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Abstract
Traditionally, optimization in computer science has been studied in the full in-

formation setting: data is collected, a program is run, and then the output is used.
However, the increasing pervasiveness of user-facing applications is increasingly
shifting the focus to computation under incomplete information: data is generated
continuously by users, who expect their new data to quickly affect the external-
ized solution. This modern computational paradigm motivates a renewed interest
in computation under uncertainty (about the input), including online, dynamic and
streaming algorithms.

Many problems providing the renewed impetus for studying algorithms under
uncertainty come from the field of matching theory—the study of pairing agents/items.
Examples abound, arising in disparate applications, from ride-sharing apps, to Inter-
net advertising, to online gaming. This motivates the study of matching theory under
uncertainty. Moreover, the study of matching theory has historically played a key
role in the development of immensely influential techniques for computation more
broadly. An additional motivation for studying matching theory under uncertainty,
then, is its potential to provide similar fundamental insights for computation under
uncertainty more broadly.

In this thesis we answer several longstanding open problems in the area of match-
ing theory under uncertainty, and hint at some methods with potential broader appli-
cability to computation under uncertainty. This again illustrates the pivotal role of
matching theory, this time in modern settings. In Part I, we study online algorithms;
here, the input is revealed in parts, in some adversarial order, in the form of re-
quests, to which we must respond immediately and irrevocably. In Part II, we study
online algorithms under structural and stochastic assumptions which are motivated
by information about practical inputs of interest, allowing for better guarantees than
possible for worst-case inputs. Finally, in Part III, we study dynamic algorithms,
where the input is constantly changing, and the algorithm’s choices, while not irre-
vocable, must be quick; in the same part, we study streaming algorithms, motivated
by big-data applications, where choices are not irrevocable, but are restricted to only
using a limited amount of memory compared to the (massive) input size.
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Chapter 1

Introduction

Uncertainty is all around us; as individuals, we regularly have to make decisions with only partial
information about the future.1 Companies likewise increasingly have to make decisions under
similar circumstances, due to the increasing prevalence of user-facing applications. In such ap-
plications, inputs that are unknown a priori are revealed in real time as they are generated by
users. These users then expect prompt response to their data’s effect on the problem input. Such
dynamics are inherent to ride-sharing apps when matching drivers and passengers, Internet ad
platforms when allocating ad slots to advertisers, and online gaming platforms when matching
players.

A common feature of the above applications is their concern with pairing agents with agents,
or agents with items. These applications are therefore all examples of problems in the area
of matching theory. This area of combinatorial optimization, which has wide-ranging applica-
tions, most notably in economics and market design, has played a “catalytic role” in developing
techniques and fundamental concepts in computation more broadly—to paraphrase Lovász and
Plummer [200]. In particular, research on matching theory under full information has foreshad-
owed immensely influential techniques and concepts more broadly, including the primal-dual
method [190], the field of polyhedral combinatorics [87], and the equation of polytime com-
putability with tractability [88]. For many matching-theoretic problems, we know efficient exact
algorithms, under full information. Unfortunately, these algorithms are not applicable when we
must respond urgently to changes to partial input. In fact, this uncertainty and urgency makes
problems provably harder than their full-information counterparts, ruling out all but approximate
algorithms. The objective when considering models under uncertainty, then, is to guarantee the
best achievable approximation compared to the full-information optimal solution.

Motivated by the abundance of applications involving matching theory in models of com-
putation under uncertainty, and the pivotal role which matching theory has played in the devel-
opment of fundamental techniques and notions in computer science, this thesis focuses on the
intersection of these areas: matching theory under uncertainty. In this thesis, we answer sev-
eral long-standing open problems in the area of matching theory under uncertainty, presenting
improved online, dynamic and streaming algorithms for matching-theoretic problems in these
models, or proofs that no such improved algorithms exist.

1Special thanks to COVID-19 for making this point abundantly apparent.
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In the following three sections, we discuss our main contributions, contrasting them with
prior state-of-the-art. In Section 1.4 we summarize these results, and briefly discuss our unify-
ing techniques. In Section 1.5, we give a brief bibliography. We conclude this chapter with a
discussion of how best to read this thesis, in Section 1.6.

1.1 Online Algorithms—Hedging One’s Bets
In online problems, the algorithm’s input is revealed incrementally in the form of requests, to
which an algorithm responds with immediate and irrevocable decisions. Can such online algo-
rithms’ output be competitive with the hindsight-optimal solution? How well can such algorithms
hedge their bets, by preparing for all possible eventualities? These are the kinds of questions we
address in Part I.

Online matching under general arrivals (Chapters 3 and 4): A classic online problem, intro-
duced by Karp et al. [179] in 1990, is the online bipartite matching problem. In this problem,
impatient agents (e.g., passengers in a ride-sharing app) arrive and must be matched to compat-
ible agents (e.g., drivers). As users are impatient and are likely to turn off the app in favor of a
competing app, such matches must be made immediately and irrevocably. The abstract problem
modeling this scenario consists of an (unknown) bipartite graphs, with vertices arriving on one
side of the graph, together with their edges, and these must be matched (or left unmatched) for-
ever upon arrival. The objective is to match as many vertices (serve as many ride requests) as
possible. The trivial greedy online algorithm is 1/2 competitive with respect to the hindsight opti-
mum, and no deterministic algorithm can do better. Can randomization help us do better? Indeed
it can! Karp et al. presented a beautiful randomized (1− 1/e)-competitive algorithm, which they
show is optimal among all algorithms.

In their seminal work, Karp et al. [179] raised the question of whether similar positive results
are possible for general graphs under vertex arrivals, as generalizing their results for bipartite
graphs. For such a generalization, vertices in a (general) graph arrive over time, revealing edges
to their previously-arrived neighbors, and an algorithm can only match a new edge containing
the newest-arrived vertex in the graph. Subsequent work, starting with Mehta’s survey on online
matching [206], suggested and studied a similarly natural generalization—that of online match-
ing under edge arrivals. Here, edges arrive over time, with each edge either being added to
the matching or refused, immediately and irrevocably upon arrival. This corresponds to perish-
able matching opportunities, for example fleeting collaboration opportunities between teams in
a company. Greedy is 1/2 competitive in both these more general models, too, and remains the
optimal deterministic algorithm. Can one do better by using randomization?

Attempts at addressing the above question for these general arrival models were made over
the years, under numerous relaxations and restrictions of the problem [55, 66, 95, 146, 163, 165,
165, 166, 191, 259, 267]. The problem was proven harder under these more general arrival mod-
els [55, 95, 165], in the sense that no randomized algorithm can achieve the (1− 1/e) competitive
ratio of [179] for online bipartite matching. However, an answer to the question of whether ran-
domized algorithms can outperform deterministic algorithm’s optimal competitive ratio of 1/2, in
either of these models, remained elusive.

We answer the above question, for both of these general arrival models. In Chapter 3 we show
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that for matching under edge arrivals, greedy is essentially optimal, as no randomized algorithm
is better than 1/2 + o(1) competitive; that is, we show that randomization (and even considering
fractional relaxations of the problem) does not help for this problem. In Chapter 4 we show that
for vertex arrivals randomization does help, and we present a (1/2 + Ω(1))-competitive algorithm
for this more general model. For our positive results, we show how to randomly round the
fractional matching of a (1/2+Ω(1))-competitive fractional algorithm of [267], without incurring
too much loss in the competitive ratio. This result, as well as many other problems for which
fractional competitive algorithms are known but randomized ones are not, motivate further study
of online rounding, which we turn to in Chapter 5.

Rounding fractional bipartite matchings online (Chapter 5): A common design paradigm for
approximation and online algorithms is to solve some fractional relaxation of the problem, and
round this solution to a viable integral solution (online). For example, for offline matching in
bipartite graphs, a classic rounding scheme of Gandhi et al. [122] allows to round a fractional
matching ~x ∈ R|E|>0 (for which

∑
e3v xe 6 1 for all v ∈ V ), by outputting an integral (randomized)

matchingM, such that each edge is matched inM with probability Pr[e ∈ M] = xe. We note
that rounding each edge independently does not result in a legal matching, and so the edges are
rounded in a dependent manner by [122]. This dependent rounding scheme has been highly
influential, with numerous applications and extensions over the years.

For online bipartite matching, however, the design paradigm of solving a fractional relaxation
followed by dependent randomized rounding has gone largely overlooked. As we show in Chap-
ter 5, there is good reason for this, since an online dependent rounding scheme paralleling that of
[122] does not exist: we show that no online rounding scheme for matching problems can avoid
losing a multiplicative factor depending on the magnitude of the fractional values of the input
online fractional matching ~x, specifically 1−Ω(

√
|x|∞). In our proof we show that for ∆-regular

graphs (i.e., graphs where each vertex has degree ∆), despite the existence of a 1-competitive
fractional matching algorithm, which assigns 1/∆ to each edge, no randomized online algorithm
is better than 1−Ω(1/

√
∆) competitive. In Chapter 5, we present an online dependent rounding

scheme which allows us to essentially meet this bound, presenting a 1− Õ(1/
√

∆)-competitive
randomized online matching algorithm for bipartite graphs. Such bounds were previously only
known under stochastic or random-order arrivals [21, 176], and a bound converging to one as
∆ increases is provably impossible for deterministic algorithm under adversarial arrivals, as we
show in Chapter 7.

Beyond the above qualitative result for regular bipartite graphs—the most widely-studied
graph family in the matching theory literature—the results of this chapter point at a more nuanced
picture of dependent rounding in online settings. As mentioned before, we show the existence
of families of online fractional matchings ~x such that any randomized matching algorithm out-
putting a matchingMmust have (many) edges e for which Pr[e ∈M] < xe ·(1−Ω(

√
|x|∞). In

Chapter 5, we present an online dependent rounding scheme which matches this lower bound, up
to the exact polynomial dependence on |x|∞. Our rounding scheme, on any fractional bipartite
matching ~x presented online, outputs a matchingM that matches each edge e with probability
Pr[e ∈ M] = xe ·

(
1− Õ

(
3
√
|x|∞

))
. This online dependent rounding scheme seems like a

powerful tool, of wider applicability. Indeed, in Chapter 6, we use this tool to resolve an open
problem concerning the online edge coloring problem, addressed below.
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Online Edge Coloring (Chapter 6): A “dual” problem to that of computing a large matching is
the edge coloring problem, i.e., the problem of decomposing the graph into a minimum number
of matchings (colors). This corresponds to scheduling of two-agent tasks. For example, this is the
problem used to schedule two-team sports games on different days, so that no team in the league
plays more than once a day. König [184], in a century-old cornerstone result of matching theory,
proved that every bipartite graph of maximum degree ∆ can be edge colored using ∆ color.
(Clearly, no fewer colors suffice.) Moreover, this proof can be extended to yield an efficient
algorithm which computes such a coloring.

In an online setting, where bipartite edge coloring can be used to model switch scheduling for
Internet routers [5], the problem seems more challenging. In particular, in 1992 Bar-Noy et al.
[25] showed that for small ∆ = O(log n), the trivial greedy online algorithm, which is (2−o(1))
competitive, is optimal, at least for bounded-degree graphs. They further conjectured that better
algorithms exist for higher-degree graphs, with ∆ = ω(log n).

In Chapter 6 we resolve this conjecture affirmatively for the bipartite one-sided vertex arrival
model of Karp et al., giving an optimal (1 + o(1))-competitive online edge coloring algorithm
for graphs with maximum degree ∆ = ω(log n), known a priori. On the other hand, we prove a
dichotomy between the setting were ∆ is known and when it isn’t, proving that not knowing ∆
makes the problem strictly harder, and no ( e

e−1
− Ω(1))-competitive algorithm exist in this case.

On the other hand, we show that in this case, too, the greedy algorithm is suboptimal for large
∆ = ω(log n), for which we present an optimal ( e

e−1
+ o(1))-competitive online algorithm. One

key ingredient for our algorithms (both for the known and unknown ∆ case) are our online round-
ing scheme for fractional matchings from Chapter 5, possibly hinting at further applicability of
this scheme for other problems.

1.2 Online Algorithms—Beyond the Worst Case
A common criticism of online algorithms and competitive analysis is their pessimism. Focusing
on worst-case inputs often results in guarantees which are not useful for inputs observed in
practice. This has made online algorithms something of a poster child for the agenda of beyond-
worst-case analysis (see [242, 243]), which aims to focus precisely on such practical inputs.
One such approach assumes structural properties of inputs observed in practice. Another such
approach is the assumption of various stochastic online models, where input is drawn from some
distribution, or randomly permuted. This approach is strongly motivated by problems generated
by millions of users over a long period of time, for which statistical information is often available
based on prior data. What kind of improved guarantees can online algorithms obtain given such
structural or distributional information? We address such questions in Part II.

Internet advertising (Chapter 7): Consider the problem of selling ads on the Internet. At the
beginning of a day, advertisers announce their daily advertising budget to an ad exchange, and
how much they are willing to pay to have their ad displayed to users of various market segments
they target. Whenever a user u visits a webpage, an ad can be displayed in an ad slot, which must
be sold immediately and irrevocably to an advertiser whose budget has not yet been exhausted.
This extension of online bipartite matching, called the AdWords problem [207], is the driving
economic force behind free content on the Internet. As such, it has been studied extensively over
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the years. In particular, experimental results have shown that simple heuristic online algorithms
do surprisingly well—better than theory would suggest. How does one explain this empirical
success?

In Chapter 7, we present a possible theoretical explanation of this practical success. Infor-
mally, we study instances with imbalanced thicknesses on the advertisers’ and ad slots’ sides.
In more detail, we study the online bipartite matching and AdWords problems where advertisers
(offline nodes) are interested in a large market segment, corresponding to many ad slots, at least
some k, and ad slots (online nodes) mostly correspond to users in few targeted market segments
at any point in time, say at most d 6 k. For such practical inputs, we show that greedy algorithms
achieve a competitive ratio of 1 − Θ( d

k
), tending to one as the imbalance, k/d, tends to infinity.

Moreover, guided by this intuition, we show more elaborate algorithms whose competitive ratios
tend exponentially faster to one as this imbalance grows, and show that this convergence rate is
optimal among all deterministic algorithms for such inputs. The intuition driving our algorithm
for online bipartite matching was used in practice by engineers at Google (private communica-
tion), and so our work serves as a theoretical justification of the empirical success of heuristics
used in practice.

Online Metric Matching (Chapter 8): Consider a case of the ride-sharing problem where
drivers may only drive one passenger a day. Passengers arrive at different locations of the city,
requesting a ride. When a passenger arrives, she must be immediately and irrevocably matched to
a driver. The ride-sharing app wishes to minimize the travel time of drivers to the passengers they
are matched to. This is an instance of online min-cost perfect matching, where edge costs are
given by a metric. This problem, first studied in the 90s [172, 182], is known to have an optimal
competitive ratio poly(log n) (the exact polylogarithmic term remains open). These worst-case
bounds seem overly pessimistic and not very useful practically. What can be said if the input
is generated by a stochastic process? For a request sequence which is randomly permuted, the
optimal competitive ratio is known to be Θ(log n) a result of [239]. While this is possibly better
than under adversarial arrivals, it is still far from being practically useful. What can be done if
we know more about the random process generating the requests? For example, what if each
request is drawn independently from a known distribution (learned by the ride-sharing company
over time)?

In Chapter 8, we address this problem, and present an O((log log log n)2)-competitive algo-
rithm, i.e., doubly exponentially better than possible under adversarial arrivals, or even random-
order arrivals, and arguably closer to a practically useful guarantee. In fact, we show that on
structured metrics of relevance, our algorithm is O(1) competitive, and we conjecture that our
algorithm is O(1) competitive for all metrics.

Random-Order Online Edge Coloring (Chapter 9): Returning to the online edge coloring
problem, we recall that, by Chapter 6, under one-sided vertex arrivals in bipartite graphs, an edge
coloring using (1 + o(1))∆ colors is possible to compute online for graphs with ∆ = ω(log n).
Such results are unknown under the more fine-grained edge arrival model. However, given the
results of Chapters 3 and 4 for online matching, it is not implausible that the edge-coloring
problem is strictly harder under such a fine-grained arrival model. Nonetheless, results matching
those of Chapter 6 were conjectured for this more general arrival model by Bar-Noy et al. [25]
some 30 years ago. This conjecture remains unresolved. To make progress on this problem,
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Motwani and co-authors revisited this problem under random-order edge arrivals [5, 22]. Both
papers proved that a coloring using fewer than the trivial 2∆− 1 colors (obtained by the greedy
algorithm), can be achieved for graphs of high enough maximum degree ∆. Aggarwal et al.
[5] gave a (1 + o(1))-competitive algorithm for n-node (multi)graphs with maximum degree
∆ = ω(n2), and Bahmani et al. [22] gave a 1.26-competitive algorithm for simple graphs with
∆ = ω(log n). Whether an algorithm achieving the best of both worlds with regards to these two
works exists, thus resolving the conjecture of [25] under random-order edge arrivals, remained
open.

In Chapter 9, we answer this question in the affirmative, presenting such an algorithm, by ex-
tending and adapting an algorithm of [231] from another area of computation under uncertainty—
distributed algorithms—and showing how to implement this algorithm in our model.

1.3 Dynamic and Streaming Algorithms
So far, when discussing computation under uncertainty, we focused on online algorithms. How-
ever, there are many other computational models where algorithms are required to make deci-
sions based on only partial information regarding the input. Examples include distributed algo-
rithms, local computation algorithms, dynamic algorithms and streaming algorithms, to name a
few. In Part III we focus on these models of computation under uncertainty above.

Dynamic Matching (Chapter 10): In the previous section the core difficulties were the urgency
and irrevocable nature of choices made. But what if changes to choices made are possible,
but must be performed quickly? Dynamic algorithms address precisely such challenges. One
problem which has been intensely studied in dynamic settings in recent years is the (approximate)
maximum matching problem. Here the goal is to maintain an approximately-maximum matching
subject to edge insertions and deletions—referred to as updates—in the graph, while spending
little computation time per update—referred to as update time. The fast worst-case update time
guarantees known to date are poly(log n, 1/ε) update time for (2 + ε)-approximate matching
[14, 40, 62] (the first of these references is a joint work of the author with Arar et al).

A limitation of the above randomized algorithms, and of all prior randomized dynamic match-
ing algorithms, is their assumption that the update sequence is generated by an oblivious adver-
sary, a priori, rather than by an adaptive adversary, which chooses the updates based on previous
queries’ outputs. This oblivious adversary assumption rules out the use of such algorithms in
user-facing applications, where updates may be affected by previous queries’ outputs. As ob-
served by Mądry [217], the assumption of a non-adaptive update sequence also rules out the
black-box usage of such dynamic algorithms to speed up static algorithms. As such, a major
open problem in the field of dynamic algorithms is understanding whether guarantees achieved
by randomized algorithms under the oblivious adversary assumption can be achieved against the
stronger, adaptive adversary. In fact, for many problems, including the dynamic matching prob-
lem, it was open whether any randomized algorithms which work against adaptive adversaries
can outperform (known) deterministic algorithms.

In Chapter 10 we resolve this question, presenting a number of randomized matching algo-
rithms which are the first to work against adaptive adversaries and outperform known determin-
istic algorithms.
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Streaming Algorithms (Chapter 11): Another widely-studied model of computation under un-
certainty, motivated by big-data applications, whose data is too large to store in memory, is the
streaming model. Here, computation is performed while scanning the input elements in an arbi-
trary order and using little memory—ideally of size proportional to the output size, rather than
proportional to the (massive) input size. For example, storingO(n) edges of a graph—as opposed
to the graph’s O(n2) edges—allows to compute a 2-approximate matching in such a streaming
setting. Whether similar approximation is achievable for maximum-weight matching was a long-
standing open question, resolved in a recent breakthrough by Paz and Schwartzman [232], who
presented a (2 + ε)-approximate algorithm storing O(n log n) edges. In joint work with Mohsen
Ghaffari [127], we simplified this algorithm’s analysis, and obtained a space-optimal algorithm
for this problem, which stores only the minimum requisite O(n) edges.

An even more general problem was studied in the literature—that of computing a high-valued
matchings according to a submodular function, i.e., an objective exhibiting diminishing returns
[58, 65, 111]. For this more general problem, upper and lower bounds were known, but the gap
between these bounds was significant.

In Chapter 11, we improve on prior upper and lower bounds for streaming submodular match-
ing problems. Our algorithms of this section generalize that of [127, 232], and with the right
parameters, recreate the same guarantees for the maximum weight matching problem. For the
more general submodular problem, we obtain our improved results by extending the (random-
ized) primal-dual method. Using the same approach, we give a unified analysis of previous
algorithms [58, 111]. Our results and analyses hint at wider applicability of the primal-dual
method for such submodular problems in the streaming model and beyond.

1.4 Summary of Main Contributions and Techniques

In this thesis, we tackle three common flavors of problems: online matching problems, online
edge coloring problems, and matching problems in other models of computation under uncer-
tainty, tackled by dynamic and streaming algorithms. For most of the problems we study, we
either break a natural barrier, or present an optimal algorithm (or both). Our main results include
the following.

• A characterization of the power of randomization for online matching under general ar-
rivals (Chapters 3 and 4)

• Optimal online matching algorithms for bipartite regular graphs (Chapters 5 and 7)
• Optimal online edge coloring algorithms, both under adversarial and random-order arrivals

(Chapter 6 and 9)
• Optimal online matching and AdWords algorithms for inputs arising in practice in Internet

advertising applications (Chapter 7)
• Doubly-exponential improvements for stochastic online metric matching (Chapter 8)
• The first randomized dynamic matching algorithms which work against adaptive adver-

saries (Chapter 10)
• Numerous improved streaming algorithms for submodular matching problems (Chapter 11)
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Our results are summarized more precisely and concisely in tabular form in Table 1.1, Ta-
ble 1.2, Table 1.3 and Table 1.4. Interspersed between these tables are slightly more detailed
summaries and discussions of these results. We conclude this section by discussing some key
(overarching) techniques which helped us achieve these results, in Section 1.4.1.

Problem Our Competitive Ratio Best Prior Bounds

Edge arrivals
1/2 +O(1/n), † [1/2 + Ω(2−n), 0.586)

Chapter 3 [55, 191], [165]

General vertex arrivals
1/2 + Ω(1) [1/2 + Ω(2−n), 0.592)

Chapter 4 [55, 191], [55]

Bipartite d-regular graphs 1− Θ̃(1/
√
d), † [1− 1/e, 1]

(randomized) Chapter 5 [179]

Bipartite d-regular graphs 1− (1− 1/d)d > 1− 1/e, † [1/2, 1]

(deterministic) Chapter 7 [Folklore]

Bipartite (k, d)-bounded graphs 1− (1− 1/d)k > 1− (1/e)k/d, † [1/2, 1]

(deterministic) Chapter 7 [Folklore]

Stochastic metric matching
O((log log log n)2) O(log n)

Chapter 8 [239]

Table 1.1: Our Results for Online Matching Problems.
Tight results, possibly up to o(1) terms, are marked with a †.

For online matching (see Table 1.1), our first two results characterize the power of random-
ization under general arrival models which generalize the classic bipartite model of Karp et al.
[179]. For these more general models, it is known that the optimal achievable competitive ratio
for deterministic algorithm is 1/2. For edge arrivals we prove that randomization cannot help
beyond possibly increasing this bound by o(1), while for general vertex arrivals, we show that
randomization does help improve the optimal competitive ratio by Ω(1). Next, we consider on-
line matching in more well-structured graphs, including bipartite d-regular graphs (possibly the
most commonly-studied family of graphs in the matching theory literature), and graphs which
arise naturally in Internet advertising applications. For these graphs we obtain improved (and
indeed, optimal) competitive ratios: for regular graphs, we show a separation between determin-
istic and randomized algorithms for online matching in d-regular graphs: while for deterministic
algorithms, the problem becomes more difficult as d increases, with a competitive ratio tend-
ing to 1 − 1/e from above as this degree increases, the problem becomes easier for randomized
algorithms, with the optimal competitive ratio tending to one. For instances arising in Internet
advertising we provide an explanation for empirical ease beyond what is suggested by theory,
and provide an optimal algorithm for these inputs. Lastly, for the metric matching problem, we
give a doubly-exponential improvement under stochastic arrivals compared to that achievable
under random-order arrivals—a bound which naturally carries over to stochastic arrivals. In this
result we therefore prove a sharp separation between these arrival models for this problem.
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Problem Our Competitive Ratio Prior Best Ratio

Bipartite vertex arrivals (known ∆)
1 + o(1), † 2

Chapter 6 [Folklore]

Bipartite vertex arrivals (unknown ∆)
e
e−1 + o(1), † 2

Chapter 6 [Folklore]

Random-order edge arrival (known ∆)
1 + o(1), † 1.27

Chapter 9 [22]

Table 1.2: Our Results for Online Edge Coloring Problems with ∆ = ω(log n).
Tight results, possibly up to o(1) terms, are marked with a †.

Our main results for online edge coloring are summarized in Table 1.2. For adversarial one-
sided vertex arrivals in bipartite graphs, we show that contrary to the title of [25], the greedy algo-
rithm is not optimal for online edge-coloring, provided the maximum degree is super-logarithmic
(as conjectured by [25]). More precisely, we present optimal algorithms for both known and un-
known ∆ regimes, showing that the optimal competitive ratio for both is strictly less than 2.
Along the way, we prove that a the problem with unknown ∆ is strictly harder than known ∆.
For random-order edge arrivals, previously studied by Motwani et al. [5, 22], we also present
optimal bounds, showing that under more fine-grained arrival granularity, in the form of edge
arrivals (provided in random order) one can achieve a near-ideal (1 + o(1))-competitive solution.

Main Measure Update Time Prior Best

Worst-case update time poly log n min{ 3
√
m,
√
n}

(for any 2 + ε approximation) Chapter 10 [42]

Amortized update time O(1) poly log n

(for any 2 + ε approximation) Chapter 10 [43]

Amortized update time nf(ε) 4
√
m

(for any 2− ε approximation) Chapter 10 [38]

Table 1.3: Our Results for Dynamic Matching against Adaptive Adversaries.
The number of edges and nodes is denoted by m and n, respectively.

For dynamic matching, we provide the first approach to obtain randomized algorithms which
work against adaptive adversaries, from which we derive a number of algorithms (see Table 1.3).
Our results yield significant running time improvements, ranging from polynomial improvements
for approximation ratios below 2, to exponential speedups for approximation ratio 2 + ε.

Finally, we obtain results for matching problems in the streaming model, motivated by big-
data applications (see Table 1.4). For this model, we obtain a number of improved results for
streaming maximizing submodular objectives under matching constraints. More interestingly,
we obtain our algorithmic results using one common unifying approach: an extension of the
randomized primal-dual method. We elaborate on this point in Section 1.4.1.
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Problem Our Approximation ratio Prior best

Monotone submodular matching
3 + 2

√
2 ≈ 5.828 7.75

Chapter 11 [58]

Monotone submodular b-matching
3 + 2

√
2 ≈ 5.828 8

Chapter 11 [58]

Monotone submodular matching
> 1.914 > e

e−1 ≈ 1.582

Chapter 11 [58, 174]

Non-monotone submodular matching
4 + 2

√
3 ≈ 7.464 5 + 2

√
6 ≈ 9.899

Chapter 11 [111]

Maximum weight b-matching
3 + ε 4 + ε

Chapter 11 [73]

Table 1.4: Our Results for Streaming Matching Problems
Lower bounds are marked with a greater-than sign

1.4.1 Recurring Themes and Techniques

In this section we briefly discuss some common recurring themes and techniques throughout this
thesis, adding further thematic connections between the different chapters.

Randomized dependent rounding: A frequent algorithmic approximation algorithm approach
is randomized rounding [238]. Here, one solves (or approximates) some fractional relaxation of
the problem and then rounds this fractional solution. For most combinatorial problems, rounding
values independently will not result in a feasible solution, and so values must be rounded in a
dependent manner. While such approaches are fairly well understood under full-information set-
tings, they present additional challenges in the uncertain computational models which we study.
We overcome such challenges to obtain our results of chapters 4, 5, 6 and 10. Illustrating these
challenges, in Chapter 5 we initiate the study of online dependent rounding for matching prob-
lems. We show the limitations of such rounding schemes compared to their offline counterparts,
in that they must inevitably lose a term which can be thought of as a variance term. A com-
mon theme both in the challenges and our solutions for dependent rounding under uncertainty
is therefore the need to strive for negative correlation (or at least very weak positive correlation)
between edges’ or nodes’ matched status. To design and analyze dependent rounding procedures
which guarantee such correlations, we often rely on the notion of negative association, which we
discuss in Section 2.4.1.

LP Duality and The Primal-Dual Method: One of the most influential design patterns for
approximation algorithms is the primal-dual method. Here, one relies on a linear programming
(LP) relaxation, for which one computes a primal and dual solution, using the dual solution as
a certificate of the optimality (or approximation ratio) of the primal solution. This method is
foreshadowed by Kuhn’s Hungarian method for the minimum weight perfect bipartite matching
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problem [190],2 and has found numerous applications over the years (see e.g. the surveys [52,
135, 268]). We rely on this method to obtain our results for (k, d)-bounded graphs in Chapter 7.
A number of recent results in the online matching literature [97, 143, 162–166, 256] rely on an
extension of this method: the randomized primal-dual method, introduced by [79] in the context
of online matching and its extensions. Here, the (random) dual solution need only be feasible in
expectation. In Chapter 11 we further extend this method to submodular objectives, where our
key extensions of this method crucially relies on the dual solution being feasible in expectation
for a randomized LP. Linear programming duality also plays a role in other results throughout
this thesis, most prominently in our lower bound proofs of Chapter 3 and Chapter 6.

Interplay between various matching-theoretic problems: In several of our results, we rely
on the close relationship between various matching-theoretic problems, motivating the holistic
study of such problems. Besides the relationship between matchings and vertex covers—implied
by LP duality and the bounded integrality gap of the fractional matching polytope—we obtain
a number of our results by studying matchings and edge colorings in tandem. For our online
bipartite edge coloring results of Chapter 6, we use randomized matchings to consistently peel
off a matching, such that every such matching decreases the graph’s maximum degree by roughly
one per color. For our dynamic matching algorithms of Chapter 10, we rely on edge colorings
of well-chosen subgraphs to sample a small number of colors (matchings) whose union is a
sparse subgraph which approximately preserves the maximum matching size (i.e., a matching
sparsifier). We further make use of Vizing’s edge coloring theorem [261] to bound the quality of
some of our matching sparsifiers.

Connections between different models: Motivating a holistic study of algorithms under uncer-
tainty are a number of exchanges of ideas between these different models throughout this thesis.
For example, our random-order online edge coloring algorithm of Chapter 9 is a variant and
adaptation of a distributed edge coloring algorithm, which we show how to implement in this
online model. Similarly, as mentioned before, our improved streaming algorithms of Chapter 11
build on (and extend) a technique which has proven useful for online algorithms, namely the
randomized primal-dual method. It is the author’s hope that some of the techniques presented
in this thesis (for example, this extension of the randomized primal-dual method) will similarly
transcend the particular computational model for which they were developed,

1.5 Bibliographic Notes
Most of this thesis is based on previously published work.
Chapter 3 and Chapter 4 are based on the following publication.

• [120] “Matching with General Arrivals” (FOCS’19)
with Buddhima Gamlath, Michael Kapralov, Andreas Maggiori and Ola Svensson.

Chapter 5 is based on a full version of the following publication.
• [69] “Randomized Online Matching in Regular Graphs” (SODA’18)

with Ilan R. Cohen.

2Essentially the same algorithm was presented by Jacobi, whose death precedes the work of Kuhn by more than
a century, in a posthumous note [169].
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Chapter 6 is based on the following publication.
• [70] “Tight Bounds for Online Edge Coloring” (FOCS’19),

also invited to Highlights of Algorithms 2020 (HALG’20)
with Ilan R. Cohen and Binghui Peng.

Chapter 7 is based on the following publication.
• [222] “Near-Optimum Online Ad Allocation for Targeted Advertising” (EC’15),

also invited to Transactions of Economics and Computation (TEAC’18)
with Joseph (Seffi) Naor.

Chapter 8 is based on the following publication.
• [144] “Stochastic Online Metric Matching” (ICALP’19)

with Anupam Gupta, Guru Guruganesh and Binghui Peng.
Chapter 9 is based on the following joint work.

• “Online Algorithms for Edge Coloring via the Nibble Method”
with Sayan Bhattacharya and Fabrizio Grandoni.

Chapter 10 is based on the following publication.
• [266] “Rounding Dynamic Matchings Against an Adaptive Adversary” (STOC’20)

Solo-authored paper.
The same chapter’s results subsume those of the following publication by the author.

• [14] “Dynamic Matching: Reducing Integral Algorithms to Approximately-Maximal Frac-
tional Algorithms” (ICALP’18)
with Moab Arar, Shiri Chechik, Sarel Cohen and Cliff Stein.

Chapter 11 is based on the following joint work.
• “Streaming Submodular Matching Meets the Primal-Dual Method”

with Roie Levin.
The same chapter’s results subsume those of the following publication by the author.

• [127] “Simplified and Space-Optimal Semi-Streaming (2 + ε)-Approximate Matching”
(SOSA’19)
with Mohsen Ghaffari.

Omitted Work: This thesis does not address a number of results of the author (and co-authors)
obtained during his PhD. This includes work on other problems and models which also fall
squarely under the wide umbrella of algorithms under uncertainty, including [14, 127], which
are subsumed by Chapter 10 and Chapter 11, respectively, and the author’s work on distributed
graph algorithms [149, 151, 154], dynamic bin packing [105], and mechanism design [237], as
well as other works which fall outside of this scope, on routing and network coding [152, 153].

1.6 A Reader’s Manual
The dependencies between the different chapters of this thesis have been kept to a minimum,
and the individual chapters can be read essentially in whatever order the reader wishes to follow.
As for the technical prerequisites for this thesis, a reader familiar with the area of approxima-
tion algorithms should be able to follow most technical arguments without too much difficulty.
More specialized technical tools needed for different chapters of this thesis, including a brief
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introduction to the use of linear programming for approximation algorithms, and the theory of
negative association, are presented in Chapter 2. In the same chapter we give a brief introduction
to the common matching-theoretic problems studied in this thesis. Other technical background
is restricted to the relevant chapters.
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Chapter 2

Technical Background

In this chapter we provide basic notation, definitions of problems we study (in Section 2.1), our
main measure of algorithm quality (in Section 2.2), and useful known lemmas and techniques
which we use throughout the thesis (in Section 2.3 and Section 2.4).

Some common notation: In this thesis , we will study undirected graphs, denoted by G =
(V,E), where V is the set of nodes and E ⊆

(
V
2

)
is the set of edges. We say a graph G = (V,E)

is bipartite, and denote it by G = (L,R,E), if the nodes of V can be partitioned into two sets
L and R, with no edges between nodes in the same part. We denote the number of nodes and
edges in G = (V,E) by n := |V | and m := |E|. We denote the degree of node v ∈ V in
graph G by dG(v) and the graph’s maximum degree by ∆(G) := maxv∈V dG(v). When G is
clear from context, we will often use d(v) and ∆ for short. We say G is regular (or ∆-regular,
to be explicit) if all nodes v ∈ V have degree dG(v) = ∆. For a set of vertices U ⊆ V , we
denote by G[U ] := (U,E ∩

(
U
2

)
) the subgraph induced by U . Similarly, for a set of edges

F ⊆ E, we denote by G[F ] := (V (F ), F ) the subgraph induced by F , where we denote by
V (F ) := {v ∈ V | v ∈ e ∈ F} the nodes spanned by edges in F .

We denote by R and Z the set of real and integer numbers, respectively. For a positive integer
k, the set [k] := {1, 2, . . . , k} consists of the first k positive integers. For real x, we let x+ :=
max{0, x} denote the positive part of x. We use c = a±b as shorthand for c ∈ [a−b, a+b]. When
discussing complexity measures, we often find it useful to ignore multiplicative polylogarithmic
factors, and we use Õ(f(n)) as shorthand for O(f(n) · poly log n). Throughout, we say an event
happens with high probability (w.h.p.) if it happens with probability 1− n−c for some c > 1.

2.1 Matching Theory – A Primer
A matching in a graph G = (V,E) is a subset of vertex-disjoint edges M ⊆ E. The cardinality
of a maximum matching inG is denoted by µ(G). A fractional matching is a non-negative vector
~x ∈ Rm

>0 satisfying the fractional matching constraint,
∑

e3v xe 6 1 ∀v ∈ V . That is, it is a
point in the fractional matching polytope of G,

P(G) :=

{
~x ∈ Rm

>0

∣∣∣∣∣ ∑
e3v

xe 6 1 ∀v ∈ V
}
. (2.1)
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A matchingM is perfect if is spans all vertices ofG; that is, if V (M) = V . In weighted matching
problems, edges are associated with a weight function, w : E → R. Here, we will consider the
problem of computing a maximum weight matching (MWM), or, thinking of weights as costs,
we will also consider the problem of computing a minimum cost perfect matching.

Closely related to the maximum matching problem is the minimum vertex cover problem. We
say a set of vertices U ⊆ V if G[V \ U ] is an empty graph. Put otherwise, all edges of G have at
least one endpoint in V . A minimum vertex cover is a vertex cover of minimum cardinality, and
its size is denoted by ν(G). For bipartite graphs G, by a classic theorem of König [185], we have
that ν(G) = µ(G), i.e., the cardinality of a minimum vertex cover is equal to the cardinality of
a maximum matching. As we shall see in Section 2.3, a similar relation holds (though only in a
relaxed sense) for general graphs, as well.

A third problem which will appear often in this thesis is the edge coloring problem. In a
k-edge-coloring of a graph G = (V,E), edges in E are assigned one of k colors, such that
no two incident edges share the same color. That is, E is partitioned into k matchings. Here,
the objective is to minimize this number k of matchings used. A seminal result due to König
[184] states that for bipartite graphs, the minimum such number of colors k is equal to ∆, the
maximum degree in G. (Clearly, no fewer colors suffice.) For general graphs, this bound is not
always achievable; e.g., in an odd-length cycle graph, ∆ + 1 = 3 colors are needed. A classic
theorem of Vizing [261] asserts that ∆ + 1 colors always suffice.

2.2 Approximation and Competitive Ratios
As mentioned previously, in the models of computation we consider, approximation is a neces-
sary evil, as exact optimization of objectives under such uncertainty is often provably impossible.
For example, for online matching algorithms, consider an online node u with two edges to neigh-
bors a and b. If the next online neighbor to arrive, v, only neighbors b or a, then the (unique)
optimal matching is {(u, a), (v, b)} or {(u, b), (v, a)}, respectively. An online algorithm, which
must decide which neighbor of u to match it to (if any), irrevocably before v arrives, cannot guar-
antee that v’s sole neighbor will be free when v arrives, and can therefore not guarantee to output
a maximum matching. Similar challenges arise when considering other models of computation
under uncertainty. We therefore consider the natural next best thing—approximation.

We say an algorithm A for a maximization problem Π has approximation ratio α ∈ [0, 1], or
is α-approximate, for short, if for any input I ∈ Π, algorithm A’s output value, ALG(I), is at
least α times the value of the optimum value, OPT (I).

ALG(I) > α ·OPT (I). (2.2)

If A is randomized, the inequality can hold either in expectation or w.h.p. A similar definition,
with α > 1 and the inequality reversed, is of interest for minimization problems. We will
sometimes (depending on the common notation in the relevant literature) refer to α-approximate
algorithms with α > 1, by which we mean that

ALG(I) >
1

α
·OPT (I). (2.3)
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For online algorithms, we refer to the approximation ratio of an algorithm as its competitive ratio,
and call an algorithm with competitive ratio α an α-competitive algorithm.

Regardless of the common notation or nomenclature, or model of computation, our main ob-
jective will be to optimize the value of our solution, which corresponds to achieving an algorithm
with approximation (or competitive) ratio as close to one as possible. When trying to character-
ize the limits of algorithms, we will refer to impossibility results as lower bounds (even when
considering competitive ratios α ∈ [0, 1], for which impossibility results are, strictly speaking,
upper bounds on α). Symmetrically, we will refer to algorithmic results as upper bounds.

When searching for good upper bounds (i.e., algorithms with good approximation ratios),
inequalities such as Equation (2.2) will often require us to obtain some useful intermediate bound
B(I) on OPT (I). For maximization problems, such bounds are used to prove the following

ALG(I) > α ·B(I) > α ·OPT (I).

One reliable source of such bounds on OPT (I) is mathematical programming relaxations, and
in particular, linear programming, which we now turn to.

2.3 Linear Programming
An immensely powerful tool for exact computation, linear programming has played a similar
pivotal role in approximation algorithms. In this thesis, we will use linear programming (LP)
theory to prove both upper and lower bounds. We briefly review some relevant background. For
a more thorough introduction to the theory of Linear Programming, we refer to [246].

2.3.1 Relaxations
Many combinatorial optimization problems can be stated in terms of linear objectives and linear
inequalities. For example, one way to state the maximum weight matching problem is as follows.

max
~x∈{0,1}E∩P(G)

{∑
e

we · xe
}
, (2.4)

where P(G) is the fractional matching polytope, given by (2.1). Similarly, a set of linear con-
straints and integrality constraints capture the related minimum vertex cover problem, as follows.

min
~y∈{0,1}E

{∑
v

yv

∣∣∣∣ yu + yv > 1 ∀(u, v) ∈ E
}
. (2.5)

Unfortunately, the minimum vertex cover problem is known to be NP-complete (it is one of
Karp’s 21 NP-complete problems [178]), and so phrasing it in the above terms is unlikely to help
solve it exactly. However, phrasing this problem and others in terms of integer linear programs
proves useful for the design of approximation algorithms, if we relax the integrality constraints.
Such relaxations, whose optima can only be better than those of their (more constrained) integral
versions, serve as useful benchmarks for the design of approximation algorithms. In particular,
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denoting by LP (I) the optimal LP value for the relaxation of some integral problem instance I
of maximization problem Π, we trivially have

LP (I) > OPT (I). (2.6)

Therefore, to obtain an α-approximate (or α-competitive) algorithm, it is sufficient to guarantee
that for any instance I, our algorithm’s output value is at least ALG(I) > α · LP (I). Two
successful ways to make use of this observation in the literature, which we will also rely on, are
(randomized) rounding, and the primal-dual method. The latter of these approaches relies on LP
duality, which we now briefly review.

2.3.2 LP Duality
One useful concept when designing approximation algorithms whose analysis relies on LPs is
the notion of LP duality. For an LP (in matrix notation), which we refer to as the primal LP,

max{~c · ~x | A · ~x 6 ~b, ~x > ~0}, (2.7)

one associates a dual LP,
min{~b · ~y | AT · ~y > ~c, ~y > ~0}. (2.8)

The optimal value of this dual program (2.8) is equal to the best upper bound on (2.7) obtained
by considering linear combinations of the constraints of the primal LP.

As a concrete example, one pair of LPs which will prove useful for us are LP relaxation for
the maximum weight matching (MWM) problem and its dual, given in Figure 2.1 below.

Primal Dual
maximize

∑
e∈E we · xe minimize

∑
v∈V yv

subject to: subject to:
∀v ∈ V :

∑
e3v xe 6 1 ∀(u, v) ∈ E: yu + yv > w(u,v)

∀e ∈ E: xe > 0 ∀v ∈ V : yv > 0

Figure 2.1: The LP relaxation of the MWM problem and its dual

For maximum cardinality matching (MCM), where all weights are equal to we = 1, this dual
is precisely the relaxation of the minimum vertex cover problem. As mentioned above, these
problems’ integral optima’s values are equal in bipartite graphs. Indeed, as proven by Egerváry
[89], the integral optima’s values for the above LPs (for MWM and the corresponding dual) are
also equal in bipartite graphs. While in general graphs the same does not hold (for example, in
a triangle graph, µ(G) = 1, while ν(G) = 2), these problems’ fractional optima are equal in
general graphs, due to strong LP duality. For our needs, we will only rely on the fact that the
dual’s optimal value upper bounds the primal’s optimal value, which follows by weak duality.

Lemma 2.3.1. Let ~x and ~y be feasible solutions to primal and dual LPs of the forms (2.7)
and (2.8), respectively. Then, their objective values satisfy

~c · ~x 6 ~b · ~y.
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Lemma 2.3.1 will prove useful in the design of approximation algorithms, as we now outline.

2.3.3 The (Randomized) Primal-Dual Method
Lemma 2.3.1 suggests a natural upper bound on the optimum (integral) solution of any maxi-
mization problem Π (and similarly for minimization problems); if we denote by I ∈ Π some
instance, byOPT (I), LP (I), the optimal integral and fractional values for I (according to some
LP relaxation), and by D(I) the value of some feasible dual solution for I, we have that

D(I) > LP (I) > OPT (I). (2.9)

Equation (2.9) suggests a schematic (high-level) approach for the design of approximation algo-
rithms, referred to as the primal-dual method. Here, our algorithm computes a feasible (integral)
primal solution and dual solutions of value ALG(I) > α ·D(I). Concatenating this inequality
with Equation (2.9) implies that this algorithm is α-approximate.

Example: A simple example of the primal-dual method is given by the vertex cover problem
(whose relaxation is dual to MCM). A natural algorithm for vertex cover, attributed to Gavril
in [123, pg. 134], initializes an empty cover C, and then inspects the edges in some arbitrary
order, adding both endpoints of every edge not covered by C prior to its inspection. To analyze
this algorithm using the primal-dual method, we initially set primal and dual solutions to zero.
When inspecting an edge e = (u, v) that it is not already covered by C, we set xe ← 1 and
yu, yv ← 1. It is not hard to see that ~x and ~y are primal and dual feasible, and trivially satisfy
|C| = ∑v yv = 2 ·∑e xe 6 2 ·OPT , where the inequality follows by weak LP duality.

The Randomized Primal-Dual Method: In 2013, Devanur, Jain, and Kleinberg [79] presented
an extension of the primal-dual method. The simple underlying observation of this method is that
dual feasibility need not hold always to imply a useful approximation. In particular, constructing
a dual solution of value D 6 1

α
· ALG and which satisfies all constraints in expectation implies

that, by linearity of the dual objective,

E[ALG(I)] > α · E[D] > α · LP (I) > α ·OPT (I).

This method allowed Devanur et al. [79] to give a unified analysis of known results for online
matching [6, 134, 179, 207]. Below we give a simple example of this approach.

Example: A simple example of the randomized primal-dual method is also given by the vertex
cover problem. Here we consider an arguably even more natural algorithm due to Pitt [235],
which initializes an empty cover C, and then inspects the edges in some arbitrary order, adding
one single, random, endpoint of every edge not covered by C prior to its inspection. To analyze
this algorithm using the randomized primal-dual method, we initialize primal and dual solutions
to zero. When inspecting an edge e that it is not previously covered by C, and adding an endpoint
v ∈ e to C, we set xe ← 1/2 and yv ← 1. For any vertex v, the expected number of edges of v
not covered until v is added is at most two, since for each such edge the probability we pick v
is one half, and so the number of such edges is dominated by a geometric variable with success
probability 1/2. Therefore ~x is feasible in expectation, since E[

∑
e3v xe] 6 2 · 1/2 = 1 for every

vertex v. On the other hand,
∑

v yv = 2 ·∑e xe for any realization, and similarly in expectation.
Consequently, weak duality implies that E[|C|] = E[

∑
v yv] = 2 · E[

∑
e xe] 6 2 ·OPT .
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2.3.4 Randomized Rounding
Another approach used often in approximation algorithms, pioneered by Raghavan and Tompson
[238], is that of randomized rounding. Here, a (fractional) solution to an LP relaxation has each
of its coordinates rounded to an integer value, possibly randomly. As the value of an optimal
fractional solution is no worse than that of an integral solution, rounding in a way which incurs
only a multiplicative blowup of α results in an α-approximate solution.

Example: Again, vertex cover provides an illustrative example. Consider a fractional vertex
cover ~y in a bipartite graph G = (L,R,E). Sample a uniform random variable τ ∼ Uni(0, 1).
For all u ∈ L, add u to the cover C is yu > τ , and for all v ∈ R, add v to the cover C if
yv > 1 − τ . Since yu + yv > 1 for all edges (u, v) ∈ E, it is immediate that the obtained set C
is indeed a vertex cover. On the other hand, since τ and 1− τ are both Uni(0, 1) variables, each
vertex belongs to C with probability Pr[v ∈ C] =

∫ yv
0
dx = yv, and so by linearity of expectation

E[C] =
∑

v Pr[v ∈ C] =
∑

v yv. Therefore, solving the fractional vertex cover LP in bipartite
graphs and rounding it this way yields a 1-approximate integral solution.

More sophisticated approaches for rounding fractional matchings in bipartite graphs, due to
[4, 122], proved immensely useful in the approximation algorithms literature over the years. We
elaborate more on this approach in Chapter 5.

2.3.5 Integrality Gaps
A limit to the use of any LP relaxation (or indeed any mathematical relaxation) for approximation
algorithms, is the integrality gap of the relaxation. Informally, this is the highest multiplicative
gap between the optimal value of an integral solution of the problem and the optimal value
of a feasible point w.r.t. the given relaxation. For example, the fractional matching polytope
(2.1) has an integrality gap of 3/2, obtained by considering the triangle graph. In this graph, the
maximum matching size is trivially one, as no two edges of the triangle belong to a common
matching, while assigning values xe = 1/2 to all edges yields a fractional matching of value 3/2.
This implies that in general, when using the LP relaxation as our benchmark, we cannot hope to
obtain an approximation ratio better than 3/2.

A seminal result of Edmonds [87] characterizes the matching polytope, which is the convex
hull of all (integer) matchings of a graphG. In particular, this polytope is defined by the following
sets of inequalities ∑

e3v

xe 6 1 ∀v ∈ V∑
e∈(S2)

xe 6 (|S| − 1)/2 ∀S ⊆ V, |S| odd.

This exponential-sized LP characterization underlies numerous fundamental results for match-
ing theory in the full-information régime. This characterization, however, requires a somewhat
less myopic view of the graphs than we will be able to consider in our partial-information set-
tings. As such, we will mostly rely on the fractional matching polytope (2.1) when considering
matching problems under uncertainty. This will require some care in order to not lose the same
multiplicative factor of 3/2 when rounding a fractional solution.
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2.4 Probability Theory
In this section we review some useful probability theory background used in our analysis, starting
with some basic probabilistic inequalities. For more basic background on probability theory, we
refer the reader to [216].

2.4.1 Negative Association
A common tool in the analysis of randomized algorithms is the family of Chernoff-Hoeffding
tail bounds for independent random variables. One tool we will often rely on for our analysis is
concentration inequalities of dependent random variables. Specifically, in this section, based on
notes by the author [265], we will study concentration of sums of negatively associated variables.

Definition 2.4.1 ([171, 183]). A joint distribution (X1, . . . , Xn) is negatively associated
(NA), and the variables X1, . . . , Xn are NA, if every two monotone increasing functions f
and g defined on disjoint subsets of the variables in ~X are negatively correlated. That is,

E[f · g] 6 E[f ] · E[g]. (2.10)

A trivial example of NA variables is given by independent random variables, for which (2.10)
holds with equality for any functions f and g. (Consequently, all the tail bounds and other useful
properties for negative association which we state in this section hold for independent variables
as well.) More interesting, useful examples of NA for our use are given by the following two
propositions.

Proposition 2.4.2 (0-1 Principle [83]). Let X1, . . . , Xn ∈ {0, 1} be binary random vari-
ables such that

∑
iXi 6 1 always. Then, the joint distribution (X1, . . . , Xn) is NA.

Proposition 2.4.3 (Permutation Distributions are NA [171]). Let x1, . . . , xn be n values
and let X1, . . . , Xn be random variables taking on all permutations of (x1, . . . , xn) with
equal probability. Then the joint distribution (X1, . . . , Xn) is NA.

More elaborate NA distributions can be obtained from simple NA distributions as those given
by propositions 2.4.2 and 2.4.3 via the following closure properties.

Proposition 2.4.4 (NA Closure Properties [83, 171, 183]).
1. Independent union. Let (X1, . . . , Xn) and (Y1, . . . , Ym) be mutually independent NA

joint distributions. Then, the joint distribution (X1, . . . , Xn, Y1, . . . , Ym) is also NA.
2. Function composition. Let f1, . . . , fk be monotone (all increasing or all decreasing)

functions defined on disjoint subsets of the variables in ~X . Then the joint distribution
(f1( ~X), . . . , fk( ~X)) is NA.
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Example NA distributions obtained using these closure properties are statistics of balls and
bins processes. An illustrative example is given by the following proposition.

Proposition 2.4.5 (Balls and Bins is NA). Suppose m balls are thrown independently into
one of n bins (not necessarily u.a.r., and not necessarily i.i.d). Let Bi be the number of
balls placed in bin i in this process. Then the joint distribution (B1, B2, . . . , Bn) is NA.

Proof. For each b ∈ [m] and i ∈ [n], let Xb,i be an indicator variable for ball b landing in bin i.
By the 0-1 Principle (Proposition 2.4.2), the variables {Xb,i | i ∈ [n]} are NA. By closure of NA
under independent union (Proposition 2.4.4.1), as each ball is placed independently of all other
balls, {Xb,i | b ∈ [m], i ∈ [n]} are NA. Finally, by closure of NA under monotone increasing
functions on disjoint subsets (Proposition 2.4.4.2), the variables Bi =

∑
bXb,i are NA.

As the variables Ni := min{1, Bi}, indicating whether bin i is non-empty, are monotone
increasing functions depending on disjoint subsets of the Bi variables (specifically, singletons),
we obtain the following corollary.

Corollary 2.4.6. The indicator variables Ni for bins being non-empty in a balls and bins
process as in Proposition 2.4.5, are NA.

Useful Properties of NA Distributions: We now outline some simple useful properties of NA
distributions. For example, a special case of the definition of NA, taking fi( ~X) = Xi, we find
that NA variables are negatively correlated.

Corollary 2.4.7 (NA implies Negative Correlation). Let X1, . . . , Xn be n NA variables.
Then, for all i 6= j, we have E[Xi ·Xj] 6 E[Xi] · E[Xj]. That is, Cov(Xi, Xj) 6 0.

Another useful property of NA variables is Negative Orthant Dependence (NOD).

Corollary 2.4.8 (NA implies NOD). For any n NA variablesX1, . . . , Xn and n real values
x1, . . . , xn,

Pr

[∧
i

(Xi > xi)

]
6
∏
i

Pr[Xi > xi]

Pr

[∧
i

(Xi 6 xi)

]
6
∏
i

Pr[Xi 6 xi].

The following corollary of NA will prove useful shortly. It is easily proved by induction on
the number of functions, k, using Definition 2.4.1 for the inductive step.
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Corollary 2.4.9. Let X1, . . . , Xn be NA variables. Then, for every set of k positive mono-
tone increasing functions f1, . . . , fk depending on disjoint subsets of the Xi, it holds

E

[∏
i

fi( ~X)

]
6
∏
i

E[fi( ~X)].

Chernoff-Hoeffding Bounds—Expect the Expected: As stated in Corollary 2.4.7, NA im-
plies negative correlation. A much stronger, and particularly useful property of NA variables is
the applicability of Chernoff-Hoeffding type concentration inequalities to sums of NA variables
X1, . . . , Xn. This follows from monotonicity of the exponential function and Corollary 2.4.9
implying that E[exp(λ ·∑iXi)] 6

∏
i E[exp(λ · xi)] (see also [83]). This is the crucial first step

of proofs of such tail bounds. In particular, we will make use of the following tail bounds.

Lemma 2.4.10. Let X be the sum of NA random variables X1, . . . , Xm ∈ [0, 1]. Then for
all δ ∈ (0, 1), and κ > E[X],

Pr[X 6 (1− δ) · E[X]] 6 exp

(
−E[X] · δ2

2

)
,

Pr[X > (1 + δ) · κ] 6 exp

(
−κ · δ

2

3

)
.

Lemma 2.4.11. LetX be the sum ofmNA random variablesX1, . . . , Xm withXi ∈ [ai, bi]
for each i ∈ [m]. Then for all t > 0,

Pr[X > E[X] + t] 6 exp

(
− 2t2∑

i(bi − ai)2

)
,

Pr[X 6 E[X]− t] 6 exp

(
− 2t2∑

i(bi − ai)2

)
.

Another tail bound obtained from E[exp(λ
∑

iXi)] 6
∏

i E[exp(λXi)] is Bernstein’s In-
equality, which yields stronger bounds for sums of NA variables with bounded variance.

Lemma 2.4.12. Let X be the sum of NA random variables X1, . . . , Xk ∈ [−M,M ]. Then,
for σ2 =

∑k
i=1 Var(Xi) and all a > 0,

Pr[X > E[X] + a] 6 exp

( −a2

2(σ2 + aM/3)

)
.
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As mentioned above, since independent random variables are (trivially) NA, lemmas 2.4.10,
2.4.11 and 2.4.12 hold for sums of independent random variables as a special case.

2.4.2 Other Useful Probabilistic Inequalities
Another useful inequality for our needs is Jensen’s Inequality, which follows form the definition
of convexity.

Lemma 2.4.13. For any random variable X and convex function f ,

f(E[X]) 6 E[f(X)].

A useful corollary of Jensen’s Inequality is that the mean average deviation of any random
variable, E[|X − E[X]|] is upper bounded by its standard deviation.

Lemma 2.4.14. For any random variable X ,

E[|X − E[X]|] 6 Std(X).

Proof. Applying Jensen’s Inequality to the concave function f(x) =
√
x and the random variable

Y = (X − E[X])2, we obtain the desired inequality,

E[|X − E[X]|] = E[
√

(X − E[X])2] 6
√

E[(X − E[X])2] =
√

Var(X) = Std(X).

Coupling Arguments: Some joint distributions of random variablesX1, X2, . . . , Xn revealed by
some iterative process are hard to reason about directly. However, if one can show that for any re-
alization ~x ∈ Ri−1 of X1, X2, . . . , Xi−1, the (conditional) variable [Yi | (X1, X2, . . . , Xi−1) = ~x]
is dominated by a simple variable Zi, say, a Bernoulli variable, then a simple coupling argument
allows us to bound probabilities of events determined by these X variables in terms of events
determined by independent copies of the variables Zi. Such a statement is given by the following
proposition.

Proposition 2.4.15. Let X1, . . . , Xm be random variables and Y1, . . . , Ym be binary ran-
dom variables such that Yi = fi(X1, . . . , Xi) for all i such that for all ~x ∈ Rm,

Pr

Yi = 1

∣∣∣∣∣ ∧
`∈[i]

(X` = x`)

 6 pi.

Then, if Zi = Bernoulli(pi) are independent random variables, we have

Pr

[∑
i

Yi > k

]
6 Pr

[∑
i

Zi > k

]
.
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Conditional Union Bound: Finally, we will also need the following simple extension of the
union bound, whose proof follows by application of the standard union bound to the variables
Bi := Ai ∧

∧
j<iAj , corresponding to i being the first index for which Ai holds.

Proposition 2.4.16 (Conditional Union Bound). Let A1, A2, . . . , An be random indicator
variables such that Pr[Ai |

∧
j<iAj] 6 p. Then

Pr

[∨
i

Ai

]
6 n · p.
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Part I

Online Algorithms: Hedging One’s Bets
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Chapter 3

Online Matching: Edge Arrivals

This chapter, based on [120, Section 2], is by far the shortest chapter in this thesis. In it, we
discuss our (surprisingly simple) resolution of the optimal competitive ratio for online matching
under edge arrivals, highlighting this result with a dedicated chapter.

3.1 Background and Contribution

Arguably the most natural, and the least restricted, arrival model for online matching is the
(adversarial) edge arrival model. In this model, edges are revealed one by one, and an online
matching algorithm must decide immediately and irrevocably whether to match the edge on
arrival, or whether to leave both endpoints free to be possibly matched later.

On the hardness front, the problem is known to be strictly harder than the one-sided vertex
arrival model of Karp et al. [179], which admits a competitive ratio of 1 − 1/e ≈ 0.632. In par-
ticular, Epstein et al. [95] gave an upper bound of 1/(1+ln 2) ≈ 0.591 for this problem, recently
improved by Huang et al. [165] to 2−

√
2 ≈ 0.585. (Both bounds apply even to online algorithms

with preemption, which may remove edges from the matching in favor of a newly-arrived edge.)
On the positive side, as pointed out by Buchbinder et al. [55], the edge arrival model has proven
challenging, and results beating the 1/2 competitive ratio were only achieved under various re-
laxations, including: random order edge arrival [146], bounded number of arrival batches [191],
on trees, either with or without preemption [55, 259], and for bounded-degree graphs [55]. The
above papers all asked whether there exists a randomized (1/2 + Ω(1))-competitive algorithm for
adversarial edge arrivals (see also Open Question 17 in Mehta’s survey [206]).

In this chapter, we answer this open question, providing it with a strong negative answer. In
particular, we show that no online algorithm for fractional matching (i.e., an algorithm which im-
mediately and irrevocably assigns values xe to edge e upon arrival such that ~x is in the fractional
matching polytope P = {~x > ~0 |∑e3v xe 6 1 ∀v ∈ V }) is better than 1/2 competitive. As any
randomized algorithm induces a fractional algorithm with the same competitive ratio, this rules
out any randomized online matching algorithm which is better than deterministic algorithms.

This result shows that the study of relaxed variants of online matching under edge arrivals is
not only justified by the difficulty of beating the trivial bound for this problem, but rather by its
impossibility.
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3.2 The Lower Bound
Our main idea will be to provide a “prefix hardness” instance, where an underlying input and
the arrival order is known to the online matching algorithm, but the prefix of the input to arrive
(or “termination time”) is not. Consequently, the algorithm must accrue high enough value up
to each arrival time, to guarantee a high competitive ratio at all points in time. As we show, the
fractional matching constraints rule out a competitive ratio of 1/2+Ω(1) even in this model where
the underlying graph is known.

Theorem 3.2.1 (Edge Arrival Lower Bound). There exists an infinite family of bipartite
graphs with maximum degree n and edge arrival order for which any online matching
algorithm is at best

(
1
2

+ 1
2n+2

)
-competitive.

Proof. We provide a family of graphs for which no fractional online matching algorithm has bet-
ter competitive ratio. Since any randomized algorithm induces a fractional matching algorithm,
this immediately implies our theorem. The nth graph of the family, Gn = (U, V,E), consists of a
bipartite graph with |U | = |V | = n vertices on either side. We denote by ui ∈ U and vi ∈ V the
ith node on the left and right side of Gn, respectively. Edges are revealed in n discrete rounds. In
round i = 1, 2, . . . , n, the edges of a perfect matching between the first i left and right vertices
arrive in some order. I.e., a matching of u1, u2, . . . , ui and v1, v2, . . . , vi is revealed. Specifically,
edges (uj, vi−j+1) for all i > j arrive. (See Figure 3.1 for example.) Intuitively, the difficulty
for an algorithm attempting to assign high value to edges of OPT is that the (unique) maximum
matching OPT changes every round, and no edge ever re-enters OPT .

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(a) round 1

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(b) round 2

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(c) round 3

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(d) round 4

U V
u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

(e) round 5

Figure 3.1: G5, together with arrival order.

Edges of current (prior) round are solid (dashed).

