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CAS attempt of that thread. This simulates the time it takes in real programs to calculate
the new value to be written.

• Delay can be injected between two consecutive modifications of the shared variable by the
same thread. This simulates programs in which threads have other work.

• Delay can also be injected between a failed CAS attempt and the thread’s next read opera-
tion. This allows simulation of backoff protocols.

3.3.1 Implementation Details

When evaluating the schedule of a concurrent application, one must be very careful not to perturb
the execution. Many common instructions used for logging performance, including accesses
to timers, cycle counters, or memory allocated earlier in the program, can greatly affect the
concurrent execution, leading to useless measurements. Thus, we take care in ensuring that our
logging mechanism minimizes such accesses.

NUMA Memory and Thread Allocation. We use the Linux NUMA policy library libnuma
to allocate memory on a specified node (both for contended locations and memory used for
logging), and to specify the threads used. We pin threads to cores.

Logging. All information logged during the execution is local. We allocate a lot of space per
thread for logging, and ensure that for each thread, this log space is in the memory of the NUMA
node on which that thread is pinned. No two threads access the same log. This helps eliminate
coherence cache misses that are not directly caused by the tested access pattern. Before beginning
the real execution, we have each thread access its preallocated log, to avoid compulsory cache
misses when it first accesses the log during its execution. Severus always records the total number
of operations executed by each thread, and the total number of successful CASes per thread. This
simply involves incrementing two counters, and thus never causes cache misses.

If the logging option is enabled, each thread also records which values it observed on the
shared location when it accessed it. This logging takes much more space, since this information
cannot be aggregated into one counter, and thus we keep a word per operation executed by
each thread. Logging can also perturb the execution; more (uncontended) writing is done, and
cache misses occur every once in while, when the size of the log written exceeds the cache size.
However, since the memory of the log is accessed consecutively, prefetching helps mitigate the
effect of log-caused cache misses. With this local method of logging, we process the results after
the execution ends, and reconstruct the global trace from the per-process ones.

Compiler Options. To eliminate as much overhead as possible during the execution, many
of the settings of a run are determined at compile time. This includes machine details, like the
number of nodes and cores, and the ids of the cores on each node. The type of execution (CAS,
F&A, etc.) and logging are also determined at compile time.
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Delay. We implement atomic delay and parallel delay by iteratively incrementing a local volatile
counter. The amount of delay given as a parameter for an execution translates to the number of
iterations that are run. In the rest of the chapter, we use ‘iterations’ as the unit of delay used
in experiments. This is done to avoid mechanisms of waiting that are too coarse grained or can
perturb the execution. Therefore, given the same delay parameter, the actual amount of time that
a thread waits depends on the system on which the benchmark is run (in particular, depending
on the core frequency). A single unit of delay corresponds to approximately 2.2 nanoseconds on
Intel and 3.5 nanoseconds on AMD (both averaged over 10 runs). We note that measuring delay
in terms of iterations of local cache accesses is reasonable for simulating algorithm workloads,
since it reflects the reality that different algorithms take different amounts of time on different
machines.

3.3.2 Experiments Shown

All tests shown in this chapter can be broadly split into two categories.

• Sequence Experiments. In these experiments, we take a subset of the threads (possibly all
of them), and have them repeatedly increment a single location using atomic fetch-and-
increment (F&I). We call the contended location the counter. All threads record the return
value of their fetch-and-add after each operation, using the logging option. This allows us
to recreate the order in which threads incremented the counter.

• Competition Experiments. These experiments are similar to the sequence experiments, but
differ mainly in the operation used. A subset of the threads repeatedly read a location,
locally modify its value, and then compare-and-swap (CAS) their new value into the same
location. We call the contended location the target. In competition experiments, we some-
times vary other parameters, like the local modification time (which we call atomic delay),
and the time threads wait between a successful CAS and that thread’s next operation (par-
allel delay).

The competition experiments cause different scheduling patterns than the sequence ones; the
read operations mean that the cache line enters the shared coherence state in addition to the
modified state. Furthermore, compare-and-swaps fail if another thread has changed the value.
This means that to successfully modify the location, a thread must execute two operations in
a row, possibly changing its cache line’s coherence state in between. The schedules produced
by sequence experiments are more regular, and thus easier to analyze to obtain a high level
understanding of the scheduler.

Therefore, to learn about each machine’s scheduling patterns, we use sequence experiments,
with the logging option turned on (Section 5.2). We show how the lessons we learn from these
experiments generalize to other workloads by running competition experiments (which better
reflect real-world applications), without logging, and comparing the results to the predictions
made based on our learned scheduling model (Section 3.5). We also provide a script that runs
the experiments described in this chapter and produces the relevant plots.
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(a) All nodes participating.
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(b) One node participating at a time.

Figure 3.4: AMD throughput of F&I operations. Counter allocated on Node 0. Sugfigure (a) shows
all nodes participating, and Sugfigure (b) shows one node participating at a time, comparing distance 0
(Node 0), distance 1 (Node 4), and distance 2 (Node 7).

3.4 Inferring Scheduling Models
In this section, we show experiments that help determine scheduling models for the AMD and
Intel machines. All the experiments in this section are sequence experiments (see Section 3.3).
To review, in a sequence experiment, multiple cores atomically fetch-and-increment (F&I) a
single memory location called the counter. This yields a full execution trace, namely a sequence
of all the F&I operations executed by all threads, which we analyze in several ways to determine
a scheduling model. Across different experiments, we vary the number of threads participating,
the placement of the threads, and the NUMA node on which the counter is allocated.

A sequence experiment is a hardware stress test meant to reveal details about how it sched-
ules memory operations. It is not meant to model a realistic lock-free algorithm. In particular,
throughput measurements of sequence experiments should be not be interpreted as a proxy for
performance of a lock-free algorithm. (In contrast, the competition experiments in Section 3.5
are intended to model lock-free algorithms.)

3.4.1 AMD Scheduling Model
AMD Throughput Measurements. We begin with a basic question: when all cores participate
in a sequence experiment, do they achieve the same throughput? As we will see, the answer
to this question is counterintuitive and will guide our more detailed analysis of the machine’s
scheduling model.

To answer this, we run a sequence experiment with the counter on Node 0 and simply count
the number of F&I operations executed by each core. For each node, Figure 3.4a shows the
distribution of throughputs among cores of that node.3 We see that most cores within any given
node have similar throughput, but different nodes have very different throughputs. We observe
that the throughput is unfair:

3Throughout this section, all throughput distribution plots show the aggregate throughput distribution of 10
separate 10-second runs.
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• Node 0, which is where the counter is allocated, has the lowest throughput;
• Node 1, Node 2, Node 4, and Node 6 have intermediate throughput; and
• Node 3, Node 5, and Node 7 have the highest throughput.
What distinguishes Node 3, Node 5, and Node 7 from the other nodes? The answer lies in

Figure 3.3: they are the farthest from the counter on Node 0. That is, a core’s throughput tends
to increase with its distance from the counter. Repeating the experiment with the counter on each
node confirms this.

So far, we have seen that with all cores from all nodes participating, cores on nodes farther
from the counter have a throughput advantage. We now ask: does this trend still hold when nodes
participate one at a time? To answer this question, we run experiments with the counter on Node 0
with cores on just a single node participating. Figure 3.4b shows the distribution of results for
each of Node 0 (distance 0), Node 4 (distance 1), and Node 7 (distance 2) participating. Unlike
the previous plots, each distribution in the plot represents a separate configuration in which only
that node is participating. The overall throughput is higher in these configurations because of
reduced contention.

Remarkably, Figure 3.4b shows that even with only a single node participating, throughput
still increases with distance from the counter. Results for other nodes at distances 1 and 2 are
similar to those for Node 4 and Node 7, respectively. Similar results hold when cores from any
subset of nodes participate.

We have firmly established that throughput is unfair and is skewed toward cores that are far-
ther from the counter, even when the counter’s cache line remains cached on the same node. This
pattern reflects the directory coherence protocol on AMD, which seems to use the interconnect
even when a cache line remains on one node, likely due to the need to update its coherence state
in the directory. To understand why increased interconnect use increases throughput, we need a
more detailed analysis of the execution traces.

AMD Execution Trace Analysis. We now thoroughly examine the execution trace of a single
sequence experiment. All cores participate, and the counter is on Node 0. We examine an
execution trace excerpt of 220 operations, taken from the middle of the experiment to avoid edge
effects. For space reasons, we show results from just one run and focus on three nodes Node 0
(distance 0 from counter), Node 4 (distance 1), and Node 7 (distance 2). We have confirmed
that the results shown are robust across several trials and other nodes at distances 1 and 2 behave
similarly.

The result of a sequence experiment is an execution trace, which is an ordered list of core
IDs whose ith entry is the ID of the core that executed the ith F&I operation on the counter. We
can think of the trace as describing how (modify-mode access to) the counter’s cache line move
from core to core.

To talk about the trace and its implications for throughput, we use the following vocabulary:
• Core visit: a contiguous interval during which just one core performs F&I operations.4

• Core visit length: the number of F&I operations performed during a given core visit.

4When discussing core visits, we take “core” to specifically mean “physical core” and group its two threads
together.
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Table 3.2: AMD core visit length distributions.

LENGTH 1 LENGTH 2 LENGTH ≥ 3 MEAN

Cores on Node 0 88% 9% 3% 1.147
Cores on Node 4 93% 4% 3% 1.105
Cores on Node 7 55% 34% 11% 1.585

• Core visit distance: the number of core visits to other cores between two visits to a given
core.

A core’s throughput is
• directly proportional to its average core visit length and
• inversely proportional to its average core visit distance.
For each of Node 0, Node 4, and Node 7, Table 3.2 shows the distribution of visit lengths

for cores on that node. Notably, the average core visit lengths on Node 7 is roughly 40% higher
than each of Node 0 and Node 4. Recall that in Figure 3.4a, Node 7 has roughly 40% higher
throughput than Node 4, which in turn has higher throughput than Node 0. It thus appears that
average core visit length explains the throughput difference between Node 4 and Node 7, but
explaining the even lower throughput of Node 0 requires examining core visit distances.

We now turn to core visit distances. Figure 3.5 shows the CDF of visit distances aggregated
over all cores for Node 0 and Node 4. Due to space limitations, we omit the plot for Node 7,
but it is almost identical to that of Node 4. Remarkably, nearly all core visit distances are just
below multiples of 31, which is one less than the number of physical cores on the AMD machine.
This suggests that core visits occur in round-robin fashion, visiting all 31 other cores between
two visits to a given core, except that cores are occasionally skipped, mainly on Node 0. Given
that average core visit lengths are roughly the same for Node 0 and Node 4 (see Table 3.2), their
throughput difference is due mainly to the skipping of cores on Node 0.

3.4.2 Intel Scheduling Model

Intel Throughput Measurements. We begin our analysis of the Intel machine in the same
way we did for AMD. We want to know whether throughput is fair among different cores, and
in particular, whether the distance patterns we observed for AMD hold for Intel as well. Recall
that the Intel machine has only 4 NUMA nodes, with a full interconnect that places all nodes
equidistantly from one another.

Figure 3.6a shows each node’s throughput distribution for a sequence experiment with all
cores participating with the counter placed on Node 0. We see that, again, throughput is unfair,
and cores on Node 0 have lower throughput than cores on the other three nodes. The results are
analogous when the counter is allocated on Node 1, Node 2, or Node 3.

We next test whether cores close to the counter still have lower throughput when only one
node participates at a time. To answer this question, we run experiments with the counter on
Node 0 with cores on just a single node participating. Figure 3.6b shows the results for each of
Node 0 and Node 3 participating, Unlike in the experiment with all nodes participating, we see
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(a) Core 0 on Node 0, avg 51.6
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(b) Core 16 on Node 4, avg 29.1

Figure 3.5: AMD core visit distance distributions with all nodes participating. Counter allocated on
Node 0. Showing distributions for Subfigure (a) a core on Node 0 (distance 0 from counter) and Subfig-
ure (b) a core on Node 4 (distance 1). Distributions for other distance 0 cores are similar to Subfigure (a),
and likewise for distances 1 and 2 with Subfigure (b).
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(a) All nodes participating.
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(b) One node participating at a time.

Figure 3.6: Intel throughput of F&I operations, with counter allocated on Node 0. Subfigure (a) shows
all nodes participating, and Subfigure (b) shows one node participating at a time, comparing Node 0
(distance 0 from counter) and Node 3 (distance 1).

49



�� ��� ��� ��� ���
��� ����

��

��

��

��

���

���

���

������ ��

Figure 3.7: Intel execution trace of F&I operations with all nodes participating. Counter allocated on
Node 0. Thread IDs are clustered by node: 0–35 on Node 0 (yellow), 36–71 on Node 1 (purple), 72–107
on Node 2 (orange), and 108–143 on Node 3 (blue). Even-odd pairs of threads (0-1, 2-3, etc.) run on the
same physical core. Even thread IDs are shaded darker.

that Node 0 and Node 3 have similar throughput distributions when only one node participates
at a time. The results for Node 1 and Node 2 are similar.

We have seen that with all nodes participating, Intel and AMD both exhibit core throughput
increasing with distance from the counter, but the machines differ when only one node partici-
pates. This can be explained by considering the directory coherence protocol. Each node on Intel
has a shared L3 cache, and the coherence protocol does not communicate updates to other nodes
so long as the cache line is not in any other node’s L3 cache. This means single-node runs are
virtually unaffected by where the counter is allocated.

Intel Execution Trace Analysis. We now investigate the Intel execution trace in detail. Fig-
ure 3.7 shows the execution trace produced from a sequence experiment with the counter allo-
cated on Node 0. The y-axis shows the different thread id’s color-coded by node. The x-axis
shows “time”, measured in number of F&I operations. The line shows the counter’s migration
pattern across the caches of the different cores.

To discuss the execution trace, we define the following terms:
• Core visit: a contiguous interval during which just one core performs F&I operations (see

Section 3.4.1). The length of a core visit is the number of F&I operations performed in it.
• Node visit: a contiguous interval during which cores on just one node perform F&I opera-

tions. The length of a node visit is the number of core visits it contains.
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(a) Cores on Node 0, avg 2.92

� � �� ��
���

���

���

���

���

���

���� ����� ������

��
�
��
��
��
�
��
��
��
��
��
�

(b) Cores on Node 3, avg 4.42

Figure 3.8: Intel core visit length distributions with all nodes participating. Counter allocated on Node 0.
Showing aggregate distributions for a cores on Node 0 (distance 0 from counter) and b cores on Node 4
(distance 1). Distributions for Nodes 1 and 2 are similar to b.

Figure 3.7 reveals unusual features of its core and node visits.
Round robin node visits: The nodes are visited in a fixed repeating order throughout Fig-

ure 3.7: 0, 2, 3, 1, . . . . We have confirmed that this pattern is consistent over the entire trace,
though the order occasionally changes and Node 0 is occasionally skipped. We omit the detailed
statistics for brevity.

Uneven core visit lengths: The first core visit of each node visit is usually relatively long.
Moreover, these long core visits only occur as the first node visit: almost all other node visits
are very short, having just one or two F&I operations. To confirm this observation, we show the
CDF of the core visit length distribution for Node 0 (distance 0 from the counter) and Node 3
(distance 1) in Figure 3.8. For brevity, we omit plots for Node 1 and Node 2, which are similar
to that for Node 3. The pattern is very clear for Node 3: about 70% of core visits are of length 1
or 2, but visits of length greater than 2 are likely to be at least length 10. The pattern is a bit less
prominent on Node 0, where longer visits only last around 5 operations. This partially explains
the difference in throughput observed between Node 0 the other nodes.

Occasional bursts: In Figure 3.7, most node visits only contain a few core visits: first a long
core visit, followed by 0 to 2 more core visits. However, every once in a while, a node visit
ends with many short core visits in a row. We call this occurrence a “burst” of visits. A natural
question is: are bursts simply the result of noise, or they a separate phenomenon? To answer this
question, we plot CDF of the node visit length distribution in Figure 3.9, again showing only
Node 0 and Node 3 for brevity. The distributions make clear that there are two distinct types of
node visits: those with 3 or fewer core visits, constituting about 80% of all node visits; and those
with significantly more, usually at least 8, making up the other 20% of node visits. We therefore
define the following terms:
• Burst: a node visit of length 4 or greater. For example, Figure 3.7 shows bursts for each of

Nodes 1, 2, and 3.
• Cycle: the time between the end of one burst on a given node and the end of the next burst
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(a) Node 0
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(b) Node 3

Figure 3.9: Intel node visit length (measured in number of core visits) distributions with all nodes partici-
pating. Counter allocated on Node 0. Showing distributions for (a) Node 0 (distance 0 from counter) and
(b) Node 4 (distance 1). Distributions for Nodes 1 and 2 are similar to (b).

Table 3.3: Intel number of times cores are visited per cycle.

0 VISITS 1 VISIT 2 VISITS ≥ 3 VISITS

Cores on Node 1 9% 85% 5% < 1%
Cores on Node 3 10% 85% 5% < 1%

on that node.
Interestingly, we find that in most cycles, each core is visited exactly once. This is shown in
Table 3.3. This pattern, which occurs on all nodes, suggests a possible mechanism for the bursts:
requests for the counter’s cache line build up in a queue in each node, and each queue occasion-
ally “flushes” if it is too full for too long.

Finally, recall from Section 3.4.2 that single-node executions produce different throughput
distributions than executions that cross node boundaries. We therefore also examine the trace
of a single-node execution with the counter on Node 0 and only cores on Node 0 participating.
In contrast to the multiple-node trace, the single-node trace is close to uniformly random. To
confirm this, we show the CDF of the core visit distance distribution in Figure 3.10. The CDF is
close to that of a geometric distribution, which is what the CDF would be for a truly uniformly
random schedule. This means that for analyzing algorithms for single-node executions on the
Intel machine, a uniformly random scheduling model is appropriate.

3.5 Takeaways for Fairness and Focus

Recall the desirable properties a schedule should have: in the long run, we want it to be fair,
letting each thread make the same amount of progress, but in the short term, we want the schedule
to be focused, allowing each thread enough time to read, locally modify, and then apply its
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modification on a cache line before the cache line gets invalidated.
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Figure 3.10: Intel core visit distance distributions
with only Node 0 participating. Counter allo-
cated on Node 0. Distribution is very close to
Geometric(1/18) (dashed blue line).

We now go back to our original ques-
tion: do memory operation schedules on mod-
ern hardware achieve long term fairness and
short term focus? In the previous section, we
saw some indications that the schedules might
not be fair: initial throughput experiments in-
dicated that on both machines, the node on
which memory is allocated is unfairly treated,
even in long runs. We saw that short-term
focus might be behind this: cores on remote
nodes get longer visits on average. However,
recall that these experiments were sequence
experiments, which were designed to uncover
scheduling patterns but not to represent the
workloads of real lock-free algorithms.

In this section, we thus test whether these
initial findings carry over to more realistic
workloads. More specifically, all the experiments in this section are competition experiments
(see Section 3.3). To review, in a competition experiment, multiple cores attempt to read from
and CAS a new value into a single memory location called the target. Competition experiments
have two delay parameters.
• Between a read and the following CAS is the atomic delay. This simulates work in the the

atomic modify section of a lock-free operation (Line 6 of Algorithm 3.1).
• Between each successful CAS and the following read is the parallel delay. This simu-

lates the parallel work of a lock-free algorithm between synchronization blocks (Line 3 of
Algorithm 3.1).

We simulate different lock-free workloads by varying the atomic and parallel delays. To highlight
the effects of the atomic delay, the experiments in this section are conducted with a high parallel
delay (set to 256 iterations in all experiments. See Section 3.3 for details on how the delay is
implemented). This means that long streaks of successful read-modify-CAS operations by one
thread without interruption from another thread are unlikely, even when the atomic delay is small.

All plots in this section show the results over 10 repetitions of 10 second runs. Each plot
point shows the median total throughput of successful CAS instructions over the 10 repetitions,
and error bars show the 75th and 25th percentile.

3.5.1 Fairness

To test long-term fairness on lock-free workloads, we run a set of competition experiments in
which all cores on all nodes are participating. We vary the atomic delay to evaluate the fairness
for lock-free algorithms with differently sized atomic modify sections. We measure the through-
put of successful CAS instructions exhibited by cores on each node, and compare them to the
throughput on other nodes. These tests answer the following question: when all cores run the
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same code, how skewed is their throughput with respect to each other?

AMD Fairness. The results for the fairness test on the AMD machine are shown in Figure 3.11.
It is clear that cores on distance 2 nodes (represented by Node 7 here) perform much better when
atomic delay is low, outperforming other nodes by up to 31×, but this drops very quickly.5 By
the time atomic delay reaches 16 iterations (around 56 ns), distance 1 nodes start outperforming
distance 2 nodes. However, recall that the throughput reported in Figure 3.11 shows successful
CAS instructions. Interestingly, if we consider the number of attempted CAS instructions, rather
than just the successful ones, the difference is less stark, with distance 2 nodes reaching a peak at
an atomic delay of 5 iterations, at which point they only outperform distance 1 nodes by a factor
of 2.2.6 This indicates that at low atomic delays, distance 2 nodes succeed in a much larger
fraction of their attempted CAS instructions.
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Figure 3.11: AMD throughput of CAS operations
for varying atomic delay with all nodes participating.
Target allocated on Node 0. Showing total through-
put of Node 0 (distance 0 from target), Node 4 (dis-
tance 1), and Node 7 (distance 2).

The throughput reaches a steady state
at around an atomic delay of 30 iterations
(roughly 70 ns), but is still highly unfair. No-
tably, distance 1 nodes achieve the highest
throughput at the steady state, outperforming
the other two groups by an order of magni-
tude. Insight into this phenomenon can be
gained by looking at the success ratio, or the
fraction of successful CAS instructions out of
the overall number attempted. For distance 1
nodes, the success ratio is around 0.04–0.05,
whereas for cores in the other two node cate-
gories, it lies at around 0.005. A failed CAS
is always caused by the success of another
thread’s CAS. In particular, a CAS by thread p
will fail if p executed its read of the target be-
tween the read and the CAS of thread whose
CAS was successful. Thus, the numbers indi-
cate that most threads align their read instruc-
tions with each other, causing repeated fail-
ures for the same set of threads. The delays inherent to the cache coherence protocol on the
AMD machine thus repeatedly favor these ‘mid latency’ (distance 1) threads over their counter-
parts that are farther or closer to the memory.

Intel Fairness. The fairness test results on the Intel machine are shown in Figure 3.12. Only
Node 0 and Node 3 are shown, as the other nodes’ curves were almost exactly the same as
Node 3. As could be expected, both Node 0 and Node 3 drop in throughput as the atomic delay
grows, and eventually both reach approximately the same throughput.

5This part is truncated in the plot, to make other trends more visible.
6This data is not shown in the plot.
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Figure 3.12: Intel throughput of CAS operations for
varying atomic delay with all nodes participating.
Target allocated on Node 0. Showing total through-
put of Node 0 (distance 0 from target) and Node 3
(distance 1).

We can see that in general, fairness here is
not as skewed as on AMD; at high throughputs
(corresponding to low atomic delay), Node 3
outperforms Node 0 by a factor of 1.4–1.8.
Both node’s performance degrades quickly,
though at somewhat different speeds. At an
atomic delay of 34 iterations (around 75 ns),
unfairness is at its worst, with Node 3 outper-
forming Node 0 by a factor of 12.5. However,
soon after that, starting at an atomic delay of
52 iterations, the two nodes are consistently
within 10% of each other in terms of their
throughput.

Fairness Takeaways. We conclude that the
fairness of schedules of a lock-free algorithm
is highly dependent on the algorithm itself, in
particular, on the length of its atomic modify
section. This observation is perhaps counter-
intuitive, especially for theoreticians in the
field; most literature on lock-free algorithms never accounts for ‘local’ work. However, the
exact length of local operations within the atomic modify section can have a drastic effect on
both fairness and performance. This is despite the fact that local work operates on the L1 cache
and thus experience much lower latencies than memory instructions that access new or contended
data. We thus recommend making efforts to minimize work in the atomic modify section when
designing and implementing lock-free algorithms.

Furthermore, we note that despite fairness arbitration efforts within each node, fairness is not
generally achieved among nodes. This is a similar observation to that made by Song et al. [269].
However, while they study workloads in which there is an uneven number of requests from
competing nodes, we show unfairness even when all nodes issue the same number of requests.
In general, to achieve better fairness even with relatively small atomic modify sections, it can be
beneficial to design architectures to explicitly favor requests from the local node over those from
remote nodes.

3.5.2 Focus

Recall the original intuition (Section 3.1) for why focus may be useful in a hardware schedule.
Ideally, to avoid wasted work, a thread should be able to keep a cache line in its private cache
for long enough to execute both the read and the CAS instructions of its atomic modify section
in a lock-free algorithm. However, this means that depending on the length of the atomic modify
section of a given algorithm, the cache line must remain in one core’s cache longer for sufficient
focus.

Recall that when inferring the scheduling patterns of each machine in Section 5.2, we con-
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sidered the visit length of a cache line at each core. That is, we measured how many memory
instructions a single core can execute before the cache line leaves its private cache. Note that a
schedule with better focus corresponds to a schedule with longer core visits. Thus, more focus
is required from the schedule the longer the atomic delay is. We say that a hardware schedule
has meaningful focus for a given lock-free algorithm if the entire atomic modify section of the
algorithm fits in a single core visit.

We now test how longer core visits observed in Section 5.2 translate to meaningful focus for
lock-free algorithms. Unlike previous experiments in this chapter, we test focus using experi-
ments with multiple targets. Specifically, we allocate one target on each node, and each core
is assigned one target to access for the duration of the experiment. This means that each core
is only directly contending with other cores accessing the same target. However, there may be
indirect contention caused by traffic on the node interconnect. To exhibit a variety of core visit
lengths, we run different types of experiments for AMD and Intel.
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Figure 3.13: AMD throughput of CAS operations for
varying atomic delay with all nodes participating. A
target is allocated each node. All cores accessing a
given target are in the same node. In each run, all
cores access targets the same distance away.

AMD Focus. Recall from Section 3.4.1 that
nodes that are 2-hops away from the memory
they access have longer core visits on aver-
age. To test how these longer visits translate
to meaningful focus, we conduct competition
experiments with three different settings. In
each setting, all cores access a target that is a
fixed distance away. The results of this test are
shown in Figure 3.13.

For small atomic delays, we observe a
significant difference between the three set-
tings. In particular, both distance 1 and dis-
tance 2 placements exhibit higher throughput
than distance 0. Throughput at distance 1
drops near atomic delay 18. This indicates that
at this point, a thread can no longer fit both its
read and its CAS into the same visit. A simi-
lar drop happens for the distance 2 placement
near atomic delay 23. In contrast, it appears
that the distance 0 placement never fits a read
and CAS into the same visit, even with atomic delay 0.

These findings make sense in light of the results of Section 3.4.1. Specifically, as shown
in Table 3.2, cores at distance 2 have longer visit lengths than those at distance 1. From the
table initially appears as if distance 0 cores have visit lengths comparable to distance 1 cores.
However, as shown in Figure 3.5, cores at distance 0 are frequently skipped in what is otherwise
a mostly round-robin visit sequence. If we view these skips as “length 0” visits, then cores at
distance 1 have visits longer than those at distance 0, whose visits can be so short that not even a
single atomic instruction finishes executing.

All three thread placements eventually reach a steady throughput of around 7.2–10.3 million
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successful CAS operations per second. This happens at an atomic delay of 36 iterations, roughly
corresponding to 125 ns on the AMD machine (see Section 3.3). Distance 1 nodes display the
highest throughput of the three categories in the steady state, outperforming distance 2 nodes by
20% and the Node 0 by 43%. This is consistent with the results from the fairness tests, but the
difference in performance is smaller here.

There are some other phenomena that we do not yet know how to explain, such as the drops
in throughput for distances 1 and 2 as atomic delay increases from 0 to 5 and the occasional
throughput spikes. It is possible that some of these effects would be smoothed over by an exper-
iment in which atomic delay was random rather than deterministic.
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Figure 3.14: Intel throughput of CAS operations for
varying atomic delay with all nodes participating. A
target is allocated each node. Showing results for
four different target assignments. In grouped assign-
ments, all cores accessing a given target are in the
same node. In split assignments, the set of cores
accessing a given target is split evenly across two
nodes.

Intel Focus. Recall from Section 3.4.2 that
longer visits occur on the first core visited in
a node, when the cache line travels between
nodes. In particular, these long core visits
happen only when cores of multiple nodes are
active, rather than just one node. To test the
effect of longer core visits on meaningful fo-
cus in the Intel machine, we therefore com-
pare two types of competition experiments:
the first is simply using all threads of one
node, and the second uses the same number of
threads, but splits them across two nodes. Just
like we did for AMD, we run the experiments
in parallel to create interconnect traffic. The
results of this test are shown in Figure 3.14.

As expected given our knowledge of In-
tel’s schedule, it is clear that for a small atomic
delay, splitting the threads across two nodes
produces significantly higher throughput than
having them all on one node. At around an
atomic delay of 30 iterations (approximately
66 ns), the runs on a single node start outper-
forming the split runs. This can be attributed
to the lowered contention caused by such a
high atomic delay. When contention is low, the dominating factor for performance becomes
the latency of accessing the memory (or the L3 cache, in this case), which is known to be much
lower for local accesses than for remote accesses.

Focus Takeaways. On both machines, we observed that for experiments with low atomic delay,
higher throughput occurs on schedules that we know exhibit better focus. The higher focus seems
to be meaningful only for an atomic delay of up to approximately 25-30 iterations, indicating that
algorithms with atomic modify sections of around this length or shorter can benefit from such
schedules.
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However, more generally, it is clear that focus in the hardware schedule is extremely helpful
for throughput; it would be desirable to achieve meaningful focus even for algorithms with a
longer atomic modify section. This observation was made by Haider et al. [141]. Using simula-
tion results, they showed that it can be very beneficial to allow each thread to lease a cache line
for a bounded amount of time, and release it either when that time is up, or when it finishes its
atomic modify section. Our results support those of Haider et al., but on real architectures rather
than simulations. That is, even when all features of an architecture interact with each other, it
can be beneficial to extend the implicit lease of a cache line that memory instruction schedules
provide a thread.

3.6 Related Work

Alistarh et al. [16] ran tests similar to our sequence experiments to verify the validity of their uni-
form random scheduler assumption. They ran the experiments on a single Fujitsu PRIMERGY
RX600 S6 server with four Intel Xeon E7-4870 (Westmere EX) processors, but they used only
one of its nodes. Our results for this setting are consistent with theirs; scheduling seems mostly
uniformly random on a single Intel node. Our experiments, however, consider a much greater
scope, noting when this random scheduling pattern falters.

NUMA architectures have been extensively studied. Previous works have designed bench-
marks to understand the latencies and bandwidth associated with accesses to different levels of
the cache and local versus remote memory on NUMA machines [138, 236, 264]. However, these
papers did not consider the effect of contended workloads on NUMA access patterns.

A thorough study of synchronization primitives was conducted by David et al. [98]. Some
of their tests are similar to ours. However, their setup is different; in all contention experiments,
David et al. inject a large delay between consecutive operations of one thread. While we use
a similar pattern for our focus and fairness experiments, we also test configurations that do not
inject such delays. Thus, our work uncovers some performance phenomena that were not found
by David et al.

Song et al. [269] show that NUMA architectures can have highly unfair throughput among
the nodes. They also show that this unfairness does not always favor nodes that access local
memory, displaying this behavior in VMs. However, they do not study lock-free algorithms or
contention.

Performance prediction has been the goal of significant previous work, not only in the lock-
free algorithms community [36, 71, 134, 182, 285]. Techniques range from simulation, to hand
built models, to regression based models, to profiling tools. Goodman et al. present one such
profiling tool [134]. While this produces accurate results, sometimes it is impractical to have the
algorithm ready to use for profiling before performance predictions are made, since performance
predictions can help develop the algorithm. Our work aims to obtain a high level performance
model to guide algorithm design in its earlier stages. Furthermore, our benchmark can be used
on any machine to gain an understanding of its underlying model.

58



3.7 Chapter Discussion
Analytical performance prediction of lock-free algorithms is a hard problem. One must consider
the likely operation scheduling patterns on the machines on which the algorithm is run. Previous
approaches assumed a random scheduler instead of an adversarial one, but did not show whether
such an assumption is reflective of real machines.

In this chapter, we present a thorough study of scheduling patterns produced on two NUMA
architectures, using Severus, our benchmarking tool [49, 50]. Our experiments uncover several
phenomena that can greatly affect the schedules of lock-free algorithms and make models based
solely on uniform randomness inaccurate. In particular, we show that thread placement with
respect to a contended memory location can be crucial, and that surprisingly, remote threads
often perform better under contention than local threads.

On both tested machines, the reason for this rise in throughput seems to stem from improved
focus, or the increased length of visits of the cache line for cores on remote nodes. This phe-
nomenon has been largely overlooked in literature that aims to approximate the operation sched-
uler, other than a few exceptions [141]. Additionally, these focus benefits come at the cost of
fairness on modern machines; not all cores on a machine experience these beneficial longer
visits.

We believe that there are several takeaways and further directions from the work presented
in this chapter. Firstly, fairness is not a given. This knowledge can affect algorithm design, as
well as programming frameworks chosen; in a system with low fairness, a work-stealing sched-
uler may be crucial for ensuring a fair allocation of parallel tasks that leads to high throughput.
Secondly, this work casts doubt on previous works that assume requests for a cache line are
simply handled in a random order, and shows that more careful modeling may be necessary.
Furthermore, we’ve shown in our experiments that the length of the atomic delay (the delay
between the read and the following CAS in a read-modify-CAS loop) has a significant—yet a
priori unpredictable—effect on performance, since different platforms can behave drastically dif-
ferently. Finally, we provide a tool that allows a user to test their platform and understand what
assumptions are reasonable for them, and what factors might have the greatest effect on their
algorithm’s performance.
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Chapter 4

Contention-Bounded Series-Parallel DAGs

4.1 Introduction

This part of the thesis has so far focused on getting a better understanding of the causes and
effects of contention on modern architectures and on modeling these effects more accurately.
Studying contention and refining our theoretical model is important, since most work in the lit-
erature does not theoretically analyze the performance of concurrent algorithms, instead relying
exclusively on empirical evaluation.

As discussed in previous chapters, the difficulty of analyzing the performance of concurrent
algorithms stems for their inherent asynchrony, which is modeled by an adversarial scheduler.
This adversary can create executions in which each process executes in isolation, or have all pro-
cesses contend on the same location at once. This control that the adversary possesses leads to
pessimistic and inaccurate analyses. In fact, even though virtually no upper bounds are known,
Fich, Hendler and Shavit [116] show that, when accounting for contention, a number of concur-
rent data structures, including counters, stacks, and queues, require Ω(n) time in a system with n
processes. This lower bound gives a pessimistic outlook on the design of efficient data structures.

In this chapter, based on [5], we take a different approach to designing and analyzing concur-
rent algorithms that are provably efficient (even when accounting for contention). In particular,
instead of considering a fully general concurrent setting and trying to understand likely behaviors
of the scheduler (as we did in the previous two chapters), we study concurrency in a restricted
but commonly used concurrent setting. We show that by considering the setting in which a con-
current algorithm is run, it is possible to design it in a way that is provably efficient. We show
this by presenting an implementation of an indicator data structure designed to be used in nested
parallel programs.

Nested parallelism is a programming paradigm in which concurrency is created under the
control of programming primitives. Nested parallelism is broadly available in a number of mod-
ern programming languages and language extensions, such as OpenMP, Cilk [124], Fork/Join
Java [199], Habanero Java [159], TPL [203], TBB [161], X10 [79], parallel ML [120], and par-
allel Haskell [181]. In these systems, nested-parallel programs can be expressed by using a prim-
itives such as fork–join and async–finish. These primitives govern the number of processes
that may participate in the execution; fork and async create new parallel tasks, allowing new
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processes to join the computation to execute these tasks. Similarly, the join and finish primi-
tives represent synchronization points, where parallel tasks are merged, terminating the processes
that executed them. This allows the computation to have a tight bound on the potential amount of
contention at any given point, allowing a data structure to ‘prepare’ for highly contended scenar-
ios in advance. Thus, nested parallel computations yield a more structured concurrency setting,
improving our ability to analyze concurrent algorithms that run in this setting.

Nested parallel computations can be modeled by a series-parallel directed acyclic graph, or
sp-dag, where the vertices represent parallel tasks, and edges represent dependencies between
them. A task cannot be executed unless all tasks that it depends on have completed, that is,
all vertices with edges into a vertex v must have completed their execution before v can begin.
The fork-join primitives allow each vertex in this dag to have at most an indegree of 2, but
async-finish allows for arbitrary in-degree. Variants of dag data structures are used broadly in
the implementation of modern parallel programming systems [79, 120, 124, 159, 161, 181, 199,
203].

To execute such nested parallel programs efficiently, one must determine when a vertex in
the dag becomes ready, i.e., all of its dependencies have been executed. Such readiness detection
requires a concurrent dependency counter, which we call in-counter, that counts the number of
incoming dependencies for each task. When a dependency between a task u and v is created,
the in-counter of v is incremented; when u terminates, v’s in-counter is decremented; when its
in-counter reaches zero,vertex v becomes ready and can be executed. In this chapter, we design
an in-counter for sp-dags that is guaranteed to be efficient under all possible nested parallel
executions.

Our starting point for the design of the in-counter is prior work on relaxed concurrent coun-
ters, also called indicators, that indicate whether a counter is positive or not. While the lower
bound of Fich et al. applies to exact counters, it does not apply to indicators, leaving room for
implementations that guarantee less contention. In prior work, Ellen et al. [111] present the Scal-
able Non-Zero Indicator (SNZI) data structure with the goal of achieving less contention. They
prove it to be linearizable, and evaluate it empirically, but provide any analytical upper bounds.
The idea of the SNZI data structure is to have a tree of SNZI nodes, each of which can be in-
cremented or decremented. The change is propagated up the tree to its parent only if the sign of
the node has changed (i.e., the node’s sum changed from positive to zero or vice versa). In this
way, few changes get propagated all the way up to the root, thereby preventing high contention
on a single node. However, depending on the execution and where increments and decrements
are initiated on the tree, the SNZI data structure could still experience significant contention. In
this chapter, we present an extension to the SNZI data structure to allow it to grow dynamically
at run time in response to increasing degree of concurrency.

We show that in a nested-parallel computation, in which we have a good handle on the amount
of concurrency that can occur due to the fork-join and async-finish primitives, the dynamic SNZI
can be used to implement in-counters with O(1) amortized contention per operation.

Finally, we present an implementation and perform an experimental evaluation in compari-
son to prior work (Section 4.5). Our results offer empirical evidence for the practicality of our
proposed techniques, showing that our approach can perform well in practice.

Our contributions are as follows.
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• We present an extension to the original SNZI data structure that allows it to grow varying
numbers of processes.

• We show how to use this version of SNZI to implement a non-blocking data structure for
series-parallel dags that can be used to represent nested-parallel computations.

• We prove that our series-parallel dag data structure guarantees low contention under a
nested parallel programming model.

• We evaluate our algorithm empirically showing that it is practical and can perform well in
practice.

4.2 Background and Peliminaries
We adopt the definition of Fich et al. [116] for contention; the contention of an instruction i
by process p in low-level execution E is the number of non-trivial1 instructions on the same
memory location as i that occur between p’s most recent instruction and i in E. Recall that in
this chapter, we do not restrict the adversarial scheduler beyond what is already imposed by the
nested-parallel program, and therefore we do not use the definition of contention presented in
Chapter 2. It would be interesting to see what bounds can be achieved for algorithms run in the
nested-parallel paradigm when analyzing them under the model of Chapter 2, but this is future
work beyond the scope of this thesis.