Consider some α-competitive fractional algorithm A. We call the edge of a vertex w in the
(unique) maximum matching of the subgraph of Gn following round i the ith edge of w. For
i > j, denote by xi,j the value A assigns to the ith edge of vertex uj (and of vi−j+1); i.e., to
(uj, vi−j+1). By feasibility of the fractional matching output by A, we immediately have that
xi,j > 0 for all i, j, as well as the following matching constraints for uj and vj . (For the latter,
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note that the ith edge of vi−j+1 is assigned value xi,j = xi,i−(i−j+1)+1 and so the ith edge of vj is
assigned value xi,i−j+1).

n∑
i=j

xi,j 6 1. (uj matching constraint) (3.1)

n∑
i=j

xi,i−j+1 6 1. (vj matching constraint) (3.2)

On the other hand, as A is α-competitive, we have that after some kth round – when the
maximum matching has cardinality k – algorithm A’s fractional matching must have value at
least α · k. (Else an adversary can stop the input after this round, leaving A with a worse than
α-competitive matching.) Consequently, we have the following competitiveness constraints.

k∑
i=1

i∑
j=1

xi,j > α · k ∀k ∈ [n]. (3.3)

Combining constraints (3.1), (3.2) and (3.3) together with the non-negativity of the xi,k yields
the following linear program, LP(n), whose optimal value upper bounds any fractional online
matching algorithm’s competitiveness on Gn, by the above.

maximize α

subject to:
n∑
i=j

xi,j 6 1 ∀j ∈ [n]

n∑
i=j

xi,i−j+1 6 1 ∀j ∈ [n]

k∑
i=1

i∑
j=1

xi,j > α · k ∀k ∈ [n]

xi,j > 0 ∀i, j ∈ [n].

To bound the optimal value of LP(n), we provide a feasible solution its LP dual, which
we denote by Dual(n). By weak duality, any dual feasible solution’s value upper bounds the
optimal value of LP(n), which in turn upper bounds the optimal competitive ratio. Using the dual
variables `j, rj for the degree constraints of the jth left and right vertices respectively (uj and vj)
and dual variable ck for the competitiveness constraint of the kth round, we get the following
dual linear program. Recall here again that xi,i−j+1 appears in the matching constraint of vj ,
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with dual variable rj , and so xi,j = xi,i−(i−j+1)+1 appears in the same constraint for vi−j+1.)

minimize
n∑
j=1

(`j + rj)

subject to:
n∑
k=1

k · ck > 1

`j + ri−j+1 −
n∑
k=i

ck > 0 ∀i ∈ [n], j ∈ [i]

`j, rj, ck > 0 ∀j, k ∈ [n].

We provide the following dual solution.

ck =
2

n(n+ 1)
∀k ∈ [n]

`j = rj =

{
n−2(j−1)
n(n+1)

if j 6 n/2 + 1

0 if n/2 + 1 < j 6 n.

We start by verifying feasibility of this solution. The first constraint is satisfied with equality.
For the second constraint, as

∑n
k=i ck = 2(n−i+1)

n(n+1)
, it suffices to show that `j + ri−j+1 > 2(n−i+1)

n(n+1)

for all i ∈ [n], j ∈ [i]. Note that if j > n/2 + 1, then `j = rj = 0 > n−2(j−1)
n(n+1)

. So, for all j we

have `j = rj >
n−2(j−1)
n(n+1)

. Consequently, `j + ri−j+1 > n−2(j−1)
n(n+1)

+ n−2(i−j+1−1)
n(n+1)

= 2(n−i+1)
n(n+1)

for
all i ∈ [n], j ∈ [i]. Non-negativity of the `j, rj, ck variables is trivial, and so we conclude that the
above is a feasible dual solution.

It remains to calculate this dual feasible solution’s value. For even n, this is

n∑
j=1

(`j + rj) = 2 ·
n∑
j=1

`j = 2 ·
n/2+1∑
j=1

n− 2(j − 1)

n(n+ 1)
=

1

2
+

1

2n+ 2
,

completing the proof.

Remark 1.: Recall that Buchbinder et al. [55] and Lee and Singla [191] presented better-than-
1/2-competitive algorithms for bounded-degree graphs and few arrival batches, respectively. Our
upper bound above shows that a deterioration of the competitive guarantees as the maximum
degree and number of arrival batches increase (as in the algorithms of [55, 191]) is inevitable.

Remark 2.: Recall that the asymptotic competitive ratio of an algorithm is the maximum c such
that the algorithm always guarantees value at least ALG > c · OPT − b for some fixed b > 0.
Our proof rules out this weaker notion of competitiveness too, by revealing multiple copies of
the family of Theorem 3.2.1 and letting xik denote the average of its counterparts over all copies.

Conclusion: The result of this chapter indicates that some fundamental matching-theoretic prob-
lems do not admit non-trivial competitive algorithms under online edge arrivals. The remainder
of this thesis which is dedicated to online algorithms (with the exception of Chapter 9) will
therefore focus on such problems under vertex arrivals.
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Chapter 4

Online Matching: General Vertex Arrivals

In this chapter, based on [120] (joint work with Buddhima Gamlath, Michael Kapralov, Andreas
Maggiori and Ola Svensson), we consider another generalization of the online matching problem
introduced by Karp et al. [179]. In their seminal work, Karp et al. studied online matching
in bipartite graphs, under vertex arrivals in one side of the graph. They also asked if better
algorithms than the 1/2-competitive greedy algorithm exist in general graphs. Here we study this
problem in general (i.e., possibly non-bipartite) graphs, with arbitrary arrival order of nodes, and
present a randomized (1/2 + Ω(1))-competitive algorithm for this model.

4.1 Background

In the online matching problem under vertex arrivals, vertices are revealed one at a time, together
with their edges to their previously-revealed neighbors. An online matching algorithm must
decide immediately and irrevocably upon arrival of a vertex whether to match it (or keep it free
for later), and if so, who to match it to. The one-sided bipartite problem studied by Karp et al.
[179] is precisely this problem when all vertices of one side of a bipartite graph arrive first. For
this one-sided arrival model, the problem is thoroughly understood (even down to lower-order
error terms [103]). Wang and Wong [267] proved that general vertex arrivals are strictly harder
than one-sided bipartite arrivals, providing an upper bound of 0.625 < 1−1/e for the more general
problem, later improved by Buchbinder et al. [55] to 2

3+φ2 ≈ 0.593. Clearly, the general vertex
arrival model is no harder than the online edge arrival model but is it easier? The answer is “yes”
for fractional algorithms, as shown by combining our Theorem 3.2.1 with the 0.526-competitive
fractional online matching algorithm under general vertex arrivals of Wang and Wong [267]. For
integral online matching, however, the problem has proven challenging, and the only positive
results for this problem, too, are for various relaxations, such as restriction to trees, either with or
without preemption [55, 66, 259], for bounded-degree graphs [55], or (recently) allowing vertices
to be matched during some known time interval [163, 165].

We elaborate on the last relaxation above. In the model recently studied by Huang et al.
[163, 165] vertices have both arrival and departure times, and edges can be matched whenever
both their endpoints are present. (One-sided vertex arrivals is a special case of this model with
all online vertices departing immediately after arrival and offline vertices departing at ∞.) We
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note that any α-competitive online matching under general vertex arrivals is α-competitive in the
less restrictive model of Huang et al. As observed by Huang et al., for their model an optimal
approach might as well be greedy; i.e., an unmatched vertex v should always be matched at its
departure time if possible. In particular, Huang et al. [163, 165], showed that the RANKING algo-
rithm of Karp et al. achieves a competitive ratio of≈ 0.567. For general vertex arrivals, however,
RANKING (and indeed any maximal matching algorithm) is no better than 1/2 competitive, as is
readily shown by a path on three edges with the internal vertices arriving first. Consequently,
new ideas and algorithms are needed.

The natural open question for general vertex arrivals is whether a competitive ratio of (1/2 +
Ω(1)) is achievable by an integral randomized algorithm, without any assumptions (see e.g.,
[267]). In this chapter, we answer this question in the affirmative:

Theorem 4.1.1. There exists a (1/2 + Ω(1))-competitive randomized online matching al-
gorithm for general adversarial vertex arrivals.

4.1.1 Our Techniques
Here we outline the techniques underlying our results.

Our high-level approach here will be to round online a fractional online matching algorithm’s
output, specifically that of Wang and Wong [267]. While this approach sounds simple, there are
several obstacles to overcome. First, the fractional matching polytope is not integral in general
graphs, where a fractional matching may have value,

∑
e xe, some 3/2 times larger than the op-

timal matching size. (For example, in a triangle graph with value xe = 1/2 for each edge e.)
Therefore, any general rounding scheme must lose a factor of 3/2 on the competitive ratio com-
pared to the fractional algorithm’s value, and so to beat a competitive ratio of 1/2 would require
an online fractional matching with competitive ratio > 3/4 > 1 − 1/e, which is impossible. To
make matters worse, even in bipartite graphs, for which the fractional matching polytope is in-
tegral and offline lossless rounding is possible [4, 122], online lossless rounding of fractional
matchings is impossible, even under one-sided vertex arrivals [69].

Despite these challenges, we show that a slightly better than 1/2-competitive fractional match-
ing computed by the algorithm of [267] can be rounded online without incurring too high a loss,
yielding (1/2+Ω(1))-competitive randomized algorithm for online matching under general vertex
arrivals.

To outline our approach, we first consider a simple method to round matchings online. When
vertex v arrives, we pick an edge {u, v} with probability zu = xuv/Pr[u free when v arrives],
and add it to our matching if u is free.

If
∑

u zu 6 1, this allows us to pick at most one edge per vertex and have each edge e =
{u, v} be in our matching with the right marginal probability, xe, resulting in a lossless rounding.
Unfortunately, we know of no better-than-1/2-competitive fractional algorithm for which this
rounding guarantees

∑
u zu 6 1.

However, we observe that, for the correct set of parameters, the fractional matching algo-
rithm of Wang and Wong [267] makes

∑
u zu close to one, while still ensuring a better-than-

1/2-competitive fractional solution. Namely, as we elaborate later in Section 4.2.3, we set the
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parameters of their algorithm so that
∑

u zu 6 1 + O(ε), while retaining a competitive ratio of
1/2 + O(ε). Now consider the same rounding algorithm with normalized probabilities: I.e., on
v’s arrival, sample a neighbor u with probability z′u = zu/max{1,∑u zu} and match if u is
free. As the sum of zu’s is slightly above one in the worst case, this approach does not drasti-
cally reduce the competitive ratio. But the normalization factor is still too significant compared
to the competitive ratio of the fractional solution, driving the competitive ratio of the rounding
algorithm slightly below 1/2.

To account for this minor yet significant loss, we therefore augment the simple algorithm
by allowing it, with small probability (e.g., say

√
ε), to sample a second neighbor u2 for each

arriving vertex v, again with probabilities proportional to z′u2
: If the first sampled choice, u1, is

free, we match v to u1. Otherwise, if the second choice, u2, is free, we match v to u2. What is
the marginal probability that such an approach matches an incoming vertex v to a given neighbor
u? Letting Fu denote the event that u is free when v arrives, this probability is precisely

Pr[Fu] ·
(
z′u + z′u ·

√
ε ·
∑
w

z′w · (1− Pr[Fw | Fu])
)
. (4.1)

Here the first term in the parentheses corresponds to the probability that v matches to u via the
first choice, and the second term corresponds to the same happening via the second choice (which
is only taken when the first choice fails).

Ideally, we would like (4.1) to be at least xuv for all edges, which would imply a lossless
rounding. However, as mentioned earlier, this is difficult and in general impossible to do, even
in much more restricted settings including one-sided bipartite vertex arrivals. We therefore settle
for showing that (4.1) is at least xuv = Pr[Fu] · zu for most edges (weighted by xuv). Even this
goal, however, is challenging and requires a nontrivial understanding of the correlation struc-
ture of the random events Fu. To see this, note that for example if the Fw events are perfectly
positively correlated, i.e., Pr[Fw | Fu] = 1, then the possibility of picking e = {u, v} as a
second edge does not increase this edge’s probability of being matched at all compared to if
we only picked a single edge per vertex. This results in e being matched with probability
Pr[Fu] · z′u = Pr[Fu] · zu/

∑
w zw = xuv/

∑
w zw, which does not lead to any gain over the

1/2 competitive ratio of greedy. Such problems are easily shown not to arise if all Fu variables
are independent or negatively correlated. Unfortunately, positive correlation does arise from this
process, and so we the need to control these positive correlations.

The core of our analysis is therefore dedicated to showing that even though positive correla-
tions do arise, they are, by and large, rather weak. Our main technical contribution consists of
developing techniques for bounding such positive correlations. The idea behind the analysis is to
consider the primary choices and secondary choices of vertices as defining a graph, and showing
that after a natural pruning operation that reflects the structure of dependencies, most vertices
are most often part of a very small connected component in the graph. The fact that connected
components are typically very small is exactly what makes positive correlations weak and results
in the required lower bound on (4.1) for most edges (in terms of x-value), which in turn yields
our 1/2 + Ω(1) competitive ratio.
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4.2 General Vertex Arrivals

In this section we present a (1/2 + Ω(1))-competitive randomized algorithm for online matching
under general arrivals. As discussed in the introduction, our approach will be to round (online)
a fractional online matching algorithm’s output. Specifically, this will be an algorithm from the
family of fractional algorithms introduced in [267]. In Section 4.2.1 we describe this family
of algorithms. To motivate our rounding approach, in Section 4.2.2 we first present a simple
lossless rounding method for a 1/2-competitive algorithm in this family. In Section 4.2.3 we
then describe our rounding algorithm for a better-than-1/2-competitive algorithm in this family.
Finally, in Section 4.2.4 we analyze this rounding scheme, and show that it yields a (1/2 + Ω(1))-
competitive algorithm.

4.2.1 Finding a Fractional Solution

In this section we revisit the algorithm of Wang and Wong [267], which beats the 1/2 compet-
itiveness barrier for online fractional matching under general vertex arrivals. Their algorithm
(technically, family of algorithms) applies the primal-dual method to compute both a fractional
matching and a fractional vertex cover – the dual of the fractional matching relaxation. The LPs
defining these dual problems are as follows.

Primal-Matching

maximize
∑

e∈E xe
subject to:

∑
u∈N(v) xuv 6 1 ∀u ∈ V

xe > 0 ∀e ∈ E

Dual-Vertex Cover
minimize

∑
u∈V yu

subject to: yu + yv > 1 ∀e = {u, v} ∈ E
yu > 0 ∀u ∈ V

Before introducing the algorithm of [267], we begin by defining the fractional online vertex
cover problem for vertex arrivals. When a vertex v arrives, if Nv(v) denotes the previously-
arrived neighbors of v, then for each u ∈ Nv(v), a new constraint yu + yv > 1 is revealed, which
an online algorithm should satisfy by possibly increasing yu or yv. Suppose v has its dual value
set to yv = 1− θ. Then all of its neighbors should have their dual increased to at least θ. Indeed,
an algorithm may as well increase yu to max{yu, θ}. The choice of θ therefore determines
an online fractional vertex cover algorithm. The increase of potential due to the newly-arrived
vertex v is thus 1 − θ +

∑
u∈Nv(v)(θ − yu)+. In [267] θ is chosen to upper bound this term by

1−θ+f(θ) for some function f(·). The primal solution (fractional matching) assigns values xuv
so as to guarantee feasibility of ~x and a ratio of β between the primal and dual values of ~x and ~y,
implying 1

β
-competitiveness of this online fractional matching algorithm, by feasibility of ~y and

weak duality. The algorithm, parameterized by a function f(·) and parameter β to be discussed
below, is given formally in Algorithm 1. In the subsequent discussion, Nv(u) denotes the set of
neighbors of u that arrive before v.

Algorithm 1 is parameterized by a function f and a constant β. The family of functions
considered by [267] are as follows.

Definition 4.2.1. Let fκ(θ) :=
(

1+κ
2
− θ
) 1+κ

2κ
(
θ + κ−1

2

)κ−1
2κ . We defineW := {fκ | κ > 1}.
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Algorithm 1 Online general vertex arrival fractional matching and vertex cover

Input: A stream of vertices v1, v2, . . . vn. At step i, vertex vi and Nvi(vi) are revealed
Output: A fractional vertex cover solution ~y and a fractional matching ~x

1: let yu ← 0 for all u, let xuv ← 0 for all u, v
2: for each vertex v in the stream do
3: θ ← max{θ 6 1 |∑u∈Nv(v) (θ − yu)+ 6 f(θ)}
4: for each neighbor u ∈ Nv(v) do
5: xuv ←− (θ−yu)+

β

(
1 + 1−θ

f(θ)

)
6: yu ← max{yu, θ}
7: yv ← 1− θ

As we will see, choices of β guaranteeing feasibility of ~x are related to the following quantity.

Definition 4.2.2. For a given f : [0, 1] −→ R+ let

β∗(f) := max
θ∈[0,1]

1 + f(1− θ) +

∫ 1

θ

1− t
f(t)

dt.

For functions f ∈ W this definition of β∗(f) can be simplified to β∗(f) = 1 + f(0), due to
the observation (see [267, Lemmas 4,5]) that all functions f ∈ W satisfy

β∗(f) = 1 + f(1− θ) +

∫ 1

θ

1− t
f(t)

dt ∀θ ∈ [0, 1]. (4.2)

As mentioned above, the competitiveness of Algorithm 1 for appropriate choices of f and β
is obtained by relating the overall primal and dual values,

∑
e xe and

∑
v yv. As we show (and

rely on later), one can even bound individual vertices’ contributions to these sums. In particular,
for any vertex v’s arrival time, each vertex u’s contribution to

∑
e xe, which we refer to as its

fractional degree, xu :=
∑

w∈Nv(u) xuw, can be bounded in terms of its dual value by this point,
yu, as follows.

Lemma 4.2.3. For any vertices u, v ∈ V , let yu be the potential of u prior to arrival of
v. Then the fractional degree just before v arrives, xu :=

∑
w∈Nv(u) xuw, is bounded as

follows:

yu
β

6 xu 6
yu + f(1− yu)

β
.

Broadly, the lower bound on xu is obtained by lower bounding the increase xu by the increase to
yu/β after each vertex arrival, while the upper bound follows from a simplification of a bound
given in [267, Invariant 1] (implying feasibility of the primal solution), which we simplify using
(4.2). See Section 4.4 for a full proof.
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Another observation we will need regarding the functions f ∈ W is that they are decreasing.

Observation 4.2.4. Every function f ∈ W is non-increasing in the range [0, 1].

Proof. As observed in [267], differentiating (4.2) with respect to z yields−f ′(1− z)− 1−z
f(z)

= 0,
from which we obtain f(z)·f ′(1−z) = z−1. Replacing z by 1−z, we get f(1−z)·f ′(z) = −z,
or f ′(z) = − z

f(1−z) . As f(z) is positive for all z ∈ [0, 1], we have that f ′(z) 6 0 for all
z ∈ [0, 1].

The next lemma of [267] characterizes the achievable competitiveness of Algorithm 1.

Lemma 4.2.5. Algorithm 1 with function f ∈ W and β > β∗(f) = 1 + f(0) is 1
β

compet-
itive.

Wang and Wong [267] showed that taking κ ≈ 1.1997 and β = β∗(fκ), Algorithm 1 is ≈ 0.526
competitive. In later sections we show how to round the output of Algorithm 1 with fκ with
κ = 1 + 2ε for some small constant ε and β = 2 − ε to obtain a (1/2 + Ω(1))-competitive
algorithm. But first, as a warm up, we show how to round this algorithm with κ = 1 and
β = β∗(f1) = 2.

4.2.2 Warmup: a 1/2-Competitive Randomized Algorithm
In this section we will round the 1/2-competitive fractional algorithm obtained by running Algo-
rithm 1 with function f(θ) = f1(θ) = 1−θ and β = β∗(f) = 2. We will devise a lossless round-
ing of this fractional matching algorithm, by including each edge e in the final matching with a
probability equal to the fractional value xe assigned to it by Algorithm 1. Note that if v arrives
after u, then if Fu denotes the event that u is free when v arrives, then edge {u, v} is matched by
an online algorithm with probability Pr[{u, v} ∈M ] = Pr[{u, v} ∈M | Fu]·Pr[Fu]. Therefore,
to match each edge {u, v} with probability xuv, we need Pr[{u, v} ∈ M | Fu] = xuv/Pr[Fu].
That is, we must match {u, v} with probability zu = xuv/Pr[Fu] conditioned on u being free.
The simplest way of doing so (if possible) is to pick an edge {u, v} with the above probability zu
always, and to match it only if u is free. Algorithm 2 below does just this, achieving a lossless
rounding of this fractional algorithm. As before, Nv(u) denotes the set of neighbors of u that
arrive before v.

Algorithm 2 is well defined if for each vertex v’s arrival, z is a probability distribution;
i.e.,

∑
u∈Nv(v) zu 6 1. The following lemma asserts precisely that. Moreover, it asserts that

Algorithm 2 matches each edge with the desired probability.

Lemma 4.2.6. Algorithm 2 is well defined, since for every vertex v on arrival, z is a valid
probability distribution. Moreover, for each v and u ∈ Nv(v), it matches edge {u, v} with
probability xe.
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Algorithm 2 Online vertex arrival warmup randomized fractional matching

Input: A stream of vertices v1, v2, . . . vn. At step i, vertex vi and Nvi(vi) are revealed
Output: A matching M

1: let yu ← 0 for all u, let xuv ← 0 for all u, v
2: let M ← ∅
3: for each v in the stream do
4: update yu’s and xuv’s using Algorithm 1 with β = 2 and f = f1

5: for each neighbor u ∈ Nv(v) do
6: zu ← xuv

Pr[u is free when v arrives] . zu = xuv/(1− yu), as shown later

7: sample (at most) one neighbor u ∈ Nv(v) according to zu
8: if a free neighbor u is sampled then
9: add {u, v} to M

Proof. We prove both claims in tandem for each v, by induction on the number of arrivals. For
the base case (v is the first arrival), the set Nv(v) is empty and thus both claims are trivial.
Consider the arrival of a later vertex v. By the inductive hypothesis we have that each vertex
u ∈ Nv(v) is previously matched with probability

∑
w∈Nv(u) xwu. But by our choice of f(θ) =

f1(θ) = 1 − θ and β = 2, if w arrives after u, then yu and θ at arrival of w satisfy xuw =
(θ−yu)+

β
·
(

1 + 1−θ
f(θ)

)
= (θ − yu)+. That is, xuw is precisely the increase in yu following arrival

of w. On the other hand, when u arrived we have that its dual value yu increased by 1 − θ =∑
v′∈Nu(u)(θ − yv′)+ =

∑
v′∈Nu(u) xuv′ . To see this last step, we recall first that by definition of

Algorithm 1 and our choice of f(θ) = 1−θ, the value θ on arrival of v is chosen to be the largest
θ 6 1 satisfying ∑

∀u∈Nv(v)

(θ − yu)+ 6 1− θ. (4.3)

But the inequality (4.3) is an equality whether or not θ = 1 (if θ = 1, both sides are zero). We
conclude that yu =

∑
v′∈Nv(u) xuv′ just prior to arrival of v. But then, by the inductive hypothesis,

this implies that Pr[u free when v arrives] = 1 − yu (yielding an easily-computable formula for
zu). Consequently, by (4.3) we have that when v arrives z is a probability distribution, as∑

u∈Nv(v)

zu =
∑

u∈Nv(v)

(θ − yu)+

1− yu
6

∑
u∈Nv(v): yu6θ

(θ − yu)+

1− θ =
∑

u∈Nv(v)

(θ − yu)+

1− θ 6 1.

Finally, for u to be matched to a latter-arriving neighbor v, it must be picked and free when v
arrives, and so {u, v} is indeed matched with probability

Pr[{u, v} ∈M ] =
xuv

Pr[u is free when v arrives]
· Pr[u is free when v arrives] = xuv.

In the next section we present an algorithm which allows to round better-than-1/2-competitive
algorithms derived from Algorithm 1.
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4.2.3 An Improved Algorithm
In this section, we build on Algorithm 2 and show how to improve it to get a (1/2 + Ω(1))
competitive ratio.

There are two concerns when modifying Algorithm 2 to work for a general function from
the family W . The first is how to compute the probability that a vertex u is free when vertex v
arrives, in Line 6. In the simpler version, we inductively showed that this probability is simply
1 − yu, where yu is the dual value of u as of v’s arrival (see the proof of Lemma 4.2.6). With
a general function f , this probability is no longer given by a simple formula. Nevertheless, it is
easily fixable: We can either use Monte Carlo sampling to estimate the probability of u being
free at v’s arrival to a given inverse polynomial accuracy, or we can in fact exactly compute these
probabilities by maintaining their marginal values as the algorithm progresses. In what follows,
we therefore assume that our algorithm can compute these probabilities exactly.

The second and more important issue is with the sampling step in Line 7. In the simpler
algorithm, this step is well-defined as the sampling probabilities indeed form a valid distribution:
I.e.,

∑
u∈Nv(v) zu 6 1 for all vertices v. However, with a general function f , this sum can

exceed one, rendering the sampling step in Line 7 impossible. Intuitively, we can normalize the
probabilities to make it a proper distribution, but by doing so, we end up losing some amount
from the approximation guarantee. We hope to recover this loss using a second sampling step,
as we mentioned in Section 9.1.1 and elaborate below.

Suppose that, instead of β = 2 and f = f1 (i.e., the function f(θ) = 1−θ), we use f = f1+2ε

and β = 2− ε to define xuv and yu values. As we show later in this section, for an ε sufficiently
small, we then have

∑
u∈Nv(v) zu 6 1 + O(ε), implying that the normalization factor is at most

1 +O(ε). However, since the approximation factor of the fractional solution is only 1/2 +O(ε)
for such a solution, (i.e.,

∑
{u,v}∈E xuv > (1/β) ·∑u∈V yu), the loss due to normalization is too

significant to ignore.
Now suppose that we allow arriving vertices to sample a second edge with a small (i.e.,√
ε) probability and match that second edge if the endpoint of the first sampled edge is already

matched. Consider the arrival of a fixed vertex v such that
∑

u∈Nv(v) zu > 1, and let z′u denote
the normalized zu values. Further let Fw denote the event that vertex w is free (i.e, unmatched)
at the arrival of v. Then the probability that v matches u for some u ∈ Nv(v) using either of the
two sampled edges is

Pr[Fu] ·

z′u + z′u
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

 , (4.4)

which is the same expression from (4.1) from Section 9.1.1, restated here for quick reference.
Recall that the first term inside the parentheses accounts for the probability that v matches u via
the first sampled edges, and the second term accounts for the probability that the same happens
via the second sampled edge. Note that the second sampled edge is used only when the first
one is incident to an already matched vertex and the other endpoint of the second edge is free.
Hence we have the summation of conditional probabilities in the second term, where the events
are conditioned on the other endpoint, u, being free. If the probability given in (4.4) is xuv for all
{u, v} ∈ E, we would have the same guarantee as the fractional solution xuv, and the rounding
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would be lossless. This seems unlikely, yet we can show that the quantity in (4.4) is at least
(1− ε2) · xuv for most (not by number, but by the total fractional value of xuv’s) of the edges in
the graph, showing that our rounding is almost lossless. We postpone further discussion of the
analysis to Section 4.2.4 where we highlight the main ideas before proceeding with the formal
proof.

Algorithm 3 A randomized online matching algorithm under general vertex arrivals.

Input: A stream of vertices v1, v2, . . . vn. At step i, vertex vi and Nvi(vi) are revealed
Output: A matching M

1: let yu ← 0 for all u, let xuv ← 0 for all u, v
2: let M ← ∅
3: for each v in the stream do
4: update yu’s and xuv’s using Algorithm 1 with β = 2− ε and f = f1+2ε

5: for each neighbor u ∈ Nv(v) do
6: zu ← xuv

Pr[u is free when v arrives] . computing Pr[u is free when v arrives] as explained in
Section 4.2.3

7: for each neighbor u ∈ Nv(v) do
8: z′u ← zu/max

{
1,
∑

u∈Nv(v) zu

}
9: pick (at most) one u1 ∈ Nv(v) with probability z′u1

10: if
∑

u∈Nv(v) zu > 1 then
11: with probability

√
ε do

12: pick (at most) one u2 ∈ Nv(v) with probability z′u2

13: drop u2 with minimal probability ensuring {u2, v} is matched with probability at
most xu2v . this probability can be computed using (4.4)

14: if a free neighbor u1 is sampled then
15: add {u1, v} to M
16: else if a free neighbor u2 is sampled then
17: add {u2, v} to M

Our improved algorithm is outlined in Algorithm 3. Up until Line 6, it is similar to Algo-
rithm 2 except that it uses β = 2 − ε and f = f1+2ε where we choose ε > 0 to be any constant
small enough such that the results in the analysis hold. In Line 8, if the sum of zu’s exceeds one
we normalize the zu to obtain a valid probability distribution z′u. In Line 9, we sample the first
edge incident to an arriving vertex v. In Line 12, we sample a second edge incident to the same
vertex with probability

√
ε if we had to scale down zu’s in Line 8. Then in Line 13, we drop

the sampled second edge with the minimal probability to ensure that no edge {u, v} is matched
with probability more than xuv. Since (4.4) gives the exact probability of {u, v} being matched,
this probability of dropping an edge {u, v} can be computed by the algorithm. However, to com-
pute this, we need the conditional probabilities Pr[Fw | Fu], which again can be estimated using
Monte Carlo sampling, (Alternatively, it is also possible to compute them exactly if we allow
the algorithm to take exponential time.) In the subsequent lines, we match v to a chosen free
neighbor (if any) among its chosen neighbors, prioritizing its first choice.
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For the purpose of analysis we view Algorithm 3 as constructing a greedy matching on a
directed acyclic graph (DAG) Hτ defined in the following two definitions.

Definition 4.2.7 (Non-adaptive selection graphGτ ). Let τ denote the random choices made
by the vertices of G. Let Gτ be the DAG defined by all the arcs (v, u1), (v, u2) for all
vertices v ∈ V . We call the arcs (v, u1) primary arcs, and the arcs (v, u2) the secondary
arcs.

Definition 4.2.8 (Pruned selection graph Hτ ). Now construct Hτ from Gτ by removing
all arcs (v, u) (primary or secondary) such that there exists a primary arc (v′, u) with v′

arriving before v. We further remove a secondary arc (v, u) if there is a primary arc (v, u);
i.e., if a vertex u has at least one incoming primary arc, remove all incoming primary arcs
that came after the first primary arc and all secondary arcs that came after or from the
same vertex as the first primary arc.

It is easy to see that the matching constructed by Algorithm 3 is a greedy matching con-
structed on Hτ based on order of arrival and prioritizing primary arcs. The following lemma
shows that the set of matched vertices obtained by this greedy matching does not change much
for any change in the random choices of a single vertex v, which will prove useful later on. It can
be proven rather directly by an inductive argument showing the size of the symmetric difference
in matched vertices in Gτ and Gτ ′ does not increase after each arrival besides the arrival of v,
whose arrival clearly increases this symmetric difference by at most two. See Section 4.3 for
details.

Lemma 4.2.9. Let Gτ and Gτ ′ be two realizations of the random digraph where all the
vertices in the two graphs make the same choices except for one vertex v. Then the number
of vertices that have different matched status (free/matched) in the matchings computed in
Hτ and Hτ ′ at any point of time is at most two.

4.2.4 Analysis
In this section, we analyze the competitive ratio of Algorithm 3. We start with an outline of the
analysis where we highlight the main ideas.

High-Level Description of Analysis

As described in Section 4.2.3, the main difference compared to the simpler 1/2-competitive algo-
rithm is the change of the construction of the fractional solution, which in turn makes the round-
ing more complex. In particular, we may have at the arrival of a vertex v that

∑
u∈Nv(v) zu > 1.

The majority of the analysis is therefore devoted to such “problematic” vertices since other-
wise, if

∑
u∈Nv(v) zu 6 1, the rounding is lossless due to the same reasons as described in the
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simpler setting of Section 4.2.2. We now outline the main ideas in analyzing a vertex v with∑
u∈Nv(v) zu > 1. Let Fw be the event that vertex w is free (i.e., unmatched) at the arrival of v.

Then, as described in Section 4.2.3, the probability that we select edge {u, v} in our matching is
the minimum of xuv (because of the pruning in Line 13), and

Pr[Fu] ·

z′u + z′u
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

 .

By definition, Pr[Fu] ·zu = xuv, and the expression inside the parentheses is at least zu (implying
Pr[{u, v} ∈M ] = xuv) if

1 +
√
ε ·

∑
w∈Nv(v)

z′w · (1− Pr[Fw | Fu]) >
zu
z′u
. (4.5)

To analyze this inequality, we first use the structure of the selected function f = f1+2ε and
the selection of β = 2 − ε to show that if

∑
u∈Nv(v) zu > 1 then several structural properties

hold (see Lemma 4.2.10 and Corollary 4.2.11 in Section 4.2.4). In particular, there are absolute
constants 0 < c < 1 and C > 1 (both independent of ε) such that

1.
∑

u∈Nv(v) zu 6 1 + Cε;

2. zu 6 C
√
ε for every u ∈ Nv(v); and

3. c 6 Pr[Fw] 6 1− c for every w ∈ Nv(v).
The first property implies that the right-hand-side of (4.5) is at most 1 + Cε; and the second
property implies that v has at least Ω(1/

√
ε) neighbors and that each neighbor u satisfies z′u 6

zu 6 C
√
ε.

For simplicity of notation, we assume further in the high-level overview that v has exactly
1/
√
ε neighbors and each u ∈ Nv(v) satisfies z′u =

√
ε. Inequality (4.5) would then be implied

by ∑
w∈Nv(v)

(1− Pr[Fw | Fu]) > C . (4.6)

To get an intuition why we would expect the above inequality to hold, it is instructive to consider
the unconditional version:∑

w∈Nv(v)

(1− Pr[Fw]) > c|Nv(v)| = c/
√
ε� C ,

where the first inequality is from the fact that Pr[Fw] 6 1− c for any neighbor w ∈ Nv(v). The
large slack in the last inequality, obtained by selecting ε > 0 to be a sufficiently small constant,
is used to bound the impact of conditioning on the event Fu. Indeed, due to the large slack, we
have that (4.6) is satisfied if the quantity

∑
w∈Nv(v) Pr[Fw|Fu] is not too far away from the same

summation with unconditional probabilities, i.e.,
∑

w∈Nv(v) Pr[Fw]. Specifically, it is sufficient
to show ∑

w∈Nv(v)

(Pr[Fw|Fu]− Pr[Fw]) 6 c/
√
ε− C . (4.7)
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u u

Figure 4.1: Two examples of the component of Hτ containing u

Vertices are depicted from right to left in the arrival order. Primary and secondary arcs are solid and dashed,
respectively. The edges that take part in the matching are thick.

We do so by bounding the correlation between the events Fu and Fw in a highly non-trivial
manner, which constitutes the heart of our analysis. The main challenges are that events Fu
and Fw can be positively correlated and that, by conditioning on Fu, the primary and secondary
choices of different vertices are no longer independent.

We overcome the last difficulty by replacing the conditioning on Fu by a conditioning on
the component in Hτ (at the time of v’s arrival) that includes u. As explained in Section 4.2.3,
the matching output by our algorithm is equivalent to the greedy matching constructed in Hτ

and so the component containing u (at the time of v’s arrival) determines Fu. But how can this
component look like, assuming the event Fu? First, u cannot have any incoming primary arc
since then u would be matched (and so the event Fu would be false). However, u could have
incoming secondary arcs, assuming that the tails of those arcs are matched using their primary
arcs. Furthermore, u can have an outgoing primary and possibly a secondary arc if the selected
neighbors are already matched. These neighbors can in turn have incoming secondary arcs,
at most one incoming primary arc (due to the pruning in the definition of Hτ ), and outgoing
primary and secondary arcs; and so on. In Figure 4.1, we give two examples of the possible
structure, when conditioning on Fu, of u’s component in Hτ (at the time of v’s arrival). The left
example contains secondary arcs, whereas the component on the right is arguably simpler and
only contains primary arcs.

An important step in our proof is to prove that, for most vertices u, the component is of the
simple form depicted to the right with probability almost one. That is, it is a path P consisting
of primary arcs, referred to as a primary path (see Definition 4.2.13) that further satisfies:

(i) it has length O(ln(1/ε)); and

(ii) the total z-value of the arcs in the blocking set of P is O(ln(1/ε)). The blocking set is
defined in Definition 4.2.14. Informally, it contains those arcs that if appearing as primary
arcs in Gτ would cause arcs of P to be pruned (or blocked) from Hτ .

Let P be the primary paths of above type that appear with positive probability as u’s component
in Hτ . Further let EQP be the event that u’s component equals P . Then we show (for most
vertices) that

∑
P∈P Pr[EQP | Fu] is almost one. For simplicity, let us assume here that the sum
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is equal to one. Then by the law of total probability and since
∑

P∈P Pr[EQP | Fu] = 1,

∑
w∈Nv(v)

(Pr[Fw | Fu]− Pr[Fw]) =
∑
P∈P

Pr[EQP | Fu]

 ∑
w∈Nv(v)

(Pr[Fw | Fu,EQP ]− Pr[Fw])


=
∑
P∈P

Pr[EQP | Fu]

 ∑
w∈Nv(v)

(Pr[Fw | EQP ]− Pr[Fw])

 ,

where the last equality is because the component P determines Fu. The proof is then completed
by analyzing the term inside the parentheses for each primary path P ∈ P separately. As we
prove in Lemma 4.2.15, the independence of primary and secondary arc choices of vertices is
maintained after conditioning on EQP .1 Furthermore, we show that there is a bijection between
the outcomes of the unconditional and the conditional distributions, so that the expected number
of vertices that make different choices under this pairing can be upper bounded by roughly the
length of the path plus the z-value of the edges in the blocking set. So, for a path P as above,
we have that the expected number of vertices that make different choices in the paired outcomes
is O(ln(1/ε)) which, by Lemma 4.2.9, implies that the expected number of vertices that change
matched status is also upper bounded by O(ln(1/ε)). In other words, we have for every P ∈ P
that ∑

w∈Nv(v)

(Pr[Fw|EQP ]− Pr[Fw]) 6
∑
w∈V

(Pr[Fw|EQP ]− Pr[Fw]) = O(ln(1/ε)),

which implies (4.7) for a small enough choice of ε. This completes the overview of the main
steps in the analysis. The main difference in the formal proof is that not all vertices satisfy that
their component is a short primary path with probability close to 1. To that end, we define the
notion of good vertices in Section 4.2.4, which are the vertices that are very unlikely to have
long directed paths of primary arcs rooted at them. These are exactly the vertices v for which we
can perform the above analysis for most neighbors u (in the proof of the “key lemma”) implying
that the rounding is almost lossless for v. Then, in Section 4.2.4, we show using a rather simple
charging scheme that most of the vertices in the graph are good. Finally, in Section 4.2.4, we put
everything together and prove Theorem 4.1.1.

Useful Properties of W Functions and Algorithm 3

For the choice of f = f1+2ε as we choose, we have f(θ) = (1 + ε− θ) ·
(

θ+ε
1+ε−θ

) ε
1+2ε . In

Section 4.5 we give a more manageable upper bound for f(θ) which holds for sufficiently small
ε. Based on this simple upper bound on f and some basic calculus, we obtain the following
useful structural properties for the conditional probabilities, zu, of Algorithm 3. See Section 4.5.

1To be precise, we condition on a primary path P with a so-called termination certificate T , see Defini-
tion 4.2.13. In the overview, we omit this detail, and consider the event EQP,T (instead of EQP ) in the formal
proof.
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Lemma 4.2.10. (Basic bounds on conditional probabilities zu) There exist absolute con-
stants c ∈ (0, 1) and C > 1/c > 1 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) the
following holds: for every vertex v ∈ V , if yu is the dual variable of a neighbor u ∈ Nv(v)
before v’s arrival and θ is the value chosen by Algorithm 1 on v’s arrival, then for zu as
defined in Algorithm 3, we have:

(1) If θ 6∈ (c, 1− c), then
∑

u∈Nv(v) zu 6 1,
(2) If θ ∈ [0, 1], then

∑
u∈Nv(v) zu 6 1 + Cε,

(3) If
∑

u∈Nv(v) zu > 1, then zu 6 C
√
ε for every u ∈ Nv(v),

(4) If
∑

u∈Nv(v) zu > 1, then for every u ∈ Nv(v) such that zu > 0, one has yu ∈ [c/2, 1−
c/2], and

(5) For all u ∈ Nv(v), one has zu 6 1/2 +O(
√
ε).

The following corollary will be critical to our analysis:

Corollary 4.2.11. There exist absolute constants c > 0 and ε0 > 0 such that for all ε ∈
(0, ε), on arrival of any vertex v ∈ V , if z as defined in Algorithm 3 satisfies

∑
u∈Nv(v) zu >

1, then for every u ∈ Nv(v) we have

c 6 Pr[u is free when v arrives] 6 1− c.

Proof. By Lemma 4.2.10, (1) and (4) we have that if
∑

u∈Nv(v) zu > 1, then θ ∈ (c, 1 − c) (c is
the constant from Lemma 4.2.10), and for every u ∈ Nv(v) one has

yu ∈ [c/2, 1− c/2]. (4.8)

On the other hand, by Lemma 4.2.3 one has

yu
β

6 xu 6
yu + f(1− yu)

β
, (4.9)

where xu is the fractional degree of u when v arrives.
We now note that by Lemma 4.2.10, (2), we have that Algorithm 3 matches every vertex u

with probability at least xu/(1 + Cε) (due to choices of primary arcs), and thus

Pr[u is free when v arrives] 6 1− xu
1 + Cε

6 1− yu
β(1 + Cε)

(by (4.9))

6 1− c/2

2(1 + Cε)
(by (4.8) and the setting β = 2− ε 6 2)

6 1− c/5,

as long as ε is sufficiently small.
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For the other bound we will use two facts. The first is that the since f(y) is monotone
decreasing by Observation 4.2.4 and since we picked β > β∗(f) = 1 + f(0), we have that for
any y 6 1− c/2 6 1,

y + f(1− y) 6 1− c/2 + f(0) < β − c/2. (4.10)

Then, using the fact that by Line 13, Algorithm 3 matches every vertex uwith probability at most
xu, we obtain the second bound, as follows.

Pr[u is free when v arrives] > 1− xu

> 1− yu + f(1− yu)
β

(by (4.9))

> 1− β − c/2
β

(by (4.8) and (4.10))

> c/5. (β = 2− ε < 2.5)

Choosing c/5 as the constant in the statement of the lemma, we obtain the result.

Finally, for our analysis we will rely on the competitive ratio of the fractional solution main-
tained in Line 4 being 1/β. This follows by Lemma 4.2.5 and the fact that for our choices of
β = 2− ε and f = f1+2ε we have that β > β∗(f). See Section 4.5 for a proof of this fact.

Fact 4.2.12. For all sufficiently small ε > 0, we have that 2− ε > β∗(f1+2ε).

Structural Properties of Gτ and Hτ

In our analysis later, we focus on maximal primary paths (directed paths made of primary arcs)
in Hτ , in the sense that the last vertex along the primary path has no outgoing primary arc in Hτ .
The following definition captures termination certificates of such primary paths.

Definition 4.2.13 (Certified Primary Path). A tuple (P, T ) is a certified primary path inHτ

if P is a directed path of primary arcs in Hτ and either
(a) the last vertex of P does not have an outgoing primary arc in Gτ and T = ∅, or
(b) the last vertex u of P has an outgoing primary arc (u,w) in Gτ and T = (u′, w) is a

primary arc in Hτ such that u′ precedes u in the arrival order.

To elaborate, a certified primary path (P, T ) is made of a (directed) path P of primary arcs in Hτ

and T is a certificate of P ’s termination in Hτ that ensures the last vertex u in P has no outgoing
primary arc in Hτ , either due to u not picking a primary arc with T = ∅, or due to the picked
primary arc (u,w) being blocked by another primary arc T = (u′, w) which appears in Hτ .

As described, Gτ and Hτ differ in arcs (u,w) that are blocked by previous primary arcs to
their target vertex w. We generally define sets of arcs which can block an edge, or a path, or a
certified path from appearing in Hτ as in the following definition:
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Definition 4.2.14 (Blocking sets). For an arc (u,w), define its blocking set

B(u,w) := {(u′, w) | {u′, w} is an edge and u′ arrived before u}

to be those arcs, the appearance of any of which as primary arc in Gτ blocks (u, v) from
being in Hτ . In other words, an arc (u, v) is in Hτ as primary or secondary arc if and only
if (u, v) is in Gτ and none of the arcs in its blocking set B(u, v) is in Gτ as a primary arc.
The blocking set of a path P is simply the union of its arcs’ blocking sets,

B(P ) :=
⋃

(u,v)∈P

B(u, v) .

The blocking set of a certified primary path (P, T ) is the union of blocking sets of P and
T ,

B(P, T ) := B(P ∪ T ).

The probability of an edge, or path, or certified primary path appearing in Hτ is governed in
part by the probability of arcs in their blocking sets appearing as primary arcs in Gτ . As an arc
(v, u) is picked as primary arc by when v arrives with probability roughly zu (more precisely,
z′u ∈ [zvu/(1 + Cε), zvu], by Lemma 4.2.10), it will be convenient to denote by z(v, u) and
z′(v, u) the values zu and z′u when v arrives, and by z(S) =

∑
s∈S z(s) and z′(S) =

∑
s∈S z(s)

the sum of z- and z′-values of arcs in a set of arcs S.

Product distributions. Note that by definition the distribution over primary and secondary
arc choices of vertices are product distributions (they are independent). As such, their joint
distribution is defined by their marginals. Let pw and sw denote the distribution on primary and
secondary arc choices of w, respectively. That is, for every u ∈ Nw(w), pw(u) is the marginal
probability that w selects (w, u) as its primary arc, and sw(u) is the marginal probability that w
selects (w, u) as its secondary arc. Given our target bound (4.5), it would be useful to show that
conditioning on Fu preserves the independence of these arc choices. Unfortunately, conditioning
on Fu does not preserve this independence. We will therefore refine our conditioning later on the
existence of primary paths in Hτ , which as we show below maintains independence of the arc
choices.
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Lemma 4.2.15. For a certified primary path (P, T ) let EQ(P,T ) be the event that the path
P equals a maximal connected component in Hτ and the termination of P is certified by
T . Then the conditional distributions of primary and secondary choices conditioned on
EQ(P,T ) are product distributions; i.e., these conditional choices are independent. More-
over, if we let p̃w and s̃w denote the conditional distribution on primary and secondary
choices of w, respectively, then

TV(pw, p̃w) 6 z(R(w)) and TV(sw, s̃w) 6 z(R(w)),

where R(w) ⊆ {w} ×Nw(w) is the set of arcs leaving w whose existence as primary arcs
in Gτ is ruled out by conditioning on EQ(P,T ), and the union of these R(w), denoted by
R(P, T ), satisfies

R(P, T ) :=
⋃
w

R(w) ⊆ B(P, T )∪{(w, r) | r is root of P}∪
⋃

w∈P∪{w:T=(w,w′)}

{w}×Nw(w).

(4.11)

Proof. We first bound the total variation distance between the conditional and unconditional dis-
tributions. For primary choices, conditioning on EQ(P,T ) rules out the following sets of primary
arc choices. For vertex w /∈ P arriving before the root r of P this conditioning rules out w pick-
ing any edge in B(P, T ) as primary arc. For vertices w /∈ P with w arriving after the root r of P
this conditioning rules out picking arcs (w, r). Finally, this conditioning rules out some subset of
arcs leaving vertices in P ∪ {w : T = (w,w′)}. Taking the union over these supersets of R(w),
we obtain (4.11). Now, the probability of each ruled out primary choice (w, u) ∈ R(w) is zero
under p̃w and z′(w, u) under pw, and all other primary choices have their probability increase,
with a total increase of

∑
(w,u)∈R(w) z

′(w, u), from which we conclude that

TV(pw, p̃w) =
1

2

∑
u∈Nw(w)

|pw(u)− p̃w(u)| = z′(R(w)) 6 z(R(w)).

The proof for secondary arcs is nearly identical, the only differences being that the sets of ruled
out secondary arcs can be smaller (specifically, secondary arcs tow′ such that T = (u,w′) are not
ruled out by this conditioning), and the probability of any arc (w, u) being picked as secondary
arc of w is at most

√
ε · z′(w, u) 6 z(w, u).

Finally, we note that primary and secondary choices for different vertices are independent.
Therefore, conditioning on each vertex w not picking a primary arc in its ruled out set R(w) still
yields a product distribution, and similarly for the distributions over secondary choices.

It is easy to show that a particular certified primary path (P, T ) with high value of z(B(P, T ))
is unlikely to appear in Hτ , due to the high likelihood of arcs in its breaking set being picked as
primary arcs. The following lemma asserts that the probability of a vertex u being the root of
any primary certified path (P, T ) with high z(B(P, T )) value is low.
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Lemma 4.2.16. For any k > 0 and any vertex u, we have the following

Pr[Hτ contains a certified primary path (P, T ) rooted at u and z(B(P, T )) > k] 6 e−k/2,

Pr[Hτ contains a primary path P rooted at u with z(B(P )) > k] 6 e−k/2.

Proof. We first prove the bound for certified primary paths. For a certified primary path (P, T )
where the last vertex of P is w, define P ∗ as follows:

P ∗ =

{
P if T = ∅
P ∪ {(w,w′′)} if T = (w′, w′′).

Observe that z(B(P ∗)) > k whenever z(B(P, T )) > k. This is trivial when T = ∅. To see
this for the case T = (w′, w′′), let w be the last vertex of P , and note thatB(w′, w′′) ⊆ B(w,w′′),
as w arrives after w′. Also note that for (P, T ) to be in Hτ , we have that P ∗ must be in Gτ .

We say a directed primary path P ′ = u → u1 → · · · → u`−1 → u` is k-minimal if
z(B(P ′)) > k and z(B(P ′ \ {(u`−1, u`)})) < k. For such a path P ′, define B∗(P ′) as fol-
lows: Initially set B∗(P ′) = B(P \{(u`−1, u`)}). Then from B(u`−1, u`), the breaking set of the
last arc of P ′, add arcs to B∗(P ′) in reverse order of their sources’ arrival until z(B∗(P ′)) > k.

Consider a certified primary path (P, T ) with P rooted at u. If a k-minimal path rooted
at u which is not a prefix of P ∗ is contained in Gτ , then (P, T ) does not appear in Gτ , and
therefore it does not appear in Hτ . On the other hand, if z(B(P, T )) > k then for (P, T ) to
appear in Hτ , we must have that the (unique) k-minimal prefix P ′ of P ∗ must appear in Gτ , and
that none of the edges of B∗(P ′) appear in Gτ . Moreover, for any certified primary path with
z(B(P, T )), conditioning on the existence of P ′ in Gτ does not affect random choices of vertices
with outgoing arcs in B∗(P ′), as these vertices are not in P ′. Since by Lemma 4.2.10 each arc
(w,w′) appears in Gτ with probability z′(v, u) > z(v, u)/(1 + Cε) > z(v, u)/2, we conclude
that for any k-minimal primary path P ′ rooted at u, we have

Pr[Hτ contains any certified primary path (P, T ) with z(B(P, T )) > k | P ′ is in Gτ ]

6Pr[No edge in B∗(P ′) is in Gτ | P ′ is in Gτ ]

=
∏
w/∈P ′

(1− Pr[Some primary edge in B∗(P ′) ∩ ({w} ×Nw(w)) is in Gτ ])

6
∏
w/∈P ′

exp
(
−∑(w,w′)∈B(P,T )×Nw(w) z(w,w′)/2

)
6 exp(−z(B∗(P ′))/2) 6 e−k/2.

Taking total probability Pu, the set of all k-minimal primary paths P ′ rooted at u, we get that
indeed, since u is the root of at most one k-minimal primary path in any realization of Gτ ,

Pr[Hτ contains a certified primary path (P, T ) rooted at u with z(B(P, T )) > k]

6
∑
P ′∈Pu

Pr[Hτ contains a (P, T ) with z(B(P, T )) > k | P ′ is in Gτ ]︸ ︷︷ ︸
6 e−k/2

·Pr[P ′ is in Gτ ] 6 e−k/2.
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The proof for primary path is essentially the same as the above, taking P ∗ = P .

Analyzing Good Vertices

Consider the set of vertices that are unlikely to be roots of long directed paths of primary arcs
in Hτ . In this section, we show that Algorithm 3 achieves almost lossless rounding for such
vertices, and hence we call them good vertices. We start with a formal definition:

Definition 4.2.17 (Good vertices). We say that a vertex v is good if

Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)] 6 ε6.

Otherwise, we say v is bad.

As the main result of this section, for good vertices, we prove the following:

Theorem 4.2.18. Let v be a good vertex. Then

Pr[v is matched on arrival] > (1− ε2) ·
∑

u∈Nv(v)

xuv.

Notational conventions.: Throughout this section, we fix v and let z, z′ be as in Algorithm 3.
Moreover, for simplicity of notation, we suppose that the stream of vertices ends just before v’s
arrival and so quantities, such as Gτ and Hτ , refer to their values when v arrives. For a vertex u,
we let Fu denote the event that u is free (i.e., unmatched) when v arrives. In other words, Fu is
the event that u is free in the stream that ends just before v’s arrival.

To prove the theorem, first note that it is immediate if
∑

u∈Nv(v) zu 6 1: in that case, we have
z′ = z and so the probability to match v by a primary edge, by definition of zu, is simply∑

u∈Nv(v)

zu · Pr[Fu] =
∑

u∈Nv(v)

xuv.

From now on we therefore assume
∑

u∈Nv(v) zu > 1, which implies
(I)
∑

u∈Nv(v) z
′
u = 1,

and moreover, by Lemma 4.2.10 and Corollary 4.2.11, for every u ∈ Nv(v):
(II) zu 6 C

√
ε,

(III) zu 6 (1 + Cε) · z′u, and

(IV) c 6 Pr[Fu] 6 1− c ,
where c is the constant of Corollary 4.2.11 and C is the constant of Lemma 4.2.10.

We now state the key technical lemma in the proof of Theorem 4.2.18:
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Lemma 4.2.19. Consider a neighbor u ∈ Nv(v) such that

Pr
τ

[Hτ has a primary path rooted at u of length > 2000 · ln(1/ε) | Fu] 6 ε2 . (4.12)

Then, ∑
w∈Nv(v)

z′w · Pr[Fw | Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw] 6 ε1/3 . (4.13)

Note that the above lemma bounds the quantity
∑

w∈Nv(v) z
′
w · Pr[Fw | Fu], which will allow us

to show that (4.5) holds and thus the edge {u, v} is picked in the matching with probability very
close to xuv. Before giving the proof of the lemma, we give the formal argument why the lemma
implies the theorem.

Proof of Theorem 4.2.18. Define S to be the neighbors u in Nv(v) satisfying

Pr
τ

[Hτ has a primary path rooted at u of length > 2000 · ln(1/ε) | Fu] > ε2 .

In other words, S is the set of neighbors of v that violate (4.12). As v is good, we have

ε6 > Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)]

>
∑

u∈Nv(v)

z′u · Pr[Fu] · Pr
τ

[Hτ has a primary path rooted at u of length > 2000 · ln(1/ε)− 1 | Fu]

>
∑

u∈Nv(v)

z′u · Pr[Fu] · Pr
τ

[Hτ has a primary path rooted at u of length > 2000 · ln(1/ε) | Fu]

>
∑
u∈S

z′u · Pr[Fu] · ε2.

The second inequality holds because v selects the primary arc (u, v) with probability z′u and,
conditioned on Fu, u cannot already have an incoming primary arc, which implies that (u, v) is
present in Hτ . The last inequality follows from the choice of S.

By Property (III), zu 6 (1 + Cε) · z′u and so by rewriting we get∑
u∈S

xuv =
∑
u∈S

zu · Pr[Fu] 6 (1 + Cε) ·
∑
u∈S

z′u · Pr[Fu] 6 (1 + Cε) · ε4 6 ε3.

In other words, the contribution of the neighbors of v in S to
∑

u∈Nv(v) xuv is insignificant
compared to the contribution of all neighbors,∑

u∈Nv(v)

xuv =
∑

u∈Nv(v)

zu · Pr[Fu] > c, (4.14)

where the inequality follows by the assumption
∑

u∈Nv(v) zu > 1 and Pr[Fu] > c by Prop-
erty (IV).
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We proceed to analyze a neighbor u ∈ Nv(v) \ S. Recall that it is enough to verify (4.5) to
conclude that edge {u, v} is picked in the matching with probability xuv. We have that

1 +
√
ε
∑

w∈Nv(v)

z′w · (1− Pr[Fw | Fu])

> 1 +
√
ε
∑

w∈Nv(v)

z′w · (1− Pr[Fw])−√ε · ε1/3 (by Lemma 4.2.19)

> 1 +
√
ε
∑

w∈Nv(v)

z′w · c−
√
ε · ε1/3 (Pr[Fw] 6 1− c by (IV))

= 1 +
√
εc−√ε · ε1/3

 ∑
w∈Nv(v)

z′w = 1 by (I)


> 1 + Cε (for ε small enough)

> zu/z
′
u. (by (III))

Therefore, by definition of S and Lemma 4.2.19, we thus have that for every u ∈ Nv(v) \ S, the
edge {u, v} is taken in the matching with probability xuv. Thus, the probability that v is matched
on arrival is, as claimed, at least∑

u∈Nv(v)\S

xuv =
∑

u∈Nv(v)

xuv −
∑
u∈S

xuv >
∑

u∈Nv(v)

xuv − ε3 > (1− ε2)
∑

u∈Nv(v)

xuv ,

where the last inequality holds because we have
∑

u∈Nv(v) xuv > c, as calculated in (4.14).

Proof of the Key Lemma

It remains to prove the key lemma, Lemma 4.2.19, which we do here.

Proof of Lemma 4.2.19. For a certified primary path (P, T ) let EQ(P,T ) be the event as defined
in Lemma 4.2.15, and let IN(P,T ) be the event that P is a maximal primary path in Hτ and the
termination of P is certified by T . Further, let

C = {(P, T ) : (P, T ) is a certified primary path rooted at u with Pr[IN(P,T )] > 0}

be the set of certified primary paths rooted at u that have a nonzero probability of being maximal
in Hτ . Then, by the law of total probability and since

∑
(P,T )∈C Pr[IN(P,T ) | Fu] = 1 (since

conditioning on Fu implies in particular that u has no incoming primary arc), we can rewrite the
expression to bound,

∑
w∈Nv(v) z

′
w · Pr[Fw | Fu]−

∑
w∈Nv(v) z

′
w · Pr[Fw], as

∑
(P,T )∈C

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | Fu, IN(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 . (4.15)

We analyze this expression in two steps. First, in the next claim, we show that we can focus on
the case when the certified path (P, T ) is very structured and equals the component of u in Hτ .
We then analyze the sum in that structured case.
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Lemma 4.2.20. Let P ⊆ C contain those certified primary paths (P, T ) of C that satisfy:
P has length less than 2000 · ln(1/ε) and z(B(P, T )) 6 2 ln(1/ε). Then, (4.15) is at most

∑
(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ ε1/3/2.

Proof. Define the following subsets of certified primary paths rooted at u:

C1 := {(P, T ) ∈ C | P is of length at least 2000 · ln(1/ε)}
C2 := {(P, T ) ∈ C \ C1 | z(B(P, T )) > 2 ln(1/ε)}

Note that P = C \ (C1 ∪ C2). Since u satisfies (4.12), we have that∑
(P,T )∈C1

Pr[IN(P,T ) | Fu] 6 ε2 6 ε1/3/6.

On the other hand, by Lemma 4.2.16 and Pr[Fu] > c (by Property (IV)), we have that∑
(P,T )∈C2

Pr[IN(P,T ) | Fu] 6 c−1 ·
∑

(P,T )∈C2

Pr[IN(P,T )] 6 c−1 · ε 6 ε1/3/6.

In other words, almost all probability mass lies in those outcomes where one of the certified paths
(P, T ) ∈ P is in Hτ . It remains to prove that, in those cases, we almost always have that the
component of u in Hτ equals the path P (whose termination is certified by T ). Specifically, let
EQ(P,T ) denote the complement of EQ(P,T ). We now show that

Pr
[
EQ(P,T ) | IN(P,T )

]
6 ε1/3/7 . (4.16)

To see this, note that by the definition of the event IN(P,T ), if we restrict ourselves to primary
edges then the component of u in Hτ equals P . We thus have that for the event EQ(P,T ) to be
true at least one of the vertices in P must have an incoming or outgoing secondary edge. Hence
the expression Pr

[
EQ(P,T ) | IN(P,T )

]
can be upper bounded by

Pr[a vertex in P has an incoming or outgoing secondary arc in Gτ | IN(P,T )] (4.17)

Note that event IN(P,T ) is determined solely by choices of primary arcs. By independence of these
choices and choices of secondary arcs, conditioning on IN(P,T ) does not affect the distribution of
secondary arcs. So the probability that any of the nodes in P selects a secondary edge is at most√
ε. Thus, by union bound, the probability that any of the |P | 6 2000 · ln(1/ε) vertices in P pick

a secondary arc is at most
√
ε · 2000 · ln(1/ε). We now turn our attention to incoming secondary

arcs. First, considering the secondary arcs that go into u, we have

c 6 Pr[Fu] 6
∏

(w,u)∈B(v,u)

(1− z(w, u)/2) 6 exp(−z(B(v, u))/2),

54



because any arc (w, u) ∈ B(v, u) appears as a primary arc in Gτ independently with prob-
ability at least z(w, u)/2 and the appearance of such an arc implies that u has an incoming
primary arc in Hτ and is therefore matched; i.e., the event Fu is false in this case. We thus
have z(B(v, u)) 6 2 ln(1/c). Further, since (P, T ) 6∈ C2, we have z(B(P )) 6 z(B(P, T )) 6
2 ln(1/ε). Again using that the conditioning on IN(P,T ) does not affect the distribution of sec-
ondary edges, we have that the probability of an incoming secondary arc to any vertex in P is
at most

√
ε · (2 ln(1/c) + 2 ln(1/ε)) . Thus, by union bound, the probability that any vertex in P

has an incoming or outgoing secondary arc conditioned on IN(P,T ) is at most

√
ε · 2000 · ln(1/ε) +

√
ε · (2 ln(1/c) + 2 ln(1/ε)) 6 ε1/3/7,

for sufficiently small ε, which implies (4.16) via (4.17).
We now show how the above concludes the proof of the claim. We have shown that each one

of the two sets C1, C2 contributes at most ε1/3/6 to (4.15) (where we use that
∑

w∈Nv(v) z
′
w = 1).

Hence, (4.15) is at most

∑
(P,T )∈P

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ 2ε1/3/6.

This intuitively concludes the proof of the claim as (4.16) says that Pr[EQ(P,T )|IN(P,T )] is almost
1. The formal calculations are as follows. Since the event EQ(P,T ) implies the event IN(P,T ), we
have that

Pr[EQ(P,T )] = Pr[EQ(P,T ) ∧ IN(P,T )] = Pr[IN(P,T )]− Pr[EQ(P,T ) ∧ IN(P,T )],

which by (4.16) implies

Pr[EQ(P,T )] = Pr[IN(P,T )]
(
1− Pr

[
EQ(P,T ) | IN(P,T )

])
> Pr[IN(P,T )]

(
1− ε1/3/7

)
. (4.18)

We are now ready to rewrite and upper bound Equation (4.15), namely

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 .

Specifically, by law of total probability, this expression can be rewritten as the sum of the expres-
sions (4.19) and (4.20) below:

Pr[EQ(P,T ) ∧ IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T ), IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]


= Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 (4.19)
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and

Pr[EQ(P,T ) ∧ IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T ), IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 ,

(4.20)

where (4.20) can be upper bounded as follows:

(4.20) 6 Pr[EQ(P,T ) ∧ IN(P,T ) | Fu] (by
∑

w∈Nv(v)

z′w 6 1)

6 c−1 · Pr[EQ(P,T ) ∧ IN(P,T )] (by c 6 Pr[Fu])

= c−1 · Pr[IN(P,T )] · Pr
[
EQ(P,T ) | IN(P,T )

]
6 c−1 ·

Pr[EQ(P,T )]

1− ε1/3/7
· (ε1/3/7) (by (4.16) and (4.18))

6 Pr[EQ(P,T )] · ε1/3/6. (for ε small enough)

As at most one of the events {EQ(P,T )}(P,T )∈P is true in any realization of Gτ , we have that∑
(P,T )∈P Pr[EQ(P,T ) ∧ IN(P,T ) | Fu] 6

∑
(P,T )∈P

(
Pr[EQ(P,T )] · ε1/3/6

)
6 ε1/3/6. Thus, again

using that
∑

w∈Nv(v) zw 6 1, we have that (4.15) is at most

∑
(P,T )∈P

Pr[IN(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | IN(P,T ), Fu]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ 2ε1/3/6

6
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ 3ε1/3/6,

as claimed.

The previous claim bounded the contribution of certified primary paths in C \ P to (4.15).
The following claim bounds the contribution of paths in P .

Lemma 4.2.21. Let P ⊆ C contain those certified primary paths (P, T ) of C that satisfy:
P has length less than 2000 · ln(1/ε) and z(B(P, T )) 6 2 ln(1/ε). Then, we have

∑
(P,T )∈P

Pr[EQ(P,T )]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

 6 ε1/3/2.

Proof. We prove the claim in two steps: first we construct a chain of distributions that inter-
polates between the unconditional distribution of Hτ and its conditional distribution, and then
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bound the expected number of vertices that change their matched status along that chain. For the
remainder of the proof we fix the certified primary path (P, T ).

Constructing a chain of distributions.: Let H(0)
τ denote the unconditional distribution of Hτ

when v arrives, and letH(n)
τ denote the distribution ofHτ conditioned on EQ(P,T ) when v arrives.

Here n = |V | is the number of vertices in the input graph. For every w ∈ V let F (0)
w denote the

indicator of w being free when v arrives (unconditionally) and let F (n)
w denote the indicator

variables of w being free when v arrives conditioned on EQ(P,T ). Note that F (0) is determined
by H(0)

τ and F (n) is determined by H(n)
τ . For t = 0, . . . , n, we define distributions H(t)

τ that
interpolate between H(0)

τ and H(n+1)
τ as follows.

As in Lemma 4.2.15, for every w ∈ V we denote the unconditional distribution of its pri-
mary choice by pw, and the unconditional distribution of its secondary choice by sw. Similarly,
we denote the conditional distribution given EQ(P,T ) of the primary choice by p̃w and the con-
ditional distribution of the secondary choice by s̃w. For every t = 0, . . . , n the primary choice
of vertices wj, j = 1, . . . , t are sampled independently from p̃wj , and the primary choices of
vertices wj, j = t+ 1, . . . , n are sampled independently from the unconditional distribution pwt .
Similarly, secondary choices of vertices wj, j = 1, . . . , t are sampled independently from s̃wj
and secondary choices of vertices wj, j = t + 1, . . . , n are sampled independently from swj .
Note that H(0)

τ is sampled from the unconditional distribution of Hτ , and H(n)
τ is sampled from

the conditional distribution (conditioned on EQ(P,T )), as required, due to the independence of
the conditional probabilities p̃wj and s̃wj , by Lemma 4.2.15. For t = 0, . . . , n let Mt denote the
matching constructed by our algorithm on H(t)

τ , and let F (t)
w be the indicator variable for w being

free when v arrives in the DAG sampled from H
(t)
τ .

Coupling the distributions of H(t)
τ .: We now exhibit a coupling between the H(t)

τ , t = 0, . . . , n.
Specifically, we will show that for every such t the following holds.

E ∗
∑
q∈V

|F (t+1)
q − F (t)

q | 6 4z(R(wt+1)), (4.21)

where R(wt+1) is as defined in Lemma 4.2.15 with regard to the certified primary path R(P, T ).
Recall that z(R(wt+1)) is the total probability assigned to arcs leaving wt+1 which are ruled out
from being primary arcs in Gτ by conditioning on EQ(P,T ).

We construct the coupling by induction. The base case corresponds to t = 0 and is trivial.
We now give the inductive step (t → t + 1). We write w := wt+1 to simplify notation. Let
Zp ∈ Nw(w) denote the primary choice of w in H(t)

τ , and let Zs ∈ Nw(w) denote the secondary
choice of w in Nw(w) (they are sampled according to the unconditional distributions pw and sw
respectively). Let Z̃p ∈ Nw(w) and Z̃s ∈ Nw(w) be sampled from the conditional distributions
p̃w and s̃w respectively, such that that the joint distributions (Zp, Z̃p) and (Zs, Z̃s) satisfy

Pr[Zp 6= Z̃p] = TV(pw, p̃w) and Pr[Zs 6= Z̃s] = TV(sw, s̃w). (4.22)

First, we note that if Zp = Z̃p and Zs = Z̃s, then w = wt+1 is matched to the same neighbor
under H(t)

τ and H(t+1)
τ , and so Mt = Mt+1, due to the greedy nature of the matching constructed.
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Otherwise, by Lemma 4.2.9, at most two vertices have different matched status in Mt and Mt+1

in the latter case (in the former case every vertex has the same matched status). To summarize,
we have, for R(w) determined by (P, T ) as in Lemma 4.2.15, that

E

[∑
q∈V

|F (t+1)
q − F (t)

q |
]
6 2 · Pr[Zp 6= Z̃p or Zs 6= Z̃s]

6 2(TV(pw, p̃w) + TV(sw, s̃w)) (by (4.22) and union bound)
6 4z(R(w)). (by Lemma 4.2.15)

(4.23)

This concludes the proof of the inductive step, and establishes (4.21). In particular, we get

E

[∑
q∈V

|F (n)
q − F (0)

q |
]
6

n−1∑
t=0

E

[∑
q∈V

|F (t+1)
q − F (t)

q |
]

6
n−1∑
t=0

4z(R(wt+1)) (by (4.23))

= 4z(R(P, T )),

(4.24)

by the definition of R(P, T ) =
⋃
w R(w) in Lemma 4.2.15.

We now finish the claim. First note that for any (P, T ) such that P has length at most 2000 ·
ln(1/ε) and z(B(P, T )) 6 2 ln(1/ε) one has

∑
w z(R(w)) = z(R(P, T )) = O(ln(1/ε)). Indeed,

by Lemma 4.2.15 and linearity of z, recalling that u is the root of P and that no vertex appears
after v (and thus B(v, u) = {(w, u) | w arrives between u and v}), we have

z(R(P, T )) 6 z(B(P, T )) + z(B(v, u)) +
∑

w∈P∪{w:T=(w,w′)}

z ({w} ×Nw(w)) . (4.25)

We now bound the contribution to the above upper bound on
∑

w z(R(w)) = z(R(P, T )) in
(4.25). First, we have that z(B(P, T )) 6 2 ln(1/ε) by assumption of the lemma. To bound the
contribution of z(B(v, u)), we note that by Property IV, we have

c 6 Pr[Fu] =
∏

e∈B(v,u)

(1− ze) 6 exp

− ∑
(w,u)∈B(v,u)

z(w, u)/2

 6 exp(−z(B(v, u))/2),

because any arc e = (w, u) appears as a primary arc inGτ with probability z′(w, u) > z(w, u)/2,
independently of other such arcs, and the appearance of any such an edge implies that u has an
incoming primary edge in Hτ when v arrives and is therefore matched; i.e., the event Fu is false
in this case. We thus have z(B(v, u)) 6 2 ln(1/c). Finally, it remains to note that for every
one of the at most 2000 · ln(1/ε) + 1 vertices w ∈ P ∪ {w : T = (w,w′)} the contribution of
z({w} ×Nw(w)) to the right hand side of (4.25) is at most 1 + Cε 6 2, by Lemma 4.2.10, (2).
Putting these bounds together, we get that for sufficiently small ε,

z(R(P, T )) 6 2 ln(1/ε) + 2 ln(1/c) + 2 · 2000 · ln(1/ε) + 2 = O(ln(1/ε)). (4.26)
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The term we wish to upper bound is at most∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

6

(
max

w∈Nv(v)
z′w

)
·
∑

w∈Nv(v)

∣∣Pr[Fw | EQ(P,T )]− Pr[Fw]
∣∣

6C
√
ε ·

∑
w∈Nv(v)

∣∣Pr[Fw | EQ(P,T )]− Pr[Fw]
∣∣ (by Lemma 4.2.10, (3))

=C
√
ε · E

 ∑
w∈Nv(v)

|F (n)
w − F (0)

w |

 (by definition of F (0) and F (n))

then, using (4.24) and (4.26), we find that the term we wish to upper bound is at most

C
√
ε · E

[∑
w∈V

|F (n)
w − F (0)

w |
]

6C
√
ε · z(R(P, T )) (by (4.24))

=O(
√
ε · log(1/ε)) (by (4.26))

6ε1/3/2,

completing the proof.

Finally, we obtain Lemma 4.2.19 by combining Lemma 4.2.20 and Lemma 4.2.21, to find
that, as claimed

(4.15) 6
∑

(P,T )∈P

Pr[EQ(P,T ) | Fu]

 ∑
w∈Nv(v)

z′w · Pr[Fw | EQ(P,T )]−
∑

w∈Nv(v)

z′w · Pr[Fw]

+ ε1/3/2

6 ε1/3/2 + ε1/3/2 = ε1/3.

Bounding the Impact of Bad Vertices

In this section, we show that we can completely ignore the bad vertices without losing too much.
From the definition of good vertices, for a bad vertex v, we have that

Pr
τ

[Hτ has a primary path rooted at v of length at least 2000 · ln(1/ε)] > ε6.

As the main result of this section, we prove the following theorem:

Theorem 4.2.22. The number of bad vertices is at most ε3 ·∑e∈E xe.
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To prove this, we first describe a charging mechanism in which, for each bad vertex, a charge
of one is distributed among a subset of other vertices. Then, using the following supplementary
lemma, we show that the total distributed charge over all vertices in the graph is at most ε3 ·∑

(u,v)∈E xuv.

Lemma 4.2.23. We call a primary path P a primary predecessor path (PPP) of v if it ends
at v. That is, P = v` → v`−1 → · · · → v1 = v. We have

Pr
τ

[v has any PPP P with z(B(P )) 6 20 · ln(1/ε) and |P | > 1000 · ln(1/ε)] 6 ε10.

Proof. We use the principle of deferred decisions and traverse the path backwards. Let b be the
current vertex, which is initially set to v. Consider all incoming arcs to b, say (a1, b), . . . , (ak, b)
where we index a’s by time of arrival; i.e., ai arrives before aj if i < j (and b arrived before any
ai).

First consider the random choice of a1 and see if it selected the arc (a1, b).

• If it does, then the path including b in Hτ will use the arc (a1, b).
• Otherwise, if a1 does not select the arc (a1, b), then go on to consider a2 and so on.

If no a1, . . . , ak selects b, then the process stops; i.e., the primary path starts at this vertex since
b has no incoming primary arc. Otherwise let i be the first index so that (ai, b) was selected.
Then (ai, b) is in the primary path ending at v in Hτ . Now, observe that no a1, . . . , ai−1 may be
in the path in this case, because these vertices arrived before ai and after b. Moreover, we have
not revealed any randomness regarding ai+1, . . . , ak that may appear later in the path. We can
therefore repeat the above process with b now set to ai and “fresh” randomness for all vertices
we consider, as the random choices of arcs of all vertices are independent. We now show that
this process, with good probability, does not result in a long predecessor path P of low z(B(P ))
value.

Recall from Lemma 4.2.10, (5), that z(u, v) 6 3/5 for all (u, v) ∈ V × V . Suppose
that

∑k
i=1 z(ai, b) > 4/5. Let j be the first index such that

∑j
i=1 z(ai, b) > 1/5. Thus∑j

i=1 z(ai, b) 6 4/5, and hence the probability that none of the first j vertices select b is at
least

∏j
i=1(1− z(ai, b)) > 1−∑j

i=1 z(ai, b) > 1/5. Consequently, with probability at least 1/5,
vertex b either has no predecessor or the increase to z(B(P )) is at least 1/5.

In the other case, we have
∑k

i=1 z(ai, b) 6 4/5. Then the probability that b has no predecessor
is
∏k

i=1(1− z(ai, b)) > 1−∑k
i=1 z(ai, b) > 1/5.

Therefore, at any step in the above random process, with probability at least 1/5, we either
stop or increase z(B(P )) by 1/5. Let Zi be an indicator variable for the random process either
stopping or increasing z(B(P )) by at least 1/5 at step i, and notice that according to the above
random process, each Zi is lower bounded by an independent Bernoulli variable with probability
1/5. Thus if we define Z =

∑
i∈[1000·ln(1/ε)] Zi, we have E[Z] > 200 · ln(1/ε), and thus by

standard coupling arguments and Chernoff bounds, we have that

Pr[Z 6 100 · ln(1/ε)] 6 Pr [Z 6 (1− 1/2) · E[Z]] 6 e−(1/2)·(1/2)2·200·ln(1/ε) 6 ε10.
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But if the path does not terminate within 1000 · ln(1/ε) steps and Z > 100 · ln(1/ε), then
z(B(P )) > 20 · ln(1/ε).

We now prove Theorem 4.2.22.

Proof of Theorem 4.2.22. By Lemma 4.2.16, the probability that Hτ has a primary path P with
z(B(P )) > 20 · ln(1/ε) starting at v is at most ε10. Thus, for a bad vertex u, the probability that
Hτ has some primary path P rooted at u with |P | > 2000 · ln(1/ε) and z(B(P )) 6 20 · ln(1/ε)
is at least ε6 − ε10 > ε6/2.

Let k = 20·ln(1/ε) and ` = 2000·ln(1/ε). LetPu be the set of all primary paths P rooted at u
such that z(B(P )) 6 k and |P | = ` starting at u. Since all such primary paths with length more
than ` are extensions of those with length exactly `, we have

∑
P∈Pu Pr[P is in Hτ ] > ε6/2.

For each such path P ∈ Pu, consider the two vertices wP` and wP`−1 at distances ` and ` − 1
respectively from u. For each such vertexwPj (j ∈ {`−1, `}), charge (2/ε6)·Pr[P is in Hτ ]·ywPj .
Then the sum of these charges is∑

P∈Pu

(2/ε6) · Pr[P is in Hτ ] · (ywP` + ywP`−1
)︸ ︷︷ ︸

>1

> (2/ε6) ·
∑
P∈Pu

Pr[P is in Hτ ] > 1.

Notice that the fact (ywP` + ywP`−1
) > 1 follows because yw’s form a feasible dual solution (to the

vertex cover problem).
On the other hand, consider how many times each vertex is charged. For this, for every vertex

w, letQw be the set of primary predecessor pathsQ of u such that |Q| = `−1 and z(B(P )) 6 k.
As |Q| = `−1 > 1000· ln(1/ε) for allQ ∈ Qw, by Lemma 4.2.23,

∑
Q∈Qw Pr[Q is in Hτ ] 6 ε10

. For a primary predecessor path Q ∈ Qw (or one of its extensions), the vertex w can be charged
at most twice according to the above charging mechanism. Since any predecessor path of w with
length more than ` − 1 must be an extension of one with length exactly ` − 1, we have that the
amount w is charged is at most∑

Q∈Qw

2 · 2 · Pr[Q is in Hτ ] · yw/ε6 6 4 · (ε10/ε6) · yw 6 4 · ε4 · yw.

Summing over all w ∈ V and using Lemma 4.2.3, the total charge is at most∑
w∈v

4 · ε4 · yw 6 4 · ε4 · β ·
∑
e∈E

xe 6 ε3
∑
e∈E

xe.

Calculating the Competitive Ratio of Algorithm 3

We now show that the competitive ratio of Algorithm 3 is indeed (1/2 + α) competitive for
some sufficiently small absolute constant α > 0, thus proving Theorem 4.1.1. This essentially
combines the facts that for good vertices, the matching probability is very close to the fractional
values of incident edges, and that the number of bad vertices is very small compared to the total
value of the fractional algorithm (over the entire graph).
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Proof of Theorem 4.1.1. Let OPT denote the size of the maximum cardinality matching in the
input graph G. Then, by Lemma 4.2.5 and our choice of f = f1+2ε and β = 2− ε > β∗(f1+2ε),
we have that

∑
e xe > (1/β) · OPT > (1/2 + ε/4) · OPT, where the xe’s are the fractional

values we compute in Algorithm 3.
Now let M be the matching output by Algorithm 3. We have

E[|M |] =
∑
e∈E

Pr[e is matched]

>
∑

good v∈V

(1− ε2) ·
∑

u∈Nv(v)

xuv (By Theorem 4.2.18)

> (1− ε2) ·

∑
e∈E

xe −
∑

bad v∈V

∑
u∈Nv(v)

xuv


> (1− ε2) ·

(∑
e∈E

xe −
∑

bad v∈V

1

) By
∑

u∈Nv(v)

xuv 6 1


> (1− ε2) ·

(∑
e∈E

xe − ε3
∑
e∈E

xe

)
(By Theorem 4.2.22)

> (1− 2ε2) ·
∑
e∈E

xe

> (1− 2ε2) · (1/2 + ε/4) ·OPT

> (1/2 + ε/5) ·OPT,

where the last line holds for a sufficiently small constant ε > 0.

4.3 Deferred Proofs of Section 4.2.3
Here we prove that a change of the realized arc choices of any vertex does not change the matched
status of more than two vertices (at any point in time). This is Lemma 4.2.9, restated below.

Lemma 4.2.9. Let Gτ and Gτ ′ be two realizations of the random digraph where all the
vertices in the two graphs make the same choices except for one vertex v. Then the number
of vertices that have different matched status (free/matched) in the matchings computed in
Hτ and Hτ ′ at any point of time is at most two.

Proof. We consider the evolution, following each vertex arrival, of the matchings Mτ and Mτ ′

computed in Hτ and Hτ ′ , respectively, as well as the set of vertices with different matched status
in these matchings, denoted by D := (Mτ \ Mτ ′) ∪ (Mτ ′ \ Mτ ). The set D is empty before
the first arrival and remains empty until the arrival of v, as all earlier vertices than v have the
same primary and secondary arcs and have the same set of free neighbors in Hτ and Hτ ′ (as
D = ∅, by induction). Now, if immediately after v arrives it remains free in both Mτ and
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Mτ ′ , or it is matched to the same neighbor in both matchings, then clearly D remains empty.
Otherwise, either v is matched to different neighbors in Mτ and Mτ ′ , or v is matched in one
of these matchings but not in the other. Both these cases result in |D| = 2. We now show by
induction that the cardinality of D does not increase following subsequent arrivals, implying the
lemma.

Let u be some vertex which arrives after v. If when u arrives u is matched to the same
neighbor w in Mτ and Mτ ′ or if u remains free in both matchings, then D is unchanged. If u is
matched to some w on arrival in Mτ , but not in Mτ ′ , then since the arcs of u are the same in Gτ

and Gτ ′ , this implies that w must have been free in Mτ but not in Mτ ′ , and so D 3 w. Therefore,
after u arrives, we have D ← (D \ {w}) ∪ {u}, and so D’s cardinality is unchanged. Finally, if
u is matched to two distinct neighbors, denoted by w and w′, respectively, then one of (u,w) and
(u,w′) must be the primary arc of u in both Gτ and Gτ ′ . Without loss of generality, say (u,w)
is this primary arc. Since u is matched to w in Mτ but not in Mτ ′ , then w must be free in Mτ

when u arrives, but not in Mτ ′ , and so D 3 w. Consequently, we have that after u arrives we
have D ← S for some set S ⊆ (D \ {w}) ∪ {w′}, and so D’s cardinality does not increase.

4.4 Deferred Proofs of Section 4.2.1

Here we prove the bound on the fractional degree xu in terms of its dual value, restated below.

Lemma 4.2.3. For any vertices u, v ∈ V , let yu be the potential of u prior to arrival of
v. Then the fractional degree just before v arrives, xu :=

∑
w∈Nv(u) xuw, is bounded as

follows:

yu
β

6 xu 6
yu + f(1− yu)

β
.

Proof. Let y0 be u’s potential after u’s arrival. For the lower bound, note that it suffices to prove
that every increase in the fractional degree is bounded below by the increase in the potential
divided by β. When vertex u first arrived, we consider two cases.

1. y0 > 0 (thus y0 = 1− θ > 0, and so θ < 1), then the increase in u’s fractional degree was:

∑
v∈Nu(u)

(θ − yv)+

β

(
1 +

1− θ
f(θ)

)
=
f(θ) + 1− θ

β
=
f(1− y0) + y0

β
>
y0

β
.

2. y0 = 0 (thus θ = 1), then the increase in u’s fractional degree was:

∑
v∈Nu(u)

(θ − yv)+

β

(
1 +

1− θ
f(θ)

)
=

∑
v∈Nu(u)

(θ − yv)+

β
> 0 =

y0

β
.
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For every subsequent increase of the fractional degree due to a newly-arrived vertex we have
that:

(θ − yoldu )+

β

(
1 +

1− θ
f(θ)

)
>

(θ − yoldu )+

β
,

Which concludes the proof for the lower bound.
For the upper bound, by [267, Invariant 1], we have that

β · xu 6 yc + f(1− y0) +

∫ yc

y0

1− x
f(x)

dx. (4.27)

This upper bound can be simplified by using Equation (4.2), as follows. Taking (4.27), adding
and subtracting 1+f(1−yu) and writing the integral

∫ yu
y0

1−x
f(x)

dx as the difference of two integrals∫ 1

y0

1−x
f(x)

dx -
∫ 1

yu
1−x
f(x)

dx, and relying on Equation (4.2), we find that

β · xu 6 yc + f(1− y0) +

∫ yc

y0

1− x
f(x)

dx

=

(
1 + f(1− y0) +

∫ 1

y0

1− x
f(x)

dx

)
− 1 + yc +

∫ yc

1

1− x
f(x)

dx

= β∗(f) + yc −
(

1 + f(1− yc) +

∫ 1

yc

1− x
f(x)

dx

)
+ f(1− yc)

= β∗(f) + yc − β∗(f) + f(1− yc)
= yc + f(1− yc),

from which the lemma follows.

4.5 Deferred Proofs of Section 4.2.4
In this section we present the proofs deferred from Section 4.2.4. We start by presenting a more
manageable form for the function f = f1+2ε which we use.

A function in the WW family is determined by a parameter k > 1 and takes the following
form

fκ(θ) =

(
1 + κ

2
− θ
) 1+κ

2κ
(
θ +

κ− 1

2

)κ−1
2κ

.

Letting κ = 1 + 2ε, we get that f := fκ is of the form

f(θ) = (1 + ε− θ) 1+ε
1+2ε · (θ + ε)

ε
1+2ε

= (1 + ε− θ) ·
(

θ + ε

1 + ε− θ

) ε
1+2ε

.

Clearly this is water filling when ε = 0 and otherwise we have that the first term is like water
filling and then the second term is less than 1 for z 6 1/2 and greater than 1 if z > 1/2.

By Taylor expansion, we obtain the following more manageable form for f .
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Lemma 4.5.1. There exists ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) and every θ ∈ [0, 1],
we have

f(θ) 6 (1− θ)
(

1 + ε ln

(
θ + ε

1 + ε− θ

))
+ 1.01ε.

Proof. Taking the Taylor expansion of ex, we find that

f(θ) = (1 + ε− θ) ·
(

θ + ε

1 + ε− θ

) ε
1+2ε

= (1 + ε− θ) ·
∞∑
i=0

(
ln
(

θ+ε
1+ε−θ

)
· ε

1+2ε

)i
i!

= (1 + ε− θ)
(

1 + ln

(
θ + ε

1 + ε− θ

)
· ε

1 + 2ε

)
+ o(ε)

= (1 + ε− θ) + (1− θ) ln

(
θ + ε

1 + ε− θ

)
· ε

1 + 2ε
+ o(ε)

= (1 + ε− θ) + (1− θ)ε ln

(
θ + ε

1 + ε− θ

)
+ o(ε)

= (1− θ)
(

1 + ε ln

(
θ + ε

1 + ε− θ

))
+ ε+ o(ε).

To be precise, for θ ∈ [0, 1] and 0 < ε 6 ε0 6 1 (implying for example θ+ε
1+ε−θ 6

2
ε
), we will show

that terms dropped in the third, fourth and fifth lines are all at most some O((ln(1
ε
) · ε)2) = o(ε),

from which the lemma follows as the sum of these terms is at most 0.01ε for ε 6 ε0 and ε0

sufficiently small.
Indeed, in the third line, we dropped

(1 + ε− θ) ·
∞∑
i=2

(
ln
(

θ+ε
1+ε−θ

)
· ε

1+2ε

)i
i!

6 2 ·
∞∑
i=2

(ln(2
ε
) · ε)i
i!

= O((ln(1/ε) · ε)2),

where the last step used that ln(1/ε) · ε 6 1 holds for all ε > 0. In the fourth line, we dropped

ε · ln
(

θ + ε

1 + ε− θ

)
· ε

1 + 2ε
6 ε2 · ln (2/ε) = O((ln(1/ε) · ε)2).

Finally, in the fifth line, we dropped

(1− z) ·
(
ε− ε

1 + 2ε

)
· ln
(

θ + ε

1 + ε− θ

)
6 1 · (ε2/(1 + 2ε)) · ln (2/ε) = O((ln(1/ε) · ε)2).

Given this more manageable form for f , we can now turn to prove Lemma 4.2.10, restated
below.
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Lemma 4.2.10. (Basic bounds on conditional probabilities zu) There exist absolute con-
stants c ∈ (0, 1) and C > 1/c > 1 and ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) the
following holds: for every vertex v ∈ V , if yu is the dual variable of a neighbor u ∈ Nv(v)
before v’s arrival and θ is the value chosen by Algorithm 1 on v’s arrival, then for zu as
defined in Algorithm 3, we have:

(1) If θ 6∈ (c, 1− c), then
∑

u∈Nv(v) zu 6 1,
(2) If θ ∈ [0, 1], then

∑
u∈Nv(v) zu 6 1 + Cε,

(3) If
∑

u∈Nv(v) zu > 1, then zu 6 C
√
ε for every u ∈ Nv(v),

(4) If
∑

u∈Nv(v) zu > 1, then for every u ∈ Nv(v) such that zu > 0, one has yu ∈ [c/2, 1−
c/2], and

(5) For all u ∈ Nv(v), one has zu 6 1/2 +O(
√
ε).

Proof. We begin by getting a generic upper bound for zu. We note that each edge e is matched
by Algorithm 3 with probability at most xe by Line 13. Therefore, u is matched before v arrives
with probability at most xu :=

∑
w∈Nv(u)\{v} xwu, the fractional degree of u before v arrives.

Therefore, by Lemma 4.2.3, the probability that u is free is at least

Pr[u free when v arrives] > 1− xu > 1− yu + f(1− yu)
β

, (4.28)

from which, together with the definition of xuv = 1
β
(θ−yu)+

(
1 + 1−θ

f(θ)

)
, we obtain the following

upper bound on zu:

zu =
xuv

Pr[u is free when v arrive]
6

1
β
(θ − yu)+

(
1 + 1−θ

f(θ)

)
1− yu+f(1−yu)

β

=
(θ − yu)

(
1 + 1−θ

f(θ)

)
β − (yu + f(1− yu))

. (4.29)

We start by upper bounding
∑

u∈Nv(v) zu, giving a bound which will prove useful in the proofs
of both (1) and (2). Recall that θ is defined as the largest θ 6 1 such that∑

u∈Nv(v)

(θ − yu)+ 6 f(θ). (4.30)

Summing (4.29) over all u ∈ Nv(v), we find that

∑
u∈Nv(v)

zu 6
∑

u∈Nv(v)

(θ − yu)+ · (1 + 1−θ
f(θ)

)

β − (θ + f(1− θ)) (f(·) is non-increasing, by Observation 4.2.4)

6
f(θ) + 1− θ

β − (θ + f(1− θ)) (by (4.30) and β > β∗(f) = 1 + f(0) > θ + f(1− θ))

We therefore wish to upper bound f(θ)+1−θ
β−θ−f(1−θ) . To this end let γ(θ, ε) := ε ln

(
θ+ε

1+ε−θ

)
. Before

proceeding to the proof, it would be useful to summarize some properties of the function γ(θ, ε).
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1. γ(θ, ε) = −γ(1− θ, ε) for all θ ∈ [0, 1] .

2. For c, ε0 sufficiently small we have for all θ ∈ [0, c) that γ(θ, ε) 6 ε ln
(

c+ε
1+ε−c

)
6 −20 · ε,

and for all θ ∈ (1− c, 1] that γ(θ, ε) > ε ln
(

1−c+ε
1+ε−(1−c)

)
> 20 · ε.

3. γ(θ, ε) · (1 − 2θ) 6 0 for θ ∈ [0, 1], since γ(θ, ε) 6 0 for θ 6 1/2 and γ(θ, ε) > 0 for
θ > 1/2.

4. θ · γ(θ, ε) > −ε for all θ ∈ [0, 1].

The last property follows from ln
(

1+ε−θ
θ+ε

)
6 ln

(
1+ε+θ
θ+ε

)
6 ln

(
1 + 1

θ+ε

)
6 1

θ+ε
6 1

θ
,

which implies in particular that θ · γ(θ, ε) = θ · ε ·
(
− ln

(
1+ε−θ
θ+ε

))
> −ε.

We will use γ as shorthand for γ(θ, ε). Recalling that β = 2− ε and using Lemma 4.5.1, we
have

f(θ) + 1− θ
β − (θ + f(1− θ)) 6

(1− θ)
(
1 + ε ln

(
θ+ε

1+ε−θ

))
− θ + 1 + 1.01ε

2− ε− θ − θ
(
1 + ε ln

(
1−θ+ε
θ+ε

))
− 1.01ε

6
(1− θ)(2 + γ) + 2ε

2− 2θ + θγ − 3ε

= 1 +
γ(1− 2θ) + 5ε

2− 2θ + θγ − 3ε
.

(4.31)

We will continue by proving that the second term is negative. First we prove that the de-
nominator is positive. To this end, first consider the case when θ ∈ [0, c). In this case for ε0, c
sufficiently small one has that: 2− 2θ+ θγ − 2ε > 2− 2θ− ε− 2ε > 0 from Item 4. Moreover,
when θ ∈ (1 − c, 1] one has that θ > 1

2
(since c is small) and γ > 20ε from Item 2. Thus

2 − 2θ + θγ − 2ε > θγ − 2ε > 1
2
· 20ε − 3ε = 7ε > 0. Now, it remains to prove that the

numerator is always negative. When θ ∈ [0, c) we have that 1 − 2θ > 3/4(since c is small) and
γ 6 −20ε from Item 2, therefore γ(1− 2θ) + 5ε 6 γ · 3

4
+ 5 · (− γ

20
) = γ

2
< 0. In the case where

θ ∈ (1 − c, 1], we have that 1 − 2θ < −3/4, and θ > 1/2 (since c is small), and γ > 20ε from
Item 2, thus γ(1− 2θ) + 5ε 6 −3

4
· 20ε+ 5ε = −10ε < 0.

We now turn to (2). We assume that θ ∈ (c, 1 − c), since otherwise the claim is trivial, by
(1). We have by (4.31) that f(θ)+1−θ

β−(θ−f(1−θ)) 6 1 + γ(1−2θ)+5ε
2−2θ+θγ−3ε

. We have that γ(1 − 2θ) + 5ε 6 5ε
from Item 3. Furthermore, using Item 4 we have that 2 − 2θ + θγ − 3ε > 2c + −4ε > c for a
sufficiently small ε0. Overall, the second term is bounded above by 5

c
· ε < C · ε, for C > 5

c
> 1

c

as required.

We now prove (3). Note that by (1),
∑

u∈Nv(v) zu > 1 implies that θ ∈ (c, 1 − c). Now, for

every u ∈ Nv(v), let αu := (θ−yu)+

f(θ)
, so that yu = θ − f(θ) · αu if yu 6 θ. We also note that by

definition of αu and our choice of θ, we have
∑

u∈Nv(v) αu =
∑

u∈Nv(v)
(θ−yu)+

f(θ)
6 1. In the proof

of (3) and (4) we will assume for notational simplicity that all u ∈ Nv(v) have yu 6 θ, implying
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zu > 0. Summing up (4.29) over all u ∈ Nv(v) and substituting in αu, we thus find that

∑
u∈Nv(v)

zu 6
∑

u∈Nv(v)

(θ − yu)+(1 + 1−θ
f(θ)

)

β − (yu + f(1− yu))

=
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

β − (yu + f(1− yu))

6
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

2− yu − f(1− yu)− 2.01ε
(by Lemma 4.5.1 and β = 2− ε)

6
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2yu

,

In the last transition we used again (as in Item 4) that yu · ε ln
(

1−yu+ε
yu+ε

)
6 ε, which implies

f(θ) 6 1− θ + ε for all θ ∈ [0, 1]. Substituting yu = θ − f(θ) · αu into the above upper bound
on
∑

u∈Nv(v) zu, we get

∑
u∈Nv(v)

zu 6
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ

2− 4ε− 2θ + 2f(θ) · αu

=
∑

u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2θ

−
∑

u∈Nv(v)

(f(θ) + 1− θ) · 2f(θ) · α2
u

(2− 4ε− 2θ) · (2− 4ε− 2θ + 2f(θ) · αu)
,

(4.32)

using the elementary identity 1
a+b

= 1
a
− b

a(a+b)
for appropriate a and b. Now, both terms in the

last line of (4.32) can be significantly simplified, as follows. For the former term, again using
that f(θ) 6 1− θ + ε, together with

∑
u∈Nv(v) αu 6 1 noted above, we find that

∑
u∈Nv(v)

αu ·
f(θ) + 1− θ
2− 4ε− 2θ

6
∑

u∈Nv(v)

αu ·
2 + ε− 2θ

2− 4ε− 2θ
=

∑
u∈Nv(v)

αu ·
(

1 +
5ε

2− 4ε− 2θ

)
6 1 +O(ε),

(4.33)

where in the last step we used that θ 6 1 − c and c is some fixed constant. For the second term
in the last line of (4.32), we note that

∑
u∈Nv(v)

(f(θ) + 1− θ) · 2f(θ) · α2
u

(2− 4ε− 2θ) · (2− 4ε− 2θ + 2f(θ) · αu)
= Ω(1) ·

 ∑
u∈Nv(v)

α2
u

 . (4.34)

To see this, first note that for θ ∈ (c, 1−c), the numerator of each summand of the LHS is at least
2f(c)2 ·α2

u > Ω(α2
u), since f is decreasing by Observation 4.2.4 and f(c) > 1

2
·(1+ε−c) > Ω(1)

for c and ε sufficiently small. To verify the first inequality of this lower bound for f(c), recall that
f(c) = (1 + ε− c) ·

(
c+ε

1+ε−c

) ε
1+2ε . Now, for ε tending to zero and c < 1/2, the term

(
θ+ε

1+ε−θ

) ε
1+2ε
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tends to one as ε tends to zero. Therefore for ε sufficiently small we have f(c) > 1
2
· (1 + ε− c)

for all c < 1/2. We now turn to upper bounding the denominator of each summand in the LHS of
Equation (4.34). Indeed, substituting yu = θ−f(θ) ·αu, we find that each such denominator is at
most (2−4ε−2θ) · (2−4ε−2θ+2f(θ) ·αu) 6 (1/2) · (2−4ε−2yu) 6 (1/2) · (2−4ε−2c) 6
O(1) for c and ε sufficiently small. Note that both numerator and denominator are positive for
sufficiently small c and ε0. Substituting the bounds of (4.33) and (4.34) into (4.32), we obtain

∑
u∈Nv(v)

zu 6 1 +O(ε)− Ω(1) ·

 ∑
u∈Nv(v)

α2
u

 . (4.35)

From Eq. (4.35) and
∑

u∈Nv(v) zu > 1 by assumption of (3), we get that∑
u∈Nv(v)

α2
u 6 C

′
ε (4.36)

for an absolute constant C ′ > 1, since otherwise
∑

u∈Nv(v) zu 6 1. Finally, we note that

∑
u∈Nv(v)

z2
u =

∑
u∈Nv(v)

(
αu · (f(θ) + 1− θ)
β − (yu + f(1− yu))

)2

6

 ∑
u∈Nv(v)

α2
u

 · ( f(θ) + 1− θ
β − (θ + f(1− θ))

)2

(by Observation 4.2.4 and yu 6 θ)

6

 ∑
u∈Nv(v)

α2
u

 · ( f(θ) + 1− θ
β − (1− c+ f(c))

)2

(by Observation 4.2.4 and θ 6 1− c)

6

 ∑
u∈Nv(v)

α2
u

 · ( 1− θ + ε+ 1− θ
β − (1− c+ 1− c+ ε)

)2

(f(c) 6 1− c+ ε)

6

 ∑
u∈Nv(v)

α2
u

 · 2

2c− 2ε

6 Cε,

for some constant C > 2
2c−2ε

. Thus z2
u 6

∑
u∈Nv(v) zu 6 Cε and so zu 6

√
C · ε 6 C

√
ε, as

claimed.
We now prove (4). Since

∑
u∈Nv(v) zu > 1 implies θ ∈ (c, 1−c) by (1), using the definition of

αu’s from the proof of (3) together with the fact that αu 6 C
′√
ε for every u ∈ Nv(v) by (4.36)

and the fact that f(θ) 6 2 for all θ ∈ [0, 1] (by Lemma 4.5.1), we get that for sufficiently small
ε0 > 0,

yu = θ − f(θ) · αu ∈ [c−O(
√
ε), 1− c] ⊆ [c/2, 1− c/2].
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As for (5), simplifying (4.29) and using the fact that θ − yu 6 f(θ), we get

zu 6
θ − yu + 1− θ

β − yu − f(1− yu)
=

1− yu
β − yu − f(1− yu)

.

Recall from Lemma 4.5.1 that for all θ ∈ [0, 1], we have f(θ) 6 (1− θ)
(
1 + ε ln

(
θ+ε

1+ε−θ

))
+

1.01ε, which implies the following:

1. For all θ ∈ [0, 1], we have f(θ) 6 1− θ +
√
ε, and

2. For θ < e−10, we have f(θ) 6 (1 − θ)(1 + ε(ln((e−10 + ε)/(1 − e−10 + ε)) + 1.01ε 6
1− θ − 2ε.

Suppose that yu 6 1− e−10. Then using Item 1, we have

zu 6
1− yu

β − yu − f(1− yu)
6

1− yu
2− ε− yu − yu −

√
ε

6
1− yu

2(1− yu)− 2
√
ε
6 1/2 +

2
√
ε

2e−10 − 2
√
ε
6 1/2 +O(

√
ε).

Now suppose that yu > 1−e−10. Then 1−yu < e−10, and so by Item 2, f(1−yu) 6 1−yu−2ε.
Thus we have the final required inequality,

zu 6
1− y

β − yu − f(1− yu)
6

1− yu
2− ε− yu − (yu − 2ε)

=
1− yu

2(1− yu) + ε
6 1/2.

Finally, we rely on Lemma 4.5.1 to prove that the fractional solution maintained by Line 4 is
1/β competitive, as implied by Lemma 4.2.5 and the following restated fact.

Fact 4.2.12. For all sufficiently small ε > 0, we have that 2− ε > β∗(f1+2ε).

Proof. Let us denote as before f = f1+2ε. Recall that β∗(f) = 1 + f(0). By Lemma 4.5.1,
this is at most 1 + f(0) 6 1 +

(
1 + ε ln

(
ε

1+ε

))
+ 1.01ε. But for small enough ε, we have that

ln
(

ε
1+ε

)
6 −2.01, implying that 1 + f(0) 6 2− ε, as claimed.

4.6 Conclusion and Open Questions
In this chapter we gave the first randomized online matching algorithm under general vertex
arrivals to beat the optimal 1/2 competitive ratio achievable by deterministic algorithms. This
chapter suggests a number of open questions, the most natural of which is what is improving on
our competitive ratio, and ideally achieving the optimal such ratio. Our algorithm’s competitive
ratio is greater than 1/2 by some constant which we did not try to optimize, and so this unspecified
constant improvement is likely not large. Can one obtain a more sizable improvement over
the natural bound of 1/2? Can one match the 0.526 bound for fractional matchings given by
[267]? Can one do better? We note that matching the bound of [267] could be obtained by an
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online rounding scheme which rounds this fractional matching algorithm’s output losslessly, as
opposed to our approach, which incurred some constant multiplicative loss. In the next chapter
we discuss the abstract problem of lossless online rounding of fractional matchings, showing that
this approach may be challenging, but also hinting that it is possibly not hopeless.
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Chapter 5

Online Dependent Rounding

In this chapter, based on [69] (joint with Ilan R. Cohen), we give asymptotically near optimal
online bipartite matching algorithms for regular graphs. This result required us to study the
abstract problem of online dependent rounding. Indeed, underlying our results for regular graphs,
is a near-lossless online dependent rounding scheme for bounded fractional bipartite matchings
which we present, from which we obtain our results for regular graphs. This online dependent
rounding scheme also proves useful in Chapter 6, where we study online bipartite edge coloring.

5.1 Background

A particularly well-studied class of graphs in the context of the maximum matching problem are
∆-regular bipartite graphs; i.e., bipartite graphs in which each vertex neighbors ∆ other vertices.
This class of graphs has been studied in many contexts, including expander graph constructions,
scheduling, routing in switch fabrics, and task assignment [5, 72, 218]. In the context of matching
theory, a consequence of Hall’s Theorem [155] implies that such graphs can be decomposed
into ∆ disjoint perfect matchings. This result, which is equivalent to the existence of a perfect
matching in every regular bipartite graph, was first proved by König more than a century ago
[184], and is one of the seminal results in matching theory. In the traditional, offline model
of computation, numerous linear and near-linear time algorithms for computing such a perfect
matching are known [10, 71, 72, 74, 130, 131, 245], as well as a sublinear, O(n log n)-time
randomized algorithm for this problem [133].

In online models of computation, we shall show in Chapter 7, the optimal deterministic com-
petitive ratio for such graphs is 1 − (1 − 1/∆)∆; that is, better than the optimal (randomized)
1 − 1/e bound for arbitrary bipartite graphs [179], but tending to this bound from above as ∆
grows. For random-order and stochastic arrival models, it is known that a competitive ratio of
1−O(1/

√
∆), i.e. tending to one is possible [21, 176]. This begs the question, “what is the op-

timal competitive ratio for randomized algorithms for regular graphs under adversarial arrivals?”
Before addressing our results for this class of graphs, we discuss an abstract problem underlying
our solution of this problem, which is useful in its own right, as we shall see in this chapter and
in Chapter 6.
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5.1.1 An Abstract Problem: Online Dependent Rounding
A successful design paradigm for online algorithms (and approximation algorithms more broadly)
is the randomized rounding method, first advocated for by Raghavan and Tompson [238]. Broadly,
this approach starts with an α-approximate fractional solution, which is rounded to an integral
solution, incurring a multiplicative loss of β on the approximation ratio, resulting in an α · β
approximation ratio. Let us consider this approach for the online bipartite matching problem,
starting with its offline counterpart.

Let us fix some graph G = (V,E) and (re)consider its fractional matching polytope,

P(G) :=

{
~x ∈ R|E|>0

∣∣∣∣∣ ∑
e3v

xe 6 1 ∀v ∈ V
}
.

We recall that for bipartite graphs, this LP relaxation has an integrality gap of one; that is, for
any fractional matching of value

∑
e xe = k, there exists an integral matching of size at least k

[247]. Moreover, in an offline setting, such an integral matching can be computed efficiently [4,
122]. The matching constraints are not satisfied by randomly rounding each edge independently.
However, Gandhi et al. [122] showed a dependent rounding scheme which outputs a (random)
integral matchingM such that each edge e ∈ E is matched with probability Pr[e ∈ M] = xe,
thus rounding the fractional matchings ~x losslessly, even preserving the marginals for every edge.
This dependent rounding scheme and its extensions have proven immensely useful over the years
(see, e.g., [24, 56, 57, 63, 64]).

We now consider this approach in an online setting, starting with the problem of computing
a fractional matching. Here, an optimal, (1 − 1/e)-competitive, fractional algorithm is known
[173]. For ∆-regular graphs, there is a trivial 1-competitive fractional algorithm, which simply
sets xe = 1

∆
for each edge e. We now consider online rounding of fractional bipartite matchings.

For this problem, the online contention resolution schemes (OCRSes) of Feldman et al. [110]
output a matching M matching each edge e with probability at least Pr[e ∈ M] > xe · 1/2e.
Unfortunately, then, such OCRSes result in a possibly worse competitive ratio than greedy’s
ratio of 1/2. However, this does not rule out better results using another online rounding scheme.
Can we obtain an optimal randomized algorithm by rounding the fractional algorithm of [173]?
Can we obtain 1-competitive algorithms for regular graphs by rounding the trivial 1-competitive
fractional algorithm’s output? Even better, can we, similarly to [122], on any input fractional
matching ~x revealed in an online fashion, output a random matchingM such that each edge e is
matched inM with probability Pr[e ∈M] = xe?

Unfortunately, for all these questions, the answer is no, as can be seen by inspecting the
optimal fractional algorithm in, say, 8-cycles with two diametrically-opposed online nodes ar-
riving first [79]. For this family of graphs, both the fractional algorithm of [173] and the trivial
algorithm for 2-regular graphs are 1-competitive, while the best randomized algorithm is at best
7/8-competitive. So, perfect rounding is impossible.

In this chapter, we explore the power and limitations of online dependent rounding for online
bipartite matching. In particular, we obtain such an online rounding scheme which is in some
sense best possible, and use it to design online bipartite matching algorithms for regular graphs
with an asymptotically near optimal competitive ratio, up to sub-logarithmic multiplicative terms
in their error term.
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5.1.2 Our Contributions
Extending the 8-cycle example of [79] (who credit this example to Nick Harvey), we first prove
the following lower bound for online matching in regular graphs.

Theorem 5.1.1. Any randomized online bipartite matching algorithm has competitive ratio
(1− Ω(

√
1/∆)) on ∆-regular graphs under adversarial one-sided vertex arrivals.

We note that most prior lower bounds for online matching [19, 55, 95, 120, 165, 173, 179]
were stated, or can be recast, as lower bounds for fractional algorithms. This “first moment”
method, however, is insufficient for our needs, where one must explicitly consider variance,
since there is a separation between fractional and randomized algorithms for this problem, as we
show.

Considering the 1-competitive fractional matching algorithm for regular graphs which as-
signs a value of 1

∆
to each edge, we obtain the following lower bound for online dependent

rounding schemes, relating their rounding loss to the `∞ of the fractional matching to round.

Corollary 5.1.2. For any real δ > 0, any online dependent rounding scheme A has some
graphG and fractional matching ~x inG with |x|∞ 6 δ, such that the randomized matching
M output by A on (G,~x) has expected size at most

E[|M|] 6
∑
e

xe · (1− Ω(
√
δ)).

Consequently, G has some edge e for which

Pr[e ∈M] 6 xe · (1− Ω(
√
δ)),

In Section 5.3 we show that an online rounding scheme whose multiplicative loss has a similar
polynomial dependence on |~x|∞ can be achieved.

Theorem 5.1.3. There exists an online algorithm, which, given online fractional bipartite
matching ~x satisfying |x|∞ 6 δ, outputs a random matchingM satisfying

Pr[e ∈M] = xe · (1−O( 3
√
δ · log(1/δ))) ∀e ∈ E.

Consequently, this output matchingM has expected size at least

E[M] >
∑
e

xe · (1−O( 3
√
δ · log(1/δ))).

Moreover, with high probability, the output matching has size at least

|M| > E[|M|]−O(
√
n log n).
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In Section 5.4 we discuss applications of this online dependent rounding scheme for online
matching in bounded-degree graphs, including regular and near-regular graphs. In particular, we
give asymptotically near optimal algorithms for regular graphs, as in the following theorem.

Theorem 5.1.4. There exists a (1 − O(
√

(log ∆)/∆))-competitive randomized online bi-
partite matching algorithm for ∆-regular graphs under adversarial one-sided vertex ar-
rivals.

Up to a sub-logarithmic factor in ∆ in the loss term, the competitive ratio of Theorem 5.1.4
matches the lower bound of Theorem 5.1.1, as well as the results previously known for regu-
lar graphs under stochastic and random-arrival online models [21, 176]. Moreover, we show
that while for deterministic algorithms online matching in regular graphs becomes harder as ∆
increases, with the optimal competitive ratio tending to 1 − 1/e as ∆ increases (see Chapter 7),
the problem becomes easier for randomized algorithms, for which the optimal competitive ratio
converges to one.

Most of this chapter is dedicated to proving Theorem 5.1.3. Before laying the groundwork
for this theorem, we tun to proving Theorem 5.1.1.

5.2 Impossibility of Lossless Online Rounding
In this section we give an infinite family of graphs and fractional matchings demonstrating that
perfect online dependent rounding is impossible. In particular, we consider ∆-regular graphs,
where each node has degree ∆. Such graphs admit a trivial 1-competitive fractional matching
algorithm, by assigning 1/∆ to each edge. As we show, no randomized algorithm can match this
fractional algorithm’s performance.

Theorem 5.1.1. Any randomized online bipartite matching algorithm has competitive ratio
(1− Ω(

√
1/∆)) on ∆-regular graphs under adversarial one-sided vertex arrivals.

Proof. We appeal to Yao’s Lemma [270], giving a distribution over inputs for which no deter-
ministic algorithm achieves competitive ratio better than the above bound, implying our claimed
result. Without loss of generality, we may assume that the deterministic algorithm is maxi-
mal; i.e., the algorithm always matches when possible. The input consists of n = ∆2 of-
fline nodes, partitioned into ∆ many ∆-tuples of offline nodes. During the first phase, each
of these ∆-tuples’ nodes all neighbor ∆/2 common online neighbors. (Taking disjoint copies
of this example, the number of nodes n can grow arbitrarily large compared to ∆.) Follow-
ing the first phase, the ∆ offline nodes of each of the offline ∆-tuples are randomly permuted
and correspondingly numbered 1 through ∆. Next, a second phase begins, during which, for
each i ∈ [∆], all the ∆ offline nodes numbered i neighbor ∆/2 common online nodes. By
the maximality of the algorithm, each offline node is matched with probability 1/2 during the
first phase. Therefore, for each i ∈ [∆], if we denote by Xi the number of nodes of the i-th
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tuple which are not matched during the first phase, we find that Xi is distributed binomially,
Xi ∼ Bin(∆, 1/2). In particular, Xi’s expectation is E[Xi] = ∆/2. On the other hand, at most
∆/2 nodes numbered i can be matched during the second phase, and so the algorithm leaves
Ui = max{0, Xi −∆/2} unmatched nodes among these ∆ nodes. But as Xi ∼ Bin(∆, 1/2) is
binomially distributed, then by the normal approximation of the binomial distribution, for large
∆, this Xi is approximately distributed N(∆/2,

√
∆/2) and so the expectation of |Xi − E[Xi]|

is E[|Xi − E[Xi]|] ≈
√

∆/2 ·
√

2/π =
√

∆
2π

([126]). But as Xi is symmetric around its mean,
the expected number of i-numbered nodes left unmatched after the second phase is

E[Ui] = E[max{0, Xi −∆/2}] =

√
∆

2π
· 1

2
=

√
∆√
8π
.

That is, for any i ∈ [∆], the expected fraction of the ∆ offline nodes numbered i and left un-
matched is at least (

√
∆/8π)/∆ = 1/

√
8π∆. Consequently, the competitive ratio of any deter-

ministic algorithm on this distribution of inputs is at most 1− 1/
√

8π∆.

As stated above, there exists a 1-competitive fractional matching algorithm for ∆-regular
graphs: assign xe = 1/∆ to each edge e ∈ E. Consequently, by linearity of expectation, this
theorem implies Corollary 5.1.2, relating the loss of online dependent rounding to the `∞ norm
of the fractional matching ~x. In the following section, we prove a converse, positive result,
namely that there exists an online dependent rounding scheme which matches each edge e with
probability xe up to a multiplicative error term which tends to zero with |x|∞.

5.3 Rounding Bounded Fractional Matchings
In this section we present and analyze our near-lossless online dependent rounding scheme for
bounded fractional matchings. That is, we prove Theorem 5.1.3.

5.3.1 The Online Dependent Rounding Scheme
We start by presenting our online dependent rounding scheme, Algorithm MARKING, which is
parameterized by some ε ∈ [0, 1]. A key concept used by this algorithm is the notion of marking
offline nodes. Initially, all offline nodes are unmarked. Only unmarked nodes can be matched to
an arriving online node. Whenever such an offline node i is matched, we mark it. In addition,
the algorithm will sometimes mark unmatched offline nodes, so as to guarantee that each offline
vertex i has a probability of exactly xi,t · (1 − ε) of becoming marked following the arrival of
online node t. In order to do so, at time t the algorithm associates a weight with each unmarked
offline neighbor i of t which is inversely proportional to i’s probability of not being marked
prior. (We have a closed-form for this probability, by construction.) The algorithm then chooses
a single candidate vertex to match t to (and mark), chosen with probability proportional to its
weight. If the probability of nodes to be marked due to this first step is less than xi,t · (1 − ε)
(this happens if the sum of weights is greater than one), then we mark each neighbor of t with the
appropriate correcting probability. The pseudocode for this algorithm, which uses the variables
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Fi,t := 1[i not marked by time t] to denote whether an offline node i is free before the arrival of
t, is given in Algorithm 4.

Algorithm 4 MARKING

1: Init: set M ← ∅
2: Init: set Fi,t ← 1 for all i, t . all offline nodes initially unmarked
3: for all online nodes t, on arrival do
4: read {xi,t | i ∈ N(t)}
5: for all neighbors i of t do
6: let ci,t :=

xi,t·(1−ε)
1−

∑
t′<t xi,t′ ·(1−ε)

7: set Wi,t ← ci,t · Fi,t.
8: pick at most one neighbor i of t with probability pi,t :=

Wi,t

max{1,
∑
iWi,t}

9: if some neighbor i picked in Line 8 then
10: M ←M ∪ {(i, t)}
11: set Fi,t′ ← 0 for all t′ > t (implicitly) . mark i
12: if

∑
iWi,t > 1 then

13: for all free neighbors i of t do
14: with probability Wi,t−pi,t

1−pi,t do
15: set Fi,t′ ← 0 for all t′ > t (implicitly) . mark i

Intuition Behind the Analysis: At a high level, Algorithm 4 guarantees two useful properties.
The first is that for each edge (i, t), the probability that i is marked at time t, denoted by Mi,t :=
Fi,t − Fi,t+1, is precisely Pr[Mi,t] = xi,t · (1 − ε). This gives us a closed-form solution for the
probability that i is free at time t, namely Pr[Fi,t] = 1−∑t′<t Pr[Mi,t′ ] = 1−∑t′<t xi,t′(1− ε).
From this we obtain that E[Wi,t] = xi,t · (1− ε), and therefore E[

∑
iWi,t] =

∑
i xi,t · (1− ε) 6

1 − ε, with the last step following from the fractional matching constraint. As such, we might
expect that the condition of Line 12 should be met rarely, which would imply that most times an
offline node is marked are due to it being matched, and so E[|M|] ≈∑e xe · (1− ε). Of course,
the fact that E[

∑
iWi,t] 6 1 − ε does not account for deviation of this sum from its mean. To

address this, the core of our analysis will be to prove that Algorithm 4 guarantees strong negative
correlation for the variables Fi,t, and consequently, for their weighted counterparts, Wi,t. This
negative correlation underlies the results of Theorem 5.1.4. In particular, the strong negative
dependence of these Fi,t allow us to prove both per-edge and per-vertex matching guarantees, as
well as concentration of the rounding loss of this scheme.

Before proceeding to analyze Algorithm 4, we prove that this algorithm is well defined, and
in particular that the probabilities used throughout this algorithm are indeed probabilities.

Lemma 5.3.1. Algorithm 4 is well defined and outputs a matching.

Proof. First, we note that the sum of probabilities in Line 8 is at most one, and so we can indeed
pick (at most) one neighbor, with each neighbor i of t picked with probability pi,t. Next, we
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show that the terms Wi,t−pi,t
1−pi,t in Line 15 are also probabilities. On the one hand, since Wi,t >

Wi,t

max{1,
∑
iWi,t} = pi,t, we have that Wi,t−pi,t

1−pi,t > 0. On the other hand, the fractional matching

constraints imply xi,t 6 1 −∑t′<t xi,t′ , which in turn implies that the value Wi,t−pi,t
1−pi,t is well

defined (i.e., 1− pi,t 6= 0), and is at most one, since

pi,t 6 Wi,t =
xi,t · (1− ε)

1−∑t′<t xi,t′ · (1− ε)
<

xi,t · (1− ε)
(1− ε)−∑t′<t xi,t′ · (1− ε)

6 1.

Finally, to show that Algorithm 4 outputs a valid matching, we note that each online node t is
matched to at most one neighbor. On the other hand, each online node t can only be matched to a
previously unmarked neighbor. Since offline nodes are marked once they are matched, no offline
node i is matched more than once. We conclude that Algorithm 4 outputs a valid matching.

5.3.2 Basic Properties of MARKING

We start by introducing some notation which will be useful when analyzing Algorithm 4. For
every arrival time t (i.e., prior to t and its edges being processed), we let Ft := {i | Fi,t = 1}
be the set of free (i.e., unmarked) offline nodes by arrival time t. In addition, for all i, t, we let
Mi,t := Fi,t − Fi,t+1 be an indicator variable for i becoming marked at time t.

One aim of algorithm MARKING will be to guarantee exact marginal probabilities for Pr[Mi,t].
Indeed, the probabilities of Line 15 are chosen precisely so that the probability of i being marked
at Line 15 but not in Line 11 is precisely (1−pi,t) · Wi,t−pi,t

1−pi,t = Wi,t−pi,t, implying the following.

Observation 5.3.2. For each offline node i ∈ L, time t, and set of offline nodes S 3 i,

Pr[Mi,t | Ft = S] = [Wi,t | Fi,t = S] = ci,t.

By total probability over all possible sets of free nodes S 3 i by time t, the above observation
yields the following corollary, giving a closed form for i’s probability of being marked during
time t (conditioned on it being free beforehand).

Corollary 5.3.3. For any offline node i and time t with (i, t) ∈ E, we have

Pr[Mi,t | Fi,t] = ci,t.

A simple induction on t, using Corollary 5.3.3 for the inductive step, yields the following
closed form expressions for the probability of an edge being marked and consequently for an
offline node i being free at time t.
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Lemma 5.3.4. For any offline node i and time t the following identities hold

Pr[Mi,t] = xi,t · (1− ε).

Pr[Fi,t] = 1−
∑
t′<t

xi,t′ · (1− ε).

Proof. We prove the second identity by induction on t > 1 and prove the first identity as a
byproduct. The base case is trivial, since clearly Pr[Fi,1] = 1 = 1 −∑t<1 xi,t · (1 − ε). For
the inductive step, we have by the inductive hypothesis that Pr[Fi,t] = 1 −∑t′<t xi,t′ · (1 − ε).
Consequently, by Corollary 5.3.3 and by our choice of ci,t =

xi,t·(1−ε)
1−

∑
t′<t xi,t′ ·(1−ε)

, we have

Pr[Mi,t] = Pr[Mi,t | Fi,t] · Pr[Fi,t]

= ci,t ·
(

1−
∑
t′<t

xi,t′ · (1− ε)
)

= xi,t · (1− ε).

Therefore, by the inductive hypothesis and linearity of expectation, we have that

Pr[Fi,t+1] = Pr[Fi,t]− Pr[Mi,t]

= 1−
∑
t′<t

xi,t′ · (1− ε)− xi,t · (1− ε)

= 1−
∑
t′<t+1

xi,t′ · (1− ε).

As stated in our outline of the intuition behind the analysis of Algorithm 4, Lemma 5.3.4
implies that for each edge (i, t), we have E[Wi,t] = xi,t · (1 − ε). Consequently,

∑
i E[Wi,t] =∑

i xi,t · (1 − ε) 6 1 − ε. Therefore, if we can argue that this sum is concentrated around its
mean, we find that the condition of Line 12, whereby

∑
iWi,t > 1 > E[

∑
iWi,t] + ε is met

infrequently, and therefore most nodes marked are also matched. Coupled with Lemma 5.3.4,
this would imply the expected competitive ratio of our algorithm. For this, we now turn to
proving the desired concentration, obtained by proving strong negative dependence between the
variables {Fi,t}i.

5.3.3 Negative Dependence of {Fi,t}
In this section we prove the key property of our algorithm, which asserts that for any set of offline
nodes I at any time t is Negative Upper Orthant Dependant (NUOD).
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Lemma 5.3.5. For any set of offline nodes I ⊆ L and any time t, we have

Pr

[∧
i∈I

Fi,t

]
6
∏
i∈I

Pr[Fi,t].

In order to prove this lemma, we will need to argue that the variables Mi,t conditioned the
set of free nodes at time t are themselves negatively correlated. Indeed, we will show that these
conditional variables are negatively associated (NA) (see Section 2.4.1).

Lemma 5.3.6. For any time t and set of offline nodes I ⊆ L and set I ⊆ S ⊆ L, the
variables {Mi,t | i ∈ I} are NA conditioned on Ft = S.

Proof. Fix the set of free nodes Ft = S ⊇ I . For any such S, we define the following random
variables. For all i ∈ I , let Ai be an indicator variable for whether i was marked (and matched)
due to bing picked in Line 8 at time t, and let Bi be independent Bernoulli variables with success
probabilities Wi,t−pi,t

1−pi,t . Clearly, the Ai are binary variables with
∑

i∈I Ai 6 1, so by the zero-one
rule the variables {Ai | i ∈ I} are NA. Furthermore, the variables {Ai | i ∈ I} are independent,
and as such are NA. Moreover, the joint distributions {Ai | i ∈ I} and {Bi | k ∈ I} are
independent of each other and so, by closure of NA under distributions under disjoint union
(Proposition 2.4.4.1), the joint distributionD = {Ai, Bi | i ∈ I} is NA. Finally, the set {Mi,t} are
the output of monotone increasing functions defined by disjoint subsets of a set of NA variables
(as Mi,t = Ai ∨ Bi, since i is marked either in Line 11 or in Line 15), and so the variables
Mi,t are NA, by closure of NA distributions under application of concordant functions of disjoint
variables (Proposition 2.4.4.2).

The above lemma gives us the following upper bound on all nodes in I not becoming marked
at time t, conditioned on these nodes all being free at time t.

Corollary 5.3.7. For any time t and set I ⊆ L, with I ⊆ N(t), we have

Pr

[∧
i∈I

Mi,t

∣∣∣∣∣ ∧
i∈I

Fi,t

]
6
∏
i∈I

(1− ci,t).

Proof. By Lemma 5.3.6, for all S ⊇ I the variables {Mi,t | i ∈ I} conditioned on Ft = S are
NA, and so by Corollary 2.4.8 they are negative orthant dependent. Together with Lemma 5.3.4,
the above implies that

Pr

[∧
i∈I

Mi,t

∣∣∣∣∣ Ft = S

]
6
∏
i∈I

Pr
[
Mi,t

∣∣ Ft = S
]

=
∏
i∈I

(1− ci,t) .

Taking total probability over all possible sets of free nodes S ⊇ I , the corollary follows.
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Given Lemma 5.3.4 and Corollary 5.3.7 we can now show this section’s main result—that
the indicators for being free for any set of offline nodes I at any time t is Negative Upper Orthant
Dependant (NUOD), as stated in Lemma 5.3.5.

Proof of Lemma 5.3.5. We prove this lemma by induction on t > 1. First, clearly Pr[
∧
i∈I Fi,1] =

1 =
∏

i∈I Pr[Fi,1]. Next, we assume the desired inequality Pr[
∧
i∈I Fi,t] 6

∏
i∈I Pr[Fi,t] holds

for t and prove that this implies the corresponding inequality for t + 1. Let J := I ∩ N(t). For
each i ∈ I \ J we clearly have that Pr[Fi,t+1] = Pr[Fi,t]. On the other hand, by Corollary 5.3.3,
for any i ∈ J we have that Pr[Fi,t+1] = Pr[Mi,t | Fi,t] ·Pr[Fi,t] = (1− ci,t) ·Pr[Fi,t]. Combining
these bounds with the inductive step and Corollary 5.3.7, we obtain the desired inequality,

Pr

[∧
i∈I

Fi,t+1

]
= Pr

[∧
i∈J

Mi,t

∣∣∣∣∣ ∧
i∈I

Fi,t

]
· Pr

[∧
i∈I

Fi,t

]
6
∏
i∈J

(1− ci,t) ·
∏
i∈I

Pr[Fi,t]

=
∏
i∈I

Pr[Fi,t+1].