4.2.1 SP-DAGs
A nested-parallel program can be represented as a series-parallel dag, or an sp-dag, of threads,
where vertices are pieces of computation, and edges represent dependencies between them. In
fact, to execute such a program, modern programming languages construct an sp-dag and sched-
ule it on parallel hardware. We present a modified implementation of an sp-dag, which incor-
porates a new indicator data structure for keeping track of unsatisfied dependencies. Our sp-dag
data structure is provably efficient sp-dag data structure and can be used to execute nested-parallel
programs. After defining sp-dags, we present in Section 4.3 our data structure for sp-dags by as-
suming an in-counter data structure that enables keeping track of the dependencies of a dag
vertex. We then present our data structure for in-counters in Section 4.3.1.

Definition of SP-Dags. A serial-parallel dag, or an sp-dag for short, is a directed-acyclic graph
(dag) that has a unique source vertex, which has indegree 0, and a unique terminal vertex, which
has out-degree 0 and that can be defined iteratively. In the base case, an sp-dag consists of a
source vertex u, a terminal vertex v, and the edge (u, v). In the iterative case, an sp-dag G =
(V,E) with source s and terminal t is defined by serial or parallel composition of two disjoint
sp-dags G1 and G2, where G1 = (V1, E1) with source s1 and terminal t1 and G2 = (V2, E2) with
source s2 and terminal t2, and V1 ∩ V2 = ∅:
• serial composition: s = s1, t = t2, V = V1 ∪ V2, E = E1 ∪ E2 ∪ (t1, s2).

1recall that non-trivial instructions are those that can have an effect on memory, including writes, FAA, and
CASes, regardless of whether or not they succeed.
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1 type snzi_node =
2 struct {
3 c: N ∪ { 12}; initially 0 //counter
4 v: N; initially 0 //version number
5 children: array of 2 snzi nodes; initially [null, null]
6 parent: snzi_node
7 }

9 void snzi_arrive (snzi_node a) { ... }
10 void snzi_depart (snzi_node a) { ... }
11 bool snzi_query (snzi_node a) { ... }

Figure 4.1: Partial pseudocode for the SNZI data structure; full description can be found in original SNZI
paper [111].

• parallel composition: s, t 6∈ (V1 ∪ V2), V = V1 ∪ V2 ∪ {s, t}, and E = E1 ∪ E2 ∪
{(s, s1), (s, s2), (t1, t), (t2, t)}.

For any vertex v in an sp-dag, there is a path from s to t that passes through v. We define the
finish vertex of v as the vertex u which is the closest proper descendant of v such that every path
from v to the terminal t passes through u.

4.2.2 The SNZI Data Structure
Concurrent counters are an important data structure used in many algorithms but can be chal-
lenging to implement efficiently when accounting for contention, as shown by the linear (in the
degree of concurrency) lower bound of Fich et al [116]. Observing that the full strength of
a counter is unnecessary in many applications, Ellen et al proposed non-zero indicators as re-
laxed counters that allow querying not the exact value of the counter but its sign or non-zero
status [111]. Their non-zero indicator data structure, called SNZI, achieves low-contention by
using a tree of SNZI nodes, each of which can be used to increment or decrement the counter.
Determining the non-zero status of the counter only requires accessing the root of the tree. The
tree is updated by increment and decrement operations. These operations are filtered on the way
up to the root so that few updates reach the root.

Figure 4.1 illustrates the interface for the SNZI data structure and pseudo-code for the SNZI
node struct snzi_node, the basic building block of the data structure from [111]. A SNZI
node contains a counter c, a version number v, an array of children (two in our example), and a
parent. The value at the counter indicates the surplus of arrivals with respect to the departures.
The arrive and depart operations increment and decrement the value of the counter at the
specified SNZI node a respectively, and query, which must be called at the root of the tree,
indicates whether the number of arrive operations in the whole tree is greater than number of
depart operations since creation of the tree.

To ensure efficiency and low contention, the SNZI implementation carefully controls the
propagation of an arrival or departure at a node up the tree. The basic idea is to propagate a
change to a node’s parent only if the surplus at that node flips from zero to positive or vice versa.
More specifically, an arrive at node a is called on a’s parent if and only if a had surplus 0 at the
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beginning of the operation. Similarly, a depart at a node a is recursively called on a’s parent if
and only if a’s surplus became 0 due to this depart. We say that node a has surplus due to its
child if there was an arrive operation on a that started in a’s child’s subtree.

The correctness and linearizability of the SNZI data structure as proven relies on two impor-
tant invariants [111]: (1) a node has surplus due to its child if and only if its child has surplus,
and (2) surplus due to a child is never negative. Together, these properties guarantee that the root
has surplus if and only if there have been more arrive than depart operations on the tree.

4.3 The Series-Parallel Dag Data Structure

Figure 4.2 shows our data structure for sp-dags. We represent an sp-dag as a graph G consisting
of a set of vertices V and a set of edges E. The data structure assigns to each vertex of the dag an
in-counter data structure, which counts the number of (unsatisfied) dependencies of the vertex.
As the code for a dag vertex executes, it may dynamically insert and delete dependencies by
using several handles. These handles can be thought of, in the abstract, as in-counters, but they
are implemented as pointers to specific parts of an in-counter data structure.

More precisely, a vertex consists of

• a query handle (query), an increment handle (inc), and a decrement handle (dec),
• a flag first_dec indicating whether the first or the second decrement handle should be

used,
• a flag dead indicating whether vertex has been executed,
• the finish vertex fin of the vertex, and
• a body, which is a piece of code that will be run when the scheduler executes the vertex.

The sp-dag uses an in-counter data structure Incounter, whose implementation is described
in the Section 4.3.1. The in-counter data structure supplies the following operations:
• make: takes an integer n, creates an in-counter with n as the initial count and returns a

handle to the in-counter;
• increment: takes a vertex v, increments its in-counter, and returns two decrement and two

increment handles;
• decrement: takes a vertex v and decrements its in-counter;
• is_zero: takes a vertex v and returns true iff that in-counter of v is zero.
Inspired by recent work on formulating a calculus for expressing a broad range of parallel

computations [4], our dag data structure provides several operations to construct and schedule
dags dynamically at run time. The operation new_vertex creates a vertex. It takes as arguments
a finish vertex u, an increment handle i, a decrement handle d, and a number n indicating the
number of dependencies it starts with. It allocates a fresh vertex, sets its dead and first_dec

flags to false, and sets the body for the vertex to be a dummy placeholder. It then creates an
in-counter and a handle to it. The operation returns the new vertex along with the handle to its in-
counter. The handle becomes the query handle. The operation make creates an sp-dag consisting
of a root u and its finish vertex z and returns the root u. As can be seen in the function make,
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the increment and decrement handles of a vertex v always belong to the in-counter of v’s finish
vertex.

A vertex u and its finish vertex z can be thought as a computation in which u executes the
code specified by its body and then returns to z. This constraint implies that z serially depends
on u because z can only be executed after u. As it executes, a vertex u can use the functions
chain and spawn to “nest” another sequential or parallel computation (respectively) within the
current computation.

The chain operation, which corresponds to serial composition of sp-dags, nests a sequential
computation within the current computation. When a vertex u calls chain, the call creates two
vertices v and w such that w serially depends on v. Furthermore, v serially depends on u, and z
serially depends on w. After calling chain, u terminates and thus dies. The initial in-counters of
v and w are set to 0 and 1 respectively (to indicate that v is ready for execution, but w is waiting
on one other vertex). The edge (u, v) is inserted to the dag to indicate a satisfied dependency
between u and v.

The spawn operation, which corresponds to parallel composition of sp-dags, nests a parallel
computation with the current computation. When a vertex u calls spawn, the call creates two
vertices, v and w, which depend serially on u, but are themselves parallel. The operation in-
crements the in-counter of u’s finish node, to indicate a serial dependency between u’s finish
vertex and the new vertices v and w. Even though two new vertices are created, the in-counter
is incremented once, because one of the vertices can be thought of as a continuation of u. The
increment operation returns two new increment handles i and j and a decrement-handle pair
d. The spawn operation then creates the two vertices v and w using the two increment handles,
one for each, and the decrement-handle pair d as a shared argument. Assigning each of v and
w their own separate increment handles enables controlling contention at the in-counter of u’s
finish node. As described in Section 4.3.1, sharing of the decrement handles by the new vertices
(v, w) is critical to the efficiency. As with the chain operation, spawn must be the last operation
performed by u. It therefore completes by creating the edges from u to v and w, and marking u
dead.

The operation signal indicates the completion of its argument vertex u by decrementing the
in-counter for its finish vertex v, and inserting the edge (u, v).

In terms of efficiency, apart from calls to Incounter, the operations of sp-dags involve sev-
eral simple, constant time, operations. The asymptotic complexity of the sp-dags is thus deter-
mined by the complexity of the in-counter data structure.

4.3.1 Incounters

We present the in-counter: a time and space efficient low-contention data structure for keeping
track of pending dependencies in sp-dags. When a new dependency for vertex v is created in
the dag, its in-counter is incremented. When a dependency vertex in the dag terminates, v’s
in-counter is decremented.

Our goal is to ensure that the increment and decrement operations are quick; that is, that they
access few memory locations and encounter little contention. These goals could seem contra-
dictory at first—if operations access few memory locations then they would conflict often. Our
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module Incounter = ... (* As defined in Figure 4.4 *)
class Dag {

G = (V,E)
type handle = Incounter.handle
struct {
handle query, inc, dec[2];
boolean first_dec, dead;
vertex fin;
function body;

} vertex;

(vertex, handle) new_vertex (vertex u, handle i, handle d, int n) {
V = V ∪ {v}, v 6∈ V
(v.firstDec, v.dead) = (false, false)
v.body = { *code* } //piece of code for this vertex to run
v.query = Incounter.make(n)
(v.fin, v.inc, v.dec) = (u, i, d)
return (v, v.query) }

(vertex,vertex) make () {
V = {v}
E = ∅
(v.firstDec, v.dead) = (false, false)
v.body = { *code* } //piece of code for this vertex to run
v.query = Incounter.make(1)
u = new_vertex (u, v.query, v.query, 0)
return (u,v) }

(vertex, vertex) chain (vertex u) {
(w, h) = new_vertex (u.fin, u.inc, u.dec, 1)
(v, h) = new_vertex (w, h, [h, h], 0)
E = E ∪ { (u, v) }
u.dead = true
return (v, w) }

(vertex, vertex) spawn (vertex u) {
(d, i, j) = Incounter.increment (u.fin)
(v, _) = new_vertex(u.fin, i, d, 0)
(w, _) = new_vertex(u.fin, j, d, 0)
E = E ∪ { (u, v), (u, w) }
u.dead = true
return (v, w) }

void signal(vertex u){
Incounter.decrement (u.fin)
E = E ∪ { (u, u.fin) } } }

Figure 4.2: Pseudocode for our sp-dag data structure.
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1 (snzi_node, snzi_node) grow (snzi_node a, float p ) {
2 heads = flip(p) //flip a p-biased coin.
3 if (heads) {
4 left = new snzi_node(0)
5 right = new snzi_node(0)
6 CAS(a.children, null, [left, right]) }
7 children = a.children
8 if (children == null) { return (a, a) }
9 return children }

Figure 4.3: Pseudocode for the probabilistic SNZI grow.

in-counter data structure circumvents this issue by ensuring that each operation accesses few
memory locations that are mostly disjoint from those of others.

The in-counter is fundamentally a dynamic version of the SNZI tree. We begin by presenting
this extension to the SNZI data structure presented by Ellen et al. to make it able to dynamically
adjust to contention.

4.3.2 Dynamic SNZI
The SNZI data structure does not specify the shape of the tree that should be used, instead
allowing the application to determine its structure. For example, if the counter is being used by
p threads concurrently, then we may use a perfectly balanced tree with p nodes, each of which
is assigned to a thread to perform its arrive and depart operations. This approach, however,
only supports a static SNZI tree, i.e., unchanging over time. While a static SNZI tree may be
sufficient for some computations, where a small numbers of coarse-grained threads are created, it
is not sufficient for nested parallel computations, where the number of fine-grained threads vary
dynamically over a wide range from just a few to very large numbers, such as millions or even
billions, depending on the input size. The problem is that, with a fixed-sized tree, it is impossible
to ensure low contention when the number of threads increase because many threads would have
to share the same SNZI node. Conversely, it is impossible to ensure efficiency when the number
of threads is small, because there may be many more nodes than necessary.

To support re-sizing the tree dynamically, we extend the SNZI data structure with a simple
operation called grow, whose code is shown in Figure 4.3. The operation takes a SNZI node
as argument, determines whether to extend the node (if the node has no children), and returns
the (possibly newly created) children of the node. If the node already has children, pointers to
them are returned, but they are left unchanged. If the node does not have children, then they
are locally allocated, and then the process tries to atomically link them to the tree. They are
initialized with surplus 0 so that their addition to the tree does not affect the surplus of their
parent. The grow operation also takes a probability p, which dictates how likely it is to create
new children for the node. The operation only attempts to create new children if the node does
not already have children and it flipped heads in a coin toss with probability p for heads. The idea
is that this probabilistic growing allows an application to control the rate at which a SNZI tree
grows without changing the protocol for some of the threads using it. Such probabilistic growing
is useful when one wants a balance between low contention and frequent memory allocation.
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The right probability threshold to use, however, may depend not only on the application, but also
on the system.

If node a does not have any children at the end of a grow operation, we have the operation
return two pointers to a itself. This return value is convenient for the in-counter application that
we present in the rest of the chapter. Other applications using dynamic SNZI may return anything
else in that case.

The grow operation may be called at any time on any SNZI node. To keep the flexible
structure of the SNZI data structure, we do not specify when to use the grow operation on the
tree, instead leaving it to the application to specify how to do so. For example, in Section 4.3.1,
we show how to use the grow operation to implement a low-contention dependency counter for
dags. It is easy to see that the operation does not break the linearizability of the SNZI structure;
it is completely independent from the count, version number, and parent fields of nodes already
in the tree, which are the only fields that affect the correctness and linearizability.

We note a key property of the grow operation. We would like to ensure that, given a proba-
bility p, when grow is called on a childless node, only 1/p such calls will return no children in
expectation, regardless of the timing of the calls. That is, even if all calls to grow are concurrent,
we want only 1/p of them to return no children. This property is ensured by having the coin flip
happen before reading the value of the children array to be returned. This guarantees that any
adversary that does not know the result of local coin flips cannot cause more than 1/p calls to
return no children in expectation.

Dynamically shrinking the SNZI tree is more difficult, because we need to be sure that no
operation could access a deallocated node. In general, one may easily and safely delete a SNZI
node from the tree if the following two conditions hold: (1) its surplus is 0, and (2) no thread
other than the one deleting the node can reach it. The second condition is much trickier to ensure.
In Section 4.4 we show how to deallocate nodes in our dependency counter data structure.

4.3.3 Choosing Handles to the In-Counter
To ensure disjointness of memory accesses, our in-counter data structure assigns different han-
dles to different dag vertices. These handles are pointers to SNZI nodes within the in-counter,
dictating where in the tree an operation should begin. Thus, if two processes have different
handles, their operations will access different memory locations.

The in-counter data structure ensures the invariant that only the leaves have a surplus of
zero. This allow us to exploit an important property of SNZI: operations complete when they
visit a node with positive surplus, effectively stopping propagation of the change up the tree.
Specifically, an increment that starts at a leaf completes quickly when it visits the parent. To
maintain this invariant, we have to be careful about which SNZI nodes are decremented.

Figure 4.4 shows the pseudo-code for the in-counter data structure.
The in-counter’s interface is similar to the original SNZI data structure: the operation make

creates an instance of the data structure and returns a handle to it. The operation increment is
meant to be used when a dag vertex spawns. It takes in a dag vertex, and uses its increment handle
to increment the SNZI node’s surplus. Before doing so, it calls the grow operation. Intuitively,
this growth request notifies the tree of possible contention in the future and gives it a chance to
grow to accommodate a higher load. The increment operation returns handles to other nodes
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1 class Incounter{
2 type handle = snzi_node //A handle is a snzi node

4 float p = *prob* //Growth probability: architecture specific constant.

6 //Make a new counter with surplus n.
7 handle make(n) { snzi_make(n) }

9 //Auxiliary function: select decrement handle.
10 handle claim_dec(vertex u) {
11 if (CAS(u.firstDec, false, true)) { u.dec[0] }
12 else u.dec[1] }

14 //Increment u’s target dependency counter.
15 (handle[2], handle, handle) increment (vertex u) {
16 (a, b) = grow(u.inc, p)
17 (i1,i2) = (a, b)
18 if (u is a left child) {d2 = a }
19 else {d2 = b }
20 snzi_arrive (d2)
21 d1 = claim_dec(u)
22 return [[d1,d2],i1,i2] }

24 //Decrement u’s counter.
25 void decrement (vertex u) {
26 d = claim_dec(u)
27 snzi_depart(d)}

29 //Check that u’s counter is zero.
30 boolean is_zero(u) { return snzi_isZero(u.query)}
31 }

Figure 4.4: Pseudocode for the in-counter data structure.
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in the SNZI tree, that is, two decrement handles and two increment handles, indicating where
the newly spawned children of the dag vertex should perform their increment or decrement. The
operation decrement is meant to be used when a dag vertex signals the end of its computation.
It takes in dag vertex, and uses its decrement handle to decrement the surplus of a previously
incremented node.

Since the increment operation is the only thing that can cause growth in the SNZI tree,
the structure of the tree is determined by the operations performed on the in-counter structure.
The tree is therefore not necessarily balanced. However, as we establish in Section 4.4, the
operations’ running time does not depend on the depth of the tree. In fact, we show that the
operations complete in constant amortized time and also lead to constant amortized contention.

To understand the implementation, it is helpful to consider the way the sp-dag structure uses
the in-counter operations. The increment operation is called by a dag vertex when the vertex
calls the spawn operation, which uses the vertex’s increment handle to determine the node in the
SNZI tree, where an arrive operation will start. To find the place, the increment operation first
uses a grow operation to check whether the SNZI node pointed at by the handle has children.
Additionally, the operation creates new children if necessary (line 16). Intuitively, we create
new SNZI nodes to reduce contention by using more space. Thus, if the increment handle has
children, we should make use of them and start our arrive operation there. This is exactly
what the increment operation does (line 20). Note that, in case the grow operation does not
return new children, we simply have the arrive operation start at the increment handle. The
increment operation returns two increment handles and two decrement handles; one of each for
each of the dag vertex’s new children.

The in-counter algorithm makes use of an important SNZI property: decrements at the top of
the tree do not affect any node below them. Furthermore, if there is a depart operation at SNZI
node a, it cannot cause a to phase change as long there is surplus anywhere in a’s subtree. These
observations lead to the following intuition: to minimize phase changes in the SNZI tree, priority
should be given to decrementing nodes closer to the root.

Thus, each dag vertex stores two decrement handles rather than just one. These two decre-
ment handles are shared with the vertex’s sibling, and they are ordered: the first handle always
points to a SNZI node that is higher in the tree than the second. Decrement handle is needed by
the decrement operation (line 26) and the increment operation. Recall that an increment al-
ways returns two decrement handles. One of these decrement handles always points to the SNZI
node on which the increment operation started its arrive. However, the other one is inherited
from the parent dag vertex (the one that invoked the increment). To preserve the invariant, the
incrementing vertex needs to claim a decrement handle (line 21). The two decrement handles
returned are always ordered as follows: first, the one inherited from the parent, and, then, the one
pointing at the freshly incremented SNZI node. In this way, we guarantee that the first decre-
ment handle in any pair points higher in the tree than its counterpart. When a decrement handle
is needed, the two dag vertices determine which handle to use through a test-and-set. The first
of the two to use a decrement handle will take the first handle, thus ensuring that higher SNZI
nodes are decremented earlier. We rely on this property to prove our bounds in Lemma 4.4.8.

Note that, in an increment operation, the decrement handle is claimed only after the arrive
has completed. This key invariant helps to ensure that phase changes rarely occur in the SNZI
tree, thus leading to fast operations.
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4.4 Correctness and Analysis
We first prove that our accusations data structure is linearizable and then establish its time and
space efficiency.

We say that the accusations is correct if any is_zero operation at the root of the tree correctly
indicates whether there is a surplus of increment operations over decrement operations. To
prove correctness, we establish a symmetry with the original SNZI data structure. Note that each
increment, decrement, and is_zero operation calls the corresponding SNZI operation (i.e.,
arrive, depart, query respectively) exactly once. We define the linearization points of each
operation as that of the corresponding SNZI operation.

Since the correctness condition for the accusations and for SNZI are the same, we have the
following observation.
Observation 4.4.1. An execution of the accusations is linearizable if the corresponding SNZI
execution is linearizable.

At this point, we recall that any SNZI run is linearizable if there are never more departs than
arrives on any node, i.e., surplus at any node is never negative [111]. We show that this invariant
indeed holds for any valid execution of the accusations data structure, and therefore that any valid
execution is linearizable. We define a valid execution as follows.
Definition 4.4.2. An accusations execution is valid if any handle passed as argument to the
decrement operation was returned by a prior increment operation. Furthermore, that handle
is passed to at most one decrement operation.
Lemma 4.4.3. Any valid accusations execution is linearizable.

Proof. Observe that every increment operation generates one new decrement handle, and that
handle points to the node at which this increment’s arrive operation was called. Thus, in valid
executions, any depart on the underlying SNZI data structure (which is always called by the
decrement operation) has a corresponding arrive at an earlier point in time. Therefore, there
are never more departs than arrives at any SNZI node, and the corresponding SNZI execution is
linearizable. From Observation 4.4.1, the accusations execution is linearizable as well.

It is easy to see that any execution of the accusations that only accesses the object as pre-
scribed by the sp-dag algorithm is valid. From this observation, the main theorem follows im-
mediately.
Theorem 4.4.4. Any execution of the accusations through sp-dag accesses is linearizable.

4.4.1 Running Time
To prove that the accusations is efficient, we analyze shared-memory steps and contention sepa-
rately: we first show that every operation takes an amortized constant number of shared memory
steps, and then we show that each shared memory location experiences constant amortized con-
tention at any time. In our analysis, we do not consider is_zero, since it does not do any
non-trivial shared memory steps.

For the analysis, consider an execution on an sp-dag, starting with a dag, consisting of a
single root vertex and its corresponding finish vertex. Further, observe that this finish vertex
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has a single SNZI node as the root of its accusations. Note that all shared memory steps in the
execution are on the accusations. We begin by making an important observation.
Lemma 4.4.5. There exist at most one increment and one decrement handle pointing to any given
SNZI node.

To prove this lemma, note that every increment operation creates new children for the SNZI
node whose handle is used, and thus does not produce another handle to that node. A simple
induction, starting with the fact that the root node only has one handle pointing to it, yields the
result.

We now want to show that every operation on the accusations performs an amortized constant
number of shared memory steps. First, note that the only calls in the accusations operations that
might result in more than a constant number of steps are their corresponding SNZI operations.
The SNZI operations do a constant number of shared memory steps per node they reach, but
they can be recursively called up an arbitrarily long path in the tree, as long as nodes in that
path phase change due to the operation. That is, frequent phase changing in the SNZI nodes will
cause operations on the data structure to be slower. In fact, we show that on average, the length
of the path traversed by an arrive or depart operation is constant, when those SNZI operations
are called only through the accusations operations.

We say that a dag vertex is live if it is not marked dead and a handle is live if it is owned by
a live vertex. We have the following lemma about live vertices.
Lemma 4.4.6. If dag vertex v is live, then it has not used claim_dec to claim a decrement
handle.

Keeping track of live vertices in the dag is important in the analysis, since by Lemma 4.4.6,
these are the vertices that can use their handles and potentially cause more contention.

To show that operations on SNZI nodes are fast, we begin by considering executions in which
only increment operations are allowed, and no decrements happen on the accusations. Our goal
is to show that the accusations’s SNZI tree is relatively saturated, so that arrive operations that
are called within a increment only access a constant number of nodes. After we establish that
increment operations are fast when decrements are not allowed, we bring back the decrement
operations and see that they cannot slow down the increments.
Lemma 4.4.7. Without any decrement operations, when there are no increments mid-execution,
only leaves of the in-counter’s SNZI tree can have surplus 0.

Proof. The proof is by induction on the number of increment operations called on the accu-
sations. The tree is initialized with one node with surplus 1. Thus, when there have been 0
increments, no node has surplus 0. Assume that the lemma holds for accusationss that have had
up to k increments on them. Consider an accusations that has had k increments, and consider a
new increment operation invoked on node a in the tree. If a is not a leaf, the grow operation
does not create new children for a, and the tree does not grow. Thus, the lemma still holds. If a
is a leaf, the increment operation creates two children for a and starts an arrive operation on one
of the children. As a consequence of the SNZI invariant, we know that the surplus of a increased
by 1. After the increment, regardless of what its surplus was before this operation, a cannot
have surplus 0, and the lemma still holds.

By Lemma 4.4.7, we know that, ignoring any effect that decrements may have, the tree has
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surplus in all non-leaf nodes. Recall that an arrive operation that reaches a node with positive
surplus will terminate at that node. Thus, any arrive operation invoked on this tree will only
climb up a path until it reaches the first node that was not a leaf before this increment started.
That is, since each increment only expands the tree by at most one level, any arrive operation
will reach at most 3 nodes.

We now bring back the decrement operations. The danger with decrements is that they could
potentially cause non-leaf nodes to phase change back to 0 surplus, meaning that an arrive

operation in that node’s subtree might have to traverse a long path up the SNZI tree. Our main
lemma shows that traversal of a long path can never happen; if a decrement causes a vertex’s
surplus to go back to 0, then no subsequent increment operation will start in that node’s subtree.
Lemma 4.4.8. If an in-counter node a at any point had a surplus and then phase changed to 0
surplus, then no live vertices in the dag point anywhere in its subtree.

Proof. We prove this by induction on the size of a’s subtree. Assume that node a in the in-
counter has a surplus at time t, and consider the decrement operation that caused a’s surplus to
become 0.

If a has no children, we only need to consider the handles that point directly at a, since it
has no subtree. Note that it must be the case that a was incremented by an arrive operation
that started there, in a increment operation that had an increment handle to a’s parent. During
that operation, a decrement handle to a was created, and placed as the second of the pair of
decrement handles returned. If a was now decremented, both dag vertices that shared these
decrement handles must have claimed them, and thus, by Lemma 4.4.6, neither of them is now
live. In particular, this means that the dag vertex that owned the increment handle to a is dead.
So, no live dag vertex has a handle to a.

Assume that the lemma holds for nodes with subtrees of size at most k. Now consider a
SNZI node a which has a subtree of size k + 1. Consider the decrement operation that caused
a’s surplus to change to 0. There are two possible cases: either (1) this decrement’s first depart
is at a, or (2) it started at one of a’s descendants.

CASE 1. This decrement started at a. Note that a has children, but neither of them has a
surplus at the time this decrement operation starts, since otherwise, a would have a surplus due
to its children, and would not phase change. Note that for a to have children, an increment

operation must have started at a and used touch to create a’s children. This same increment

then arrived at one of a’s children. So at least one of a’s children must have had surplus at some
point, and now neither of them do. By the induction hypothesis, if both of them had surplus at
some point, then no live dag handles point anywhere in a’s childrens’ subtrees now. Furthermore,
since by Lemma 4.4.5 only one increment handle and one decrement handle are ever created for
a, no handle in the dag points anywhere in a’s subtree (including a itself).

If only one of a’s children ever had surplus, by the induction hypothesis, that child now has
no handles pointing to it or its subtree. Furthermore, for that child’s surplus to become 0, both
of the dag vertices that were created in the spawn operation that created a’s children must have
used their decrement handles. Note that this includes the only dag vertex that had an increment
handle to a’s other child. Thus, neither of a’s children have any live handles pointing to them,
and since a’s handles have been used, no live handles now point to anywhere in a’s subtree.

CASE 2. The decrement that caused a’s phase change started in a’s subtree, but not at a itself.
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Let ar denote a’s right child and al denote its left child. Without loss of generality, assume that
the decrement started in ar’s subtree.

First note that ar must have had surplus before this decrement started, since no node can have
a negative surplus. We also know that after this decrement, ar has a surplus of 0, since it must
have phase changed in order for a depart to reach a. Thus, by the induction hypothesis, no live
handles point to ar.

We now only have to consider al to see whether there are still live handles pointing to that
subtree. We know that al does not have surplus, since otherwise a would not phase change due
to this decrement. Assume by contradiction that there is a live handle pointing to al. Then by
the induction hypothesis, al has never had a surplus, and there is a live increment handle to
it. Note that, by the algorithm, the dag vertex that has the increment handle to al must have a
decrement handle pointing to ar. By Lemma 4.4.6, this decrement pointer has never been used,
thus contradicting our earlier conclusion that ar has 0 surplus.

Note that Lemma 4.4.7 and Lemma 4.4.8 immediately give us the following important prop-
erty.
Corollary 4.4.9. No increment operation can invoke more than 3 arrive operations on the SNZI
tree.

Proof. We already saw that by Lemma 4.4.7, if no decrements happen, then each increment

operation can invoke at most 3 arrive operations.
Now consider decrements as well. Note that if a non-leaf node has surplus 0 and there

is no increment mid-operation at that node, then it must have previously had surplus (again
by Lemma 4.4.7). By Lemma 4.4.8, no new increment operations can happen on that node’s
subtree. Thus, even allowing for decrement operations, no increment operation can invoke more
than 3 arrives on the SNZI tree.

To finish the proof, we amortize the number of departs invoked by decrements against the
arrives invoked by increments. Recall that the number of departs invoked on a SNZI tree is
at most the number of arrives invoked on it. We get the following theorem:
Theorem 4.4.10. Any operation performed on the accusations itself calls an amortized O(1)
operations on the SNZI tree.

We now move on to analyzing the amount of contention a process experiences when exe-
cuting an operation on the accusations. Note that there have been several models suggested to
account for contention, as discussed in Section 4.6. In our contention analysis, we say that an
operation contends with a shared memory step if that step is non-trivial, and it could, in any
execution, be concurrent with the operation at the same memory location. Our results are valid
in any contention model in which trivial operations do not affect contention (i.e. such as stalls
[116], the CRQW model [132], etc.).
Theorem 4.4.11. Any operation executed on the accusations experiences O(1) amortized con-
tention.

Proof. We show something stronger: the maximum number of operations that access a single
SNZI node over the course of an entire dag computation (other than is_zero operations on the
root) is constant.
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Consider a node a in the SNZI tree. By Lemma 4.4.5, only one increment operation ever
starts its arrive at a. That increment has exactly one corresponding decrement whose depart
starts at a. By the SNZI algorithm, an arrive at a’s child only propagates up to a if that child’s
surplus was 0 before the arrive. By Lemma 4.4.8, this situation can only happen once; if a’s
child’s surplus returns to 0 after being higher, the counter will never be incremented again. Thus,
each of a’s children can only ever be responsible for at most two operations that access a; the
initial arrive and the final depart from that subtree.

In total, we get a maximum of 6 operations that access a over the course of the computation.
Note also that the first arrive at a node always strictly precedes any other operation in that
node’s subtree. Thus, concurrent arrive operations are not an issue. Therefore, any operation
on the in-counter can be concurrent with at most 4 other operations per SNZI node it accesses. By
Theorem 4.4.10, every operation on the accusations accesses amortized O(1) nodes. Therefore,
any such operation experiences amortized O(1) contention.

4.4.2 Space Bounds

Shrinking the tree by removing unnecessary nodes is tricky because, in its most general form, an
ideal solution likely requires knowing the future of the computation. Knowing where in the tree
to shrink requires knowing which nodes are not likey to be incremented in the future. For the
specific case of the grow probability of 1, we establish a safety property that makes it possible to
keep the data structure compact by removing SNZI nodes that correspond to deleted sub-graphs
of the sp-dag.

We would like to show that our in-counter data structure does not take much more space than
the dag computation uses on its own. To do so, we will show when it is safe to delete SNZI
nodes in relation to the state of the dag vertices that have handles to them. First, however, we
note that even without the dynamic shrinking of the SNZI tree, there are never more nodes in
the in-counter than the total number of dag vertices created in an execution. This is because
whenever a dag vertex spawns to create two more children, the SNZI tree also grows by two
nodes.

However, we can do better than that by deleting SNZI nodes that will never be used again.
For this, we begin with the following lemma:
Lemma 4.4.12. Any node whose surplus was positive and then returned to 0 may be deleted
safely from the SNZI tree.

This lemma is a direct consequence of Lemma 4.4.8. Any node whose surplus goes back to
0 has no live handles pointing to it, and is thus safe for deletion.

Using this knowledge, we can shrink the SNZI tree as the computation progresses. To be able
to express the next theorem, we need to define when a vertex u in the dag has finished. This is a
recursive definition:
• Base Case. If u has no children, then it is finished when it signals the end of its computa-

tion.
• Iterative Case. If u has children, then is is finished when both of its children have finished.
We note the following important lemma which relates finished vertices to the state of the

execution in an sp-dag that uses in-counters.

76



Lemma 4.4.13. If a vertex u has finished, then the decrement handle that it claimed has been
used.

Proof. We prove this by induction on the number of descendants u has. If u doesn’t have any
descendants, then we know it had to use its claimed decrement handle before it finished, since
by definition, it finishes when it signals, and to signal, it needs to call the decrement operation
on the in-counter.

Assume the lemma holds for any dag vertex uwith up to k descendants. Let u be a dag vertex
with k+ 1 descendants. By the induction hypothesis, both of its children have used their claimed
decrement handles. Note that of those two handles, one was claimed by u and passed down to its
children. Thus, u’s decrement handle has been used.

Now, we can relate finished vertices to deallocation.
Theorem 4.4.14. Consider a dag vertex u and its increment handle, pointing to SNZI node a.
If u has finished, then any node in a’s subtree, excluding a itself, can be safely deleted from the
SNZI tree.

Proof. We prove this by induction on the size of a’s subtree. If a doesn’t have children, then we
are done - no nodes are deleted when u finishes.

Assume that if u is finished, and has an increment handle to SNZI node a, which has a subtree
of size at most k, then a’s entire subtree, excluding a itself, can be deleted. Let u be a finished
vertex whose increment handle points to a node a with a subtree of size k + 1.

Note that by definition, if u is finished, then both of its children are finished as well. Note
that, by the algorithm, u’s children’s increment handles must point to a’s children in the SNZI
tree. Thus, by the induction hypothesis, a’s entire subtree, excluding itself and its children, can
be deleted safely. In particular, it means that neither of a’s children have surplus due to their
children. Note that only one of a’s two children had an arrive operation start on it (this was
done by u’s increment operation, which created a’s children). Thus, if neither of them has surplus
due to their children, at most one of them has surplus. Note that the decrement handle to that
child was owned by one of u’s children. By Lemma 4.4.13, since both of u’s children have
finished, they have both used their decrement handles. Thus, a’s child has been decremented,
and now has surplus 0. Furthermore, even if a’s other child never had surplus, the dag vertex
that owned its increment handle has used its decrement handle, so a’s other child can never grow.
Thus, both of a’s children can be safely deleted.

4.5 Experimental Evaluation
We report an empirical comparison between our in-counter algorithm, the simple fetch-and-
add counter, and an algorithm using fixed-size SNZI trees. Our implementation consists of a
small, C++ a library that uses a state-of-the-art, implementation of a work-stealing scheduler [3].
Overall, our results show that the simple, fetch-and-add counter performs well only when there
is one core, the fixed-size SNZI trees scale better, but our in-counter algorithm outperforms the
others when the core count is two or more.
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Implementation. Our implementation of core SNZI operations snzi_arrive and snzi_depart
follows closely the algorithm presented in the original SNZI paper, except for two differences.
First, we do not need snzi_query because readiness detection is performed via the return
result of snzi_depart. This method suffices because only the caller of snzi_depart can
bring the count to zero. Second, our snzi_depart returns true if the call brought the counter
to zero. To control the grain of contention, we use the probabilistic technique presented in Sec-
tion 4.3.2, with probability p := 1

25c
, where c is the number of cores. The idea of using c is to

try to keep contention the same as the number of cores increase. We chose the constant factor
25, because it yields good results, but as our Threshold study, described below, shows many
other constants also yield good results, e.g., any constant in the range 2.5c ≤ p ≤ 25c yields
qualitatively the same results. The implementation of the sp-dags and in-counter data structures
(Section 4.3) build on the SNZI data structure. The sp-dags interface enables writing nested-
parallel programs, using various constructs, such as fork-join and async-finish; we use the latter
in our experiments.

We compare our in-counter with an atomic, fetch-and-add counter because the fetch-and-add
counter is optimal for very small numbers of cores. For higher number of cores, we designed a
different, SNZI-based algorithm that uses a fixed-depth SNZI tree. This algorithm gives us an-
other point of comparison, by offering a data structure that uses the existing state of the art more
directly. The fixed-depth SNZI algorithm allocates for each finish block a SNZI tree of 2d+1 − 1
nodes, for a given depth d. To maintain the critical SNZI invariant that the surplus of a SNZI node
never becomes negative, the fixed-depth SNZI algorithm ensures that every snzi_depart call
targets the same SNZI node that was targeted by a matching snzi_arrive call. To determine
which SNZI node to be targeted by a snzi_arrive call, we map DAG vertices to SNZI nodes
using a hash function to ensure that operations are spread evenly across the SNZI tree.

Experimental Setup. We compiled the code using GCC -O2 -march=native (version
5.2). Our machine has four Intel E7-4870 chips and 1Tb of RAM and runs Ubuntu Linux kernel
v3.13.0-66-generic. Each chip has ten cores (40 total) and shares a 30Mb L3 cache. Each core
runs at 2.4Ghz and has 256Kb of L2 cache and 32Kb of L1 cache. The machine has a non-
uniform memory architecture (NUMA), whereby RAM is partitioned into four banks. Pages
are, by default in our Linux distribution, allocated to banks according to the first-touch policy,
which assigns a freshly allocated page to the bank of the processor that first accesses the page.
An alternative policy assigns pages to banks in a round-robin fashion. We determined that, for
the purposes of our experiments, the choice of NUMA policy has no significant impact on our

fun fanin_rec(n)
if n ≥ 2
async fanin_rec(n/2)
async fanin_rec(n/2)

fun fanin(n)
finish {fanin_rec(n)}

Figure 4.5: Fan-in benchmark.

fun indegree2(n)
if n ≥ 2
finish {

async indegree2(n/2)
async indegree2(n/2)

}

Figure 4.6: Indegree-2 benchmark.
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main results. The experiment we performed to back this claim is described in more detail in the
appendix. For all other experiments, we used the round-robin policy.

Benchmarks:fanin and indegree2. To study scalability, we use the two small benchmarks
shown in Figures 4.5 and 4.6. The fanin benchmark performs n async calls, all of which
synchronize at a single finish block, making the finish block a potential source of contention.
The fanin benchmark implements a common pattern, such as a parallel-for, where a number of
independent computations are forked to execute in parallel and synchronize at termination. Our
second benchmark, indegree2 implements the same pattern as in fanin but by using binary fork
join. This program yields a computation dag in which each finish vertex has indegree 2.

Scalability Study. Figure 4.7 shows the scalability of the fanin benchmark using different
counter data structures. With one core, the Fetch & Add counter performs best because there
is no contention, but with more, Fetch & Add gives worst performance for all core counts (this
pattern is occluded by the other curves). For more than one core, our in-counter performs the
best. The fixed-depth SNZI algorithm scales poorly when depth is small, doing best at the tree
depth of 8, where there are enough nodes to deal with contention among 40 cores. Increasing the
depth further does not improve the performance, however.