5.3.4 Analysis of Algorithm 4

In this section we finally turn to analyzing the performance of Algorithm 4. We recall that our
key objective will be to prove that

∑
iWi,t is rarely higher than one, and so the test of Line 12

is rarely satisfied, which intuitively implies that most edges marked are in fact matched. To this
end, we first bound the first moments of

∑
iWi,t, and prove concentration of

∑
iWi,t around its

mean,

Bounding the First Moments of
∑

iWi,t: As a first step, we use Lemma 5.3.4 and Lemma 5.3.5
to obtain the following bounds on the expectation and variance of

∑
iWi,t, which will prove

useful in bounding the expected loss due to the random choices of Algorithm 4.

Lemma 5.3.8. For each online node t, we have the following.

E

[∑
i

Wi,t

]
=
∑
i

xi,t · (1− ε). (5.1)

Var

(∑
i

Wi,t

)
6
∑
i

Var(Wi,t) 6
∑
i

x2
it

Pr[Fi,t]
6
∑
i

x2
it

ε
. (5.2)

Proof. By Lemma 5.3.4 we have that Wi,t = ci,t · Fi,t =
xi,t·(1−ε)
Pr[Fi,t]

· Fi,t. Consequently, we have
that E[Wi,t] = xi,t · (1− ε), from which Equation (5.1) follows by linearity of expectation.
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To prove Equation (5.2), we first note that the above expression forWi,t implies the following
bound on its variance,

Var(Wi,t) =

(
xi,t · (1− ε)

Pr[Fi,t]

)2

· Pr[Fi,t] · (1− Pr[Fi,t]) 6
x2
i,t

Pr[Fi,t]
.

By Lemma 5.3.5, if we restrict our attention to sets I of size |I| = 2, we find that the variables
{Fi,t | i ∈ N(t)} are pairwise negatively correlated, and thus so are their weighted counterparts,
{Wi,t = ci,t · Fi,t | i ∈ N(t)}. So, by subadditivity of variance of pairwise negatively-correlated
variables, we have that

Var

(∑
i

Wi,t

)
6
∑
i

Var(Wi,t) 6
∑
i

x2
i,t

Pr[Fi,t]
.

The last inequality of Equation (5.2) follows from the fractional matching constraint of node i
implying

∑
t′<t xi,t′ 6 1, which implies by Lemma 5.3.4 that

Pr[Fi,t] = 1−
∑
t′<t

xi,t′ · (1− ε) > 1− (1− ε) = ε.

Recalling that we wish to prove that
∑

iWi,t 6 1 often, we now upper bound the probability
of
∑

iWi,t deviating from its expectation, E[
∑

iWi,t](6 1− ε).

Concentration of
∑

iWi,t: So far, we have bounded the mean and variance of
∑

iWi,t. The
following lemma asserts that

∑
iWi,t is sharply concentrated around its mean.

Lemma 5.3.9. Let k > 0. For any online vertex t, let

g(t, k) :=

√√√√Var

(∑
i

Wi,t

)
· log k +

(
max
i,t

xi,t/3ε

)
· log k. (5.3)

Then, for any c > 1
4

we have

Pr

[∑
i

Wi,t >
∑
i

E[Wi,t] + 4c · g(t, k)

]
6 1/kc.

Proof. By Lemma 5.3.5, the variables {Fi,t | i ∈ L} are NUOD. Consequently, so are the
variables {Wi,t = wi,t · Fi,t | i ∈ L}. It is well known that Chernoff-Hoeffding type bounds
hold for the sums of NUOD scaled Bernoulli variables (see [230]). We may therefore apply
Bernstein’s Inequality, as stated in Lemma 2.4.12 for NA variables, to the sum of these Wi,t.

On the one hand, as the fractional matching constraint implies that 1−∑t′<t xi,t′ ·(1−ε) 6 ε,
we have for each i that

|Wi,t| 6 ci,t =
xi,t · (1− ε)

1−∑t′<t xi,t′ · (1− ε)
6 max

i,t
xi,t/ε.
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On the other hand, by Lemma 5.3.8 we know that E[
∑

iWi,t] =
∑

i xi,t · (1 − ε). Plugging
these values into Bernstein’s Inequality, we have that for all a > 0,

Pr
[∑

i

Wi,t >
∑
i

E[Wi,t] + a
]
6 exp

( −a2

2(Var(
∑

iWi,t) + a ·maxi,t xi,t/3ε)

)
. (5.4)

Let ĝ = 4 ·g(t, k), with g(t, k) as defined in Equation (5.3). For this ĝ we have the following.

Var

(∑
i

Wi,t

)
6
g(t, k)2

log k
=

ĝ2

16c2 log k
6

ĝ2

4c log k
. (5.5)

maxi,t xi,t
3ε

6
g(t, k)

log k
=

ĝ

4c log k
. (5.6)

Plugging inequalities (5.5) and (5.6) into Inequality (5.4) with a = ĝ, we conclude that

Pr

[∑
i

Wi,t >
∑
i

E[Wi,t] + ĝ

]
6 exp

( −ĝ2

2(ĝ2/4c log k + ĝ2/4c log k)

)
=

1

kc
.

Equipped with Lemma 5.3.8 and Lemma 5.3.9, we now to bounding the overall, as well as
per-edge and per-node, loss of the rounding of Algorithm 4. Put more positively, we are now
ready to bound the gain of our algorithm.

Per-Edge Guarantees

We start by proving that Algorithm 4 run with an appropriately-chosen ε matches each edge e
with probability roughly equal to the value xe prescribed by the fractional matching ~x.

Lemma 5.3.10. LetM be the matching output by Algorithm 4 with ε = 3
√

(log δ)/δ when
run on graph G = (L,R,E) and fractional matching ~x with |x|∞ 6 δ. Then, for each
edge e ∈ E there is some αe ∈ [1, 11] such that e is matched inM with probability

Pr[e ∈M] = xe · (1− αe · 3
√

(log δ)/δ).

The upper bound on the probability of any edge being matched is near immediate, as the proba-
bility of an edge e = (i, t) to be matched is at most the probability it is marked, and hence, by
Lemma 5.3.4, this probability is at most

Pr[(i, t) ∈M] 6 Pr[Mi,t] = xe · (1− ε) = xe · (1− 3
√

(log δ)/δ). (5.7)

Proving the complementary inequality, namely that each edge e is matched with probability
at least Pr[e ∈ M] > xe · (1 − 11 3

√
(log δ)/δ), will require more work. We start with the

following lower bound on Pr[e ∈M] in terms of g(t, k) defined in Equation (5.3).
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Lemma 5.3.11. Let ~x be a fractional matching and ĝ := maxt 8 · g(t, 1/ε), with g(t, k)
as defined in Equation (5.3). Then, Algorithm 4 run with parameter ε on input ~x matches
each edge (i, t) ∈ E with probability at least

Pr[(i, t) ∈M] > xi,t · (1− 2ε− ĝ) .

Proof. Fix some edge (i, t). Denote by At := 1[
∑

iWi,t >
∑

i E[Wi,t] + ĝ] the event that∑
iWi,t exceeds its expectation by at least ĝ = 8 · g(t, 1/ε). By Lemma 5.3.9, we have that

Pr[At] 6 ε2. But, by Lemma 5.3.4 and the fractional matching constraint, we also have that
Pr[Fi,t] = 1−∑t′<t xi,t′ · (1− ε) > ε. Combining both bounds we find that

Pr[Fi,t ∧ At] = Pr[Fi,t]− Pr[Fi,t ∧ At]
> Pr[Fi,t]− Pr[At]

> Pr[Fi,t]− ε2

> Pr[Fi,t] · (1− ε).
On the other hand, since pi,t =

ci,t
max{1,

∑
iWi,t} , the probability of (i, t) being matched condi-

tioned on i being free at time t and event At, whereby
∑

iWi,t 6
∑

i E[Wi,t] + ĝ 6 1 + ĝ, is at
least

Pr[(i, t) ∈M | Fi,t ∧ At] = E
[
pi,t

∣∣∣∣Fi,t ∧ At] > ci,t
1 + ĝ

> ci,t · (1− ĝ),

where the last inequality relied on ĝ > 0.
Recalling that by Observation 5.3.2 and Lemma 5.3.4, ci,t =

xi,t·(1−ε)
Pr[Fi,t]

, we find that for every
edge (i, t) ∈ E the probability of (i, t) being matched is indeed at least

Pr[(i, t) ∈M] = Pr[(i, t) ∈M∧ Fi,t]
> Pr[(i, t) ∈M∧ Fi,t ∧ At]
= Pr[(i, t) ∈M | Fi,t ∧ At] · Pr[Fi,t, At]

> ci,t · (1− ĝ) · Pr[Fi,t] · (1− ε)
> xi,t · (1− ε) · (1− ĝ) · (1− ε)
> xi,t · (1− 2ε− ĝ) .

Making a judicious choice of ε, we prove the following per-edge guarantees for our online
dependent rounding scheme of Algorithm 4.

Lemma 5.3.12. For all δ ∈ [0, 1], let ~x be a fractional matching such that maxi,t xi,t 6 δ.
Then, Algorithm 4 with parameter ε = 3

√
δ · log(1/δ) run on ~x matches each edge (i, t) ∈

E with probability at least

Pr[(i, t) ∈M] > xi,t · (1− 11ε) = xi,t ·
(

1− 11 3
√
δ · log(1/δ)

)
.
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Proof. By Lemma 5.3.11, for ĝ = 8 · g(t, 1/ε) with g(t, 1/ε) as defined in Equation (5.3), we
have that

Pr[(i, t) ∈M ] > 1− 2ε− ĝ. (5.8)

We therefore need to bound ĝ.
By Lemma 5.3.8 and the fractional matching constraint, we have that Var(Wt) 6

∑
j x

2
j,t/ε 6

(
∑

j xj,t) · δ/ε 6 δ/ε. Consequently, we have that ĝ = 8 · g(t, 1/ε) is at most

8 · g(t, 1/ε) = 8 ·


√√√√V ar

(∑
i

Wi,t

)
· log(1/ε) + (max

j,t
xj,t/3ε) · log(1/ε)


6 8 · (

√
(δ/ε) · log(1/ε) + (δ/3ε) · log(1/ε)).

To upper bound the above term, we first note that, as ε = 3
√
δ · log(1/δ), we have that

(δ/ε) · log(1/ε) = δ2/3 · 1
3
√

log(1/δ)
· 1
3
· (log(1/δ)+ log log(1/δ)) 6

2

3
· (δ · log(1/δ))2/3. (5.9)

Therefore, letting B := 2
3
· (δ · log(1/δ))2/3, we have that

ĝ 6 8 · (
√
B +B/3).

Now, noting that (δ · log(1/δ)) 6 1/e for all δ ∈ [0, 1], and therefore B 6 2/(3e), we have
that B/3 6

√
B ·
√

2/(27e). Consequently, we find that

ĝ 6 8 · (1 +
√

2/27e)
√
B 6 8 · (1 +

√
2/27e)

√
2/3 · (δ · log(1/δ))1/3 6 8 · (δ · log(1/δ))1/3.

Plugging the above bound into Equation (5.8), and using ε = 3
√
δ · log(1/δ), we find that

Pr[(i, t) ∈M] > xi,t · (1− 2ε− ĝ) > xi,t · (1− 11 3
√
δ · log(1/δ)).

Lemma 5.3.10 then follows by combining Lemma 5.3.12 and Equation (5.7).

Per-Vertex Guarantees

The per-edge guarantees of Lemma 5.3.10 immediately bounds on the probability of any ver-
tex to be matched, by linearity of expectation. Here we give refined bounds on the per-vertex
probabilities of being matched for online nodes.

Lemma 5.3.13. For all online vertex t, the probability of t being matched is at least

Pr[t matched] >
∑
i

xi,t · (1− ε)− Std

(∑
i

Wi,t

)
.
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Proof. The probability that t is matched is precisely

Pr[t ∈ V (M)] = E

[∑
i

pi,t

]
= E

[
min{1,

∑
i

Wi,t}
]
.

On the other hand, by Lemma 5.3.8, we know that 1 >
∑

i xi,t · (1 − ε) =
∑

i E[Wi,t], and
therefore

Pr[t ∈ V (M)] = E

[
min

{
1,
∑
i

Wi,t

}]

> E

[
min

{∑
i

E[Wi,t],
∑
i

Wi,t

}]

=
∑
i

E [Wi,t] + E

[
min

{
0,
∑
i

Wi,t −
∑
i

E [Wi,t]

}]

>
∑
i

xi,t · (1− ε)− E

[ ∣∣∣∣∣∑
i

Wi,t −
∑
i

E [Wi,t]

∣∣∣∣∣
]

>
∑
i

xi,t · (1− ε)− Std

(∑
i

Wi,t

)
,

where the last inequality follows from Lemma 2.4.14, which asserts that the mean average devi-
ation of any variable X being at most E[|X − E[X]|] 6 Std(X).

Lemma 5.3.13 will prove useful when designing online matching algorithms for regular and near-
regular graphs. Before addressing this application of our online dependent rounding scheme, we
discuss the competitive ratios obtained by running Algorithm 4.

Global Guarantees

We now turn to outlining some more “global” guarantees of Algorithm 4, analyzing the size of
the matchingM output by this algorithm in expectation and with high probability.

First, Lemma 5.3.10 together with linearity of expectation immediately implies the following
bound on the expected size ofM.

Corollary 5.3.14. Let M be the matching output by running Algorithm 4 with ε =
3
√

(log δ)/δ on graph G = (L,R,E) and fractional matching ~x with δ = |x|∞. Then,
the matchingM has expected size

Pr[|M|] =
∑
e

xe · (1−Θ( 3
√

log δ)/δ).

On the other hand, since the number of free nodes by the algorithm’s termination is the sum of
NUOD variables, by Lemma 5.3.5, we can rather directly show that |M | is sharply concentrated
around its mean, as follows.
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Lemma 5.3.15. W.h.p., the matching M output by Algorithm 4 satisfies

|M| = E[|M|]±O(
√
n log n).

Proof. By definition, |M| = |L| − |F |, for F the set of free vertices by the algorithm’s termi-
nation. On the other hand, we have that |F | =

∑
i Fi,|R|+1 is the sum of |L| 6 n NUOD binary

variables, by Lemma 5.3.5. Therefore, Chernoff-Hoeffding bounds apply to this sum (see [230]),
and in particular Lemma 2.4.11 implies that F = E[F ] ± O(n log n) w.h.p. Since |M| is the
difference of a constant term, |L|, and this random variable |F |, the lemma follows.

5.4 Application to Near-Regular Graphs
In this section we explore some consequences of Theorem 5.1.3 to online matching in regular
and near-regular graphs.

Recall that for such graphs, there exists a trivial 1-competitive online fractional matching
algorithm, which assigns value 1

∆
to each edge. This factional matching ~x has |x|∞ = 1

∆
.

Consequently, by Corollary 5.3.14, running Algorithm 4 with an appropriate choice of ε on
this fractional matching immediately yields a 1 − Õ( 3

√
1/∆)-competitive algorithm for regular

graphs. We now discuss a refinement of this bound.

Theorem 5.4.1. Running Algorithm 4 with ε = O(
√

(log ∆)/∆) on the fractional match-
ing assigning xe = 1

∆
for each edge e ∈ E yields a randomized online matching algorithm

which is 1−O(
√

log ∆/
√

∆) competitive on ∆-regular graphs.

Proof. Let the number of nodes on either side of the regular bipartite graph be n = |L| = |R|.
By Lemma 5.3.13 and Lemma 5.3.8, the probability of any online node t to be matched is at least

Pr[t matched] >
∑
i

xi,t · (1− ε)− Std

(∑
i

Wi,t

)
= (1− ε)− Std

(∑
i

Wi,t

)
.

Therefore, the resulting matching size is at least

E[|M|] >
∑
t

(
(1− ε)− Std

(∑
i

Wi,t

))
. (5.10)

We therefore wish to upper bound
∑

t Std (
∑

iWi,t). To this end, we recall that by Lemma 5.3.8
and Lemma 5.3.4, we have that if t is the k-th online neighbor of i, then, for any positive ε,

Var(Wi,t) 6
x2
i,t

Pr[Fit]
=

1

∆2
· 1

1−∑t′<t(1/∆) · (1− ε) 6
1

(∆− k + 1) ·∆ .
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Therefore, for any offline vertex i, summing over all the variances of edges (i, t), denoting by
H∆ =

∑∆
k=1 = Θ(log ∆) the ∆-th harmonic number, we have that∑

t

Var(Wi,t) 6
∆∑
k=1

1

∆ · (∆− k + 1)
=

∆∑
k=1

1

∆ · k =
H∆

∆
.

Summing over all edges (i, t), and recalling that Var(
∑

iWi,t) 6
∑

i Var(Wi,t) by Lemma 5.3.8,
we have that ∑

t

Var

(∑
i

Wi,t

)
6
∑
t

∑
i

Var (Wi,t) 6 n · H∆

∆
.

Put otherwise, over a uniformly random choice of online node t, we have that

Et

[
Var

(∑
i

Wi,t

)]
6
H∆

∆
.

Therefore, by Jensen’s Inequality applied to the concave function f(x) =
√
x, we find that

Et

[
Std

(∑
i

Wi,t

)]
= Et


√√√√Var

(∑
i

Wi,t

) 6

√√√√Et

[
Var

(∑
i

Wi,t

)]
6

√
H∆

∆
.

Plugging in the obtained bound on the expected standard deviation of
∑

iWi,t into Equa-
tion (5.10), we find that the expected matching’s size is at least

E[|M|] >
∑
t

(
(1− ε)− Std

(∑
i

Wi,t

))

> n ·
(

1− ε− H∆

∆

)
= n · (1−O(

√
(log ∆)/∆).

As the optimum matching size is trivially no more than n, the theorem follows.

A simple extension of the above result to near-regular graphs, is obtained by considering the
fractional matching assigning values 1

∆+c·(
√

∆)
and running Algorithm 4 with ε = Θ(

√
(log ∆)/∆,

and generalizing the above proof.

Theorem 5.4.2. For any c > 0, running Algorithm 4 with ε = Θ(
√

(log ∆)/∆) on the
fractional matching assigning xe = 1

∆+c·
√

∆
for each edge e ∈ E yields a randomized on-

line matching algorithm which is 1−O(
√

log ∆/
√

∆) competitive on graphs with degrees
in the range [∆− c · (

√
∆),∆ + c · (

√
∆)] is 1−O(

√
log ∆/

√
∆)-competitive.

Before concluding, we note that a competitive ratio essentially equal to that of Theorem 5.4.1
and Theorem 5.4.2 can be shown to hold w.h.p. In particular, running Algorithm 4 with ε =
O(
√

(log n)/∆) yields a 1−O((log n)/
√

∆)-competitive matching for regular (and near-regular)
graphs, with high probability.
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5.5 Conclusion and Open Questions
In this chapter, we presented optimal randomized online matching algorithms for ∆-regular
graphs, showing that for such graphs the optimal competitive ratio is 1 − Θ̃(1/

√
∆), and that

a similar bound can be achieved w.h.p. Beyond a pleasing resolution to the question of the
optimal competitive ratio for online matching in this widely-studied graph classes, this chapter
suggests that randomized (dependent) rounding presents both new challenges in online settings,
as well as possible algorithmic opportunities for such settings. In the next chapter, we further
substantiate the applicability of our online dependent rounding scheme, using it to obtain optimal
online bipartite edge coloring algorithms. We conjecture that this is not the last such application
of our rounding scheme and its ilk.
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Chapter 6

Online Bipartite Edge Coloring

In this chapter, based on [70] (joint work with Ilan R. Cohen and Binghui Peng), we move from
matchings to the study of edge colorings in bipartite graphs, under the one-sided vertex arrival
model studied by Karp et al. [179] for online matching. For this problem, we present optimal
algorithms and matching lower bounds. Along the way, we prove a dichotomy for this problem
under known and unknown maximum degree, proving that the latter scenario is strictly harder,
though here, too, the greedy algorithm is suboptimal. We obtain our algorithmic results in part
by leveraging our online dependent rounding scheme of Chapter 5, which we show is useful in
the context of online edge coloring, in addition to online matching.

6.1 Background

Edge coloring is the problem of assigning colors edges of a multigraph so that no two edges with
a common endpoint have the same color. This classic problem, even restricted to bipartite graphs,
can be used to model scheduling problems arising in sensor networks [121], switch routing [5],
radio-hop networks [257] and optical networks [241], among others. The edge coloring problem
can trace its origins back to the 19th-century works of Tait [255] and Petersen [234], who studied
this problem in the context of the four color theorem. König [184] showed that any simple
bipartite graph is can be edge colored using ∆ colors. (Clearly, no fewer colors suffice.) Shannon
[249] later studied edge coloring in the context of color coding wires in electrical units, and
proved that any multigraph G of maximum degree ∆ = ∆(G) admits a b3∆

2
c-edge-coloring; i.e.,

a coloring using at most b3∆
2
c colors. (This is tight.) Inspired by this result, Vizing [261] proved

that any simple graph can be edge colored using ∆ + 1 colors.
On the algorithmic front, for bipartite graphs, which can always be colored with ∆ col-

ors (and no fewer), near-linear-time ∆-edge-coloring algorithms are known [10, 72, 133]. For
general graphs, polytime (∆ + 1)-edge-coloring algorithms are known [118, 215, 261], and
this too is likely optimal, as determining whether a general graph is ∆-edge-colorable is NP-
hard [160]. Besides these optimal polytime algorithms, a folklore quasilinear-time greedy al-
gorithm, which colors each edge with the lowest color unused by its adjacent edges, is known
to output a (2∆ − 1)-edge-coloring. The greedy algorithm is implementable in many restricted
models of computation, and improving upon its coloring guarantees, or even matching them
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quickly in such models, has been the subject of intense research. Examples include PRAM
[196], NC and RNC [32, 177, 219], dynamic [46, 82, 266] and distributed algorithms (e.g.,
[61, 84, 92, 113, 129, 231]). In this chapter, we study bipartite edge coloring in an online model.

In the online bipartite edge coloring problem, a bipartite graph G = (L,R,E) is presented
in an online fashion. In particular, nodes of the offline side, L are known a priori, while nodes
of the online side, R, are revealed one at a time, together with their edges. An online (bipartite)
edge-coloring algorithm must decide, immediately and irrevocably, which color to assign to
each revealed edge, before the arrival of the next online node. One simple such online edge
coloring algorithm is the greedy algorithm, which assigns, for all edges of an arriving vertex
in some arbitrary order, the lowest color which is unused by edges of both endpoints. This
algorithm uses at most 2∆ − 1 colors on any graph of maximum degree ∆. On the other hand,
each bipartite graph can be colored using ∆ colors. We say an online edge-coloring algorithm
A has competitive ratio α if the number of colors it uses is at most α · ∆ for each graph of
maximum degree ∆. We say the algorithm has competitive ratio α with high probability if this
guarantee holds with probability 1− 1/ poly(n). So, for example, the naïve greedy algorithm is
(2∆− 1)/∆ ≈ 2-competitive. Do better algorithms exist?

6.1.1 Bad News?

As it turns out, the greedy algorithm is in a sense the best possible. Indeed, as shown by Bar-Noy
et al. [25] in a note titled simply “the greedy algorithm is optimal for on-line edge coloring”, no
online algorithm for edge coloring uses fewer than 2∆− 1 colors used by the greedy algorithm.
That is, Bar-Noy et al. show that no algorithm can even save one color compared to this bound.
It therefore might seem that online edge coloring is not a particularly fruitful problem to study.
Nonetheless, as we shall see, there is room for improvement. To motivate the above, we briefly
outline a proof of the lower bound of Bar-Noy et al.

Theorem 6.1.1 ([25]). There exists no online bipartite (2∆− 2)-edge-coloring algorithm.

For simplicity, we only outline the proof of this lower bound for deterministic algorithms,
deferring a generalization of the lower bound of [25] for randomized algorithms to Chapter 9.

Proof. Let A be a deterministic edge-coloring algorithm. Consider a bipartite graph consisting
of K = ∆ ·

(
2∆−2
∆−1

)
stars of degree ∆ − 1, with the centers of these stars as offline nodes, and

the leaves of these stars arriving before any other online nodes. Suppose algorithm A uses some
2∆−2 or fewer colors when coloring these stars (if it uses more, we are done). By the pigeonhole
principle, as there are only

(
2∆−2
∆−1

)
possible choices of colors A for the ∆− 1 edges of each star,

some K/
(

2∆−2
∆−1

)
= ∆ stars must have their ∆ − 1 edges colored using the same set S of ∆ − 1

colors. Finally, a new online node v arrives, neighboring the centers of these ∆ stars which use
the same colors. All ∆ edges of v must use unique colors, and each such color cannot belong
to S, as these edges’ other endpoint already has edges colored using these colors. Therefore,
algorithm A uses at least 2∆− 1 distinct colors on this graph.
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6.1.2 Not Such Bad News?
The careful reader might note that the above lower bound required the number of nodes n to be
exponential in the maximum degree. Specifically, it requires n > ∆2 ·

(
2∆−2
∆−1

)
= Ω(4∆). Taking

logarithms, this exponential lower bound on n translates into a logarithmic upper bound on the
maximum degree, ∆ = O(log n). Put otherwise, the impossibility result of [25] should not be
read as a multiplicative lower bound of 2 (on the competitive ratio), but rather as an additive lower
bound of Ω(log n). That is, the 2∆− 2 colors in the above theorem should be interpreted instead
as a lower bound of ∆+Ω(log n) on the number of colors used by any algorithm. This motivates
the study of improved edge-coloring algorithms for large ∆ = ω(log n). Indeed, this observation
was not lost on Bar-Noy et al. [25], who conjectured a near-ideal online edge-coloring algorithm
for such large ∆.

Conjecture 6.1.2 ([25]). There exists an online (1 + o(1))-competitive edge-coloring al-
gorithm for graphs of maximum degree ∆ = ω(log n).

Bar-Noy et al. [25] conjectured the above in a stricter model than the we study here, namely
the adversarial edge-arrival model. As can be deduced from chapters 3 and 4, this level of
granularity of arrivals is often harder than vertex arrivals. On the other hand, the lower bound of
Theorem 6.1.1 holds in our bipartite one-sided vertex arrival model, too. It is therefore natural to
ask whether Conjecture 6.1.2 holds for this model.

6.1.3 Our Contributions
In this chapter, we address bipartite the edge coloring problem in the high-degree régime, pre-
senting optimal algorithms for this problem.

Our first result is a resolution of Conjecture 6.1.2 for bipartite edge coloring.

Theorem 6.1.3. There exits an online (1+o(1))-competitive bipartite edge-coloring algo-
rithm for graphs of maximum degree ∆ = ω(log n) revealed via one-side vertex arrivals.

We also show that this is optimal, up to the exact o(1) term in the competitive ratio.
Next, we show a (perhaps surprising) dichotomy for this problem, between the case where the

algorithm knows ∆ a priori, and when ∆ is unknown. In particular, we show that not knowing ∆
makes the problem strictly harder, ruling out a competitive ratio below a constant bounded away
from one, even if ∆ is large.

Theorem 6.1.4. There exists no
(

e
e−1
− Ω(1)

)
-competitive edge coloring algorithm for

graphs of unknown maximum degree ∆.

On the other hand, we show that, while the problem becomes strictly harder when ∆ is
unknown, the greedy algorithm is still suboptimal if ∆ is large. In particular, we present an
algorithm for unknown ∆ which matches the above lower bound, up to lower-order terms.
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Theorem 6.1.5. There exits an online
(

e
e−1

+ o(1)
)
-competitive bipartite edge-coloring

algorithm for graphs of unknown maximum degree ∆ = ω(log n) revealed via one-side
vertex arrivals.

6.1.4 Related Work
Several previous works studied edge coloring in online settings [5, 22, 25, 90, 100, 101, 211,
212]. Due to the strong lower bounds given by [25], these works mostly focus on relaxations
of the problem. Mikkelsen [211, 212] studied the online edge coloring problem, with advice
about the future. Favrholdt et al. [90, 100, 101] studied the “dual” problem of maximizing the
number of edges colored using a fixed number of colors. Most relevant to this chapter is the
work of Motwani et al. [5, 22, 25], including the aforementioned lower bound of [25]. Aggarwal
et al. [5] presented a (1 + o(1))-competitive algorithm for multigraphs with known ∆ = ω(n2).
Bahmani et al. [22], inspired by the distributed algorithm of Panconesi and Srinivasan [231],
gave a 1.26-competitive algorithm for multigraphs with known ∆ = ω(log n). Both algorithms
require random order edge arrivals, and fall short of the guarantees of those conjectured by Bar-
Noy et al. [25], either in the competitive ratio or in the requirement of ∆. In contrast, in this
chapter we consider vertex arrivals, but under the stricter adversarial arrival order, for which
we match these conjectured bounds for known ∆, and also achieve optimal bounds for (harder)
unknown ∆.

6.2 Known ∆

In this section we present a (1 + o(1))-competitive algorithm for known large ∆ = ω(log n), and
show this is best possible for any ∆, up to the exact o(1) term.

6.2.1 Our Algorithmic Approach
We start by presenting our approach in an offline setting. Iterating over c ∈ [∆], we compute and
color a matching Mc in the uncolored subgraph G \⋃c−1

c′=1Mc′ . We then color the remaining un-
colored subgraph with new colors using the greedy algorithm. This approach can be implemented
online, by iteratively running online matching algorithms on the relevant uncolored subgraphs to
compute and color matchings. More concretely, when a vertex v arrives, we iterate over c ∈ [∆]
and update Mc in the current uncolored graph G \ ⋃c−1

c′=1Mc′ , as follows. We run the next step
of the online matching algorithm used to compute Mc in the current uncolored graph after v’s
arrival in this subgraph. We then color v’s newly-matched edge (if any) using color c. Finally,
we run steps of the greedy algorithm on the remaining uncolored edges of v.

For our analysis, we will analyze the above algorithm according to its offline description.
Since the greedy algorithm requires a number of colors linear in its input graph’s maximum de-
gree, our objective will be to reduce the uncolored subgraph’s maximum degree to o(∆) w.h.p. af-
ter computing and coloring the first ∆ matchings. In particular, this will require us to match each
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maximum-degree vertex in G with probability roughly one for each of these ∆ matchings. One
way of matching vertices v of degree ∆ in the uncolored subgraph with probability roughly one
is to guarantee each edge e 3 v a probability of roughly 1

∆
of being matched. An online match-

ing algorithm which does just this is obtained from our online dependent rounding scheme of
Lemma 5.3.10, applied to the trivial fractional matching which assigns a value of 1

d
to each edge

in graphs of maximum degree d. We will refer by MARKINGd to the obtained online matching
algorithm for graphs of (known) maximum degree at most d.

Corollary 6.2.1. Algorithm MARKINGd is an online matching algorithm which in graphs
of maximum degree at most d outputs a matching M which matches each edge e with
probability

1

d
·
(

1− 11 3
√

(log d)/d
)
6 Pr[e ∈M] 6

1

d
.

The first natural approach given Corollary 6.2.1 is to iteratively run MARKING∆ on the un-
colored subgraph. However, this approach can be shown to be suboptimal, as the probability of
coloring an edge of a maximum-degree node decreases as this node’s degree decreases in the
uncolored subgraph. Instead, we will increase the probability of high-degree vertices in the un-
colored subgraph to have an edge colored, by running MARKINGd with a tighter upper bound d
than ∆ for the uncolored graph’s maximum degree for each phase. Unfortunately, upon arrival
of some vertex v, we do not know the uncolored graph’s maximum degree for all phases, as this
depends on future arrivals and random choices of our algorithm. To obtain a tight (up to o(∆))
bound d on the uncolored graph’s maximum degree for each phase, we divide the ∆ coloring
iterations into phases of ` =

√
∆ log n iterations each, during which we use the same upper

bound. As ` = o(∆) and ` = ω(log n), this gives us sharply concentrated upper bounds di+1

on the resulting uncolored graph’s maximum degree at the end of each phase i, which in turn
serves as a tight upper bound for the next phase. This results in the desired rate of decrease in
the uncolored graph’s maximum degree, namely 1 − o(1) per iteration. Greedy thus runs on a
subgraph of maximum degree o(∆). Our 1 + o(1) competitive ratio follows.

6.2.2 The Algorithm

We now present our online edge coloring algorithm, starting with an offline description. Our
algorithm consists of ∆ iterations, equally divided into

√
∆/ log n phases. During each iteration

of phase i, we color a matching output by MARKINGdi run on Ui – the uncolored subgraph prior
to phase i, for di := ∆ − i · (` − 8

√
` log n). After all phases, we run greedy with new colors,

starting with ∆ + 1. In the online implementation, after each online vertex v’s arrival, for phase
i = 1, 2, . . . , we run the next step of ` =

√
∆ log n independent runs of MARKINGdi in Ui, color

newly-matched edges and update Ui′ for i′ > i accordingly. We then greedily color v’s remaining
uncolored edges with new colors. The algorithm’s pesudocode is given in Algorithm 5.
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Algorithm 5 Improved Algorithm for Known ∆

Input: Online bipartite graph G(L,R,E) with maximum degree ∆ = ω(log n)
Output: Integral (1 + o(1))∆ edge coloring, w.h.p.

1: let ` := b√∆ log nc . phase length
2: let di := ∆− i · (`− 8

√
` log n) for i ∈ [0,∆/`] . degree upper bound for each phase

3: for all i, denote by Ui the online subgraph of G not colored by colors [i · `]
4: for each arrival of a vertex v ∈ R do
5: for phase i = 0, 1, . . . , b∆/`c − 1 do
6: for colors c ∈ [i · `+ 1, (i+ 1) · `] do
7: Mc ← output of copy c of MARKINGdi on current Ui . next step of MARKINGdi
8: if some e ∈Mc is previously uncolored then
9: color e using color c . note: e 3 v

10: run greedy on all uncolored edges of v, using new colors starting from ∆ + 1

6.2.3 Analysis

The crux of our analysis is that for each phase i, we have di > ∆(Ui) w.h.p. Consequently,
the final uncolored subgraph after the ∆ iterations (and colors) has maximum degree at most
db∆/`c = o(∆), so greedily coloring this subgraph requires a further o(∆) colors. The following
lemma asserts that if di > ∆(Ui), then di+1 > ∆(Ui+1), w.h.p.

Lemma 6.2.2. For all i ∈ [0,∆/`− 1], if ∆(Ui) 6 di, then

Pr[∆(Ui+1) > di+1] 6 1/n3.

Proof. If ∆(Ui) 6 di − `, the claim is trivial, as then di+1 > di − ` > ∆(Ui) > ∆(Ui+1). We
therefore focus on the case di− ` 6 ∆(Ui) 6 di. For this latter case, we will rely on the fact that
for all i 6 ∆/`, we have di = ∆− i · (`− 8

√
` log n) > (∆/`) · 8√` log n > 3∆3/4 log1/4 n.

Vertices of degree less than ∆(Ui) − ` 6 di − ` < di+1 clearly have degree at most di+1

in Ui+1, as we only decrease their degree in the uncolored subgraph over time. We therefore
turn our attention to vertices v of degree at least ∆(Ui) − ` in Ui. Such a vertex v cannot have
more than ` edges colored during phase i, regardless of our algorithm’s random choices, as at
most one of v’s edges is colored per iteration. So, before each color c used in the phase, v has
at least ∆(Ui) − 2` > di − 3` uncolored edges, each of which is matched by MARKINGdi with
probability at least 1

di
(1 − 11 3

√
(log di)/di). Therefore, if we let Xc := 1[

∨
e3ve colored c] be

an indicator for the event that v has an edge colored c, then, regardless of the realization ~x of
variables Xc−1, Xc−2, . . . , X(i−1)·`+1 corresponding to previous iterations of the ith phase, vertex
v will have an edge colored c with probability at least
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Pr[Xc = 1 | (Xc−1, Xc−2, . . . , X(i−1)·`+1) = ~x] > (di − 3`) · 1

di

(
1− 11 3

√
(log d)/d

)
> 1− 3`

di
− 11 3

√
(log di)/di

> 1−
(

3

8
+

11

2

)
4
√

(log n)/∆

> 1− 6 4
√

(log n)/∆,

where the penultimate inequality follows from ` 6
√

∆ log n and n > di > 8∆3/4 log1/4 n.
Therefore, the expected decrease of v’s degree in the uncolored graph during the ` iterations

of the ith phase is at least E
[∑(i+1)·`

c=i·`+1Xc

]
> ` ·

(
1− 6 4

√
(log n)/∆

)
> ` − 6

√
` log n. But

the probability of v having an edge colored c is at least 1 − 6 4
√

(log n)/∆ independently of
previous colors during the phase. Consequently, we can appeal to standard coupling arguments
(Proposition 2.4.15) together with Hoeffding’s inequality (Lemma 2.4.11) to show that the sum
of these ` binary variables satisfies

Pr

 (i+1)·`∑
c=i·`+1

Xc 6 `− 6
√
` log n−

√
2` log n

 6 exp

(
−2(
√

2` log n)2

`

)
= 1/n4.

Put otherwise, v’s degree in the uncolored subgraph decreases during phase i by less than
`−6
√
` log n−√2` · log n > `−8

√
` log n with probability at most 1/n4. Thus, as v has degree

at most ∆(Ui) in Ui by definition, we find that vertex v’s degree in Ui+1, denoted by Dv, satisfies

Pr[Dv > di+1] = Pr[Dv > di − `+ 8
√
` log n] 6 Pr[Dv > ∆(Ui)− `+ 8

√
` log n] 6 1/n4.

Taking union bound over all vertices, the lemma follows.

The above lemma implies this section’s main result, given by the following theorem.

Theorem 6.2.3. Algorithm 5 is (1 + O( 4
√

(log n)/∆))-competitive w.h.p. in n-vertex bi-
partite graphs with known maximum degree ∆ = Ω(log n).

Proof. Algorithm 5 computes a feasible edge coloring. It colors each edge, by Line 12, and each
color class – computed during iterations or by greedy – constitutes a matching (here we rely on
the colors used by greedy and the phases being disjoint). It remains to bound the number of
colors this algorithm uses. Each phase requires at most ` colors, so the phases require at most ∆
colors. The number of colors the greedy step requires is at most twice the maximum degree of
the remaining uncolored subgraph after the phases, which we now bound.

Let Ai := 1[∆(Ui) 6 di] be an indicator for the event that di upper bounds ∆(Ui). By
Lemma 6.2.2 we have that Pr[Ai | Ai−1, Ai−2, . . . ] = Pr[Ai | Ai−1] 6 1/n3. Also, trivially
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Pr[A0] = 0. By the conditional union bound (Proposition 2.4.16) over all i, we find that the
probability of any Ai not being one is at most

Pr

∆/`∨
i=0

Ai

 6 (∆/`)/n3 6 1/n2.

Consequently, all applications of MARKINGdi+1
during phase i + 1 match each edge of Ui+1

with probability at least 1
di+1

(1−11 3
√

(log di+1)/di+1), as required by our analysis for phase i+1.
Moreover, di > ∆(Ui) for all i ∈ [0,∆/`] w.h.p. implies that the uncolored subgraph following
the ∆/` phases has maximum degree at most

db∆/`c = ∆− b∆/`c · (`− 8
√
` log n)

6 `+ (∆/`) · 8
√
` log n

6 ∆1/2 log1/2 n+ 8∆3/4 log1/4 n

6 9∆3/4 log1/4 n.

The greedy algorithm therefore colors the remaining uncolored graph using at most a further
18∆3/4 log1/4 n−1 colors. That is, it uses ∆·O( 4

√
(log n)/∆) colors in the range ∆+1,∆+2, . . . .

The theorem follows, including the stated bound for ∆ = ω(log n).

Remark: Algorithm 5 is (1 + O( 4
√

(log n)/∆)) competitive w.h.p. for all ∆ = Ω(log n) suffi-
ciently large, and so for any ∆ = Ω(log n) sufficiently large, it yields a constant competitive ratio
strictly smaller than 2. For ∆ = ω(log n), this algorithm achieves competitive ratio (1 + o(1)).

6.2.4 A Matching Lower Bound
In the preceding section, we gave a (1 + o(1))-competitive algorithm for large known ∆. Before
proceeding to the harder régime of unknown ∆, we briefly note that knowledge of ∆ alone (even
when large) does not allow for arbitrarily-good competitive ratio. That is, we show that our
algorithm’s competitive ratio of (1 + o(1)) for known ∆ is optimal (up to the exact o(1) term).

Observation 6.2.4. No online edge coloring algorithm is (1 + o(1/
√

∆))-competitive.

Proof. Let A be a (1 + ε)-competitive edge coloring algorithm. Consider an online matching
algorithm A′ which on any ∆-regular 2n-node graph, runs A and randomly picks one of the
(1 + ε) · ∆ color classes upon initialization as its output matching. This online matching algo-
rithm’s output matching has expected size ∆·n

(1+ε)·∆ > (1 − ε) · n on ∆-regular graphs. But by
Theorem 5.1.1, and 2n-node bipartite regular graphs having maximum matching size n [184], we
have that no online matching algorithm outputs a matching of expected size (1−o(1/

√
∆)) ·n in

∆-regular bipartite graphs under one-sided vertex arrivals. We conclude that ε = Ω(1/
√

∆).
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6.3 Unknown ∆

In the previous section we established that having a large (known) maximum degree ∆ =
ω(log n) allows for (1 + o(1))-competitive algorithms. In this section we show that not knowing
∆ makes the problem significantly harder, and no algorithm, even a fractional one (with regards
to a relaxation we define shortly), is better than e

e−1
-competitive. We then present a fractional

algorithm which matches this bound. Finally, by repeatedly rounding (parts of copies of) solu-
tions of this fractional algorithm, we obtain optimal randomized algorithms, with competitive
ratio

(
e
e−1

+ o(1)
)
. We start by discussing the fractional relaxation we use for our results for

unknown ∆.

6.3.1 Our Fractional Relaxation
In this section, we define the online fractional edge coloring relaxation we study and discuss
several of its properties.

The Classic Fractional Relaxation: The classic relaxation for edge coloring has a nonnega-
tive variable xM for each matching M in G = (V,E), corresponding to the (fractional) extent
to which this matching is used in the solution. The objective is to minimize

∑
M xM subject

to
∑

M3e xM = 1 for each edge e ∈ E. This relaxation clearly lower bounds the chromatic
index; i.e., the minimum number of matchings needed to cover G. A long-standing conjecture
of Goldberg and Seymour is that this relaxation is at most one lower than the chromatic index
[136, 248]. (See [200, Chapter 7.4] for more discussion of this relaxation.) Unfortunately, this
relaxation seems somewhat unwieldy in an online setting, as we outline below.

The Relaxation We Study: The standard fractional edge coloring relaxation is difficult to use
in online settings, where we do not know the edges which will arrive in the future, let alone
which matchings G will contain. This motivates us to study a more “myopic” relaxation, which
allows us to make our (fractional) assignments immediately upon an edge’s arrival (due to one
of its endpoints’ arrival). Specifically, rather than relax the integrality of the extent to which
we use integral matchings, we relax the integrality of the matchings used. That is, while the
classic relaxation fractionally uses integral matchings to color edges, our relaxation integrally
uses fractional matchings to color edges. As we will see, a useful property of this relaxation is
that it allows us to rely on machinery for rounding fractional matchings online.

The edge coloring relaxation we consider is thus the following. We say a graph G(V,E) is
fractionally k-edge-colorable if there is a feasible solution to the following linear program.∑

c∈[k]

xe,c = 1 ∀e ∈ E
∑
e3v

xe,c 6 1 ∀v ∈ V, c ∈ [k]

xe,c > 0 ∀e ∈ E, c ∈ [k]

For any graph G, the minimal number of fractional colors k is equal to G’s maximum degree, ∆.
We note that in bipartite graphs this relaxation and the classic relaxation are equivalent in an
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offline sense, in that any solution to one can be transformed to a solution of equal value to the
other (for general graphs, there can be a gap of one between the two, as exemplified by the
triangle graph). In an online sense it is not clear how to go from one relaxation to the other, and
so we will rely only on our new relaxation.

An LP Formulation.: For notational simplicity, rather than discuss fractional algorithms using
some k = α ·∆ colors, we will instead use k = ∆ colors and relax the second constraint to∑

e3v

xe,c 6 α ∀v ∈ V, c ∈ [∆]

When dealing with fractional solutions, it is easy to “stretch” such a solution to obtain a feasible
edge coloring (i.e., satisfying

∑
e3v xe,c 6 1) while using dα · ∆e 6 α · ∆ + 1 colors, and this

can be done online. Therefore, our goal will be to minimize α — the competitive ratio.

Online Algorithms for the LP Relaxation: An online fractional edge coloring algorithm must
assign xe,c values for all edges e upon arrival, immediately and irrevocably. For example, if ∆
is known a priori, assigning each edge-color pair a value of 1

∆
trivially yields a 1-competitive

online fractional algorithm. If ∆ is unknown, the situation is not so simple, as we now show.

6.3.2 Lower Bounds for Unknown ∆

In this section we present our lower bounds for online edge coloring with unknown ∆, proving
that this problem is strictly harder than its known-∆ counterpart.

Our first lower bound concerns fractionally edge coloring bipartite graphs.

Theorem 6.3.1. No fractional online edge coloring algorithm is better than e
e−1

competi-
tive on bipartite graphs under one-sided arrivals.

Proof. Consider the following construction. For any m, we construct a bipartite graph Gm =
(Lm, Rm, Em), where Lm is the offline side and Rm is the online side. The offline side, Lm,
contains m! vertices, denoted by v1, · · · , vm!. The online side, Rm, arrives over m phases. In
phase k (k ∈ [m]), some m!/k vertices of degree k arrive. Each vertex ui which arrives in phase
k (i ∈ [m!/k]) neighbors offline vertices vi, vm!/k+i, · · · , vm!(k−1)/k+i. We can see that each
offline vertex has exactly one more neighbor in phase k and the maximum degree in phase k is
exactly k. See Figure 6.1 for an illustrative example. The algorithm will have to be α competitive
after each phase, as the adversarial sequence can “terminate early”, after essentially presenting
disjoint copies of Gm′ for some m′ 6 m.

We use xkj :=
∑
e∈phase k xe,j

|{e∈phase k}| to denote the average assignment of color j to edges of phase k.
The average load for online vertices of phase k for color j is k ·xkj , as each such online vertex

has k edges. Consequently, as their average load is at most α, we have the following constraints.

k · xkj 6 α ∀1 6 j 6 k. (6.1)
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offline L
phase 1

phase 2

phase 3

Figure 6.1: The hard instance for bipartite graphs for m = 3

Moreover, since each offline vertex has one more edge during phase k, the average assignment
to all edges should cover all edges of phase k, implying the following constraint.

k∑
j=1

xkj > 1 ∀k. (6.2)

Finally, as the load of all offline vertices (which have only one edge in phase k) for any color j
cannot exceed α (and so neither can their average), we have the following constraint.

m∑
k=j

xkj 6 α ∀j. (6.3)

Combining constraints (6.1)-(6.3), yields the following linear program LPm, which lower
bounds α.

LPm := minα

k∑
j=1

xkj > 1 1 6 k 6 m

k · xkj 6 α 1 6 j 6 k 6 m
m∑
k=j

xkj 6 α 1 6 j 6 m

xkj > 0 1 6 j 6 k 6 m.

To lower bound α, we construct a series of solutions to the dual LP, which is as follows.

max
m∑
k=1

yk

m∑
k=1

k∑
j=1

zkj +
m∑
j=1

wj 6 1

−k · zkj − wj + yk 6 0 1 6 j 6 k 6 m

yk, wj, zkj > 0 1 6 j 6 k 6 m.
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Let c(m) := bm/ec. We know that limm→∞ c(m)/m → 1/e. Let t := 1/(m + 1 + c(m) ·
(Hc(m) −Hm)), where Hk :=

∑k
i=1 1/k satisfies limm→∞Hc(m) −Hm → log(c(m)/m)→ −1.

We construct a feasible dual solution as follows: We let y1 = · · · ym = t, and

wj =

{
t 1 6 j 6 c(m)
0 otherwise

zkj =

{
t/k c(m) + 1 6 j 6 k 6 m
0 otherwise.

For any 1 6 j 6 k 6 m, we have that k · zkj + wj = t = yk. For the first dual constraint, we
have

m∑
k=1

wk +
m∑
k=1

k∑
j=1

zkj

= c(m) · t+
m∑

k=c(m)

(
k − c(m)

k

)
· t

= c(m) · t+ (m− c(m) + 1) · t− c(m) · t · (Hm −Hc(m)))

=
(
m+ 1 + c(m) · (Hc(m) −Hm

)
· t = 1.

The above is therefore a feasible dual solution, of value

m∑
i=k

yk = m · t =
m

m+ c(m) · (Hc(m) −Hm)

=
1

1 + c(m)
m
· (Hc(m) −Hm)

.

When m → ∞, this tends to 1
1−1/e

= e
e−1

. Consequently, limm→∞ LPm > e/(e − 1), implying
our claimed lower bound for fractional online edge coloring of bipartite graphs.

Making the Graph Dense: The above construction yields a sparse graph, as the number of
vertices in this graph, n = m! +m!(1 + 1

2
+ · · ·+ 1

m
) ≈ m! logm, is exponential in its maximum

degree,m. However, the following change yields a dense graph where the same lower bound still
holds. Fix any integer t > 0, in the hard instance, we replace each vertex with t identical copies,
and correspondingly, connecting all copies of pairs (u, v) which are adjacent in the sparse graph.
The obtained graph is still bipartite and the maximum degree and the number of vertices both
increase by a factor of t, to t·m and t·m! logm, respectively. Since we can take t to be arbitrarily
large, the graph has maximum degree as high as Ω(n). In order to show that the lower bound
still holds, we only need to slightly change the meaning of xkj to be the average assignment of
colors (j − 1)t + 1, (j − 1)t + 2, . . . jt during phase k. Constraints (6.1)-(6.3) still hold with
this new meaning in the denser graph. Thus, we conclude that Theorem 6.3.1 holds for graphs
of arbitrarily high degree.
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Next, we present a lower bound for general graphs. The lower bound is based on the con-
struction for bipartite graphs, but with more alterations. More specifically, recall that in the
construction for bipartite graphs, when the online vertices of phase k arrive, we always connect
them to k offline vertices. However, in general graphs, we have more freedom. In phase k, there
can be two possible futures: in one we continue the sequence for bipartite graphs; in the other we
connect all vertices which arrive during phases k, k+1, . . . to the vertices which arrived in phase
k − 1. This example yields a lower bound of 1.606, showing a separation between bipartite and
general graphs. (In [70], we show that this example is a tight instance for Algorithm 6, which is
1.777 competitive on it.)

Theorem 6.3.2. No fractional online edge coloring algorithm is better than 1.606 compet-
itive in general graphs.

Proof. The adversarial instance has m + 1 possible futures. Neither the number of phases m
nor the choice of future are known to the online algorithm. There is a state associated with
the input, and there are two possible states, “old” and “new”. Initially, the graph contains m!
vertices and the state is “old”. There are m′ 6 m phases in total. We use Vk to denote the set of
online vertices which arrive in phase k (k ∈ [m′]) and V0 to denote the initial m! vertices which
arrive in phase 0. Moreover, we use vki to denote the ith vertex arrived in phase k. In phase k,
newly-arrived vertices have degree k. If the state is “old”, m!/k vertices arrive and the ith vertex,
vki , is adjacent to v0

i , v
0
m!/k+i, · · · , v0

(k−1)m!/k+i. On the other hand, if the state is “new” and it
changed from “old” to “new” at the end of phase t (k > t), then m!/kt vertices arrive and the
ith vertex, vki , will neighbor vti , v

t
m!/kt+i, · · · vtm!(k−1)/kt+i. At the end of phase k, the adversary

decide whether to switch state to “new”. Notice that the state can only transition from “old” to
“new".

Again, we let xkj denote the average assignment of color j to edges of phase k, but this time
only if the state is “old” during this phase. The following constraints still hold for the same
reason as Constraints (6.1) and (6.2) for the bipartite hard instance of Theorem 6.3.1.

k∑
j=1

xk,j > 1 ∀k. (6.4)

m∑
k=j

xi,j 6 α ∀j. (6.5)

Furthermore, We use ytk,j to denote the average assignment of color j to edges between Vk and
Vt when the state transitions from “old” to “new” in phase t. (I.e., this is the average assignment
of color j to edges of phase k > t, for t the phase at which the transition occurred.)

Again, as each edge between a Vt vertex and its neighbor in Vk (k > t) must be fractionally
colored, we have

k∑
j=1

ytk,j > 1 ∀t < k 6 m. (6.6)
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Moreover, the maximum load of every vertex for every color is at most α, and so we have

t · xt,j +
m∑

k=t+1

ytk,j 6 α ∀1 6 j 6 t 6 m (6.7)

m∑
k=j

ytk,j 6 α ∀1 6 t < j 6 m (6.8)

k · ytk,j 6 α ∀1 6 t < k 6 m. (6.9)

To summarize, constraints (6.4)-(6.9) for any m are all satisfied by any α-competitive online
fractional edge coloring algorithm on this distribution of inputs. Therefore, the optimal value of
an LP with objective of minimizing α subject to these constraints is a lower bound on the optimal
competitive ratio α of any such online algorithm on general graphs. Using commercial solvers,
we solve this LP for m = 50 and find that its optimal value, which lower bounds any algorithm’s
competitive ratio on general graphs, is 1.606. Again, using the same trick as Section 6.3.2, we
find that this lower bound also holds for dense graphs.

6.3.3 An Optimal Fractional Algorithm

Our LP relaxation asks to minimize the maximum load of any vertex u in color c, Lu(c) :=∑
e3u xe,c. The greedy water-filling algorithm, upon arrival of edge e, increases all xe,c for all

colors cminimizing the maximum load of either endpoint of e. This natural algorithm is no better
than the integral greedy algorithm, however. In our algorithm, upon arrival of a vertex v, we run
a variant of the water-filling algorithm on each edge (u, v) in an arbitrary order. One difference
in our algorithm compared to the greedy one is that its greedy choice is asymmetric, and is only
determined by the current loads of the previously-arrived endpoint, u. The second difference is
that we set a bound constraint of β/∆ for each color per edge, where ∆ is the current maximal
degree, and β is a parameter of the algorithm which will be determined later. The bound con-
straints result in bounded load trivially for the online vertex, and by careful analysis, also for the
offline vertex. In addition, the bound constraints result in a more balanced allocation, which uses
more colors for each edge, but fewer colors overall. A formal description of our algorithm is
given in Algorithm 6. Our algorithm is described as a continuous process, but can be discretized
easily.

6.3.4 Basic properties of the algorithm

Our water filling algorithm preserves important monotonicity properties on the loads of any
previously-arrived vertex v. In particular, the order obtained by sorting colors by their loads for
v remains invariant following its future neighbors’ arrivals. More formally, for each vertex v,
we define an order permutation σv : Z+ → Z+, where σv(i) is the index of v’s ith most loaded
color index after the vertex v arrives and its edges are fractionally colored (e.g., σv(1) is the
most-loaded color index). In addition, we define the load of a color in a vertex with respect
to this order; i.e., we denote by `tu(i) the load of color σu(i) for vertex u after its tth neighbor
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Algorithm 6 Bounded Water Filling

Input: Online graph G(V,E) with unknown maximum degree ∆(G) under vertex arrivals, pa-
rameter β ∈ (1, 2)

Output: Fractional edge coloring {xe,c | e ∈ E, c ∈ [∆(G)]}
1: (Implicitly) xe,c ← 0 for all e ∈ E, c ∈ N
2: for each arrival of a vertex v do
3: ∆← max{current d(u) | u ∈ V } . ∆ = current max. degree
4: for each e = (u, v) ∈ E do
5: while

∑
c∈[∆] xe,c < 1 do

6: let U := {c ∈ [∆] | xe,c < β/∆} . “unsaturated” colors for e
7: let C := {c ∈ U | Lu(c) = minc∈U Lu(c)} . “currently active” colors for e
8: for all c ∈ C do
9: increase xe,c continuously . update Lu(c), Lv(c),U and C

arrives – which we refer to as step t. In this notation, our monotonicity property will be that
`tu(i) > `tu(i+ 1) for each u and i, t ∈ Z+.

We denote by δtu the global maximum degree after the arrival of the tth neighbor of vertex u
and denote by Au the degree of u when it arrives (e.g., Au = 0 for offline vertices in bipartite
graphs). Next, we prove properties of the load of a specific vertex u after its arrival (i.e., for steps
t > Au), at which point the order σu is already set. For ease of notation we omit the subscript u
from variables `, δ and A whenever it will be clear from context (i.e., when considering a single
vertex u). In addition, as σ will be clear from context, we will use color k as shorthand notation
to σ(k). Moreover, due to space constraints, we defer most proofs to Section 6.5.

We first observe that for our bounded water-filling algorithm (as for its unbounded counter-
part), the load of u is monotone decreasing with respect to the σu order, and for each step t, the
increase in the load for i 6 δt is monotone increasing in the σu order.

Observation 6.3.3. For all color indices i, and any t > A,
• `t(i) > `t(i+ 1).
• `t(i)− `t−1(i) > `t(i− 1)− `t−1(i− 1), for all i 6 δt.

In our analysis, we focus on the critical colors at step T – colors whose load increased at step
T and is higher than the following color load. Formally, color k is critical with respect to vertex
u and its T th neighbor if `T (k) > `T−1(k) and `T (k) > `T (k + 1). Clearly, in order to upper
bound the load at step T , it is sufficient to upper bound the load for critical colors k for T . If we
let V k

1 :=
∑k

i=1 `
T (i) be the total load on colors 1, 2, . . . , k and V k

2 :=
∑δT

i=k+1 `
T (i) be the total

load on colors k + 1, . . . , δT , we will upper bound the load of color k by

`T (k) 6
V k

1

k
6
δT − V k

2

k
, (6.10)

where the first inequality is due to the monotonicity of the loads, and the second inequality is due
to the total load being at most δT . Therefore, we will upper bound the load by proving a lower
bound on the index of any critical color, and a lower bound on the total load after this index.
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The next lemma plays a key role in both lower bounds. We show that for any color k critical
at step T and for all steps A < t 6 T during which k’s load increases, all colors after k that
could be increased (i.e. k < i 6 δT ) have their load increase by the maximum allowable amount,
β/δt.

Lemma 6.3.4. For a color k critical at step T , for allA < t 6 T such that `t(k) > `t−1(k),
we have

`t(i)− `t−1(i) = β/δt ∀k < i 6 δt.

Using the previous lemma, we bound the minimal index of a critical color at step T .

Lemma 6.3.5. If k is a critical color at step T , then k > δT · (1− 1/β).

Next, using Lemma 6.3.4 and some useful claims in Section 6.5 we prove a lower bound on
V k

2 .

Lemma 6.3.6. If k is a critical color at step T and k∗ > max{k, δA}, then

V k
2 >

δT∑
j=k+1

(
`T (j)− `k∗(j)

)
> β ·

(
δT − k∗ − k log

δT

k∗

)
.

Bounding the maximum load: Next, we use the previous lemmas in order to bound the maxi-
mum load after an assignment of an edge. Specifically, we will bound the load of `u and `v after
coloring the edge (v, u), where v is the newly-arrived vertex. First, it is easy to bound the load
of a vertex v for each color after its arrival, since we bound each edge-color pair’s value xe,c by
β/δAvv 6 β/Av at arrival of v (when it has Av neighbors).

Observation 6.3.7. `Avv (i) 6 β for all i ∈ [δAv ].

We now use Lemma 6.3.6 and Equation (6.10) to bound the load of a previously-arrived
vertex u.

Lemma 6.3.8. If k > δAuu is a critical color at step T w.r.t. u, then `Tu (k) 6 β log β
β−1

.

Lemma 6.3.9. If k 6 δAuu is a critical color at step T w.r.t. u, then `Tu (k) 6 β2 − β +
β log 1

β−1
.

Upper Bounding Algorithm 6’s Competitive Ratio: We are now ready to bound the compet-
itive ratio of Algorithm 6. First, we show that Algorithm 6 is e

e−1
competitive for one-sided
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bipartite graphs. That is, G(L,R,E) is a bipartite graph and the offline vertices L arrive before
the algorithm starts (i.e., Au = 0 for all u ∈ L).

Theorem 6.3.10. For bipartite graphs under one-sided arrivals, Algorithm 6 is
max{β, β log β

β−1
} competitive. Setting β = e

e−1
, we get an ( e

e−1
)-competitive algorithm.

Proof. We bound the load after coloring of edge (v, u), where v ∈ R is the T th online neighbor
of u. First, we bound the load for any color i of v. By Observation 6.3.7, we have `v(i) =
`Avv (i) 6 β. For vertex u, we have Au = δAu = 0. Thus, by Lemma 6.3.8 we have that
maxi `

T
u (i) 6 β log β

β−1
.

Finally, in Section 6.5 we bound our algorithm’s competitive ratio on general graphs, proving
that it is better than greedy.

Theorem 6.3.11. For any graph, Algorithm 6 is β2 − β + β log 1
β−1

competitive. Setting
β = 1.586, we obtain a 1.777-competitive algorithm.

6.3.5 An Optimal Integral Algorithm

In this section we show how to round fractional edge-coloring algorithms’ output online, from
which we obtain optimal integral online edge coloring algorithms for unknown ∆. Specifi-
cally, we will round fractional edge colorings provided by algorithms which assign at most some
(small) value ε to each edge-color pair, which we refer to as ε-bounded algorithms. (As we shall
see, the optimal fractional algorithms we will plug into this rounding scheme both satisfy this
property.) We now state our main technical result of this section: a nearly-lossless rounding
process for bounded algorithms on graphs with high enough lower bound on ∆.

Theorem 6.3.12. For all α ∈ [1, 2] and ε 6 1, if there exists an ε-bounded α-competitive
fractional algorithm A for bipartite graphs with unknown maximum degree ∆ > ∆′ >
2/ε, then there exists a randomized integral algorithmA′ which is (α+O( 12

√
(log n)/∆′)-

competitive w.h.p on bipartite graphs of unknown maximum degree ∆ > ∆′ > c · log n for
some constant c.

To make use of this theorem, we note that our optimal fractional algorithm for unknown ∆,
Algorithm 6, can be made 2/∆′ bounded by setting our initial lower bound on ∆ to be ∆′ in
Line 3, without worsening the competitive ratio. (This is equivalent to adding a dummy star
which does not increase the maximum degree.) Plugging this bounded fractional edge coloring
algorithm into Theorem 6.3.12, we get an optimal randomized algorithm for edge coloring graphs
with unknown ∆.
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Theorem 6.3.13. There exists an ( e
e−1

+ O( 12
√

(log n)/∆′))-competitive algorithm for n-
vertex bipartite graphs G with unknown maximum degree ∆ > ∆′ > c · log n for some
absolute constant c.

Remark. The algorithm of Theorem 6.3.13 requires only a lower bound ∆′ 6 ∆ for some
∆′ = ω(log n) in order to output an ( e

e−1
+ o(1)) · ∆ coloring, and not the exact value of ∆.

Alternatively, our algorithm uses ( e
e−1

+ o(1)) ·max{∆,∆′} colors for any unknown ∆, where
the multiplicative approximation ratio is clearly only worse than ( e

e−1
+o(1)) for small ∆ < ∆′ –

in which case the additive approximation term is onlyO(∆′). This result can therefore be read as
an asymptotic approximation scheme, trading off between the additive term and the asymptotic
competitive ratio.