Size-Invariance Study. Theorem 4.4.11 shows that the amortized contention of our in-counter
is constant. We test this result empirically by measuring the running time of the fanin bench-
mark for different input parameters n. As shown in Figure 4.8, for all input sizes considered and
for all core counts, the throughput is within a factor 2 of the single-core (no-contention) FAA
counter. The throughput suffers a bit for the smaller values of n because, at these values, there is
not enough useful parallelism to feed the available cores.

Low-Indegree Study. Our next experiment examines the overhead imposed by the in-counter
by using the indegree2 benchmark shown in Figure 4.6. The results, illustrated in Figure 4.9,
show that our in-counter data structure is within a factor 2 of the best performer, the fetch-and-
add counter. For SNZI, we only considered small-depths, since larger ones took too long to run.
With the fixed-depth SNZI, the benchmark creates many finish blocks and thus many SNZI trees,
becoming inefficient for large trees.

Threshold Study. In Section 4.3.2, we presented a technique to control the grain of contention
by expanding the SNZI tree dynamically. Here, we report, using the fanin benchmark, the
results of varying the range of probabilities p = 1

threshold
for different settings of threshold. As

shown in Figure 4.10, essentially any threshold between 50 and 1000 works well. We separately
checked that on our test machine using a constant threshold such as 100 or 1000 yields good
results when using any number of cores. On a machine, perhaps with many more cores, the best
setting might be different or might also depend on the number of cores used.
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Figure 4.10: Threshold experiment. Each bar represents a different setting for p = 1
threshold . All runs

were performed using 40 cores. Higher is better.

4.6 Related Work
Upper bounds for several non-blocking data structures, accounting also for contention, have been
proven for several tree- and list-based search structures [114, 121, 244]. In these upper bounds,
contention factors in as a linear additive term, which is consistent with established lower bounds
for many problems in the general concurrency model [115, 116, 151, 168]. In contrast, for
relaxed counters, we show that contention for series-parallel programs can be upper bounded by
a constant.

Complexity models for analyzing contention and techniques for designing algorithms for
reducing contention has also been important subject of study [110, 130, 132, 177, 217] Con-
tention has also been identified as an important practical performance issue in multiprocessor
systems. Techniques that reduce contention by detecting and introducing wait periods or us-
ing tokens to be passed between threads proved to be essential for reducing detrimental ef-
fects of contention [7, 19]. Managing contention in software-transactional memory may re-
quire contention managers that schedule transactions carefully to minimize aborted transactions
[143, 152, 260, 266].

In this chapter, we consider non-blocking, or lock-free algorithms. Since our upper bounds
are quite good, O(1), our algorithms guarantee that each operation completes quickly in our
relaxed concurrency model. Wait-free data structures can guarantee similar properties in the
general concurrency model [148, 149]. Such data structures were traditionally considered to be
impractical, though recent results show that they may be also be practical [186, 273].
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Part II

Non Volatile Random Access Memory
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Chapter 5

Delay-Free Simulations on NVRAM

5.1 Introduction

In the previous part of the thesis, we studied shared memory, and adjusted the classic model to
reflect parts of shared memory behavior that are not usually taken into account. Notably, we
did not consider new memory technology, but instead deepend our understanding of existing
hardware. In contrast, in this part, which consists of only one chapter, we study a completely
new technology, called Non-Volatile Random Access Memory (NVRAM), that changes the way
in which shared memory can be used. This chapter is based on the work presented in [47].

NVRAM offers byte-addressable persistent memory at speeds comparable with DRAM. This
memory technology now can co-exist with DRAM on the newest Intel machines, and may largely
replace DRAM in the future. Upon a system crash in a machine with NVRAM, data stored in
main memory will not be lost. However, without further technological advancements, caches
and registers are expected to remain volatile, losing their contents upon a crash. Thus, NVRAM
yields a new model and opportunity for programs running on such machines—how can we take
advantage of persistent main memory to recover a program after a fault, despite losing values in
cache and registers?

Programs for persistent storage in the past have prioritized design concerns that are not rel-
evant for use on NVRAM; since disk accesses are in block-granularity, and are significantly
more expensive than DRAM accesses, persistent programs were primarily designed to mini-
mize block accesses. However, NVRAM accesses are not nearly as expensive, being similar in
latency to DRAM. Futhermore, the byte-addressability of NVRAM means that previous algo-
rithms that assumed block-granularity of accesses to persistent memory are not only optimizing
for the wrong metric, but also potentially wrong if run on NVRAM. Whereas before, blocks
could be updated on persistent storage atomically, on NVRAM we may experience a fault in
the middle of such an update. However, this shift in design concerns is worth the effort, since
it offers the potential to have persistent programs that are orders of magnitude faster than those
that rely on disk. A lot of work has thus focused on developing persistent algorithms for index
trees [81, 201, 204, 245, 276], lock-based data structures [74, 237], and lock-free data structures
[89, 100, 122] for this new NVRAM setting.

A natural question that arises is whether we can find general mechanisms that would port
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memory-only (non-persistent) algorithms for current machines over to the new persistent setting.
One approach has been the development of persistent transactional memory frameworks [92, 188,
215, 228]. This can be an effective approach, although it does not handle code between transac-
tions. Another approach to achieve arbitrary persistent data structures is the design of persistent
universal constructions [89, 166]. In particular, Cohen et al. [89] present a universal construc-
tion that only requires one flush per operation, thereby achieving optimality in terms of flushes.
However, universal constructions often suffer from poor performance, because they sequential-
ize accesses to the data structure, and lead to executions with high contention. Furthermore,
universal constructions are only applicable to data structures with clearly defined operations, and
cannot apply to a program as a whole. For these reasons, even a seemingly efficient universal
construction leaves more to be desired.

Another downside of these approaches is that they don’t make use of existing efficient concur-
rent algorithms designed for DRAM (without persistence). As discussed in the previous part of
the thesis, the performance of concurrent algorithms heavily depends on factors like contention,
disjoint access parallelism, and remote accesses. While these factors are difficult to theoretically
characterize, they are monumental in their effect on an algorithm’s performance. Decades of
work on the design of concurrent algorithms has yielded carefully engineered solutions that take
these factors into account. When creating algorithms for the persistent setting, it is hence impor-
tant to be able to preserve the structure of these tried and tested efficient concurrent algorithms
in their persistent counterparts.

In this chapter, we therefore take a different appraoch; we consider simulators that take any
concurrent program and transform it by replacing each of its instructions with a simulation that
has the same effect. The simulation provides a mapping between the original version and the new
version of the algorithm, preserving its structure. We assume the Parallel Persistent Memory
(PPM) model [30, 59]. The model consists of n processes, each with a fast local ephemeral
memory of limited size, and sharing a large persistent memory. The model allows for each
process to fault and restart (independently or together). On faulting all the process’s state and
local ephemeral memory are lost, but the persistent memory remains. On restart, each process
has a location in persistent memory that points to a context from which it loads its registers,
including program counter, and restarts.

In this model, we define persistent simulations, which exhibit a tradeoff between their com-
putation delay, meaning the overhead introduced by the simulation in a run without faults, and
their recovery delay, which is the maximum time the simulation takes to recover from a fault.
We also consider the contention delay, which characterizes the extra contention that may be
introduced by the simulation. Our first result is the presentation of a general persistent simu-
lator, called the Constant-Delay Simulator, that takes any concurrent program using Reads and
compare-and-swap (CAS) operations, and simulates it with constant computation and recovery
delays.

Theorem 5.1.1. Any concurrent program that uses Reads and CAS operations can be simulated
in the persistent memory model with constant computation delay and constant recovery delay.

The Constant-Delay Simulator is achieved by transforming code to be idempotent, meaning
that it can be repeated several times and only take effect once. To make code idempotent, we use
two techniques: code encapsulation and recoverable primitives.
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The idea behind code encapsulation, introduced by Blelloch et al. [59], is that the program
is broken up into contiguous chunks of code, called capsules. Between every pair of capsules,
information about the state of the execution is persisted. When a crash occurs in the middle of
a capsule, recovery reloads information to continue the execution from the beginning of the cap-
sule. This means that some instructions may be repeated several times, but only within a single
capsule. Thus, this reduces the problem of making the entire code idempotent to the problem
of ensuring that each of the smaller capsules is idempotent. Blelloch et al. [59] gave sufficient
conditions to ensure that sequential code is idempotent. However, repetitions of concurrent code
can be even more hazardous, as other processes may observe changes that should not have hap-
pened. We therefore formalize what it means for a capsule to be correct in a concurrent setting,
and show how to build correct concurrent capsules.

To build correct capsules for general concurrent programs, we must be able to determine
whether a modification of a shared variable can safely be repeated. This can be problematic,
because often, the execution of a process depends on the return value of its accesses to shared
memory. A bad situation can occur if a process has already made a persistent change in shared
memory, but crashed before it could persist its operation’s return value [59]. Attiya et al. [30]
consider this problem and define nesting-safe recoverable linearizability (NRL), a correctness
condition for persistent objects that allows them to be safely nested. In particular, Attiya et
al. [30] introduced the recoverable CAS, a primitive which ensures that if a compare-and-swap
by process p has successfully changed its target, this fact will be made known to p even if a crash
occurs.

At a high-level we show how to combine the ideas of capsules with recoverable primitives
in a careful way to achieve our results for programs with shared reads and CASes. We use a
modification of this recoverable CAS primitive in our capsules to ensure that a program can
know whether it should repeat a CAS. We show that the recoverable CAS algorithm satisfies a
stronger property than NRL, allowing the recovery to be called even if a fault occurs after the
operation has terminated. This property is very important for use in capsules, because after a
fault, all operations of the capsule must be recovered, rather than just the most recent one.

In this way, we achieve our persistent simulations by encapsulating code and replacing atomic
instructions with their recoverable counterparts. This leads to a tradeoff between computation
and recovery delay when it comes to capsule size; each capsule introduces some overhead in
normal execution when persisting the next checkpoint, but decreases the recovery delay, since the
we only have to repeat at most one capsule when recovering from a fault. In a nutshell, our first
result, the Constant-Delay Simulator, shows that we can have constant computation overhead per
capsule, and that we can have constant-sized capsules, leading to both constant computation and
recovery delay. In practice, however, faults are relatively rare. It is thus important to minimize
the computation delay introduced by a persistent simulator, even at the cost of increased recovery
time. After we present the Constant-Delay Simulator, we therefore present optimizations that can
be applied to the simulator to decrease the computation delay. The first such optimization is just
as general as the Constant-Delay Simulator in that it applies to any concurrent program. The
difference is that we use fewer capsules; we show where boundaries between capsules can be
removed, creating capsules that are larger (not necessarily constant sized), to arrive at a smaller
computation delay but a larger recovery delay. The second optimization applies to a large class
of lock-free data structures called normalized data structures [274]. In this setting, we show how
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to further reduce the number of capsules and thus the computation delay.
We test our simulations by applying them to the lock-free queue of Michael and Scott (MSQ) [232],

and comparing their performance with two other state-of-the-art implementations: one using the
transactional memory framework Romulus [92], and the other a hand-tuned detectable queue,
known as the LogQueue [122]. We did not expect general constructions to match the perfor-
mance of specialized implementations, but it turns out to be very close. The LogQueue out-
performs our transformations on 2-6 running threads, but only by an average of 5%; our most
optimized transformation even outperforms the LogQueue on 1, and 7-8 threads. In comparison,
the original MSQ is usually between 3.57x to 1.9x faster than the LogQueue, showing that the
inevitable cost of persistence outweighs the extra cost paid for generality by our transformations.
We further show that our optimizied transformation outperform Romulus for the thread counts
we tried.

In summary, in this chapter we present the following contributions.
• We define persistent simulations, which consider computation and recovery delay, thereby

providing a measure of how faithful a simulation is to the original program, and how fast
it can recover from crashes.

• We present a constant-computation and constant-recovery delay simulation that applies to
any concurrent program.

• We show optimized simulations that trade-off computation delay for recovery delay, both
for general programs and for normalized data structures.

• We show that our transformations are practical by comparing experimentally to state-of-
the-art persistent algorithms.

5.2 Model and Preliminaries
We use the Parallel Persistent Memory (PPM) model [30, 59]. It consists of a system of n
asynchronous processes p1 . . . pn. Each process may access a persistent shared memory of size
M with Read and CAS instructions, as well as a smaller private ephemeral memory, which can be
accessed with standard RAM instructions. The return value of instructions on persistent memory
are stored in ephemeral variables. A process can persist the contents of its ephemeral memory by
writing them into a persistent memory location. The ephemeral memory is explicitly managed;
it does not behave like a cache, in that no automatic evictions occur. Memory operations are
sequentially consistent, and all memory locations can hold O(logM) bits.

Each process may fault between any two instructions. Upon a fault, the contents of a pro-
cess’s private ephemeral memory is lost, but the persistent memory remains unchanged. After
a process fault, it restarts. To allow for a consistent restart, each process has a fixed memory
location in the persistent memory referred to as its restart pointer location. This location points
to a context from which to restart (i.e., a program counter and some constant number of register
values). On restart this is reloaded into the registers, much like a context switch. Processors can
checkpoint by updating the restart pointer. Furthermore a process can know whether it has just
faulted by calling a special fault() function that returns a boolean flag, and resets once it is
called. We call programs that are run on a processor of such a machine persistent programs.

88



For our simulations we also consider a standard concurrent RAM (C-RAM) consisting of n
asynchronous processes with local registers and a shared memory of size M . As with the PPM
we assume the C-RAM supports Reads and CAS instructions on the shared memory, that the
memory is sequentially consistent, and registers and memory locations can hold O(logM) bits.

Recall from Section 1.5 that an high-level execution involves invocation and response events
for the operations of each process. In this chapter, we add another type of event that executions
may have; the fault event. Fault events are process-specific. On a fault event Ci, the process pi
loses all information stored in its ephemeral variables (but shared objects remain unaffected).

5.2.1 Capsules

Our goal is to create concurrent algorithms that can recover their execution after a fault. The main
idea in achieving this is to periodically persist checkpoints, which record the current state of the
execution, and from which we can continue our execution after a fault. We call the code between
any two consecutive checkpoints a capsule, and the checkpoint itself a capsule boundary. At
a boundary, we persist enough information to continue the execution from this point when we
recover from a fault. This approach was use by Blelloch et al. in [59] and similar to approaches
by others [90, 101, 218, 222]. An encapsulation of a program is the placement of such boundaries
in its code to partition it into capsules.

Capsule Correctness. When executing recoverable code that is encapsulated, it is possible
for some instructions to be repeated. This happens if the program crashes in the middle of a
capsule, or even at the very end of it before persisting the new boundary, and restarts at the
previous capsule boundary. To reason about the correctness of encapsulated programs after a
crash, we define what it means for a capsule to be correct in a concurrent setting, intuitively
meaning that it is idempotent, i.e. that can be repeated safely.
Definition 5.2.1. An instruction I in a low-level execution E is said to be invisible if E remains
legal even when I is removed.
Definition 5.2.2. A capsule C inside algorithm A is correct if:

1. Its execution does not depend on the local values of the executing thread prior to the
beginning of the capsule, and

2. For any high-level execution E of A in which C is restarted from its beginning at any point
during C’s interval an arbitrary number of times, there exists a set of invisible instructions
performed in E as part of C such that when they are removed, C only executes once in the
corresponding low-level execution.

Definition 5.2.3. A program is correctly encapsulated if all of its capsules are correct.

5.3 k-Delay Simulations

We are interested in efficiently simulating arbitrary computations on a reliable concurrent RAM
(C-RAM) on a faulty PPM machine. Due to factors like contention and disjoint access par-
allelism, which are difficult to theoretically analyze, it is desirable to be able to preserve the
structure of tried and tested efficient concurrent algorithms in their persistent counterparts. We
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formalize this notion of ‘preserving structure’ with the definitions of computation delay, recov-
ery delay and contention delay. Roughly, the first refers to the the number of instructions on
the PPM required to simulate each instruction on the C-RAM when there is no fault, the second
refers to the number of instructions needed to recover from each fault, and the third takes into
account the delay caused by concurrent accesses to the same object.

Before talking about delays, we begin with the definition of a linked simulation, which pro-
vides a mapping from the instructions of the simulated code to those of the simulation itself,
thereby preserving the original structure. We allow for arbitrary computations on the machine
that is being simulated, as long as the machine is sequentially consistent.
Definition 5.3.1 (Linked Simulation). Consider a concurrent source machine S with n processes
for which each process executes a sequence of atomic operations, and a concurrent target ma-
chine T , also with n processes. A linked simulation of S on T is a simulation that allows for any
computation on S, preserves its behavior, and for each process p the execution of p on T can
always be partitioned, contiguously, so that:

1. there is a one-to-one order-maintaining correspondence between these partitions and op-
erations of p in some execution on S, and

2. each partition atomically simulates the corresponding source operation, linearized at some
point between the partition’s first and last operation.

We refer to each partition on each process as a step of the simulation.
Note that our definition includes all local operations as well as any access to shared objects.

The simulated operations could include linearizable operations on shared objects, or could just
be machine instructions. Our first simulation operates at the granularity of machine instructions
We say a step of a linked simulation is fault free if no fault happened on the step’s process on T
during that step. For a sequence of instructions s on a single process of either the source or target
machine let t(s) be the number of instructions in s, i.e., the time.
Definition 5.3.2 (Computation Delay). A linked simulation has k computation delay if for each
fault-free step s of the target machine simulating an operation o of the source machine, t(s) =
O(t(o) + k).

Ben-David et al. use a similar concept of delay for measuring the efficiency of transac-
tions [48]. Persistent computations are tightly coupled with their recovery mechanisms. When
discussing a computation for a persistent setting, it is important to also discuss how it recovers
from faults. Note that, if all processes fault together during a system fault, simply running a
concurrent program as is in a persistent setting yields a trivial 1 computation delay simulation
of itself; all steps of the program remain exactly the same. However, upon a fault, the entire
computation has to be restarted, and all progress is completely lost. Thus, the recovery time of
this ‘simulation’ is unbounded; it grows with the length of the execution. We therefore also for-
malize the notion of a recovery delay; how long it takes for a persistent program on any process
to recover from a fault (processes can fault independently).
Definition 5.3.3 (Recovery Delay). A linked simulation of a source machine S on a faulty target
machine T has k recovery delay if each fault that occurs within a step of the simulation on T
adds at most k instructions to the step.

Note that the k for computation delay and recovery delay need not be the same. Furthermore,
our simulations guarantee a constant, in general the k could be a function of other parameters of
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the machine or computation (e.g. input size or number or processes).
A stronger notion of a k computation delay simulation is one in which the amount of con-

tention experienced by an algorithm cannot grow by more than a factor of k either. Accounting
for contention helps to capture the structure of an algorithm, since scalability is highly associated
with keeping contention as low as possible on all accesses. To be able to discuss contention for-
mally, we follow the definition of contention presented by Dwork et al. in [110]; the amount of
contention experienced by an operation op on object O is the number of responses to operations
on O received between the invocation and response of op1. We note that this measure of con-
tention can also be seen as a special case of the model introduced by Ben-David and Blelloch [43]
and discussed in Chapter 2 of this thesis, in which invocations correspond to an operation being
made active, and conflicts are defined between all operations on the same location. We now
extend the definition of computation delay to account for contention.
Definition 5.3.4 (Contention Delay). A linked simulation has k contention delay if the following
condition holds:

for any operation op during the simulated computation on the source S, if op’s the contention
is C, then the corresponding step in the simulation on the target T has contention at most k×C.

In this chapter, we consider persistent simulations that have small computation, recovery and
contention delay. We say that an algorithm is X-delay free if it has c X delay for a constant c,
where X is one of computation, contention, or recovery.

5.4 Building Blocks

5.4.1 Capsule Implementation
We now briefly discuss how to implement the capsule boundaries themselves, and in particular,
how we handle persisting the ephemeral variables between capsules. We keep a copy of each
ephemeral variable in persistent memory. At a high level, we update the persistent copy of each
ephemeral variable with its current value at the end of each capsule, and read these values into
ephemeral memory after a fault. However, we must be careful to avoid inconsistencies that could
arise if a fault occurs after updating some, but not all, of the persistent copies. Such inconsisten-
cies could occur if ephemeral variables suffer write-after-read conflicts in a capsule [59]. In a
nutshell, these conflicts occur if a variable can be read and then written to in the same capsule.
If the write gets persisted and then a fault occurs, causing the code to repeat itself from the read
instruction, then the read sees a different value than it did originally. This could mean that the
next repetition of the capsule may behave differently from the first, and could violate idempo-
tence. These conflicts can be avoided if it can be guaranteed that after a new value is persisted,
the program will never repeat an earlier instruction that reads it. Note that in general, it is not
a problem if an ephemeral variable suffers a write-after-read conflict, since their writes are to
ephemeral memory and thus are not persistent. However, since we persist their new values at the
capsule boundary, we must be careful not to overwrite their previous value if we might need to
use it again.

1For atomic memory operations, which don’t have invocations and responses, we can split them into two instruc-
tions, one for the invocation and one for the response.
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Thus, for ephemeral variables that are read and subsequently written to in this capsule, we
do not write out their new values into their persistent copies right away. Instead, we keep two
persistent write buffers, along with a persistent bit indicating which one of them is currently
valid. At the boundary at the end of the capsule, the invalid write buffer is cleared, and for
each ephemeral variable v that has a write-after-read conflict, a tuple of the form (v, newV al) is
written into it, where newV al is the value of v at the end of the capsule. After writing out all of
these tuples to the write buffer, the validity bit for the write buffers is flipped. At the beginning
of each capsule, before executing any of its code, the valid write buffer is read, and the persistent
copy of each ephemeral variable that appears in it is updated with this ephemeral variable’s value
in the buffer.

Note that persisting the values of ephemeral variables that are either not updated at all, or
updated before being read in a given capsule, is not difficult. We don’t have to do anything at the
capsule boundary for an ephemeral variable that was not updated in this capsule. For ephemeral
variables that were updated before being read in this capsule, we can simply copy in their new
value into their persistent copy, without going through the write buffer. This is because the
current capsule’s execution does not depend on the value of such an ephemeral variable. This
copying is done before the validity bit of the write buffer is flipped.

5.4.2 Recoverable Primitives
Recall that the return values of instructions on persistent memory are stored automatically on
ephemeral variables. This represents registers in real machines, which store return values of
memory accesses, but which remain volatile despite new NVRAM technology. This means that
such return values may be lost upon a fault. For example, consider a CAS operation that is
applied to a shared memory location. It must atomically read the location, change it if necessary,
and return whether or not it succeeded. If a fault occurs immediately after a CAS is executed,
the return value could be lost before the process can view it. When the process recovers from
the fault, it has no way of knowing whether or not it has already executed its CAS. This is a
dangerous situation; repeating a CAS that was already executed, or skipping it altogether, can
render a concurrent program incorrect. In fact, any primitive that changes the memory suffers
from the same problem.

This issue was pointed out by Attiya et al. in [30]. To address the problem, they present
several recoverable primitives, among them a recoverable CAS algorithm. This algorithm is an
implementation of a CAS object the addition that the read and CAS operaitons on it also have
read.recover and CAS.recover parts to them, which must be invoked immediately after a fault,
and may not be invoked at any other time. The idea of the algorithm is that when CASing in a
new value, a process writes in not only the desired value, but also its own ID. Before changing
the value of the object, a process must notify the process whose ID is written on the object of the
success of its CAS operation. The recovery of the CAS operation checks this notification to see
whether its last CAS has been successfully executed. Attiya et al. show that their recoverable
CAS algorithm satisfies nesting-safe recoverable linearizability (NRL), intuitively meaning that
as long as recovery operations are always run immediately after faults, the high-level execution
is linearizable. Attiya et al.’s algorithm uses classic CAS as a base object, and assumes that CAS
operations are ABA-free. This is easy to ensure by using timestamps.
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It turns out Attiya et al.’s recoverable CAS algorithm satisfies strict linearizability [8], a
stronger correctness property than NRL. The main difference between the two properties is that
while NRL only allows recovering operations that were pending when the fault happened, strict
linearizability is more flexible. This means that we can define the recovery to work even on
operations that have already completed at the time of the fault. This property is very important
for use in the transformations provided in the rest of the chapter, in which we may not know
exactly where in the execution we were when a fault occurred. To satisfy strict linearizability,
we need to tweak the recoverable CAS algorithm, to include the use of sequence numbers on each
CAS. In contrast to Attiya et al., we treat the recovery as another operation of the recoverable
CAS object, whose sequential specification is as follows.

Each Recover(i) operation R returns a sequence number seq and a flag f with the following
properties:
• If f = 1, then seq is the sequence number of the last successful CAS operation with

process id i.
• If f = 0, all successful CAS operations before R with process id i have sequence number

less than seq.
We also further modify the recoverable CAS algorithm to create a version that has constant

recovery time (instead ofO(P )), and uses less space (O(P ) instead ofO(P 2)). The modification
is simple; just like Attiya et al. [30], we have processes CAS in their id along with their desired
value, and we rely on a notification mechanism for recovering return values. However, we also
include a sequence number, which is CASed in along with the process id and value. This allows
us to simplify the notification mechanism; instead of the 2-D array of notification slots (one slot
per pair of processes) employed by Attiya et al.’s algorithm, we reduce the notification slots to
a single slot per process, which is where others notify that process of the result of its own CAS
attempts. Process pi writes the sequence number of its next CAS operation into its slot before
executing its CAS, and others only notify it if the sequence number they observed is the same
as the sequence number currently written in its slot. Algorithm 5.1 shows the pseudocode for
this algorithm. Note that it implements a recoverable CAS object using O(1) steps for all three
operations. We use capital letter operation names to discuss the operaitons being implemented,
and lower case names to describe machine instructions used on the base objects.

Correctness of our Recoverable CAS. We now prove that Algorithm 5.1 is correct by showing
it satisfies strictly linearizability [8]; that is, that all operations are linearizable, and are either
linearized before a fault event, or not at all. This condition lets us safely repeat an operation if
the recovery says that it didn’t happen.

We first prove the following key property about the Notify method.
Lemma 5.4.1. Let N be an instance of a Notify method that reads x = 〈∗, seq, i〉. Then
after N ’s execution, A[i] = 〈seq, 1〉 or A[i] = 〈seq′, ∗〉, where seq′ > seq, and ∗ is used as a
placeholder for any value.

Proof. We first show that at the first step ofN , the sequence number inA[i] is at least seq. This is
because for x to contain 〈∗, seq, i〉, process pi must have executed a CAS with sequence number
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Algorithm 5.1: Recoverable CAS algorithm

1 class RCas {
2 〈Value, int, int〉 x; //shared persistent
3 〈int, bool〉 A[P]; //shared persistent

5 Value Read(){
6 〈v, *, *〉 = x;
7 return v;}

9 〈Value, int, int〉 Notify(){
10 〈v, pid, seq〉 = read(x);
11 CAS(A[pid], 〈seq, 0〉, 〈seq, 1〉);
12 return 〈v, pid, seq〉; }

14 bool Cas(Value a, Value b, int seq, int i){
15 〈v, pid, seq’〉 = Notify();
16 if(v != a) return false;
17 A[i] = 〈seq, 0〉; // announce
18 return CAS(x,〈a, pid, seq’〉,〈b, i, seq〉);}

20 〈int, bool〉 Recover(int i){
21 Notify();
22 return A[i];}}

seq. By the code, pi first had to update A[i] to contain < seq, 0 > before CASing in this value
on x.

Note that A[i] can only change in two ways: (1) process pi can change A[i] to a higher
sequence number. In this case, the lemma holds. (2) Some process pj can change A[i] by
notifying pi. Note that any Notify attempt that reads sequence number seq′ 6= seq would fail
to change A[i]. In particular this means that notifications cannot cause the sequence number in
A[i] to become smaller. So, the only way A[i] can change by a through a notification (without pi
also changing it in a CAS operation) is to contain < seq, 1 >.

Thus, if some change occurs on A[i] during N ’s execution, the lemma holds. Assume by
contradiction that no change occurs during N ’s execution. In this case, N ’s CAS contains the
correct old value, and therefore must succeed. This contradicts the assumption that no change
occurs (i.e., N itself makes the change).

Now we are ready to prove that Algorithm 5.1 is strictly linearizable. Its linearization points
are also given by the following lemma.
Lemma 5.4.2. Algorithm 5.1 is a strictly linearizable implementation of a recoverable CAS
object with the following linearization points:
• Each CAS operation that sees v 6= a on line 16 is linearized when it performs line 10.

Otherwise, it is linearized when it performs line 18.
• Each Read operation is linearized when it performs line 6.
• Each Recover operation is linearized when it returns.
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Proof. We first note that all linearization points defined in the lemma statement can only be
executed by the process that invoked the operation. Therefore, if that process stalls, its operation
will not be linearized. This property reduces strict linearizability to proving linearizability.

To show that CAS and Read operations linearize correctly, we can ignore operations on A
because they do not affect the return values of these operations. At every configuration C, the
variable x stores the value written by the last successful CAS operation linearized before C. This
is because the value of x can only be changed by the linearization point of a CAS operation. So
x always stores the current value of the persistent CAS object.

Each Read operation R is correct because R reads x at its linearization point and returns the
value that was read. Each CAS operation C is either linearized on line 10 or line 18. If C is
linearized on line 10, then it behaves correctly because x does not contain the expected value
at the linearization point of C. Suppose a is the value C expects and b is the value it wants to
write. If C is linearized on line 18, then we know that x = 〈a, j, s′〉 at line 10 of C for some
process id j and sequence number s′. If C is successful, then x contained the expected value at
the linearization point of C which matches the sequential specifications. Otherwise, we know
that x changed between lines 10 and 18 of C. Since this recoverable CAS object can only be
used in a ABA free manner, we know that x does not store the value a at the linearization point
of C, so C is correct to return false and leave the value in x unchanged.

In the remainder of this proof, we argue that the Recover operation is correct. Let seq(C)
represent the sequence number of a CAS operation C. Let R be a call to Recover by process pi
and let C be the last successful CAS operation by process pi linearized before the end of R. We
just need to show that R either returns 〈seq(C), 1〉 or it returns 〈s′, 0〉 for some sequence number
s′ > seq(C).

First note that the sequence number in A[i] is always increasing, as argued in the proof of
Lemma 5.4.1. Thus, the sequence number returned by R is at least seq(C) since A[i] is set to
〈seq(C), 0〉 on the line before the linearization point of C. First we show that R cannot return
〈s′, 1〉 for any s′ > seq(C) and then we show that R cannot return 〈seq(C), 0〉.

Now we show that R cannot return 〈s′, 1〉 for any s′ > seq(C). R returns the value of A[i],
so suppose for contradiction that A[i] = 〈s′, 1〉 at some configuration before the end of R. Then
there must have been a Notify method that set A[i] to this value. This notify operation must
have seen x = 〈∗, s′, i〉 when it performed its first step. This means that a successful CAS by pi
with sequence number s′ > seq(C) has been linearized which contradicts our choice of C.

From Lemma 5.4.1, we can complete the proof by showing that there is a Notify method
that reads x = 〈∗, seq(C), i〉 and completes before R reads A[i]. To show this we just need to
consider two cases: either x is changed between the linearization point of C and line 10 of R, or
it is not. In the second case, the Notify call performed by R reads x = 〈∗, seq(C), i〉. In the
first case, some other successful CAS operation must have been linearized after the linearization
point of C and before R reads A[i]. Let C ′ be the first such CAS operation. Then we know that
x = 〈∗, seq(C), i〉 between the linearization points of C and C ′. Furthermore, in order for C ′

to have been successful, the read on line 10 must have occurred after the linearization point of
C (otherwise C ′ would not see the most recent process id and sequence number). Therefore the
notify operation on lines 10 and 11 of C ′ see that x = 〈∗, seq(C), i〉 and this notify completes
before R reads A[i] as required.
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Lemma 5.4.2, plus the fact that each operation only performs a constant number of steps,
immediately lead to the following theorem.
Theorem 5.4.3. Algorithm 5.1 is a strictly linearizable, contention-delay-free and recovery-
delay-free implementation of a recoverable CAS object.

5.5 Persisting Concurrent Programs
One way to ensure that a program is tolerant to faults is to place a capsule boundary between
every two instructions. We call these Single-Instruction capsules. Can this guarantee a correctly
encapsulated program? Even with single-instruction capsules, maintaining the correctness of
the program despite faults and restarts is not trivial. In particular, a fault could occur after an
instruction has been executed, but before we had the chance to persist the new program counter
at the boundary. This would cause the program to repeat this instruction upon recovery.

Trivially, if the single instruction I in a capsule C does not modify persistent memory, then
I is invisible, and thus C is correct. But what if I does modify persistent memory? A private
persistent write is invisible because the process simply overwrites the effect of its previous op-
eration, and no other process could have changed it in between. So, we only have CASs left to
handle. This is where we employ the recoverable CAS operation.

We replace every CAS object in the program with a recoverable CAS. We show that it is
safe to repeat a recoverable CAS if we wrap it with a mechanism that only repeats it if the
recovery operation indicates it has not been executed; any repeated CAS will become invisible
to the higher level program. When recovering from a fault, we simply call a checkRecovery
function, that takes in a sequence number, and calls the Recover operation of the recoverable
CAS object. The checkRecovery function returns whether or not the CAS referenced by the
sequence number was successful. If it was, then we do not repeat it, and instead continue on to the
capsule boundary. Otherwise, the CAS is safe to repeat. Pseudocode for the checkRecovery
function is given in Algorithm 5.2.

With this mechanism to replace CAS operations, single-instruction capsules are correct. The
formal proof of correctness is implied by the proof of Theorem 5.6.1, which we show later.

Algorithm 5.2: Check Recoverable CAS

1 bool check_recovery(RCas X, int seq, int pid){
2 〈last, flag〉 = X.Recover(pid);
3 if (last >= seq && flag == true) return true;
4 else return false; }

We now show that this transformation applied to any concurrent program C is a contention-
delay free simulation of C.
Theorem 5.5.1. For any concurrent algorithm A written in the C-RAM model, if As is the pro-
gram resulting from encapsulatingA using single-instruction capsules, thenAs is a c-contention-
delay, c′-recovery-delay simulation of A, where c and c′ are constants.

To prove the theorem, we first show a useful general lemma, that relates the way a simulated
object is implemented to the contention-delay of a simulation algorithm.
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Lemma 5.5.2. Let As be a k-computation-delay simulation of A. If for every two base objects
O1 and O2, the set of primitive objects used to implement O1 is disjoint from the set used to
implement O2 in As, then As is a k-contention-delay simulation of A.

Proof. Consider an execution E of A in which an operation op by process p on object O1 experi-
ences k ∗ C contention. Since O1 is implemented with primitive objects that are not shared with
any other object, all contention experienced by op must be from other operations that are access-
ing O1. Note that each step by another process accessing O1 can cause at most one contention
point for op. Thus, there must be at least k ∗ C steps by other processes on the primitive objects
op is accessing within op’s interval. Since A is a k-delay simulation of A′, and O1’s primitive ob-
jects are not shared with any other base object, there must be at least C other accesses of O1 that
are concurrent with op. So, E must map to an execution E ′ ofA′ in which all C of these accesses
to O1 happen before op’s corresponding access, but after the last operation of p. Therefore, in
E ′, op experiences at least C contention.

Proof of Theorem 5.5.1. Since each recoverable CAS and each capsule can be used to recover
in constant time, it is easy to see that As has constant recovery delay. We implement each base
object O of A by calling the operations of O, followed by a capsule boundary. For CAS, we
implement it by replacing the CAS object with a recoverable CAS object and also calling a
capsule boundary. Because both the recoverable CAS algorithm and the capsule boundary take
a constant number of instructions, we have shown that our transformation is a k-computation-
delay simulation of A. Furthermore, each recoverable CAS object uses primitive objects that are
unique to it, and not shared with any other object. Note that while the capsule boundary does use
primitive objects that are shared among other capsule boundaries, the capsule boundaries are in
fact local operations, since each process uses its own space for persisting the necessary data. So
capsule boundaries do not introduce any contention. The rest of the proof therefore follows from
Lemma 5.5.2.

5.6 Optimizing the Simulation
Although capsule boundaries only consist of a constant number of uncontended instructions,
they can still be expensive in practice, as they require persisting several pieces of data and use
up to two fence instructions. We now discuss how to reduce the number of required capsule
boundaries in a program, while still maintaining correctness. Fewer capsule boundaries means
more instructions per capsule, so more progress could be lost due to a fault.

5.6.1 CAS-Read Capsules
We begin by showing that at a high level, as long as there is only one CAS operation per capsule,
and this operation is the first of the capsule, the program remains correctly encapsulated.

We note that Blelloch et al. [59] comprehensively showed how to place capsule boundaries in
non-racey persistent code to ensure idempotence. Their guideline is to create capsules that avoid
write-after-read conflicts (See Section 5.4.1). Therefore, in addition to the capsule boundaries
dictated by instructions on shared memory as outlined above, we also place a capsule boundary
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between a read of a persistent private location in memory and the following write to that location.
However, note that we don’t always add this extra boundary; if a capsule begins with a persistent
write of a private variable v, any number of reads and writes to v may be executed in the same
capsule, since there is no write-after-read conflict.

Another potentially dangerous situation arises when we have a branch that depends on a
shared memory read and the two paths after the branch write to different persistent memory
locations. If this is all placed within a single capsule, then faulting could cause an incorrect
execution where both persistent memory locations are written to. For example, there could be
a fault immediately following the write to one location, and after recovering, the process could
see a different shared value and decide to follow the other branch, leading to a write on the other
persistent memory location.

We call this construction a CAS-Read capsule. We also allow for capsules that do not modify
any shared variables at all. We call such capsules Read-Only capsules. Intuitively, all read
operations are always invisible, as long as their results are not used in a persistent manner. So,
a capsule that has at most one recoverable CAS operation, followed by any number of shared
reads, is correct.

Note that we assume that every process has a sequence number that it keeps locally, and
increments once per capsule. At the capsule boundary, the incremented value of the sequence
number is persisted (along with other ephemeral values, like, for example, the arguments for the
next recoverable CAS operation). Therefore, all repetitions of a capsule always use the same
sequence number, but different capsules have different sequence numbers to use.

We now describe in more detail how to use the recovery function of the recoverable CAS
object. This assumption is realistic, since in most real systems, there is a way for processes to
know that they are now recovering from a fault. We use the fault() function to optimize some
reads of persistent memory— if we are recovering from a fault, we read in all ephemeral values
we need for this capsule from the place where the previous capsule persisted them. Otherwise,
there is no need to do so, since they are still in our ephemeral memory. We show pseudocode
for the CAS-Read capsule in Algorithm 5.3. Read-Only capsules are a subset of the code for
CAS-Read capsules.

We now show that the CAS-Read capsule is correct. This fact trivially implies that Read-
Only capsules are correct as well, so we do not prove their correctness separately. We wrap up
this section by showing that a transformation that applies CAS-Read and Read-Only capsules
is a c-contention-delay simulation for constant c. Intuitively, removing capsule boundaries can
only improve the contention delay.

Note that the definition of correctness is with respect to an algorithm that contains the capsule.
Here, we prove the claim in full generality; we show that this capsule is correct in any algorithm
that could use it. For this, we argue that its repeated operations are invisible in any execution,
despite possible concurrent operations. Note that this implies correctness for any context in
which the capsule might be used.
Theorem 5.6.1. If C is a CAS-Read capsule, then C is a correct capsule. We also require that
each process increments the sequence number before calling CAS.

Proof. Consider an execution of C in which the capsule was restarted k times due to faults.