To describe our rounding scheme for fractional matchings, we make use of our online round-
ing scheme for bounded fractional matchings of Chapter 5, which motivates our study of bounded
fractional edge colorings. We will in particular rely on the guarantees of that chapter’s dependent
rounding scheme given in Lemma 5.3.10, and restated her for ease of reference.

Lemma 6.3.14. There exists an online algorithm, which, given online fractional bipartite
matching ~x satisfying |x|∞ 6 ε, outputs a random matchingM which matches each edge
e with probability

xe ·
(

1− 11 3
√
ε · log(1/ε)

)
6 Pr[e ∈M] 6 xe.

We now outline our rounding scheme, which consists of phases, as follows. For each phase
i, let Ui be the uncolored graph at start of phase i. (Initially, U1 = G.) We compute an α-
competitive fractional edge coloring in Ui online. Upon the algorithm’s initialization, we sample
each of the possible α · n fractional matchings of this fractional coloring, i.i.d with probability
p. We then round and color the sampled fractional matchings in an online fashion, as follows.
Whenever a sampled fractional matching becomes non trivial, we assign it a new color. When-
ever a new vertex v arrives, for each phase i in increasing order, we run the next step of MARKING

for each of the sampled fractional matchings of phase i’s fractional coloring, and color all newly-
matched edges with the color assigned to the relevant fractional matching. Finally, we greedily
color the remaining uncolored edges of v. Setting p = o(1) (guaranteeing few re-colors) and also
satisfying ∆ · p = ω(log n) (in order to have concentration up to (1± o(1)) factors on number of
colors used), this approach will use roughly p ·α ·∆(Ui) colors for the ith phase, while decreasing
the uncolored subgraph’s maximum degree by roughly p ·∆(Ui), or a (1− p) factor. Thus, using
(1/p) log(1/p) phases yield an uncolored subgraph of maximum degree p·∆ (using α ·∆ colors),
which the greedy algorithm colors using 2p ·∆ new colors. This implies Theorem 6.3.12.

6.3.6 Our Online Rounding Scheme
Our online rounding scheme, given an ε-bounded fractional edge-coloring algorithm A which
is α competitive on graphs of maximum degree at least 2/ε, for ε = p4/(12 log n), works as
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follows. Let p := 12
√

24(log n)/∆′. We use P := d(4/p) log(1/p)e many phases. For phase i,
we sample in advance a subset Si of all possible color indices, each taken into Si with probability
p. Let Ui be the subgraph of edges not colored before phase i. When online vertex v arrives, for
each phase i ∈ [P ], we update a fractional coloring x(i) using Algorithm A, based on v’s arrival
in Ui. For all sampled j ∈ Si for which x(i)

j (the jth fractional matching of x(i)) is non trivial, we
use a distinct color ci,j to color edges of a matching Mi,j computed online by running MARKING

on x(i)
j . Finally, all remaining uncolored edges of v are greedily colored using new colors. This

algorithm’s pseudo-code is give in Algorithm 7.

Algorithm 7 Randomized Edge Coloring for Unknown ∆

Input: Online n-vertex bipartite graph G(L,R,E) with ∆ > ∆′ > c · log n, for c a constant
TBD
Parameter p := 12

√
(24 log n)/∆′(6 1/10)

An ε-bounded fractional online edge-coloring algorithmAwhich is α competitive on graphs
U with ∆(U) > 2/ε, for ε := (p4/12 log n)

Output: Integral (α +O(p)) ·∆ edge coloring, w.h.p.
1: for all i, set Si ⊆ dα · ne to be such that each j ∈ dα · ne is in Si independently with

probability p
2: for all i, denote by Ui the online subgraph of G not colored during phases 1, 2, . . . , i− 1
3: for each arrival of a vertex v ∈ R do
4: for phase i = 1, 2, . . . , d(4/p) log(1/p)e do
5: x(i) ← output of Algorithm A on current Ui . run next step of A
6: for j ∈ Si with x(i)

j 6= ~0 do
7: if ci,j not set then
8: set ci,j to next unassigned color index
9: Mi,j ← output of MARKING on current x(i)

j . run next step of MARKING

10: if some e ∈Mi,j previously uncolored then
11: color e using color ci,j . note: e 3 v
12: run greedy on uncolored edges of v, using colors not assigned during the phases

6.3.7 Analysis
We will study changes in the uncolored graph between subsequent phases and the colors used
during the phases. For each i, let ∆i := ∆(Ui) be the maximum degree of the online graph not
colored by phase 1, 2, . . . , i− 1. In this section we will show that during each phase i, provided
∆i is sufficiently large, Algorithm 7 uses some α·∆i·p(1+O(p)) new colors w.h.p., and obtain an
uncolored subgraph Ui+1 of maximum degree ∆i+1 = ∆i ·(1−p±O(p2)) w.h.p. This will imply
a degree decrease at a rate of one per α+O(p) colors used. Repeating this for d(4/p) log(1/p)e
phases, will therefore require (α+O(p))∆ colors and yield a subgraph of maximum degree p ·∆,
which we color greedily with O(p)∆ new colors, implying Theorem 6.3.12.

To upper bound the number of colors used in phase i, we note that the number of non-trivial
(i.e., not identically zero) fractional matchings we round in each iteration is clearly a p-fraction
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of the (at most dα · ∆ie) non-trivial colors of x(i). Therefore, by standard Chernoff bounds
(Lemma 2.4.10), if ∆i is large enough, the number of colors in the phase is small, w.h.p.

Lemma 6.3.15. If ∆i > (6 log n)/p3, then Ci, the number of colors used in phase i,
satisfies

Pr [Ci > α∆i · p · (1 + p)] 6
1

n2
.

Lemma 6.3.15 upper bounds the number of colors used in phase i by α∆i · p · (1 + p). Our
main technical lemma, below, whose full proof is deferred to Section 6.4, asserts that these colors
result in a decrease of roughly ∆i · p in the uncolored subgraph’s maximum degree during the
phase.

Lemma 6.3.16. If ∆i > (24 log n)/p4, then
1. Pr [∆i+1 6 ∆i · (1− p− 4p2)] 6 3/n3.
2. Pr [∆i+1 > ∆i · (1− p+ 7p2)] 6 6/n2.

Proof Sketch. Let v be a vertex of degree di(v) > ∆i/2 in Ui. By Lemma 6.3.14 and the ε-
boundedness of the fractional algorithm A (and some simple calculations), each edge e ∈ Ui
is matched in Mi,j (j ∈ Si) with probability x(i)

e,j · (1 − O(p)) 6 Pr[e ∈ Mi,j] 6 x
(i)
e,j . That

is, we match e in Mi,j with probability close to its sampled “load” for this color. By Chernoff
bounds, as we sample each color of x(i) with probability p, the sampled load on v’s edges is
di(v) · p(1 ± O(p)) w.h.p. So, by linearity and another Chernoff bound, the number of times v
is matched during the ith phase satisfies Mv 6 di(v) · p(1 + O(p))2 6 di(v) · p(1 + O(p)), and
Mv > di(v) · p(1−O(p))3 > di(v) · p(1−O(p)).

However, Mv also counts repeated matchings of edges of v, which do not contribute to v’s
degree decrease in the uncolored subgraph. We therefore want to bound Rv – the number of
times a previously-colored edge of v is matched during the phase. By Chernoff’s bound and
ε-boundedness of the fractional algorithm, the load on each edge in the sampled colors Si, which
in expectation is precisely p, is O(p) w.h.p. So, intuitively, we would expect Rv = Θ(p) ·Mv

w.h.p., implying Rv = Θ(di(v) · p2) w.h.p. Of course, as re-matches are not independent of
matches, we cannot simply multiply these expressions this way. However, relying on the theory
of negative association (see Section 2.4.1), the intuitive claim that Rv = Θ(di(v) · p2) w.h.p. can
be formalized. We conclude that the degree decrease of vertex v in the uncolored graph during
the ith phase is Mv − Rv = di(v) · p · (1−Θ(p)) w.h.p. Taking union bound over all vertices v,
the lemma follows.

Theorem 6.3.12 now follows from Lemma 6.3.15 and Lemma 6.3.16. We sketch a proof of
this theorem and defer its full proof to Section 6.4.

Proof of Theorem 6.3.12 (Sketch). Clearly, Algorithm 7 colors all edges of G, due to Line 12.
By definition, all color classes computed are matchings. As we shall show, the number of colors
used during the phases is at most (α+O(p)) ·∆ w.h.p., and the greedy algorithm requires some
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O(p) ·∆ colors w.h.p., implying our claimed result. We outline this proof using a stronger claim
than Lemma 6.3.16.

Suppose instead of Lemma 6.3.16 we had that with high probability ∆i+1 = ∆i · (1 − p).
Then, by induction we would have ∆i = ∆ · (1− p)i and in particular for all i 6 (1/p) log(1/p)
we would have ∆i > ∆ · p > ∆′ · p. Taking p > 5

√
(24 log n)/∆′ would therefore imply that

∆i > ∆′ · p > (24 log n)/p4, which in turn would allow us to appeal to union bound to prove
that ∆i = ∆ · (1 − p)i for all i, or in other words ∆i − ∆i+1 = ∆i · p, and that the number of
colors used in each phase i is at most Ci 6 α ·∆i · p · (1 + p). Summing over all phases, since
∆0 = ∆, this would imply that w.h.p., the number of colors used during the phases is∑

i

Ci 6
∑
i

(α + p(1 + p)) · (∆i −∆i+1) 6 (α + p(1 + p)) ·∆.

On the other hand, after (1/p) log(1/p) phases we would get a final uncolored subgraph of max-
imum degree ∆ · (1 − p)(1/p) log(1/p) ≈ ∆ · p w.h.p., and so the greedy step of Line 12 would
use at most 2∆ · p colors. Overall, Algorithm 7 therefore uses at most (α+O(p)) ·∆ colors for
p = O( 5

√
(log n)/∆′) and ∆ > 24 log n. Our more involved bounds are due to the slightly looser

bounds for ∆i+1 in terms of ∆i in Lemma 6.3.16. See full proof in Section 6.4 for details.

Applications to Known ∆: Algorithm 7 finds applications for known ∆, too. In particular, by
Lemma 6.3.16 we find that if in each phase i we assign value 1/((1 − p + 7p2)i · ∆) for each
edge-color pair, then we obtain a feasible coloring w.h.p., requiring (1−p+7p2)i ·∆ colors when
the maximum degree is at least (1− p− 4p2)i ·∆, w.h.p.; i.e., this is a (1 +O(p2))-competitive
fractional algorithm for uncolored subgraph Ui. Replacing algorithm A in Algorithm 7 with
this approach then yields, as in the proof of Theorem 6.3.12, an optimal, (1 + o(1))-competitive
randomized algorithm for known ∆. As we achieve better o(1) terms in Section 6.2, we do not
elaborate on this point here.

6.4 Omitted Proofs of Section 6.3.5

Here we provide the missing proofs of lemmas and theorem deferred from Section 6.3.5, restated
here for ease of reference.

We start by bounding the number of colors used during each phase.

Lemma 6.3.15. If ∆i > (6 log n)/p3, then Ci, the number of colors used in phase i,
satisfies

Pr [Ci > α∆i · p · (1 + p)] 6
1

n2
.

Proof. As ∆i > (6 log n)/p3, we have E[Ci] = E[|Si|] 6 α∆i · p 6 α · 6(log n)/p2. Plugging
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ε = p into the upper multiplicative tail bound of Lemma 2.4.10, we get

Pr[C > α∆i · p(1 + p)] 6 exp

(
−α∆i · p(1 + p)

3

)
6 exp

(
−((6 log n)/p3) · p3

3

)
= 1/n2.

The main technical lemma of this section, bounding the maximum degree of the uncolored
graph Ui+1 in terms of its ith phase counterpart, Ui, is as follows.

Lemma 6.3.16. If ∆i > (24 log n)/p4, then
1. Pr [∆i+1 6 ∆i · (1− p− 4p2)] 6 3/n3.
2. Pr [∆i+1 > ∆i · (1− p+ 7p2)] 6 6/n2.

Before proving this lemma (in turn deferred to Section 6.4.1), we show how it implies our
main theorem, restated below.

Theorem 6.3.12. For all α ∈ [1, 2] and ε 6 1, if there exists an ε-bounded α-competitive
fractional algorithm A for bipartite graphs with unknown maximum degree ∆ > ∆′ >
2/ε, then there exists a randomized integral algorithmA′ which is (α+O( 12

√
(log n)/∆′)-

competitive w.h.p on bipartite graphs of unknown maximum degree ∆ > ∆′ > c · log n for
some constant c.

Proof. For our proof, we will require the following fact.

Fact 6.4.1. All p ∈ [0, 1/10] satisfy (1 − p − 4p2) > exp(−2 · p) and (1 − p + 7p2) 6
exp(−p/4).

For p = 12
√

(24 log n)/∆′ 6 1/10 to hold, we need ∆′ > 24 · 1012 · log n. That is, c = 24 · 1012.
By Lemma 6.3.16 and Fact 6.4.1, Pr[∆i+1 6 ∆i · exp(−2 · p)] 6 Pr[∆i+1 6 ∆i · (1 − p −

4p2)] 6 3/n2, provided ∆i > (24 log n)/p4. By our choice of p = 12
√

(24 log n)/∆′, this implies
that for all i < d(4/p) log(1/p)e,

∆ · exp(−2 · p)i > ∆ · p8 > ∆′ · p8 = (24 log n)/p4.

Consequently, if we let Ai := [
∧
i ∆i > (24 log n)/p4] be an indicator for the event that ∆i is

large enough to appeal to Lemma 6.3.15 and Lemma 6.3.16 for phase i, then taking union bound
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(Proposition 2.4.16) over all j < i, we have

Pr[Ai] = Pr
[
∆i 6 (24 log n)/p4

]
6 Pr

[∨
j<i

(∆j 6 ∆ · exp(−2 · p)j)
]

6 n · 3/n3 = 3/n2.

Now, by Lemma 6.3.16 and p 6 1/10, we have

Pr [∆i −∆i+1 6 p(1− 7p) ·∆i | Ai] = Pr
[
∆i+1 > ∆i · (1− p+ 7p2) | Ai

]
6 6/n2.

On the other hand, by Lemma 6.3.15, if we denote by Ci the number of colors used during
the ith phase, then the probability of any of the Ci being large is at most

Pr [Ci > α∆i · p(1 + p) | Ai] 6 1/n2.

Now, by α ∈ [1, 2] and p 6 1/10, we find that α+ 54p 6 α(1 + 27p) 6 α · 1+p
1−7p

. Therefore,
if we letBi = 1[Ci > (α+54p) · (∆i−∆i+1)] be the bad event that we use a significantly higher
number of colors in phase i than the amount by which we decrease the maximum degree in the
uncolored graph in that phase. Then, we have

Pr[Bi] 6 Pr[Ci > (α + 54p) · (∆i −∆i+1) | Ai] + Pr[Ai]

6 Pr[Ci > α ·∆i · p(1 + p) | Ai]
+ Pr[∆i −∆i+1 6 p(1− 7p) ·∆i | Ai] + Pr[Ai]

6 1/n2 + 6/n2 + 3/n2 = 10/n2.

Therefore, by union bound, we have that with probability at least 1 − 10/n, the number of
colors used during the phases is at most∑

i

(α + 54p) · (∆i −∆i+1) 6 (α + 54p) ·∆.

Finally, we upper bound the number of colors used by the greedy step of Line 12, by up-
per bounding the uncolored subgraph’s maximum degree before Line 12. We note that by
Lemma 6.3.16 and Fact 6.4.1, we have Pr[∆i+1 > ∆i · exp(−p/4) | A] 6 Pr[∆i+1 > ∆i ·
(1−p+7p2) | A] 6 6/n2. Therefore, we find that the final uncolored subgraph U has maximum
degree ∆(U) 6 ∆ · p, as

Pr[∆(U) > ∆ · p] 6 Pr[∆d(4/p) log(1/p)e > ∆ · exp(−p/4 · d(4/p) log(1/p)e)]

6 Pr

[∨
i

(∆i+1 > ∆i · exp(−p/4))

]

6 Pr

[∨
i

(∆i+1 > ∆i · exp(−p/4))

∣∣∣∣∣A
]

+ Pr[A]

6 n · 6/n2 + 3/n

= 9/n.

Consequently, the greedy step of Line 12 uses a further 2∆ · p colors, and so Algorithm 7 is an
(α + 56p)-competitive online edge coloring algorithm.
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6.4.1 Progress in degree decrease
In this section we will show that each phase i of Algorithm 7 with ∆i > 24(log n)/p3 decreases
the maximum degree of the uncolored graph by a 1/(1−p±O(p2)) factor. That is, we will prove
Lemma 6.3.16. As outlined in Section 6.3.5, our general approach will be to bound the number
of times each near-maximum-degree vertex v in Ui is matched during the phase and the number
of times it is matched without having an edge colored.

For the remainder of this section, we will need the following random variables. First, for any
vertex v and index i, we let di(v) denote v’s degree in the uncolored subgraphs Ui. Moreover, for
each edge e we let L(i)

e,j = x
(i)
j if j ∈ Si and zero otherwise, and similarly L(i)

v,j :=
∑

e3v L
(i)
e,j . We

refer to the above as the load of edge e and vertex v in color j of phase i. Finally, we denote by
`

(i)
e :=

∑
j L

(i)
e,j and `(i)

v :=
∑

j L
(i)
v,j the load of the edge e and vertex v in the sampled colors of

phase i. Clearly, as each color index j is in Si with probability p, and as each edge is fractionally
matched exactly once, we have that E[`

(i)
e ] = p and therefore E[`

(i)
v ] = di(v) · p. The following

lemma asserts that these variables are concentrated around their mean. In all notation, we omit
i, which will be clear from context.

Lemma 6.4.2. If ∆i > (24 log n)/p3, then
1. for each edge e we have Pr[`e > p(1 + p)] 6 1/n4, and
2. for each vertex v of degree di(v) > ∆i/2 in Ui we have Pr[|`v − di(v) · p| > di(v) ·
p2] 6 2/n3.

Proof. As noted above, E[`e] = p. Moreover, by the (p3/12 log n)-boundedness of f we have
that `e =

∑
j Le,j is the sum of bounded independent variables Le,j ∈ [0, p3/12 log n]. So, by

Chernoff bounds (Lemma 2.4.10) with ε = p ∈ (0, 1), we obtain

Pr[`e > p(1 + p)] = Pr [`e > E[`e] · (1 + p)]

6 exp

(
− p · p2

3p3/(12 log n)

)
= exp (−4 log n) = 1/n4.

Similarly, as noted above, E[`v] = p·di(v). Moreover, as x(i) is a feasible fractional matching,
we have |Lv,j| 6 1 for all j. So, by Chernoff bounds (Lemma 2.4.10), with ε = p ∈ (0, 1), we
obtain

Pr[|`v − E[`v]| > p2 · di(v)] = Pr[|
∑
j

Lv,j − E[Lv,j]| > p ·
∑
j

E[Lv,j]]

6 2 exp

(
−di(v) · p · p2

3

)
6 2 exp

(
−∆i · p · p2

6

)
6 2 exp (−3 log n)

6 2/n3.
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We will now want to bound the number of times a vertex is matched during a phase. We will
rely on Lemma 6.4.2 together with the following lemma.

Lemma 6.4.3. Let ~x be a fractional matching with maxe xe 6 p4/(12 log n). Then for
each edge e, MARKING run with input ~x outputs a matchingM which matches each edge
e with probability

xe · (1− 3p) 6 Pr[e ∈M] 6 xe

Proof. The upper bound on Pr[e ∈ M] is true for all ~x. For the lower bound, we have that by
Lemma 6.3.14, as p ∈ [0, 1/10] and as we may safely assume n > 2 (otherwise the problem is
trivial), we have that the probability of e belonging toM is at least

Pr[e ∈M] > xe · (1− 11p 3
√
p · log(12 log n/p3)/12 log n)

> xe · (1− 11p 3
√

3p log(1/p)/12 log n+ p)

> xe · (1− 11p 3
√

3(1/e)/12 log n+ p) p ∈ [0, 1]

> xe · (1− 11p 3
√

3/(e · 12 log 2) + p) n > 2

> xe · (1− 11p 3
√

3/(e · 12 log 2) + 1/10) p 6 1/10

> xe · (1− 3p).

Relying on Lemma 6.4.2.2 and Lemma 6.4.3, we obtain the following bounds on Mv, the
number of times v is matched during the ith phase.

Lemma 6.4.4. If ∆i > (24 log n)/p4, for each vertex v with degree at least di(v) > ∆i/2,
then Mv, the number of times v is matched during the ith phase, satisfies

1. Pr[Mv > di(v) · p(1 + 4p)] 6 3/n4.
2. Pr[Mv 6 di(v) · p(1− 5p)] 6 3/n3.

Proof. Let M j
v be an indicator variable for the event that v is matched in Mi,j . For any instantia-

tion of the variables Le,j , Lemma 6.4.3 implies that each edge e is matched inMi,j with probabil-
ity Le,j · (1− 3p) 6 Pr[e ∈Mi,j] 6 Le,j , and so by linearity we have Lv,j · (1− 3p) 6 Pr[M j

v ] 6
Lv,j . In particular, if we letA := [di(v)·p(1−p) 6 `v 6 di(v)·p(1+p)], then, by linearity we have
both E[Mv | A] 6 di(v)·p(1+p) as well as E[Mv | A] > di(v)·p(1−p)(1−3p) > di(v)·p(1−4p).
Now, clearly, Mv =

∑
j∈SiM

j
v is the sum of binary random variables. Moreover, for any subset

Si sampled, these {M j
v | j ∈ Si} are independent, as all matchings Mi,j for j ∈ Si are computed

using independent copies of MARKING. By Chernoff’s upper tail bound (Lemma 2.4.10) with
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ε = 2p, we thus obtain

Pr[Mv > di(v) · p(1 + 4p) | A] 6 Pr[Mv > di(v) · p(1 + p)(1 + 2p) | A]

6 Pr[Mv > E[Mv | A] · (1 + 2p) | A]

6 exp

(
−E[Mv | A] · 4p2

3

)
6 exp

(
−di(v) · p(1− 4p) · 4p2

3

)
6 exp

(
−(48 log n)p3(1− 4p)

3p4

)
6 exp (−4 log n) p 6 1/5

6 1/n4.

Therefore, we obtain the first claim, as

Pr[Mv > di(v) · p(1 + 4p)] 6 Pr[Mv > di(v) · p(1 + 4p) | A] + Pr
[
A
]
6 3/n3.

Similarly, by Chernoff’s lower tail bound (Lemma 2.4.10) with ε = p, we obtain

Pr[Mv 6 di(v) · p(1− 5p) | A] 6 Pr[Mv 6 di(v) · p(1− p)(1− 3p)(1− p) | A]

6 Pr[Mv 6 E[Mv | A] · (1− p) | A]

6 exp

(
−E[Mv | A] · p2

2

)
6 exp

(
−di(v) · p(1− p)(1− 3p) · p2

2

)
6 exp

(
−12(log n)p3(1− p)(1− 3p)

2p4

)
6 exp (−3 log n)

6 1/n3,

where the second to last inequality holds for all p 6 1/10. From the above we obtain the second
claim, as

Pr[Mv 6 di(v) · p(1− 5p)] 6 Pr[Mv 6 di(v) · p(1− 5p) | A] + Pr[A] 6 3/n3.

The above lemma asserts that the number of times a vertex v of high degree in Ui is matched
during the ith phase is Θ(di(v) · p). The following lemma relies on the theory of Negative
Association (NA, see Section 2.4.1) to show that all but O(di(v) · p2) matches of v during this
phase result in an edge of v being colored.

Lemma 6.4.5. If ∆i > (24 log n)/p3, for each vertex v with degree at least di(v) > ∆i/2,
the number of times v is matched along a previously colored edge, Rv, satisfies

Pr[Rv > 2di(v) · p2] 6 2/n2.
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Proof. Fix the realizations of Le,j for all e, j. For any edge e 3 v, let Me,j := 1[e ∈ Mi,j] be an
indicator for edge e being matched in iteration j of phase i. By the 0-1 rule, since at most one
edge e 3 v is in any matching, for each j the binary variables {Me,j | e 3 v} are NA. On the
other hand, for j 6= j′ the joint distributions {Me,j | e 3 v} and {Me,j′ | e 3 v} are independent.
Thus, by closure of NA distributions under independent union (Proposition 2.4.4.1), the {Me,j |
j ∈ Si, e 3 v} are NA. By closure of NA distributions under monotone increasing functions of
disjoint variables (Proposition 2.4.4.2), if we let Re :=

∑
jMe,j · min{1,∑j′<jMe,j′} denote

the number of times e is matched and not colored, then these {Re | e 3 v} are NA. In this
terminology, we have that Rv =

∑
e3v Re is the sum of NA variables. Moreover, as the Me,j

are NA and as E[Me,j] 6 Le,j by Lemma 6.3.14, we have by the definition of NA variables (see
(2.10)) that

E

[∑
j

Me,j ·
∑
j′<j

Me,j′

]
6
∑
j

E [Me,j] · E
[∑
j′<j

Me,j′

]
6
∑
j

Le,j ·
∑
j′<j

Le,j′ 6 `e · `e.

Let A = 1[∀e 3 v : `e 6 p(1 + p)] be an indicator for the high probability event that every
edge e 3 v has load at most 2p in the sampled matchings.

E[Re | A] 6 E

[∑
j

Me,j ·
∑
j′<j

Me,j′

∣∣∣∣∣A
]
6 E[`e | A] · E[`e | A] 6 p2(1 + p)2.

Therefore, by linearity of expectation, E[Rv] =
∑

e3v E[Re] 6 di(v) · p2(1 + p)2. Now, as
di(v) > ∆i/2 > 12(log n)/p3 and as Rv =

∑
eRe is the sum of binary NA variables, we can

upper bound Rv using the upper multiplicative Chernoff bound of Lemma 2.4.10 with ε =
√
p

to obtain

Pr[Rv > di(v) · p2(1 + p)2(1 +
√
p) | A] 6 exp

(
−di(v) · p2(1 + p)2 · p

3

)
6 exp

(
−12 log n

3

)
6

1

n2
.

Observing that for p 6 1/10 we have 2 6 (1 + p)2(1 +
√
p), we find that

Pr[Rv > 2di(v) · p2 | A] 6 Pr
[
Rv > di(v) · p2(1 + p)2(1 +

√
p) | A

]
6 1/n2.

Now, by Lemma 6.4.2.1 we have for every e 3 v that Pr[`e > p(1 + p)] 6 1/n3 and so by
union bound we have Pr[A] 6 n · 1/n3 = 1/n2. We therefore conclude that indeed

Pr
[
Rv > 2 · di(v) · p2

]
6 Pr

[
Rv > 2 · di(v) · p2 | A

]
+ Pr

[
A
]
6 2/n2.

Lemma 6.3.16, restated below for ease of reference, follows from lemmas 6.4.4 and 6.4.5
and union bound of relevant subsets of vertices.
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Lemma 6.3.16. If ∆i > (24 log n)/p4, then
1. Pr [∆i+1 6 ∆i · (1− p− 4p2)] 6 3/n3.
2. Pr [∆i+1 > ∆i · (1− p+ 7p2)] 6 6/n2.

Proof. For each vertex v, the decrease in v’s degree in the uncolored subgraph during the ith

phase, denoted by Dv := di(v) − di+1(v), is precisely the number of times v is matched and its
matched edge is colored. That is, in the terminology of Lemma 6.4.4 and Lemma 6.4.5, Dv =
Mv − Rv. So, by Lemma 6.4.4, every maximum degree vertex v in Ui (i.e. di(v) = ∆i > ∆i/2)
satisfies

Pr[di+1(v) 6 ∆i · (1− p− 3p2)] = Pr[di+1(v) 6 di(v) · (1− p− 3p2)]

= Pr[di(v)− di+1(v) > di(v) · p(1 + 3p)]

= Pr[Dv > di(v) · p(1 + 3p)]

6 Pr[Mv > di(v) · p(1 + 3p)]

6 3/n4.

The first claim then follows by union bound over all maximum degree vertices v in Ui.

Pr
[
∆i+1 6 ∆i · (1− p− 3p2)

]
6

∑
v: di(v)=∆i

Pr
[
di+1(v) 6 ∆i · (1− p− 3p2)

]
6 3/n3.

Now, we let λ := p(1− 7p) and note that (1− λ) ·∆i > ∆i/2, since p 6 1/2. All vertices v
of degree di(v) 6 (1 − λ) ·∆i in Ui clearly have di+1(v) 6 di(v) 6 (1 − λ) ·∆i. On the other
hand, for every v with di(v) > (1− λ) ·∆i > ∆i/2, we have by lemmas 6.4.4 and 6.4.5 that

Pr[di+1(v) > (1− λ) ·∆i] 6 Pr[di+1(v) > (1− λ) · di(v)]

= Pr[di(v)− di+1(v) 6 di(v) · λ]

= Pr[Dv 6 di(v) · λ]

= Pr[Dv 6 di(v) · p(1− 7p)]

6 Pr[Mv 6 di(v) · p(1− 5p)] + Pr[Rv > di(v) · p · 2p]
6 6/n3.

The second claim then follows by union bound over all vertices v of degree di(v) > (1−λ)·∆i

in Ui, recalling that λ = p(1− 7p), since

Pr[∆i+1 > (1− λ) ·∆i] 6
∑

v: di(v)>(1−λ)·∆i

Pr[di+1(v) > (1− λ) ·∆i] 6 6/n2.

6.5 Omitted Proofs of Section 6.3.3
Here we provide the missing proofs of lemmas whose proof was deferred from Section 6.3.3,
restated here for ease of reference.
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Lemma 6.3.4. For a color k critical at step T , for allA < t 6 T such that `t(k) > `t−1(k),
we have

`t(i)− `t−1(i) = β/δt ∀k < i 6 δt.

Proof. Suppose there exists A < t 6 T such that k+ 1 6 δt and `t(k+ 1)− `t−1(k+ 1) < β/δt

and `t(k)−`t−1(k) > 0, then we can immediately derive that `t(k) = `t(k+1), since k and k+1
are active at the end of the iteration. But by Observation 6.3.3 we know that `T (k) = `T (k + 1)
– a contradiction. Finally, `t(i) − `t−1(i) > `t(k + 1) − `t−1(k + 1) for all k < i 6 δt by
Observation 6.3.3.

Lemma 6.3.5. If k is a critical color at step T , then k > δT · (1− 1/β).

Proof. By Lemma 6.3.4, `T (k) > `T (k+1) and `T (k) > `T−1(k) imply `T (i)−`T−1(i) = β/δT ,
for k + 1 6 i 6 δT . Hence, if k 6 δT ·

(
1− 1

β

)
, we would obtain

k∑
i=1

(`T (i)− `T−1(i)) = 1−
δT∑

i=k+1

(`T (i)− `T−1(i))

= 1− (δT − k)β/δT

< 1− (β/δT ) · (δT/β)

= 0,

which would imply `T (k) = `T−1(k) – contradicting the fact that k is critical.

In order to lower bound V 2
k , we first prove the following two useful claims.

Claim 6.5.1. If k is a critical color at step T , then for any j > k and for any S > A,

`T (j)− `S(j) =
∑
S<t6T
δt>j

β

δt
.

Proof. We prove that for any t > A and δt > k, then `t(k) > `t−1(k). Assume not, then we have

1 =
δt∑
i=1

(`t(i)− `t−1(i)) =
δt∑

i=k+1

(`t(i)− `t(i− 1)) 6 (δt − k) · β/δt 6 (δT − k) · β/δT < 1.
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Where that last inequality is due to k > (1 − 1/β)δT , by Lemma 6.3.5. Therefore, by
Lemma 6.3.4, we have `t(j)− `t−1(j) = β/δt for j 6 δt. Consequently,

`T (j)− `S(j) =
T∑

t=S+1

(`t(j)− `t−1(j)) =
T∑

t=S+1

I{δt > j}(`t(j)− `t−1(j)) =
∑
S<t6T
δt>j

β

δt
.

Next, we bound the total load on the colors after a critical color k.

Claim 6.5.2. If k is a critical color at step T , then for any S > A

δT∑
j=k+1

(
`T (j)− `S(j)

)
>

δT∑
j=S+1

β · δ
j − k
δj

.

Proof. By Claim 6.5.1, we have

δT∑
i=k+1

(
`T (i)− `S(i)

)
>

δT∑
i=k+1

∑
S+16j6δT

δj>i

β

δj
=

δT∑
j=S+1

∑
δj>i>k

β

δj
=

δT∑
j=k∗+1

β · δ
j − k
δj

.

We are now ready to prove the main lower bound volume lemma.

Lemma 6.3.6. If k is a critical color at step T and k∗ > max{k, δA}, then

V k
2 >

δT∑
j=k+1

(
`T (j)− `k∗(j)

)
> β ·

(
δT − k∗ − k log

δT

k∗

)
.

Proof. Substituting S with k∗ in Claim 6.5.2 (note that, k∗ > δA > A), we have

δT∑
j=k+1

(
`T (j)− `k∗(j)

)
=

δT∑
j=k∗+1

β · δ
j − k
δj

>
δT∑

j=k∗+1

β · j − k
j

> β · (δT − k∗)− β · k log
δT

k∗

= β ·
(
δT − k∗ − k log

δT

k∗

)
,

where the first inequality is since δj > j.
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Lemma 6.3.8. If k > δAuu is a critical color at step T w.r.t. u, then `Tu (k) 6 β log β
β−1

.

Proof. As k is critical at step T , by Lemma 6.3.6, taking k∗ = k > δA, we have

V k
2 =

δT∑
i=k+1

`T (i) >
δT∑

i=k+1

(
`T (i)− `k(i)

)
> β ·

(
δT − k − k log

δT

k

)
.

In addition, by Lemma 6.3.5, we have k > δT ·
(

1− 1
β

)
. Thus, we find that indeed, by

Equation (6.10)

`T (k) 6
δT − V k

2

k

6
δT − β ·

(
δT − k − k log δT

k

)
k

= (1− β)
δT

k
+ β + β log

δT

k

6 β log
β

β − 1
.

Lemma 6.3.9. If k 6 δAuu is a critical color at step T w.r.t. u, then `Tu (k) 6 β2 − β +
β log 1

β−1
.

Proof. For ease of notation, in this lemma we will let ∆ = δT . We will consider two cases and
show the bound holds for both cases.

Case 1: δA/β 666 k 666 δA: By Lemma 6.3.6 with k∗ = δA > k, we have

V k
2 > β ·

(
∆− δA − k log

δT

δA

)
.
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As a consequence, by Equation (6.10), we have

`T (k) 6
∆− V k

2

k

6

(
∆− β(∆− δA) + βk log

∆

δA

)
/k

= (1− β)
∆

k
+ β

δA

k
+ β log

∆

δA

=
δA

k
((1− β)

∆

δA
+ β) + β log

∆

δA

6 β((1− β)
∆

δA
+ β) + β log

∆

δA

6 β2 − β + β log
1

β − 1
,

where the third inequality above holds because δA

k
6 β and ∆

δA
6 ∆

k
6 β/(β − 1), by

Lemma 6.3.5 and the last inequality holds because β((1 − β) ∆
δA

+ β) + β log ∆
δA

is maximized
when ∆

δA
= 1/(β − 1) (as can be verified by differentiating with respect to x = ∆

δA
).

Case 2: k 666 δA/β: Note that after the arrival of vertex u, the color load is at most β, by
Observation 6.3.7. We may safely assume that A > βk, since we can always increase A to βk
without increasing volume in V k

2 (which we aim to lower bound), by Observation 6.3.7.

V k
2 =

∆∑
i=k+1

`∆(i)

=
∆∑

i=k+1

`A(i) +
∆∑

i=k+1

(`δ
A

(i)− `A(i)) +
∆∑

i=k+1

(`∆(i)− `δA(i))

> (A− βk) +
δA∑

j=A+1

β · δ
j − k
δj

+ β ·
(

∆− δA − k log
∆

δA

)
> (A− βk) + (δA − A) · β · δ

A − k
δA

+ β ·
(

∆− δA − k log
∆

δA

)
(6.11)

> (δA − βk) · β · δ
A − k
δA

+ β · (∆− δA)− βk log
∆

δA
.

The first inequality holds by Observation 6.3.7, Claim 6.5.1 and Lemma 6.3.6 with k∗ = δA >
βk > k. The second inequality holds since for j > A, δj > δA. For the last inequality, substitut-
ing A with βk, a lower bound of A, will only decrease Equation (6.11), since the coefficient of
A is non-negative; i.e. 1 − β + β k

δA
> 1 − β + β k

∆
> 1 − β + β · (1 − 1

β
) = 0, where the last
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step follows by Lemma 6.3.5. Consequently, by Equation (6.10), we have that

`T (k) 6
∆− V k

2

k

6
∆−

(
(δA − βk) · β · δA−k

δA
+ β · (∆− δA)− βk log ∆

δA

)
k

6 (1− β)
∆

k
+ β2 + β − β2 k

δA
+ β log

∆

δA

= (1− β)
∆

k
+ β2 + β − β2 k

δA
+ β(log

∆

k
+ log

k

δA
)

= β2 + β + (β log
k

δA
− β2 k

δA
) + (β log

∆

k
+ (1− β)

∆

k
)

6 β2 + β + (β log
1

β
− β) + (β log

β

β − 1
− β)

= β2 − β + β log
1

β − 1
.

Finally, we will need the following simple inequalities for our analysis.

Fact 6.5.3. For β ∈ (1, 2) we have β 6 β2 − β + β log 1
β−1

, as well as β log β
β−1

6

β2 − β + β log 1
β−1

.

Proof. For both inequalities, we rely on x − 1 > log(x) for all x > 1 to obtain the claimed
inequalities. For the first, we have

β2 − β + β log
1

β − 1
− β = β2 − β + β log

1

β − 1
− β = β ((β − 1)− 1− log (β − 1)) > 0.

For the second inequality, we have

β2 − β + β log
1

β − 1
− β log

β

β − 1
= β(β − 1− log β) > 0.

6.6 Conclusion and Open Questions
In this chapter we presented optimal online edge coloring algorithms in bipartite graphs under
one-sided vertex arrivals, both when the maximum degree is known and when it is not. This
work suggests a few follow-up questions, most prominent of which is to obtain optimal online
edge coloring algorithms under vertex arrivals, or even under edge arrivals. Bar-Noy et al. [25]
suggested a candidate algorithm for edge arrivals with known ∆, though this algorithm seems
challenging to analyze. Is their candidate algorithm (1+o(1)) competitive? For unknown ∆, the
problem seems much more challenging, even if one restricts oneself to fractional algorithms. Can
one outperform the greedy algorithm for high-degree graphs with unknown maximum degree?
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For vertex arrivals in general graphs we provided a better-than-greedy fractional algorithm. But
can this algorithm be rounded without much loss? We note that our online rounding approach of
Algorithm 7 works under vertex arrivals in general graphs too, though it requires an online depen-
dent rounding scheme for fractional matching in general graphs generalizing the guarantees of
our online dependent rounding scheme of Chapter 5. Such a tool would likely have applications
to other online problems beyond edge coloring.
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Part II

Online Algorithms: Beyond the Worst Case

125





Chapter 7

Online Ad Allocation: Structured Inputs

In this chapter we return to the online bipartite matching problem, and its extensions: online
bipartite vertex-weighted matching and the budgeted ad allocation (or “AdWords”) problem. In
particular, in this chapter, based on [222] (joint work with Seffi Naor), we restrict our attention to
structured inputs which are motivated by Internet advertising applications, which have motivated
much work in this area in recent years.

7.1 Background

Internet advertising is ubiquitous. With over 120 billion dollars spent on Internet advertising in
2019 in the United States alone (see [236]), it has become, to a large extent, the driving economic
force behind much of the content of the world wide web. How is this advertising space bought
and sold? Most ads fall either under sponsored search or targeted advertising, both of which are
sold in what constitute instances of the online ad allocation problem.

In online ad allocation, we are faced with the following problem: advertisers announce to
an advertising platform (e.g. Yahoo, Google, Microsoft) what their advertising budgets are, and
their bids for an ad to be displayed to every kind of user. The user “type” is determined, for
example, by search terms searched, in the case of sponsored search, or user-demographics, in the
case of targeted advertising. When a user visits a web-page with an ad slot managed by the ad
platform, the latter needs to decide immediately and irrevocably which (if any) of the advertisers’
ads to display to the user. The advertising platform’s goal is to maximize its revenues, despite
uncertainty concerning future page-views. This problem can be formulated as a generalization of
online bipartite matching, with advertisers as the offline vertices and ad slots as online vertices.
See Section 7.2 for a formal definition of this and other problems we consider.

The theoretical interest in online allocations can be traced back to 1990, when [179] con-
sidered the fundamental problem of bipartite maximum matching in an online setting. In their
seminal paper, Karp et al. proved that randomized online algorithms cannot in general achieve
competitive ratio above 1 − 1

e
≈ 0.632, and presented the RANKING algorithm, which matches

this lower bound and is thus optimal. See [49, 79, 86, 103, 134] for alternative analyses of this
algorithm.

The online maximum matching problem was generalized, first by [173], and later by [6], who
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presented algorithms achieving optimal 1 − 1
e

competitive ratio for the b-matching and vertex-
weighted matching problems, respectively. The AdWords problem, first proposed by [207], is
the more general ad allocation problem, but subject to the realistic small bid assumption, i.e.
assuming every advertiser i has budget Bi much larger than its bids bij . (This assumption is
necessary to achieve non-trivial results. See Lemma 7.6.4). For this problem too the natural
greedy algorithm has competitive ratio 1

2
. Mehta et al. gave an algorithm for this problem with

competitive ratio 1 − 1
e
. [53] achieved the same results using an online primal-dual approach.

See [206] for an in-depth survey of prior art and techniques used to tackle these problems.
We will address the problems discussed above, but first, we start with motivation.

7.1.1 Motivation
As is to be expected of a problem for which a loss of 1/e ≈ 36.7% translates to billions of dollars
in potential revenue lost yearly, researchers have studied weaker models than the adversarial
model for the ad allocation problem, in the hope that these may permit better guarantees and
help model real-world data and derive better algorithms for this data. (See 7.1.5.) In this chapter
we revisit the stronger adversarial model, for graphs with structural characteristics met by many
ad allocation instances arising from targeted advertising. Specifically, we assume advertisers
are interested in a large number of ad slots (at least k), and that every ad slot is of interest to
a relatively small number of advertisers (at most d). As with the small bid assumption Bi �
bij for the AdWords problem, assumption of the above structure is not only useful in order to
obtain better bounds (as we will show), but also constitutes a reasonable assumption for targeted
advertising, for the following twin reasons:

(I) Online side: advertisers typically target their advertising campaigns at specific segments
of the population (e.g. young Californians who ski often); while these segments may be large in
absolute terms, they are mostly small in relative terms (e.g., less than four percent of Californians
ski often). Consequently, users tend to belong to relatively few segments. Coupled with the fact
that the number of active campaigns at any given time is limited, this implies a restricted pool of
ads that might be displayed to any particular user, justifying the small degree assumption for ad
slots.

(II) Offline side: advertisers typically target large segments of the population (as in the ex-
ample above), while not allocating a budget high enough to display ads to all users in a segment.
Coupled with the fact that every page-view of a particular targeted user corresponds to a vertex
in the graph, this implies the high degree assumption on the offline side, and more generally for
the ad allocation problem, the assumption that

∑
i,j bij > k ·Bi for some large k.

We call the graphs displaying these characteristics (k, d)-bounded graphs.

Definition 7.1.1 ((k, d)-bounded graphs). A bipartite graph G = (L,R,E) is (k, d)-
bounded if every left vertex i ∈ L has degree d(i) > k and every right vertex j ∈ R has
degree d(j) 6 d. For ad allocations, we replace d(i) > k with the property

∑
j bij > k ·Bi.

We concern ourselves with such graphs with k large and d small. For brevity’s sake, as all
graphs in this chapter will be bipartite, we refrain from stating the fact explicitly; likewise, we re-
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fer to (k, d)-bounded graphs as (k, d)-graphs henceforth. We recall that we adopt the convention
that a lower bound indicates a negative (i.e., impossibility) result and an upper bound indicates a
positive (i.e., algorithmic) result.

7.1.2 Our Results

By focusing on (k, d)-graphs, we justify the observed success of greedy algorithms “in the wild”
beyond their theoretical guarantees (see Section 7.8 for a discussion of said success), and propose
algorithms that are exponentially better, and provably optimal under these structural assumptions.
Finally, we leverage our deterministic algorithms to prove simple randomized algorithms achieve
the same bounds in expectation. Our results hold for the maximum matching, vertex-weighted
matching and AdWords problems (with the exception of the matching lower bound for the lat-
ter). Table 7.1 delineates our results for these problems on (k, d)−graphs. We obtain similar
results for the general ad allocation problem, even with large-ish bids (see Theorem 7.1.5.)

Table 7.1: Best results for general and (k, d)-graphs

Algorithms General Graphs (k, d)−Graphs

Greedy
1
2

(Tight) 1− d−1
k+d−1

(Tight)
Folklore This chapter

Deterministic
1
2

(Tight) 1− (1− 1
d
)k (Tight)

Folklore This chapter

Randomized
1− 1

e
(Tight)? 1− (1− 1

d
)k

[6, 53, 179, 207] This chapter
? can be achieved deterministically for AdWords.

We begin by explaining the empirical success of greedy algorithms for the above problems
(i.e., algorithms matching an arriving ad slot to the most lucrative feasible neighbor), proving
these algorithms’ loss is proportional to the ratio of the maximal degree in the online side to the
minimal degree in the offline side; i.e., their competitive ratio tends to one as this ratio tends to
zero. We complement this upper bound with a family of examples for which these algorithms do
no better.

Theorem 7.1.2. Greedy algorithms achieve a competitive ratio of k
k+d−1

on (k, d)-bounded
graphs. This analysis is tight for all k > d− 1.

We improve on the above, designing deterministic algorithms with exponentially smaller
loss. We prove this is optimal for deterministic algorithms.
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Theorem 7.1.3. There exist (new) deterministic online algorithms for the unweighted and
vertex-weighted matching problems with competitive ratio 1 − (1 − 1

d
)k > 1 − (1

e
)k/d on

(k, d)-bounded graphs. Moreover, these algorithms gain at least a 1− (1− 1
d
)k fraction of

the total sum of weights. This is optimal whenever k > d.

Corollary 7.1.4. (Structural Corollary) For every bipartite graph G with the minimal de-
gree of its left side at least ln c times larger than the maximal degree of its right side, G
has a matching with at least a (1− 1

c
)-fraction of G’s left side matched.

In stating our bounds for general ad allocation, we follow the notation of [53] and denote the
maximum bid-to-budget ratio by Rmax = max(i,j)∈E

{ bij
Bi

}
.

Theorem 7.1.5. There exists a (new) deterministic algorithm which gains at least(
(1−Rmax) ·

(
1−

(
1− 1

d

)k))
·
∑
i∈L

Bi

total revenue for ad allocation on (k, d)-graphs with k > d − 1. Consequently, this algo-
rithm has competitive ratio at least (1−Rmax) · (1− (1− 1

d
)k).

To contrast our results with the state-of-the-art, we note that the algorithms of [53, 79, 207]
achieve competitive ratio (1 − Rmax) ·

(
1 − 1/(1 + Rmax)1/Rmax

)
. This bound tends to 1 − 1

e

from below as Rmax tends to zero, but is far from this value for larger Rmax. Our algorithms fare
better whenever k > d even for large-ish Rmax. As stated in Section 7.1.1, we expect k to be
significantly larger than d, but in order to emphasize the strength of our bound, let us consider
only the case d/k = Rmax. Table 7.2 displays the resulting competitive ratios. Note that in this
regime our algorithm is already better at Rmax = 1

3
than prior algorithms are at the limit (i.e.

when Rmax → 0).

Table 7.2: Results for Ad Allocation with large-ish bids in (k, d)-graphs with d/k = Rmax

Rmax
1
2

1
3

1
4

1
5

1
6

1
16

1
32

1
100

→ 0

State-of-the-art 0.278 0.385 0.443 0.478 0.503 0.582 0.607 0.624 0.632
Our Work 0.432 0.633 0.736 0.795 0.831 0.938 0.969 0.99 1

Better still, our algorithms are robust to a few outlying advertisers increasing Rmax, as the∑
iBi · (1−Rmax) term in Theorem 7.1.5’s bound is rather

(∑
iBi −maxj∈N(i) bij

)
. This is the

first such result in the adversarial setting. To the best of our knowledge only the algorithm of [78]
for the iid model holds this desired property. Likewise, our algorithms are robust to few outlying
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advertisers making the input not (k, d)-bounded (alternatively, increasing k), as the following
theorem asserts.

Theorem 7.1.6 (Outliers). If every advertiser i satisfies
∑

j bij > k · Bi, except for a
subset S ⊆ L with total budget at most

∑
i∈S Bi 6 α ·∑i∈LBi, then the algorithms

of theorems 7.1.3 and 7.1.5 gain revenue at least (1 − α) times the bounds guaranteed
by the above theorems. In particular, these algorithms achieve competitive ratio at least
(1− α) · (1− (1− 1

d
)k) and (1− α) · ((1−Rmax) · (1− (1− 1

d
)k)), respectively.

Finally, we prove that the naïve randomized algorithm, RANDOM, which matches every ar-
riving ad slot to a feasible neighbor chosen uniformly at random, and in general has competitive
ratio tending to 1/2, attains the same bounds as our optimal deterministic algorithms in expecta-
tion, despite making no use of the input’s structure.

Theorem 7.1.7. Algorithm RANDOM matches the bounds of theorems 7.1.3, 7.1.5, and
7.1.6 in expectation.

7.1.3 Techniques
As many previous ad allocation algorithms, our algorithms can be seen as bid-scaling algorithms.
That is, matches are chosen greedily based on the bids bij of each advertiser i, times a scaling
factor. However, contrary to previous algorithms [53, 79, 207] that scale bids according to 1 −
ef(i)−1, where f(i) is the fraction of i’s budget spent so far, our algorithms essentially scale
bids according to an exponential in u, the number of unused opportunities to spend as much
as the current bid value bij; specifically, we scale by

(
d
d−1

)u. Other differences can be seen
in our algorithms’ primal-dual interpretation: we make no use of the ad slots’ dual variables,
leaving them at zero throughout (prior work increases these variables in order to guarantee dual
feasibility); instead, our algorithms only update the dual variables of each arriving ad slot’s
neighbors. Interestingly, our online primal-dual algorithms do not guarantee dual feasibility
throughout their execution, but only upon termination. To the best of our knowledge, ours are
the first online primal-dual algorithms with this behavior.

The above approach works directly for vertex-weighted matching. To generalize our ap-
proach to ad allocations, we first consider an intermediary problem – equal-bids ad allocation –
where every advertiser i bids the same bid bi for all neighbors j ∈ N(i). We reduce this problem
in (k, d)-graphs to the vertex-weighted problem in (k, d)-graphs in an online manner. We then
rewrite this reduction along with our vertex-weighted online algorithm as a single online primal-
dual algorithm for the equal-bids problem. Guided by this algorithm we devise a primal-dual
algorithm for general-bids ad allocation on (k, d)-graphs, using a bounded fraction of the adver-
tisers’ dual variables to guide our choice of matches and dual updates. This allows us to simulate
the bid-scaling described above even when advertisers make different bids per ad slot.

Finally, our randomized results stem from our deterministic primal-dual algorithms, whose
dual updates we use in our dual-fitting analysis of the randomized algorithms. Dual feasibility
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follows as it does for our algorithms. The dual costs are bounded in expectation by the primal cost
times the required constant, conditioned over the random algorithm’s previous choices. Taking
total expectation over the possible previous choices yields the expected competitive ratio.

7.1.4 Intuition

Here we give a high-level outline of why one should expect to obtain better competitive guar-
antees on (k, d)-graphs than on more general graphs, and motivate our algorithms. Having k
large implies each advertiser has many opportunities to exhaust her budget. On the other hand,
having d (and Rmax) small implies each arriving ad slot “uses up” few of the opportunities of its
neighboring advertisers. As a result, one would expect to have enough chances to spend much of
each advertiser’s budget. Our algorithms take this intuition one step further: guided by the ob-
servation that advertisers with many “missed” opportunities may have fewer remaining chances
to spend their budget than other advertisers, we scale bids by a function of the number of missed
opportunities. While the choice of this particular function may seem a little mysterious at first, it
becomes clear once analyzed using the online primal-dual framework of [52].

7.1.5 Related Work

Several stochastic models have been studied for the problems we address. Most prominent among
these are the random arrival order and i.i.d model with known/unknown distribution. Our algo-
rithms beat all of these bounds in the worst case for sufficiently small d/k and Rmax, replacing
stochastic assumptions by structural ones.

For the random order model a line of work beginning with [134] has shown the optimal com-
petitive ratio for maximum matching lies in the range (0.696, 0.823) [106, 176, 201, 203]. For
the known distribution model [106] were the first to show the optimal competitive ratio is strictly
greater than 1 − 1

e
and bounded away from 1. Subsequent work [21, 150, 170] showed the op-

timal competitive ratio for bipartite matching in this setting lies in the range (0.706, 0.823),
and (0.729, 0.823) if the expected number of arrivals of each ad slot type is integral. For
the vertex-weighted problem under the previously-mentioned integrality assumptions [150] and
[170] showed an upper bound of 0.667 and 0.725, respectively. For the AdWords problem under
the random order model, [77] give a (1 − ε)-competitive algorithm, assuming the online side’s
size is known in advance and no bid is higher than roughly ε3/|L|2 times the optimum value. [78]
gave an algorithm in the unknown distribution model achieving asymptotically optimal compet-
itive ratio of 1−O(

√
Rmax).

In a different vein, [202] considered the AdWords problem given black-box estimates of the
input. They show how to obtain performance trading-off between the worst-case optimal and
the black-box’s performance on the given input. We require no such algorithm be available, but
rather rely on domain-specific structure.

Closer to our work, [53] considered (1, d)-graphs for equal-bids ad allocation. We obtain
more general results, and strictly better bounds for all k > d.
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7.2 Problem Definitions

An instance of the ad allocation problem consists of a bipartite graph G = (L,R,E). The left-
hand L side corresponds to advertisers, and the right-hand side R to ad slots. Each advertiser
i ∈ L has some budget Bi and is willing to bid some value bij 6 Bi for every neighboring ad
slot j ∈ N(i) (the bids of advertiser i need not be equal for all j ∈ N(i)). Each ad slot j ∈ R
can be allocated to (up to) one advertiser i, yielding a profit of bij . The bids for ad slots allocated
to an advertiser i may not exceed i’s budget, Bi. Figure 7.1 presents the ad allocation problem’s
LP relaxation and its dual.

Primal (Packing) Dual (Covering)
maximize

∑
(i,j)∈E bij · xij minimize

∑
i∈LBi · zi +

∑
j∈R yj

subject to: subject to:
∀j ∈ R:

∑
(i,j)∈E xij 6 1 ∀(i, j) ∈ E: bij · zi + yj > bij

∀i ∈ L:
∑

(i,j)∈E bij · xij 6 Bi ∀i ∈ L: zi > 0

∀(i, j) ∈ E: xij > 0 ∀j ∈ R: yj > 0

Figure 7.1: The fractional ad allocation LP and the corresponding dual

An instance of the online ad allocation problem consists of an ad allocation instance; the
advertisers given up-front, along with their budgets, and the ad slots arriving one-by-one, together
with their edges and bids. An online ad allocation algorithm must, upon arrival of an ad slot j,
determine to which advertiser (if any) to allocate the ad slot. Allocations are irrevocable, and so
must be made to feasible advertisers, whose residual budget is sufficient to pay their actual bid.

We will consider several interesting special cases of the above problem throughout this chap-
ter. These problems are both interesting in their own right (theoretically as well as practically),
in addition to providing some insight towards achieving a solution to the general problem.

The equal-bids online ad allocation problem is the above problem with each advertiser i
bidding the same value for all neighboring ad slots; i.e., bij = bi for all j ∈ N(i).

The online vertex-weighted matching problem is the above problem with every advertiser i
bidding all its budget for every neighboring ad slot; i.e., bij = Bi for all j ∈ N(i).

The online maximum matching problem is the above problem with all budgets and bids equal
to 1; i.e., bij = Bi = 1 for all j ∈ N(i).

7.3 Warm-up: Greediness in (k, d)-Graphs

In this section we show that the natural greedy algorithms for the problems considered, which in
general graphs are only 1/2-competitive, achieve on (k, d)-graphs a competitive ratio tending to
one as d/k tends to zero. We prove this result by applying dual-fitting, and prove our analysis is
tight.

Algorithm GREEDY for the online ad allocation problem matches an ad slot j ∈ R to a
feasible neighbor i with highest bid bij . Our analysis relies on the dual-fitting formulation given
in Algorithm 8 below.
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Algorithm 8 AD ALLOCATION GREEDY (Dual-Fitting Formulation)

1: Init: set zi ← 0 for all i ∈ L and yj ← 0 for all j ∈ R
2: for all j ∈ R do
3: if j has a feasible neighbor then
4: match j to a feasible neighbor maximizing bij
5: set xij ← 1

6: set zi ← min{1, zi +
bij
Bi
}

7: set zi′ ← min{1, zi′ + bi′j
k·Bi} for every feasible neighbor of j, i′ 6= i

8: for all i ∈ L do
9: if i’s residual budget is less than Rmax ·Bi then

10: set zi ← 1

Theorem 7.3.1. Algorithm GREEDY is
(

k
k+d−1

)
-competitive for the unweighted, vertex-

weighted maximum matching and equal-bids ad allocation problems on (k, d)-graphs.

Theorem 7.3.2. Algorithm GREEDY is (1−Rmax)·k
k+(d−1)·(1−Rmax)

> (1− Rmax) · k
k+d−1

competitive
for online ad allocation on (k, d)-graphs with k > 1 and Rmax = max(i,j)∈E{bij/Bi} < 1.

Proof of Theorems 7.3.1 & 7.3.2. To prove these theorems, we prove the following claims:

(a) z, y form a feasible dual solution.
(b) for every ad slot j ∈ R the changes to the primal and dual solutions’ values due to j’s arrival,

∆P and ∆D, satisfy ∆D/∆P 6 k+d−1
k

.
(c) for the vertex-weighted and unweighed matching problems and equal-bids problem lines

8-10 incur no dual cost.
(d) for the general ad allocation problem lines 8-10 cost the dual solution no more thanRmax/(1−

Rmax) times the primal profit.

Before proving these claims, we show how they imply the above two theorems.
As x forms an integral feasible primal solution, claims (a,b,c) combined imply Theorem 7.3.1.

Similarly, claims (a,b,d) imply Theorem 7.3.2, as claims (b) and (d) imply the ratio of the solu-
tions’ overall values is at least

P

D
>

P
k+d−1
k
· P + Rmax

1−Rmax
· P =

(1−Rmax) · k
k + (d− 1) · (1−Rmax)

.

Claim (a): For every advertiser i ∈ L, if over a (1 − Rmax)-fraction of i’s budget is spent
then zi is set to one in Line 10. Otherwise, i is a feasible match of all of its neighbors j, each
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such j causing zi to increase by at least bij
k·Bi . As

∑
j bij > k · Bi then zi = 1 by the algorithm’s

termination. Consequently, all dual inequalities are satisfied.
Claim (b): Consider an ad slot j ∈ R with set Fj of feasible (unmatched) neighbors. If j is

unmatched, then clearly ∆P = ∆D = 0. If j is matched, then by the choice of j’s match i and
the bound on j′s degree, d(j) 6 d, the primal value increases by ∆P = bij while the dual cost
increases by at most ∆D = bij +

∑
i′∈Fj\{i} bi′j/k 6 bij · (1 + d−1

k
).

Claim (c): For an advertiser i ∈ L to have spent over (1 − Rmax)Bi for all but the general
problem, it must and have zi set to one. Thus lines 8-10 incur no dual cost.

Claim (d): For an advertiser i ∈ L to be affected by lines 8–10, it must spend up to a
(1 − Rmax)-fraction of its budget. However, whenever i spends an f -fraction of its budget, the
dual variable zi increases by f in Line 6, and so the cost of increasing zi in line 10 is at most
Rmax ·Bi, while i garnered a primal profit of at least (1−Rmax) ·Bi. The total dual cost of lines
8–10 is thus at most Rmax

1−Rmax
· P , for P the primal profit.

7.3.1 Tight Examples for Algorithm GREEDY

We show that our analysis of algorithm GREEDY for the unweighted and vertex-weighted match-
ing is tight whenever k > d− 1 .1

Theorem 7.3.3. For all k > d − 1 there exist (k, d)−graphs G with maximal matchings
that are k

k+d−1
-competitive in G.

Proof. The tight example, along with a poor choice of matching, consists of k+d−1 advertisers
and k2 + k ad slots. We denote by ML = {i1, i2, . . . , ik} and UL = {ik+1, ik+2, . . . , ik+d−1}
the advertisers that will be matched and not matched, respectively. The first k ad slots by order
of arrival, j1, j2, . . . , jk, each have degree exactly d, with the t-th ad slot jt neighboring the t-th
advertiser it, to which it is matched, as well as the d − 1 advertisers in UL. (The first k ad slots
and the advertisers in UL form a copy of Kk,d−1. See Figure 7.2.) After these k arrivals, a further
k2 ad slots arrive, each with a single neighbor in ML, each advertiser in ML having k neighbors
among these k2 ad slots. The resulting graph is clearly a (k, d)−graph in which k advertisers
are matched, though all k + d − 1 advertisers can be matched simultaneously, by matching the
d − 1 advertisers in UL to some d − 1 of the first k > d − 1 ad slots and each of the advertisers
in ML to one of their distinct k(> 1) neighbors.

For any Rmax a unit fraction (i.e., the reciprocal of an integer), gluing 1/Rmax copies of the
above tight example at the advertisers, with each advertiser having a budget of 1/Rmax, yields
an equal-bid ad allocation instance and greedy allocation for which the same k

k+d−1
performance

holds, proving tightness of our analysis for equal-bid allocations. We now state a theorem im-
plying our analysis’ tightness for GREEDY in general ad allocations.

1For k < d − 1 the k
k+d−1 bound is strictly less than the 1

2 bound obtained by all maximal matchings, and so
the bound cannot be tight for k < d− 1. We therefore turn our attention to the case k > d− 1.
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ML ⊆ L R

UL ⊆ L

i1

i2

i3

i4

i5

i6

i7

j1

j2

j3

j4

j5

j6

j7

i8

i9

i10

Figure 7.2: Tight Example for Greedy

Depicted are the graph and the matching (in bold) after the first k ad slots’ arrivals, for k = 7 and d = 4.

Theorem 7.3.4. For all k > d − 1 and Rmax = 1
c

with c > 2 an integer, there exist (k, d)
ad allocation instances for which algorithm GREEDY can achieve competitive ratio exactly

(1−Rmax)·k
k+(d−1)·(1−Rmax)

.

Proof. Let 1 − Rmax = a
b

for 0 < a < b and a and b integers. The hard instance will consist
of k · b + (d − 1) · a = b · (k + (d − 1) · (1 − Rmax)) advertisers. Each advertiser has budget
exactly one. We designate k · b advertisers to be the “lucky” advertisers, from which we will
achieve revenue of (1 − Rmax) and the remaining (d − 1) · a “unlucky” advertisers will garner
no profit. The theorem will follow by constructing the instance such that all budgets can be
exhausted simultaneously.

All edges have bids either Rmax or some arbitrarily small positive ε. At first, each arriving ad
slot will have d edges with bids Rmax, one to some lucky advertiser of lowest degree (to whom
the ad slot is matched), and (d − 1) edges to some unlucky advertisers of lowest degree. After
a·k·b
b−a ad slots arrive (this value is integral, as is 1

Rmax
= b

b−a ), the following holds

(i) every unlucky advertiser is unmatched and has degree exactly k · b
b−a = k · 1

Rmax
.

(ii) each of the lucky advertisers are matched to all of their neighbors, and have degree exactly
a
b−a = 1

Rmax
− 1.

The remaining ad slots recreate the construction of Lemma 7.6.4, thus guaranteeing each of the
lucky advertisers gain no more than 1−Rmax +ε. On the other hand all the lucky advertisers can
exhaust their budgets without using any of the Rmax-bid edges of ad slots neighboring unlucky
advertisers, which, as can be readily verified (using, e.g. Observation 7.6.1 repeatedly), allows
both lucky and unlucky advertisers to exhaust their budgets simultaneously whenever k > d− 1.
The described instance is (k, d) and the theorem follows.
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The above bound holds for any Rmax 6 1
2
, as the following theorem asserts.

Theorem 7.3.5. For all k > d− 1 and Rmax 6 1
2

there exist (k, d) ad allocation instances
for which algorithm GREEDY can achieve competitive ratio exactly (1−Rmax)·k

k+(d−1)·(1−Rmax)
.

Proof (sketch). In order to generalize the above, we rely on the fact that every number Rmax

in the range (0, 1
2
] can be written as a convex combination of two unit fractions, 1

a
and 1

b
, with

Rmax ∈ [ 1
a
, 1
b
]. That is, wa · 1

a
+wb · 1

b
= Rmax and wa +wb = 1. We glue 2n copies of the above

construction at the advertisers, n of the copies with budget wa/n (wb/n) for each advertiser, and
highest bid-to-budget ratio in the copy being 1/a (resp. 1/b). In this case the overall budget from
all copies is n · (wa/n + wb/n) = wa + wb = 1, and for large enough n each bid is at most
wb/(b · n) < Rmax. On the other hand, all unlucky advertisers are completely unmatched and
garner no profit, and all lucky advertisers gain a total of n · (wa/n+wb/n−wa/(a ·n) +wb/(b ·
n)) = 1 − (wa/a + wb/b) = 1 − Rmax. As in Lemma 7.6.4, we can guarantee each such lucky
advertiser yields at most ε additional revenue.

7.4 Optimal Vertex-Weighted Matching on (k, d)-graphs
The previous section shows our analysis of GREEDY is tight, though for a particular(ly bad)
input and instantiation of the algorithm. The family of tight examples suggests the following im-
proved algorithm: match every arriving ad slot to an unmatched neighbor of highest degree. This
algorithm, which we call HIGH-DEGREE, is given below. The intuition behind this algorithm,
substantiated by the above examples, is that unmatched advertisers with higher degree may have
fewer chances to be matched later. This approach fares better on the above examples (actually
yielding an optimal solution), but can it do better than GREEDY on all (k, d)−graphs? We an-
swer this question in the affirmative, proving a lower bound with exponentially smaller loss. In
Section 7.6 we prove a matching lower bound, implying the algorithm’s optimality.

Algorithm 9 HIGH-DEGREE

1: for all j ∈ R do
2: if j has an unmatched neighbor then
3: match j to unmatched neighbor of highest degree

7.4.1 Analysis of HIGH-DEGREE

In this section we analyze algorithm HIGH-DEGREE, and prove the following bound on its com-
petitive ratio.

Theorem 7.4.1. Algorithm HIGH-DEGREE is 1−(1− 1
d
)k competitive for all (k, d)−graphs.
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A corollary of Theorem 7.4.1 is the first result for maximum online matching in regular
graphs in the adversarial setting, beating the 1− 1

e
“barrier" deterministically.

Corollary 7.4.2. On d-regular graphs algorithm HIGH-DEGREE is 1−(1− 1
d
)d competitive.

Theorem 7.4.1 can be proven directly (see Section 7.4.2), but in order to set the groundwork
for proofs of our more general results, we generalize this algorithm and rewrite it as a primal-dual
algorithm. This is Algorithm 10, below. The constant C will be chosen during the analysis.

Algorithm 10 Vertex-Weighted HIGH-DEGREE (Primal-Dual Formulation)

1: Init: set zi ← 0 for all i ∈ L and yj ← 0 for all j ∈ R
2: for all j ∈ R do
3: if j has an unmatched neighbor i then
4: match j to an unmatched neighbor i maximizing (zi + C) · bij
5: set xij ← 1
6: set zi ← 1
7: set zi′ ← min{1, zi′ ·

(
d
d−1

)
+ 1

d−1
· C} for every feasible neighbor of j, i′ 6= i

Theorem 7.4.3. Algorithm 10 generalizes HIGH-DEGREE and is 1−
(
1− 1

d

)k competitive.
Moreover, it gains revenue at least (1−

(
1− 1

d

)k
) ·
(∑

iBi

)
.

Proof. We rely on the following observation, verifiable by induction: All unmatched advertisers
i satisfy zi = C · (

(
d
d−1

)d(i) − 1). Hence Algorithm 10 matches each ad slot j to an unmatched

neighbor i maximizing bij ·C ·
(

d
d−1

)d(i). For the unweighted problem, bij = 1. By monotonicity
of exponentiation, picking such i is tantamount to picking an advertiser of highest degree. We
proceed to bound the algorithm’s gain.

Let j ∈ R be some ad slot matched to i. The incurred change to the primal profit equals
∆P = bij . By our choice of j’s match, the change to the dual cost satisfies

∆D = (1− zi) · bij +
∑

i′∈N(j)\{i}
((

1
d−1

)
· (zi′ + C) · bi′j

)
6 (1− zi) · bij + (d− 1) ·

(
1
d−1

)
· (zi + C) · bij

= (1 + C) · bij.

Given dual feasibility, the above would imply a competitive ratio of 1/(1 + C). Hence, we
choose the minimal C ensuring zi = 1 by the algorithm’s end for all advertisers i (matched and
unmatched alike). Recall all unmatched advertisers i satisfy zi = C · (( d

d−1
)d(i) − 1). As such i

have degree at least k by the algorithm’s end (but possibly no higher), the minimal C ensuring
zi = 1 is C = 1/(( d

d−1
)k − 1). As the dual solution has zi = 1 for all i by the algorithm’s

termination, the dual cost is exactly D =
∑

i∈LBi. Consequently, the primal gain satisfies
P > 1

1+C
·
(∑

iBi

)
. The theorem follows.

138



The above algorithm implies structural Corollary 7.1.4 and the following corollary.

Corollary 7.4.4. For (k, d)-graphs with k > d · ln |L|, by integrality of number of vertices
matched, HIGH-DEGREE successfully matches all of L, obtaining a maximum matching.

We can extend our analysis to handle the possible existence of outlying advertisers i, that do
not satisfy

∑
j bij > k ·Bi, and so may not satisfy zi = 1, ruining dual feasibility. Let S ⊆ L be

the set of outlying advertisers, and assume
∑

i∈S Bi 6 α ·∑i∈LBi. As zi = 1 for all i 6∈ S, we
have D > (1− α) ·∑i∈LBi, implying the following theorem.

Theorem 7.4.5 (Outliers). Let S ⊆ L be the set of outlying advertisers, and α be a real
number such that

∑
i∈S Bi 6 α ·∑i∈L. Then Algorithm 10 gains at least (1 − α) · (1 −(

1− 1
d

)k
) ·∑iBi, and in particular is (1− α) · (1−

(
1− 1

d

)k
)-competitive.

7.4.2 Potential-based Analysis of HIGH-DEGREE

In this subsection we present a potential-based proof of Theorem 7.4.1. We note that this proof
can easily be extended to provide alternative proofs of theorems 7.4.3 and 7.4.5.

Theorem 7.4.6. Algorithm HIGH-DEGREE achieves value at least
(
1− (1− 1

d
)k
)
· |L| for

all (k, d)−graphs G = (L,R,E), and it is therefore
(
1− (1− 1

d
)k
)
-competitive.

Proof. Let UL ⊆ L denote the set of unmatched advertisers. Consider the following potential:

Φ =
∑
i∈UL

(
d

d− 1

)d(i)

.

Algorithm HIGH-DEGREE outputs a matching that effectively strives to greedily minimize Φ.2

The initial and final values of the potential function hold Φstart = |L| and Φfinal > (d/(d− 1))k ·
|UL|, respectively. Denote by ∆Φj the change to Φ incurred by the arrival of ad slot j ∈ R.
Clearly, if j is unmatched we have ∆Φj = 0. On the other hand, if j is matched to a neighbor
i, previously of degree d(i), we find that i’s matching results in Φ decreasing by (d/(d− 1))d(i),
and the degree of j’s remaining unmatched neighbors increase each cause Φ to increase by at
most (d/(d− 1))d(i)+1 − (d/(d− 1))d(i). Therefore, if j is matched to i we have

∆Φj 6 −
(

d
d−1

)d(i)
+ (d− 1) ·

((
d
d−1

)d(i) · ( d
d−1
− 1)

)
= −

(
d
d−1

)d(i)
+
(

d
d−1

)d(i)
= 0.

2The sum of unmatched advertisers’ degrees may seem like a more natural potential function to consider, but
it turns out that it cannot be used to derive tight bounds. E.g., it does not yield a bound significantly better than
5
8 = 0.625 for k = d.
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In other words ∆Φj 6 0, irrespective of whether or not j is matched. By this fact and our
bounds on the initial and final potential, we find that(

d

d− 1

)k
· |UL| 6 Φfinal 6 Φstart = |L|.

The theorem follows.

7.5 Online Ad Allocation
In this section we solve the ad allocation problem. We consider first the equal-bids case, where
each advertiser i offers the same bid for all its neighbors; i.e., bij = bi ∀j ∈ N(i). This will
prove to be a useful stepping-stone towards a solution for general bids, in Section 7.5.1.

One way to solve equal-bids ad allocation is via an online reduction to vertex-weighted
matching in (k, d)-graphs. As each advertiser i bids

∑
j∈N(i) bi > k · Bi in total, we have

d(i) > k · Bi/bi. Without loss of generality, Bi/bi is integral. The reduction splits each i into
Bi/bi copies, each of value bi and receiving up to k distinct edges of i, stopping if the copy is
matched. The obtained graph G is (k, d)-bounded (perhaps after adding inconsequential neigh-
bors to matched advertisers), and matchings in G induce allocations of same value for the ad
allocation instance. As Algorithm 10 gains 1− (1− 1

d
)k of the sum of vertex weights, or equiv-

alently the sum of budgets, applying it yields a 1− (1− 1
d
)k competitive solution to the original

ad allocation instance.
We restate the above as a primal-dual algorithm for equal-bids ad allocation. (See Algo-

rithm 11 below). In this algorithm, zci serves the role of zi in Algorithm 10 for i’s “current
copy” (hence the c in the notation), weighted to reflect the copy contributes bi/Bi of i’s budget.
Intuitively, when i is matched we imagine its current copy is matched, and set zci to bi/Bi. Con-
versely, we ensure that once the copy has k edges zci = bi/Bi. Either way, once zci = bi/Bi,
we add zci to zi and nullify zci (moving to i’s next copy, whose dual variable would be zero in
Algorithm 10.) The number of copies of i guarantees dual feasibility and the choice of match
and dual updates guarantee the desired bound.

Theorem 7.5.1. Algorithm 11 with C = 1/
((

d
d−1

)k − 1
)

gains revenue
(
1− (1− 1

d
)k
)
·∑

iBi, and is thus
(
1− (1− 1

d
)k
)
-competitive for the equal-bid problem on (k, d)-graphs.

Proof. To bound the primal-dual ratio, we bound increases of zci · Bi, as all dual costs can be
traced back to past increases of zci . Consider some ad slot j matched to i. The primal gain is
∆P = bi, whereas the dual cost satisfies

∆D 6 (bi/Bi − zci ) ·Bi +
∑

i′∈N(j)\{i}
(

1
d−1

)
· (zci′ + C · bi′/Bi′) ·Bi′

6 bi − zci ·Bi + (d− 1) ·
(

1
d−1

)
· (zci ·Bi + C · bi) 666 (1 +C) · bi.

As in Theorem 7.4.3’s proof, zci = C · bi
Bi

((
d
d−1

)dc(i)− 1
)
, where dc(i) is the degree of i’s current

copy, or equivalently, the number of i’s edges since zci was last nullified. Hence, by our choice
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Algorithm 11 Equal-Bid Ad Allocation in (k, d)-graphs

1: Init: set zi ← 0 , zci ← 0 for all i ∈ L and yj ← 0 for all j ∈ R
2: for all j ∈ R do
3: if j has a feasible neighbor i then
4: match j to feasible neighbor i maximizing zci ·Bi + C · bi
5: set xi,j ← 1
6: set zci ← bi/Bi

7: for all feasible neighbor of j, i′ 6= i do
8: set zci′ ← min{bi′/Bi′ , z

c
i′ ·
(

d
d−1

)
+ 1

d−1
· C · bi′/Bi′}

9: for i′ ∈ N(j) with zci′ = bi′/Bi′ do
10: set zi′ ← zi′ + zci′
11: set zci′ ← 0

of C, after at most k i-edges, zci = bi
Bi

(whether or not i is matched), and zi is increased by bi
Bi

.
As d(i) > k · Bi

bi
by the end, zi > 1 for all i. The theorem follows.

7.5.1 General Bids

A natural way to extend Algorithm 11 to general bids would be to replace for every ad slot j
and every neighbor i (or i′) all appearances of bi (or bi′) by bij (resp., bi′j) in the choice of j’s
match and updates to zci , z

c
i′ and zi. Such dual updates would guarantee, similarly to our prior

algorithms, that an advertiser i with budget Bi and rejected bids bi0, bi1, . . . , bit since its last
match (ordered chronologically) would have dual variable

zci =
1

d− 1
· C ·

t∑
r=0

bir
Bi

·
(

d

d− 1

)t−r
. (7.1)

Unfortunately, replacing bi by bij in the updates for matched i could result in zi arbitrarily small.
Worse still, since previously-rejected bids may be greater than the current bid, setting zci to bij

Bi
could even decrease zci , complicating the task of bounding the primal-dual ratio. Algorithm 12
below sidesteps these issues by considering bounded fractions of zci , and using the following
notation, motivated by Equation (7.1), to represent variables zci , and zfi (the f in the notation
refers to a bounded fraction of zci “used”). This notation’s use will become apparent during the
algorithm’s analysis.

Definition 7.5.2. Let z = 1
d−1
·C ·∑t

r=0 br ·
(

d
d−1

)r. We think of z as a number in base d
d−1

,
denoting it by z = [bt, . . . , b1, b0], disregarding the 1

d−1
·C term for simplicity. Addition and

subtraction of numbers in this notation is done place-wise, disallowing carries/borrows. In
particular, if z = [bt, . . . , b1, b0], then z · d

d−1
+ 1

d−1
·C · b = [bt, . . . , b1, b0, b]. Comparisons

involving numbers in this notation refer to their numerical value.
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The algorithm for the general bids setting is Algorithm 12, below. The algorithm’s primal
feasibility is trivial, as is its dual feasibility, due to linesline:feasibilityLoop-23. It remains to
bound the ratio of the cost of the dual solution to the value of the primal solution.

Algorithm 12 Online Ad Allocation in (k, d)-graphs with general bids.

1: Init: set zi ← 0 , zci ← 0 for all i ∈ L and yj ← 0 for all j ∈ R
2: for all j ∈ R do
3: if j has a feasible neighbor i then
4: for all feasible neighbors i do
5: let zci = [bk−1, . . . , b1, b0]
6: set zfi ← [min{bk−1, bij/Bi}, . . . ,min{b1, bij/Bi},min{b0, bij/Bi}]
7: set zci ← zci − zfi
8: match j to feasible neighbor i maximizing zfi ·Bi + C · bij
9: set xi,j ← 1

10: set zfi ← 0
11: set zi ← zi + bij/Bi

12: for all feasible neighbor of j, i′ 6= i do
13: set zfi′ ← zfi′ ·

(
d
d−1

)
+ 1

d−1
· C · bi′j/Bi′

14: zci′ ← zci′ + zfi′
15: if zci′ = [bk, bk−1, . . . , b1, b0] with bk 6= 0 then
16: set zi′ ← zi′ + bk · 1

k

17: set zci′ ← [bk−1, . . . , b1, b0]

18: if zci′ = [bk−1, . . . , b1, b0] with all digits br 6= 0 then
19: let b = min{br}k−1

r=0

20: set zi′ ← zi′ + b
21: set zci′ ← [bk−1 − b, . . . , b1 − b, b0 − b]
22: for all i ∈ L do
23: set zi ← max{1, zi}

High-Level intuition:: The algorithm asserts three invariants. The first guarantees increases in
zi are “paid for” by increases in zci , allowing us to focus on bounding changes to zci . A second
invariant guarantees every increase of zi by some value b/Bi can be accredited to previous bids
(or fractions thereof) of total value at most k · b/Bi. As the graph is (k, d), if every bid of i of
value b were to cause zi to increase (by at least b/(k ·Bi), by the above), then eventually zi > 1.
However, some bids may not incur an increase in zi. The third and last invariant guarantees
the total value of fractions of bids that do not cause zi to increase is at most k · Rmax, and so
zi > (1−Rmax) before lines 22-23. Thus, the cost of rounding each zi to one in these lines is at
most Rmax/(1 − Rmax) of the previously-paid dual cost. The bound will follow. The following
four lemmas formalize the above, allowing us to derive our sought-after bound.
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Lemma 7.5.3. Before every ad slot’s arrival and before Line 22, every zci is a number in
the above numeral system satisfying the following three properties:

(i) zci is a k-digit number; i.e., zci = [bk−1, . . . , b1, b0].
(ii) zci has at most k − 1 non-null digits.

(iii) Each digit of zci is no greater than maxj{ bijBi }.

Proof. Properties (i) and (ii) are enforced explicitly by lines 15-17 and 18-21, respectively. Prop-
erty (iii) follows by induction: When zfi is subtracted from zci , every digit of zci is either nullified,
if it was smaller than bij/Bi, or decreased by bij/Bi. After zfi is updated and added to zci , each
digit of zci is increased by at most bij/Bi. Thus each digit is no greater than its previous value
and bij/Bi, both of which are at most maxj{ bijBi }.

Lemma 7.5.4. If k > d − 1 and C = 1/
((

d
d−1

)k − 1
)
, every increase in zi by some b in

lines 15-17 and 18-21 goes hand-in-hand with both
(i) a decrease of the same value or higher in zci , and

(ii) a decrease of k times this value or less in the sum of digits of zci .

Proof. In lines 15-17, zi is increased by bk/k. On the other hand, we remove bk, the k-th digit of
zci in this numeral system, resulting in a decrease of zci by

1

d− 1
· C · bk ·

(
d

d− 1

)k
>

1

k
· bk.

Thus, properties (i) and (ii) both hold for lines 15-17. In linesline:k-1-digit-loop-21, the value of
zci is decreased by 1

d−1
· C ·∑k−1

r=0 b ·
(

d
d−1

)r
= C ·

((
d
d−1

)k − 1
)
· b, which is exactly b, by our

choice of C. The decrease in the sum of digits of zci on the other hand is exactly k · b.

Lemma 7.5.5. Taking C = 1/
((

d
d−1

)k − 1
)

guarantees every increase in zi by bij/Bi in
Line 11 coincides with a decrease of at most bij/Bi in zci . Moreover, ∆digit, the decrease
in sum of digits of zci , satisfies ∆digit+ bij/Bi 6 k · bij/Bi.

Proof. In Line 11, zfi , which was subtracted from zci , is nullified. Both bounds follow similarly
to our proof of Lemma 7.5.4 relying on zfi being a k-digit number with at most k − 1 non-null
digits, by Lemma 7.5.3, and each digit of zfi being no greater than bij/Bi, by initialization of
zfi .
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Lemma 7.5.6. By Line 22 each i satisfies

zi >

∑
j bij − k ·maxj{bij}

k ·Bi

> 1− maxj bij
Bi

> 1−Rmax.

Proof. Throughout the algorithm, every edge (i, j) causes the sum of digits of zci to increase by
bij/Bi (again ignoring the 1

d−1
· C term), unless (i, j) are matched. Moreover, the sum of digits

does not decrease due to carries. On the other hand, every increase in zi by b coincides with a
decrease in the sum of digits of zci plus

∑
(i,j) matched bij/Bi, of at most k · b, by lemmas 7.5.4

and 7.5.5. Put otherwise, the increase in zi is at least 1/k times the total sum of i’s bids so far,
minus the sum of digits of zci . By Lemma 7.5.3, the sum of digits of zci by Line 22 cannot exceed
k ·maxj{bij/Bi}. The lemma follows.

Given the above we can now prove our main result.

Theorem 7.5.7. On general-bid ad allocations on (k, d)-graphs with k > d − 1 Algo-
rithm 12 gains

∑
i

(
Bi−maxj bij

)
·
(
1−
(
1− 1

d

)k), and is thus
(
1−Rmax

)
·
(
1−
(
1− 1

d

)k)-
competitive.

Proof. lemmas 7.5.4 and 7.5.5 imply increases in zi can be traced back to a previous increase in
zci of the same value or higher. We therefore bound increases of zci ·Bi in order to bound the total
dual cost. For each online j ∈ R, by our choice of match i, the change to the dual cost is at most
(1 +C) times the change to the primal value, as in Algorithm 11. However, by Lemma 7.5.6, by
Line 22 each i satisfies zi > (1 −maxj bij/Bi). Consequently, we have that before Line 22 the
primal value P and dual cost D satisfy

P >
1

1 + C
·D >

∑
i

(
Bi − max

j∈N(i)
bij
)
·
(

1−
(

1− 1

d

)k)
.

As the primal value is unaffected by linesline:feasibilityLoop-23, P above is our algorithm’s
gain. The competitive ratio follows from OPT 6

∑
iBi and the definition of Rmax.

Finally, we note that lemmas 7.5.3,7.5.4,7.5.5 and 7.5.6 hold for all advertisers i satisfying∑
j bij > k ·Bi, irrespective of outliers who don’t hold this property, implying the following.

Theorem 7.5.8 (Outliers). Let S ⊆ L be the set of outlying advertisers (advertisers i with∑
j bij < k · Bi), and α be such that

∑
i∈S Bi 6 α ·∑i∈L. Then Algorithm 10 gains at

least

(1− α) ·
((

1−Rmax

)
·
(

1−
(

1− 1

d

)k))
·
∑
i

Bi,

and in particular it is (1− α) ·
((

1−Rmax

)
· (1−

(
1− 1

d

)k
)
)

-competitive.
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7.6 Lower Bounds for Deterministic Algorithms
In this section we present lower bounds for deterministic algorithms. In particular, we present
matching lower bounds for the unweighted matching problem, proving optimality of HIGH-
DEGREE among deterministic algorithms.

7.6.1 Maximum Matching
In order to construct hard examples, we start by showing that the optimal matching in (k, d)−graphs
matches all the advertisers whenever k > d.

Observation 7.6.1. Every (k, d)−graph G = (L,R,E) with k > d has a matching match-
ing all of L.

Proof. By Hall’s Theorem G has a matching with all of L matched if and only if every subset
A ⊆ L satisfies |Γ(A)| > |A|. But, as G is a (k, d)−graph we have

k · |A| 6 |E[G[A]]| 6 d · |Γ(A)|.

Consequently, we find that |Γ(A)| > k
d
· |A| > |A|, and the lemma follows.

Equipped with Observation 7.6.1 we may now prove this section’s main result – a lower
bound matching the upper bounds of Section 7.4, implying algorithm HIGH-DEGREE’s opti-
mality. To this end we cause HIGH-DEGREE to be effectively indistinguishable from any other
algorithm.

Theorem 7.6.2. For all k > d no deterministic online algorithm for bipartite matching
can achieve competitive ratio better than 1− (1− 1

d
)k on (k, d)−graphs.

Proof. Let A be some online matching algorithm. The adversarial input consists of dk+1 adver-
tisers, with the ad slots arriving in k phases, numbered 0 to k − 1. During the i-th phase, which
begins with dk+1 · (1 − 1

d
)i unmatched advertisers each of degree i, the arriving ad slots each

have exactly d neighbors, all unmatched; every unmatched advertiser neighbors exactly one new
ad slot per phase. Every phase causes unmatched advertisers to have their degree increase by
one, and exactly a (1− 1

d
)-fraction of the advertisers unmatched at the phase’s beginning remain

unmatched. (If algorithmA does not match some ad slot to one of its d unmatched neighbors, we
consider it matched to an arbitrary neighbor; this can only serve to improve A’s performance.)
After the k phases additional ad slots of degree exactly d arrive in order to increase the degree
of the matched advertisers to k. The resulting graph is k-regular and d-regular on the offline
and online sides respectively, and is thus a (k, d)−graph. Moreover, exactly dk+1 · (1 − 1

d
)k of

the dk+1 advertisers are unmatched. However, by Observation 7.6.1 all dk+1 advertisers can be
matched simultaneously. The theorem follows.
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Recall from Chapter 6 that for ∆-regular graphs, randomized algorithms can achieve a com-
petitive ratio tending to one as ∆ increases. The following corollary of Theorem 7.6.2 implies
that the same is not true of deterministic algorithms, and indeed the problem becomes harder as
∆ increases, tending to an optimal competitive ratio of 1− 1

e
.

Corollary 7.6.3. The bound of Theorem 7.6.2 holds for ∆-regular graphs with ∆∆+1 6 n,
where n = |L| = |R|. In particular, for ∆-regular graphs with ∆ = O

(
logn

log logn

)
, no

deterministic algorithm has higher competitive ratio than the 1 − (1 − 1
∆

)∆ achieved by
algorithm HIGH-DEGREE.

7.6.2 Lower Bound for Ad Allocation
In this subsection we prove a lower bound for deterministic ad allocation algorithms in (k, d)-
graphs. We start by showing a simple weaker bound, useful in proving this section’s main result.

Lemma 7.6.4. For all ratio Rmax no deterministic algorithm can achieve competitive ratio
better than (1 − Rmax) for the ad allocation problem under the adversarial model. This
bound holds even for (k, d)-graphs for all k and d.

Proof. The hard input consists of disjoint stars with advertisers for internal vertices and ad slots
for leaves. Every advertiser i has budget Bi = 1, with i’s bids given by

bij =

{
Rmax if i’s remaining budget is less than Rmax

ε else

Given enough ad slots, an optimal allocation exhausts all advertisers’ budgets, but every adver-
tiser i gains at most 1− Rmax + ε, whether or not i has neighbors j with bij = Rmax. Summing
over all advertisers, the lemma follows.

Using the above and extending Theorem 7.6.2’s proof, we can now prove the following.

Theorem 7.6.5. For all k > d no deterministic online algorithm for ad allocation is better
than (1−Rmax) ·

(
1−

(
1− 1

d

)k/Rmax
)

-competitive on (k, d)-graphs with Rmax 6 1
2

a unit
fraction.

Proof. The offline side consists of dk/Rmax advertisers, each with a budget Bi = 1. For the
first phase, all edges have bids Rmax. During k/Rmax rounds ad slots arrive, each neighboring
d distinct advertisers, and a 1

d
-fraction of the advertisers are matched. The next round is as the

last, but restricted to the previously unmatched advertisers. There are (1 − 1
d
)k/Rmax unmatched
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advertisers by this phase’s termination; these advertisers now satisfy the offline side’s constraints
for (k, d)-graphs, and receive no more neighbors. All of these advertisers’ potential profit is lost.
For the matched advertisers we now apply the construction of Lemma 7.6.4 to guarantee that at
most a (1 − Rmax)-fraction of their potential profit in an optimal solution is gained, for a total
gain of (1− Rmax) ·

(
1−

(
1− 1

d

)k/Rmax
)
· |L|. Applying Observation 7.6.1 repeatedly we find

that there exists an allocation with all advertisers unmatched by algorithm A matched 1/Rmax

times (to neighbors for which they bid Rmax), and all advertisers matched by A also exhausting
their budgets simultaneously. The theorem follows.

7.7 Randomized Algorithms
By relying on the dual updates of Algorithm 10, we prove competitiveness of algorithm RAN-
DOM, which matches every arriving ad slot to some feasible neighbor (i.e., a neighboring adver-
tiser with non-exhausted budget) chosen uniformly at random.

Theorem 7.7.1. Algorithm RANDOM achieves expected competitive ratio of 1−
(
1− 1

d

)k
for both unweighted and vertex-weighted matching problems.

Proof. We maintain and update a dual solution as in our deterministic Algorithm 10, while
choosing matches randomly. As observed in the proof of Theorem 7.4.3, such dual updates
guarantee all unmatched advertisers i ∈ L with current degree d(i) satisfy

zi = C ·
((

d

d− 1

)d(i)

− 1

)
.

Consequently, these dual update rules guarantee dual feasibility, provided C = 1/(( d
d−1

)k − 1).
We need only bound the expected ratio between the dual and primal solutions’ values.

Consider some ad slot j matched to some i. We recall that in the vertex-weighted matching
problem the bid bij is exactly bij = Bi. Therefore, given the current state (determined by the
previous random choices), including the set NF (j) of j’s unmatched (feasible) neighbors, j’s
match is chosen uniformly among NF (j) by RANDOM, and consequently

E[∆P |state] =
1

|NF (j)| ·
∑

i∈NF (j)

Bi.

On the other hand, by the same argument

E[∆D|state] = 1
|NF (j)| ·

∑
i∈NF (j)

(
(1− zi) ·Bi +

∑
i′∈NF (j)\{i}

(
1
d−1
· (zi′ + C) ·Bi′

))
= 1
|NF (j)| ·

∑
i∈NF (j)

((1− zi) ·Bi) + 1
|NF (j)| ·

∑
i′∈NF (j)

(
|NF (j)|−1

d−1
· (zi′ + C) ·Bi′

)
6 1
|NF (j)| ·

∑
i∈NF (j)

Bi · (1 + C).
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With the last inequality following from |NF (j)| 6 |N(j)| 6 d. Taking total expectation over the
possible states, we obtain E[∆D] 6 (1 + C) · E[∆P ]. The theorem follows.

We note that Theorem 7.7.1 can also be proved using the potential-based proof of Sec-
tion 7.4.2, observing that the expected potential change incurred by the processing of every
online arrival is non-negative. In addition, in the same way that Theorem 7.4.3 is extended in
Theorem 7.4.5, we can show that RANDOM is also robust to outliers. We omit the details for
brevity. Finally, we show that RANDOM also performs well for the general online ad allocation
problem.

Theorem 7.7.2. Algorithm RANDOM achieves expected competitive ratios of 1−
(
1− 1

d

)k
and (1−Rmax) ·

(
1−
(
1− 1

d

)k) for the equal-bids and general-bids ad allocation problems.

Proof (sketch). The proof resembles that of Theorem 7.7.1, relying on algorithms 11 and 12
respectively for the dual-fitting analysis. Dual feasibility is guaranteed by the dual updates.
On the other hand, linearity of expectation implies the expected primal-dual ratio matches that
of Algorithms 11 and 12 (for the latter, this requires showing lemmas 7.5.3–7.5.6 all hold in
expectation). The claimed bounds follow.

7.8 Conclusion and Open Questions
The study of online matching and ad allocation has seen a surge of interest, both theoretical and
practical, ever since the influential work of [207] (see [206]). Several natural heuristics, most
prominently the natural GREEDY algorithm, which in the worst case is only 1/2-competitive,
were observed to fare significantly better on real data (see e.g., [107] for results on the related
Display Ads problem); the greedy algorithm was also shown to theoretically outperform its
worst-case behavior under some stochastic assumptions (see [134]). This chapter attempts to
give a theoretical explanation of the empirical success of simple heuristic algorithms for online
ad allocation by considering structural assumptions regarding the inputs observed in practice,
while eschewing stochastic input assumptions. Moreover, our work proposes better algorithms
under such structural assumptions that could explain the above-mentioned empirical success.
The chapter further raises several interesting follow-up questions.

Optimality for Adwords. We proved optimality of our algorithms among deterministic
algorithms for the online maximum and vertex-weighted matching problems. However, for the
general ad allocation problem our lower and upper bounds differ by a factor of

(
1−
(
1−1

d

)k)
/
(
1−(

1− 1
d

)k/Rmax
)
. For smallRmax (i.e., the AdWords problem), this discrepancy is large. Can better

algorithms be obtained for this problem, or can the upper bounds be tightened (or both)?
Randomization. As we have shown, algorithm RANDOM matches the competitive ratio of

our optimal deterministic algorithms in expectation. One may well wonder if randomization can
allow us to improve on the optimal bounds achievable by deterministic algorithms. For the on-
line matching problem, our results of Chapter 5 show that for d-regular graphs (a special case
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of (k, d)-graphs) randomization does indeed help, and allows for 1− Õ(1/
√
d)-competitiveness

for randomized algorithms (and this is optimal). On the other hand, by Corollary 7.6.3, our
1 − (1 − 1/d)d-competitive bounds are optimal for deterministic algorithms for this class. This
proves that for this class of graphs, randomized algorithms outperform deterministic algorithms,
which have competitive ratio tending to 1 − 1/e from above as d increases, while randomized
algorithms have competitive ratio tending to one as d increases. On the negative side, we can
show that no randomized algorithm can achieve competitive ratio better than 1 − e−Θ(k/d) for
all problems considered in this chapter, contrasted with the 1 − e−k/d competitive ratio achiev-
able by deterministic algorithms (this partially answers our previous question concerning tighter
bounds for AdWords). It would be interesting to see what exactly is the optimal competitive ratio
achievable by randomized algorithms for this problem, given its practical importance.

Stochastic Models. An interesting direction would be to extend our exploration of (k, d)-
graphs to stochastic models, in which it seems plausible that even better competitiveness guaran-
tees should be achievable. More interestingly, can we show improved performance for somewhat
more “robust” stochastic models? Note that the i.i.d input model is memoryless, and in particular
the arrival of an ad slot due to a particular user’s browsing does not increase said user’s subse-
quent ad slots’ arrival probability. Can we give bounds for less memoryless input models than
the i.i.d model if we add structural assumptions about the input?
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Chapter 8

Stochastic Online Metric Matching

In this chapter, based on [144] (joint with Anupam Gupta, Guru Guruganesh and Binghui Peng),
we study the metric matching problem. In particular, we study this problem under stochastic
arrivals.

8.1 Background and Contributions
We study the minimum-cost metric (perfect) matching problem under online i.i.d. arrivals. In
this problem, we are given a fixed metric (S, d) with a server at each of the n = |S| points. Then
n requests arrive online, where each request is at a location that is drawn independently from a
known probability distribution D over the points. Each such arriving request has to be matched
immediately and irrevocably to a free server, whereupon it incurs a cost equal to distance of its
location to this server. The goal is to minimize the total expected cost.

The minimization version of online matching was first considered in the standard adversarial
setting by Khuller et al. [182] and Kalyanasundaram and Pruhs [172]; both papers showed (2n−
1)-competitive deterministic algorithms, and proved that this was tight for, say, the star metric.
After about a decade, a randomized algorithm with an O(log3 n)-competitiveness was given by
Meyerson et al. [209]; this was improved to O(log2 n) by Bansal et al. [23], which remains the
best result known. (Recall that the maximization version of matching problems have been very
widely studied, but they use mostly unrelated techniques.)

The competitive ratio model with adversarial online arrivals is often considered too pes-
simistic, since it assumes an all-powerful adversary. One model to level the playing field, and
to make the model perhaps closer to practice, is to restrict the adversary’s power. Two models
have been popular here: the random-order arrivals (or secretary) model, and the i.i.d. model
defined above. The random-order model is a semi-random model, in which the worst-case in-
put is subjected to random perturbations. Specifically, the adversary chooses a set of requests,
which are then presented to the algorithm in a uniformly random order. The min-cost online
matching problem in this random-order model was studied by Raghvendra, who gave a tight
O(log n)-competitive algorithm [239]. The random-order model also captures the i.i.d. setting,
so the natural goal is to get a better algorithm for the i.i.d. model. Indeed, our main result for the
i.i.d. model gives exactly such a result:
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Theorem 8.1.1 (Main Theorem). There is an O((log log log n)2)-competitive algorithm
for online minimum-cost metric perfect matching in the i.i.d. setting.

Observe that the competitiveness here is better than the lower bounds of Ω(log n) known for
the worst-case and random-order models.

Matching on the Line and Trees. There has also been much interest in solving the problem
for the line metric. However, getting better results for the line than for general metrics has
been elusive: an O(log n)-competitive randomized algorithm for line metrics (and for doubling
metrics) was given by [140]. In the deterministic setting, recently Nayyar and Raghvendra [223]
gave an O(log2 n)-competitive algorithm, whose competitive ratio was subsequently proven to
be O(log n) by Raghvendra [240], improving on the o(n)-competitive algorithm of Antoniadis
et al. [13]. To the best of our knowledge, nothing better is known for tree metrics than for
general metrics in both the adversarial and the random-order models. Our second result for the
i.i.d. model is a constant-competitive algorithm for tree metrics.

Theorem 8.1.2 (Algorithm for Trees). There is a 9-competitive algorithm for online
minimum-cost metric perfect matching on tree metrics in the i.i.d. setting.

Max-Weight Perfect Matching. Recently, Chang et al. [59] presented a 1/2-competitive algo-
rithm for the maximum-weight perfect matching problem in the i.i.d. setting. We show that our
algorithm is versatile, and that a small change to our algorithm gives us a maximization variant
matching this factor of 1/2. Our approach differs from that of [59], in that we match an arriv-
ing request based on the realization of free servers, while they do so based on the “expected
realization”. See Section 8.8 for details.

8.1.1 Our Techniques

Both theorems 8.1.1 and 8.1.2 are achieved by the same algorithm. The first observation guiding
this algorithm is that we may assume that the distribution D of request locations is just the
uniform distribution on the server locations. (In Section 8.5 we show how this assumption can
be removed with a constant factor loss in the competitiveness.) Our algorithm is inspired by the
following two complementary consequences of the uniformity of D.

• Firstly, each of the n − t + 1 free servers’ locations at time t are equally likely to get a
request in the future, and as such they should be left unmatched with equal probability. Put
otherwise, we should match to them with equal probability of 1/(n − t + 1). However,
matching any arriving request to any free server with probability 1/(n − t + 1) is easily
shown to be a bad choice.

• So instead, we rely on the second observation: the tth request is equally likely to arrive at
each of the n server locations. This means we can couple the matching of free server
locations with the location of the next request, to guarantee a marginal probability of
1/(n− t+ 1) for each free server to be matched at time t.
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Indeed, the constraints that each location is matched at time t with probability 1/n (i.e., if it
arrives) and each of the free servers are matched with marginal probability 1/(n− t+ 1) can be
expressed as a bipartite flow instance, which guides the coupling used by the algorithm. Loosely
speaking, our algorithm is fairly intuitive. It finds a min-cost fractional matching between the
current open server locations and the expected arrivals, and uses that to match new requests. The
challenge is to bound the competitive ratio—in contrast to previously used approaches (for the
maximization version of the problem) it does not just try to match vertices using a fixed template
of choices, but rather dynamically recomputes a template after each arrival.

A major advantage of this approach is that we understand the distribution of the open servers.
We maintain the invariant that after t steps, the set of free servers form a uniform random (n−t)-
subset of [n]—the randomness being over our choices, and over the randomness of the input. This
allows us to relate the cost of the algorithm in the tth step to the expected cost of this optimal
flow between the original n points and a uniformly random subset of (n− t) of these points. The
latter expected cost is just a statistic based on the metric, and does not depend on our algorithm’s
past choices. For paths and trees, we bound this quantity explicitly by considering the variance
across edge-cuts in the tree—this gives us the proof of Theorem 8.1.2.

Since general metrics do not have any usable cut structure, we need a different idea for The-
orem 8.1.1. We show that tree-embedding results can be used either explicitly in the algorithm
or just implicitly in the proof, but both give an O(log n) loss. To avoid this loss, we use a dif-
ferent balls-and-bins argument to improve our algorithm’s competitiveness to O((log log n))2).
In particular, we provide better bounds on our algorithm’s per-step cost in terms of E[OPT ]
and the expected load of the k most loaded bins in a balls and bins process, corresponding to
the number of requests in the k most frequently-requested servers. Specifically, we show that
E[OPT ] is bounded in terms of the expected imbalance between the number of requests and
servers in these top k server locations. Coupling this latter uniform k-tuple with the uniform
k-tuple of free servers left by our algorithm, we obtain our improved bounds on the per-step
cost of our algorithm in terms of E[OPT ] and these bins’ load, from which we obtain our im-
proved O((log log n)2) competitive ratio. Interestingly, combining both balls and bins and tree
embedding bounds for the per-step cost of step k (appealing to different bounds for different
ranges of k) gives us a further improvement: we prove that our algorithm is O((log log log n)2)
competitive.

8.1.2 Further Related Work
I.i.d. stochastic arrivals have been studied for various online problems, e.g., for Steiner tree/forest
[125], set cover [138], and k-server [76]. Closer to the topic of this chapter, stochastic arrivals
have been widely studied in the online matching literature, though so far mostly for maximiza-
tion variants. Much of this work was motivated by applications to online advertising, for which
the worst-case optimal (1 − 1/e)-competitive ratios [6, 179, 207] seem particularly pessimistic,
given the financial incentives involved and time-learned information about the distribution of
requests. Consequently, many stochastic arrival models have been studied, and shown to admit
better than 1 − 1/e competitive guarantees. The stochastic models studied for online matching
and related problems, in increasing order of attainable competitive ratios, include random or-
der (e.g., [134, 176, 201]), unknown i.i.d.—where the request distribution is unknown—(e.g.,
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[78, 213]), and known i.i.d. (e.g., [21, 50, 106]). Additional work has focused on interpolating
between adversarial and stochastic input (e.g., [96, 202]). See Mehta’s survey [206] and recent
work [69, 120, 163–165, 222] for more details. The long line of work on online matching, both
under adversarial and stochastic arrivals, have yielded a slew of algorithmic design ideas, which
unfortunately do not seem to carry over to minimization problems, nor to perfect matching prob-
lems.

As mentioned above, the only prior work for stochastic online matching with minimization
objectives was the random order arrival result of Raghvendra [239]. We are hopeful that our work
will spur further research in online minimum-cost perfect matching under stochastic arrivals, and
close the gap between our upper bounds and the (trivial) lower bounds for the problem.

8.2 Our Algorithm

In this section we present our main algorithm, together with some of its basic properties. In
most of the chapter we assume that the distribution over request locations is uniform over the
n servers’ locations. We show in Section 8.5 that this assumption is WLOG: it increases the
competitive ratio by at most a constant. In particular, we show the following.

Lemma 8.2.1. Given an α-competitive algorithm ALGU for the uniform distribution over
server locations, U , we can construct a (2α + 1)-competitive algorithm ALGD for any
distribution D.

Focusing on the uniform distribution over server locations, our algorithm is loosely the following:
in each round of the algorithm, we compute an optimal fractional matching between remaining
free servers and remaining requests (in expectation). Now when a new request arrives, we just
match the newly-arrived request according to this matching.

8.2.1 Notation

Our analysis will consider k-samples from the set S = [n] both with and without replacement.
We will set up the following notation to distinguish them:

• Let Ik be the distribution over k-sub-multisets of S = [n] obtained by taking k i.i.d.
samples from the uniform distribution over S. (E.g., In is the request set’s distribution.)

• Let Uk be the distribution over k-subsets of S obtained by picking a uniformly random
k-subset from

(
S
k

)
.

In other words, Ik is the distribution obtained by picking k elements from S uniformly with
replacement, whereas Uk is without replacement.

For a sub-(multi)set T ⊆ S of servers, let M(T ) denote the optimal fractional min-cost b-
matching in the bipartite graph induced between T and the set of all locations S, with overall
unit capacity on either side. That is, the capacity for each node in T is 1/|T | and the capacity
for each node in S is 1/n. So, if we denote by di,j the distance between locations i and j, we let
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M(T ) correspond to the following linear program.

M(T ) := min
∑

i∈T,j∈S

di,j · xi,j (M(·))

s.t.
∑
j∈S

xi,j = 1
|T | ∀i ∈ T∑

i∈T

xi,j = 1
n

∀j ∈ S

x > 0

We emphasize that in the above LP, several servers in S (and likewise in T ) may happen to be at
the same point in the metric space, and hence there is a separate constraint for each such point
j (and likewise i). Slightly abusing notation, we let M(T ) denote both the LP and its optimal
value, when there is no scope for confusion.

8.2.2 Algorithm Description
The algorithm works as follows: at each time k, if Sk ⊆ S is the current set of free servers, we
compute the fractional assignment M(Sk), and assign the next request randomly according to it.
As argued above, since each free server location is equally likely to receive a request later (and
therefore it is worth not matching it), it seems fair to leave each free server unmatched with equal
probability. Put otherwise, it is only fair to match each of these servers with equal probability.
Of course, matching any arriving request to a free server chosen uniformly at random can be a
terrible strategy. In particular, it is easily shown to be Ω(

√
n)-competitive for n servers equally

partitioned among a two-point metric. Therefore, to obtain good expected matching cost, we
should bias servers’ matching probability according to the arrived request, and in particular we
should bias it according to M(Sk). This intuition guides our algorithm FAIR-BIAS, and also
inspires its name.

Algorithm 13 FAIR-BIAS

1: Sn ← S. . Sk is the set of free servers, with |Sk| = k.
2: for time step k = n, n− 1, · · · , 1 do
3: compute optimal fractional matching M(Sk), denoted by xSk .
4: for arrival of request rk = r do
5: randomly choose server s from Sk, where si is chosen w/prob. pi = n · xSksi,r.
6: assign r to s.
7: Sk−1 ← Sk \ {s}.

A crucial property of our algorithm is that the set Sk of free servers at each time k happens
to be a uniformly random k-subset of S. Recall that FAIR-BIAS assigns each arriving request
according to the assignment M(Sk). This means that to analyze the algorithm, it suffices to
relate the optimal assignment cost OPT to the optimal assignment costs for uniformly random
subsets Sk, as follows.
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Lemma 8.2.2. (Structure Lemma) For each time k, the set Sk is a uniformly-drawn k-
subset of S; i.e., Sk ∼ Uk. Consequently, the algorithm’s cost is

E[ALG] =
n∑
k=1

ESk∼ Uk [M(Sk)].

Proof. The proof of the first claim is a simple induction from n down to 1. The base case of Sn
is trivial. For any k-subset T = {s1, · · · , sk} ⊆ S,

Pr [Sk = T ] =
∑
s∈S\T

Pr [Sk+1 = T ∪ {s}] · Pr [rk+1 assigns to s | Sk+1 = T ∪ {s}]

= (n− k) · 1(
n
k+1

) · 1

k + 1
=

1(
n
k

) ,
where the second equality follows from induction and the fact that

Pr [rk+1 assigned to s | Sk+1 = T ∪ {s}] =
∑
r∈S

xSk+1
s,r =

1

k + 1
.

To compute the algorithm’s cost, we consider some set Sk = T of k free servers. Since the
request rk = r is chosen with probability 1/n, following which we match it to some free server
s ∈ Sk with probability n ·xSks,r, we find that the next edge matched by the algorithm has expected
cost

E[ds,rk | Sk = T ] =
∑
r

1

n
·
∑
s∈T

n · xTs,r · ds,r = M(T ).

Therefore, the expected cost of the algorithm is indeed

E[ALG] =
n∑
k=1

E[ds,rk ] =
n∑
k=1

∑
T∈(Sk)

Pr
Sk∼Uk

[Sk = T ] · E[ds,rk | Sk = T ]

=
n∑
k=1

∑
T∈(Sk)

Pr
Sk∼Uk

[Sk = T ] ·M(T ) =
n∑
k=1

ESk∼Uk [M(Sk)].

The structure lemma implies that we may assume from now on that the set of free servers Sk
is drawn from Uk. In what follows, unless stated otherwise, we have Sk ∼ Uk. More importantly,
Lemma 8.2.2 implies that to bound our algorithm’s competitive ratio by α, it suffices to show
that

∑
k E[M(Sk)] 6 α ·E[OPT]. This is exactly the approach we use in the following sections.

8.3 Bounds for General Metrics
In Section 8.4 we will show that algorithm FAIR-BIAS is O(1)-competitive for line metrics (and
more generally tree metrics), by relying on variance bounds of the number of matches across
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tree edges in OPT and M(Sk), our algorithm’s guiding LP. For general metrics, if we first
embed the metric in a low-stretch tree metric [98] (blowing up the expected cost of E[OPT]
by O(log n)) and run algorithm FAIR-BIAS on the obtained metric, we immediately obtain an
O(log n)-competitive algorithm. In fact, explicitly embedding the input metric in a tree metric
is not necessary in order to obtain this result using our algorithm. By relying on an implicit tree
embedding, we obtain the following lemma (mirroring the variance-based bound underlying our
result for tree metrics). This lemma’s proof is deferred to Section 8.7.

Lemma 8.3.1. ESk∼Uk [M(Sk)] 6
O(logn)√

nk
· E[OPT].

Summing over all values of k ∈ [n], we find that FAIR-BIAS is O(log n)-competitive on gen-
eral metrics. While this bound is no better than that of Raghvendra’s t-net algorithm for random
order arrival [239] (and therefore for i.i.d arrivals), the result will prove useful in our overall
bound for our algorithm. In Sections 8.3.1 and 8.3.2, we use a different balls-and-bins argument
to decrease our bounds on the algorithm’s competitive ratio considerably, to O((log log n))2), by
considering the imbalance between number of requests and servers in the top k most requested
locations. (The former quantity corresponds to the load of the k most loaded bins in a balls and
bins process – motivating our interest in this process.) Finally, in Section 8.3.3, we combine this
improved bound with the one from Lemma 8.3.1, summing different bounds for different ranges
of k, to prove our main result: anO((log log log n)2) bound for our algorithm’s competitive ratio.

8.3.1 Balls and Bins: The Poisson Paradigm

For our results, we need some technical facts about the classical balls-and-bins process.
The following standard lemma from [216, Theorem 5.10] allows us to use the Poisson distri-

bution to approximate monotone functions on the bins. For i ∈ [n], let Xm
i be a random variable

denoting the number of balls that fall into the ith bin, when we throw m balls into n bins. Let
Y m
i be independent draws from the Poisson distribution with mean m/n.

Lemma 8.3.2. Let f(x1, · · · , xn) be a non-negative function such that E[f(Xm
1 , · · · , Xm

n )]
is either monotonically increasing or decreasing with m, then

E[f(Xm
1 , · · · , Xm

n )] 6 2 · E[f(Y m
1 , · · · , Y m

n )].

A classic result states that form = n balls, the maximum bin load is Θ(log n/ log log n) w.h.p.
(see e.g., [216]). The following lemma is a partial generalization of this result. Its proof, which
relies on the Poisson approximation of Lemma 8.3.2, is deferred to Section 8.7.
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Lemma 8.3.3. Let n balls be thrown into n bins, each ball thrown independently and
uniformly at random. Let Lj be the load of the jth heaviest bin, and Nk :=

∑
j6k Lj be

the number of balls in the k most loaded bins. There exists a constant C0 > 0 such that for
any k 6 C0n,

E[Nk] > Ω

(
k · log(n/k)

log log(n/k)

)
.

In the next lemma, whose proof is likewise deferred to Section 8.7, we rely on a simple
Chernoff bound to give a weaker lower bound for E[Nk] that holds for all k 6 n/2.

Lemma 8.3.4. For sufficiently large n and any k 6 n/2, we have E[Nk] > 1.5k.

8.3.2 Relating Balls and Bins to Stochastic Metric Matching

We now bound the expected cost incurred by FAIR-BIAS at time k by appealing to the above
balls-and-bins argument; this will give us our stronger bound of O((log log n)2). Specifically,
we will derive another lower bound for E[OPT] in terms of ESk∼Uk [M(Sk)]. In our bounds we
will partition the probability space In (corresponding to n i.i.d. requests) into disjoint parts, based
on Tk, the top k most frequently requested locations (with ties broken uniformly at random). By
symmetry, Pr[Tk = T ] = 1/

(
n
k

)
for all T ∈

(
S
k

)
. By coupling Tk with Uk, we will lower-

bound E[OPT ] by ESk∼Uk [M(Sk)] times E[Nk]− k, the expected imbalance between number of
requests and servers in Tk. Here E[Nk] is the expected occupancy of the k most loaded bins in
the balls and bins process discussed in Section 8.3.1.

To relate E[OPT | Tk = Sk] to M(Sk), we will bound both these quantities by the cost of
a min-cost perfect b-matching between Sk and S \ Sk; i.e., each vertex v has some (possibly
fractional) demand bv which is the extent to which it must be matched. To this end, we need
the following simple lemma, which asserts that for any min-cost metric b-matching instance,
there exists an optimal solution which matches co-located servers and requests maximally. We
defer the lemma’s proof, which follows from a local change argument and triangle inequality, to
Section 8.7.

Lemma 8.3.5. Let I be a fractional min-cost bipartite metric b-matching instance, with
demand `i and ri for the servers and requests at location i. Then, there exists an optimal
solution x for I with xii = min{`i, ri} for every point i in the metric.

We are now ready to prove our main technical lemma, lower-bounding E[OPT | Tk = Sk] in
terms ofM(Sk) and the imbalance between number of requests of the k most requested locations,
Nk, and the number of servers in those locations.
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Lemma 8.3.6. For all k < n and Sk ∈
(
S
k

)
, we have E[OPT | Tk = Sk] > (E[Nk]− k) ·

M(Sk).

Proof. Applying Lemma 8.3.5 to M(Sk), we find that the optimal value of M(Sk) is equal to
that of a min-cost bipartite perfect b-matching instance with left vertices associated with Sk, each
with demand 1

k
− 1

n
, and right vertices associated with S \ Sk, each with demand 1

n
.

We now turn to the meat of the proof – lower bounding E[OPT | Tk = Sk]. In particular, we
will lower bound E[OPT | Tk = Sk] by a min-cost bipartite perfect b-matching instance with
left and right vertices as above (i.e., Sk and S \ Sk, respectively), but with uniform demands on
both sides of at least (E[Nk]− k)/k and (E[Nk]− k)/(n− k), respectively. That is, the biregular
min-cost bipartite b-matching whose cost C we showed lower bounds M(Sk), but scaled by an
f > (E[Nk]−k)

k·(1/k−1/n)
factor. Before proving this lower bound on E[OPT | Tk = Sk], we note that it

implies our desired bound, as

E[OPT | Tk = Sk] >
(E[Nk]− k)

k · (1/k − 1/n)
· C > (E[Nk]− k) · C = (E[Nk]− k) ·M(Sk).

It remains to lower bound E[OPT | Tk = Sk] in terms of such a biregular b-matching instance.
For the remainder of this proof, for notational simplicity we denote by Ω the probability space

induced by conditioning on the event Tk = Sk. To lower bound EΩ[OPT ], we will provide a
fractional perfect matching ~x of the expected instance (in Ω), and show that EΩ[OPT ] >

∑
ij dij ·

xij , while
∑

j∈S\Sk xij > (E[Nk]− k)/k for all i ∈ Sk and
∑

i∈S xij > (E[Nk]− k)/(n− k) for
all j ∈ S \Sk. Consequently, focusing on edges (i, j) ∈ Sk× (S \Sk), we find that the min-cost
biregular bipartite perfect b-matching above lower bounds

∑
i∈Sk,j∈S\Sk dij ·xij 6

∑
ij dij ·xij 6

EΩ[OPT ]. We now turn to producing an ~x satisfying our desired properties.
For any two locations i, j ∈ S, we let (i, j) ∈ OPT indicate that a request in location

i is served by the server in location j. Let pij := PrΩ[(i, j) ∈ OPT ]. We will show how
small modifications to ~p will yield a fractional perfect matching ~x as discussed in the previous
paragraph. Let Yi be the number of requests at server i. By Lemma 8.3.5, we know that (i, i) ∈
OPT ⇐⇒ Yi > 1. So, pii = PrΩ[Yi > 1]. Consequently, if we let ∆in(j) :=

∑
j′∈S\{j} pj′j

and ∆out(j) :=
∑

j′∈S\{j} pjj′ , we have by Lemma 8.3.5 that ∆in(j) = Pr[Yi > 1] and ∆out(i) =

E[(Yi − 1)+] for all i ∈ S. (As usual, x+ = max{x, 0}.) Consequently, ∆in(j) = ∆in(j′) and
∆out(j) = ∆out(j

′) for all j, j′ ∈ S \ Sk, as [Yj | Ω] and [Y ′j | Ω] are identically distributed.
Moreover, as

∑
j∈S\Sk (∆in(j)−∆out(j)) = Nk − k > 0, we find that ∆in(j) − ∆out(j) > 0

for all j ∈ S \ Sk. Now, suppose Yi > 1 for all i ∈ Sk (conditioning on the complementary
event is similar), we have by Lemma 8.3.5 that pji = 0 for all i ∈ Sk and j ∈ S \ {i}. Moreover,
by symmetry we have ∆out(i) = (E[Nk] − k)/k for all k locations i ∈ Sk. We now show
how to obtain from ~p a fractional matching ~x between Sk and S \ Sk of no greater cost than
~p, such that pjj′ = 0 for all j 6= j′ ∈ S \ Sk and such that the values ∆in(j) − ∆out(j) are
unchanged for all j ∈ S. Consequently, all (simple) edges in the support of ~x go between Sk
and S \ Sk, and ∆out(i) = (E[Nk]− k)/k for all i ∈ Sk and ∆in(j) = (E[Nk]− k)/(n− k) for
all j ∈ S \ Sk, yielding our desired lower bound on EΩ[OPT ] in terms of a biregular bipartite
b-matching instance.
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We start by setting ~x ← ~p. While there exists a pair j 6= j′ ∈ S \ Sk with xj′j > 0, we pick
such a pair. As ∆in(j) −∆out(j) > 0, there must also be some flow coming into j. We follow
a sequence of edges j1 ← j2 ← j3 ← . . . with each jr ∈ S \ Sk and with xjrjr−1 > 0 until we
either repeat some jr ∈ S\ or reach some jr with xijr0 for some i ∈ S. (Note that one such case
must happen, as ∆in(j) − ∆out(j) > 0 for all j ∈ S \ Sk.) If we repeat a vertex, jr, we only
consider the sequence of nodes given by the obtained cycle, j1 ← j2 ← j3 · · · ← jr = j1. Let
ε = minr xjrjr−1 be the smallest xjj′ in our trail. If we repeated a vertex, we found a cycle, and
we decrease xjj′ by ε for all consecutive j, j′ in the cycle. If we found some i ∈ S and xijr > 0,
we decrease all xjj′ values along the path (including xijr) by ε and increase xij1 by ε. In both
cases, we only decrease the cost of ~x (either trivially, or by triangle inequality) and we do not
change ∆in(j)−∆out(j) for any j ∈ S, while decreasing

∑
j 6=j′∈S\Sk xjj′ . As the initial x-values

are all rational, repeating the above terminates, with the above sum equal to zero, which implies
a biregular fractional solution ~x as required. The lemma follows.

Coupling the distribution of Tk and the set of k free servers, we obtain the following.

Lemma 8.3.7. ESk∼Uk [M(Sk)] 6 E[OPT]/(E[Nk]− k).

Proof. Taking expectations over Sk ∼ Uk, we obtain our claimed bound.

ESk∼Uk [M(Sk)] =
∑

Sk∈(Sk)

1(
n
k

) ·M(Sk) defn. of Uk

6
∑

Sk∈(Sk)

1(
n
k

) 1

(E[Nk]− k)
· E[OPT | Tk = Sk] Lemma 8.3.6

=
1

(E[Nk]− k)
· E[OPT]. Pr[Tk = Sk] =

1(
n
k

) .
Plugging in the lower bounds of Lemmas 8.3.3 and 8.3.4 for the top k most loaded bins’

loads, E[Nk], we obtain the following bounds on FAIR-BIAS’s per-step cost in terms of E[OPT ].

Lemma 8.3.8. For C0 a constant as in Lemma 8.3.3, there exists a constant C such that

ESk∼Uk [M(Sk)] 6

{
C · log log(n/k)

k log(n/k)
· E[OPT] if k < C0n

2
k
· E[OPT] if C0n 6 k 6 n/2.

The following lemma allows us to leverage Lemma 8.3.8, since it allows us to focus on
ESk∼Uk [M(Sk)] for k 6 n/2. Its proof relies on our characterization of M(Sk) in terms of a
balanced b-matching instance between Sk and S \ Sk as in the proof of Lemma 8.3.6, which
implies that M(Sk) 6M(Sn−k) for all k 6 n/2. Its proof is deferred to Section 8.7.
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Lemma 8.3.9.
∑n

k=1 ESk∼Uk [M(Sk)] 6 2 ·∑n/2
k=1 ESk∼Uk [M(Sk)].

Using our upper bound on ESk∼Uk [M(Sk)] of Lemma 8.3.8 and summing the two ranges of
k 6 n/2 in Lemma 8.3.9 we find that FAIR-BIAS is O((log log n)2) competitive. We do not
elaborate on this here, as we obtain an even better bound in the following section.

8.3.3 Our Main Result
We are now ready to prove our main result, by combining our per-step cost bounds given by our
balls and bins argument (Lemma 8.3.8) and our implicit tree embedding argument (Lemma 8.3.1).

Theorem 8.3.10. Algorithm FAIR-BIAS is O((log log log n)2)-competitive for the online
bipartite metric matching problem under i.i.d arrivals on general metrics.

Proof. By the structure lemma (Lemma 8.2.2) and Lemma 8.3.9, we have that

E[ALG] =
n∑
k=1

ESk∼Uk [M(Sk)] 6 2 ·
n/2∑
k=1

ESk∼Uk [M(Sk)]. (8.1)

We use the three bounds from Lemma 8.3.1 and Lemma 8.3.8 for different ranges of k to bound
the above sum. Specifically, by relying on Lemma 8.3.1 for k 6 n/ log2 n, we have that

n/ log2 n∑
k=1

ESk∼Uk [M(Sk)] 6
n/ log2 n∑
k=1

O(log n)√
nk

· E[OPT ]

6 O

(√
n

log2 n
· log n · E[OPT ]√

n

)
= O(1) · E[OPT ].

Next, by the first bound of Lemma 8.3.8 applied to k ∈ [n/ log2 n,C0n], we have that

C0n∑
k=n/ log2 n

ESk∼Uk [M(Sk)] 6
C0n∑

k=n/ log2 n

O(log log(n/k))

k · log(n/k)
· E[OPT ]

6 O

(
−(log log(n/k))2

∣∣∣C0n

n/ log2 n

)
· E[OPT ]

= O((log log log n)2) · E[OPT ].

Finally, by the second bound of Lemma 8.3.8 applied to k > C0n, we have that

n/2∑
k=C0n

ESk∼Uk [M(Sk)] 6
n/2∑
C0n

2

k
· E[OPT ] 6 O

(
log

(
n/2

C0n

))
· E[OPT ] = O(1) · E[OPT ].

Combining all three bounds with Equation (8.1), the theorem follows.
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8.4 A Simple O(1) Bound for Tree Metrics
In this section we show the power of the structure lemma, by analyzing FAIR-BIAS on tree met-
rics. Recall that a tree metric is defined by shortest-path distances in a tree T = (V,E), with
edge lengths de. By adding zero-length edges, we may assume that the tree has n leaves, and that
servers are on the leaves of the tree. For any edge e in the tree, deleting this edge creates two
components T1(e) and T2(e); denote by T1(e) the component with fewer servers/leaves. Let ne
denote the number of leaves on this smaller side, T1(e). Hence ne 6 n/2 for all edges e.

We now lower bound E[OPT], by considering the mean average deviation of the number of
requests which arrive in T1(e) for each edge e.

Lemma 8.4.1. The expected optimal matching cost in a tree metric on n > 2 vertices is at
least E[OPT] > 1

2
·∑e∈T de ·

√
ne.