98



Algorithm 5.3: CAS-Read Capsule

1 if (fault()){
2 *Read all vars persisted by the
3 previous capsule into ephemeral memory.*
4 seq = seq+1;
5 flag = check_recovery(X, seq, pid);
6 if (!flag){ //Operation ’seq’ wasn’t done
7 c = X.Cas(exp,new,seq, pid); }
8 else {
9 c = 1; } }

10 else {
11 seq = seq+1;
12 //exp and new are from prev capsule
13 c = X.Cas(exp,new,seq,pid);}
14 *Any number of persistent memory reads
15 and ephemeral memory operations*
16 *Writes to private persistent memory are
17 allowed under certain conditions*
18 capsule_boundary()

First note that if a fault occurred, then the capsule never uses any of the local variables
before overwriting them. Therefore, its execution does not depend on local values from previous
capsules. This includes the sequence number for the capsule, which must have been written in
persistent memory before the capsule started, and is therefore the same in all repetitions of the
capsule.

Note that in all but the first (partial) run of the capsule, the fault() function must return
true. Furthermore, note that the code only repeats X.Cas() if checkRecovery returns false.
Due to the correctness of the recovery protocol, this happens only if each earlier operation with
this capsule’s sequence number has not been executed in a visible way. This means they are
either linearized and invisible, or they have not been linearized at all. The partial executions have
not been linearized cannot become linearized at any later configuration because X is strictly
linearizable. Therefore the X.Cas() call is only ever repeated if the previous calls that this
capsule made to it were invisible, so all but the last instance of the X.Cas() operations executed
are invisible. Furthermore, since X.Cas() is a strictly linearizable implementation of CAS, the
effect of instances together is that of a single CAS. Note that the rest of the capsule is composed
of only invisible operations; the recovery of an object is always invisible, as are Reads and local
computations.

Theorem 5.6.2. A program that uses only CAS-Read, Read-Only, and Single-Instruction cap-
sules is correctly encapsulated, and is a contention-delay-free simulation of its underlying pro-
gram.

Proof. Since CAS-Read, Read-Only, and Single-Instruction capsules are all correct (corollary of
Theorem 5.6.1), by definition, a program that uses only these capsules is correctly encapsulated.
Furthermore, since by Theorem 5.5.1, a program encapsulated with single-instruction capsules
only is a constant-contention-delay simulation of its underlying program, and CAS-Read and
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Read-Only capsules use strictly less instructions, programs encapsulated with these capsules are
also contention-delay free simulations.

5.6.2 Normalized Data Structures

Timnat and Petrank [274] defined normalized data structures. The idea is that the definition
captures a large class of lock-free algorithms that all have a similar structure. This structure
allows us to reason about this class of algorithms as a whole. In this section, we briefly recap
the definition of normalized data structures, and show optimizations that allow converting nor-
malized data structures into persistent ones, with less persistent writes than even our general
Low-Computation-Delay Simulator would require. We will show two optimizations; one that
works for any normalized data structure, and one that is more efficient, but requires a few more
(not-too-restricting) assumptions about the algorithm.

Normalized lock free algorithms use only CAS and Read as their synchronization mecha-
nisms. At a high level, every operation of a normalized algorithm can be split into three parts.
The first part, called the CAS Generator, takes in the input of the operation, and produces a list
of CASs that must be executed to make the operation to take effect. The second part, called the
CAS Executor, takes in the list of CASs from the generator, and executes them in order, until the
first failure, or until it reaches the end of the list. Finally, the Wrap-Up examines which CASs
were successfully executed by the executor, and determines the return value of the operation,
or indicates that the operation should be restarted. Interestingly, the Generator and Wrap-Up
methods must be parallelizable, intuitively meaning that they do not depend on a thread’s local
values, and can be executed many times without having lasting effects on the semantics of the
data structure.

Optimizations. Our Low-Computation-Delay Simulator works for all concurrent algorithms
that access shared objects using only read, write and CAS. In particular, works for normalized
data structures. However, we can exploit the additional structure of normalized algorithms to
optimize the simulation.

Note that placing capsule boundaries around a parallelizable method yields a correct capsule.
This is implied from the ability of parallelizable methods to be repeated without affecting the
execution, which is exactly the condition required for capsule correctness. The formal definition
of parallelizable methods is slightly different, but a proof that this definition implies capsule
correctness appears in [87]. Thus, there is no need to separate the code in parallelizable methods
into several capsules. Furthermore, there is also no need to use recoverable CAS for some of
the CAS operations performed by parallelizable methods; for normalized data structures, we can
simply surround the CAS generator and the Wrap-Up methods in a capsule, and do not need to
alter them in any other way.

All that remains now is to discuss the CAS executor, which simply takes in a list of CASs to
do, and executes them one by one. No other operations are done in between them. Note that we
can convert CAS operations to use the recoverable CAS algorithm, and then many consecutive
CASs could be executed in the same capsule, as long as they access different objects. In the
case of normalized data structures, however, we do not have the guarantee that the CASs all
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access different shared objects. Therefore, we cannot just plug in that capsule construction as
is. However, we note another quality of the CAS executor that we can use to our advantage: the
executor stops after the first CAS in its list that fails. Translated to the language of persistent
algorithm, this means that we do not actually need to remember the return values of each CAS
in the list separately; we only need to know the index of the last successful CAS in the list.
Fortunately, the recovery operation of the recoverable CAS algorithm actually gives us exactly
that; it provides the sequence number of the last CAS operation that succeeded. Therefore, as
long as we increment the sequence number by exactly 1 between each CAS call in the executor,
then after a crash, we can use the recovery function to know exactly where we left off. We can
then continue execution from the next CAS in the list. Note that if the next CAS in the list
actually was executed to completion but failed before the crash, there is no harm in repeating it.
We simply execute it again, see that it failed, and skip to the end of the executor method.

For a recoverable CAS to work correctly, all CASs to that object must use the recoverable
CAS algorithm. Whenever a generator or wrap-up method performs CAS on an object that could
also be modified by a CAS-executor, it must use recoverable CAS instead of classic CAS. This
is because even though the generator or wrap-up method never needs to recover a CAS’s results,
it is still important to notify other processes of the success or failure of their last CAS.

We now discuss a method that allows removing the capsule boundary between the executor
and the wrap-up. We argue that as long as we can recover the arguments and results of each
executor CAS, it is safe restart the execution from the beginning of the executor. Suppose a
combined executor plus wrap-up section faults and repeats multiple times, we first argue that
as long as the wrap-up part cannot overwrite the notification of any CAS in the cas-list, then
in every repetition, the executor returns exactly the same index in the cas-list. Recall that we
assume CAS operations are ABA-free in the original program (i.e. the object cannot take on a
previous value) and that each process calls CAS using a value it previously read as the expected
value. This means that if a CAS operation fails the first time, then the same CAS operation will
also fail the second time. Furthermore, since we do not overwrite the result of the executor CASs
outside the executor, it can always use the recovery properly to know which CAS in the list was
the last to succeed. Therefore the index returned by the CAS-executor will be the same across
all repetitions. This means that the executor plus wrap-up capsule basically behaves as if there
were a capsule boundary between the two methods. Since the wrap-up method is parallelizable,
we know this capsule is correct.

To remove the capsule immediately after the executor, we need to ensure that the wrap-up
does not corrupt the ability of the recoverable CAS to tell whether the most recent executor CAS
on each object succeeded. If the wrap-up does not access any CAS location accessed by the
executor, this property is guaranteed. However, if there is a CAS in the wrap-up that accesses
the same location as some CAS in the executor, we can still ensure that we can recover. Let
Cw be such a CAS in the wrap-up executed by process p. Note that Cw never needs to use the
recovery function for itself; since the wrap-up is parallelizable, it is always safe to repeat Cw
after a crash. Therefore, when Cw is executed using a recoverable CAS, it can leave out its own
ID and sequence number, so that other processes do not notify p. Thus, the previous notification
that p received (i.e. a notification about p’s executor CAS on the same object) remains intact.

Notice that if we have two parallelizable methods, A and B, next to each other, we can
actually put them in a single capsule as long as the inputs to A and B are the same whenever the
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capsule restarts. Since A and B have the same inputs, we know by parallelizability that A and
B each appear to execute once regardless of how many times the capsule restarts. Also A must
appear to finish before B because there was a completed execution of A before any invocation
of B. Therefore, this capsule appears to have executed only once.

So, we can avoid an additional capsule boundary between the current iteration’s wrap up
method and the next iteration’s generator method, as long as we now use the same notification
trick in the CASs of the generator as well. So as long as there are capsule boundaries before and
after each call to a normalized operation, we only need one capsule boundaries in each iteration
of the main loop: only before the executor. We call this simulation the Persistent Normalized
Simulator. The details of our encapsulation are shown in Algorithm 5.4. The results of this
section are summarized in Theorem 5.6.3.
Theorem 5.6.3. Any normalized data structure N can be simulated in a persistent manner with
constant-contention-delay using one capsule boundary per repetition of the operation.

Algorithm 5.4: Persistent Normalized Simulator

1 result_type NormalizedOperation(arg_type input) {
2 do {
3 cas_list = CAS_Generator(input);
4 capsule_boundary();
5 if (fault()) {
6 cas_list = read(CAS_list);
7 seq = read(seq); }
8 idx = CAS_Executor(cas_list, seq);
9 〈output, repeat〉 = Wrap_Up(cas_list, idx);

10 } while(repeat == true)
11 return output; }

13 int CAS_Executor(list CASs, int seq) {
14 //CASs is list of tuples 〈obj, exp, new〉
15 bool faulted = fault();
16 bool done = false;
17 for (i = 0; i < CASs.size(); i++) {
18 if (faulted) {
19 done = check_recovery(CASs[i].obj, seq, p); }
20 if (!done) {
21 if (!RCAS(CASs[i])) return i; }
22 seq++; }
23 return CASs.size(); }

5.7 Practical Concerns
Flushes and Fences. In this chapter, we’ve assumed that there is a way to persist variables on
ephemeral memory by copying them over to persistent memory. On real machines, this can be
done using flush and fence instructions. At a high level, a flush instruction writes out a given
cache line to memory. However, most flush instructions do not block until the cache line reaches
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memory. Thus, even if a cache line is flushed before a crash, it is possible that the flush instruction
did not complete, and the cache line’s data could still be lost. To prevent this, one can execute a
fence instruction, which blocks the execution until after any flushes invoked before it complete.

Implementing Capsules in Real Programs. When interpreting real program code in terms
of our model, we assume that all stack-allocated local variables, including the program counter,
are updated in ephemeral memory, and that heap-allocated variables are created and updated
directly on persistent memory. That is, the ephemeral variables in our model map to stack-
allocated variables, and we add to each stack frame the program counter at the last capsule
boundary. We therefore keep a copy of the stack in persistent memory, using explicit flush and
fence instructions to ensure that the variables get written on memory. We use a doubling trick
similar to the one discussed in Section 5.4.1 to handle stack-allocated variables with write-after-
read conflicts.

Instead of using write buffers to only duplicate the variables that have write-after-read con-
flicts, another possibility is to duplicate all stack-allocated variables, that is, have two persistent
copies of each stack frame, and toggle between the two, copying all values over from one to the
other at the end of every capsule. This technique seems wasteful, but is very robust, and works
well when the number of variables is small.

Note that from the control flow graph of the program, we can know which variables suffer
write-after-read conflicts in a capsule. If these variables stay the same across many capsules, we
can optimize the technique a bit, by duplicating only these variables, and having only one copy
for the rest of the variables. A validity bit can indicate which copy of the duplicated variables
is valid, similarly to how the write buffers work. The validity bit must be flipped after all other
changes are made, and flipping it represents the atomic transition between capsules. This tech-
nique allows us to use space only as necessary, as the write buffer technique does, but reduces
the number of times values are copied over to different locations. If between two capsules the
variables with write-after-read conflicts change, we can use the copy-all technique to remap the
memory usage to have copies of the correct variables.

Note also that generally, flushes are done at the granularity of a cache line. Thus, if all stack-
allocated variables (with the necessary duplications) fit in a single cache line, we can simply
ensure that they are all updated before the validity bit is flipped, and only need a single fence to
commit the capsule.

Unlike stack-allocated variables, heap-allocated variables are directly written on persistent
memory. Therefore, we must make sure that repeated code does not corrupt their values by
setting capsule boundaries in between instructions that may harm each other, just like we do for
the shared memory instructions.

Shared vs Private Model. In the PPM model used in this work, we assume that the only
way for processes to communicate is through persistent memory (i.e., all shared memory is
persistent). Furthermore, the volatile memory is explicitly managed, and no automatic flushes
occur. This model and similar variants have been used often in the literature [30, 59, 133]. A
slightly different model has also been considered in several other works [89, 122, 123, 166]. The
main difference between the two models is in how processes communicate. In this other model,
sometimes referred to as the shared cache model, processes communicate through objects in
volatile memory rather than persistent memory. The values in these objects are persisted when
the program issues an explicit flush instruction or when a cache line is evicted automatically.
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This introduces the possibility that shared memory operations are persisted out-of-order due to
implicit cache evictions. Algorithms designed for the shared cache persistent model therefore
have to handle this problem in addition to the problems of losing private data discussed in this
chapter. The shared model is more faithful to current cache coherent machines, while the private
model helps to abstract away machine-specific flushes.

A simple transformation to convert an algorithm for the private cache variant into an algo-
rithm that works in the shared cache variant was presented by Izraelevitz et al. in [166]. This
transformation applies to programs written in the release-consistency memory model. After ev-
ery load-acquire, it adds a flush and a fence. Before every store-release, it adds a fence, and after
every store and store-release, it adds a flush. When transforming an algorithm from the shared
cache model to a model in which cache lines may be automatically evicted, one needs to consider
not only shared variables, but also local ones. Inconsistencies can occur in code that might re-
peat changes to persisted local variables (due to a crash). This can be handled again by avoiding
write-after-read conflicts [59], as is discussed for heap-allocated variables in Section 5.6.

Compiler. Note that we treat shared variables differently from private ones; private heap-
allocated variables may be written to many times in a single capsule, but this is disallowed for
shared variables. It is thus important that the compiler be able to distinguish between these two
types of variables. One way to achieve this is to have the user annotate shared variables. We
also need annotations to allow the compiler to determine which of our constructions should be
used; for normalized data structures, we assume the user can annotate the generator, executor,
and wrap-up sections. We also assume that for simple cases, the compiler can determine if a
variable is ever used again. Therefore a capsule boundary only needs to persist the variables that
may be used in the future.

Constant Stack Frames. Recall that for the stack-allocated variables, we assume that there
is only a constant number of them (around the same as the number of bits in a word) in each
stack frame. This is important to be able to atomically update the validity mask of the variables
in each capsule boundary, as in Section 5.2.

CAS. Also recall that the recoverable CAS algorithm requires storing not only the value,
but also an ID and sequence number in each CAS location. This can be achieved by using a
double-word CAS, which is common in modern machines.

Flushes on the Same Cache Line. In a capsule boundary, if all the local variables fit on the
same cache line, then we only need one fence for the capsule since the cache line gets flushed all
at once in the private model. On the other hand, note that on modern machines with automatic
cache evictions, writing all variables on one cache line does not guarantee atomicity, since an
eviction can happen part way through updating the cache line. However, we can still assume,
as is done in [88], that writes to the same cache line are flushed in the order they are written.
Intuitively, this is because on real machines, the following three properties generally hold: (1)
total store order (TSO) is preserved, (2) individual words are written atomically, and (3) each
cache line is evicted atomically.

Memory mapping. Note that for our algorithms to recover, we assume that after a crash,
the each process can always find the memory in which the capsule boundary stored information.
This requires persisting the page table. We assume that this is done by the operating system.
We further assume that each process is assigned the same virtual address space as it was before
the crash. These two assumptions together ensure that each process receives the same physical
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a) Flushing every instruction
b) Comparing our queues with
manual flushes to prior work

c) Comparing persistent
queues to original MS Queue

Figure 5.5: Throughput of persistent and concurrent queues under various thead counts. Normalized and
General are the result of our transformations.

address space before and after a crash. More details about the virtual to physical mapping for
persistent memory is given in [74].

5.8 Experiments
We measured the overhead of our general and normalized data structure transformations by ap-
plying them to the lock-free queue of Michael and Scott [232]. We also compare against Romu-
lus [92], a persistent transactional memory framework, and LogQueue [122], a hand-tuned per-
sistent queue. Both Romulus and LogQueue provide durability [166] and detectability [122] in
the shared cache model. We use the shared cache model for our experiments because it’s closer
to the machine that we test on. But this means we need to somehow translate our detectable
queues from the private cache model to the shared cache model. We consider two different ways
of doing this translation: automatically by Izraelevitz et al.’s durability transformation [166] or
manually by hand.

We ran our experiments on Amazon’s EC2 web service with Intel(R) Xeon(R) Platinum
8124M CPU model (8 physical cores, 2-way hyperthreading, 3GHz and 25MB L3 cache), and
16GB main memory. The operating system is Ubuntu 16.04.5 LTS. Just like in [74, 92, 122], we
assume that the cost of flushing on this system will be similar to what we will see in real NVM
systems.

All functions were implemented in C++ and compiled using the g++ 5.4.0 with -O3. We only
measured the performance on 1-8 threads (each on a separate core), as queues are not a scalable
data structure. As in previous work [122, 232], we evaluated the performance with threads that
run enqueue-dequeue pairs concurrently. In all the experiments we present, the queue is initiated
with 1M nodes; however, we also tested on a nearly-empty queue and verified that the same
trends occur. The flush operation consists of two instructions: clflushopt, and sfence. Clflushopt
has store semantics as far as memory consistency is concerned. It guarantees that previous stores
will not be executed after the execution of the clflushopt. According to Intel, flushing with
clflushopt is faster than executing flushes using clflush [162]. We also tried using clwb instead
of clflushopt and found no difference in performance. The sfence instruction guarantees that
the clflushopt instruction is globally visible before any following store instruction in program

105



order becomes globally visible. We omitted some fences when the ordering of the flushes is not
important. All the presented results use the recoverable CAS algorithm that was proposed by
Attiya et al. [30]. In our experiments, their algorithm performed slightly better than ours and
thus was the one that was presented.

Each of our tests were run for 5 seconds and we report the average throughput over 10 runs.
In general, queues that contain less flushes perform better, which is consistent with what we
expected.

In our experiments, our goal is to understand the overhead general programs would observe
if they were made persistent using various methods. When we run the queue experiments, we
keep in mind that these queues should be used within general programs. So, before calling each
of the queue operations, the general program has to execute a capsule boundary. This is true for
all queues that we test, including the LogQueue and Romulus. Therefore, since this additional
overhead would be the same for all queues tested, we omit it in our comparative experiments.
However, we note that the LogQueue and Romulus produce stand-alone data structures, that
maintain more information than our queues do if the initial capsule boundary is removed. This
means that in some specific contexts, for example when a few queue operations are executed con-
secutively, a capsule boundary can be avoided before calling LogQueue or Romulus operations,
whereas our constructions still require it. It is possible to store some extra information in our
queue constructions to match the properties of the other queues, but this requires some careful
manipulations, which are outside of the scope of this work.

Using the Izraelevitz Construction. One general way to automatically achieve correctness in
the shared model is to use the construction presented by Izraelevitz et al. [166] (described in
Section 5.7). Figure 5.5 a) shows the result of applying our transformations along with Izraele-
vitz’s construction to the Michael-Scott queue (MSQ) [232]. To isolate the overhead of our
transformations, we also show the performance of a Michael Scott queue with just the Izraelevitz
construction. We call this the IZ queue and it is an upper bound on how well our transformations
can perform. The result of the Low-Computation-Delay Simulator is called General. Normalized
represents the normalized data structure transformation introduced in Section 5.6.2.

As the General queue contains more capsule boundaries than the Normalized queue, we can
see that Normalized performs 1.25x better when there are 2 running threads, and 1.17x better
when there are 8 threads. Without any of the detectability transformations, the IZ queue performs
better than Normalized by 1.13x and 1.26x for 2 and 8 threads respectively.

Competitors. Another way to make our transformed queues correct in the shared model is to
add flushes manually. The flushes we add are very similar to those in Friedman et al.’s Durable
Queue [122]. The difference is that we flush both the head and tail to allow for faster recovery
and we omit the return value array; Friedman et al. used the return value array to recover return
values following a crash, but this functionality is handled by our transformations.

We compared the manual flush version of our transformed queues with the Log [122] as well
as a queue written using Romulus [92]. We chose the RomulusLR version as it performed better
for every thread count. The results are depicted in Figure 5.5 b). For scalable memory allocation,
our transformations use jemalloc and Romulus uses its own scalable memory allocator. We ran
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Log queue both with and without jemalloc and found that it tends to be faster without jemalloc.
The faster set of numbers are reported.

Our Normalized queue performs much better than Romulus when the thread count is low,
which could partly be because Romulus incurs the extra overhead of implementing a persistent
memory allocator and general transactional memory. Romulus scales very well and outpaces
General because it uses flat combining [147], a technique where update transactions are aggre-
gated and processed with a single lock acquisition and release.

When compared to Log queue, we found that Normalized performs better by 29% on one
running thread and by up to 9% on 7-8 threads. The Log queue is better by up to 10% on 2-6
threads. We believe this is because Normalized performs less overall fences compared to Log
queue, however, in some places, Normalized performs more work in between a read and its
corresponding CAS. These instructions bottleneck performance at higher thread counts. With
clever cache line usage, it is also possible to reduce Log queue enqueues by one flush, but we did
not implement this in our experiments. Given that the Log queue was tailored to one particular
data structure, we were impressed that our Normalized automatic construction gets comparable
performance. Although we did not measure this experimentally, our transformation also has
lower recovery time compared to Log queue in situations where the size of the queue is larger
than the number of processes. This is because the recovery function of Log queue traverses the
entire queue starting from the head. In contrast, our recovery function just involves loading the
previous capsule and performing the recovery function of a recoverable CAS object. Since we
are using Attiya et al’s implementation of recoverable CAS [30], recovery time is linear in the
number of threads.

Figure 5.5 c) shows how these persistent queues compare to the original MSQ. From the
graph, it looks like the cost paid by our transformations to ensure generality and quick recovery
is not so much compared to the inevitable cost of persistence.
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Part III

Remote Direct Memory Access
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Chapter 6

Introduction and Preliminaries

So far in this thesis, we’ve considered hardware that exists within multicore machines, and mod-
eled it with variants of the shared memory model. In this part of the thesis, we shift our focus
to a distributed setting in which the different processes reside on physically separate machines.
Usually, such settings are theoretically modeled and studied through the message passing model.

The distributed computing community has a dichotomy between shared-memory and message-
passing models. Books, courses, and papers explicitly separate these models to present results
and algorithms. These models differ based on how processes communicate. As discussed eariler
in the thesis, in the shared-memory model, processes can write and read data in a common area
of memory. In the message-passing model, processes can send and receive messages to and from
each other. The dichotomy in their study is the result of the different motivations for the models,
with the shared memory model representing multicore machines, and the message passing model
representing systems of machines connected over a network.

In recent years, a technology known as Remote Direct Memory Access (RDMA) has made
its way into data centers, earning a spotlight in distributed systems research. RDMA provides
the traditional send/receive communication primitives, but also allows a process to directly read-
/write remote memory, thereby challenging the assumption that shared memory and message
passing cannot coexist in the same system.

Motivated by RDMA, in this part of the thesis, we investigate the benefits of a hybrid model,
called the message-and-memory model or simply the M&M model, where processes can both
pass messages and share memory. Such a model can find applications in systems using other
emerging technologies as well, such as disaggregated memory [211] and Gen-Z [128]. By using
both methods of communication, one can devise a new genre of algorithms that could potentially
combine the advantages of shared-memory and message-passing algorithms.

It has been proven that the message-passing and shared-memory models are equivalent [29],
by demonstrating that one model can simulate the other. If that is so, what could be the benefit
of combining two models that are equivalent? Closer inspection of the equivalence result reveals
that it holds only in a certain sense and under some assumptions. In particular, the equivalence
is computational: it shows how algorithms for a problem in one model can be translated to the
other using an emulation. However, the emulation does not preserve efficiency, fault tolerance,
or synchrony (e.g., a timely process in one model can become untimely as it waits for other
processes). In fact, we find that each model has its own advantages and they benefit algorithms
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in different ways.
It is well known that neither the message passing model nor the shared memory model (with

atomic read and write operations), can solve consensus deterministically in an asynchronous
setting [119]. However, using randomization or assuming partial synchrony allows both models
to get around the impossibility. Interestingly, in such a setting, a message passing system can only
tolerate a minority of crash failures for solving consensus, whereas under the same randomization
or synchrony assumptions, a shared memory system can solve consensus despite an arbitrary
number of crashed processes. This is one concrete way in which shared memory is stronger than
message passing. Conversely, when considering not only crash failures, but Byzantine failures
as well,1 it is known that a message passing system can tolerate up to one third of the processes
in the system being Byzantine, whereas the shared memory model cannot handle any Byzantine
failures unless stronger primitives are available. Thus, the message passing model is also stronger
than the shared memory model in some ways.

We consider two slightly different settings in which the M&M model is applicable—large
and small networks. RDMA memory operations, and more generally, operations in shared mem-
ory, do not scale as well as message passing. This is due to several factors, mostly having to
do with cache concerns. As discussed earlier in the thesis, operations in a multicore machine
may experience significant slowdowns due to contention. With RDMA operations, the cause
is different; the network interface card (NIC) of a machine must keep information about each
open RDMA connection on its cache, leading to frequent cache misses if a single machine in
the network maintains many RDMA connections. Regardless of the cause, poor scalability re-
mains a reality across all known technologies that allow shared memory communication. Thus,
in networks with many processes, it is impractical to have all-to-all shared memory communi-
cation. We therefore distinguish between large networks, in which we must diligently choose
which RDMA connections to open, and small networks, in which we can allow all-to-all RDMA
connections.

For large networks, we consider the problem of crash-tolerant consensus, and show that we
can use shared memory to enhance the fault tolerance of a message passing system. In fact, we
show that the fault tolerance achievable in such a network is related to the topology of the graph
of shared memory connections in the network.

We then consider small networks, in which all-to-all RDMA connections are practical. Our
goal is to understand the full power that technologies such as RDMA can provide. We therefore
bring in more RDMA-specific features to our model. In particular, we consider RDMA’s ability
to give and dynamically change specific access permissions to memory, as well as the possibility
of experiencing memory failures. Under this RDMA-specific version of the M&M model, we
consider implementing efficient and fault tolerant consensus under two types of process failures:
crash-stop and Byzantine. For Byzantine failures, we give an algorithm that (a) requires only
n ≥ 2fP + 1 processes (where fP is the maximum number of faulty processes) and (b) decides
in two network delays in the common case. This is an improvement in fault tolerance over both
the classic, permissionless, read/write shared memory model and the message passing model,
and is as efficient as is possible in the message passing model. With crash failures, we give

1A Byzantine process may arbitrarily deviate from its protocol, and is assumed to collude with the adversarial
scheduler to try to make the algorithm fail.
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the first algorithm for consensus that requires only n ≥ fP + 1 processes and decides in two
network delays in the common case. With both Byzantine or crash failures, our algorithms can
also tolerate crashes of memory—only m ≥ 2fM + 1 memories are required, where fM is the
maximum number of faulty memories. Furthermore, with crash failures, we improve resilience
further, to tolerate crashes of a minority of the combined set of memories and processes. Thus
we show that, aside from the crash-fault tolerance already studied in the large network setting,
RDMA can also help improve Byzantine-fault tolerance and efficiency of consensus algorithms.

Finally, to evaluate the practicality of our model, in Chapter 9 we use insights from the
crash-tolerant small-network consensus algorithm presented in Chapter 8 to develop an RDMA-
based state machine replication (SMR) system. SMR helps increase the availability of a system
by replicating the state machine of an application across several servers, thereby allowing the
system to remain available despite a server crash. The core engine of an SMR system makes use
of a consensus algorithm to ensure the replicas all have the same state. We employ the consensus
algorithm developed from our theoretical model, extending it to support a full SMR system. The
resulting system, called Mu, can replicate requests in only 1.3µs, outperforming other state-of-
the-art SMR systems by up to 6× in the common case, and over an order of magnitude when
there are server failures. This therefore shows that our theoretical study of RDMA enabled us to
make an impact in practice.

6.1 RDMA in Practice

To keep the discussion of our RDMA model grounded in reality, we now briefly discuss its
capabilities in practice. We highlight the features that we model in this thesis and later make use
of in our SMR implementation.

Remote Direct Memory Access (RDMA) allows a host to access the memory of another host
without involving the processor at the other host. RDMA enables low-latency communication by
bypassing the OS kernel and by implementing several layers of the network stack in hardware.

RDMA supports many operations: Send/Receive, Write/Read, and Atomics (compare-and-
swap, fetch-and-increment). Because of their lower latency, we use only RDMA Writes and
Reads. RDMA has several transports; we use Reliable Connection (RC) to provide in-order
reliable delivery.

RDMA connection endpoints are called Queue Pairs (QPs). Each QP is associated to a Com-
pletion Queue (CQ). Operations are posted to QPs as Work Requests (WRs). The RDMA hard-
ware consumes the WR, performs the operation, and posts a Work Completion (WC) to the CQ.
Applications make local memory available for remote access by registering local virtual memory
regions (MRs) with the RDMA driver. Both QPs and MRs can have different access modes (e.g.,
read-only or read-write). The access mode is specified when initializing the QP or registering
the MR, but can be changed later. MRs can overlap: the same memory can be registered multi-
ple times, yielding multiple MRs, each with its own access mode. In this way, different remote
machines can have different access levels to the same memory. The same effect can be obtained
by using different access flags for the QPs used to communicate with remote machines.
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6.2 The M&M Model

In this part of the thesis, we model the features of Remote Direct Memory Access (RDMA) and
similar technologies, like GenZ and disaggregated memory, that allow for both shared memory
and message passing communication in the same network. We present the most general form
of our model, called the message-and-memory model, or the M&M model, in this section, and
later extend it to model RDMA-specific features in Chapter 8. We begin by assuming a shared
memory system, like in the rest of the thesis. However, this time, the system represents processes
residing on different physical machines. We therefore make a few different assumptions about
the primitives that processes can use.

First, for algorithms in this part of the thesis, instead of assuming that any number of pro-
cesses can fail, we assume an upper bound fp for the number of processes that can crash during
the execution.

Secondly, we assume that processes use only atomic read and write registers in shared mem-
ory, and disallow FAA and CAS. In practice, some hardware for communication on different
machines, like RDMA, does allow FAA and CAS, but these primitive are notoriously slow [172,
281]. We therefore focus on what can be achieved without it.2

Shared-Memory Layout. To represent hardware limitations on how many shared-memory
connections can be open on each NIC at once [106, 170, 173, 275], we restrict each shared-
memory location to only be shared by a subset of the processes. We define the shared-memory
domain S as a set of process subsets; intuitively, S determines what subsets of processes can
share memory. More precisely, for each set S ∈ S, the model permits having any number of reg-
isters shared among processes in S. In general, S can be arbitrary. However, in practice memory
sharing is simpler, as the hardware technology naturally imposes a structure on S: for example,
a process might be able to share memory only with processes that connect to it over the underly-
ing hardware. We say that S is uniform if it can be represented by an undirected graph GSM of
processes, such that registers can be shared by a process and its neighbors in GSM ; intuitively,
GSM is the graph of connections of the underlying hardware that implements the shared memory.
Formally, GSM is a graph GSM = (Π, ESM) and the sets in S are exactly the sets consisting of
a process p and its neighbors in GSM . That is, if we let Sp = {p} ∪ {q : (p, q) ∈ ESM} then
S = {Sp : p ∈ Π}. For a uniform S, we say that GSM is its shared-memory graph.

We are interested in the uniform model, and all our results work with the graph GSM . The
broader model based on S is provided to allow for future theoretical work and potential new
hardware platforms. Note that, while the model does not constrain the number or size of registers
that can be shared, algorithms may choose to reduce their shared-memory usage for efficiency.

In systems with few processes (e.g., in the tens), GSM could be a fully connected graph, but
systems with lots of processes may have to limit the maximum degree of GSM (e.g., limit the
connections over the hardware).

2For the algorithms in the first chapter in this part of the thesis, using CAS and FAA would not change the results,
as we use shared memory simply as a black-box to solve consensus tolerating n− 1 failures.
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Message Passing. In addition to shared memory, we assume that processes may communicate
using message passing. Processes can send messages over directed links. The link from p to q,
denoted p → q, is an output link of p and an input link of q. Each link p → q satisfies the
following property in every run:
• [Integrity]: If q receives m from p k times then p previously sent m to q at least k times.

Some links may satisfy additional properties which are described next. We consider two
types of links: reliable and fair lossy. Roughly, a reliable link does not drop messages, while a
fair lossy link may drop messages but ensures that if a process sends a message repeatedly then
it is eventually received.

More precisely, we say that a link p → q is reliable if it satisfies Integrity and the following
property:
• [No loss]: If p sends a message m to q and q is correct then eventually q receives m from
p.

We say that a link p→ q is fair lossy if it satisfies Integrity and the following property:
• [Fair loss]: If p sends a message m infinitely often to q and q is correct, then q receives m

infinitely often from p.

In this thesis, we always consider a fully-connected message-passing network, that is, for any
two processes p 6= q, there is a link from p to q.

6.2.1 Problem Definitions
We now formally define the consensus problem considered in this part of the thesis.

Consensus Problem. In the consensus problem, each process begins with an input value v ∈
{0, 1} which it proposes, and it must make an irrevocable decision on an output value in the end.

With crash failures, we require the following properties:
• Uniform Agreement. If processes p and q decide vp and vq, then vp = vq.
• Validity. If some process decides v, then v is the initial value proposed by some process.
• Termination. Eventually all correct processes decide.
We expect Agreement and Validity to hold in an asynchronous system, while Termination

requires standard additional assumptions (partial synchrony, failure detection, etc). We also
allow randomized solutions, where the above Termination property must hold with probability 1
under a strong adversary—one that can schedule processes based on their current state and past
history.

In a Byzantine setting, the requirements must be adjusted a little. In particular, we cannot
require that all agents that decide a value agree, since Byzantine agents may decide arbitrary
values. Similarly, we cannot require that Byzantine agents output valid decision values. We
consider weak Byzantine agreement [192], with the following properties:
• Agreement. If correct processes p and q decide vp and vq, then vp = vq.
• Validity. With no faulty processes, if some process decides v, then v is the input of some

process.
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• Termination. Eventually all correct processes decide.

A consensus object is a shared-memory object with one operation, propose(v), which takes
a value v and returns the first value that was proposed to the object. The process that proposed
the first value to the consensus object is the winner of that consensus object.

116



Chapter 7

Large Networks

We begin the study of RDMA with a simple model that combines classic shared memory with
classic message passing. This chapter is based on results presented in [12].

Shared-memory systems have worse scalability than message-passing systems due to hard-
ware limitations. For example, a typical shared-memory system today has tens to thousands of
processes, while message-passing systems can be much larger (e.g., map-reduce systems with
tens of thousands of hosts [102], peer-to-peer systems with hundreds of thousands of hosts, the
SMTP email system and DNS with hundreds of millions of hosts, etc). This limitation is also
apparent in RDMA networks. If a single node in the network maintains many open RDMA
connections, significant slowdowns can be observed for RDMA operations on that node.

To model efficient networks with many nodes, we thus model an RDMA-enabled system as
a system in which all machines can communicate with each other over message passing (all-
to-all links), but only subsets of the system can share memory. We assume that the shared
memory does not fail, as in the pure shared-memory model. This assumption can be supported
by the hardware: with RDMA, the shared memory can be registered with the kernel so that it
remains accessible after processes crash. Even other technologies, like disaggregated memory,
can similarly preserve memory accesses after process crashes. The formal model is described in
Section 6.2.

Under this model, we consider the problem of crash-tolerant consensus, and show that even
with a few shared memory connections, consensus can be solved with higher fault tolerance
than is achievable with message passing alone. It is known that consensus cannot be solved
deterministically in an asynchronous system subject to failures, even if processes can only fail
by crashing and at most one process may fail; this is true in both message-passing and shared-
memory models [119, 220]. We thus consider asynchronous systems where processes can toss
coins. Then, in a shared-memory system, consensus can be solved (with probability 1) with up
to n−1 crash failures [2] (n is the number of processes in the system), whereas in a message-
passing system, a consensus algorithm can tolerate at most b(n − 1)/2c crash failures [51]. We
show that the M&M model can strike a balance between shared memory and message passing.

We define an undirected shared-memory graph, whose nodes are processes and there is an
edge between processes p and q if they share a memory location. First note that if the shared-
memory graph GSM is fully connected then any fault-tolerant shared-memory algorithm also
works in the M&M model—the algorithm simply never sends messages. Thus, there are algo-
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rithms in the M&M model that can tolerate up to n−1 crash failures. However, as discussed
above, in a large system, it is impractical to connect all processes over shared memory. When
fewer processes can share memory, we show that the M&M model provides a range of choices,
where the fault tolerance increases as we improve the shared-memory graph. Specifically, we
present an algorithm for the M&M model that tolerates anywhere between b(n− 1)/2c and n−1
crash failures, depending on the topology of the shared-memory graph.

In particular, the hardware limitations on scalability translate to limitations on the degree d
of the shared memory graph [106, 170]. Our algorithm employs expander graphs to tolerate
a majority of crash failures—up to f < (1− 1

2(1+h)
)n of them—in a system with n processes,

where h is the expansion of the graph as measured by the vertex expansion ratio. Roughly, this
ratio indicates by how much a set of vertices expands each time we add their neighbors to the
set. The higher the expansion, the more failures the algorithm can tolerate. Our algorithm is
a simulation of a pure message-passing consensus algorithm that requires a majority of correct
processes, without having that majority in reality. To do that, we use a wait-free shared-memory
consensus algorithm among each local neighborhood in the shared-memory graph to emulate
a virtual process in the larger message-passing algorithm. This virtual process fails only if all
processes in its neighborhood fail. By taking a shared-memory graph with high expansion, we
ensure that even with a small d, many processes can fail without affecting a majority of virtual
processes. Here, the topology of the shared-memory graph determines the fault tolerance of con-
sensus: graphs with higher expansion allow for higher fault tolerance, because correct processes
are adjacent to (and thus can simulate) more processes. We show that this relation is inherent by
giving an impossibility result relating graph expansion and fault tolerance.

7.1 Related work
The M&M model is motivated mostly by RDMA [160, 165, 255], but also by similar emerg-
ing technologies such as disaggregated memory [211], Gen-Z [128], and OmniPath [163]. These
technologies provide remote memory [10] and can be unified under higher-level abstractions [11].
RDMA permits a process to access the memory of a remote host without interrupting the re-
mote processor. It has been widely used in high-performance computing [283] and is now being
adopted in modern data centers [137]. Work on RDMA shows how it can improve the perfor-
mance of important applications, such as key-value storage systems [106, 170, 234], database
systems [38, 284], distributed file systems [221], and more [107, 267, 271]. Recent work uses
RDMA to improve performance of consensus [250, 279] assuming a majority of processes are
correct. Disaggregated memory separates compute and memory, and connects them using a
fast network; prior work proposes new architectures for disaggregated memory [24, 95, 240]
and studies the network [142] and system [10, 212] requirements for a practical implementa-
tion. Gen-Z and OmniPath are commercial technologies under development that offer memory
semantics and low-latency access to remote data.

The shared-memory and the message-passing models are well studied in academic research,
and have been compared under both theoretical and practical considerations [68, 75, 184, 200].
The two models have been shown to be computationally equivalent [29], though for efficiency,
simplicity, or hardware availability, one might prefer one model over the other. For instance,
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Barrelfish [39] uses message passing to improve performance on a shared-memory multicore
machine [99]. Conversely, distributed shared-memory systems [18, 55, 259] offer the abstraction
of shared memory on top of a message-passing system. Recent work improves the performance
of such systems using RDMA [179, 239]. Integrating message passing and shared memory in
hardware has been explored in the MIT Alewife machine [190]. Our work differs in that (1) we
propose a new abstract distributed computing model, which encapsulates low-latency remote ac-
cess technologies, such as RDMA and disaggregated memory, and (2) we show that this model can
improve the robustness of algorithms, rather than the performance or simplicity of applications.

Consensus is a fundamental problem in distributed computing. Following the well-known
FLP result [119] showing that it cannot be solved in an asynchronous crash-prone message-
passing system, much work has focused on getting around the impossibility by using randomiza-
tion [25, 28, 51], partial synchrony [104, 109], or unreliable failure detectors [76, 77].

Expander graphs are graphs that are sparse, yet well-connected. They are well-studied and
have applications in many areas of computer science, including distributed computing [91, 282].
In this chapter, we show that the fault tolerance of the M&M model is tightly coupled with the
expansion of its shared-memory connections, highlighting another problem in which expander
graphs apply.

7.2 Consensus Algorithm
We now present an algorithm in the M&M model that improves the fault tolerance of message-
passing systems using shared memory connections. We first discuss the algorithm itself, which
works regardless of how many or which shared memory connections are available, and then
discuss the best topology of shared memory connections to choose to optimize scalability and
fault tolerance. We then give an impossibility result about the fault tolerance of consensus in the
M&M model (Section 7.4).

7.2.1 Algorithm
The algorithm for the M&M model is based on Ben-Or’s randomized algorithm [51], which
can tolerate up to f < n/2 process crashes in the message-passing model. This is one of the
simplest consensus algorithms, but not the most efficient one. Our goal here is to show feasibility;
designing more efficient algorithms for the M&M model is future work.

Ben-Or’s Algorithm. In Ben-Or’s algorithm, each process has an estimate of the decision
value, which starts with the process’s initial value. The algorithm proceeds in rounds, each with
two phases. In the first phase (phase R), each process p sends its current estimate to all processes,
waits to receive at least n−f messages, and checks if more than n/2 messages have the same
value v. If so, p sends this value to all processes in the second phase (phase P). Otherwise, p
sends a special value ‘?’ to all processes in the second phase. Process p then waits to receive
at least n−f messages. If at least f+1 of them have the same non-‘?’ value, p decides on this
value. If at least one of them is a non-‘?’ value, p changes its estimate to that value. Otherwise,
p changes its estimate to a random bit.
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Ben-Or’s algorithm satisfies the validity and uniform agreement properties of consensus (Sec-
tion 5.2), and it satisfies the termination property with probability 1 if a majority of the processes
are correct [9].

Simulating Ben-Or’s Algorithm in the M&M model. We modify Ben-Or’s algorithm, so
that correct processes simulate the actions of their neighbors in the shared-memory graph GSM .
The idea of the simulation is simple: when sending a message in any phase, process p sends not
only its own value, but also the value that its neighbors are supposed to send. That is, p ensures
that its neighbors progress at least as much as it does. To do so, for each neighbor q, p reaches
agreement with q and q’s neighbors on what q’s message should be. Then, p sends a message of
the form (phase, round, [〈q, val〉 : q ∈ neighbors(p)]), where phase is a phase (either R or P),
round is a round number, and the last entry is an array with a tuple for each neighbor q indicating
the agreed value of q’s message. We say that the message represents each of the processes whose
ids appear in the tuple. For a set of such messages, we say that the messages represent the union
of the processes that are represented by each message separately.

To reach agreement on the message of a neighbor q, there are two arrays of consensus objects,
one array for each phase, indexed by q and the round. All of q’s neighbors use the same consensus
object to determine what q’s message might be for a given phase and round. Process q and its
neighbors propose their own value to that consensus object. The consensus objects themselves
are implemented using known wait-free randomized shared-memory algorithms [25, 28], which
work in the M&M model because neighbors in GSM share memory.

We call this algorithm the Hybrid Ben-Or or HBO algorithm. Algorithm 7.1 shows the pseu-
docode. There, processes do not terminate after deciding, but it is easy to modify the algorithm
so that they do. This algorithm always satisfies the safety properties of consensus, irrespective
of the number of crash failures:
Theorem 7.2.1. The HBO algorithm in Algorithm 7.1 satisfies the Validity and Uniform Agree-
ment properties of consensus in the M&M model with reliable links.

7.2.2 Correctness.

The correctness of our algorithm relies on that of Ben-Or’s. We show that, intuitively, every
execution of our algorithm corresponds to some execution of Ben-Or’s algorithm. By mapping
executions of our algorithm to those of Ben-Or’s, we thus show that the possible behaviors of
our algorithm are a subset of the behaviors exhibited by Ben-Or’s algorithm, and thus all lead to
correct solutions to consensus.

We begin with a series of definitions. First, instead of counting full rounds, for the purpose
of this proof, we count each phase separately. That is, we say that a message m is in phase j
if m is of the form (R, k,M) where j = 2k, or (P, k,M) where j = 2k + 1. The state of a
process comprises of (a) its local values, (b) its current phase, and (c) the messages it has sent
and received since the beginning of the algorithm’s execution. A process p may take one of two
actions per phase; pmay deterministically update its local estimate to a value v ∈ {0, 1, ?} (called
a det-update), or p may update its local estimate by flipping a coin (called a rand-update). After
taking an action, p always sends a message with its new estimate to all processes. A protocol

120



Algorithm 7.1: Hybrid Ben-Or (HBO) consensus algorithm

1 Shared objects:
2 RV als[p, i]: consensus object accessible by {p} ∪ neighbors(p),
3 ∀p ∈ Π,∀i ∈ {1, 2, . . .}
4 PV als[p, i]: consensus object accessible by {p} ∪ neighbors(p),
5 ∀p ∈ Π,∀i ∈ {1, 2, . . .}

7 Code for process $p$:
8 procedure Consensus(vp)
9 message = []

10 k = 1
11 for q ∈ {p} ∪ neighbors(p) do
12 message[q] = 〈q,RV als[q, k].propose(vp)〉
13 while true
14 send (R, k,message) to all
15 wait for messages of the form (R, k, ∗) representing more than n/2

↪→ processes
16 if received more than n/2 tuples with different ids and the same

↪→ value v
17 for q ∈ {p} ∪ neighbors(p) do
18 message[q] = 〈q, PV als[q, k].propose(v)〉
19 else for q ∈ {p} ∪ neighbors(p) do
20 message[q] = 〈q, PV als[q, k].propose(?)〉
21 send (P, k,message) to all
22 wait for messages of the form (P, k, ∗) representing more than n/2

↪→ processes
23 if received more than n/2 tuples with different ids and the same

↪→ value v 6= ?
24 decide(v)
25 k = k + 1
26 if at least one tuple has value v 6= ?
27 for q ∈ {p} ∪ neighbors(p) do
28 message[q] = 〈q,RV als[q, k].propose(v)〉
29 else for q ∈ {p} ∪ neighbors(p) do
30 v = 0 or 1 randomly
31 message[q] = 〈q,RV als[q, k].propose(v)〉
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step of a process p is an action taken by p, followed by sending a message. A protocol step
by p in which p took action a and sent message m is denoted as (p, a,m). The first protocol
step of every process p is defined as a det-update in which p sends its initial value. In our HBO
algorithm, process p may also take helping steps to help its neighbors perform a protocol step.
Observation 7.2.2. In Ben-Or’s algorithm, two processes with states s and s′ take the same
action as long as they are in the same phase, and all messages received since the last protocol
step they took were the same. Furthermore, if the action taken is a det-update, then their next
message is the same.

This observation is easy to see from a quick inspection of Ben-Or’s algorithm. It simply states
that processes act deterministically based only on the messages received in the last phase; the
only source of non-determinism is the random coin flip. In particular, a process’s past history and
its previous estimate of the value have no effect on its next action. We thus define a contracted
state of a process as the subset of its state containing only its current phase and the messages
received since the process last took a protocol step.

Recall that an execution E of an algorithm is a sequence of protocol steps taken by processes
in the system, in which, for any process p, the subsequence containing only steps of p is consistent
with the deterministic actions p can take. An extension of an execution E is a concatenation of E
with another execution E ′ of the same algorithm, in which the first protocol step of each process
p in E ′ is consistent with the next protocol step p could take after its last step in E. We denote
by pinit(E) process p’s initial (input) value in execution E.

Note that the messages sent in our HBO algorithm are not the same as the messages sent
in Ben-Or’s algorithm. To be able to compare executions of the two algorithms, we define a
mapping of an execution of the HBO algorithm to a sequence of protocol steps of Ben-Or’s
algorithm. Given an execution E of the HBO algorithm, E’s flattened execution, Ef , is the
sequence of protocol steps where every protocol step (p, a, (phase, round, [(q, vq)|q ∈ N(p)]))
in E is substituted with the sequence of protocol steps (q, aq, (phase, round, vq)) for q ∈ N(p),
where aq is the action taken by the process that determined q’s value for that phase (won its
consensus). Repeated protocol steps are deleted.

Intuitively, this flattening just corresponds to an execution in which a process p receives a
message from q in phase j if p receives some message in phase j that contains the tuple (q, v)
for some v ∈ {0, 1, ?}. Similarly, q sends a message in phase j if there is a message sent by
some process in phase j that contains the tuple (q, v) for some value v. Furthermore, redundant
messages are ignored in the flattened execution.

We say that an execution E of the HBO algorithm and an execution E ′ of Ben-Or’s algorithm
are equivalent if the flattened execution of E, Ef , is equal to E ′.

We now turn to the actual correctness proof. First, we show that although multiple processes
may take a protocol step on behalf of p, they all take the same step, and thus there are no incon-
sistencies in p’s representation.
Lemma 7.2.3. For any execution E of the HBO algorithm, Ef cannot contain more than one
protocol step per process per phase.

Proof. It is easy to see that this lemma holds, since the value sent for each process p in phase
j is always determined by a proposal to the same consensus object. Every proposal to the same
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consensus object returns the same value. Thus, every time p is represented in a message in phase
j inE, it is the same message. By the definition ofEf , each protocol step appears only once.

We note that an execution of the HBO algorithm could be equivalent to an execution of Ben-
Or’s algorithm that has a different set of input values. This difference is due to the fact that
in the HBO algorithm, a process can impose its own initial value on its neighbors via the first
consensus object of each process. However, the decision that the HBO algorithm arrives at in the
end is always a valid decision for the original inputs, since consensus is a colorless task1.
Observation 7.2.4. In the Hybrid Ben-Or Algorithm, processes may adopt the input values of
their neighbors. This does not affect the validity of the decision value.
Lemma 7.2.5. For any execution E of our HBO algorithm, there exists an execution E ′ of Ben-
Or’s algorithm such that E and E ′ are equivalent. E and E ′ do not necessarily have the same
initial values for all processes, but if a process p has input v in E ′, then at least one of its
neighbors has input v in E.

Proof. The proof is by induction on the number of protocol steps in the execution Ef .
BASE OF THE INDUCTION: Consider the empty prefix ofEf . This is equivalent to any empty

execution E ′ of the original algorithm.
STEP OF THE INDUCTION: Assume that for any prefix S of Ef of length at most k, there is

an equivalent execution E ′ of Ben-Or’s algorithm. We now show that there is an extension of E ′

in which the next protocol step taken is the same one taken in Ef .
Let p be the next process to take a protocol step in Ef , and let j be p’s phase for this step.

By Lemma 7.2.3, p hasn’t yet taken a protocol step in phase j. This means that, since by the
induction hypothesis S and E ′ are equal, there is an extension of E ′ in which p takes a protocol
step in this phase. In order for p to take a protocol step, consensus has to have been reached for
the step it should take. Consider the process q that proposed the winning value in p’s consensus
object for this phase. We consider two cases: when j = 0 (the first phase), and when j 6= 0.

CASE 1: j = 0. If this is the first phase, then q imposes its own initial value for p. Note
that there is an extension of E ′ in which this is p’s first step; however, it is an execution in which
pinit(E′) = qinit(E). Since q is p’s neighbor, this satisfies the lemma.

CASE 2: j 6= 0. If this is not the first phase, by Algorithm 7.1, q proposed its value after
having received at least n/2 + 1 messages from other processes in the previous phase. By the
induction hypothesis, these same messages have also been sent in E ′ (since so far the protocol
steps taken have been the same in both executions). Furthermore, since all messages in both the
HBO algorithm and Ben-Or’s algorithm are sent to all processes, then we can let these n/2 + 1
messages be the ones received by p in this phase in the extension of E ′. Thus, by Observation
7.2.2, p takes the same action as q would in this extension of E ′. This is what happens in the
HBO algorithm as well. Note that if p’s action is a rand-update, there is an extension of E ′ in
which the result of p’s coin flip is the same as the result q proposed for p in the HBO algorithm.
Therefore, there is an extension of E ′ in which the next protocol step by p is the same as the one
taken by p in Ef .

1A colorless task is one in which processes may adopt the input value of other processes without affecting the
validity of the output [153].
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Lemma 7.2.5, Observation 7.2.4 and the correctness of Ben-Or’s algorithm immediately im-
ply the following theorem.
Theorem 7.2.6. Algorithm 7.1 satisfies uniform agreement and validity.

7.2.3 Termination.

For pedagogical reasons, we first show that Algorithm 7.1 terminates under a weak adversary
(one that cannot see the local and shared-memory values of processes). Later, we show that the
algorithm in fact terminates under a strong adversary as well. Note that in any round, at most one
non-‘?’ value can be proposed. This is because there need to be a strict majority of the processes
that reported that value in the report phase of that round. Furthermore, if all processes that flip
a coin in some round k obtain the same value as the one proposed in that round (if there is such
a value), then all processes start round k + 1 with the same value, and they all decide at the end
of round k + 1. Note that this scenario has a non-zero probability of happening, since all coin
flips are independent of one another, and the adversary cannot alter the majority value to be the
opposite of the value flipped, since it cannot observe the local values of the processes. Thus,
given enough rounds, the algorithm must terminate eventually, under a weak adversary.

We now turn to arguing about termination under a strong adversary. Ben-Or’s algorithm
terminates even under a strong adversary, provided that there is a majority of correct processes
[9]. The proof of termination is non-trivial, and requires arguing about two rounds at a time. The
idea of the proof is to define a ‘lucky epoch’; two consecutive rounds in which each coin flip
returns the value that will be best in that situation to lead to termination (called ‘FavorableToss’
in [9]). The main idea is that depending on the current majority opinion, the best coin flip can be
different at different times in the execution. Thus, FavorableToss takes in both a round number, r,
and a time t at which the coin is flipped. Aguilera and Toueg then show that if, for all processes in
two consecutive rounds, any query of the random number generator (r.n.g.) at any time t returns
FavorableToss(r, t), then the algorithm terminates.

With the HBO algorithm, the time at which a coin for a particular process is flipped is not
well defined; to establish its value for the next round, a process must reach consensus with all
of its neighbors on its value. Each of its neighbors may separately flip a coin, and then compete
in the consensus protocol to have its value chosen. This gives the adversary more power, as it
can effectively choose which neighbor will win. We now show that despite this extra power, the
HBO algorithm still terminates with probability 1, even under a strong adversary. We do so by
closely following the proof of Aguilera and Toueg for the original Ben-Or algorithm, with a few
changes clearly defining the time at which a process is said to flip a coin in a given round, and
incorporating this into the definition of a FavorableToss.
Definition 7.2.7. For every process p and round r, the time, t, at which p is said to have tossed its
coin for round r is the earliest time in the execution at which some process in the neighborhood
of p queries the r.n.g. to obtain a value to propose for p.

We thus alter the definition of FavorableToss as shown in Algorithm 7.2. The algorithm is
taken from [9], and the lines in red are the ones added for the proof of the HBO algorithm. Here,
τk is the first time in which some process receives at least n− f proposals in round k.

We also slightly modify the terminology used by Aguilera and Toueg, and say that a process
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Algorithm 7.2: FavorableToss specification

1 FavorableToss(k, t, p) {
2 if there is a time t′ < t such that FavorableToss(k, t′, p) was called {
3 return FavorableToss(k, t’, p);
4 }
5 if at time t there is a majority value v in round k {
6 return k mod 2;
7 }
8 if v is a majority value in round k + 1 by time t { //t ≥ τk+1

9 return v;
10 }
11 return k + 1 mod 2
12 }

R-gets a value in round k if the winner of its consensus object for the propose phase in that round
got its value by flipping a coin. Otherwise, we say that the process D-gets its value in that round.

The rest of the proof is identical to the proof given by Aguilera and Toueg. The key insight
that allows us to use the old proof is that, with these new definitions, there is a well defined point
in time at which a process p’s value for round k is determined, and this point in time is always
strictly before p sends its first message in round k. Note that the probability for two rounds in
a row to be lucky is now only 2−2dn, since each process’s value is determined by at most d coin
flips. However, this still suffices to show that the probability that we will eventually have a lucky
epoch is 1.

7.3 Shared-Memory Expanders
In this section, we consider the fault tolerance of the HBO algorithm: how many crash failures
can it tolerate while ensuring that processes decide. In the algorithm, correct processes represent
their neighbors in GSM , so the fault tolerance depends on GSM and how many neighbors correct
processes have. We show that, by choosingGSM to be a graph with high expansion, we obtain the
best trade-off between maintaining low degree and achieving high fault tolerance. Having a low
degree is important because the degree indicates the number of connections that a process must
have to establish a shared memory, and that number is limited by the hardware (Section 5.2).

Roughly, expander graphs are graphs with the property that every sufficiently small set of
vertices has many neighbors. To define these graphs more precisely, we follow the survey by
Hoory, Linial and Wigderson [157]; we refer the reader to this survey for a detailed treatment.
Definition 7.3.1. Let G = (V,E) be an undirected graph.

1. The vertex boundary of a set S ⊆ V is

δS = {u ∈ V : {u, v} ∈ E, v ∈ S} \ S.

2. The vertex expansion ratio of G, denoted h(G), is defined as

h(G) = min
S⊆V :|S|≤|V |/2

|δS|
|S|
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Intuitively, the higher the vertex expansion ratio, the larger the vertex boundary and the better
connected the graph.

To apply this definition to the fault tolerance of HBO, consider a system with shared-memory
graph GSM and vertex expansion ratio h(GSM), where up to f processes may crash. The set of
vertices of interest to us is the set C of correct processes. If C has many neighbors, then it
can simulate many extra processes in HBO. The adversary may pick any set of at least n − f
processes to be correct; regardless of the set it picks, that set has a vertex boundary of at least
(n−f) · h(GSM).

The fault tolerance of HBO improves with the vertex expansion ratio of the graph. This is
made precise by the following:
Theorem 7.3.2. Consider the M&M model with shared-memory graph GSM where links are re-
liable and f processes may crash. The HBO algorithm in Algorithm 7.1 satisfies the Termination
property of consensus with probability 1 if f < (1− 1

2(1+h(GSM ))
) · n.

Proof. Recall that Ben-Or’s algorithm requires that f < n/2 for termination. The HBO algo-
rithm simulates the correct processes and the processes in their vertex boundary. Given GSM has
vertex expansion ratio h(GSM), the number of processes simulated by the algorithm is at least
(n−f) · (1+h(GSM)). Rearranging the terms leads to the theorem.

In the rest of this section, we give an example of the kind of graphs we can use, by discussing
an explicit construction of one family of expander graphs and showing the actual value of h(G)
that they yield.

7.3.1 Explicit Construction: Margulis Graphs.
Before presenting a construction that yields graphs with good expansion, we begin with a few
general definitions and facts about graphs that will help us analyze expansion properties. Again,
we closely follow the survey of Hoory et al. [157].

A d-regular graph is a graph in which each vertex has degree exactly d. The Adjacency
Matrix of an n-vertex graph G, denoted A(G), is an n × n matrix whose entry (u, v) is the
number of edges between u and v in G. Since A(G) is real and symmetric for any G, it has n
real eigenvalues, which we denote λ1 ≥ λ2 ≥ . . . ≥ λn. These eigenvalues are also known as
the spectrum of the graph G. In d-regular graphs, λ1 = d.

The spectral gap, i.e., the difference between λ1 and λ2, is an important indicator for the
expansion of a graph. Denote λ(G) = max(|λ2|, |λn|). Often λ(G) is used instead of using λ2

when comparing to λ1. Note that λ2 ≤ λ(G), so that the spectral gap is at least as large as the
difference between λ1 and λ(G). Where the context is clear, we may use λ to mean λ(G).

We now consider an alternative definition for the expansion of a graph.
Definition 7.3.3. Ψ′v(G, k) = minS⊂V ||S|≤k

Γ(S)
S

, where Γ(S) is the neighborhood of S, including
S itself.

Note that this definition is very similar to h(G). The only differences are that (1) Ψ′v(G, k) is
more flexible, in that it allows us to bound our discussion to subsets of size up to k, rather than
up to n/2, and (2) the fraction is in terms of Γ(S) rather than δS. There is a simple conversion
between the two: h(G) ≥ Ψ′v(G, n/2)− 1.
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We are now ready to present the Margulis Graph construction.
Definition 7.3.4 (Construction 8.1 in [157]). Define the following 8-regular graph Gn = G =
(V,E) on the vertex set V = Zn × Zn. Let

T1 =

(
1 2
0 1

)
, T2 =

(
1 0
2 1

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
Each vertex v = (x, y) is adjacent to the four vertices T1v, T2v, T1v+ e1, T2v+ e2, and the other
four neighbors of v are obtained by the four inverse transformations. Note that all calculations
are mod n and this is an 8-regular undirected graph that may have multiple edges and self
loops.
Theorem 7.3.5 (Theorem 8.2 in [157], due to Gaber and Galil [125]). The graph Gn satisfies
λ(Gn) ≤ 5

√
2 for every positive integer n.

An (n, d, α)-graph is a d-regular graph on n vertices, in which λ ≤ αd. Thus, we know that
Margulis graphs are (n, d, α)-graphs for d = 8 and α ≥ 5

√
2/8.

Theorem 7.3.6 (Theorem 4.15 in [157], due to Tanner [272]). An (n, d, α)-graph G satisfies

Ψ′v(G, ρn) ≥ 1

ρ(1− α2) + α2

for all ρ > 0.
If we plug in ρ = 1/2 to the above theorem, we get that Ψ′v(G, n/2) ≥ 2

1+α2 . Plugging in
α ≥ 5

√
2/8 for Margulis graphs,

Ψ′v(Gn, n/2) ≥ 128

114
≥ 1.122.

Therefore, Margulis graphs have a vertex expansion ratio of 0.122. Using these graphs as
GSM in our simulation algorithm, we can tolerate up to (1− 1

2(1.122)
) ≥ 0.55n failures.

7.4 Impossibility result
We now show an impossibility result about the fault tolerance of consensus in the M&M model.
The impossibility depends on the topology of the shared-memory graph GSM . Intuitively, the
impossibility indicates that the expander construction is the correct approach: we show that the
fault tolerance of the system is related to the minimum cut that separates a large subgraph from
the rest of the GSM graph. In graphs with high expansion, the size of such a cut it guaranteed to
be large, and thus many failures can be tolerated.

To establish the impossibility, we extend the well-known partitioning argument [223] to
the M&M model. Basically, if two processes cannot communicate during the execution of an
algorithm, then they cannot decide the same value. Thus, if the adversary can partition the
system into two disjoint subgraphs A and B, each of size ≥ n − f , where processes in A do
not communicate with processes in B, then agreement cannot hold. This argument works in
message-passing models, where the adversary can arbitrarily delay messages on the network,
but it breaks in a shared-memory model, in which communication between processes cannot be
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delayed without blocking the processes themselves. Thus, in the M&M model, to create such a
partition the adversary must get rid of all shared-memory edges of GSM on the cut between A
and B.

We now formalize the intuition to arrive at the impossibility. Given a graph G = (V,E),
we say that C = (B, S, T ) is an SM-cut in G if B, S, and T are disjoint subsets of V such that
B ∪ S ∪ T = V , and there is a way to partition B into two disjoint subsets B1 and B2 such that
(B1 ∪ S,B2 ∪ T ) is a cut of the graph G, and for every b1 ∈ B1, b2 ∈ B2, s ∈ S and t ∈ T ,
{s, t} 6∈ E, {b1, t} 6∈ E, and {b2, s} 6∈ E. Intuitively, B is the set of vertices on the boundary of
the cut, and S and T are the remaining vertices on each side.
Theorem 7.4.1. Consider the M&M model with shared-memory graph GSM , where links are
reliable and f processes may crash. Consensus cannot be solved if GSM has an SM − cut
(B, S, T ) with |S| ≥ n−f and |T | ≥ n−f .

Note that, in a graph with high expansion, there are no SM-cuts (B, S, T ) with |S| ≥ n−f
and |T | ≥ n−f . Intuitively, this is because if we want to build an SM-cut and we start with some
set S with |S| ≥ n − f , we must include δS in B1, and then include δ(S ∪ B1) in B2. As these
sets expand quickly, we are then left with fewer than n− f vertices to put in T .

Proof. Assume by contradiction that there exists an algorithm A that solves consensus on an
M&M network G and is tolerant to f ≥ minC∈SM−cuts(G) n − |S| process failures. Let C =
arg minC∈SM−cuts(G) n− |S|. Consider the following two executions:

EXECUTION E1: All initial values are 0. All processes in B and in T crash at the beginning
and never execute a single step, while all processes in S are correct. This is possible, since
f ≥ n − |S| = |B| + |T |. Then since A solves consensus and is tolerant to f failures, all
processes in S must eventually, by some time t, decide 0 and terminate.

EXECUTION E2: All initial values are 1. All processes in B and in S crash at the beginning
and never execute a single step, while all processes in S are correct. This is possible, since by
assumption, |S| ≤ |T |, and therefore f ≥ n − |T | = |B| + |S|. Then since A solves consensus
and is tolerant to f failures, all processes in T must eventually, by some time t′, decide 1 and
terminate.

We now construct a third execution which violates the specification of consensus.
EXECUTION E3: The initial values of all processes in S are 0, and the initial values of all

processes in T are 1. The initial values of processes in B may be arbitrary. All processes in
B crash at the beginning and never execute a single step. Furthermore, all messages from any
process in T to any process in S are delayed until after time t, and all messages from any process
in S to any process in T are delayed until after time t′. Since all elements of B have crashed,
and all shared-memory communication between S and T must pass through B, there cannot
be any shared-memory communication. Since this execution is indistinguishable from E1 to all
processes in S until after they decide, and they cannot change their decision, all processes in S
decide 0 in E3. Symmetrically, this execution is indistinguishable from E2 to processes in T , so
they must decide 1. This violates the specification of consensus— a contradiction.

Note that Theorem 7.4.1 asserts that consensus cannot be solved if there is a SM-cut (B, S, T )
in a shared-memory graph where both |S| and |T | are larger than n− f . Intuitively, such a SM-
cut cannot exist in a shared-memory graph with high expansion. This is because an SM-cut
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(B, S, T ) can be built in a graph as follows: take any subset S ′ of the graph. Let S = S ′,
B1 = δS ′, B2 = δ(S ′ ∪ δS ′), and T be the rest of the graph. If necessary, switch S and T such
that S is the smaller of the two sets. Since this construction uses the vertex boundaries of sets
in the graph, the SM-cut produced would be very small if the sets expand quickly. We formalize
this intuition with the following corollary, for which we first define the 2-hop average expansion
of a set.
Definition 7.4.2. Let G = (V,E). The 2-hop average expansion ratio of a set S ⊂ V , denoted
h

(2)
S , is the average of expansion ratios of S and S ∪ δS. That is,

h
(2)
S =

1

2
·
(
|δS|
|S|

+
|δ(S ∪ δS)|
|S ∪ δS|

)
Corollary 7.4.3. In an M&M network with shared-memory graph GSM = (V,E), consensus

cannot be solved if there is a set S ⊂ V such that |S| ≥ n− f and h(2)
S is at most

√
f
|S| − 1.

Proof. Assume that there exists a set S ⊂ V such that |S| ≥ n − f and h(2)
S ≤

√
f
|S| − 1. We

show that in this case, there is an SM-cut in G such that |S| ≥ n − f and |T | ≥ n − f . We do
so by constructing the SM-cut (B, S ′, T ) as follows: S ′ = S, B1 = δS, B2 = δ(S ∪ δS), and
T = V \ (S ′ ∪B1 ∪B2). Let h1 = |δS|

|S| and h2 = |δ(S∪δS)|
|S∪δS| . Then

|T | = n− (|S|+ |δS|+ |δ(S ∪ δS)|)
= n− (|S|+ h1|S|+ h2(|S|+ h1|S|)
= n− (|S|+ h1|S|+ h2|S|+ h1h2|S|)
≥ n− (1 + 2h

(2)
S + (h

(2)
S )2)|S| (by the inequality of means)

≥ n−

1 + 2

(√
f

|S|
− 1

)
+

(√
f

|S|
− 1

)2
 |S|

= n−

(
1 +

(√
f

|S|
− 1

))2

· |S|

= n− f

By Theorem 7.4.1, consensus cannot be solved if there is an SM-cut in G such that |S| ≥
n− f and |T | ≥ n− f .
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Chapter 8

Small RDMA Networks

In the previous chapter, we considered the use of shared memory and message passing together
in large networks. In particular, because shared memory is known to be less scalable to large
numbers of processes, we assumed that allowing all processes in the system to communicate
over shared memory would be impractical. We therefore focused on finding how to improve
network guarantees while using only a few well-placed shared memory connections. We showed
a trade-off between improved fault tolerance of the overall network and the number of shared
memory connections used. The case of a fully-connected shared memory graph, in which all
processes were able to communicate with each other over shared memory, was one extreme of
the trade-off we considered, and was of limited interest to the discussion of fault tolerance, since
the results on such a setting are implied by well-known results in the purely shared memory
setting.

In contrast, in this chapter we focus exclusively on the setting in which the network is small
enough that allowing all processes to communicate over shared memory is practical. Such small
networks in fact crop up very often in the real world, when we only want to optimize communi-
cation within a single rack in a data center, or when implementing state machine replication for
fault tolerance, where it is common practice to replicate across only a small constant number of
machines (3− 7).

In the small network setting, we consider a more detailed version of the M&M model, which
reflects more features of RDMA hardware. Recall that RDMA was one of the main technologies
that inspired the M&M model in the first place; it provides the traditional send/receive commu-
nication primitives, but also allows a process to directly read/write remote memory. Recent work
shows that RDMA leads to some new and exciting distributed algorithms [12, 42, 106, 171, 250,
279].

In addition to providing both message-passing and shared memory capabilities, RDMA pro-
vides some other features. Namely, RDMA provides a protection mechanism to grant and revoke
access for reading and writing data. This mechanism is fine grained: an application can divide
the memory into different (possibly overlapping) subsets called memory regions, and can give
different access permissions (read/write/both) to different processes. Furthermore, these pro-
tections are dynamic: they can be changed by the application over time. However, in RDMA,
the remote memories may be subject to failures that cause them to become unresponsive. This
behavior differs from traditional shared memory, which is often assumed to be reliable.
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In this chapter, we lay the groundwork for a theoretical understanding of these RDMA capa-
bilities by adding them to the M&M model, and we show that they lead to distributed consensus
algorithms that are inherently more powerful than before. Similarly to the previous chapter, we
focus on small networks in which it is practical to allow all-to-all shared memory communication
as enabled by RDMA. Notably, in Chapter 7, where we studied fault tolerance for the consensus
problem, the fully-connected setting was of limited interest, since the fault tolerance results were
implied by previous results on shared memory systems. However, in this chapter, we consider
several aspects that were omitted in Chapter 7.

Namely, we show that RDMA improves on the fundamental trade-off in distributed systems
between failure resilience and performance—specifically, we show how a consensus protocol can
use RDMA to achieve both high resilience and high performance, while traditional algorithms
had to choose one or another. As already discussed, traditional shared memory systems provide
higher crash-fault tolerance than message passing systems. However, we show that shared mem-
ory algorithms are also inherently slower than their message-passing counterparts when solving
consensus, as they require at least 2 operations by the same process (4 network delays in our
model), even in best-case executions, whereas in message-passing, consensus can be solved in
a single network round trip (2 network delays in our model). We formalized these notions of
performance in Section 8.2. Furthermore, in this chapter we consider not only crash failures, but
also Byzantine faults, whereby processes may arbitrarily deviate from the protocol.

With Byzantine failures, we consider the consensus problem called weak Byzantine agree-
ment, defined by Lamport [192]. We give an algorithm that (a) requires only n ≥ 2fP + 1
processes (where fP is the maximum number of faulty processes) and (b) decides in two delays
in the common case. With crash failures, we give the first algorithm for consensus that requires
only n ≥ fP + 1 processes and decides in two delays in the common case. With both Byzantine
or crash failures, our algorithms can also tolerate crashes of memory—only m ≥ 2fM + 1 mem-
ories are required, where fM is the maximum number of faulty memories. Furthermore, with
crash failures, we improve resilience further, to tolerate crashes of a minority of the combined
set of memories and processes.

Our algorithms appear to violate known impossibility results: it is known that with message-
passing, Byzantine agreement requires n ≥ 3fP + 1, while consensus with crash failures require
n ≥ 2fP + 1 if the system is partially synchronous [109]. There is no contradiction: our algo-
rithms rely on the power of RDMA, not available in other systems.

RDMA’s power comes from two features: (1) simultaneous access to message-passing and
shared-memory, and (2) dynamic permissions. Intuitively, shared-memory helps resilience, message-
passing helps performance, and dynamic permissions help both.

To see how shared-memory helps resilience, consider the Disk Paxos algorithm [126], which
uses shared-memory (disks) but no messages. Disk Paxos requires only n ≥ fP + 1 processes,
matching the resilience of our algorithm. However, Disk Paxos is not as fast: it takes at least four
delays. In fact, we show that no shared-memory consensus algorithm can decide in two delays
(Section 8.5).

To see how message-passing helps performance, consider the Fast Paxos algorithm [196],
which uses message-passing and no shared-memory. Fast Paxos decides in only two delays in
common executions, but it requires n ≥ 2fP + 1 processes.

Of course, the challenge is achieving both high resilience and good performance in a single
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algorithm. This is where RDMA’s dynamic permissions shine. Clearly, dynamic permissions
improve resilience against Byzantine failures, by preventing a Byzantine process from overwrit-
ing memory and making it useless. More surprising, perhaps, is that dynamic permissions help
performance, by providing an uncontended instantaneous guarantee: if each process revokes the
write permission of other processes before writing to a register, then a process that writes suc-
cessfully knows that it executed uncontended, without having to take additional steps (e.g., to
read the register). We use this technique in our algorithms for both Byzantine and crash failures.

8.1 Related Work

RDMA. Many high-performance systems were recently proposed using RDMA, such as dis-
tributed key-value stores [106, 171], communication primitives [106, 173], and shared address
spaces across clusters [106]. Kaminsky et al. [175] provides guidelines for designing systems
using RDMA. RDMA has also been applied to solve consensus [42, 250, 279]. Our model
shares similarities with DARE [250] and APUS [279], which modify queue-pair state at run
time to prevent or allow access to memory regions, similar to our dynamic permissions. These
systems perform better than TCP/IP-based solutions, by exploiting better raw performance of
RDMA, without changing the fundamental communication complexity or failure-resilience of
the consensus protocol. Similarly, Rüsch et al. [258] use RDMA as a replacement for TCP/IP in
existing BFT protocols.

Byzantine Fault Tolerance. Lamport, Shostak and Pease [197, 248] show that Byzantine
agreement can be solved in synchronous systems iff n ≥ 3fP + 1. With unforgeable signa-
tures, Byzantine agreement can be solved iff n ≥ 2fP + 1. In asynchronous systems subject
to failures, consensus cannot be solved [119]. However, this result is circumvented by making
additional assumptions for liveness, such as randomization [51] or partial synchrony [76, 109].
Many Byzantine agreement algorithms focus on safety and implicitly use the additional assump-
tions for liveness. Even with signatures, asynchronous Byzantine agreement can be solved only
if n ≥ 3fP + 1 [65].

It is well known that the resilience of Byzantine agreement varies depending on various model
assumptions like synchrony, signatures, equivocation, and the exact variant of the problem to be
solved. A system that has non-equivocation is one that can prevent a Byzantine process from
sending different values to different processes. Table 8.1 summarizes some known results that
are relevant to the work in this chapter.

Our Byzantine agreement results share similarities with results for shared memory. Malkhi
et al. [224] and Alon et al. [17] show bounds on the resilience of strong and weak consensus in
a model with reliable memory but Byzantine processes. They also provide consensus protocols,
using read-write registers enhanced with sticky bits (write-once memory) and access control
lists not unlike our permissions. Bessani et al. [57] propose an alternative to sticky bits and
access control lists through Policy-Enforced Augmented Tuple Spaces. All these works handle
Byzantine failures with powerful objects rather than registers. Bouzid et al. [63] show that 3fP+1
processes are necessary for strong Byzantine agreement with read-write registers.
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Work Synchrony Signatures Non-Equiv Strong
Validity Resiliency

[197] 3 3 7 3 2f + 1
[197] 3 7 7 3 3f + 1

[17, 224] 7 3 3 3 3f + 1
[85] 7 3 7 7 3f + 1
[85] 7 7 3 7 3f + 1
[85] 7 3 3 7 2f + 1

This work 7 3
7

(RDMA) 7 2f + 1

Table 8.1: Known fault tolerance results for Byzantine agreement.

Some prior work solves Byzantine agreement with 2fP+1 processes using specialized trusted
components that Byzantine processes cannot control [82, 83, 93, 94, 176, 277]. Some schemes
decide in two delays but require a large trusted component: a coordinator [83], reliable broad-
cast [94], or message ordering [176]. For us, permission checking in RDMA is a trusted compo-
nent of sorts, but it is small and readily available.

At a high-level, our improved Byzantine fault tolerance is achieved by preventing equivoca-
tion by Byzantine processes, thereby effectively translating each Byzantine failure into a crash
failure. Such translations from one type of failure into a less serious one have appeared exten-
sively in the literature [40, 65, 85, 238]. Early work [40, 238] shows how to translate a crash
tolerant algorithm into a Byzantine tolerant algorithm in the synchronous setting. Bracha [64]
presents a similar translation for the asynchronous setting, in which n ≥ 3fP + 1 processes are
required to tolerate fP Byzantine failures. Bracha’s translation relies on the definition and im-
plementation of a reliable broadcast primitive, very similar to the non-equivocating broadcast in
this chapter. However, we show that using the capabilities of RDMA, we can implement it with
higher fault tolerance.

Faulty Memory. Afek et al. [6] and Jayanti et al. [167] study the problem of masking the
benign failures of shared memory or objects. We use their ideas of replicating data across mem-
ories. Abraham et al. [1] considers honest processes but malicious memory.

Common-Case Executions. Many systems and algorithms tolerate adversarial scheduling but
optimize for common-case executions without failures, asynchrony, contention, etc (e.g., [61,
103, 108, 180, 191, 196, 225]). None of these match both the resilience and performance of
our algorithms. Some algorithms decide in one delay but require n ≥ 5fP + 1 for Byzantine
failures [270] or n ≥ 3fP + 1 for crash failures [66, 103].
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Figure 8.1: Our model with processes and memories, which may both fail. Processes can send messages
to each other or access registers in the memories. Registers in a memory are grouped into memory re-
gions that may overlap, but in our algorithms they do not. Each region has a permission indicating what
processes can read, write, and read-write the registers in the region (shown for two regions).