Proof. Let Xe denote the number of requests that arrive in the component with fewer leaves,
T1(e). Every matching will match at least |Xe − ne| = |Xe − E[Xe]| requests across the edge e
(with the equality due to the uniform IID arrivals). Summing over all edges and taking expecta-
tions, we find that

E[OPT] >
∑
e

de · E
[
|Xe − ne|

]
=
∑
e

de · E
[
|Xe − E[Xe]|

]
. (8.2)

It remains to lower bound E[|Xe − E[Xe]|], the mean average deviation of Xe. Observe that
Xe ∼ Bin(n, ne/n), with ne ∈ [1, n − 1]. The following probabilistic bound appears in [31,
Theorem 1]:

Claim 8.4.2. Let Y ∼ Bin(n, p), with n > 2 and p ∈ [1/n, 1− 1/n]. Then, we have both

E|Y − EY | > std(Y )/
√

2,

(Note that convexity implies that E|Y − EY | 6 std(Y ) holds for all distributions, so this is
a partial converse.) Applying Claim 8.4.2 to our case, where p = ne/n ∈ [1/n, 1− 1/n],

E[|Xe − EXe|] > std(Xe)/
√

2 =
√
ne(1− ne/n)/2 >

√
ne/4,

where the second inequality follows from ne 6 n/2. Combined with (8.2), the lemma follows.

To upper bound E[M(Sk)], we again consider the mean average deviation of the number of
requests in T1(e), but this time when drawing k i.i.d. samples. First, we need to bound the cost
of M(Sk) for a set Sk resulting from k draws without replacement by the cost for a multiset
obtained by taking k i.i.d. draws with replacement.
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Lemma 8.4.3. (Replacement Lemma) For all S and k ∈ [|S|], we have

ESk∼Uk [M(Sk)] 6 ESk∼Ik [M(Sk)].

We defer the proof of this lemma to Section 8.6, where we prove a more general statement re-
garding stochastic convex optimization with constraints and coefficients determined by elements
of a set chosen uniformly with and without replacement. Armed with this lemma, it suffices to
bound ESk∼Ik [M(Sk)] from above, which we do in the following.

Lemma 8.4.4. ESk∼Ik [M(Sk)] 6
∑

e∈T de ·
√
ne/(kn).

Proof. Fix some edge e and let T1(e) be its smaller subtree, containing ne 6 n/2 leaves. Let
Xe ∼ Bin(k, ne/n) be the random variable denoting the number of servers in T1(e) chosen in k
i.i.d samples from S. For any given realization of Sk (and therefore of Xe) the fractional solution
to M(Sk) utilizes edges between the different subtrees of e by exactly |Xe/k−ne/n|. Since this
is a tree metric, we have

M(Sk) =
∑
e∈T

de ·
∣∣∣∣Xe

k
− ne

n

∣∣∣∣ =
∑
e∈T

de ·
1

k
·
∣∣∣∣Xe −

k

n
· ne
∣∣∣∣ =

∑
e∈T

de ·
1

k
· |Xe − E[Xe]|.

Taking expectations over Sk, and using the fact that the mean average deviation is always upper
bounded by the standard deviation (by Jensen’s inequality), we find that indeed

ESk∼Ik [M(Sk)] =
∑
e∈T

de ·
1

k
· E[|Xe − E[Xe]|] 6

∑
e∈T

de ·
1

k
· std(Xe)

=
∑
e∈T

de ·
1

k
·
√
k · ne

n

(
1− ne

n

)
6
∑
e∈T

de ·
√

ne
k · n.

Combining the replacement lemma (Lemma 8.4.3) with Lemmas 8.4.4 and 8.4.1, we obtain
the following upper bound on ESk∼Uk [M(Sk)] in terms of E[OPT ].

Lemma 8.4.5. ESk∼Uk [M(Sk)] 6 2 · E[OPT ]√
nk

.

We can now prove our simple result for tree metrics.

Theorem 8.4.6. (Tree Bound) Algorithm FAIR-BIAS is 4-competitive on tree metrics with
n > 2 nodes, if the requests are drawn from the uniform distribution.
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Proof. We have by the structural lemma (Lemma 8.2.2) and Lemma 8.4.5 that

E[ALG] =
n∑
k=1

E[M(Sk)] 6
n∑
k=1

2 · E[OPT ]√
nk

6 2 · E[OPT ]√
n
·
(

1 +

∫ n

x=1

1√
x
dx

)
6 4 · E[OPT ].

The above bound holds for all n > 2 (for n = 1 any algorithm is trivially 1 competi-
tive). For n large, however, our proof yields an improved asymptotic bound of

√
2 · e + o(1) ≈

(3.845 + o(1)), by relying on the asymptotic counterpart of Claim 8.4.2 in [31, Corollary 2],
E|Y − EY | > std(Y )/(e/2 + o(1)). Combining Theorem 8.4.6 with our transshipment argu-
ment (Lemma 8.2.1), we obtain a 9-competitive algorithm under any i.i.d. distribution on tree
metrics on n > 2 nodes, and even better than 9-competitive algorithms for large enough n.

8.5 Distribution over Server Locations
(Transshipment Argument)

In this section, we show that the assumption that the requests are drawn from U , the uniform
distribution over server locations, is without loss of generality.

Lemma 8.2.1. Given an α-competitive algorithm ALGU for the uniform distribution over
server locations, U , we can construct a (2α + 1)-competitive algorithm ALGD for any
distribution D.

Proof. As before, we identify the set of servers S with the n points on the metric and let
r1, . . . , rn be the requests that arrive according to the distribution D. Define pi := Prr∼D[r = i].

Consider the linear program defined by the transshipment problem between the distribution
D to the uniform distribution on the servers S.

LP := min
∑
i,j

di,j · xi,j

s.t.
∑
j

xi,j = pi ∀i ∈ metric

∑
i

xi,j =
1

n
∀j ∈ S

xi,j > 0

Let M = n · LP . Given a request sequence {r1, . . . , rn} drawn from D, we create a coupled
sequence {r̃1, . . . , r̃n} by moving an arrived request rk at server location j to location i in the
metric with probability xi,j/pi Each server location j ∈ S appears with probability

∑
i xi,j = 1

n

and hence the sequence {r̃1, . . . , r̃n} is distributed according to the uniform distribution U . After
this move, it matches the request according to ALGU .
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We bound this algorithm’s cost as follows. First, the probability of a given request being
moved from some location i to j is precisely pi · xi,j/pi = xi,j . Summing up over all i, j, the
expected movement cost for all n time steps is precisely M = n · LP . Secondly, the expected
cost of matching from r̃i is precisely E[ALGU ]. By the triangle inequality, we can bound the
total cost by the sum of the initial costs and the matching costs according to ALGU , yielding the
relation

E[ALGD] 6 E[ALGU ] +M. (8.3)

We use the same coupling as above, but in the other direction to relate OPTU to M . In
particular, given a request sequence {r1, . . . , rn} drawn from U , we create a coupled sequence
{r̃1, . . . , r̃n} by moving an arrived request rk at server location j to location i in the metric with
probability n · xi,j . Now Pr[r̃k = i] = 1

n
·∑j n · xi,j =

∑
j xi,j = pi. That is, the resulting

distribution is D. One way to bound the optimal solution for distribution U is to match request
rk to the match of r̃k. As before, the expected movement cost to locations {r̃1, . . . , r̃n} is M , and
by triangle inequality, we find that

E[OPTU ] 6 E[OPTD] +M. (8.4)

We now bound E[OPTD] in terms of M . Each location i in the metric has an expected npi
appearances, who must therefore be matched an expected npi many times. Each server, on the
other hand, is matched precisely once in expectation. Therefore, the probabilities pi,j of an arrival
at location i being matched to a server at location j constitute a feasible solution to n · LP , and
so must have

∑
i,j di,j · pi,j > n · LP = M . Therefore, E[OPTD] satisfies

E[OPTD] >M. (8.5)

Combining equations (8.3), (8.4) and (8.5) with ALGU ’s α-competitiveness, we obtain our
desired result.

E[ALGD] 6 E[ALGU ] +M Equation (8.3)
6 α · E[OPTU ] +M ALGU is α-comp.
6 α · (E[OPTD] +M) +M Equation (8.4)
6 (2α + 1) · E[OPTD]. Equation (8.5)

8.6 Stochastic Convex Optimization,
with and without Replacement

In Lemma 8.4.3 we claimed that the expected cost of the linear program M(Sk) for Sk chosen
at random from the k-subsets of S is lower than its counterpart when Sk is obtained from k i.i.d
draws from S. More succinctly, we claimed that ESk∼Uk [M(Sk)] 6 ESk∼Ik [M(Sk)]. In this
section we prove a more general claim for any linear program (and more generally, any convex
program), implying the above. Let S be some n-element set, and for any multiset T with all its
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elements taken from S, let P (T ) be the following convex program.

P (T ) := minf(x, χT ) (P (·))
s.t. gi(x, χT ) 6 0 ∀i ∈ [m]

hj(x, χT ) = 0 ∀j ∈ [`]

Here f(x, χT ) and all gi(x, χT ) are convex functions and hj(x, χT ) are affine in their arguments
x and χT , and χT is the incidence vector of the multiset T . (That is, for any s ∈ S, we let
χT (s) denote the number of appearances of s in T .) Note that M(T ) defined in Section 8.2.1 is
a linear program of the above form. As such, the following lemma generalizes – and implies –
Lemma 8.4.3.

Lemma 8.6.1. For any convex program P as above, we have

ESk∼Uk [P (Sk)] 6 ESk∼Ik [P (Sk)].

Proof. Our proof relies on a coupling argument, starting with a refined partition of the probability
space of Sk ∼ Ik. This space is partitioned into equiprobable events AM for each ordered
multiset M of size k supported in S, corresponding to M being sampled. For each ordered
multiset M , we denote by M) := {s ∈ S | s ∈ M} the set of elements in M . Next, we
denote by SUP(M) := {T ∈

(
S
k

)
| T ⊇ M)} the family of k-sets which contain M ’s elements

(i.e., supersets of M ’s support). We will wish to “equally partition” the event AM among the
k-tuples in SUP(M). To this end, when M is sampled from Ik, we roll a |SUP(M)|-sided die
labeled by the members of SUP(M). For any k-set T ∈ SUP(M), we denote by AM,T the event
that M was sampled from Ik and the die-roll came out T , and for any k-tuple T ∈

(
S
k

)
, we let

AT :=
⋃
M AM,T . It is easy to verify that by symmetry we have Pr[AT ] = 1/

(|S|
k

)
for every

T ∈
(
S
k

)
.

We now wish to couple the above refinement of the probability space of Ik and the optimal
solution to P (Sk) with their counterpart under Uk. We will need the following claim.

Claim 8.6.2. For all k-set T ∈
(
S
k

)
and element s ∈ T , we have ESk∼Ik [χSk(s) | AT ] = 1.

Proof. By definition, each non-empty AM,T ⊆ AT satisfies ESk∼Ik [
∑

s∈T χSk(s) | AM,T ] = k,
since any ordered multiset M of size k with SUP(M) 3 T has all its elements in T . Therefore,
taking total expectation over M with SUP(M) 3 T , we get ESk∼Ik [

∑
s∈T χSk(s) | AT ] = k.

Therefore, by symmetry, we find that indeed each of the k elements s ∈ T has ESk∼Ik [χSk(s) |
AT ] = 1.

Now, consider some k-set T ∈
(
S
k

)
. For any ordered multiset of k elements M such that

SUP (M) 3 T , denote by xM ∈ arg minP (M) a solution of P (M) of minimum cost. By
definition, for each i ∈ [m] we have that gi(xM , χM) 6 0 and for each j ∈ [`] we have that
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hj(x
M , χM) = 0. Therefore, if we let yT := EM∼Ik [xM | AT ] be the “average” optimal solution

for P (M) over all M with SUP (M) 3 T , then by Jensen’s inequality and convexity of gi, we
have that

0 > EM∼Ik [gi(x
M , χM) | AT ] linearity

> gi(EM∼Ik [x
M | AT ],EM∼Ik [χM | AT ]) Jensen’s Ineq.

= gi(y
T , χT ). Claim 8.6.2

Similarly, we have that hj(yT , χT ) = EM∼Ik [hj(xM , χM) | AT ] = 0 for all j ∈ [`], as hj is affine.
We conclude that yT is a feasible solution to P (T ), and therefore f(yT , χT ) > P (T ). Again
appealing to Jensen’s inequality, recalling that yT = EM∼Ik [xM | AT ] and that EM∼Ik [χM |
AT ] = χT by Claim 8.6.2, we find that

EM∼Ik [f(xM , χM) | AT ] > f(yT , χT ) > P (T ).

The lemma follows by total expectation over M , relying on Pr[AT ] = 1/
(|S|
k

)
for each T ∈

(
S
k

)
.

EM∼Ik [P (M)] =
∑
T∈(Sk)

EM∼Ik [P (M) | AT ] · Pr[AT ]

>
∑
T∈(Sk)

P (T ) · Pr[AT ] = ET∼Uk [P (T )].

8.7 Deferred Proofs of Section 8.3
In this section we provide the proofs deferred from Section 8.3.

8.7.1 Implicit Tree Embedding
In Section 8.4, we proved that algorithm FAIR-BIAS is O(1)-competitive on tree metrics. There-
fore, as noted in Section 8.3, using tree embeddings and applying algorithm FAIR-BIAS to the
points according to distances in the obtained tree embedding yields an O(log n)-competitive
algorithm for general metrics. Here we present an upper bound on FAIR-BIAS’s expected per-
arrival cost which implies the same competitive bound, by relying on an implicit tree embedding.

Lemma 8.3.1. ESk∼Uk [M(Sk)] 6
O(logn)√

nk
· E[OPT].

Proof. For our proof we rely on low-stretch tree embeddings [98]. Given an n-point metric with
distances di,j , this embedding is a distribution D over tree metrics T over the same point set,
with tree distances dTi,j satisfying the following for any two points i, j in the metric.

di,j 6 dTi,j. (8.6)

ET∼D[dTi,j] 6 O(log n) · di,j. (8.7)
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For such a tree metric T , let MT (S) denote M(S) with the distances di,j replaced by dTi,j .
(As before, we also let this denote the optimum value of this program.) By (8.6) we immediately
have that M(S) 6 MT (S) for any set S, as any solution ~x to MT (S) is feasible for M(S) and
has lower cost for this latter metric,

∑
i,j xi,j · di,j 6

∑
i,j xi,j · dTi,j. Consequently, we have

M(S) 6 ET∼D[MT (S)]. (8.8)

Next, we denote byOPT T the optimum cost of the min-cost perfect matching of the requests
to servers for distances dTi,j . By Lemma 8.4.5 we have that for a tree metric T

ESk∼Uk [M
T (Sk)] 6

4 · E[OPT T ]√
nk

. (8.9)

Finally, for any realization of requests, the minimum-cost matching of requests to servers
under di,j has expected cost (over the choice of T ) at most O(log n) times higher under dTi,j , by
(8.7). Therefore, by a coupling argument we get the following bound on ET∼DE[OPT T ] in terms
of E[OPT ].

ET∼D[OPT T ] 6 O(log n) · E[OPT ]. (8.10)

Combining Equations (8.8), (8.9) and (8.10), we obtain our desired bound.

ESk∼Uk [M(Sk)] 6 ET∼DESk∼Uk [M
T (Sk)] 6

4 · ET∼DE[OPT T ]√
nk

6
O(log n) · E[OPT ]√

nk
.

8.7.2 Load of k Most Loaded Bins
Here we prove our lower bounds on the sum of loads of the k most loaded bins in a balls and
bins process with n balls and bins.

Lemma 8.3.3. Let n balls be thrown into n bins, each ball thrown independently and
uniformly at random. Let Lj be the load of the jth heaviest bin, and Nk :=

∑
j6k Lj be

the number of balls in the k most loaded bins. There exists a constant C0 > 0 such that for
any k 6 C0n,

E[Nk] > Ω

(
k · log(n/k)

log log(n/k)

)
.

Proof. Let t = log(n/k)
log log (n/k)

, and define

f(x1, · · · , xn) =

{
1 if the kth largest number in x1, · · · , xn is less than t/2
0 otherwise .

Clearly, the function f(x1, · · · , xn) satisfies the condition in Lemma 8.3.2, i.e., f(x1, · · · , xn)
is nonnegative and E[f(Xm

1 , · · · , Xm
n )] is monotonically decreasing with m. Since we have an
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equal number of balls and bins, we consider the case m = n. We abbreviate Xn
i to Xi and Y n

i to
Yi. Let Mk be the kth largest number among Y1, · · · , Yn. Applying Lemma 8.3.2,

Pr [Lk < t/2] = E [f(X1, · · · , Xn)] 6 2 · E [f(Y1, · · · , Yn)] = 2 · Pr [Mk < t/2] .

Define the indicator variable Zi := 1(Yi>t/2), and observe that Pr[Mk < t/2] = Pr[
∑

i Zi < k].
We bound the latter via a Chernoff bound, so we need a lower bound on E[

∑
i Zi].

E[
∑
i

Zi] = n · Pr[Yi > t/2] > n · Pr[Yi = t/2]
(a)
=

n

e(t/2)!

(b)

>
4n

t!

(c)

> 4k. (8.11)

The equality (a) uses the definition of the Poisson distribution, the inequality (b) uses that t! >
4e(t/2)! for sufficiently large t. For inequality (c), we know t! 6

√
t/e (t/e)t from Stirling’s

approximation, and so when n/k is sufficiently large, plugging in t = log(n/k)
log log (n/k)

gives

log(t!) 6 (t+ 1/2) log t− t− 1 6 t log t 6 log(n/k).

Putting things together, and using a Chernoff bound, we get

Pr [Lk < t/2] 6 2 · Pr [Mk < t/2] = 2 · Pr[
∑
i

Zi < k] 6 2e−
(3/4)2.4k

2 6 2e−k.

The lemma then follows directly, as

E[Nk] > E [Nk | Lk > t/2] · Pr [Lk > t/2] > k · (t/2) · (1− 2e−k) = Ω
( k · log(n/k)

log log(n/k)

)
.

The following simple lemma states that in the min cost perfect matching, we can always
match requests and servers in the same location as much as possible. That is, xii = 1

n
for every

requested location i.

Lemma 8.3.4. For sufficiently large n and any k 6 n/2, we have E[Nk] > 1.5k.

Proof. In expectation, there are n (1− 1/n)n ∼ n/e empty bins, thus on average one would
expect 1/(1 − 1/e) > 1.5 balls in each non-empty bin. To make this intuition formal, let t =
(1− 1/e+ 0.01)n and define

f(x1, · · · , xn) =

{
1 if more than t of x1, · · · , xn are greater than 0
0 otherwise.

It is easy to verify that the function f(x1, · · · , xn) is non-negative and E[f(Xm
1 , · · · , Xm

n )] is
monotonically increasing in m. Define the variable Zi := 1(Yi>0); then Zi ∼ Bernoulli(1− 1/e).
Lemma 8.3.2 and a Chernoff bound now give that for sufficiently large n,

E[f(X1, · · · , Xn)] 6 2 · E[f(Y1, · · · , Yn)] = 2 · Pr

[∑
i

Zi > tn

]
6 2e−

0.012·(1−1/e)n
2 < 0.01.

Hence

E[Nt] > E [Nt | f(X1, · · · , Xn) = 0] · Pr [f(X1, · · · , Xn) = 0] > n · (1− 0.01) = 0.99n.

Finally, for k 6 n/2(6 t), we have that indeed E[Nk]
k

> E[Nt]
t

> 0.99n
(1−1/e+0.01)n

> 3
2
.
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8.7.3 Further Deferred Proofs

Lemma 8.3.5. Let I be a fractional min-cost bipartite metric b-matching instance, with
demand `i and ri for the servers and requests at location i. Then, there exists an optimal
solution x for I with xii = min{`i, ri} for every point i in the metric.

Proof. Fix an optimal solution x∗ of I of maximum
∑

i x
∗
ii among optimal solutions of I. Sup-

pose for contradiction that there exists some i ∈ Sk such that x∗ii < min{`i, ri}. WLOG `i 6 ri
and so there exists some locations j, j′ such that x∗ij > 0 and x∗j′i > 0. Let ε = min{x∗ij, x∗j′i}.
Consider the solution x̃ obtained from x∗ by increasing x∗ii and x∗j′j by ε and decreasing x∗ij and
x∗j′i by ε. This x̃ is a feasible solution to I (as sums of the form

∑
i xij and

∑
j xij are unchanged

and x̃ > 0). Moreover, we find that

∑
ij

dij · x̃ij =

(∑
ij

dij · x∗ij

)
+ ε · (dii + djj′ − dij − dij′)

= OPT (I) + ε · (djj′ − dij − dij′) 6 OPT (I),

by triangle inequality. That is, x̃ is an optimal solution to I with a higher
∑

i xii than x∗, contra-
dicting our assumption. The lemma follows.

Lemma 8.3.9.
∑n

k=1 ESk∼Uk [M(Sk)] 6 2 ·∑n/2
k=1 ESk∼Uk [M(Sk)].

Proof. As noted in the proof of Lemma 8.3.7, by Lemma 8.3.5, the optimal value of M(Sk)
is equal to that of a min-cost bipartite perfect b-matching instance with left vertices associated
with Sk with demand 1

k
− 1

n
and right vertices associated with S \ Sk with demand 1

n
. Similarly,

M(S \ Sk) is equal to the same, but with each i ∈ Sk having demand 1
n

and each i ∈ S \ Sk
having demand 1

n−k − 1
n

. That is, these programs are just scaled versions of each other, and we
we have that for any k 6 n/2,

M(Sk) =
1/k − 1/n

1/n
·M(S\Sk) =

(n
k
− 1
)
·M(S\Sk) >M(S\Sk).

Consequently, taking expectation over Sk (equivalently, over S \ Sk), we find that for any k 6
n/2, we have ESk∼Uk [M(Sk)] > ESn−k∼Un−k [M(Sn−k)]. The lemma follows.

8.8 Max Weight Perfect Matching under i.i.d Arrivals
Here we prove that, with a small modification, FAIR-BIAS achieves the optimal competitive
ratio, i.e 1/2, in the max weight perfect matching problem introduced in [59]. Here, rather
than compute a minimum cost perfect matching, we are tasked with computing a maximum
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weight perfect matching, where the weights need not correspond to a metric. Since we are
now in a maximization problem and we are no longer in a metric space, we will not make the
assumption that the distribution of all requests is uniform among all servers. Moreover, we make
the following modification to our algorithm: in each round of FAIR-BIAS, instead of finding a
min cost perfect matching, we would find the max weight perfect matching. Correspondingly,
we change the notation for M(T ): instead of being a min cost perfect b-matching induced by
the set of free servers T and requests R, now M(T ) refers to the max weight perfect b-matching
between the set of free servers T and requests R. More formally, we have

M(T ) := max
∑

i∈T,j∈R

wi,j · xi,j (8.12)

s.t.
∑
j∈T

xi,j =
1

|T | ∀i ∈ T∑
i∈R

xi,j = pi ∀j ∈ R

xi,j > 0.

Generalizing FAIR-BIAS, if Sk is the realized set of free servers and xSk an optimal solution
to M(Sk), then upon arrival of a request at location i (which happens with probability pi), we
randomly pick a server s to match this request to, chosen with probability xSki,s/pi.

Difference compared to [59]. We note that Chang et al. [59] used a similar LP to M(T ).
Essentially, they used M(S), the program obtained by considering all servers (and not just free
ones). Following [106, 150], they refer to this as the optimum of the “expected graph”. Their
algorithm picks a preferred server among all servers with probability xSkr,s/pi. If this server is
already matched, in order to output a perfect matching they randomly (i.e., uniformly) pick an
alternative server to match to. Our algorithm does not need to fall back on a second random
choice, as it only picks a server among free servers. As we shall see, our algorithm’s analysis
follows rather directly from our analysis of FAIR-BIAS for the minimization variant.

A key observation is that the structure lemma (Lemma 8.2.2) still holds for our maximization
variant of FAIR-BIAS. We restate it here.

Claim 8.8.1. (Structure Lemma, Restated) For each time k, the set Sk is a uniformly-drawn
k-subset of S; i.e., Sk ∼ Uk. Consequently, the weight of the algorithm’s output matching
is

E[ALG] =
n∑
k=1

ESk∼ Uk [M(Sk)].

Claim 8.8.1 holds due to the same argument in Lemma 8.2.2. Notice that all we needed in the
proof of Lemma 8.2.2 is that upon arrival of a request rk = i when there are k free servers Sk
we match rk = i to a any free server s with probability xSki,s/pi, and so we use edge (i, s) with
probability precisely xSki,s . This implies that each free server s ∈ Sk is matched with probability
precisely 1

k
and that the expected weight of the edge matched is precisely

∑
i∈S,j∈Sk wi,j · x

Sk
i,j .

Next, we note that E[OPT ] can be upper bounded in terms of M(S).
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Claim 8.8.2. E[OPT] 6 n ·M(S).

The proof is exactly the same as Equation (8.5). See also [59, Lemma 1].
Now we can prove that the maximization variant of FAIR-BIAS is 1/2 competitive for the max

weight perfect matching problem in the i.i.d model.

Theorem 8.8.3. The max-weight variant of FAIR-BIAS is 1/2 competitive.

Proof. Letting xSk ∈ arg maxM(Sk) for every Sk, we have the following bound

ESk∼Uk [M(Sk)] =
∑
Sk

1(
n
k

) ∑
i∈Sk,j∈R

wi,j · xSki,j def. of xSk

>
∑
Sk

1(
n
k

) ∑
i∈Sk,j∈R

wi,j · xSi,j def. of xSk and M(Sk)

=
∑
i∈S

Pr
Sk∼Uk

[i ∈ Sk] ·
∑
j∈R

wi,j · xSi,j

=
k

n
·M(S) def. of M(S)

>
k

n2
· E[OPT]. Claim 8.8.2

Summing these up, by the structure lemma (Claim 8.8.1) we have

E[ALG] =
n∑
i=1

ESk∼Uk [M(Sk)] >
n∑
k=1

k

n2
· E[OPT] >

1

2
· E[OPT].

8.9 Conclusion and Open Questions
In this chapter, we presented algorithm FAIR-BIAS and proved that it is O((log log log n)2)-
competitive for general metrics, and 9-competitive for tree metrics. Perhaps the first question
is whether our algorithm (or indeed any algorithm) is O(1) competitive for (known or unknown)
i.i.d arrivals for general metrics. Indeed, we do not know of any instances where Algorithm
FAIR-BIAS’s performance is worse than O(1) competitive. However, it is not clear how to extend
our proofs to establish an O(1) competitive ratio.

Another question is the relationship between the known and unknown i.i.d. models and the
random order model. The optimal competitive ratios for the various arrival models for online
problems can be sorted as follows (see e.g. [206, Theorem 2.1])

C.R.(Adversarial) > C.R.(RandomOrder) > C.R.(Unknown IID) > C.R.(Known IID).

For the online metric matching problem the best bounds known for the above are, respectively,
O(log2 n) [23], Θ(log n), O(log n) (both [239]), andO((log log log n)2) (this chapter). Given the
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lower bound of [239], the main result of this chapter implies that one or both of the inequalities
in the chain

C.R.(Random Order) > C.R.(Unknown IID) > C.R.(Known IID)

is strict (and asymptotically so). It would be interesting to see which of these inequalities is strict,
by either presenting a o(log n)-competitive algorithm for unknown i.i.d or a ω((log log log n)2)
lower bound for this model. For the line metric, we give the first constant-competitive algo-
rithm for this well-studied metric under any non-trivial arrivals. Extending this result, and more
generally understanding the exact relationships between these arrival models for this simple met-
ric may prove useful in understanding the relationships between the different stochastic arrival
models more broadly. Moreover, it would be interesting to study these questions for other com-
binatorial optimization problems with online stochastic arrivals.
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Chapter 9

Random-Order Online Edge Coloring

We now return to the online edge-coloring problem, fist discussed in Chapter 6. Nearly thirty
years ago, Bar-Noy, Motwani, and Naor [25] conjectured that an online (1 + o(1))∆-edge-
coloring algorithm exists for n-node graphs of maximum degree ∆ = ω(log n). This conjec-
ture remains open in general. In Chapter 6 we proved this conjecture for bipartite graphs under
one-sided vertex arrivals. Progress was made on this conjecture by [5] and [22] under random-
order edge arrivals, though here this conjecture remained unanswered. In this chapter, based on
joint work with Sayan Bhattacharya and Fabrizio Grandoni, we resolve this conjecture under
random-order edge arrivals.

9.1 Background
Edge coloring is the problem of assigning one of k colors to all edges of a simple graph, so that
no two incident edges have the same color. The objective is to minimize the number of colors, k.
The edge coloring problem goes back to the 19th century and studies of the four-color theorem
[234, 255]. In 1916, König [184], in what many consider to be the birth of matching theory,
proved that any bipartite graph of maximum degree ∆ is colorable using ∆ colors. (Clearly, no
fewer colors suffice.) Nearly half a century later, Vizing [261] proved that any general graph is
(∆ + 1)-edge-colorable. Vizing’s proof is algorithmic, yielding such a coloring in polynomial
time. This is likely optimal, as it is NP-hard to determine if a general graph is ∆-edge-colorable
[160]. Algorithms for the edge coloring problem have been studied in several different models
of computation, including offline, online, distributed, parallel, and dynamic models (see, e.g.,
[60, 70, 72, 82, 177, 219, 254] and references therein.) In this chapter, we study the edge coloring
problem in online settings.

Online edge coloring: Here, an adversary picks an n-node graph G of maximum degree ∆ (the
algorithm knows n and ∆, but notG), and then reveals the edges ofG one at a time. Immediately
after the arrival of an edge, the algorithm must irrevocably assign a color to it, with the objective
of minimizing the final number of colors used. This problem was first studied nearly thirty years
ago, by Bar-Noy, Motwani, and Naor [25]. They showed that the greedy algorithm, which returns
a proper (2∆ − 1)-edge coloring, is worst-case optimal among online algorithms. This might
seem to be the end of the story for this line of research. However, as pointed out by Bar-Noy et al.
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[25], their lower bound only holds for bounded-degree graphs, with some ∆ = O(poly log n).
This led them to conjecture that online (1 + o(1))∆-edge-coloring is possible for graphs with
∆ = ω(poly log n). This conjecture remains wide open, though in Chapter 6 we resolved it for
one-sided vertex arrivals in bipartite graphs. In this chapter we address this problem under (the
incomparable) random-order edge arrivals.

Random-order online edge coloring: Here, an adversarially-chosen graph has its edges re-
vealed to the algorithm in uniformly random order. Such random-order arrivals, which capture
numerous stochastic arrival models, have been widely studied for many online problems. (See,
e.g., [176, 181, 189, 201, 208] and the survey by Gupta and Singla [141] and references therein.)
In the context of edge coloring, this model was studied by [5, 22]. Aggarwal et al. [5] were the
first to show that high ∆ suffices for near-ideal coloring in this model, giving a (1 + o(1))∆-
edge-coloring algorithm for multigraphs with ∆ = ω(n2). Bahmani et al. [22] then breached the
greedy 2∆− 1 barrier for simple graphs with polylogarithmic ∆, giving a 1.26∆-edge coloring
algorithm for ∆ = ω(log n). This leads to the following natural open question: can one obtain
“the best of both worlds” w.r.t. [5, 22]? That is, can one obtain a (1 + o(1))∆-edge-coloring
for graphs of maximum degree ∆ = ω(log n) whose edges are presented in random order? Put
another way, is the Bar-Noy et al. conjecture true for random-order edge arrivals? We answer
this question in the affirmative.

Theorem 9.1.1. For some absolute constant γ ∈ (0, 1), there exists an online algorithm
that, when given a graph G of maximum degree ∆ = ω(log n), whose edges are pre-
sented in random order, computes a proper

(
∆ +O

(
∆γ · log1−γ n

))
= (1 + o(1))∆-

edge-coloring of G w.h.p.

We complement this upper bound with a lower bound showing that, for some ∆ = O(
√

log n),
not only is it impossible to guarantee a (1 + o(1))∆-edge-coloring under random-order arrivals,
but it is even impossible to use any fewer than 2∆− 1 colors. (See Section 9.4.)

We note that previous random-order online edge coloring algorithms [5, 22] required the
graph to be ∆-regular. This assumption is without loss of generality in an offline setting, but
it is unclear whether the same holds in the random-order online model. Our algorithm from
Theorem 9.1.1, however, works on any graph (including non-regular ones): this is discussed in
Section 9.3.1.

Remark. In the same joint work with Sayan Bhattacharya and Fabrizio Grandoni which this
chapter is based on, we presented improved algorithms for dynamic settings, based on the same
underlying basic algorithm. In particular, we gave dynamic (1 + ε)∆-edge-coloring algorithms
with constant recourse, or number of changes per edge arrival/departure, improving on previous
poly log n-recourse algorithms due to Duan et al. [82]. However, to keep this chapter consistent
with the remainder of this part of the thesis, we do not elaborate on this result.

9.1.1 Our Techniques
Underlying our result is an algorithmic approach inspired by the Rödl Nibble Method [11], as
applied to distributed edge coloring by Dubhashi et al. [84]. This method and its variants have

176



since found further uses in distributed settings [60, 91]. To the best of our knowledge, the results
described here are the first to export this method to online settings.

We analyze our basic algorithm, which is a variant of [84], in an offline model. We then
show how to implement this algorithm in online and dynamic settings, from which we obtain our
results. We now outline this basic algorithm, and the ideas needed to implement it in the models
we study. For simplicity, we focus on ∆-regular graphs in this section.

The Basic Algorithm: The Nibble Method in the framework of edge coloring was first used
in [84] in the distributed model. Let us sketch how their algorithm would work in the offline
setting. The algorithm consists of multiple rounds. In each round, each vertex v selects a ran-
dom ε fraction of its incident uncolored edges. Each sampled edge e chooses a tentative color
u.a.r. among the colors in [∆] not yet taken by incident edges (palette of e). We then assign the
tentative color c(e) to sampled edges e for which no incident edge e′ picked the same tentative
color c(e), else we mark e as failed, and leave e uncolored. It turns out that each sampled edge
fails at each round with probability O(ε). Crucially, picking ε appropriately results in a number
of important parameters (degrees in the uncolored subgraph, palette sizes, etc’) behaving in a
predictable manner, and being sharply concentrated around their mean, w.h.p. In particular, this
results in the uncolored subgraph’s maximum degree decreasing w.h.p. at a rate of roughly 1− ε
per application of this subroutine, or round. Consequently, some tε = O(log(1/ε)/ε) rounds
leave an uncolored subgraph of maximum degree ∆′ = poly(ε)∆ w.h.p., which can then be
greedily colored using a further 2∆′ = poly(ε)∆ colors. This approach therefore yields a proper
(1 + poly(ε))∆ edge coloring.

In part inspired by [60], we consider a slight modification of the above algorithm which is
more convenient for our goals. In more detail, we make the following changes:
(1) We do not attempt to re-color an edge e which fails in a given round in future rounds, instead
leaving e to be colored greedily in the final stage. Intuitively, ignoring these edges still results in
a low-degree uncolored graph after tε rounds, since few edges incident to each vertex fail.
(2) Whenever an edge e picks a tentative color c, we remove c from the palettes of its incident
edges even if e fails. Intuitively, this does not decrease the palette sizes much, again, since few
edges incident to each vertex fail.
(3) We sample each edge independently with probability ε in each round.

Our modifications bring two main advantages. First, the analysis can be substantially sim-
plified: rather than using a specialized concentration inequality of Grable [137], we mostly use
Hoeffding bounds for negatively-associated variables (see Section 2.4.1). This allows us to pro-
vide a relatively concise, but complete analysis for sub-constant values of ε and for non-regular
graphs. Second, and importantly for us, it is easier to adapt the modified algorithm to the online
setting that we study.

Random-Order Online Implementation: To obtain our results for random-order arrivals, we
first observe that our edge-centric sampling of modification (3) allows us to use the randomness
of edge arrivals to “sample edges for us”. More formally, we implement the independent edge-
sampling part of each round by considering an appropriate binomially-distributed prefix of the
remaining edges (relying on our knowledge of the number of edges of the ∆-regular graph,
m = n∆

2
). This results in each remaining edge of the graph being sampled independently with

probability ε.
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For each round, we have each edge of the round sample a tentative color u.a.r. from its palette.
In this online setting, however, we cannot always tell when an edge arrives whether it picked the
same tentative color as its incident edges of the same round (since some of these arrive later).
We therefore assign the tentative color c(e) to sampled edges e for which no previous incident
edge e′ picked the same tentative color c(e), else we mark e as failed. Modification (2) in the
basic algorithm implies that this change still results in a feasible (partial) coloring. On the other
hand, the uncolored subgraph “after” the rounds in this algorithm clearly has lower maximum
degree than its counterpart in the basic algorithm, and so greedily coloring this subgraph requires
fewer colors than the same stage of the basic algorithm. Finally, modification (1) of our basic
algorithm, whereby we do not attempt to re-color a failed edge in “future rounds” (which would
require knowledge of future arrivals), implies that we can greedily color every failed edge before
the next edge arrives. So, by the analysis of our basic algorithm, we obtain Theorem 9.1.1 for
∆-regular graphs. In Section 9.3 we build on this approach to obtain our full result, for general
graphs.

9.2 The Basic Algorithm
In this section, we describe our basic algorithm for near-regular graphs, and state the key theorem
needed for its analysis. We defer a more detailed analysis to Section 9.6.

The input to the algorithm is a graph G = (V,E) with |V | = n nodes, where the degree of
each node lies in the interval [(1 − ε2)∆, (1 + ε2)∆]. The parameter ε satisfies the following
condition:

1/104 > ε > 10 · (lnn/∆)1/6 . (9.1)

Note that such ε exist if ∆ = Ω(log n) is large enough. The algorithm runs in two phases, as
follows.

Phase One. In phase one, the algorithm properly colors a subset of edges of G using (1 + ε2)∆
colors, while leaving an uncolored subgraph of small maximum degree. This phase consists of
tε − 1 rounds {1, . . . , tε − 1}, for

tε := bln(1/ε)/(2Kε)c , and K = 48. (9.2)

Each round i ∈ [tε − 1] operates on a subgraph Gi := (V,Ei) of the input graph (with E1 = E),
identifies a subset of edges Si ⊆ Ei, picks a tentative color c(e) ∈ [(1 + ε2)∆] ∪ {null} for each
edge e ∈ Si, and returns the remaining set of edges Ei+1 = Ei \ Si for the next round. Thus, we
have: E = E1 ⊇ E2 ⊇ · · · ⊇ Etε .

We now introduce a couple of notations that will be useful in subsequent discussions. (a) For
all i ∈ [tε − 1] and v ∈ V , let Pi(v) := {χ ∈ [(1 + ε2)∆] : χ 6= c(u, v) for all (u, v) ∈ ⋃j<i Sj}
denote the palette of the node v for round i. A color χ ∈ [(1 + ε2)∆] belongs to Pi(v) iff no edge
incident on v has tentatively picked the color χ in previous rounds j < i. (b) Similarly, for all
i ∈ [tε − 1] and (u, v) ∈ Ei, let Pi(u, v) := Pi(u) ∩ Pi(v) denote the palette of the edge (u, v)
for round i.

We now describe each such round i. First, we sample each edge e ∈ Ei independently
with probability ε. Let Si ⊆ Ei be the set of sampled edges. Next, each edge e ∈ Si with
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Pi(e) 6= ∅ tentatively picks a color c(e) from its palette Pi(e) uniformly and independently at
random. We say that an edge e ∈ Si failed in round i iff either (a) Pi(e) = ∅ (in this case we
set c(e) := null), or (b) among the edges N(e) ⊆ E that are adjacent to e, there is some edge
e′ ∈ Si that tentatively picked the same color (i.e., c(e) = c(e′)). Let Fi ⊆ Si denote the set
of failed edges in round i. The remaining sampled edges e ∈ Si \ Fi are called successful in
round i. Each such edge e ∈ Si \ Fi is assigned the color c(e) it tentatively picked in round i.
Before terminating the current round, we set Ei+1 := Ei \ Si and Gi+1 := (V,Ei+1). We remark
that the color tentatively sampled by a failed edge e cannot be used by the edges incident to e
in subsequent rounds. This will prove useful both for our analysis and when implementing this
algorithm in other models in subsequent sections.

Phase Two. Finally, in phase two, we greedily color all edges that were not successful in phase
one. That is, letting GF := (V,∪iFi) be the subgraph consisting of all the edges that failed
in phase one, and Gtε := (V,Etε) be the subgraph consisting of all the edges that were never
sampled in phase one, we color the edges of Gtε ∪GF greedily, using a new palette of 2∆(Gtε ∪
GF )− 1 colors. Here ∆(H) denotes the maximum degree in any graph H .

Algorithm 14 The Basic Algorithm

1: E1 ← E and G1 ← (V,E1)
2: for i = 1, 2, . . . , tε − 1 do
3: Si ← ∅
4: for each e ∈ Ei independently do
5: with probability ε, add e to Si
6: Pi(e)← [(1 + ε2)∆] \ {c(e′) | e′ ∈ N(e) ∩⋃j<i Sj}.
7: If Pi(e) 6= ∅, sample c(e) ∼R Pi(e), else set c(e)← null . tentative coloring of e
8: let Fi ← {e ∈ Si | c(e) ∈ {null} ∪ {c(e′) | e′ ∈ N(e) ∩ Si}} . the set of failed edges
9: color each edge e ∈ Si \ Fi using color c(e)

10: Ei+1 ← Ei \ Si and Gi+1 ← (V,Ei+1).
11: let GF := (V,

⋃
i Fi) denote the subgraph of G consisting of failed edges.

12: color Gtε ∪GF greedily using colors (1 + ε2)∆ + 1, . . . , (1 + ε2)∆ + 2∆(Gtε ∪GF )− 1.

The algorithm’s pseudocode is given in Algorithm 14. We now turn to discussing its analysis.

Observation 9.2.1. Algorithm 14 outputs a proper ((1+ε2)∆+2∆(Gtε ∪GF )−1)-edge-
coloring of the input graph G = (V,E).

Proof. First observe that the algorithm computes a valid partial coloring in Phase One. Indeed,
any e ∈ Si \ Fi selects a color c(e) ∈ Pi(e) ⊆ [(1 + ε2)∆], and the definition of Pi(e) and Fi
guarantees that no other edge e′ ∈ N(e) in any round of Phase One can be colored with c(e).
The claim follows by observing that in Phase One we use only colors from [(1 + ε2)∆], while in
Phase Two the greedy algorithm uses a disjoint set of at most 2∆(Gtε∪GF )−1 extra colors.

The key property of the basic algorithm is captured in the following theorem.
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Theorem 9.2.2. ∆(Gtε ∪GF ) = O
(
ε1/(3K)∆

)
w.h.p.

Corollary 9.2.3. The basic algorithm
(
∆ +O

(
ε1/(3K)∆

))
edge colors G, w.h.p.

Proof. Follows from Theorem 9.2.2 and Observation 9.2.1.

In some sense, the arguments behind the proof of Theorem 9.2.2 were already apparent in
the work of Dubhashi et al. [84]. Consequently, we defer a complete and self-contained proof
of this theorem to Section 9.6. For now, we turn to exploring implications of this theorem and
Algorithm 14 to online edge coloring.

9.3 Random-Order Online Algorithm
In this section we present algorithms which (essentially) implement Algorithm 14 in the random-
order online model. We start with a warm-up case, where the input graph is near-regular, and we
know the value of m (the number of edges in the final graph).

9.3.1 Warm-up: Near-Regular Graphs with Known m
One subroutine we rely on is the ability to use the stream’s randomness to simulate indepen-
dent sampling of edges. For completeness, we provide a proof of the following simple fact in
Section 9.5.

Fact 9.3.1. Consider a universe U of n elements. Let Uk ⊆ U denote the first k elements in
a random-order stream of U . Then, for X ∼ Bin(n, p) a binomial random variable with
parameters n and p, the random set UX contains every element in U independently with
probability p.

Using Fact 9.3.1, we simulate (a variant of) Algorithm 14 with parameter ε under random-
order edge arrivals in a graph G = (V,E) with m edges and n nodes, where the degree of each
node lies in the interval (1 ± ε2)∆, and ∆ = ω(log n). The algorithm knows n,∆ and m (but
not G).

Warm-up Algorithm: Set ε := 10 · (lnn/∆)1/6 (see (9.1)). For round i = 1, . . . , tε− 1, sample
an independent random variable Xi ∼ Bin(m −∑j<iXj, ε), and let Si be the set of edges in
G whose positions in the random-order stream lie in the interval (

∑
j<iXj,

∑
j6iXj]. As with

Algorithm 14, each edge e ∈ Si, upon its arrival, samples a tentative color

c(e) ∼R Pi(e) := [(1 + ε2)∆] \ {c(e′) | e′ ∈ N(e) ∩ Sj, j < i},
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where we set c(e) ← null if Pi(e) = ∅. Unlike in Algorithm 14, in this online setting the
algorithm cannot know whether the color c(e) conflicts with the tentative color of a neighboring
edges e′ ∈ N(e) ∩ Si that arrives in the same round i, but after e in the stream. Hence, we color
each edge e ∈ Si with its tentative color c(e), unless c(e) = null or some previously-arrived
neighboring edge e′ ∈ N(e) ∩ Si also picked color c(e′) = c(e). In the latter case, we instead
color e greedily with the first available color j > (1 + ε2)∆. We let F ′i be the edges in Si which
are colored greedily.

As we show, this online algorithm inherits the performance of the basic Algorithm 14.

Theorem 9.3.2. For some absolute constant γ ∈ (0, 1), the warm-up algorithm described
above yields a proper

(
∆ +O

(
∆γ · log1−γ n

))
= (1 + o(1))∆-edge coloring of G w.h.p.

Proof. This algorithm outputs a valid edge coloring, as it colors every edge (due to the greedy
stage) and never assigns an edge a color used by an incident edge. It remains to bound its
performance.

For any i > 0, LetEi be the set of edges whose positions in the random-order stream lie in the
interval (

∑
j<iXj,m]. By Fact 9.3.1, the set of edges Si is a random subset of Ei which contains

each edge in Ei independently with probability ε. A simple induction on i shows that the sets
Si and Ei share the same distributions as their counterparts in Algorithm 14. Next, denote by
Fi ⊇ F ′i the set of edges e ∈ Si for which c(e) ∈ {null} ∪ {c(e′) | e′ ∈ N(e) ∩ Si}. Since each
edge e ∈ Si picks a color uniformly at random from the set of colors not picked by any of its
neighboring edges in previous rounds (including the edges in Fj for all j < i), a simple induction
on i shows that the random variables Fi and c(e) in this algorithm are distributed exactly as their
counterparts in Algorithm 14. Consequently, the upper bounds on ∆(

⋃
i Fi) > ∆(

⋃
i F
′
i ) and

∆(Gtε) of Algorithm 14 hold for this online algorithm as well. Therefore, the greedy (online)
algorithm colors the uncolored edges inGtε∪GF using at most 2·∆(Gtε∪GF )−1 = O(ε1/(3K)∆)
colors w.h.p., by Theorem 9.2.2 and our choice of ε = 10 · (lnn/∆)1/6, as in (9.1). As we use
(1 + ε2)∆ distinct colors for all other edges, this online algorithm uses ∆ +O

(
ε1/(3K)∆

)
colors

overall w.h.p. Since ∆ = ω(log n) and K is an absolute constant (see (9.2)), the theorem follows
from our choice of ε.

Assuming near-regularity, and known m. The assumption of near-regularity used by the
above algorithm is common in the literature. Indeed, all prior random-order online edge-coloring
algorithms assume perfect regularity [5, 22]. As pointed out in those papers, this assumption is
without loss of generality in the offline model, where we can add dummy edges to make the
graph regular. In a random-order online setting, this is problematic, however, as these dummy
edges should be interspersed among the real edges to create a regular graph presented in random
order. This last point seems impossible without prior knowledge of vertices’ final degrees, and
the number of edges, m, which we assume prior knowledge of. In the next section we show
how to remove the assumption of near-regularity, as well as knowledge of m, while retaining the
asymptotic performance of Theorem 9.3.2.
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9.3.2 General Graphs
We now present and analyze our random-order online edge coloring algorithm for general graphs
G = (V,E) with n nodes, m edges and maximum degree ∆ = ω(log n). The algorithm knows
n,∆; but does not know m or G. Let e1, . . . , em be the random stream of edges, G(k) be the
subgraph induced by e1, . . . , ek, and d(k)(v) be the degree of node v in G(k). Our key insight is
to observe the first few edges in the input stream until we are able to infer (approximately) the
value of m and the degree of each node in G.

In more detail, our algorithm consists of 3 main steps. In Step (I), we observe the first T
edges until some node v reaches the degree d(T )(v) = ε∆ (or we reach the end of the stream).
This first set of edges is colored greedily using the first available color. Let ∆1 be the largest
color used in Step (I). The following technical lemma follows from a standard application of
Chernoff bounds over sums of negatively-associated variables (proof in Section 9.5).

Lemma 9.3.3. Let ε 6 1
2
, and let α > 0 be a constant, and assume ∆ > 24(α+3) lnn

ε8
. Then,

with probability at least 1−O(n−α), the following properties hold:
1. T = ε ·m(1± ε2).
2. d(T )(v) = ε · d(v)± 2ε3∆ for every node v.
3. Let m′ := T/(ε(1 + ε2)). Conditioned on m′ 6 m, every node v has d(v) −
d(m′)(v) 6 2ε2∆.

Henceforth, we assume that all the high-probability events in Lemma 9.3.3 actually occur
(otherwise the algorithm fails). In Step (II), we color the nextm′−T edgesR := {eT+1, . . . , em′}
using colors larger than ∆1, as described below.

Let GR = (V,R) denote the subgraph of G induced by the edges in R. Before processing the
(T+1)th update eT+1, we virtually expandGR by adding dummy nodesW and dummy edgesD in
the following manner. For each node v ∈ V , create ∆ dummy nodes v1, v2, . . . , v∆ which form a
∆-clique via dummy edges, and add extra dummy edges from v to max{0,∆−(1/ε−1)·d(T )(v)}
of these dummy nodes {v1, . . . , v∆}. Let H be the resulting graph. Note that at this point we
only know the dummy edges in H , as the edges in GR will arrive in future.

In Step (II), we run the warm-up online algorithm A (from Section 9.3.1) with parameter 2ε
on H , where the edges of H are presented to A in random order. More precisely, initializing
j = T + 1, D′ = D and R′ = R, we perform the following operations for |R|+ |D| iterations.

• With probability |D′|/(|R′| + |D′|), we sample a random edge ed from D′, and feed the
edge ed to the online algorithmA, and setD′ ← D′\{ed} before going to the next iteration.

• With remaining probability, we feed the edge ej toA and color ej with the color χ(ej)+∆1,
where χ(e) is the color chosen by A for ej , and set R′ ← R′ \ {ej} and increase j by one.

Let ∆2 be the largest color chosen in Step (II).
Finally, in Step (III), we color the remaining edges em′+1, . . . , em greedily with the first avail-

able color j > ∆2. Let ∆3 be the largest color used at the end of Step (III).
We next analyze the above algorithm (assuming the occurrence of the high probability events

from Lemma 9.3.3). Obviously this algorithm computes a feasible coloring. By definition, Step
(I) uses ∆1 6 2ε∆ colors. Analogously, by Item 3 of Lemma 9.3.3, the number of colors used in
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Step (III) is at most ∆3−∆2 = O(ε2∆). It remains to upper bound the number of colors ∆2−∆1

used in the second step. To this end, we note that Lemma 9.3.3 implies that H is near-regular.
More precisely, we have the following bound, whose proof is deferred to Section 9.5.

Lemma 9.3.4. The graph H satisfies dH(v) = ∆(1± 4ε2) for all v ∈ V (H), w.h.p.

It is easy to see that Step (II) implements the warm-up algorithm on H , as the edges of H are
fed to this algorithm in a uniform random order. Thus, by Theorem 9.3.2, w.h.p. the number of
colors used in Step (II) is at most ∆2 −∆1 6 ∆ + O

(
∆γ · log1−γ n

)
for a constant γ ∈ (0, 1).

By choosing ε small enough so that ε∆ 6 ∆γ · log1−γ n, we immediately obtain our main result.

Theorem 9.1.1. For some absolute constant γ ∈ (0, 1), there exists an online algorithm
that, when given a graph G of maximum degree ∆ = ω(log n), whose edges are pre-
sented in random order, computes a proper

(
∆ +O

(
∆γ · log1−γ n

))
= (1 + o(1))∆-

edge-coloring of G w.h.p.

9.4 A Lower Bound
Bar-Noy et al. [25] gave a simple lower bound for edge coloring under adversarial arrivals.
Specifically, they showed a family of graphs F with maximum degree ∆ = O(

√
log n) for

which any randomized online algorithm A colors some graphs in F with 2∆ − 1 colors with
constant probability. Extending these ideas slightly, we show that the same holds even if the
arrival order is randomized.

Lemma 9.4.1. There exists a distribution over n-node graphs G of maximum degree
∆ = Ω(

√
log n), for which any online edge coloring algorithm A must, with constant

probability, use 2∆− 1 colors on a graph G ∼ G presented in random order.

Proof. Consider a star on ∆− 1 leaves. If AlgorithmA uses 2∆− 2 or fewer colors, then it may
color any such star’s edges with

(
2∆−2
∆−1

)
possible subsets of colors. If ∆ such stars’ edges are

colored using the same subset S ⊆ [2∆− 2] of ∆− 1 colors some node v neighbors the roots of
these ∆ stars, then the algorithm fails, as it is forced to use ∆ colors outside of S for the edges
of v, for a total of 2∆ − 1 distinct colors. We show a random graph G for which this bad event
happens with constant probability, even when the edges are presented in random order.

Our graph consists of independent copies of the following random graph, H. The graph H
contains β := 2∆ ·

(
2∆−2
∆−1

)
·
(

2∆−1
∆

)
6 4O(∆) stars with ∆ − 1 leaves, and one node v which

neighbors the centers of ∆ randomly-chosen such stars. For any star, the probability that all
∆ − 1 edges of the star arrive before any of the ∆ edges of v arrive is (∆−1)!∆!

(2∆−1)!
= 1/

(
2∆−1

∆

)
.

Therefore, by linearity of expectation, if we denote by X the fraction of stars in H whose edges
arrive before all edges of v, we have that µ := E[X] = 1/

(
2∆−1

∆

)
. By Markov’s inequality
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applied to the non-negative variable Y := 1 −X , whose expectation is E[Y ] = 1 − µ, we have
that

Pr
[
X 6

µ

2

]
= Pr

[
Y > 1− µ

2

]
6

1− µ
1− µ

2

= 1− µ

2− µ 6 1− µ

2
. (9.3)

Now, if X > µ
2

= 1/(2 ·
(

2∆−1
∆

)
), then at least β · µ

2
= ∆ ·

(
2∆−2
∆−1

)
of the stars of H ∼ H have

all their edges arrive before any edge of v arrives. By pigeonhole principle, some ∆ of these stars
are colored with a common set of ∆ − 1 colors, S ⊂ [2∆ − 1]. If v neighbors the roots of ∆
such stars whose edges are colored with the colors in S, then Algorithm A fails, as it must color
the graph using 2∆ − 1 colors, as argued above. Therefore, conditioned on X > µ

2
, Algorithm

A fails when coloring H ∼ H with probability at least

Pr
[
A fails on H ∼ H

∣∣∣ X >
µ

2

]
> 1/

(
∆ ·
(

2∆−2
∆−1

)
∆

)
> 4−O(∆2). (9.4)

Consequently, combining Equation (9.3) and Equation (9.4), and using µ = 1/
(

2∆−1
∆

)
=

4−O(∆), we find that the unconditional probability of AlgorithmA not failing due to H is at most

Pr [A does not fail on H ∼ H] 6 1− Pr
[
A fails on H ∼ H

∣∣∣ X >
µ

2

]
· Pr

[
X >

µ

2

]
6 1− 4−O(∆2) · µ

2

= 1− 4−O(∆2).

As stated above, the random graph G we consider consists of some γ independent copies of
H. For independent copies of H, the above upper bound on the probability of A not failing on
a copy H ∼ H holds independently of other copies’ realization and coloring by A. Therefore,
letting G consist of some sufficiently large γ := 4Θ(∆2) independent copies ofH, we have that

Pr [A does not fail on G] 6
(

1− 4−O(∆2)
)γ

6
1

e
.

Therefore, Algorithm A fails on G with constant probability. The lemma follows by noting that
G consists of some n = γ · (β + 1) = 4Θ(∆2) nodes, and therefore ∆ = Ω(

√
log n).

9.5 Deferred Proofs from Section 9.3
In this section we give the full proofs deferred from Section 9.3, restated below for ease of
reference.

We start by proving Fact 9.3.1, which intuitively implies that we can use the stream’s random
order to sample edges independently.

Fact 9.3.1. Consider a universe U of n elements. Let Uk ⊆ U denote the first k elements in
a random-order stream of U . Then, for X ∼ Bin(n, p) a binomial random variable with
parameters n and p, the random set UX contains every element in U independently with
probability p.
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Proof. For any given subset S ⊆ U of size |S| = k, we have Uk = S precisely when X = k
and the elements of S are the first k elements in the stream. As X is independent of the stream’s
randomness, this gives us:

Pr[Uk = S] = Pr[X = k] · Pr[S is a prefix of the stream] = Pr[X = k]/

(
n

k

)
= pk(1− p)n−k.

This is precisely the probability of getting a specific set S, when each of the n elements in U is
sampled independently with probability p.

Next, we prove Lemma 9.3.3, which asserts that the edges until time T where some vertex
reaches degree ε · ∆ gives sharp estimates of natural graph parameters, such as the number of
edges, and every vertex’s degree, w.h.p.

Lemma 9.3.3. Let ε 6 1
2
, and let α > 0 be a constant, and assume ∆ > 24(α+3) lnn

ε8
. Then,

with probability at least 1−O(n−α), the following properties hold:
1. T = ε ·m(1± ε2).
2. d(T )(v) = ε · d(v)± 2ε3∆ for every node v.
3. Let m′ := T/(ε(1 + ε2)). Conditioned on m′ 6 m, every node v has d(v) −
d(m′)(v) 6 2ε2∆.

Proof. The proof relies on several applications of Chernoff bound and union bound, as follows.
Fix some vertex v, and let Xi be an indicator variable for the i-th edge in the stream containing
v. Clearly, we have that E[Xi] = d(v)

m
, and so by linearity of expectation

E[d(k)(v)] = k · d(v)

m
. (9.5)

On the other hand, the joint distribution (X1, . . . , Xm) is a permutation distribution, and so it
is NA. We may therefore apply Chernoff bounds to sums of such variables, such as d(k)(v) =∑k

i=1 Xi. We will make use of this to prove that the three properties hold w.h.p.
We begin by proving Property 1. Fix any vertex v of degree d(v) = ∆. For any k >

ε · m(1 + ε2), we have by Equation (9.5) that E[d(k)(v)] > ε · ∆(1 + ε2). Consequently, by
Chernoff bound, we have

Pr
[
d(k)(v) 6 ε ·∆

]
= Pr

[
d(k)(v) 6

1

1 + ε2
· ε ·∆(1 + ε2)

]
6 Pr

[
d(k)(v) 6 (1− ε2) · ε ·∆(1 + ε2)

]
1− x 6

1

1 + x
∀x > −1

6 exp

(−ε4 · ε ·∆(1 + ε2)

3

)
Lemma 2.4.10

6 n−α. ∆ >
3α log n

ε5

Therefore, Pr[T > ε ·m(1 + ε2)] 6 n−α.
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Now, fix a vertex v. For any k 6 ε ·m(1− ε2), we have by Equation (9.5) that E[d(k)(v)] 6
ε · d(v)(1− ε2) 6 ε ·∆(1− ε2). Consequently, by Chernoff bound, we have

Pr
[
d(k)(v) > ε ·∆

]
= Pr

[
d(k)(v) >

1

1− ε2
· ε ·∆(1− ε2)

]
6 Pr

[
d(k)(v) > (1 + ε2) · ε ·∆(1− ε2)

]
1 + x 6

1

1− x ∀x < 1

6 exp

(−ε4 · ε ·∆(1 + ε2)

3

)
Lemma 2.4.10

6 n−(α+1). ∆ >
6(α + 1) log n

ε5

Taking union bound over all vertices, we find that Pr[T 6 ε ·m(1− ε2)] 6 n−α, which together
with the above, implies that Property 1 holds with probability at least 1− 2n−α.

We next prove that Properties 2 and 3 hold w.h.p. Consider the following property for a
generic k 6 m:

d(k)(v) = ε · d(v)± 2ε3∆. (9.6)

Let B(k) denote the bad event that some vertex v fails to satisfy Equation (9.6) for this k. We will
show that the probability of any event B(k) to happen for k ∈ [εm(1 − ε2),m] is at most 2n−α.
Observe that Property 2 and Property 3 hold if events B(T ) and B(m′), resp., do not happen.
Assuming Property 1, both T and m′ fall in the range [εm(1− ε2),m]. It then follows that the 3
properties simultaneously hold with probability at least 1− 4n−α.

Equation (9.6) trivially holds for vertices v with d(v) 6 ε3∆, for which 0 6 d(k)(v) 6
d(v) 6 ε3∆. On the other hand, for vertices v with d(v) > ε3∆ and k as above, we have by
Equation (9.5) that E[d(k)(v)] = ε ·∆(1 ± ε2). Consequently, by Chernoff bound, we have that
Pr
[
d(k)(v) > ε · d(v) + 2ε3∆

]
is at most

Pr
[
d(k)(v) > (1 + 2ε2) · ε · d(v)

]
d(v) 6 ∆

6Pr
[
d(k)(v) > (1 + ε2/2) · ε · d(v)(1 + ε2)

]
1 + 2ε2 > (1 + ε2)(1 + ε2/2)

6 exp

(−ε4/4 · ε · d(v)(1 + ε2)

3

)
Lemma 2.4.10

6 exp

(−ε4/4 · ε · ε3∆(1 + ε2)

3

)
d(v) > ε3∆

6n−(α+3). ∆ >
12(α + 3) lnn

ε8
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Similarly, we have that Pr
[
d(k)(v) 6 ε · d(v)− 2ε3∆

]
is at most

Pr
[
d(k)(v) 6 (1− 2ε2) · ε · d(v)

]
d(v) 6 ∆

6Pr
[
d(k)(v) > (1− ε2/2) · ε · d(v)(1− ε2)

]
1− 2ε2 6 (1− ε2)(1− ε2/2)

6 exp

(−ε4/4 · ε · d(v)(1− ε2)

3

)
Lemma 2.4.10

6 exp

(−ε4/4 · ε · ε3∆(1− ε2)

3

)
d(v) > ε3∆

6n−(α+3). ∆ >
24(α + 3) lnn

ε8

By union bound, we have that

Pr[B(k)] 6
∑
v

Pr[d(k)(v) 6= ε · d(v)± 2ε3∆] 6 2n−(α+2).

The claim follows by union bound over the values k ∈ [εm(1− ε2),m].

Finally, we show that adding ∆ dummy vertices per vertex v in G forming a ∆-clique, and
(∆− (1/ε− 1) · d(T )(v))+ dummy edges from v to some of its dummy nodes, to the edges in the
time range (T,m′ − T ], yields a near-regular graph H .

Lemma 9.3.4. The graph H satisfies dH(v) = ∆(1± 4ε2) for all v ∈ V (H), w.h.p.

Proof. By Lemma 9.3.3 (Item 2), the number of dummy edges of v is ∆ − (1/ε − 1) · d(T )(v),
as this number is non-negative for every vertex v ∈ V w.h.p., since

∆− (1/ε−1) ·d(T )(v) = ∆− (1−ε) · (d(v)±2ε2∆) > ∆(1− (1−ε)−2ε2) = ∆(ε−2ε2) > 0.