8.2 Model
We consider an extension of the message-and-memory (M&M) model; just like is described in
Section 6.2, processes may send messages and communicate over shared memory. We assume a
fully connected shared memory network. The system has n processes P = {p1, . . . , pn} and m
(shared) memories M = {µ1, . . . , µm}, which all processes can access. Throughout this chapter,
memory refers to the shared memories, not the local state of processes.

Memory Permissions. Each memory consists of a set of registers. To control access, an algo-
rithm groups those registers into a set of (possibly overlapping) memory regions, and then defines
permissions for those memory regions. Formally, a memory region mr of a memory µ is a subset
of the registers of µ. We often refer to mr without specifying the memory µ explicitly. Each
memory region mr has a permission, which consists of three disjoint sets of processes Rmr, Wmr,
RWmr indicating whether each process can read, write, or read-write the registers in the region.
We say that p has read permission on mr if p ∈ Rmr or p ∈ RWmr; we say that p has write
permission on mr if p ∈ Wmr or p ∈ RWmr. In the special case when Rmr = P \ {p}, Wmr = ∅,
RWmr = {p}, we say that mr is a Single-Writer Multi-Reader (SWMR) region—registers in mr
correspond to the traditional notion of SWMR registers. Note that a register may belong to sev-
eral regions, and a process may have access to the register on one region but not another—this
models the existing RDMA behavior. Intuitively, when reading or writing data, a process specifies
the region and the register, and the system uses the region to determine if access is allowed (we
make this precise below).

Permission Change. An algorithm indicates an initial permission for each memory region mr.
Subsequently, the algorithm may wish to change the permission of mr during execution. For
that, processes can invoke an operation changePermission(mr, new_perm), where new_perm is a
triple (R,W,RW). This operation returns no results and it is intended to modify Rmr,Wmr,RWmr

to R,W,RW. To tolerate Byzantine processes, an algorithm can restrict processes from changing
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permissions. For that, the algorithm specifies a function legalChange(p,mr, old_perm, new_perm)
which returns a boolean indicating whether process p can change the permission of mr to new_perm
when the current permissions are old_perm. More precisely, when changePermission is invoked,
the system evaluates legalChange to determine whether changePermission takes effect or be-
comes a no-op. When legalChange always returns false, we say that the permissions are static;
otherwise, the permissions are dynamic.

Accessing Memories. Processes access the memories via operations write(mr, r, v) and read(mr, r)
for memory region mr, register r, and value v. A write(mr, r, v) by process p changes register r
to v and returns ack if r ∈ mr and p has write permission on mr; otherwise, the operation returns
nak. A read(mr, r) by process p returns the last value successfully written to r if r ∈ mr and
p has read permission on mr; otherwise, the operation returns nak. In our algorithms, a register
belongs to exactly one region, so we omit the mr parameter from write and read operations.

Executions and Steps. Like in the general model of this thesis in Section 1.5, an execution is
as a sequence of process steps. In each step, a process does the following, according to its local
state: (1) sends a message or invokes an operation on a memory (read, write, or changePermis-
sion), (2) tries to receive a message or a response from an outstanding operation, and (3) changes
local state. We require a process to have at most one outstanding operation on each memory.

Failures. A memory m may fail by crashing, which causes subsequent operations on its regis-
ters to hang without returning a response. Because the system is asynchronous, a process cannot
differentiate a crashed memory from a slow one. We assume there is an upper bound fM on
the maximum number of memories that may crash. Processes may fail by crashing or becoming
Byzantine. If a process crashes, it stops taking steps forever. If a process becomes Byzantine,
it can deviate arbitrarily from the algorithm. However, that process cannot operate on memories
without the required permission. We assume there is an upper bound fP on the maximum num-
ber of processes that may be faulty. Where the context is clear, we omit the P and M subscripts
from the number of failures, f .

Signatures. Our algorithms assume unforgeable signatures: there are primitives sign(v) and
sValid(p, v) which, respectively, signs a value v and determines if v is signed by process p.

Messages and Disks. The model defined above includes two common models as special cases.
In the message-passing model, there are no memories (m = 0), so processes can communicate
only by sending messages. In the disk model [126], there are no links, so processes can commu-
nicate only via memories; moreover, each memory has a single region which always permits all
processes to read and write all registers.

Complexity of Algorithms. We are interested in the performance of algorithms in common-
case executions, when the system is synchronous and there are no failures. In those cases, we
measure performance using the notion of delays, which extends message-delays to our model.
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Under this metric, computations are instantaneous, each message takes one delay, and each mem-
ory operation takes two delays. Intuitively, a delay represents the time incurred by the network
to transmit a message; a memory operation takes two delays because its hardware implementa-
tion requires a round trip. We say that a consensus protocol is k-deciding if, in common-case
executions, some process decides in k delays.

8.2.1 Reflecting RDMA in Practice
Our model is meant to reflect capabilities of RDMA, while providing a clean abstraction to
reason about. We now briefly discuss how features of our model can be implemented using
RDMA. Recall that an overview of how RDMA works in practice is presented in Section 6.1.

Memory regions in our model correspond to RDMA memory regions. Using RDMA, a
process p can grant permissions to a remote process q by registering memory regions with the
appropriate access permissions (read, write, or read/write) and sending the corresponding key to
q. p can revoke permissions dynamically by simply de-registering the memory region. Another
way for p to change permissions is by changing the queue pair setting. To prevent Byzantine pro-
cesses from changing permissions illegally, permission changes should be done in the OS kernel,
which is less susceptible to corruption. Alternatively, future hardware support similar to SGX
could even allow parts of the kernel to be Byzantine without harming our model assumptions.

As highlighted by previous work [250], failures of the CPU, NIC and DRAM can be seen
as independent (e.g., arbitrary delays, too many bit errors, failed ECC checks, respectively). For
instance, zombie servers in which the CPU is blocked but RDMA requests can still be served
account for roughly half of all failures [250]. This motivates our choice to treat processes and
memory separately in our model. In practice, if a CPU fails permanently, the memory will also
become unreachable through RDMA eventually; however, in such cases memory may remain
available long enough for ongoing operations to complete. Also, in practical settings it is possible
for full-system crashes to occur (e.g., machine restarts), which correspond to a process and a
memory failing at the same time—this is allowed by our model.

8.3 Byzantine Agreement
We now consider Byzantine failures and give a 2-deciding algorithm for weak Byzantine agree-
ment with n ≥ 2fP + 1 processes and m ≥ 2fM + 1 memories. The algorithm consists of the
composition of two sub-algorithms: a slow one that always works, and a fast one that gives up
under hard conditions.

The first sub-algorithm, called Robust Backup, is developed in two steps. We first implement
a primitive called non-equivocating broadcast, which prevents Byzantine processes from sending
different values to different processes. Then, we use the framework of Clement et al. [85] com-
bined with this primitive to convert a message-passing consensus algorithm that tolerates crash
failures into a consensus algorithm that tolerates Byzantine failures. This yields Robust Backup.1

1The attentive reader may wonder why at this point we have not achieved a 2-deciding algorithm already: if we
apply Clement et al. [85] to a 2-deciding crash-tolerant algorithm (such as Fast Paxos [196]), will the result not
be a 2-deciding Byzantine-tolerant algorithm? The answer is no, because Clement et al. needs non-equivocated
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It uses only static permissions and assumes memories are split into SWMR regions. Therefore,
this sub-algorithm works in the traditional shared-memory model with SWMR registers, and it
may be of independent interest.

The second sub-algorithm is called Cheap Quorum. It uses dynamic permissions to decide
in two delays using one signature in common executions. However, the sub-algorithm gives up
if the system is not synchronous or there are Byzantine failures.

Finally, we combine both sub-algorithms using ideas from the Abstract framework of Aublin
et al. [31]. More precisely, we start by running Cheap Quorum; if it aborts, we run Robust
Backup. There is a subtlety: for this idea to work, Robust Backup must decide on a value v if
Cheap Quorum decided v previously. To do that, Robust Backup decides on a preferred value if
at least f +1 processes have this value as input. To do so, we use the classic crash-tolerant Paxos
algorithm (run under the Robust Backup algorithm to ensure Byzantine tolerance) but with an
initial set-up phase that ensures this safe decision. We call the protocol Preferential Paxos.

We develop Robust Backup using the construction by Clement et al. [85], which we now
explain. Clement et al. show how to transform a message-passing algorithm A that tolerates fP
crash failures into a message-passing algorithm that tolerates fP Byzantine failures in a system
where n ≥ 2fP + 1 processes, assuming unforgeable signatures and a non-equivocation mech-
anism. They do so by implementing trusted message-passing primitives, T-send and T-receive,
using non-equivocation and signature verification on every message. Processes include their full
history with each message, and then verify locally whether a received message is consistent with
the protocol. This restricts Byzantine behavior to crash failures.

To apply this construction in our model, we show that our model can implement non-equivocation
and message passing. We first show that shared-memory with SWMR registers (and no memory
failures) can implement these primitives, and then show how our model can implement shared-
memory with SWMR registers.

8.3.1 Non-Equivocating Broadcast
Consider a shared-memory system. We present a way to prevent equivocation through a solution
to the following broadcast problem, which we call non-equivocating broadcast. This notion is
similar to reliable broadcast, but makes use of a sequence number, k.
Definition 8.3.1. Non-equivocating broadcast is defined in terms of two primitives, broadcast(k,m)
and deliver(k,m, q). When a process p invokes broadcast(k,m) we say that p broadcasts (k,m).
When a process p invokes deliver(k,m, q) we say that p delivers (k,m) from q. Each correct
process p must invoke broadcast(k, ∗) with k one higher than p’s previous invocation (and first
invocation with k=1). The following holds:

1. If a correct process p broadcasts (k,m), then all correct processes eventually deliver
(k,m) from p.

2. If p and q are correct processes, p delivers (k,m) from r, and q delivers (k,m′) from r,
then m=m′.

3. If a correct process delivers (k,m) from a correct process p, then p must have broadcast
(k,m).

broadcast, which incurs at least 6 delays.
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4. If a correct process delivers (k,m) from p, then all correct processes eventually deliver
(k,m′) from p for some m′.

Algorithm 8.2 shows how to implement non-equivocating broadcast that is tolerant to a mi-
nority of Byzantine failures in shared-memory using SWMR registers.

To broadcast its k-th message m, p simply signs (k,m) and writes it in slot V alue[p, k, p] of
its memory2.

Delivering a message from another process is a little more involved, requiring verification
steps to ensure that all correct processes will eventually deliver the same message and no other. .
The high-level idea is that before delivering a message (k,m) from q, each process p checks that
no other process saw a different value from q, and waits to hear that “enough” other processes
also saw the same value. More specifically, each process p has 3 slots per process per sequence
number, that only p can write to, but all processes can read from. These slots are initialized to
⊥, and p uses them to write the values that it has seen. The 3 slots represent 3 levels of ‘proofs’
that this value is correct; for each process q and sequence number k, p has a slot to write (1) the
initial value v it read from q for k, (2) a proof that at least f + 1 processes saw the same value v
from q for k, and (3) a proof that at least f + 1 processes wrote a proof of seeing value v from
q for k in their second slot. We call these slots the Value slot, the L1Proof slot, and the L2Proof
slot, respectively.

We note that each such valid proof has signed copies of only one value for the message. Any
proof that shows copies of two different values or a value that isn’t signed is not considered valid.
If a proof has copies of only value v, we say that this proof supports v.

To deliver a value v from process q with sequence number k, process p must successfully
write a valid proof-of-proofs in its L2Proof slot supporting value v (we call this an L2 proof).
It has two options of how to do this; firstly, if it sees a valid L2 proof in some other process i’s
L2Proof [i, k, q] slot, it copies this proof over to its own L2 proof slot, and can then deliver the
value that this proof supports. If p does not find a valid L2 proof in some other process’s slot, it
must try to construct one itself. We now describe how this is done.

A correct process p goes through three stages when constructing a valid L2 proof for (k,m)
from q. In the pseudocode, the three stages are denoted using states that p goes through: Wait-
ForSender, WaitForL1Proof, and WaitForL2Proof.

In the first stage, WaitForSender, p reads q’s V alue[q, k, q] slot. If p finds a (k,m) pair, p
signs and copies it to its V alue[p, k, q] slot and enters the WaitForL1Proof state.

In the second stage, WaitForL1Proof, p reads all V alue[i, k, q] slots, for i ∈ Π. If all the
values p reads are correctly signed and equal to (k,m), and if there are at least f +1 such values,
then p compiles them into an L1 proof, which it signs and writes to L1Proof [p, k, q]; p then
enters the WaitForL2Proof state.

In the third stage, WaitForL2Proof, p reads all L1Proof [i, k, q] slots, for i ∈ Π. If p finds at
least f + 1 valid and signed L1 proofs for (k,m), then p compiles them into an L2 proof, which
it signs and writes to L2Proof [p, k, q]. The next time that p scans the L2Proof [·, k, q] slots, p
will see its own L2 proof (or some other valid proof for (k,m)) and deliver (k,m).

This three-stage validation process ensures the following crucial property: no two valid L2

2The indexing of the slots is as follows: the first index is the writer of the SWMR register, the second index is
the sequence number of the message, and the third index is the sender of the message.

139



Algorithm 8.2: Non-Equivocating Broadcast

1 SWMR Value[n,M,n]; //Initially, Value[j,k,i]=⊥.
2 SWMR L1Proof[n,M,n]; //Initially, L1Proof[j,k,i]=⊥.
3 SWMR L2Proof[n,M,n]; //Initially, L2Proof[j,k,i]=⊥.

5 Code for process p
6 last[n]; //last index delivered from each process. Initially, last[q]=0
7 state[n]; //∈{WaitForSender,WaitForL1Proof,WaitForL2Proof}. Initially,

↪→ state[q]=WaitForSender

9 void broadcast (k,m){
10 Write(Value[p,k,p], sign((k,m))); }

12 for q in Π in parallel {
13 while true {
14 try_deliver(q); }} }

16 void try_deliver(q) {
17 k = last[q];
18 val = checkL2Proof(q,k);
19 if (val != null) {
20 deliver(k, val, q);
21 last[q] += 1;
22 state = WaitForSender;
23 return; }
24 my_val = Read(Value[p,k,q]);

26 if (state == WaitForSender) {
27 my_val = Read(Value[q,k,q]);
28 if (my_val==⊥ || !sValid(q, val) || key!=k) { return; }
29 Write(Value[p,k,q],sign(my_val));
30 state = WaitForL1Proof; }

32 if (state == WaitForL1Proof) {
33 checkedVals = ∅;
34 for i ∈ Π{
35 v = Read(Value[i,k,q]);
36 if (validateValue(v,my_val,k,q)) {checkedVals.add((i,v));} }

38 if (size(checkedVals) > n/2) {
39 l1prf = sign(checkedVals);
40 Write(L1Proof[p,k,q], l1prf);
41 state = WaitForL2Proof; } }

43 if (state == WaitForL2Proof){
44 checkedL1Prfs = ∅;
45 for i in Π{
46 prf = Read(L1Proof[i,k,q]);
47 if (validateL1Prf(prf,my_val,k,q)) {checkedL1Prfs.add((i,prf));}}

49 if (size(checkedL1Prfs) > n/2) {
50 l2prf = sign(checkedL1Prfs);
51 Write(L2Proof[p,k,q], l2prf); } } }
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Algorithm 8.3: Helper functions for Non-Equivocating Broadcast algorithm

52 value checkL2proof(q,k) {
53 for i∈ Π {
54 proof = Read(L2Proof[i,k,q]);
55 if (proof != ⊥){
56 val = first value in proof; }
57 if (proof != ⊥ && validateL2Prf(proof,val,k,q)) {
58 Write(L2Proof[p,k,q],proof);
59 return val; } }
60 return null; }

62 bool validateValue(v, val, k, q){
63 if (v == val && sValid(q,v) && key == k){
64 return true; }
65 return false; }

67 bool validateL1Prf(proof, val, k, q){
68 if (size(proof) > n/2) {
69 for each (i,(v, s)) ∈ proof {
70 if (!validateValue(v,val,k,q) || !sValid(i, (v,s)){
71 return false; } } }
72 return true; }

74 bool validateL1Prf(proof, val, k, q){
75 if (size(proof) > n/2 && ∀
76 for each (i,(l1prf,s)) ∈ proof {
77 if (!validateL1Proof(l1prf,val,k,q) || !sValid(i, (l1prf, s))){
78 return false;} } }
79 return true; }
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proofs can support different values. Intuitively, this property is achieved because for both L1
and L2 proofs, at least f + 1 values of the previous stage must be copied, meaning that at least
one correct process was involved in the quorum needed to construct each proof. Because correct
processes read the slots of all others at each stage before constructing the next proof, and because
they never overwrite or delete values that they already wrote, it is guaranteed that no two correct
processes will create valid L1 proofs for different values, since one must see the Value slot of the
other. Thus, two no process, Byzantine or otherwise, can construct valid L2 proofs for different
values.

Notably, a weaker version of non-equivocating broadcast, which does not require Property
4, can be solved with just the first stage of Algorithm 8.2, without the L1 and L2 proofs. The
purpose of those proofs is to ensure the 4th property holds; that is, to enable all correct processes
to deliver a value once some correct process delivered.

Correctness of Non-Equivocating Broadcast. We now prove the following key lemma:
Lemma 8.3.2. Non-equivocating broadcast can be solved in shared-memory with SWMR regular
registers with n ≥ 2f + 1 processes.

We begin the proof with a couple of useful observations.
Observation 8.3.3. In Algorithm 8.2, if p is a correct process, then no slot that belongs to p is
written to more than once.

Proof. Since p is correct, p never writes on any slot more than once. Furthermore, since all slots
are single-writer registers, no other process can write on these slots.

Observation 8.3.4. In Algorithm 8.2, correct processes invoke and return from try_deliver(q)
infinitely often, for all q ∈ Π.

Proof. The try_deliver() function does not contain any blocking steps, loops or goto statements.
Thus, if a correct process invokes try_deliver(), it will eventually return. Therefore, for a fixed
q the infinite loop at line 14 will invoke and return try_deliver(q) infinitely often. Since the
parallel for loop at line 12 performs the infinite loop in parallel for each q ∈ Π, the Observation
holds.

Proof of Lemma 8.3.2. We prove the lemma by showing that Algorithm 8.2 correctly implements
non-equivocating broadcast. That is, we need to show that Algorithm 8.2 satisfies the four prop-
erties of non-equivocating broadcast.

Property 1. Let p be a correct process that broadcasts (k,m). We show that all correct
processes eventually deliver (k,m) from p. Assume by contradiction that there exists some
correct process q which does not deliver (k,m). Furthermore, assume without loss of generality
that k is the smallest key for which Property 1 is broken. That is, all correct processes must
eventually deliver all messages (k′,m′) from p, for k′ < k. Thus, all correct processes must
eventually increment last[p] to k.

We consider two cases, depending on whether or not some process eventually writes an L2
proof for some (k,m′) message from p in its L2Proof slot.

First consider the case where no process ever writes an L2 proof of any value (k,m′) from
p. Since p is correct, upon broadcasting (k,m), p must sign and write (k,m) into Value[p,k,p]
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at line 10. By Observation 8.3.3, (k,m) will remain in that slot forever. Because of this, and
because there is no L2 proof, all correct processes, after reaching last[p] = k, will eventually
read (k,m) in line 27, write it into their own Value slot in line 29 and change their state to
WaitForL1Proof.

Furthermore, since p is correct and we assume signatures are unforgeable, no process q can
write any other valid value (k′,m′) 6= (k,m) into its V alues[q, k, p] slot. Thus, eventually each
correct process q will add at least f+1 copies of (k,m) to its checkedVals, write an L1proof con-
sisting of these values into L1Proof[q,k,p] in line 40, and change their state to WaitForL2Proof.

Therefore, all correct processes will eventually read at least f + 1 valid L1 Proofs for (k,m)
in line 46 and construct and write valid L2 proofs for (k,m). This contradicts the assumption
that no L2 proof ever gets written.

In the case where there is some L2 proof, by the argument above, the only value it can prove
is (k,m). Therefore, all correct processes will see at least one valid L2 proof at deliver. This
contradicts our assumption that q is correct but does not deliver (k,m) from p.

Property 2. We now prove the second property of non-equivocating broadcast. Let p and p′

be any two correct processes, and q be some process, such that p delivers (k,m) from q and p′

delivers (k,m′) from q. Assume by contradiction that m 6= m′.
Since p and p′ are correct, they must have seen valid L2 proofs at line 54 before delivering

(k,m) and (k,m′) respectively. Let P and P ′ be those valid proofs for (k,m) and (k,m′)
respectively. P (resp. P ′) consists of at least f + 1 valid L1 proofs; therefore, at least one of
those proofs was created by some correct process r (resp. r′). Since r (resp. r′) is correct, it must
have written (k,m) (resp. (k,m′)) to its Values slot in line 29. Note that after copying a value to
their slot, in the WaitForL1Proof state, correct processes read all Value slots line 35. Thus, both
r and r′ read all Value slots before compiling their L1 proof for (k,m) (resp. (k,m′)).

Assume without loss of generality that r wrote (k,m) before r′ wrote (k,m′); by Obser-
vation 8.3.3, it must then be the case that r′ later saw both (k,m) and (k,m′) when it read all
Values slots (line 35). Since r′ is correct, it cannot have then compiled an L1 proof for (k,m′)
(the check at line 38 failed). We have reached a contradiction.

Property 3. We show that if a correct process p delivers (k,m) from a correct process p′,
then p′ broadcast (k,m). Correct processes only deliver values for which a valid L2 proof exists
(lines 54—20). Therefore, p must have seen a valid L2 proof P for (k,m). P consists of at
least f + 1 L1 proofs for (k,m) and each L1 proof consists of at least f + 1 matching copies of
(k,m), signed by p′. Since p′ is correct and we assume signatures are unforgeable, p′ must have
broadcast (k,m) (otherwise p′ would not have attached its signature to (k,m)).

Property 4. Let p be a correct process such that p delivers (k,m) from q. We show that all
correct process must deliver (k,m′) from q, for some m′.

By construction of the algorithm, if p delivers (k,m) from q, then for all i < k there existsmi

such that p delivered (i,mi) from q before delivering (k,m) (this is because p can only deliver
(k,m) if last[q] = k and last[q] is only incremented to k after p delivers (k − 1,mk−1)).

Assume by contradiction that there exists some correct process r which does not deliver
(k,m′) from q, for any m′. Further assume without loss of generality that k is the smallest key
for which r does not deliver any message from q. Thus, r must have delivered (i,m′i) from q for
all i < k; thus, r must have incremented last[q] to k. Since r never delivers any message from q
for key k, r’s last[q] will never increase past k.
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Algorithm 8.4: Validate Operation for Non-Equivocating Broadcast

1 bool validate(q,k,m){
2 val = checkL2proof(q,k);
3 if (val == m) {
4 return true; }
5 return false; }

Since p delivers (k,m) from q, then p must have written a valid L2 proof P of (k,m) in
its L2Proof slot in line 51 or 58. By Observation 8.3.3, P will remain in p’s L2Proof[p,k,q]
slot forever. Thus, at least one of the slots L2Proof [·, k, q] will forever contain a valid L2
proof. Since r’s last[q] eventually reaches k and never increases past k, r will eventually (by
Observation 8.3.4) see a valid L2 proof in line 54 and deliver a message for key k from q. We
have reached a contradiction.

Applying Clement et al’s Construction. Clement et al. show that given unforgeable trans-
ferable signatures and non-equivocation, one can reduce Byzantine failures to crash failures in
message passing systems [85]. They define non-equivocation as a predicate validp for each pro-
cess p, which takes a sequence number and a value and evaluates to true for just one value per
sequence number. All processes must be able to call the same validp predicate, which always
terminates every time it is called.

We now show how to use non-equivocating broadcast to implement messages with trans-
ferable signatures and non-equivocation as defined by Clement et al. [85]. Note that our non-
equivocating broadcast mechanism already involves the use of transferable signatures, so to send
and receive signed messages, one can simply use broadcast and deliver those messages. How-
ever, simply using broadcast and deliver is not quite enough to satisfy the requirements of the
validp predicate of Clement et al. The problem occurs when trying to validate nested messages
recursively.

In particular, recall that in Clement et al’s construction, whenever a message is sent, the entire
history of that process, including all messages it has sent and received, is attached. Consider two
Byzantine processes q1 and q2, and assume that q1 attempts to equivocate in its kth message,
signing both (k,m) and (k,m′). Assume therefore that no correct process delivers any message
from q1 in its kth round. However, since q2 is also Byzantine, it could claim to have delivered
(k,m) from q1. If q2 then sends a message that includes (q, k,m) as part of its history, a correct
process p receiving q2’s message must recursively verify the history q2 sent. To do so, p can
call try_deliver on (q1, k). However, since no correct process delivered any message from
(q1, k), it is possible that this call never returns.

To solve this issue, we introduce a validate operation that can be used along with broad-
cast and deliver to validate the correctness of a given message. The validate operation is very
simple: it takes in a process id, a sequence number, and a message value m, and simply runs the
checkL2proof helper function. If the function returns a proof supporting m, validate
returns true. Otherwise it returns false. The pseudocode is shown in Algorithm 8.4.

In this way, Algorithms 8.2 and 8.4 together provide signed messages and a non-equivocation
primitive. Thus, combined with the construction of Clement et al. [85], we immediately get the
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Algorithm 8.5: T-send and T-receive (due to Clement et al. [85]) with non-equivocating broadcast.

1 Local variables for each process:
2 int k = 0
3 history H = []
4 T-send(m) {
5 k++
6 broadcast(k,(m,H))
7 Append "sent(k,(m,H))" to H }

9 Upon deliver(k,(m,H),p):
10 Check whether all messages in H are properly signed, and whether they

↪→ correspond to a correct history of the algorithm
11 if so,
12 T-receive(m,p)
13 add "received(sign(k,(m,H), p))" to H

following result.
Theorem 8.3.5. There exists an algorithm for weak Byzantine agreement in a shared-memory
system with SWMR regular registers, signatures, and up to fP process crashes where n ≥ 2fP +
1.

In particular, we can implement weak Byzantine agreement by taking any correct consensus
algorithm A for the classic crash-only message passing model, and replacing all its sends and
receives by non-equivocating broadcast and deliver (respectively) that also attach a process’s en-
tire execution history to each message. We call this method of communication trusted sends and
receives, or simply T-send and T-receive primitives. Clement et al. [85] show that implementing
such T-send and T-receive primitives with non-equivocation and signatures yields a Byzantine-
tolerant replacement for classic sends and receives.

Algorithm 8.5 shows how to use non-equivocating broadcast to implement T-send and T-
receive. See Clement et al. [85] for more details.

Non-Equivocation in Our Model. To convert the above algorithm to our model, where mem-
ory may fail, we use the ideas in [6, 29, 167] to implement failure-free SWMR regular registers
from the fail-prone memory, and then run weak Byzantine agreement using those regular reg-
isters. To implement an SWMR register, a process writes or reads all memories, and waits for
a majority to respond. When reading, if p sees exactly one distinct non-⊥ value v across the
memories, it returns v; otherwise, it returns ⊥.
Definition 8.3.6. Let A be a message-passing algorithm. Robust Backup(A) is the algorithm
A in which all send and receive operations are replaced by T-send and T-receive operations
(respectively) implemented with non-equivocating broadcast.

Thus we get the following lemma, from the result of Clement et al. [85], Lemma 8.3.2, and
the above handling of memory failures.
Lemma 8.3.7. If A is a consensus algorithm that is tolerant to f process crash failures, then
Robust Backup(A) is a weak Byzantine agreement algorithm that is tolerant to up to fP Byzantine
processes and fM memory crashes, where n ≥ 2fP + 1 and m ≥ 2fM + 1 in the message-and-
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Algorithm 8.6: Cheap Quorum normal operation—code for process p

1 Leader code
2 propose(v) {
3 sign(v);
4 status = Value[`].write(v);
5 if (status == nak) Panic_mode();
6 else decide(v); }

8 Follower code
9 propose(w){

10 do {v = read(Value[`]);
11 for all q ∈ Π do pan[q] = read(Panic[q]);
12 } until (v 6= ⊥ || pan[q] == true for some q || timeout);
13 if (v 6= ⊥ && sValid(p1,v)) {
14 sign(v);
15 write(Value[p],v);
16 do {for all q ∈ Π do val[q] = read(Value[q]);
17 if |{q : val[q] == v}| ≥ n then {
18 Proof[p].write(sign(val[1..n]));
19 for all q ∈ Π do prf[q] = read(Proof[q]);
20 if |{q : verifyProof(prf[q]) == true}| ≥ n { decide(v); exit

↪→ ; } }
21 for all q ∈ Π do pan[q] = read(Panic[q]);
22 } until (pan[q] == true for some q || timeout); }
23 Panic_mode();}

memory model.
The following theorem is an immediate corrolary of the lemma.

Theorem 8.3.8. There exists an algorithm for Weak Byzantine Agreement in a message-and-
memory model with up to fP Byzantine processes and fM memory crashes, where n ≥ 2fP + 1
and m ≥ 2fM + 1.

8.3.2 The Cheap Quorum Sub-Algorithm

We now give an algorithm that decides in two delays in common executions in which the sys-
tem is synchronous and there are no failures. It requires only one signature for a fast decision,
whereas the best prior algorithm requires 6fP + 2 signatures and n ≥ 3fP + 1 [31]. Our al-
gorithm, called Cheap Quorum, is not in itself a complete consensus algorithm; it may abort
in some executions. If Cheap Quorum aborts, it outputs an abort value, which is used to ini-
tialize the Robust Backup so that their composition preserves weak Byzantine agreement. This
composition is inspired by the Abstract framework of Aublin et al. [31].

The algorithm has a special process `, say ` = p1, which serves both as a leader and a
follower. Other processes act only as followers. The memory is partitioned into n + 1 regions
denoted Region[p] for each p ∈ Π, plus an extra one for p1, Region[`] in which it proposes a value.
Initially, Region[p] is a regular SWMR region where p is the writer. Unlike in Algorithm 8.2,
some of the permissions are dynamic; processes may remove p1’s write permission to Region[`]
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Algorithm 8.7: Cheap Quorum panic mode—code for process p

1 panic_mode(){
2 Panic[p] = true;
3 changePermission(Region[`], R: Π, W: {}, RW: {}); // remove write

↪→ permission
4 v = read(Value[p]);
5 prf = read(Proof[p]);
6 if (v 6= ⊥){ Abort with 〈v, prf〉; return; }
7 LVal = read(Value[`]);
8 if (LVal 6= ⊥) {Abort with 〈LVal, ⊥〉; return;}
9 Abort with 〈myInput, ⊥〉; }

(i.e., the legalChange function returns false to any permission change requests, except for ones
revoking p1’s permission to write on Region[`]).

Processes initially execute under a normal mode in common-case executions, but may switch
to panic mode if they intend to abort, as in [31]. The pseudo-code of the normal mode is in
Algorithm 8.6. Region[p] contains three registers Value[p], Panic[p], Proof[p] initially set to ⊥,
false, ⊥. To propose v, the leader p1 signs v and writes it to Value[`]. If the write is successful
(it may fail because its write permission was removed), then p1 decides v; otherwise p1 calls
Panic_mode(). Note that all processes, including p1, continue their execution after deciding.
However, p1 never decides again if it decided as the leader. A follower q checks if p1 wrote to
Value[`] and, if so, whether the value is properly signed. If so, q signs v, writes it to Value[q], and
waits for other processes to write the same value to Value[∗]. If q sees 2f + 1 copies of v signed
by different processes, q assembles these copies in a unanimity proof, which it signs and writes
to Proof[q]. q then waits for 2f + 1 unanimity proofs for v to appear in Proof[∗], and checks
that they are valid, in which case q decides v. This waiting continues until a timeout expires3, at
which time q calls Panic_mode(). In Panic_mode(), a process p sets Panic[p] to true to tell other
processes it is panicking; other processes periodically check to see if they should panic too. p
then removes write permission from Region[`], and decides on a value to abort: either Value[p] if
it is non-⊥, Value[`] if it is non-⊥, or p’s input value. If p has a unanimity proof in Proof[p], it
adds it to the abort value.

The above construction assumes a fail-free memory with regular registers, but we can ex-
tend it to tolerate memory failures using the approach discussed for making non-equivocating
broadcast work in our model, noting that each register has a single writer process.

Correctness of Cheap Quorum. We prove that Cheap Quorum satisfies certain useful prop-
erties that will help us show that it composes with Preferential Paxos to form a correct weak
Byzantine agreement protocol. For the proofs, we first formalize some terminology. We say that
a process proposed a value v by time t if it successfully executes line 4; that is, p receives the
response ack in line 4 by t. When a process aborts, note that it outputs a tuple. We say that the
first element of its tuple is its abort value, and the second is its abort proof. We sometimes say

3The timeout is chosen to be an upper bound on the communication, processing and computation delays in the
common case.
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that a process p aborts with value v and proof pr, meaning that p outputs (v, pr) in its abort. Fur-
thermore, the value in a process p’s Proof region is called a correct unanimity proof if it contains
n copies of the same value, each correctly signed by a different process.
Observation 8.3.9. In Cheap Quorum, no value written by a correct process is ever overwritten.

Proof. By inspecting the code, we can see that the correct behavior is for processes to never over-
write any values. Furthermore, since all regions are initially single-writer, and the legalChange
function never allows another process to acquire write permission on a region that they cannot
write to initially, no other process can overwrite these values.

Lemma 8.3.10 (Cheap Quorum Validity). In Cheap Quorum, if there are no faulty processes and
some process decides v, then v is the input of some process.

Proof. If p = p1, the lemma is trivially true, because p1 can only decide on its input value. If
p 6= p1, p can only decide on a value v if it read that value from the leader’s region. Since only
the leader can write to its region, it follows that p can only decide on a value that was proposed
by the leader (p1).

Lemma 8.3.11 (Cheap Quorum Termination). If a correct process p proposes some value, every
correct process q will decide a value or abort.

Proof. Clearly, if q = p1 proposes a value, then q decides. Now let q 6= p1 be a correct follower
and assume p1 is a correct leader that proposes v. Since p1 proposed v, p1 was able to write v in
the leader region, where v remains forever by Observation 8.3.9. Clearly, if q eventually enters
panic mode, then it eventually aborts; there is no waiting done in panic mode. If q never enters
panic mode, then q eventually sees v on the leader region and eventually finds 2f + 1 copies
of v on the regions of other followers (otherwise q would enter panic mode). Thus q eventually
decides v.

Lemma 8.3.12 (Cheap Quorum Progress). If the system is synchronous and all processes are
correct, then no correct process aborts in Cheap Quorum.

Proof. Assume the contrary: there exists an execution in which the system is synchronous and
all processes are correct, yet some process aborts. Processes can only abort after entering panic
mode, so let t be the first time when a process enters panic mode and let p be that process.
Since p cannot have seen any other process declare panic, p must have either timed out at line 12
or 22, or its checks failed on line 13. However, since the entire system is synchronous and p is
correct, p could not have panicked because of a time-out at line 12. So, p1 must have written
its value v, correctly signed, to p1’s region at a time t′ < t. Therefore, p also could not have
panicked by failing its checks on line 13. Finally, since all processes are correct and the system
is synchronous, all processes must have seen p1’s value and copied it to their slot. Thus, p must
have seen these values and decided on v at line 20, contradicting the assumption that p entered
panic mode.

Lemma 8.3.13 (Cheap Quorum Decision Agreement). Let p and q be correct processes. If p
decides v1 while q decides v2, then v1 = v2.
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Proof. Assume the property does not hold: p decided some value v1 and q decided some different
value v2. Since p decided v1, then p must have seen a copy of v1 at 2fP + 1 replicas, including q.
But then q cannot have decided v2, because by Observation 8.3.9, v1 never gets overwritten from
q’s region, and by the code, q only can decide a value written in its region.

Lemma 8.3.14 (Cheap Quorum Abort Agreement). Let p and q be correct processes (possibly
identical). If p decides v in Cheap Quorum while q aborts from Cheap Quorum, then v will be
q’s abort value. Furthermore, if p is a follower, q’s abort proof is a correct unanimity proof.

Proof. If p = q, the property follows immediately, because of lines 4 through 6 of panic mode.
If p 6= q, we consider two cases:

• If p is a follower, then for p to decide, all processes, and in particular, q, must have repli-
cated both v and a correct proof of unanimity before p decided. Therefore, by Observa-
tion 8.3.9, v and the unanimity proof are still there when q executes the panic code in
lines 4 through 6. Therefore q will abort with v as its value and a correct unanimity proof
as its abort proof.

• If p is the leader, then first note that since p is correct, by Observation 8.3.9 v remains the
value written in the leader’s Value region. There are two cases. If q has replicated a value
into its Value region, then it must have read it from V alue[p1], and therefore it must be v.
Again by Observation 8.3.9, v must still be the value written in q’s Value region when q
executes the panic code. Therefore q aborts with value v. Otherwise, if q has not replicated
a value, then q’s Value region must be empty at the time of the panic, since the legalChange
function disallows other processes from writing on that region. Therefore q reads v from
V alue[p1] and aborts with v.

Lemma 8.3.15. Cheap Quorum is 2-deciding.

Proof. Consider an execution in which every process is correct and the system is synchronous.
Then no process will enter panic mode (by Lemma 8.3.12) and thus p1 will not have its permis-
sion revoked. p1 will therefore be able to write its input value to p1’s region and decide after this
single write (2 delays).

8.3.3 Putting it Together: the Cheap & Robust Algorithm
The final algorithm, called Cheap & Robust, combines Cheap Quorum (Section 8.3.2) and Ro-
bust Backup (Section 8.3.1), as we now explain. Recall that Robust Backup is parameterized
by a message-passing consensus algorithm A that tolerates crash-failures. A can be any such
algorithm (e.g., Paxos).

Roughly, in Cheap & Robust, we run Cheap Quorum and, if it aborts, we use a process’s abort
value as its input value to Robust Backup. However, we must carefully glue the two algorithms
together to ensure that if some correct process decided v in Cheap Quorum, then v is the only
value that can be decided in Robust Backup.

For this purpose, we propose a simple wrapper for Robust Backup, called Preferential Paxos.
Preferential Paxos first runs a set-up phase, in which processes may adopt new values, and then
runs Robust Backup with the new values. More specifically, there are some preferred input values
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Figure 8.8: Interactions of the components of the Cheap & Robust Algorithm.

v1 . . . vk, ordered by priority. We guarantee that every process adopts one of the top f+1 priority
inputs. In particular, this means that if a majority of processes get the highest priority value, v1,
as input, then v1 is guaranteed to be the decision value. The set-up phase is simple; all processes
send each other their input values. Each process p waits to receive n − f such messages, and
adopts the value with the highest priority that it sees. This is the value that p uses as its input to
Paxos.

The following is the pseudocode of Preferential Paxos. Recall that T-send and T-receive
are the trusted message passing primitives that are implemented in [85] using non-equivocating
broadcast and signatures.

Algorithm 8.9: Preferential Paxos—code for process p

1 propose((v, priorityTag)){
2 T-send(v, priorityTag) to all;
3 Wait to T-receive (val,priorityTag) from n− fP processes;
4 best = value with highest priority out of messages received;
5 RobustBackup(Paxos).propose(best); }

Correctness of Preferential Paxos.
Lemma 8.3.16 (Preferential Paxos Priority Decision). Preferential Paxos implements weak Byzan-
tine agreement with n ≥ 2fP + 1 processes. Furthermore, let v1, . . . , vn be the input values of
an instance C of Preferential Paxos, ordered by priority. The decision value of correct processes
is always one of v1, . . . , vf+1.

Proof. By Lemma 8.3.7, Robust Backup(Paxos) solves weak Byzantine agreement with n ≥
2fP + 1 processes. Note that before calling Robust Backup(Paxos), each process may change its
input, but only to the input of another process. Thus, by the correctness and fault tolerance of
Paxos, Preferential Paxos clearly solves weak Byzantine agreement with n ≥ 2fP + 1 processes.
Thus we only need to show that Preferential Paxos satisfies the priority decision property with
2fP + 1 processes that may only fail by crashing.

Since Robust Backup(Paxos) satisfies validity, if all processes call Robust Backup(Paxos) in
line 5 with a value v that is one of the fP + 1 top priority values (that is, v ∈ {v1, . . . , vfP +1}),
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then the decision of correct processes will also be in {v1, . . . , vfP +1}. So we just need to show
that every process indeed adopts one of the top fP + 1 values. Note that each process p waits
to see n − fP values, and then picks the highest priority value that it saw. No process can lie or
pick a different value, since we use T-send and T-receive throughout. Thus, p can miss at most
fP values that are higher priority than the one that it adopts.

Cheap & Robust. We can now describe Cheap & Robust in detail. We start executing Cheap
Quorum. If Cheap Quorum aborts, we execute Preferential Paxos, with each process receiving its
abort value from Cheap Quorum as its input value to Preferential Paxos. We define the priorities
of inputs to Preferential Paxos as follows.
Definition 8.3.17 (Input Priorities for Preferential Paxos). The input values for Preferential
Paxos as it is used in Cheap & Robust are split into three sets (here, p1 is the leader of Cheap
Quorum):
• T = {v | v contains a correct unanimity proof }
• M = {v | v 6∈ T ∧ v contains the signature of p1}
• B = {v | v 6∈ T ∧ v 6∈M}
The priority order of the input values is such that for all values vT ∈ T , vM ∈ M , and

vB ∈ B, priority(vT ) > priority(vM) > priority(vB).
Figure 8.8 shows how the various algorithms presented in this section come together to form

the Cheap & Robust algorithm.

Correctness of the Cheap & Robust. We now prove the following key composition property
that shows that the composition of Cheap Quorum and Preferential Paxos is safe.
Lemma 8.3.18 (Composition Lemma). If some correct process decides a value v in Cheap Quo-
rum before an abort, then v is the only value that can be decided in Preferential Paxos with
priorities as defined in Definition 8.3.17.

Proof. To prove this lemma, we mainly rely on two properties: the Cheap Quorum Abort Agree-
ment (Lemma 8.3.14) and Preferential Paxos Priority Decision (Lemma 8.3.16). We consider
two cases.

Case 1. Some correct follower process p 6= p1 decided v in Cheap Quorum. Then note that
by Lemma 8.3.14, all correct processes aborted with value v and a correct unanimity proof. Since
n ≥ 2f+1, there are at least f+1 correct processes. Note that by the way we assign priorities to
inputs of Preferential Paxos in the composition of the two algorithms, all correct processes have
inputs with the highest priority. Therefore, by Lemma 8.3.16, the only decision value possible
in Preferential Paxos is v. Furthermore, note that by Lemma 8.3.13, if any other correct process
decided in Cheap Quorum, that process’s decision value was also v.

Case 2. Only the leader, p1, decides in Cheap Quorum, and p1 is correct. Then by Lemma 8.3.14,
all correct processes aborted with value v. Since p1 is correct, v is signed by p1. It is possible
that some of the processes also had a correct unanimity proof as their abort proof. However, note
that in this scenario, all correct processes (at least f + 1 processes) had inputs with either the
highest or second highest priorities, all with the same abort value. Therefore, by Lemma 8.3.16,
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the decision value must have been the value of one of these inputs. Since all these inputs had the
same value v, v must be the decision value of Preferential Paxos.

Theorem 8.3.19 (End-to-end Validity). In the Cheap & Robust algorithm, if there are no faulty
processes and some process decides v, then v is the input of some process.

Proof. Note that by Lemmas 8.3.10 and 8.3.16, this holds for each of the algorithms individ-
ually. Furthermore, recall that the abort values of Cheap Quorum become the input values of
Preferential Paxos, and the set-up phase does not invent new values. Therefore, we just have to
show that if Cheap Quorum aborts, then all abort values are inputs of some process. Note that by
the code in panic mode, if Cheap Quorum aborts, a process p can output an abort value from one
of three sources: its own Value region, the leader’s Value region, or its own input value. Clearly,
if its abort value is its input, then we are done. Furthermore note that a correct leader only writes
its input in the Value region, and correct followers only write a copy of the leader’s Value region
in their own region. Since there are no faults, this means that only the input of the leader may be
written in any Value region, and therefore all processes always abort with some processes input
as their abort value.

Theorem 8.3.20 (End-to-end Agreement). In the Cheap & Robust algorithm, if p and q are
correct processes such that p decides v1 and q decides v2, then v1 = v2.

Proof. First note that by Lemmas 8.3.13 and 8.3.16, each of the algorithms satisfy this individu-
ally. Thus Lemma 8.3.18 implies the theorem.

Theorem 8.3.21 (End-to-end Termination). In Cheap & Robust algorithm, if some correct pro-
cess is eventually the sole leader forever, then every correct process eventually decides.

Proof. Assume towards a contradiction that some correct process p is eventually the sole leader
forever, and let t be the time when p last becomes leader. Now consider some process q that has
not decided before t. We consider several cases:

1. If q is executing Preferential Paxos at time t, then q will eventually decide, by termination
of Preferential Paxos (Lemma 8.3.16).

2. If q is executing Cheap Quorum at time t, we distinguish two sub-cases:
(a) p is also executing as the leader of Cheap Quorum at time t. Then p will eventu-

ally propose a value, so q will either decide in Cheap Quorum or abort from Cheap
Quorum (by Lemma 8.3.11) and decide in Preferential Paxos by Lemma 8.3.16.

(b) p is executing in Preferential Paxos. Then p must have panicked and aborted from
Cheap Quorum. Thus, q will also abort from Cheap Quorum and decide in Preferen-
tial Paxos by Lemma 8.3.16.

Note that to strengthen 8.3.21 to general termination as stated in our model, we require the
additional standard assumption [193] that some correct process p is eventually the sole leader
forever. In practice, however, p does not need to be the sole leader forever, but rather long
enough so that all correct processes decide.
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Theorem 8.3.22. There exists a 2-deciding algorithm for Weak Byzantine Agreement in a message-
and-memory model with up to fP Byzantine processes and fM memory crashes, where n ≥
2fP + 1 and m ≥ 2fM + 1.

8.3.4 Impossibility of Strong Agreement
In this chapter and in this section so far, the validity requirement for Byzantine agreement is
weak; that is, if there is even one Byzantine fault, the processes may agree on an arbitrary value.
Another notion of validity, known as strong validity, exists in the literature [197]:
Definition 8.3.23 (Strong Validity). If some process decided the value v, then v was the input of
some correct process.

The Strong Byzantine Agreement problem requires an algorithm to satisfy Agreement and
Termination as defined in Section 6.2, and Strong Validity. In this subsection, we show that it is
impossible to solve Strong Byzantine Agreement in an RDMA system with n ≤ 3f . Thus, our
solution for the Weak Byzantine Agreement problem cannot be strengthened to Strong Agree-
ment without sacrificing the fault tolerance that RDMA provides.
Theorem 8.3.24. Strong Byzantine Agreement cannot be solved in a permissions M&M network
where n ≤ 3f .

Proof. Assume by contradiction that there exists an algorithm, A, that solves strong Byzantine
agreement with n ≤ 3f in this setting. We partition the set of processes into three subsets, A, B,
and C, such that the size of each set ≤ f . Consider the following scenarios.

Scenario 1. All processes in A and B are correct and have input 1. Processes in C are
faulty, but act as if they are correct and have input 0. Processes in B sleep at the beginning of
the execution, not taking any steps. We run A until processes in A decide some value v. Then,
processes in B wake up, and run A. Since A is a correct strong Byzantine agreement algorithm,
processes inB eventually also decide the value v. Furthermore, since all correct processes (those
in the sets A and B) have the same input value 1, v = 1.

Scenario 2. All processes in C and B are correct and have input 0. Processes in A are
faulty, but act as if they are correct and have input 1. Processes in B sleep at the beginning of
the execution, not taking any steps. We run A until processes in C decide some value v′. Then,
processes in B wake up, and run A. Since A is a correct strong Byzantine agreement algorithm,
processes inB eventually also decide the value v′. Furthermore, since all correct processes (those
in the sets C and B) have the same input value 0, v′ = 0.

Scenario 3. All processes in A and C are correct. Processes in A have input value 1, and
processes in C have input value 0. Processes in B are faulty and never take any steps. Since A
is a correct strong Byzantine agreement algorithm, processes in A and C eventually decide the
same value v′′.

Note that Scenario 1 and Scenario 3 are indistinguishable to processes in A. Thus, since in
Scenario 1 the decision value is 1, there must be an execution of Scenario 3 in which the decision
value is 1. Furthermore, Scenario 2 and Scenario 3 are indistinguishable to processes in C, and
thus there must be an execution of Scenario 3 in which the decision value is 0.

Consider an execution of Scenario 3 that decides 0. Run this execution in Scenario 1. Since
Scenario 1 is indistinguishable to processes in A from Scenario 3, processes in A decide 0 in
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this execution. However, this violates strong validity, since in Scenario 1, all processes had
input 1.

We note that the proof in fact applies more generally than to just the RDMA model. A similar
proof, that considers shared memory objects, appears in [224].

8.4 Crash-Tolerant Consensus

We now restrict ourselves to crash failures of processes and memories. Clearly, we can use
the algorithms of Section 8.3 in this setting, to obtain a 2-deciding consensus algorithm with
n ≥ 2fP +1 andm ≥ 2fM +1. However, this is overkill since those algorithms use sophisticated
mechanisms (signatures, non-equivocation) to guard against Byzantine behavior. With only crash
failures, we now show it is possible to retain the efficiency of a 2-deciding algorithm while
improving resiliency. In Section 8.4.1, we first give a 2-deciding algorithm that allows the crash
of all but one process (n ≥ fP +1) and a minority of memories (m ≥ 2fM +1). In Section 8.4.2,
we improve resilience further by giving a 2-deciding algorithm that tolerates crashes of a minority
of the combined set of memories and processes.

8.4.1 Protected Memory Paxos

Our starting point is the Disk Paxos algorithm [126], which works in a system with processes
and memories where n ≥ fP + 1 and m ≥ 2fM + 1. This is our resiliency goal, but Disk
Paxos takes four delays in common executions. Our new algorithm, called Protected Memory
Paxos, removes two delays; it retains the structure of Disk Paxos but uses permissions to skip
steps. Initially some fixed leader ` = p1 has exclusive write permission to all memories; if
another process becomes leader, it takes the exclusive permission. Having exclusive permission
allows a leader ` to optimize its execution, because ` can do two things simultaneously: (1)
write its consensus proposal and (2) determine whether another leader took over. Specifically, if
` succeeds in (1), it knows no leader `′ took over because `′ would have taken the permission.
Thus ` avoids the last read in Disk Paxos, saving two delays. Of course, care must be taken to
implement this without violating safety.

The pseudocode of Protected Memory Paxos is in Algorithm 8.10. Each memory has one
memory region, and at any time exactly one process can write to the region. Each memory i
holds a register slot[i, p] for each process p. Intuitively, slot[i, p] is intended for p to write, but p
may not have write permission to do that if it is not the leader—in that case, no process writes
slot[i, p].

When a process p becomes the leader, it must execute a sequence of steps on a majority of the
memories to successfully commit a value. It is important that p execute all of these steps on each
of the memories that counts toward its majority; otherwise two leaders could miss each other’s
values and commit conflicting values. We therefore present the pseudocode for this algorithm
in a parallel-for loop (lines 18–37), with one thread per memory that p accesses. The algorithm
has two phases similar to Paxos, where the second phase may only begin after the first phase has
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Algorithm 8.10: Protected Memory Paxos—code for process p

1 Registers: for i=1..m, p ∈ Π,
2 slot[i,p]: tuple (minProp, accProp, value)// in memory i
3 Ω: failure detector that returns current leader

5 startPhase2(i) {
6 add i to ListOfReady processes;
7 while (size(ListOfReady)<majority of memories) {}
8 Phase2Started = true; }

10 propose(v) {
11 repeat forever {
12 wait until Ω == p; // wait to become leader
13 propNr = a higher value than any proposal number seen before;
14 CurrentVal = v;
15 CurrentMaxProp = 0;
16 Phase2Started = false;
17 ListOfReady = ∅;
18 for every memory i in parallel {
19 if (p != p1 || not first attempt) {
20 getPermission(i);
21 success = write(slot[i,p], (propNr,⊥,⊥));
22 if (not success) { abort(); }
23 vals = read all slots from i;
24 if (vals contains a non-null value) {
25 val = v ∈ vals with highest propNr;
26 if (val.propNr>propNr) { abort(); }
27 atomic {
28 if(val.propNr>CurrentMaxProp){
29 if (Phase2Started) {abort();}
30 CurrentVal = val.value;
31 CurrentMaxProp = val.propNr;
32 } } }
33 startPhase2(i);}
34 // done phase 1 or (p == p1 && p1’s first attempt)
35 success = write(slot[i,p], (propNr,propNr,CurrentVal));
36 if (not success) { abort(); }
37 } until this has been done at a majority of the memories, or until

↪→ abort has been called
38 if (loop completed without abort) {
39 decide CurrentVal; } } }
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been completed for a majority of the memories. We represent this in the code with a barrier that
waits for a majority of the threads.

When a process p becomes leader, it executes the prepare phase (the first leader p1 can skip
this phase in its first execution of the loop), where, for each memory, p attempts to (1) acquire
exclusive write permission, (2) write a new proposal number in its slot, and (3) read all slots
of that memory. p waits to succeed in executing these steps on a majority of the memories.
If any of p’s writes fail or p finds a proposal with a higher proposal number, then p gives up.
This is represented with an abort in the pseudocode; when an abort is executed, the for
loop terminates. We assume that when the for loop terminates—either because some thread has
aborted or because a majority of threads have reached the end of the loop—all threads of the for
loop are terminated and control returns to the main loop (lines 11–37).

If p does not abort, it adopts the value with highest proposal number of all those it read
in the memories. To make it clear that races should be avoided among parallel threads in the
pseudocode, we wrap this part in an atomic environment.

In the next phase, each of p’s threads writes its value to its slot on its memory. If a write fails,
p gives up. If p succeeds, this is where we optimize time: p can simply decide, whereas Disk
Paxos must read the memories again.

Note that it is possible that some of the memories that made up the majority that passed
the initial barrier may crash later on. To prevent p from stalling forever in such a situation, it
is important that straggler threads that complete phase 1 later on be allowed to participate in
phase 2. However, if such a straggler thread observes a more up-to-date value in its memory
than the one adopted by p for phase 2, this must be taken into account. In this case, to avoid
inconsistencies, p must abort its current attempt and restart the loop from scratch.

The code ensures that some correct process eventually decides, but it is easy to extend it so
all correct processes decide [76], by having a decided process broadcast its decision. Also, the
code shows one instance of consensus, with p1 as initial leader. With many consensus instances,
the leader terminates one instance and becomes the default leader in the next.

Correctness of Protected Memory Paxos. We now present the proof of correctness and common-
case running time of Algorithm 8.10

We first show that Algorithm 8.10 correctly implements consensus, starting with validity.
Intuitively, validity is preserved because each process that writes any value in a slot either writes
its own value, or adopts a value that was previously written in a slot. We show that every value
written in any slot must have been the input of some process.
Theorem 8.4.1 (Validity). In Algorithm 8.10, if a process p decides a value v, then v was the
input to some process.

Proof. Assume by contradiction that some process p decides a value v and v is not the input of
any process. Since v is not the input value of p, then p must have adopted v by reading it from
some process p′ at line 23. Note also that a process cannot adopt the initial value, and thus, v
must have been written in p′’s memory by some other process. Thus we can define a sequence
s1, s2, . . . , sk, where si adopts v from the location where it was written by si+1 and s1 = p. This
sequence is necessarily finite since there have been a finite number of steps taken up to the point
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when p decided v. Therefore, there must be a last element of the sequence, sk who wrote v in
line 35 without having adopted v. This implies v was sk’s input value, a contradiction.

We now focus on agreement.
Theorem 8.4.2 (Agreement). In Algorithm 8.10, for any processes p and q, if p and q decide
values vp and vq respectively, then vp = vq.

Before showing the proof of the theorem, we first introduce the following useful lemmas.
Lemma 8.4.3. The values a leader accesses on remote memory cannot change between when it
reads them and when it writes them.

Proof. Recall that each memory only allows write-access to the most recent process that acquired
it. In particular, that means that each memory only gives access to one process at a time. Note
that the only place at which a process acquires write-permissions on a memory is at the very
beginning of its run, before reading the values written on the memory. In particular, for each
memory d a process does not issue a read on d before its permission request on d successfully
completes. Therefore, if a process p succeeds in writing on memory m, then no other process
could have acquired d’s write-permission after p did, and therefore, no other process could have
changed the values written on m after p’s read of m.

Lemma 8.4.4. If a leader writes values vi and vj at line 35 with the same proposal number to
memories i and j, respectively, then vi = vj .

Proof. Assume by contradiction that a leader p writes different values v1 6= v2 with the same
proposal number. Since each thread of p executes the phase 2 write (line 35) at most once per
proposal number, it must be that different threads T1 and T2 of p wrote v1 and v2, respectively.
If p does not perform phase 1 (i.e., if p = p1 and this is p’s first attempt), then it is impossible
for T1 and T2 to write different values, since CurrentVal was set to v at line 14 and was not
changed afterwards. Otherwise (if p performs phase 1), then let t1 and t2 be the times when T1

and T2 executed line 8, respectively (T1 and T2 must have done so, since we assume that they
both reached the phase 2 write at line 35). Assume wlog that t1 ≤ t2. Due to the check and
abort at line 29, CurrentVal cannot change after t1 while keeping the same proposal number.
Thus, when T1 and T2 perform their phase 2 writes (after t1), CurrentVal has the same value as
it did at t1; it is therefore impossible for T1 and T2 to write different values. We have reached a
contradiction.

Lemma 8.4.5. If a process p performs phase 1 and then writes to some memory m with proposal
number b at line 35, then p must have written b to m at line 21 and read from m at line 23.

Proof. Let T be the thread of p which writes to m at line 35. If phase 1 is performed (i.e.,
the condition at line 19 is satisfied), then by construction T cannot reach line 35 without first
performing lines 21 and 23. Since T only communicates with m, it must be that lines 21 and 23
are performed on m.

Proof of Theorem 8.4.2. Assume by contradiction that vp 6= vq. Let bp and bq be the proposal
numbers with which vp and vq are decided, respectively. Let Wp (resp. Wq) be the set of memo-
ries to which p (resp. q) successfully wrote in phase 2 line 35 before deciding vp (resp. vq). Since
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Wp and Wq are both majorities, their intersection must be non-empty. Let m be any memory in
Wp ∩Wq.

We first consider the case in which one of the processes did not perform phase 1 before
deciding (i.e., one of the processes is p1 and it decided on its first attempt). Let that process be p
wlog. Further assume wlog that q is the first process to enter phase 2 with a value different from
vp. p’s phase 2 write on m must have preceded q obtaining permissions from m (otherwise, p’s
write would have failed due to lack of permissions). Thus, q must have seen p’s value during its
read on m at line 23, and thus q cannot have adopted its own value. Since q is the first process to
enter phase 2 with a value different from vp, q cannot have adopted any other value than vp, so q
must have adopted vp. Contradiction.

We now consider the remaining case: both p and q performed phase 1 before deciding. We
assume wlog that bp < bq and that bq is the smallest proposal number larger than bp for which
some process enters phase 2 with CurrentVal 6= vp.

Since bp < bq, p’s read at m must have preceded q’s phase 1 write at m (otherwise p would
have seen q’s larger proposal number and aborted). This implies that p’s phase 2 write at m must
have preceded q’s phase 1 write atm (by Lemma 8.4.3). Thus q must have seen vp during its read
and cannot have adopted its own input value. However, q cannot have adopted vp, so q must have
adopted vq from some other slot sl that q saw during its read. It must be that sl.minProposal <
bq, otherwise q would have aborted. Since sl.minProposal ≥ sl.accProposal for any slot, it
follows that sl.accProposal < bq. If sl.accProposal < bp, q cannot have adopted sl.value
in line 30 (it would have adopted vp instead). Thus it must be that bp ≤ sl.accProposal <
bq; however, this is impossible because we assumed that bq is the smallest proposal number
larger than bp for which some process enters phase 2 with CurrentVal 6= vp. We have reached a
contradiction.

Finally, we prove that the termination property holds.
Theorem 8.4.6 (Termination). Eventually, all correct processes decide.
Lemma 8.4.7. If a correct process p is executing the for loop at lines 18–37, then p will eventu-
ally exit from the loop.

Proof. The threads of the for loop perform the following potentially blocking steps: obtaining
permission (line 20), writing (lines 21 and 35), reading (line 23), and waiting for other threads
(the barrier at line 7 and the exit condition at line 37). By our assumption that a majority of
memories are correct, a majority of the threads of the for loop must eventually obtain permission
in line 20 and invoke the write at line 21. If one of these writes fails due to lack of permission, the
loop aborts and we are done. Otherwise, a majority of threads will perform the read at line 23.
If some thread aborts at lines 22 and 26, then the loop aborts and we are done. Otherwise, a
majority of threads must add themselves to ListOfReady, pass the barrier at line 7 and invoke the
write at line 35. If some such write fails, the loop aborts; otherwise, a majority of threads will
reach the check at line 37 and thus the loop will exit.

Proof of Theorem 8.4.6. The Ω failure detector guarantees that eventually, all processes trust the
same correct process p. Let t be the time after which all correct processes trust p forever. By
Lemma 8.4.7, at some time t′ ≥ t, all correct processes except p will be blocked at line 12.
Therefore, the minProposal values of all memories, on all slots except those of p stop increasing.
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Thus, eventually, p picks a propNr that is larger than all others written on any memory, and stops
restarting at line 26. Furthermore, since no process other than p is executing any steps of the
algorithm, and in particular, no process other than p ever acquires any memory after time t′, p
never loses its permission on any of the memories. So, all writes executed by p on any correct
memory must return ack. Therefore, p will decide and broadcast its decision to all. All correct
processes will receive p’s decision and decide as well.

To complete the proof of Theorem 8.4.9, we now show that Algorithm 8.10 is 2-deciding.
Theorem 8.4.8. Algorithm 8.10 is 2-deciding.

Proof. Consider an execution in which p1 is timely, and no process’s failure detector ever sus-
pects p1. Then, since no process thinks itself the leader, and processes do not deviate from their
protocols, no process calls changePermission on any memory. Furthermore, p1’s firstAttempt
flag is set, since it never switched leaders. So, since p1 initially has write permission on all mem-
ories, all of p1’s writes succeed. Therefore, p1 terminates, deciding its own proposed value v,
after one write per memory.

To following theorem summarizes the result.
Theorem 8.4.9. Consider a message-and-memory model with up to fP process crashes and fM
memory crashes, where n ≥ fP + 1 and m ≥ 2fM + 1. There exists a 2-deciding algorithm for
consensus.

8.4.2 Aligned Paxos

We now further enhance the failure resilience. We show that memories and processes are equiv-
alent agents, in that it suffices for a majority of the agents (processes and memories together)
to remain alive to solve consensus. Our new algorithm, Aligned Paxos, achieves this resiliency.
To do so, the algorithm relies on the ability to use both the messages and the memories in our
model; permissions are not needed. The key idea is to align a message-passing algorithm and
a memory-based algorithm to use any majority of agents. We align Paxos [193] and Protected
Memory Paxos so that their decisions are coordinated. More specifically, Protected Memory
Paxos and Paxos have two phases. To align these algorithms, we factor out their differences and
replace their steps with an abstraction that is implemented differently for each algorithm. The re-
sult is our Aligned Paxos algorithm, which has two phases, each with three steps: communicate,
hear back, and analyze. Each step treats processes and memories separately, and translates the
results of operations on different agents to a common language. We implement the steps using
their analogues in Paxos and Protected Memory Paxos4.

The pseudocode of Aligned Paxos is shown in Figures 8.11–8.17.

4We believe other implementations are possible. For example, replacing the Protected Memory Paxos imple-
mentation for memories with the Disk Paxos implementation yields an algorithm that does not use permissions.
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Algorithm 8.11: Aligned Paxos

1 A=(P, M) is set of acceptors
2 propose(v){
3 resps = [] //prepare empty responses list
4 choose propNr bigger than any seen before
5 for all a in A{
6 cflag = communicate1(a, propNr)
7 resp = hearback1(a)
8 if (cflag){resps.append((a, resp)) } }
9 wait until resps has responses from a majority of A

10 next = analyze1(resps)
11 if (next == RESTART) restart;
12 resps = []
13 for all a in A{
14 cflag = communicate2(a, next)
15 resp = hearback2(a)
16 if (cflag){resps.append((a, resp)) } }
17 wait until resps has responses from a majority of A
18 next = analyze2(resps)
19 if (next == RESTART) restart;
20 decide next; }

Algorithm 8.12: Communicate Phase 1—code for process p

1 bool communicate1(agent a, value propNr){
2 if (a is memory){
3 changePermission(a, {(R:Π-{p}, W:∅, RW: {p}); //acquire write

↪→ permission
4 return write(a[p], {propNr, -, -}) }
5 else{
6 send prepare(propNr) to a
7 return true } }

Algorithm 8.13: Hear Back Phase 1—code for process p

1 value hearback1(agent a){
2 if (a is memory){
3 for all processes q{
4 localInfo[q] = read(a[q]) }
5 return = localInfo}
6 else{
7 return value received from a } }
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Algorithm 8.14: Analyze Phase 1—code for process p

1 responses is a list of (agent, response) pairs
2 value analyze1(responses resps){
3 for resp in resps {
4 if (resp.agent is memory){
5 for all slots s in v.info {
6 if (s.minProposal > propNr) return RESTART }
7 (v, accProposal) = value and accProposal of slot with highest
8 accProposal that had a value } }
9 return v where (v, accProposal) is the highest accProposal seen in

↪→ resps.response of all agents }

Algorithm 8.15: Communicate Phase 2—code for process p

1 bool communicate2(agent a, value msg){
2 if (a is memory){
3 return write(a[p], {msg.propNr, msg.propNr, msg.val})}
4 else{
5 send accepted(msg.propNr, msg.val) to a
6 return true } }

Algorithm 8.16: Hear Back Phase 2—code for process p

1 value hearback2(agent a){
2 if (a is memory){
3 return ack }
4 else{
5 return value received from a } }

Algorithm 8.17: Analyze Phase 2—code for process p

1 value analyze2(value v, responses resps){
2 if there are at least A/2 + 1 resps such that resp.response==ack{
3 return v }
4 return RESTART }

8.5 Dynamic Permissions are Necessary for Efficient Consen-
sus

In Section 8.4.1, we showed how dynamic permissions can improve the performance of Disk
Paxos. Are dynamic permissions necessary? We prove that with shared memory (or disks)
alone, one cannot achieve 2-deciding consensus, even if the memory never fails, it has static
permissions, processes may only fail by crashing, and the system is partially synchronous in the
sense that eventually there is a known upper bound on the time it takes a correct process to take
a step [109]. This result applies a fortiori to the Disk Paxos model [126].
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Theorem 8.5.1. Consider a partially synchronous shared-memory model with registers, where
registers can have arbitrary static permissions, memory never fails, and at most one processes
may fail by crashing. No consensus algorithm is 2-deciding.

Proof. Assume by contradiction that A is an algorithm in the stated model that is 2-deciding.
That is, there is some execution E of A in which some process p decides a value v with 2 delays.
We denote by R and W the set of objects which p reads and writes in E respectively. Note that
since p decides in 2 delays in E, R and W must be disjoint, by the definition of operation delay
and the fact that a process has at most one outstanding operation per object. Furthermore, p must
issue all of its read and writes without waiting for the response of any operation.

Consider an executionE ′ in which p reads from the same setR of objects and writes the same
values as in E to the same set W of objects. All of the read operations that p issues return by
some time t0, but the write operations of p are delayed for a long time. Another process p′ begins
its proposal of a value v′ 6= v after t0. Since no process other than p′ writes to any objects, E ′ is
indistinguishable to p′ from an execution in which it runs alone. Since A is a correct consensus
algorithm that terminates if there is no contention, p′ must eventually decide value v′. Let t′ be
the time at which p′ decides. All of p’s write operations terminate and are linearized in E ′ after
time t′. ExecutionE ′ is indistinguishable to p from executionE, in which it ran alone. Therefore,
p decides v 6= v′, violating agreement.

Theorem 8.5.1, together with the Fast Paxos algorithm of Lamport [196], shows that an
atomic read-write shared memory model is strictly weaker than the message passing model in
its ability to solve consensus quickly. This result may be of independent interest, since often
the classic shared memory and message passing models are seen as equivalent, because of the
seminal computational equivalence result of Attiya, Bar-Noy, and Dolev [29]. Interestingly, it is
known that shared memory can tolerante more failures when solving consensus (with randomiza-
tion or partial synchrony) [25, 65], and therefore it seems that perhaps shared memory is strictly
stronger than message passing for solving consensus. However, our result shows that there are
aspects in which message passing is stronger than shared memory. In particular, message passing
can solve consensus faster than shared memory in well-behaved executions.
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Chapter 9

Microsecond-Scale State Machine
Replication

9.1 Introduction

In the previous two chapters, we studied RDMA primarily through a theoretical lens. We ab-
stracted its features into the the ready-active model and reasoned about the capabilities of this
new communication model compared to previous ones. However, when developing a theory
meant to reflect practice, it is important to check that the theoretical results can indeed trans-
late back into practical advantages. In this chapter, we present a system built using RDMA to
enhance availability in Microsecond-scale computing.

Enabled by modern technologies such as RDMA, Microsecond-scale computing is emerging
as a must [37]. A microsecond app might be expected to process a request in 10 microseconds.
Areas where software systems care about microsecond performance include finance (e.g., trad-
ing systems), embedded computing (e.g., control systems), and microservices (e.g., key-value
stores). Some of these areas are critical and it is desirable to replicate their microsecond apps
across many hosts to provide high availability, due to economic, safety, or robustness reasons.
Typically, a system may have hundreds of microservice apps [127], some of which are state-
ful and can disrupt a global execution if they fail (e.g., key-value stores)—these apps should be
replicated for the sake of the whole system.

The golden standard to replicate an app is State Machine Replication (SMR) [263], whereby
replicas execute requests in the same total order determined by a consensus protocol. Unfor-
tunately, traditional SMR systems add hundreds of microseconds of overhead even on a fast
network [158]. Recent work explores modern hardware in order to improve the performance of
replication [41, 174, 178, 187, 250, 279]. The fastest of these (e.g., Hermes [178], DARE [250],
and HovercRaft [187]) induce however an overhead of several microseconds, which is clearly
high for apps that themselves take few microseconds. Furthermore, when a failure occurs, prior
systems incur a prohibitively large fail-over time in the tens of milliseconds (not microseconds).
For instance, HovercRaft takes 10 milliseconds, DARE 30 milliseconds, and Hermes at least
150 milliseconds. The rationale for such large latencies are timeouts that account for the natural
fluctuations in the latency of modern networks. Improving replication and fail-over latencies
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requires fundamentally new techniques.
We propose Mu, a new SMR system that adds less than 1.3 microseconds to replicate a

(small) app request, with the 99th-percentile at 1.6 microseconds. Although Mu is a general-
purpose SMR scheme for a generic app, Mu really shines with microsecond apps, where even
the smallest replication overhead is significant. Compared to the fastest prior system, Mu is able
to cut 61% of its latency. This is the smallest latency possible with current RDMA hardware, as
it corresponds to one round of one-sided communication.

To achieve this performance, Mu introduces a new SMR protocol that fundamentally changes
how RDMA can be leveraged for replication. Our protocol, inspired by the one-shot con-
sensus algorithm presented in Chapter 8, reaches consensus and replicates a request with just
one round of parallel RDMA write operations on a majority of replicas. This is in contrast to
prior approaches, which take multiple rounds [41, 250, 279] or resort to two-sided communica-
tion [158, 174, 189, 226]. Roughly, in Mu the leader replicates a request by simply using RDMA
to write it to the log of each replica, without additional rounds of communication. Doing this
correctly is challenging because concurrent leaders may try to write to the logs simultaneously.
In fact, the hardest part of most replication protocols is the mechanism to protect against races
of concurrent leaders (e.g., Paxos proposal numbers [193]). Traditional replication implements
this mechanism using send-receive communication (two-sided operations) or multiple rounds of
communication. Instead, Mu uses RDMA write permissions to guarantee that a replica’s log
can be written by only one leader. This is similar to the crash-consensus algorithm of Chap-
ter 8. However, critical to the correctness and efficiency of the fully-fledged SMR system are
other mechanisms as well, including those to change leaders and garbage collect logs, which we
describe in this chapter.

Mu also improves fail-over time to just 873 microseconds, with the 99-th percentile at 945
microseconds, which cuts fail-over time of prior systems by an order of magnitude. The fact that
Mu significantly improves both replication overhead and fail-over latency is perhaps surprising:
folklore suggests a trade-off between the latencies of replication in the fast path, and fail-over in
the slow path.

The fail-over time of Mu has two parts: failure detection and leader change. For failure
detection, traditional SMR systems typically use a timeout on heartbeat messages from the leader.
Due to large variances in network latencies, timeout values are in the 10–100ms even with the
fastest networks. This is clearly high for microsecond apps. Mu uses a conceptually different
method based on a pull-score mechanism over RDMA. The leader increments a heartbeat counter
in its local memory, while other replicas use RDMA to periodically read the counter and calculate
a badness score. The score is the number of successive reads that returned the same value.
Replicas declare a failure if the score is above a threshold, corresponding to a timeout. Different
from the traditional heartbeats, this method can use an aggressively small timeout without false
positives because network delays slow down the reads rather than the heartbeat. In this way, Mu
detects failures usually within ∼600 microseconds. This is bottlenecked by variances in process
scheduling, as we discuss later.

For leader change, the latency comes from the cost of changing RDMA write permissions,
which with current NICs are hundreds of microseconds. This is higher than we expected: it is
far slower than RDMA reads and writes, which go over the network. We attribute this delay to a
lack of hardware optimization. RDMA has many methods to change permissions: (1) re-register
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memory regions, (2) change queue-pair access flags, or (3) close and reopen queue pairs. We
carefully evaluate the speed of each method and propose a scheme that combines two of them
using a fast-slow path to minimize latency. Despite our efforts, the best way to cut this latency
further is to improve the NIC hardware.

We implemented Mu and used it to replicate several apps: a financial exchange app called
Liquibook [213], Redis, Memcached, and an RDMA-based key-value stored called HERD [170].

We evaluate Mu extensively, by studying its replication latency stand-alone or integrated into
each of the above apps. We find that, for some of these apps (Liquibook, HERD), Mu is the
only viable replication system that incurs a reasonable overhead. This is because Mu’s latency
is significantly lower by a factor of at least 2.7× compared to other replication systems. We also
report on our study of Mu’s fail-over latency, with a breakdown of its components, suggesting
ways to improve the infrastructure to further reduce the latency.

Mu has some limitations. First, Mu relies on RDMA and so it is suitable only for net-
works with RDMA, such as local area networks, but not across the wide area. Second, Mu is an
in-memory system that does not persist data in stable storage—doing so would add additional
latency dependent on the device speed. 1 However, we observe that the industry is working on
extensions of RDMA for persistent memory, whereby RDMA writes can be flushed at a remote
persistent memory with minimum latency [268]—once available, this extension will provide per-
sistence for Mu.

To summarize, this chapter makes the following contributions:

• We propose Mu, a new SMR system with low replication and fail-over latencies.
• To achieve its performance, Mu leverages RDMA permissions and a scoring mechanism

over heartbeat counters.
• We implement Mu, and evaluate both its raw performance and its performance in microsec-

ond apps. Results show that Mu significantly reduces replication latencies to an acceptable
level for microsecond apps.

One might argue that Mu is ahead of its time, as most apps today are not yet microsecond
apps. However, this situation is changing. We already have important microsecond apps in areas
such as trading, and more will come as existing timing requirements become stricter and new
systems emerge as the composition of a large number of microservices (Section 9.2.1).

9.2 Background

9.2.1 Microsecond Applications and Computing

Apps that are consumed by humans typically work at the millisecond scale: to the human brain,
the lowest reported perceptible latency is 13 milliseconds [251]. Yet, we see the emergence of
apps that are consumed not by humans but by other computing systems. An increasing number
of such systems must operate at the microsecond scale, for competitive, physical, or composition
reasons. Schneider [262] speaks of a microsecond market where traders spend massive resources

1For fairness, all SMR systems that we compare against also operate in-memory.
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to gain a microsecond advantage in their high-frequency trading. Industrial robots must orches-
trate their motors with microsecond granularity for precise movements [21]. Modern distributed
systems are composed of hundreds [127] of stateless and stateful microservices, such as key-
value stores, web servers, load balancers, and ad services—each operating as an independent
app whose latency requirements are gradually decreasing to the microsecond level [62], as the
number of composed services is increasing. With this trend, we already see the emergence of
key-value stores with microsecond latency (e.g., [174, 241]).

To operate at the microsecond scale, the computing ecosystem must be improved at many
layers. This is happening gradually by various recent efforts. Barroso et al [37] argue for bet-
ter support of microsecond-scale events. The latest Precision Time Protocol improves clock
synchronization to achieve submicrosecond accuracy [23]. And other recent work improves
CPU scheduling [62, 246, 253], thread management [254], power management [252], RPC han-
dling [96, 174], and the network stack [246]—all at the microsecond scale. Mu fits in this context,
by providing microsecond SMR.

9.2.2 State Machine Replication

State Machine Replication (SMR) replicates a service (e.g., a key-value storage system) across
multiple physical servers called replicas, such that the system remains available and consistent
even if some servers fail. SMR provides strong consistency in the form of linearizability [154].
A common way to implement SMR, which we adopt in this work, is as follows: each replica has
a copy of the service software and a log. The log stores client requests. We consider non-durable
SMR systems [164, 169, 209, 216, 243, 247], which keep state in memory only, without logging
updates to stable storage. Such systems make an item of data reliable by keeping copies of it
in the memory of several nodes. Thus, the data remains recoverable as long as there are fewer
simultaneous node failures than data copies [250].

A consensus protocol ensures that all replicas agree on what request is stored in each slot of
the log. Replicas then apply the requests in the log (i.e., execute the corresponding operations),
in log order. Assuming that the service is deterministic, this ensures all replicas remain in sync.
We adopt a leader-based approach, in which a dynamically elected replica called the leader com-
municates with the clients and sends back responses after requests reach a majority of replicas.
We assume a crash-failure model: servers may fail by crashing, after which they stop executing.

A consensus protocol must ensure safety and liveness properties. Safety here means (1)
agreement (different replicas do not obtain different values for a given log slot) and (2) validity
(replicas do not obtain spurious values). Liveness means termination—every live replica even-
tually obtains a value. We guarantee agreement and validity in an asynchronous system, while
termination requires eventual synchrony and a majority of non-crashed replicas, as in typical
consensus protocols.
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Figure 9.1: Architecture of Mu. Grey color shows Mu components. A replica is either a leader or a fol-
lower, with different behaviors. The leader captures client requests and writes them to the local logs of
all replicas. Followers replay the log to inject the client requests into the application. A leader election
component includes a heartbeat and the identity of the current leader. A permission management compo-
nent allows a leader to request write permission to the local log while revoking the permission from other
nodes.

9.3 Overview of Mu

9.3.1 Architecture

Figure 9.1 depicts the architecture of Mu. At the top, a client sends requests to an application
and receives a response. We are not particularly concerned about how the client communicates
with the application: it can use a network, a local pipe, a function call, etc. We do assume
however that this communication is amenable to being captured and injected. That is, there is
a mechanism to capture requests from the client before it reaches the application, so we can
forward these requests to the replicas; a request is an opaque buffer that is not interpreted by
Mu. Similarly, there is a mechanism to inject requests into the app. Providing such mechanisms
requires changing the application; however, in our experience, the changes are small and non-
intrusive. These mechanisms are standard in any SMR system.

Each replica has an idea of which replica is currently the leader. A replica that considers
itself the leader assumes that role (left of figure), and otherwise, assumes the role of a follower
(right of figure). Each replica grants RDMA write permission to its log for its current leader
and no other replica. The replicas constantly monitor their current leader to check that it is still
active. The replicas might not agree on who the current leader is. But in the common case, all
replicas have the same leader, and that leader is active. When that happens, Mu is simple and
efficient. The leader captures a client request, uses an RDMA Write to append that request to
the log of each follower, and then continues the application to process the request. When the
followers detect a new request in their log, they inject the request into the application, thereby
updating the replicas.

The main challenge in the design of SMR protocols is to handle leader failures. Of particular
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concern is the case when a leader appears failed (due to intermittent network delays) so another
leader takes over, but the original leader is still active.

To detect failures in Mu, the leader periodically increments a local counter: the followers
periodically check the counter using an RDMA Read. If the followers do not detect an increment
of the counter after a few tries, a new leader is elected.

The new leader revokes a write permission by any old leaders, thereby ensuring that old lead-
ers cannot interfere with the operation of the new leader [13]. The new leader also reconstructs
any partial work left by prior leaders.

Both the leader and the followers are internally divided into two major parts: the replica-
tion plane and the background plane. Roughly, the replication plane is responsible for copying
requests captured by the leader to the followers, and replaying those requests at the followers’
copy of the application. The background plane monitors (the health of) the leader and handles
permission changes. Each plane has its own threads and queue pairs. This is in order to im-
prove parallelism and provide isolation of performance and functionality. More specifically, the
following components exist in each of the planes.

The replication plane has three components:
• Replicator. This component implements the main protocol to replicate a request from the

leader to the followers, by writing the request in the followers’ logs using RDMA Write.
• Replayer. This component replays entries from the local log.
• Logging. This component stores client requests to be replicated. Each replica has its own

local log, which may be written remotely by other replicas according to previously granted
permissions. Replicas also keep a copy of remote logs, which is used by a new leader to
reconstruct partial log updates by older leaders.

The background plane has two components:
• Leader election. This component detects failures of leaders and selects other replicas to

become leader.
• Permission management. This component grants and revokes write access of local data by

remote replicas. It maintains a permissions array, which stores access requests by remote
replicas. Basically, a remote replica uses RDMA to store a 1 in this vector to request
access.

We describe these planes in more detain in Section 9.4 and Section 9.5.

9.3.2 RDMA Communication

Each replica has two QPs for each remote replica: one QP for the replication plane and one for
the background plane. The QPs for the replication plane share a completion queue, while the
QPs for the background plane share another completion queue. The QPs operate in Reliable
Connection (RC) mode.

Each replica also maintains two MRs, one for each plane. The MR of the replication plane
contains the consensus log and the MR of the background plane contains metadata for leader
election (Section 9.5.1) and permission management (Section 9.5.2). During execution, replicas
may change the level of access to their log that they give to each remote replica; this is done
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by changing QP access flags. Note that all replicas always have remote read and write access
permissions to the memory region in the background plane of each replica.

9.4 Replication Plane

The replication plane takes care of execution in the common case, but remains safe during leader
changes. This is where we take care to optimize the latency of the common path. We do so
by ensuring that, in the replication plane, only a leader replica communicates over the network,
whereas all follower replicas are silent (i.e., only do local work).

In this section, we discuss algorithmic details related to replication in Mu. For pedagogical
reasons, we first describe a basic version of the algorithm and then discuss extensions and op-
timizations to improve functionality and performance. In this section, we give intuition for the
correctness of our algorithm.

9.4.1 Basic Algorithm

The leader captures client requests, and calls propose to replicate these requests. It is simplest
to understand our replication algorithm relative to the Paxos algorithm, which we briefly sum-
marize; for details, we refer the reader to [193]. In Paxos, for each slot of the log, a leader first
executes a prepare phase where it sends a proposal number to all replicas.2 A replica replies with
either nack if it has seen a higher proposal number, or otherwise with the value with the highest
proposal number that it has accepted. After getting a majority of replies, the leader adopts the
value with the highest proposal number. If it got no values (only acks), it adopts its own proposal
value. In the next phase, the accept phase, the leader sends its proposal number and adopted
value to all replicas. A replica acks if it has not received any prepare phase message with a
higher proposal number.

In Paxos, replicas actively reply to messages from the leader, but in our algorithm, replicas
are silent and communicate information passively by publishing it to their memory. Specifi-
cally, along with their log, a replica publishes a minProposal representing the minimum proposal
number which it can accept. The correctness of our algorithm hinges on the leader reading and
updating the minProposal number of each follower before updating anything in its log, and on
updates on a replica’s log happening in slot-order.

However, this by itself is not enough; Paxos relies on active participation from the followers
not only for the data itself, but also to avoid races. Simply publishing the relevant data on each
replica is not enough, since two competing leaders could miss each other’s updates. This can
be avoided if each of the leaders rereads the value after writing it [126]. However, this requires
more communication. To avoid this, we shift the focus from the communication itself to the
prevention of bad communication. A leader ` maintains a set of confirmed followers, which have
granted write permission to ` and revoked write permission from other leaders before ` begins
its operation. This is what prevents races among leaders in Mu. We describe these mechanisms
in more detail below.

2Paxos uses proposer and acceptor terms; instead, we use leader and replica.
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Algorithm 9.2: Log Structure

1 struct Log {
2 minProposal = 0,
3 FUO = 0,
4 slots[] = (0,⊥) for all slots }

Log Structure. The main data structure used by the algorithm is the consensus log kept at
each replica (Algorithm 9.2). The log consists of (1) a minProposal number, representing the
smallest proposal number with which a leader may enter the accept phase on this replica; (2) a
first undecided offset (FUO), representing the lowest log index which this replica believes to be
undecided; and (3) a sequence of slots—each slot is a (propNr, value) tuple.

Algorithm Description. Each leader begins its propose call by constructing its confirmed fol-
lowers set (Algorithm 9.3, lines 8–11). This step is only necessary the first time a new leader
invokes propose or immediately after an abort. This step is done by sending permission requests
to all replicas and waiting for a majority of acks. When a replica acks, it means that this replica
has granted write permission to this leader and revoked it from other replicas. The leader then
adds this replica to its confirmed followers set. During execution, if the leader ` fails to write
to one of its confirmed followers, because that follower crashed or gave write access to another
leader, ` aborts and, if it still thinks it is the leader, it calls propose again.

After establishing its confirmed followers set, the leader invokes the prepare phase. To do so,
the leader reads the minProposal from its confirmed followers (line 18) and chooses a proposal
number propNum which is larger than any that it has read or used before. Then, the leader writes
its proposal number into minProposal for each of its confirmed followers. Recall that if this
write fails at any follower, the leader aborts. It is safe to overwrite a follower f ’s minProposal
in line 21 because, if that write succeeds, then ` has not lost its write permission since adding f
to its confirmed followers set, meaning no other leader wrote to f since then. To complete its
prepare phase, the leader reads the relevant log slot of all of its confirmed followers and, as in
Paxos, adopts either (a) the value with the highest proposal number, if it read any non-⊥ values,
or (b) its own initial value, otherwise.

The leader ` then enters the accept phase, in which it tries to commit its previously adopted
value. To do so, ` writes its adopted value to its confirmed followers. If these writes succeed,
then ` has succeeded in replicating its value. No new value or minProposal number could have
been written on any of the confirmed followers in this case, because that would have involved
a loss of write permission for `. Since the confirmed followers set constitutes a majority of the
replicas, this means that `’s replicated value now appears in the same slot at a majority.

Finally, ` increments its own FUO to denote successfully replicating a value in this new
slot. If the replicated value was `’s own proposed value, then it returns from the propose call;
otherwise it continues with the prepare phase for the new FUO.
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Algorithm 9.3: Basic Replication Algorithm of Mu

5 Propose(myValue):
6 done = false
7 If I just became leader or I just aborted
8 For every process p in parallel:
9 Request permission from p

10 If p acks, add p to confirmedFollowers
11 Until this has been done for a majority
12 While not done:
13 Execute Prepare Phase
14 Execute Accept Phase

16 Prepare Phase:
17 For every process p in confirmedFollowers:
18 Read minProposal from p’s log
19 Pick new propNum, higher than any minProposal seen so far
20 For every process p in confirmedFollowers:
21 Write propNum into LOG[p].minProposal
22 Read LOG[p].slots[myFUO]
23 Abort if any write fails
24 if all entries read were empty:
25 value = myValue
26 else:
27 value = entry value with the largest proposal number of slots read

29 Accept Phase:
30 For every process p in confirmedFollowers:
31 Write value,propNum to p in slot myFUO
32 Abort if any write fails
33 If value == myValue:
34 done = true
35 Locally increment myFUO
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9.4.2 Extensions
The basic algorithm described so far is clear and concise, but it also has downsides related to
functionality and performance. We now address these downsides with some extensions, all of
which are standard for Paxos-like algorithms.

Bringing Stragglers Up to Date. In the basic algorithm, if a replica r is not included in some
leader’s confirmed followers set, then its log will lag behind. If r later becomes leader, it can
catch up by proposing new values at its current FUO, discovering previously accepted values,
and re-committing them. This is correct but inefficient. Even worse, if r never becomes leader,
then it will never recover the missing values. We address this problem by introducing an update
phase for new leaders. After a replica becomes leader and establishes its confirmed followers set,
but before attempting to replicate new values, the new leader (1) brings itself up to date with its
highest-FUO confirmed follower and (2) brings its followers up to date. This is done by copying
the contents of the more up-to-date log to the less up-to-date log.

Followers Commit in Background. In the basic algorithm, followers do not know when a
value is committed and thus cannot replay the requests in the application. This is easily fixed
without additional communication. Since a leader will not start replicating in an index i before it
knows index i− 1 to be committed, followers can monitor their local logs and commit all values
up to (but excluding) the highest non-empty log index. This is called commit piggybacking, since
the commit message is folded into the next replicated value.

Omitting the Prepare Phase. Once a leader finds only empty slots at a given index at all
of its confirmed followers at line 22, then no higher index may contain an accepted value at
any confirmed follower; thus, the leader may omit the prepare phase for higher indexes (until
it aborts, after which the prepare phase becomes necessary again). This optimization concerns
performance on the common path. With this optimization, the cost of a Propose call becomes a
single RDMA write to a majority in the common case.

Growing Confirmed Followers. In our algorithm, the confirmed followers set remains fixed
after the leader initially constructs it. This implies that processes outside the leader’s confirmed
followers set will miss updates, even if they are alive and timely, and that the leader will abort
even if one of its followers crashes. To avoid this problem, we extend the algorithm to allow the
leader to grow its confirmed followers set by adding replicas which respond to its initial request
for permission. The leader must bring these replicas up to date before adding them to its set.
When its confirmed follower set is large, the leader cannot wait for its RDMA reads and writes
to complete at all of its confirmed followers before continuing, since we require the algorithm to
continue operating despite the failure of a minority of the replicas; instead, the leader waits for
just a majority of the replicas to complete.

Replayer. Followers continually monitor the log for new entries. This creates a challenge: how
to ensure that the follower does not read an incomplete entry that has not yet been fully written
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by the leader. We adopt a standard approach: we add an extra canary byte at the end of each
log entry [214, 279]. Before issuing an RDMA Write to replicate a log entry, the leader sets the
entry’s canary byte to a non-zero value. The follower first checks the canary and then the entry
contents. In theory, it is possible that the canary gets written before the other contents under
RDMA semantics. In practice, however, NICs provide left-to-right semantics in certain cases
(e.g., the memory region is in the same NUMA domain as the NIC), which ensures that the canary
is written last. This assumption is made by other RDMA systems [106, 107, 170, 214, 279].
Alternatively, we could store a checksum of the data in the canary, and the follower could read
the canary and wait for the checksum to match the data.

9.5 Background Plane
The background plane has two main roles: electing and monitoring the leader, and handling
permission change requests. In this section, we describe these mechanisms.

9.5.1 Leader Election
The leader election component of the background plane maintains an estimate of the current
leader, which it continually updates. The replication plane uses this estimate to determine
whether to execute as leader or follower.

Each replica independently and locally decides who it considers to be leader. We opt for a
simple rule: replica i decides that j is leader if j is the replica with the lowest id, among those
that i considers to be alive.

To know whether a replica has failed, we employ a pull-score mechanism, based on a local
heartbeat counter. A leader election thread continually increments its own counter locally and
uses RDMA Reads to read the counters (heartbeats) of other replicas and check whether they
have been updated. It maintains a score for every other replica. If a replica has updated its counter
since the last time it was read, we increment that replica’s score; otherwise, we decrement it.
Once a replica’s score drops below a threshold, we consider it to have failed. To avoid oscillation,
we have different failure and recovery thresholds, chosen so as to avoid false positives.

9.5.2 Permission Management
The permission management module is used when changing leaders. Each replica maintains
the invariant that only one replica at a time has write permission on its log. As explained in
Section 2.4, when a leader changes in Mu, the new leader must request write permission from all
the other replicas; this is done through a simple RDMA Write to a permission request array on
the remote side. When a replica r sees a permission request from a would-be leader `, r revokes
write access from the current holder, grants write access to `, and sends an ack to `.

During the transition phase between leaders, it is possible that several replicas think them-
selves to be leader, and thus the permission request array may contain multiple entries. A permis-
sion management thread monitors and handles permission change requests one by one in order
of requester id by spinning on the local permission request array.
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Figure 9.4: Performance comparison of different permission switching mechanisms. QP Flags: change
the access flags on a QP; QP Restart: cycle a QP through the reset, init, RTR and RTS states; MR Rereg:
re-register an RDMA MR with different access flags.

RDMA provides multiple mechanisms to grant and revoke write access. The first mechanism
is to register the consensus log as multiple overlapping RDMA memory regions (MRs), one per
remote replica. In order to grant or revoke access from replica r, it suffices to re-register the
MR corresponding to r with different access flags. The second mechanism is to revoke r’s write
access by moving r’s QP to a non-operational state (e.g., init); granting r write access is then
done by moving r’s QP back to the ready-to-receive (RTR) state. The third mechanism is to grant
or revoke access from replica r by changing the access flags on r’s QP.

We compare the performance of these three mechanisms in Figure 9.4, as a function of the
log size (which is the same as the RDMA MR size). We observe that the time to re-register an
RDMA MR grows with the size of the MR, and can reach values close to 100ms for a log size
of 4GB. On the other hand; the time to change a QPs access flags or cycle it through different
states is independent of the MR size, with the former being roughly 10 times faster than the latter.
However, changing a QPs access flags while RDMA operations to that QP are in flight sometimes
causes the QP to go into an error state. Therefore, in Mu we use a fast-slow path approach: we
first optimistically try to change permissions using the faster QP access flag method and, if that
leads to an error, switch to the slower, but robust, QP state method.

9.5.3 Log Recycling

Conceptually, a log is an infinite data structure but in practice we need to implement a circular
log with limited memory. This is done as follows. Each follower has a local log head variable,
pointing to the first entry not yet executed in its copy of the application. The replayer thread
advances the log head each time it executes an entry in the application. Periodically, the leader’s
background plane reads the log heads of all followers and computes minHead, the minimum of
all log head pointers read from the followers. Log entries up to the minHead can be reused.
Before these entries can be reused, they must be zeroed out to ensure the correct function of the
canary byte mechanism. Thus, the leader zeroes all follower logs after the leader’s first undecided
offset and before minHead, using an RDMA Write per follower. Note that this means that a new
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leader must first execute all leader change actions, ensuring that its first undecided offset is
higher than all followers’ first undecided offsets, before it can recycle entries. To facilitate the
implementation, we ensure that the log is never completely full.

9.5.4 Adding and Removing Replicas

Mu adopts a standard method to add or remote replicas: use consensus itself to inform replicas
about the change [193]. More precisely, there is a special log entry that indicates that replicas
have been removed or added. Removing replicas is easy: once a replica sees it has been removed,
it stops executing, while other replicas subsequently ignore any communication with it. Adding
replicas is more complicated because it requires copying the state of an existing replica into the
new one. To do that, Mu uses the standard approach of check-pointing state, and we do that from
one of the followers [279].

9.6 Implementation

Mu is implemented in 7157 lines of C++ code (CLOC [97]). It uses the ibverbs library for
RDMA over Infiniband. We implemented all features and extensions in sections 9.4 and 9.5,
except adding/removing replicas. Moreover, we implement some standard RDMA optimizations
to reduce latency. RDMA Writes and Sends with payloads below a device-specific limit (256
bytes in our setup) are inlined, meaning that their payload is written directly to their work request.
We pin threads to cores in the NUMA node of the NIC.

9.7 Evaluation

Our goal is to evaluate whether Mu indeed provides viable replication for microsecond comput-
ing. We aim to answer the following questions in our evaluation:
• What is the replication latency of Mu? How does it change with payload size and the

application being replicated? How does Mu compare to other solutions?
• What is Mu’s fail-over time?
• What is the throughput of Mu?
We evaluate Mu on a 4-node cluster, where each node has two Intel Xeon E5-2640 v4 CPUs

@ 2.40GHz (20 cores, 40 threads total per node), 256 GB of RAM equally split across the two
NUMA domains, and a Mellanox Connect-X 4 NIC. All 4 nodes are connected to a single 100
Gbps Mellanox MSB7700 switch through 100 Gbps Infiniband. All experiments show 3-way
replication, which accounts for most real deployments [158]. With more replicas, replication la-
tencies increases gradually with the number of replicas, up to 35% higher for Mu (for 9 replicas)
and a larger increase than Mu for other systems at every replication level.

We compare against APUS [279], DARE [250], and Hermes [178] where possible. The most
recent system, HovercRaft [187], also provides SMR but its latency at 30–60 microseconds is

175



substantially higher than the other systems, so we do not consider it further. For a fair compari-
son, we disable APUS’s persistence to stable storage, since Mu, DARE, and Hermes all provide
only in-memory replication.

We measure time using the POSIX clock_gettime function, with the CLOCK_MONOTONIC
parameter. In our deployment, the resolution and overhead of clock_gettime is around
16ns [105]. In our figures, we show bars labeled with the median latency, with error bars show-
ing 99-percentile and 1-percentile latencies. These statistics are computed over 1 million samples
with a payload of 64-bytes each, unless otherwise stated.

Applications. We use Mu to replicate several microsecond apps: three key-value stores, as
well as an order matching engine for a financial exchange.

The key-value stores that we replicate with Mu are Redis [256], Memcached [229], and
HERD [170]. For the first two, the client is assumed to be on a different cluster, and connects to
the servers over TCP. In contrast, HERD is a microsecond-scale RDMA-based key-value store.
We replicate it over RDMA and use it as an example of a microsecond application. Integration
with the three applications requires 183, 228 and 196 additional lines of code, respectively.

The other app is in the context of financial exchanges, in which parties unknown to each other
submit buy and sell orders of stocks, commodities, derivatives, etc. At the heart of a financial
exchange is an order matching engine [22], such as Liquibook [213], which is responsible for
matching the buy and sell orders of the parties. We use Mu to replicate Liquibook. Liquibook’s
input are buy and sell orders. We created an unreplicated client-server version of Liquibook using
eRPC [174], and then replicated this system using Mu. The eRPC integration and the replication
required 611 lines of code in total.

9.7.1 Common-Case Latency

We begin by testing the overhead that Mu introduces in normal execution, when there is no leader
failure. For these experiments, we first measure raw replication latency and compare Mu to other
replication systems, as well as to itself under different payloads and attached applications. We
then evaluate client-to-client application latency.

Effect of Payload and Application on Latency. We first study Mu in isolation, to understand
its replication latency under different conditions.

We evaluate the raw replication latency of Mu in two settings: standalone and attached.
In the standalone setting, Mu runs just the replication layer with no application and no client;
the leader simply generates a random payload and invokes propose() in a tight loop. In the
attached setting, Mu is integrated into one of a number of applications; the application client
produces a payload and invokes propose() on the leader. These settings could be different as
Mu and the application could interfere with each other.

Figure 9.5 compares standalone to attached runs as we vary payload size. Liquibook and
Herd allow only one payload size (32 and 50 bytes), so they have only one bar each in the graph,
while Redis and Memcached have many bars.
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Figure 9.5: Replication latency of Mu integrated into different applications [Memcached (mcd), Liquibook
(LiQ), Redis (rds), HERD] and payload sizes.

We see that the standalone version slightly outperforms the attached runs, for all tested appli-
cations and payload sizes. This is due to processor cache effects; in standalone runs, replication
state, such as log and queue pairs, are always in cache, and the requests themselves need not be
fetched from memory. This is not the case when attaching to an application. Mu supports two
ways of attaching to an application, which have different processor cache sharing. The direct
mode uses the same thread to run both the application and the replication, and so they share L1
and L2 caches. In contrast, the handover method places the application thread on a separate
core from the replication thread, thus avoiding sharing L1 or L2 caches. Because the applica-
tion must communicate the request to the replication thread, the handover method requires a
cache coherence miss per replicated request. This method consistently adds ≈400ns over the
standalone method. For applications with large requests, this overhead might be preferable to
the one caused by the direct method, where replication and application compete for CPU time.
For lighter weight applications, the direct method is preferable. In our experiments, we measure
both methods and show the best method for each application: Liquibook and HERD use the
direct method, while Redis and Memcached use the handover method.

We see that for payloads under 256 bytes, standalone latency remains constant despite in-
creasing payload size. This is because we can RDMA-inline requests for these payload sizes,
so the amount of work needed to send a request remains the same. At a payload of 256 bytes,
the NIC must do a DMA itself to fetch the value to be sent, which incurs a gradual increase in
overhead as the payload size increases. However, we see that Mu still performs well even at
larger payloads quite well; at 512B, the median latency is only 35% higher than the latency of
inlined payloads.
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Figure 9.6: Replication latency of Mu compared with other replication solutions: DARE, Hermes, Apus
on memcached (mcd), and Apus on Redis (rds).

Comparing Mu to Other Replication Systems. We now study the replication time of Mu
compared to other replication systems, for various applications. This comparison is not pos-
sible for every pair of replication system and application, because certain replication systems
are incompatible with certain applications. In particular, APUS works only with socket-based
applications (Memcached and Redis). In DARE and Hermes, the replication protocol is bolted
onto a key-value store, so we cannot attach it to the apps we consider—instead, we report their
performance with their key-value stores.

Figure 9.6 shows the replication latencies of these systems. Mu’s median latency outperforms
all competitors by at least 2.7×, outperforming APUS on the same applications by 4×. Further-
more, Mu has smaller tail variation, with a difference of at most 500ns between the 1-percentile
and 99-percentile latency. In contrast, Hermes and DARE both varied by more than 4µs across
our experiments, with APUS exhibiting 99-percentile executions up to 20µs slower (cut off in
the figure). We attribute this higher variance to two factors: the need to involve the CPU of many
replicas in the critical path (Hermes and APUS), and sequentializing several RDMA operations
so that their variance aggregates (DARE and APUS).

End-to-End Latencies. Figure 9.7 shows the end-to-end latency of our tested applications,
which includes the latency incurred by the application and by replication (if enabled). We show
the result in three graphs corresponding to three classes of applications.

The leftmost graph is for Liquibook. The left bar is the unreplicated version, and the right
bar is replicated with Mu. We can see that the median latency of Liquibook without replication
is 4.08µs, and therefore the overhead of replication is around 35%. There is a large variance in
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stores: Memcached and Redis, replicated with Mu and APUS. In this graph, each bar is split in two parts:
application latency (bottom) and replication latency (top).

latency, even in the unreplicated system. This variance comes from the client-server communi-
cation of Liquibook, which is based on eRPC. This variance changes little with replication. The
other replication systems cannot replicate Liquibook (as noted before, DARE and Hermes are
bolted onto their app, and APUS can replicate only socket-based applications). However, ex-
trapolating their latency from Figure 9.6, they would add unacceptable overheads—over 100%
overhead for the best alternative (Hermes).

The middle graph in Figure 9.7 shows the client-to-client latency of replicated and unrepli-
cated microsecond-scale key-value stores. The first bars in orange shows HERD unreplicated and
HERD replicated by Mu. The green bar shows DARE’s key-value store with its own replication
system. The median unreplicated latency of HERD is 2.25µs, and Mu adds 1.34µs. While this is
a significant overhead (59% of the original latency), this overhead is lower than any alternative.
We do not show Hermes in this graph since Hermes does not allow for a separate client, and only
generates its requests on the servers themselves. HERD replicated with Mu is the best option
for a replicated key-value store, with overall median latency 2× lower than the next best option,
with a much lower variance.

The rightmost graph in Figure 9.7 shows the replication of the traditional key-value stores,
Redis and Memcached. For these applications, we compare replication with Mu to replication
with APUS. Each bar has two parts: the bottom is the latency of the application and client-server
communication, and the top is the replication latency. Note that the scale starts at 100µs to show
better precision.

Mu replicates these apps about 5µs faster than APUS, a 5% difference. With a faster net-
work, this difference would be bigger. In either case, Mu provides fault tolerant replication with
essentially no overhead for these applications.

9.7.2 Fail-Over Time

We now study Mu’s fail-over time. In these experiments, we run the system and subsequently
introduce a leader failure. To get a thorough understanding of the fail-over time, we repeatedly
introduce leader failures (1000 times) and plot a histogram of the fail-over times we observe. We
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Figure 9.8: Fail-over time distribution.

also time the latency of permission switching, which corresponds to the time to change leaders
after a failure is detected. The detection time is the difference between the total fail-over time
and the permission switch time.

We inject failures by delaying the leader, thus making it become temporarily unresponsive.
This causes other replicas to observe that the leader’s heartbeat has stopped changing, and thus
detect a failure.

Figure 9.8 shows the results. We first note that the total fail-over time is quite low; the median
fail-over time is 873µs and the 99-percentile fail-over time is 947µs, still below a millisecond.
This represents an order of magnitude improvement over the best competitor at ≈10 ms (Hover-
cRaft [187]).

The time to switch permissions constitutes about 30% of the total fail-over time, with mean
latency at 244µs, and 99-percentile at 294µs. Recall that this measurement in fact encompasses
two changes of permission at each replica; one to revoke write permission from the old leader
and one to grant it to the new leader. Thus, improvements in the RDMA permission change
protocol would be doubly amplified in Mu’s fail-over time.

The rest of the fail-over time is attributed to failure detection (≈600µs). Although our pull-
score mechanism does not rely on network variance, there is still variance introduced by pro-
cess scheduling (e.g., in rare cases, the leader process is descheduled by the OS for tens of
microseconds)—this is what prevented us from using smaller timeouts/scores and it is an area
under active investigation for microsecond apps [62, 246, 253, 254].
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9.7.3 Throughput

While Mu optimizes for low latency, in this section we evaluate the throughput of Mu. In our
experiment, we run a standalone microbenchmark (not attached to an application). We increase
throughput in two ways: by batching requests together before replicating, and by allowing mul-
tiple outstanding requests at a time. In each experiment, we vary the maximum number of
outstanding requests allowed at a time, and the batch sizes.

Figure 9.9 shows the results in a latency-throughput graph. Each line represents a different
max number of outstanding requests, and each data point represents a different batch size. As
before, we use 64-byte requests.

We see that Mu reaches high throughput with this simple technique. At its highest point, the
throughput reaches 47 Ops/µs with a batch size of 128 and 8 concurrent outstanding requests,
with per-operation median latency at 17µs. Since the leader is sending requests to two other
replicas, this translates to a throughput of 48Gbps, around half of the bandwidth of the NIC.

Latency and throughput both increase as the batch size increases. Median latency is also
higher with more concurrent outstanding requests. However, the latency increases slowly, re-
maining at under 10µs even with a batch size of 64 and 8 outstanding requests.

There is a throughput wall at around 45 Ops/µs, with latency rising sharply. This can be
traced to the transition between the client requests and the replication protocol at the leader
replica. The leader must copy the request it receives into a memory region prepared for its
RDMA write. This memory operation becomes a bottleneck. We could optimize throughput
further by allowing direct contact between the client and the follower replicas. However, that
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may not be useful as the application itself might need some of the network bandwidth for its own
operation, so the replication protocol should not saturate the network.

Increasing the number of outstanding requests while keeping the batch size constant substan-
tially increases throughput at a small latency cost. The advantage of more outstanding requests is
largest with two concurrent requests over one. Regardless of batch size, this allows substantially
higher throughput at a negligible latency increase: allowing two outstanding requests instead of
one increases latency by at most 400ns for up to a batch size of 32, and only 1.1µs at a batch
size of 128, while increasing throughput by 20–50% depending on batch size. This effect grows
less pronounced with higher numbers of outstanding requests.

Similarly, increasing batch size increases throughput with a low latency hit for small batch
sizes, but the latency hit grows for larger batches. Notably, using 2 outstanding requests and a
batch size of 32 keeps the median latency at only 3.4µs, but achieves throughput of nearly 30
Ops/µs.

9.8 Related Work
SMR in General. State machine replication is a common technique for building fault-tolerant,
highly available services [193, 263]. Many practical SMR protocols have been designed, ad-
dressing simplicity [61, 67, 158, 198, 242], cost [189, 196], and harsher failure assumptions [72,
73, 126, 189]. In the original scheme, which we follow, the order of all operations is agreed
upon using consensus instances. At a high-level, our Mu protocol resembles the classical Paxos
algorithm [193], but there are some important differences. In particular, we leverage RDMA’s
ability to grant and revoke access permissions to ensure that two leader replicas cannot both
write a value without recognizing each other’s presence. This allows us to optimize out partic-
ipation from the follower replicas, leading to better performance. Furthermore, these dynamic
permissions guide our unique leader changing mechanism.

Several implementations of multipaxos avoid repeating Paxos’s prepare phase for every con-
sensus instance, as long as the same leader remains [78, 194, 226]. Piggybacking a commit
message onto the next replicated request, as is done in Mu, is also used as a latency-hiding
mechanism in [226, 279].

Aguilera et al. [12] suggested the use of local heartbeats in a leader election algorithm de-
signed for a theoretical message-and-memory model, in an approach similar to our pull-score
mechanism. However, no system has so far implemented such local heartbeats for leader elec-
tion in RDMA.

Single round-trip replication has been achieved in several previous works using two-sided
sends and receives [108, 178, 180, 189, 196]. Theoretical work has shown that single-shot con-
sensus can be achieved in a single one-sided round trip [13]. However, Mu is the first system to
put that idea to work and implement one-sided single round trip SMR.

Alternative reliable replication schemes totally order only non-conflicting operations [86,
156, 178, 195, 247, 249, 265]. These schemes require opening the service being replicated to
identify which operations commute. In contrast, we designed Mu assuming the replicated service
is a black box. If desired, several parallel instances of Mu could be used to replicate concurrent
operations that commute. This could be used to increase throughput in specific applications.
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It is also important to notice that we consider “crash” failures. In particular, we assume nodes
cannot behave in a Byzantine manner [72, 84, 189].

Improving the Stack Underlying SMR. While we propose a new SMR algorithm adapted to
RDMA in order to optimize latency, other systems keep a classical algorithm but improve the un-
derlying communication stack [174, 208]. With this approach, somehow orthogonal to ours, the
best reported replication latency is 5.5 µs [174], almost 5× slower than Mu. HovercRaft [187]
shifts the SMR from the application layer to the transport layer to avoid IO and CPU bottlenecks
on the leader replica. However, their request latency is more than an order of magnitude more
than that of Mu, and they do not optimize fail-over time.

Some SMR systems leverage recent technologies such as programmable switches and NICs [164,
169, 209, 216]. However, programmable networks are not as widely available as RDMA, which
has been commoditized with technologies such as RoCE and iWARP.

SMR over RDMA. A few SMR systems have recently been designed for RDMA [41, 250,
279]. DARE [250] was the first RDMA-based SMR system. Similarly to Mu, DARE uses only
one-sided RDMA verbs executed by the leader to replicate the log in normal execution. However,
DARE requires updating the tail pointer of each replica’s log in a separate RDMA Write from
the one that copies over the new value, and therefore induces more round-trips for replication.
Furthermore, DARE has a heavier leader election protocol than Mu’s. DARE’s leader election
is similar to the one used in RAFT, in which care is taken to ensure that at most one process
considers itself leader at any point in time. APUS [279] improved upon DARE’s throughput.
However, APUS requires active participation from the follower replicas during the replication
protocol, resulting in higher latencies. Both DARE and APUS use transitions through queue pair
states to allow or deny RDMA access. This is reminiscent of our permissions approach, but is
less fine grained.

Derecho [41] provides durable and non-durable SMR, by combining a data movement proto-
col (SMC or RDMC) with a shared-state table primitive (SST) for determining when it is safe to
deliver messages. This design yields high throughput but also high latency: a minimum of 10µs
for non-durable SMR [41, Figure 12(b)] and more for durable SMR. This latency results from a
node delaying the delivery of a message until all nodes have confirmed its receipt using the SST,
which takes additional RDMA communication steps compared to Mu. It would be interesting to
explore how Mu’s protocol could improve a large system like Derecho.

Other RDMA Applications. More generally, RDMA has recently been the focus of many data
center system designs, including key-value stores [106, 170] and transactions [173, 280]. Kalia
et al. provide guidelines on the best ways to use RDMA to enhance performance [172]. Many
of their suggested optimizations are employed by Mu. Kalia et al. also advocate the use of two-
sided RDMA verbs (Sends/Receives) instead of RDMA Reads in situations in which a single
RDMA Read might not suffice. However, this does not apply to Mu, since we know a priori
which memory location should be read, and we rarely have to follow up with another read.
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Failure Detection. Failure detection is typically done using timeouts. Conventional wisdom is
that timeouts must be large, in the seconds [205], though some systems report timeouts as low
as 10 milliseconds [187]. It is possible to improve detection time using inside information [205,
206] or fine-grained reporting [207], which requires changes to apps and/or the infrastructure.
This is orthogonal to our score-based mechanism and could be used to further improve Mu.

9.9 Conclusion
Computers have progressed from batch-processing systems that operate at the time scale of min-
utes, to progressively lower latencies in the seconds, then milliseconds, and now we are in the
microsecond revolution. Work has already started in this space at various layers of the comput-
ing stack. Our contribution fits in this context, by providing generic microsecond replication for
microsecond apps.

Mu is a state machine replication system that can replicate microsecond applications with
little overhead. This involved two goals: achieving low latency on the common path, and mini-
mizing fail-over time to maintain high availability. To reach these goals, Mu relies on (a) RDMA
permissions to replicate a request with a single one-sided operation, as well as (b) a failure de-
tection mechanism that does not incur false positives due to network delays—a property that
permits Mu to use aggressively small timeout values.
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Chapter 10

Conclusion

In this thesis, we bridge the gap between theory and practice in concurrent and distributed com-
puting, by building and strengthening the theoretical foundations of the study of practical sys-
tems. We take two broad approaches toward this goal; firstly, we refine the classic shared-
memory model, and secondly, we study and model new technologies. However, plenty of work
remains in the effort to close the gap between theory and practice in this field, with many promis-
ing directions and open questions arising from the work in this thesis.

Analyzing Shared-Memory Algorithms. Our tool for studying memory schedulers, Severus,
along with the experiments presented in Chapter 3, revealed complicated patterns that changed
depending on many factors. However, some patterns persisted across the different workloads and
architectures tested; we believe that such patterns can be abstracted into a more accurate model
of memory-operation schedulers. In particular, a promising direction to take is to make use of
Severus to extract a stochastic model that will approximate the observed scheduler behavior.
Since the schedules produced by different workloads on different machines can vary greatly
and depend on many parameters, we believe that machine learning can aid in creating faithful
stochastic models. Plugging such a stochastic model into the modular framework presented in
Chapter 2 could yield a model that reflects practice better than before, and can still account for
real-world phenomena like the practical success of back-off.

Non-Volatile Memories. The study of non-volatile main memories is relatively young. Un-
surprisingly, as is the expectation when a new problem is tackled, several different correctness
criteria have been suggested to capture the meaning of persistence [8, 30, 56, 59, 122, 166].
Currently, very little is understood about the comparative power of these different definitions.
Do some of the correctness conditions in the literature imply others? Are they incomparable?
Does one correctness condition admit solutions that are provably more efficient than another?
And, perhaps most importantly, do some of these conditions better capture the desired behav-
ior of practical persistent code? We believe that answering these questions can help streamline
the study of NVRAMs, and help us gain clarity in what should or should not be expected from
persistent algorithms upon recovery.

On a more practical note, we believe that NVRAM has the most potential to make an impact
on applications that already rely on persistence (through disk rather than main memory). Such

185



applications include large databases and file systems, which must store large amounts of data and
be accessible for long periods of time. When we discussed the performance of our persistent sim-
ulations in Chapter 5, we viewed our goal as minimizing the overheads that we introduce to gain
persistence. This may give the impression that we must trade off performance for persistence.
However, in applications in which persistence is essential, and which therefore currently rely on
disk for persistence, using NVRAM-based solutions could potentially improve performance by
orders of magnitude. Applying NVRAM to file systems and databases is already an active area
of research [74, 92, 202, 219, 278]. However, many interesting open problems remain in iden-
tifying the best data structure for the job, and integrating these applications with persistent data
structures that, due to being on main memory rather than disk, can support significantly more
concurrent accesses than they could before.

RDMA and Consensus. In Chapter 7, we demonstrate that RDMA can be used sparingly to
yield consensus algorithms that are highly scalable and tolerate more failures than is possible
in classic networks. In Chapter 8, we prove that RDMA can also be used to achieve impres-
sive common-case performance. However, the latter result does not apply to the large networks
considered in the former case. An interesting open problem is to understand whether this dis-
parity is inherent, or whether we can design a highly fault-tolerant RDMA-based algorithm that
both scales to large networks, and maintains the same common-case performance. If this is im-
possible, what is the tradeoff between scalability, fault tolerance, and performance in RDMA
networks?

Furthermore, we only briefly touched upon the potential of employing RDMA to tolerate
Byzantine failures. In Chapter 8, we proved that it is possible to tolerate f < n/2 Byzantine
failures when solving consensus in the permissioned M&M model. However, our solution is far
from being a practical one; while it boasts optimal common-case performance, its running time
quickly deteriorates once network conditions are less than ideal. Furthermore, when building
a system that promises to withstand Byzantine attacks, one must ensure that no side-channel
attacks are possible. This means not only relying on the theoretical model, but also studying the
security of the permission mechanism of RDMA.

Finally, the insights gained in this thesis about RDMA have only focused on the problem of
consensus. However, we believe that RDMA can also be used to strengthen solutions to other
problems. In fact, some work has already studied the potential of RDMA (and, in particular, the
M&M model) to solve leader election [12] and implementing global shared registers [139]. It
would be interesting to discover the power of RDMA in other problems as well.

Other Directions. We believe that it is important to continue to narrow the gap between theory
and practice in concurrent and distributed systems. Pursuing this long-term goal can take many
forms, including studying the relationships between different hardware, and applying tools from
different subfields of computer science to help find clean patterns in complicated real systems
and apply new theoretical insights in practice.
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