Each dummy node vi belongs to a single clique of size ∆, and possibly has another dummy edge
to a single real node v, and therefore it has degree dH(v) ∈ {∆ − 1,∆}. As for real vertices
v, again appealing to Lemma 9.3.3 (Item 2), combined with v having at most ε2∆ edges in the
range (m′,m] by Lemma 9.3.3 (Item 3), we find that the degree of v in H satisfies

dH(v) = d(v)− d(T )(v) + ∆− (1/ε− 1) · d(T )(v)± 2ε2∆

= d(v) + ∆− (d(v)± 2ε2∆)± 2ε2∆

= ∆(1± 4ε2).

9.6 Analysis of the Basic Algorithm
In this section, we analyze our basic algorithm (Algorithm 14) from Section 9.2. Before proceed-
ing any further, the reader will find it useful to review Section 9.2. The analysis of Algorithm 14
boils down to proving that the uncolored subgraph after phase one, consisting of all the edges
that either failed or were not sampled in the first place, has bounded degree. This is (re-)stated in
Theorem 9.2.2 below.
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Theorem 9.2.2. ∆(Gtε ∪GF ) = O
(
ε1/(3K)∆

)
w.h.p.

The rest of this section (Section 9.6) is dedicated to the proof of Theorem 9.2.2, and it is
organized as follows. In Section 9.6.1, we give a brief, high-level and informal overview of the
proof of Theorem 9.2.2. We start the formal proof of Theorem 9.2.2 in Section 9.6.2, which
defines some key random variables and events that will be extensively used in our analysis. In
Section 9.6.3, we show how Theorem 9.2.2 follows from a sequence of lemmas. The remainder
of Section 9.6 is devoted to the proofs of these individual lemmas from Section 9.6.3, starting
with a review of some useful concentration inequalities we will need, in Section 11.3.

Throughout Section 9.6, we use the notation a± b to denote the interval [a− b, a+ b]. Thus,
whenever we write x = a± b in this section, it means that x ∈ [a− b, a+ b]. Similarly, whenever
we write a± b = a′ ± b′, it means that [a− b, a+ b] ⊆ [a′ − b′, a′ + b′].

9.6.1 An informal overview of the proof of Theorem 9.2.2

For all i ∈ [tε − 1], v ∈ V , let Ni(v) := {(u, v) ∈ Ei} denote the edges of v that are present in
Gi = (V,Ei). The next lemma helps us bound the maximum degree in the subgraph Gtε .

Lemma 9.6.1. |Ni(v)| ≈ (1− ε)(i−1) · (1± ε2)∆ for all i ∈ [tε], v ∈ V , w.h.p.

Proof. (Sketch) The statement clearly holds for i = 1. The proof follows from induction on i.
Condition on all the random choices made by the algorithm during rounds {1, . . . , i − 1}. Fix
any node v ∈ V , and suppose that |Ni(v)| ≈ (1 − ε)(i−1) · (1 ± ε2)∆ for some i ∈ [tε − 2].
Each edge e ∈ Ni(v) belongs to Ni+1(v) independently with probability 1 − ε. From linearity
of expectation, we derive that E[|Ni+1(v)|] = (1 − ε) · |Ni(v)|. Now, a standard Hoeffding
bound gives us: |Ni+1(v)| = (1 − ε) · |Ni(v)| ± Θ(

√
∆ lnn) w.h.p. From (9.1), (9.2) and the

inductive hypothesis, we get:
√

∆ lnn � ε2 · ∆ � ε · |Ni(v)|. This implies that |Ni+1(v)| ≈
(1− ε)i · |Ni(v)| ≈ (1− ε)i · (1± ε2)∆ w.h.p.

The proof of Lemma 9.6.1 gives us a glimpse as to why we need a lower bound on ε: When-
ever we take a concentration bound during the analysis, we will end up with an additive error
term of the form

√
∆ lnn. We will like this additive error term to get subsumed within εβ∆ for

some large constant β > 1. Specifically, we will like to have εβ∆ �
√

∆ lnn, which implies
that ε�

(
lnn
∆

)1/(2β). Henceforth, to convey the main ideas, we will often gloss over this issue in
this section.

Corollary 9.6.2. ∆(Gtε) = O
(
ε1/(3K)∆

)
, w.h.p.
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Proof. (Sketch) Fix any node v ∈ V . Since tε ≈ (ln(1/ε))/(2Kε), Lemma 9.6.1 gives us:
|Ntε(v)| ≈ (1− ε)(tε−1) ·∆ ≈ exp(ε · (tε− 1)) ·∆ ≈ ε1/(2K)∆ w.h.p. In other words, every node
in Gtε has degree at most ε∆ w.h.p. This implies the corollary.

It now remains to upper bound the maximum degree of any node in the subgraph GF . Before
proceeding any further, we need to introduce the following notation. For all i ∈ [tε − 1], v ∈ V
and c ∈ [(1 + ε2)∆], let Ni,c(v) = {(u, v) ∈ Ni(v) : c ∈ Pi(u)} denote the set of edges in Ni(v)
whose other endpoints have the color c in their palettes for round i. We refer to the quantity
|Ni,c(v)| as the c-degree of the node v for round i. The main challenge will be to bound the
c-degrees of the nodes and the palette sizes for the edges in each round, as captured in the lemma
below.

Lemma 9.6.3. The following guarantees hold for all rounds i ∈ [tε − 1], w.h.p.
• (a) |Pi(e)| ≈ (1− ε)2(i−1) · (1± ε2)∆ for all edges e ∈ Ei.
• (b) |Ni,c(v)| ≈ (1− ε)2(i−1) · (1±∆2)∆ for all nodes v ∈ V and colors c ∈ [∆].

Lemma 9.6.3 is proved via an induction on i. We skip the rather technical proof of this lemma
in this overview section. Instead, here we only explain how this lemma is used to give an upper
bound on the maximum degree in GF . The following lemma will be very useful towards this
end.

Lemma 9.6.4. With high probability, for all i ∈ [tε − 1], v ∈ V ,

|Ni(v) ∩ Fi| ≈ 2ε · |Ni(v) ∩ Si| ±Θ(
√

∆ lnn).

Proof. (Sketch) Fix any round i ∈ [tε − 1] and any node v ∈ V . Since each edge e ∈ Ei is
sampled in Si independently with probability ε, standard concentration bounds imply that:

|Ni,c(x) ∩ Si| ≈ ε · |Ni,c(x)| for all colors c ∈ [(1 + ε2)∆], w.h.p. (9.7)

Condition on all the random choices made by the algorithm during rounds {1, . . . , i−1}, as well
as the random choices which determine the set Si. Suppose that these random choices we are
conditioning upon satisfy (9.7) and Lemma 9.6.3 for round i (which anyway occur w.h.p.).

Fix any edge (u, v) ∈ Ni(v)∩Si. The probability that (u, v) belongs to the set Fi, conditioned
on it having tentatively picked any color c ∈ Pi(u, v) in round i, is given by:

Pr [(u, v) ∈ Fi | c(u, v) = c] = 1−
∏

e′∈(Ni,c(u)∩Si)

(
1− 1

|Pi(e′)|

)
·

∏
e′∈(Ni,c(v)∩Si)

(
1− 1

|Pi(e′)|

)

≈ 1−
(

1− 1

(1− ε)2(i−1) · (1± ε2)∆

)ε·|Ni,c(u)|+ε·|Ni,c(v)|

≈ 1−
(

1− 1

(1− ε)2(i−1) · (1± ε2)∆

)2ε·(1−ε)2(i−1)·(1±ε2)∆

≈ 1− exp(−2ε) ≈ 2ε.
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Since the above derivation holds for all colors c ∈ Pi(u, v), we infer that Pr[(u, v) ∈ Fi] ≈ 2ε.
Now, by linearity of expectation, we get: E[|Ni(v) ∩ Fi|] =

∑
e∈Ni(v)∩Si Pr[(u, v) ∈ Fi] ≈

2ε · |Ni(v) ∩ Si|. With some extra effort (see Section 9.6.9), we can show that the value of
|Ni(v) ∩ Fi| is tightly concentrated around ±Θ(

√
∆ lnn) of its expectation.

Corollary 9.6.5. ∆(GF ) = O(ε∆), w.h.p.

Proof. Consider any node v ∈ V . The degree of v inGF is given by degv(GF ) :=
∑tε−1

i=1 |Ni(v)∩
Fi|. Hence, w.h.p., Lemma 9.6.4 gives us the following bound on degv(GF ).

degv(GF ) ≈
tε−1∑
i=1

(
2ε · |Ni(v) ∩ Si| ±Θ(

√
∆ lnn)

)
≈ 2ε ·

tε∑
i=1

|Ni(v) ∩ Si| ±Θ(tε ·
√

∆ lnn)

6 2ε · degv(G)±Θ(tε ·
√

∆ lnn) 6 2ε · (1 + ε2)∆ + Θ(tε ·
√

∆ lnn) = Θ(ε∆).

In the above derivation, the last step follows from (9.1) and (9.2). Since every node in GF has
degree at most O(ε∆) w.h.p., we conclude that ∆(GF ) = O(ε∆) w.h.p.

Theorem 9.2.2 follows from Corollary 9.6.2 and Corollary 9.6.5.

9.6.2 Key random variables and events
This section defines some random variables and events that will be extensively used in our anal-
ysis.

Random variables: We will need to deal with the following random variables for each i ∈ [tε].
• Pi(v) ⊆ [(1 + ε2)∆]: A color c ∈ [(1 + ε2)∆] belongs to the set Pi(v) iff there is no edge

(u, v) ∈ Sj which picked the color c at some earlier round j < i. We refer to the set Pi(v)
as the palette of the node v ∈ V for round i.

• Pi(e) ⊆ [(1+ε2)∆]: A color c ∈ [(1+ε2)∆] belongs to the set Pi(e) iff c ∈ Pi(u)∩Pi(v),
where e = (u, v) ∈ E. We refer to the set Pi(e) as the palette of the edge e ∈ E for round
i.

• Ni(v): The set of neighboring edges of v ∈ V in Gi, that is, Ni(v) = {(u, v) ∈ E :
(u, v) ∈ Ei}.

• Ni,c(v): This is the set of neighboring edges of the node v ∈ V inGi whose other endpoints
have the color c in their palettes for round i, that is, Ni,c(v) = {(u, v) ∈ Ni(v) : c ∈
Pi(u)}.

Error parameters: While analyzing the basic algorithm, we need to keep track of the amount
by which the random variables |Pi(e)| and |Ni,c(v)| can deviate from their expected values. The
magnitude of these deviations will be captured by the error-parameters {γi}i∈[tε], where:

γ1 = Kε2. (9.8)
γi+1 = (1 +Kε)γi +Kε2 for all i ∈ [tε − 1]. (9.9)
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Corollary 9.6.6. We have γi 6 ε1/2 for all i ∈ [tε].

Proof. From (9.8) and (9.9), we derive that:

γtε =Kε2 ·
tε−1∑
i=0

(1 +Kε)i

6(Kε2) · (1 +Kε)tε

(Kε)

6ε · exp(Kεtε)

6ε · exp((1/2) · ln(1/ε)) (by (9.2))

=ε1/2.

The corollary now follows from the observation that γi 6 γtε for all i ∈ [tε].

Random events: We will track the three events Ei, Ci and Bi, defined below, for each i ∈ [tε−1].
• Event Ei occurs if |Pi(e)| = (1− ε)2(i−1) · (1± γi) ·∆ for all e ∈ Ei.
• Event Ci occurs if |Ni,c(v)| = (1− ε)2(i−1) · (1± γi) ·∆ for all v ∈ V and c ∈ [(1 + ε2)∆].
• Event Bi occurs if the following conditions hold for all nodes v ∈ V and colors c ∈

[(1 + ε2)∆]:

|Si ∩Ni(v)| = (ε± ε2) · |Ni(v)|, and |Si ∩Ni,c(v)| = (ε± ε2) · |Ni,c(v)|.

Remark:: Since the degree of every node in G is (1± ε2)∆, we have Pr[E1] = Pr[C1] = 1.

Random bits used by our algorithm: While proving Theorem 9.2.2, we will often need to
condition upon certain critical events. It will be easier to follow the proof if we view these
conditionings via the prism of a classification of random bits used by the algorithm, as described
below.

During any given round i ∈ [tε− 1], there are two distinct tasks for which the algorithm uses
randomness: (a) To determine the set of sampled edges Si, and (b) to pick a color c(e) for each
sampled edge e ∈ Si. We let r(edges)

i and r(colors)
i respectively denote the random bits used by the

algorithm for task (a) and task (b). The random bits r(edges)
i and r(colors)

i are mutually independent
of each other, and they are also independent of all the random bits used in the previous rounds
j < i. We let ri = r(edges)

i ∪ r(colors)
i denote all the random bits used by the algorithm in round i.

Furthermore, we let r<i =
⋃i−1
j=1 rj denote the set of all random bits used by the algorithms in

rounds {1, . . . , i − 1}. Note that the random bits r<i completely determine the occurrences of
the following events: {Ej, Cj,Bj}j<i and {Ei, Ci}. On the other hand, the occurrence of the event
Bi is completely determined by the random bits r<i ∪ r(edges)

i .
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9.6.3 Proof of Theorem 9.2.2
The main challenge is to show that all the key events defined in Section 9.6.2 occur w.h.p.
This is summarized in Corollary 9.6.10, which in turn follows from Lemma 9.6.7, Lemma 9.6.8
and Lemma 9.6.9. The proofs of these three crucial lemmas appear in Section 9.6.5, Section 9.6.6
and Section 9.6.8, respectively.

Lemma 9.6.7. Consider any round i ∈ [tε − 1], and fix any instantiation of the bits r<i
which ensure the occurrence of the event Ei∩Ci. Then we have: Pr[Bi | r<i] > 1−1/n1500.

Lemma 9.6.8. Consider any round i ∈ [tε − 2], and fix any instantiation of the bits
r<i ∪ r(edges)

i which ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Then we have:
Pr
[
Ei+1 | r<i ∪ r(edges)

i

]
> 1− 1/n1500.

Lemma 9.6.9. Consider any round i ∈ [tε − 2], and fix any instantiation of the bits
r<i ∪ r(edges)

i which ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Then we have:
Pr
[
Ci+1 | r<i ∪ r(edges)

i

]
> 1− 1/n500.

Corollary 9.6.10. We have Pr
[⋂tε−1

i=1 (Ei ∩ Ci ∩ Bi)
]
> 1− 1/n400.

Proof. First, recall that Pr[E1] = Pr[C1] = 1, and hence Lemma 9.6.7 gives us:

Pr[E1 ∩ C1 ∩ B1] > 1− 1/n1500. (9.10)

Next, applying a union bound over Lemma 9.6.8 and Lemma 9.6.9, we get:

Pr[Ei+1 ∩ Ci+1 | Ei ∩ Ci ∩ Bi] > 1− 2/n500 for all rounds i ∈ [tε − 2]. (9.11)

Accordingly, from (9.11) and Lemma 9.6.7 we infer that:

Pr[Ei+1 ∩ Ci+1 ∩ Bi+1 | Ei ∩ Ci ∩ Bi] = Pr[Ei+1 ∩ Ci+1 | Ei ∩ Ci ∩ Bi] · Pr[Bi+1 | Ei+1 ∩ Ci+1]

>
(
1− 2/n500

)
·
(
1− 1/n1500

)
for all i ∈ [tε − 2].(9.12)

Now, from (9.10) and (9.12) we derive that:

Pr

[
tε−1⋂
i=1

(Ei ∩ Ci ∩ Bi)
]

= Pr[E1 ∩ C1 ∩ B1] ·
tε−2∏
i=1

Pr[Ei+1 ∩ Ci+1 ∩ Bi+1 | Ei ∩ Ci ∩ Bi]

>
(
1− 1/n1500

)
·
(
1− 2/n500

)tε · (1− 1/n1500
)tε

>
(
1− 1/n1500

)
·
(
1− 2tε/n

500
)
·
(
1− tε/n1500

)
> 1− 1/n1500 − 2tε/n

500 − tε/n1500 > 1− 1/n400.
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In the derivation above, the last inequality holds since tε 6 n and n > 2.

In order to prove Theorem 9.2.2, we need to upper bound the maximum degree of any node
in the subgraph Gtε ∪GF . Accordingly, Corollary 9.6.11 upper bounds the maximum degree in
the subgraph Gtε , whereas Corollary 9.6.13 (which follows from Lemma 9.6.12), upper bounds
the maximum degree in the subgraph GF . Section 9.6.9 contains the proof of Lemma 9.6.12.

Corollary 9.6.11. ∆(Gtε) = O
(
ε1/(3K) ·∆

)
with probability at least 1− 1/n400.

Proof. Define the event B :=
⋂
i∈[tε−1] Bi. From Corollary 9.6.10, we infer that Pr[B] > 1 −

1/n400. Henceforth, we condition on the event B.
Consider any node v ∈ V . Conditioned on the event B, we have |Si ∩ Ni(v)| > (ε − ε2) ·

|Ni(v)| for each round i ∈ [tε − 1]. Since |Ni+1(v)| = |Ni(v)| − |Ni(v) ∩ Si|, we infer that:

|Ni+1(v)| 6 (1− ε+ ε2) · |Ni(v)| for all i ∈ [tε − 1], conditioned on the event B. (9.13)

Since |N1(v)| 6 (1 + ε2)∆, it is now easy to derive from (9.13) that:

|Ntε(v)| 6 (1− ε+ ε2)tε · (1 + ε2) ·∆
6 exp(−ε(1− ε)tε) · (1 + ε2) ·∆

6 exp

(
−ε(1− ε) ·

(
ln(1/ε)

2Kε
− 1

))
· (1 + ε2) ·∆ (by (9.1) and (9.2))

6 exp

(
−(1− ε) ln(1/ε)

2K
+ 2ε

)
· (1 + ε2) ·∆ (by (9.1))

6 ε(1−ε)/(2K) · (1 + 4ε) · (1 + ε2) ·∆ (by (9.1))
6 O(ε1/(3K) ·∆) for all v ∈ V, conditioned on the event B. (by (9.1) and (9.2))

The degree of a node v ∈ V in Gtε exactly equals |Ntε(v)|. Hence, we conclude that ∆(Gtε) =
O
(
ε1/(3K)∆

)
, conditioned on the event B. The corollary follows since Pr[B] > 1−1/n400.

Lemma 9.6.12. Consider any round i ∈ [tε − 1], and fix any instantiation of the
bits r<i ∪ r

(edges)
i which ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Then

Pr
[
∆(GFi) 6 9ε2∆ | r<i ∪ r(edges)

i

]
> 1 − 1/n300, where GFi = (V, Fi) denotes the sub-

graph of G consisting of the failed edges in round i.

Corollary 9.6.13. ∆(GF ) = O(ε ln(1/ε) ·∆) with probability at least 1− 1/n200.
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Proof. From Corollary 9.6.10 and Lemma 9.6.12, we infer that:

Pr
[
∆(GFi) = O(ε2 ·∆)

]
= Pr

[
∆(GFi) = O(ε2 ·∆) | Ei ∩ Ci ∩ Bi

]
· Pr[Ei ∩ Ci ∩ Bi]

>
(
1− 1/n300

)
·
(
1− 1/n400

)
> 1− 1/n300 − 1/n400

> 1− 1/n250 for each round i ∈ [tε − 1]. (9.14)

As ∆(GF ) 6
∑tε−1

i=1 ∆(GFi) and tε 6 n, the corollary follows from (9.2) and a union bound
over (9.14).

Theorem 9.2.2 now follows by Corollary 9.6.11 and Corollary 9.6.13.

9.6.4 A couple of important technical claims
Here, we prove two technical claims that will be used multiple times in the subsequent sections.

Claim 9.6.14. Fix any round i ∈ [tε−1] and condition on the event Ei∩Ci. Then we have:

(ε2/2) · |Ni,c(v)| > 50
√

∆ lnn for all nodes v ∈ V and colors c ∈ [(1 + ε2)∆].(9.15)

(ε2/2) · |Ni(v)| > 50
√

∆ lnn for all nodes v ∈ V. (9.16)

(ε2/2) · |Pi(e)| > 50
√

∆ lnn for all edges e ∈ Ei. (9.17)

Proof. Fix any node v ∈ V and any color c ∈ [(1 + ε2)∆]. Conditioned on the event Ei ∩ Ci, we
get:

(ε2/2) · |Ni,c(v)| >(ε2/2) · (1− ε)2(i−1) · (1− γi) ·∆
>(ε2/2) · (1− ε)2(tε−1) · (1− ε1/2) ·∆ (by Corollary 9.6.6)

>(ε2/2) · exp(−4ε(tε − 1)) · (∆/2) (by (9.1))
>(ε2/2) · exp (−(2/K) · ln(1/ε)) · (∆/2) (by (9.2))

=(ε2/2) · ε2/K · (∆/2)

>ε3 · (∆/4) (by (9.1) and (9.2))

>50
√

∆ lnn (by (9.1))

Applying the same line of reasoning, one can derive that (ε2/2) · |Pi(e)| > 50
√

∆ lnn for all
e ∈ Ei. Finally, (9.16) follows from (9.15) and the observation that Ni(v) ⊇ Ni,c(v).

Claim 9.6.15.
(

1− 1
(1−ε)2(i−1)·(1±γi)∆

)(ε±ε2)·(1−ε)2(i−1)·(1±γi)∆
= 1− ε± (4εγi + ε2).
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Proof. Let M =
(

1− 1
(1−ε)2(i−1)·(1±γi)∆

)(ε±ε2)·(1−ε)2(i−1)·(1±γi)∆
. We first upper bound M as

follows.

M 6

(
1− 1

(1− ε)2(i−1) · (1 + γi)∆

)(ε−ε2)·(1−ε)2(i−1)·(1−γi)∆

6 exp
(
−(ε− ε2) · (1− γi) · (1 + γi)

−1)
6 exp

(
−(ε− ε2) · (1− 2γi)

)
(by (9.1) and Corollary 9.6.6)

6 exp (−(ε− 3εγi)) (by (9.1) and Corollary 9.6.6)

6 1− (ε− 3εγi) + (1/2) · (ε− 3εγi)
2

6 1− ε+ (4εγi + ε2). (by (9.1) and Corollary 9.6.6)

Next, we lower bound M as follows.

M >

(
1− 1

(1− ε)2(i−1) · (1− γi)∆

)(ε+ε2)·(1−ε)2(i−1)·(1+γi)∆

> exp

(
−(ε+ ε2)(1 + γi)

(1− γi)

)
·
(

1− (ε+ ε2)(1 + γi)

(1− ε)2(i−1) · (1− γi)2∆

)
> exp

(
−(ε+ ε2)(1 + γi)

(1− γi)

)
·
(

1− 8

(1− ε)2tε∆

)
(by (9.1) and Corollary 9.6.6)

> exp (−(ε+ 2εγi)) ·
(

1− 8

(1− ε)2tε∆

)
(by (9.1) and Corollary 9.6.6)

> exp (−(ε+ 2εγi)) ·
(

1− 8 · exp(4εtε)

∆

)
(by (9.1))

> exp (−(ε+ 2εγi)) ·
(

1− 8

∆
· exp

(
4ε+

2 · ln(1/ε)

K

))
(by (9.2))

> exp (−(ε+ 2εγi)) ·
(

1− 8

∆
· (1 + 8ε) · 1

ε2/K

)
(by (9.1))

> exp (−(ε+ 2εγi)) · (1− ε2) (by (9.1) and (9.2))

> (1− ε− 2εγi) · (1− ε2)

> 1− ε− (4εγi + ε2). (by (9.1) and Corollary 9.6.6)

The second inequality holds since
(
1− λ

x

)x
> exp(−λ) ·

(
1− λ2

x

)
for all 0 < λ < x.

9.6.5 Proof of Lemma 9.6.7
For any node v ∈ V and any color c ∈ [(1 + ε2)∆], let Bi(v, c) denote the event which occurs iff:

|Si ∩Ni(v)| = (ε± ε2) · |Ni(v)| and |Si ∩Ni,c(v)| = (ε± ε2) · |Ni,c(v)|.

We first focus on bounding Pr[Bi(v, c) | r<i] for a given node v ∈ V and color c ∈ [(1 + ε2)∆].
We start by observing that Ni,c(v) ⊆ Ni(v). For each edge e ∈ Ni(v), consider an indicator
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random variable Xe ∈ {0, 1} that is set to one iff the edge e is sampled in round i. Thus, we have
|Si ∩ Ni(v)| =

∑
e∈Ni(v) Xe and |Si ∩ Ni,c(v)| =

∑
e∈Ni,c(v)Xe. We also have E [Xe | r<i] =

Pr [Xe = 1 | r<i] = ε for all edges e ∈ Ni(v). Hence, applying linearity of expectation, we get:

E [|Si ∩Ni(v)| | r<i] =
∑

e∈Ni(v)

E [Xe | r<i] = ε · |Ni(v)|.

E [|Si ∩Ni,c(v)| | r<i] =
∑

e∈Ni,c(v)

E [Xe | r<i] = ε · |Ni,c(v)|.

The random variables {Xe} are mutually independent (even after conditioning on r<i). Since
|Ni,c(v)| 6 |Ni(v)| 6 (1 + ε2)∆ and each Xe is a 0/1 random variable, Lemma 2.4.11 gives us:

Pr
[
|Si ∩Ni(v)| = ε · |Ni(v)| ± 50

√
∆ lnn

∣∣∣r<i ] > 1− 1/n2000. (9.18)

Pr
[
|Si ∩Ni,c(v)| = ε · |Ni,c(v)| ± 50

√
∆ lnn

∣∣∣r<i ] > 1− 1/n2000. (9.19)

From (9.1) and Claim 9.6.14, we infer that:

ε · |Ni(v)| ± 50
√

∆ lnn = (ε± ε2) · |Ni(v)|. (9.20)

ε · |Ni,c(v)| ± 50
√

∆ lnn = (ε± ε2) · |Ni,c(v)|. (9.21)

From (9.18) and (9.20), we get:

Pr
[
|Si ∩Ni(v)| = (ε± ε2) · |Ni(v)|

∣∣∣r<i ] > 1− 1/n2000. (9.22)

Similarly, from (9.19) and (9.21), we get:

Pr
[
|Si ∩Ni,c(v)| = (ε± ε2) · |Ni,c(v)|

∣∣∣r<i ] > 1− 1/n2000. (9.23)

Applying a union bound over (9.22) and (9.23), we get: Pr[Bi(v, c) | r<i] > 1 − 1/n1900.
Since Bi =

⋂
v,c Bi(v, c), the lemma follows from one last union bound over all v ∈ V and

c ∈ [(1 + ε2)∆].

9.6.6 Proof of Lemma 9.6.8
Throughout this section, we fix the bits r<i∪r(edges)

i which ensure the occurrence of the event Ei∩
Ci∩Bi. To ease notations, henceforth we refrain from repeatedly stating that we are conditioning
on the bits r<i ∪ r(edges)

i . However, the reader should keep in mind that we are relying upon this
conditioning for the rest of Section 9.6.6.

We first bound the expected value of |Pi+1(e)| for any given edge e ∈ Ei+1. (Note that the
subset of edges Ei+1 is completely determined by the bits r<i ∪ r(edges)

i .) Next, we show that
w.h.p. the value of |Pi+1(e)| does not deviate too far away from its expectation. Finally, we take
a union bound over all the edges e ∈ Ei+1 to argue that the event Ei+1 occurs w.h.p.

Calculating the expected value of |Pi+1(e)| for a given edge e = (u, v) ∈ Ei+1:
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Since e ∈ Ei+1, we have e /∈ Si. In particular, this implies that the sets (Ni,c(u) ∩ Si) and
(Ni,c(v) ∩ Si) are mutually disjoint. This observation will be useful in subsequent derivations.

Consider any color c ∈ Pi(e). For any endpoint x ∈ {u, v} of the edge e, let Γx,c be
the event that at least one edge e′ ∈ (Ni,c(x) ∩ Si) picks the color c in round i. Note that
Pr [c /∈ Pi+1(e)] = Pr [Γu,c ∪ Γv,c]. Since the sets (Ni,c(u) ∩ Si) and (Ni,c(v) ∩ Si) are mutually
disjoint, the events Γu,c and Γv,c are mutually independent. Hence, from the inclusion-exclusion
principle we infer that:

Pr[c /∈ Pi+1(e)] = Pr [Γu,c] + Pr [Γv,c]− Pr [Γu,c] · Pr [Γv,c] . (9.24)

We now focus on estimating the value of Pr [Γx,c] for a given node x ∈ {u, v}. Recall that
the bits r<i ∪ r(edges)

i we condition upon ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Hence,
we have:

|Pi(e′)| = (1− ε)2(i−1) · (1± γi) ·∆ for all edges e′ ∈ Ei. (9.25)
|Ni,c(x)| = (1− ε)2(i−1) · (1± γi) ·∆. (9.26)

|Ni,c(x) ∩ Si| = (ε± ε2) · (1− ε)2(i−1) · (1± γi) ·∆. (9.27)

Since the event Γx,c occurs iff some edge e′ ∈ Ni,c(x)∩Si picks color c in round i, we infer that:

Pr [Γx,c] = 1−
∏

e′∈Ni,c(x)∩Si

(
1− 1

|Pi(e′)|

)

= 1−
(

1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)(ε±ε2)·(1−ε)2(i−1)·(1±γi)·∆

= ε± (4εγi + ε2). (9.28)

In the derivation above, the second step follows from (9.25) and (9.27), whereas the last step
follows from Claim 9.6.15. From (9.24) and (9.28), we next infer that:

Pr[c /∈ Pi+1(e)] = 2
(
ε± (4εγi + ε2)

)
−
(
ε± (4εγi + ε2)

)2 for every color c ∈ Pi(e).

Equivalently, for every color c ∈ Pi(e), we have:

Pr[c ∈ Pi+1(e)] = 1− Pr[c /∈ Pi+1(e)] =
(
1− ε± (4εγi + ε2)

)2
.

Applying linearity of expectation, we now get:

E[|Pi+1(e)|] =
∑

c∈Pi(e)

Pr[c ∈ Pi+1(e)] =
(
1− ε± (4εγi + ε2)

)2 · |Pi(e)|. (9.29)

Deriving a concentration bound on |Pi+1(e)| for a given edge e = (u, v) ∈ Ei+1:
For each color c ∈ Pi(e), let Xc ∈ {0, 1} be an indicator random variable that is set to one iff
c ∈ Pi+1(e). Clearly, we have: |Pi+1(e)| =

∑
c∈Pi(e)Xc. We will now show that the random

variables {Xc}c∈Pi(e) are negatively associated, and then apply Hoeffding bound.
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Claim 9.6.16. The random variables {Xc}c∈Pi(e) are negatively associated.

Proof. For each color c ∈ Pi(e) and each edge e′ ∈ (Ni(u) ∩ Si) ∪ (Ni(v)) ∩ Si), define an
indicator random variable Xc,e′ ∈ {0, 1} that is set to one iff the edge e′ picks color c in round
i. Since each edge picks at most one color in round i, Proposition 2.4.2 implies that for each
edge e′ ∈ (Ni(u) ∩ Si) ∪ (Ni(v) ∩ Si), the random variables {Xc,e′}c are negatively associated.
Next, note that the color picked by any edge e′ ∈ Si in round i is independent of the color
picked by a different edge e′′ ∈ Si \ {e′} in round i. Hence, part (1) of Proposition 2.4.4
implies that the random variables {Xc,e′}c,e′ are also negatively associated. Finally, note that
Xc = 1 − maxe′∈(Ni(u)∩Si)∪(Ni(v)∩Si){Xc,e′} for all colors c ∈ Pi(e). Accordingly, part (2) of
Proposition 2.4.4 implies that the random variables {Xc}c∈Pi(e) are negatively associated. This
concludes the proof of the claim.

Claim 9.6.17. We have: Pr
[
|Pi+1(e)| = E [|Pi+1(e)|]± 50

√
∆ lnn

]
> 1− 1/n2000.

Proof. Note that |Pi+1(e)| = ∑c∈Pi(e) Xc, where |Pi(e)| 6 (1 + ε2)∆ and each Xc is a 0/1 ran-
dom variable. Since the random variables {Xc} are negatively associated according to Claim 9.6.16,
from Lemma 2.4.11 we now infer that Pr

[
|Pi+1(e)| = E [|Pi+1(e)|]± 50

√
∆ lnn

]
> 1−1/n2000.

Corollary 9.6.18. We have: Pr [|Pi+1(e)| = (1− ε)2i · (1± γi+1) ·∆] > 1− 1/n2000.

Proof. Consider any M = E [|Pi+1(e)|]± 50
√

∆ lnn. Observe that:

M =
(
1− ε± (4εγi + ε2)

)2 · |Pi(e)| ± 50
√

∆ lnn (by (9.29))

=
((

1− ε± (4εγi + ε2)
)2 ± ε2

)
· |Pi(e)| (by Claim 9.6.14)

=
(
(1− ε)2 + (4εγi + ε2)2 ± 2(4εγi + ε2)± ε2

)
· |Pi(e)|

=
(
(1− ε)2 ± (12εγi + 12ε2)

)
· |Pi(e)| (by (9.1) and Corollary 9.6.6)

=(1− ε)2 ·
(
1± (24εγi + 24ε2)

)
· (1− ε)2(i−1) · (1± γi) ·∆ (by (9.1) and (9.25))

=(1− ε)2i ·
(
1±

(
(1 + 48ε)γi + 48ε2

))
·∆ (by (9.1) and Corollary 9.6.6)

=(1− ε)2i · (1± γi+1) ·∆. (by (9.2) and (9.9))

To summarize, we have derived that if |Pi+1(e)| = E [|Pi+1(e)|]±50
√

∆ lnn, then it must be the
case that |Pi+1(e)| = (1−ε)2i · (1±γi+1) ·∆. The corollary now follows from Claim 9.6.17.
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Wrapping up the proof of Lemma 9.6.8:
Lemma 9.6.8 follows from Corollary 9.6.18 and a union bound over all the edges e ∈ Ei+1.

Before proceeding to prove the remaining lemmas needed to complete the proof of The-
orem 9.2.2, we describe a few concentration inequalities for Lipschitz functions of indepen-
dent variables, which we will use for the proofs of these remaining lemmas, Lemma 9.6.9 and
Lemma 9.6.12.

9.6.7 Useful concentration inequalities
In the following section we present our analysis of Algorithm 14. As mentioned previously,
most of this will rely on Chernoff-Hoeffding bounds for NA variables. Here we describe some
additional concentration inequalities we will rely on, based on the method of bounded differences,
described below.

Definition 9.6.19. [85] Let A1, . . . , An be sets and f : A1 × · · · × An → R be a real-
valued function. The function f satisfies the Lipschitz property with constants {di}, i ∈ [n],
if |f(a)− f(a′)| 6 di whenever a and a′ differ only in the ith co-ordinate, for all i ∈ [n].

Lemma 9.6.20. [85] Let f(X1, . . . , Xn) be a function of n independent random variables
X1, . . . , Xn satisfying the Lipschitz property with {di | i ∈ [n]}. Then, for all t > 0,

Pr [f > E[f ] + t] 6 exp

(
− 2t2∑n

i=1 d
2
i

)
,

Pr [f 6 E[f ]− t] 6 exp

(
− 2t2∑n

i=1 d
2
i

)
.

A more refined bound will prove useful when considering functions of bounded variance.

Lemma 9.6.21. Let f(X1, . . . , Xn) be a function of n independent 0/1 random variables
X1, . . . , Xn that satisfy the Lipschitz property with {di}, i ∈ [n]. For each i ∈ [n], let
X−i ∈ {0, 1}n−1 denote the values taken by every other random variable {Xj}, j ∈ [n] \
{i}. Furthermore, suppose that Var [f | X−i] 6 λi for all i ∈ [n] and all X−i ∈ {0, 1}n−1.
Let λ :=

∑n
i=1 λi, and d := maxi∈[n]{di}. Then, for all t > 0,

Pr [f > E[f ] + t] 6 exp

(
− t2

2λ+ (2/3) · td

)
,

Pr [f 6 E[f ]− t] 6 exp

(
− t2

2λ+ (2/3) · td

)
.

Proof. The lemma follows from the method of bounded variances, as explained in Chapter 8.1
of [85] (in particular, the lemma follows from equation (8.5) in this chapter).
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9.6.8 Proof of Lemma 9.6.9
Throughout this section, we fix the bits r<i∪r(edges)

i which ensure the occurrence of the event Ei∩
Ci∩Bi. To ease notations, henceforth we refrain from repeatedly stating that we are conditioning
on the bits r<i ∪ r(edges)

i . However, the reader should keep in mind that we are relying upon this
conditioning for the rest of Section 9.6.8.

We first bound the expected value of |Ni+1,c(v)| for a given (c, v) ∈ [(1 + ε2)∆]× V . Next,
we show that w.h.p. the value of |Ni+1,c(v)| does not deviate too far away from its expectation.
Finally, we take a union bound over all (c, v) ∈ [(1 + ε2)∆]× V to argue that Ci+1 occurs w.h.p.

Calculating the expected value of |Ni+1,c(v)| for a given (c, v) ∈ [(1 + ε2)∆]× V :
First, note that Ni+1,c(v) ⊆ Ni,c(v)\Si. Consider any edge e′ = (u, v) ∈ Ni,c(v)\Si, and let Γe′
be the event that the edge e′ belongs to the set Ni+1,c(v). Our immediate goal is to calculate the
value of Pr[Γe′ ]. Towards this end, we first recall that the bits r<i ∪ r(edges)

i we are conditioning
upon ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Hence, we have:

|Pi(e)| = (1− ε)2(i−1) · (1± γi) ·∆ for all edges e ∈ Ei. (9.30)
|Ni,c(x)| = (1− ε)2(i−1) · (1± γi) ·∆ for all nodes x ∈ V. (9.31)

|Ni,c(x) ∩ Si| = (ε± ε2) · (1− ε)2(i−1) · (1± γi) ·∆ for all nodes x ∈ V. (9.32)

The event Γe′ occurs iff no edge (u,w) ∈ Ni,c(u) ∩ Si picks the color c in round i. Hence,
from (9.30), (9.32) and Claim 9.6.15, we now derive that:

Pr[Γe′ ] =
∏

w∈Ni,c(u)∩Si

(
1− 1

|Pi(u,w)|

)

=

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)(ε±ε2)·(1−ε)2(i−1)·(1±γi)·∆

= 1− ε± (4εγi + ε2) (9.33)

Since we have already conditioned on the event Bi, we get:

|Ni,c(v) \ Si| = |Ni,c(v)| − |Ni,c(v) ∩ Si| = (1− ε± ε2) · |Ni,c(v)|. (9.34)

From (9.33) and (9.34), together with linearity of expectation, we now derive that:

E [|Ni+1,c(v)|] =
∑

e′∈Ni,c(v)\Si

Pr[Γe′ ]

= (1− ε± (4εγi + ε2)) · |Ni,c(v) \ Si|
= (1− ε± (4εγi + ε2)) · (1− ε± ε2) · |Ni,c(v)|
=

(
1− ε± (4εγi + ε2)

)2 · |Ni,c(v)|. (9.35)

Deriving a concentration bound on |Ni+1,c(v)| for a given (c, v) ∈ [(1± ε2)∆]× V :
We first identify the sampled edges in round i that are responsible for determining which edges
from Ni,c(v) \ Si will end up being included in Ni+1,c(v). Towards this end, we define Ti(v) :=

200



⋃
u∈V :(u,v)∈Ni,c(v)\Si Ni,c(u)∩Si. Observe that if an edge (u, u′) ∈ Ti(v), where (u, v) ∈ Ni,c(v)\

Si, picks the color c in round i, then (u, v) /∈ Ni+1,c(v). Conversely, if an edge (u, v) ∈ Ni,c(v) \
Si ends up not being part of Ni+1,c(v), then some edge (u, u′) ∈ Ti(v) must pick the color c in
round i. For each edge e ∈ Ti(v), define an indicator random variable Xe ∈ {0, 1} that is set
to one iff the edge e picks color c in round i. Clearly, the random variables {Xe} are mutually
independent. Since |Ni+1,c(v)| is completely determined by the random variables {Xe}, e ∈
Ti(v), we write |Ni+1,c(v)| := f(X), where X ∈ {0, 1}|Ti(v)| follows the joint distribution of the
random variables {Xe}. We now prove a concentration bound on f(X).

Claim 9.6.22. The function f satisfies the Lipschitz property (Definition 9.6.19) with de =
2, e ∈ Ti(v). Furthermore, for each edge e ∈ Ti(v), let X−{e} ∈ {0, 1}|Ti(v)|−1 denote
the values of all the remaining variables {Xe′}e′∈Ti(v)\{e}. Then for all e ∈ Ti(v) and
X−{e} ∈ {0, 1}|Ti(v)|−1, we have:

var
[
f(X)

∣∣∣ X−{e}] 6 λe, where λe :=
8

(1− ε)2(i−1)∆
.

Proof. Throughout the proof, we fix any edge e = (u, u′) ∈ Ti(v) and the color picked by every
other edge e′ ∈ Ti(v) \ {e} in round i, which determine the value of X−{e}. Let Ze = {(v, w) ∈
Ni,c(v) \ Si : w ∈ {u, u′}} denote the set of edges in Ni,c(v) \ Si that are adjacent to the edge e.

When we are trying to figure out which edges from Ni+1,c(v) \ Si will end up being part of
Ni+1,c(v), observe that the color picked by e can change the fate of only the edges in Ze. Indeed,
if the edge e picks the color c, then the edges in Ze will not be included in Ni+1,c(v). In contrast,
if the edge e picks some color c′ ∈ Pi(e) \ {c}, then the edges in Ze can potentially be included
in Ni+1,c(v). (In this event, whether or not an edge in Ze is actually included in Ni+1,c(v) will
depend on X−{e}.) The fate of every other edge e′′ ∈ (Ni,c(v)\Si)\Ze is completely determined
by X−{e}.

Since |Ze| 6 2, the function f satisfies the Lipschitz property with de = 2, e ∈ Ti(v).
Furthermore, since the edge e picks the color c ∈ Pi(e) with probability 1/|Pi(e)|, we conclude
that:

Var
(
f(X)

∣∣∣ X−{e}) 6
22

|Pi(e)|
=

4

(1− ε)2(i−1)(1± γi)∆
(by (9.30))

6
8

(1− ε)2(i−1)∆
. (by (9.1) and Corollary 9.6.6)

Claim 9.6.23. We have: Pr
[
|Ni+1,c(v)| = E [|Ni+1,c(v)|]± 50

√
∆ lnn

]
> 1− 1/n600.
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Proof. We derive an upper bound on the size of the set Ti(v).

|Ti(v)| 6
∑

u∈V :(u,v)∈Ni,c(v)\Si

|Ni,c(u) ∩ Si|

=|Ni,c(v) \ Si| · (ε± ε2) · (1− ε)2(i−1) · (1± γi) ·∆ (by (9.32))

6|Ni,c(v) \ Si| · 4ε · (1− ε)2(i−1) ·∆ (by (9.1))

68ε · (1− ε)2(i−1) ·∆2. (9.36)

From (9.1), (9.36) and Claim 9.6.22, we infer that:∑
e∈Ti(v)

λe 6 64ε ·∆ 6 ∆. (9.37)

Recall that |Ni+1,c(v)| = f(X), where X is drawn from the joint distribution of mutually inde-
pendent random variables {Xe}e∈Ti(v). Hence, from (9.37), Claim 9.6.22 and Lemma 9.6.21, we
get:

Pr
[
|Ni+1,c(v)| = E [|Ni,c(v)|]± 50

√
∆ lnn

]
> 1− 2 · exp

(
− 2500 ·∆ log n

2∆ + (2/3) · 100 · √∆ log n

)
> 1− 2 · exp

(
−2500 ·∆ log n

4∆

)
(by (9.1))

> 1− 1/n600.

This concludes the proof of the claim.

Corollary 9.6.24. We have: Pr [|Ni+1,c(v)| = (1− ε)2i · (1± γi+1) ·∆] > 1− 1/n600.

Proof. Consider any M = E [|Ni+1,c(v)|]± 50
√

∆ lnn. Observe that:

M =
(
1− ε± (4εγi + ε2)

)2 · |Ni,c(v)| ± 50
√

∆ lnn (by (9.35))

=
((

1− ε± (4εγi + ε2)
)2 ± ε2

)
· |Ni,c(v)| (by Claim 9.6.14)

=
(
(1− ε)2 + (4εγi + ε2)2 ± 2(4εγi + ε2)± ε2

)
· |Ni,c(v)|

=
(
(1− ε)2 ± (12εγi + 12ε2)

)
· |Ni,c(v)| (by (9.1) and Corollary 9.6.6)

=(1− ε)2 ·
(
1± (24εγi + 24ε2)

)
· (1− ε)2(i−1) · (1± γi) ·∆ (by (9.1) and (9.31))

=(1− ε)2i ·
(
1±

(
(1 + 48ε)γi + 48ε2

))
·∆ (by (9.1) and Corollary 9.6.6)

=(1− ε)2i · (1± γi+1) ·∆. (by (9.2) and (9.9))

To summarize, we have derived that if |Ni+1,c(v)| = E [|Ni+1,c(v)|]±50
√

∆ lnn, then it must be
the case that |Ni+1,c(v)| = (1−ε)2i ·(1±γi+1) ·∆. The corollary now follows from Claim 9.6.23.
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Wrapping up the proof of Lemma 9.6.9:
Lemma 9.6.9 follows from Corollary 9.6.24 and a union bound over all pairs (c, v) ∈ [(1 +
ε2)∆]× V .

9.6.9 Proof of Lemma 9.6.12
Recall the discussion on the random bits r<i, r

(edges)
i and r(colors)

i from Section 9.6.2. We will
prove the lemma stated below. Lemma 9.6.12 follows from Lemma 9.6.25 and a union bound
over all v ∈ V .

Lemma 9.6.25. Fix any instantiation of the bits r<i ∪ r(edges)
i which ensure the occur-

rence of the event Ei ∩ Ci ∩ Bi. Fix any node v ∈ V , and let Fi(v) = Ni(v) ∩ Fi
denote the set of failed edges in round i that are incident on v. Then we have:
Pr
[
|Fi(v)| 6 9ε2∆

∣∣∣ r<i ∪ r(edges)
i

]
> 1− 1/n305.

The rest of Section 9.6.9 is devoted to the proof of Lemma 9.6.25. We fix the bits r<i∪r(edges)
i

which ensure the occurrence of the event Ei ∩ Ci ∩ Bi. To ease notations, henceforth we refrain
from repeatedly stating that we are conditioning on the bits r<i ∪ r(edges)

i . However, the reader
should keep in mind that we are relying upon this conditioning for the rest of Section 9.6.9.

A classification of failed edges:
Let F (1)

i (v) = {(u, v) ∈ Fi(v) : c(v′, v) = c(u, v) for some (v′, v) ∈ Ni(v) ∩ Si} denote the set
of edges (u, v) that fails in round i because of the following reason: Some other edge incident
on v picks the same color as (u, v) in round i. Let F (2)

i (v) = Fi(v) \ F (1)
i (v) denote the set of

remaining edges incident on v that fails in round i. An edge (u, v) ∈ Ni(v) ∩ Si belongs to the
set F (2)

i (v) iff no other edge ev ∈ Ni(v)∩Si picks the same color as (u, v) in round i, and at least
one edge eu ∈ Ni(u) ∩ Si picks the same color as (u, v) in round i. We say that a failed edge
e ∈ Fi(v) is of type-(1) iff e ∈ F (1)

i (v) and it is of type-(2) iff e ∈ F (2)
i (v). We will separately

prove concentration bounds on the number of failed type-(1) and type-(2) edges incident on v.
As |Fi(v)| = |F (1)

i (v)|+ |F (2)
i (v)|, this will lead to the desired concentration bound on |Fi(v)|.

Deriving a concentration bound on |F (1)
i (v)|:

Claim 9.6.26 bounds the expected value of |F (1)
i (v)|. Claim 9.6.27 shows that w.h.p. |F (1)

i (v)|
does not deviate too far away from its expectation. Claim 9.6.27 follows from Claim 9.6.26 and
Claim 9.6.27.

Claim 9.6.26. We have E
[
|F (1)
i (v)|

]
6 4ε2∆.

Proof. Note that F (1)
i (v) ⊆ Ni(v) ∩ Si. Consider any edge e = (u, v) ∈ Ni(v) ∩ Si. Our im-

mediate goal is to bound the probability that this edge e does not belong to F (1)
i (v), conditioned
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on it picking a given color c ∈ Pi(e) in round i. Towards this end, we first recall that the bits
r<i ∪ r(edges)

i we are conditioning upon ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Hence,
we have:

|Pi(e′)| = (1− ε)2(i−1) · (1± γi) ·∆ for all edges e′ ∈ Ei. (9.38)
|Ni,c(x)| = (1− ε)2(i−1) · (1± γi) ·∆ for all nodes x ∈ V. (9.39)

|Ni,c(x) ∩ Si| = (ε± ε2) · (1− ε)2(i−1) · (1± γi) ·∆ for all nodes x ∈ V. (9.40)

Conditioned on the edge e picking the color c ∈ Pi(e), it does not belong to F (1)
i (v) iff none of

the edges e′ ∈ (Ni,c(v) ∩ Si) \ {e} picks the same color c in round i. Hence, we derive that:

Pr
[
e 6∈ F (1)

i (v)
∣∣∣ c(e) = c

]
=

∏
e′∈(Ni,c(v)∩Si)\{e}

(
1− 1

|Pi(e′)|

)

=

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)|Ni,c(v)∩Si|−1

>

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)|Ni,c(v)∩Si|

=

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)(ε±ε2)·(1−ε)2(i−1)·(1±γi)·∆

> 1− ε− (4εγi + ε2)

> 1− 2ε. (9.41)

In the derivation above, the second step follows from (9.38), the fourth step follows from (9.40),
the fifth step follows from Claim 9.6.15, and the last step follows from (9.1) and Corollary 9.6.6.
Since (9.41) holds for every color c ∈ Pi(e), we conclude that:

Pr
[
e /∈ F (1)

i (v)
]
> 1− 2ε for every edge e ∈ Ni(v) ∩ Si. (9.42)

Now, applying linearity of expectation, we get:

E
[
|F (1)
i (v)|

]
=

∑
e∈Ni(v)∩Si

Pr
[
e ∈ F (1)

i (v)
]

6|Ni(v) ∩ Si| · (2ε) (by (9.42))
6(2ε∆) · (2ε) (by (9.1), (9.40) and Corollary 9.6.6)

=4ε2∆.

This concludes the proof of the claim.

Claim 9.6.27. We have: Pr
[
|F (1)
i (v)| 6 E

[
|F (1)
i (v)|

]
+ 50
√

∆ lnn
]
> 1− 1/n310.
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Proof. For each edge e ∈ Ni(v) ∩ Si, define a random variable Xe ∈ Pi(e) whose value in-
dicates the color picked by the edge e in round i. The quantity |F (1)

i (v)| is a function of the
random variables {Xe}, e ∈ Ni(v)∩Si, and the random variables {Xe} themselves are mutually
independent.

We claim that the function |F (1)
i (v)| satisfies the Lipschitz property (see Definition 9.6.19)

with constants de = 4, e ∈ Ni(v) ∩ Si. To see why the claim holds, consider any given edge
e ∈ Ni(v) ∩ Si and fix the colors picked by every other edge e′ ∈ (Ni(v) ∩ Si) \ {e} in round
i. Fix any two distinct colors c1, c2 ∈ Pi(e). Let nc1 and nc2 respectively denote the number of
edges e′ ∈ (Ni(v) ∩ Si) \ {e} that have picked color c1 and color c2 in round i. Now, consider
the following two scenarios:

• (1) The edge e picks the color c1 ∈ Pi(e) in round i.
• (2) The edge e picks the color c2 ∈ Pi(e) \ {c1} in round i.

As we switch from scenario (1) to scenario (2), the number of type-(1) failed edges in Ni(v)∩Si
that pick color c2 increases by φ(nc2 + 1) − φ(nc2); where φ(y) = y if y > 2, and φ(y) = 0
otherwise. Similarly, the number of type-(1) failed edges inNi(v)∩Si that pick color c1 decreases
by φ(nc1 + 1)− φ(nc1). In contrast, the number of type-(1) failed edges in Ni(v) ∩ Si that pick
any color c /∈ [∆]\{c1, c2} remains unchanged. Thus, as we switch from scenario (1) to scenario
(2), the absolute value of the change in |F (1)

i (v)| is given by:

|{φ(nc2 + 1)− φ(nc2)} − {φ(nc1 + 1)− φ(nc1)}|
6 |φ(nc2 + 1)− φ(nc2)|+ |φ(nc1 + 1)− φ(nc1)|
62 + 2 = 4.

We therefore conclude that |F (1)
i (v)| is a function of mutually independent random variables

{Xe} that satisfy the Lipschitz property (see Definition 9.6.19) with constants de = 4, e ∈
Ni(v) ∩ Si. Since

∑
e∈Ni(v)∩Si d

2
e = 16 · |Ni(v) ∩ Si| 6 16∆, applying Lemma 9.6.20 we get:

Pr
[
|F (1)
i (v)| 6 E

[
|F (1)
i (v)|

]
+ 50
√

∆ lnn
]
> 1− 1/n310.

This concludes the proof of the claim.

Corollary 9.6.28. We have: Pr
[
|F (1)
i (v)| 6 4ε2∆ + 50

√
∆ lnn

]
> 1− 1/n310.

Proof. Follows from Claim 9.6.26 and Claim 9.6.27.

Deriving a concentration bound on |F (2)
i (v)|:

While analyzing this quantity, for technical reasons we first condition upon the colors picked by
all the edges incident on v that are sampled in round i. After this conditioning, we bound the
expected value of |F (2)

i (v)| in Claim 9.6.29, and in Claim 9.6.30 we show that w.h.p. |F (2)
i (v)|

does not deviate too far away from its expectation. Corollary 9.6.31 follows from Claim 9.6.29
and Claim 9.6.30.
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Claim 9.6.29. Fix any color c∗(e) ∈ Pi(e) for every edge e ∈ Ni(v) ∩ Si. Let Γ∗ be the
event which occurs iff every edge e ∈ Ni(v) ∩ Si picks the color c∗(e) in round i. Then we
have:

E
[
|F (2)
i (v)|

∣∣∣ Γ∗
]
6 4ε2∆.

Proof. The proof is analogous to the proof of Claim 9.6.26. Nevertheless, for the sake of com-
pleteness, we reproduce the same chain of reasoning in its entirety.

The event Γ∗ completely determines the set F (1)
i (v). Furthermore, we have F

(2)
i (v) ⊆

(Ni(v) ∩ Si) \ F (1)
i (v). Consider any edge e = (u, v) ∈ (Ni(v) ∩ Si) \ F (1)

i (v), which picks
the color c∗(e) in round i. Our immediate goal is to bound the probability that this edge e does
not belong to the set F (2)

i (v). Towards this end, we first recall that the bits r<i ∪ r(edges)
i we have

already conditioned upon ensure the occurrence of the event Ei ∩ Ci ∩ Bi. Hence, we have:

|Pi(e′)| = (1− ε)2(i−1) · (1± γi) ·∆ for all edges e′ ∈ Ei. (9.43)
|Ni,c∗(e)(x)| = (1− ε)2(i−1) · (1± γi) ·∆ for all nodes x ∈ V. (9.44)

|Ni,c∗(e)(x) ∩ Si| = (ε± ε2) · (1− ε)2(i−1) · (1± γi) ·∆ for all nodes x ∈ V. (9.45)

The edge e = (u, v) does not belong to the set F (2)
i (v) iff no edge e′ ∈ (Ni,c∗(e)(u) ∩ Si) \ {e}

picks the color c(e′) = c∗(e) in round i. Hence, we derive that:

Pr
[
e 6∈ F (2)

i (v)
∣∣∣ Γ∗

]
=

∏
e′∈(Ni,c∗(e)(u)∩Si)\{e}

(
1− 1

|Pi(e′)|

)

=

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)|Ni,c∗(e)(u)∩Si|−1

>

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)|Ni,c∗(e)(u)∩Si|

=

(
1− 1

(1− ε)2(i−1) · (1± γi) ·∆

)(ε±ε2)·(1−ε)2(i−1)·(1±γi)·∆

> 1− ε− (4εγi + ε2)

> 1− 2ε. (9.46)

In the derivation above, the second step follows from (9.43), the fourth step follows from (9.45),
the fifth step follows from Claim 9.6.15, the last step follows from (9.1) and Corollary 9.6.6.
Thus, we have:

Pr
[
e /∈ F (2)

i (v)
∣∣∣ Γ∗

]
> 1− 2ε for every edge e ∈ (Ni(v) ∩ Si) \ F (1)

i (v). (9.47)
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Now, applying linearity of expectation, we get:

E
[
|F (2)
i (v)|

∣∣∣ Γ∗
]

=
∑

e∈(Ni(v)∩Si)\F
(1)
i (v)

Pr
[
e ∈ F (2)

i (v)
∣∣∣ Γ∗

]
6 |Ni(v) ∩ Si| · (2ε) (by (9.47))
6 (2ε∆) · (2ε) (by (9.1), (9.45) and Corollary 9.6.6)

= 4ε2∆.

This concludes the proof of the claim.

Claim 9.6.30. Fix any color c∗(e) ∈ Pi(e) for every edge e ∈ Ni(v) ∩ Si. Let Γ∗ be the
event which occurs iff every edge e ∈ Ni(v) ∩ Si picks the color c∗(e) in round i. Then we
have:

Pr
[
|F (2)
i (v)| 6 E

[
|F (2)
i (v)|

]
+ 50
√

∆ lnn
∣∣∣ Γ∗

]
> 1− 1/n2000.

Proof. Let Wi(v) = (Ni(u)∩Si)\F (1)
i (v) denote the set of edges incident on v that get sampled

in round i and do not end up being type-(1) failures under the event Γ∗. By definition, all the
edges in Wi(v) receive distinct colors under the event Γ∗, and we have F (2)

i (v) ⊆ Wi(v). Let
Zi(v) = {(u, u′) ∈ Si\Ni(v) : either u ∈ Wi(v) or u′ ∈ Wi(v)} denote the set of edges sampled
in round i that are not themselves incident on v, but are neighbors of at least one edge in Wi(v).
Note that the sets Wi(v) and Zi(v), along with the colors picked by the edges in Wi(v), are
completely determined by the bits r<i ∪ r(edges)

i and the event Γ∗ we are conditioning upon. On
the other hand, the colors picked by the edges in Zi(v) are yet to be determined. In particular,
each edge in Zi(v) will pick a color uniformly at random from the set Pi(e), independently of
the other edges, and these colors will uniquely determine the set F (2)

i (v). We can think of the
edges e ∈ Zi(v) picking their colors in round i as a “balls and bins" process, as described below.

There is a ball for each edge e ∈ Zi(v), a bin for each color c ∈ [(1 + ε2)∆], and an
additional dummy bin ⊥. Consider any edge e ∈ Zi(v), and let Wi(v, e) ⊆ Wi(v) be the set
of edges e′ ∈ Wi(v) that share an endpoint with e. Note that |Wi(v, e)| ∈ {1, 2}. Suppose that
the edge e picks a color c ∈ Pi(e) in round i. Then the ball for e gets thrown into the bin for c
iff some edge e′ ∈ Wi(v, e) picked the same color c under the event Γ∗; otherwise the ball for e
goes to the dummy bin.

Let χi(v) =
⋃
e∈Wi(v){c∗(e)} denote the set of colors picked by the edges e ∈ Wi(v) in round

i, under the event Γ∗. For each color c ∈ χi(v), define an indicator random variable Yc ∈ {0, 1}
that is set to one iff the bin for the color c is nonempty (has at least one ball in it) at the end of the
balls and bins process described above. As each edge e ∈ Zi(v) picks a color independently of
the other edges in Zi(v), the balls get thrown into the bins independently of each other. Hence,
Corollary 2.4.6 implies that the random variables {Yc}, c ∈ χi(v), are negatively associated.
Since |χi(v)| 6 (1 + ε2)∆, from Lemma 2.4.11 we get:

Pr

 ∑
c∈χi(v)

Yc 6 E

 ∑
c∈χi(v)

Yc

+ 50
√

∆ lnn
∣∣∣ Γ∗

 > 1− 1/n2000. (9.48)
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Recall that no two edges in Wi(v) pick the same color under the event Γ∗. Accordingly, there
is a natural bijective mapping g : χi(v) → Wi(v), where g(c) is the unique edge in Wi(v) that
picked the color c ∈ χi(v) under the event Γ∗. For each color c ∈ χi(v), we have Yc = 1 iff
g(c) ∈ F (2)

i (v). Since F (2)
i (v) ⊆ Wi(v), we infer that

∑
c∈χi(v) Yc = |F (2)

i (v)|. The claim now
follows from (9.48).

Corollary 9.6.31. We have: Pr
[
|F (2)
i (v)| 6 4ε2∆ + 50

√
∆ lnn

]
> 1− 1/n2000.

Proof. Fix any color c∗(e) ∈ Pi(e) for all e ∈ Ni(v) ∩ Si. Let Γ∗ be the event which occurs iff
every edge e ∈ Ni(v)∩Si picks the color c∗(e) in round i. Claim 9.6.29 and Claim 9.6.30 imply
that:

Pr
[
|F (2)
i (v)| 6 4ε2∆ + 50

√
∆ lnn

∣∣∣ Γ∗
]
> 1− 1/n2000. (9.49)

Since the bound in (9.49) holds for every possible Γ∗, the corollary follows.

Wrapping up the proof of Lemma 9.6.25:
Applying a union bound over Corollary 9.6.28 and Corollary 9.6.31, we get:

Pr
[
|F (1)
i (v)|+ |F (2)

i (v)| 6 8ε2∆ + 100
√

∆ lnn
]
> 1− 1/n305.

Now, Lemma 9.6.25 follows from the following two observations: (a) |Fi(v)| = |F (1)
i (v)| +

|F (2)
i (v)|, and (b) 100

√
∆ lnn 6 ε2∆ according to (9.1).

9.7 Conclusion and Open Questions
In this chapter we presented a (1 + o(1))∆-edge-coloring online algorithm for graphs with ∆ =
ω(log n) under random-order edge arrivals. Thus, we resolve the conjecture of Bar-Noy et al.
[25] for this model. We conclude with a few interesting research directions.

Adversarial Online Arrivals: The most natural question is whether the Bar-Noy et al. con-
jecture holds in the strictest, adversarial edge-arrival model. This question still seems out of
reach. One algorithmic approach which suggests itself is to extend the ideas of Chapter 6. This
would require some form of online dependent rounding for fractional matching under edge ar-
rivals, generalizing our work of Chapter 5. Alternatively, it is not implausible that the Bar-Noy et
al. conjecture is false under adversarial edge arrivals, despite being true for vertex arrivals. Such
a refutation of this conjecture would mirror a similar separation between these arrival models
which we presented for online matching, in Chapter 3 and Chapter 4.

Knowledge of ∆: Our algorithms of this chapter assume knowledge of the maximum degree
∆. This assumption is common to all prior best algorithms in the random-order online model
[5, 22]. Recall that in Chapter 6 we showed that under adversarial vertex arrivals, not knowing
∆ results in a strictly harder problem, for which no better than e

e−1
∆-edge-coloring algorithm

exists, for any (unknown) ∆. Is the same separation between known and unknown ∆ true for
random-order edge arrivals?
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Dynamic and Streaming Algorithms
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Chapter 10

Dynamic Matching Versus Adaptive
Adversaries

In this chapter we present our work on dynamic matching algorithms against adaptive adver-
saries, which appeared previously in [266]. This work generalizes and extends joint work with
Moab Arar, Shiri Chechik, Sarel Cohen and Cliff Stein [14].

10.1 Background
The field of dynamic graph algorithms studies the maintenance of solutions to graph-theoretic
problems subject to graph updates, such as edge additions and removals. For any such dynamic
problem, a trivial approach is to recompute a solution from scratch following each update, using a
static algorithm. Fortunately, significant improvements over this naïve polynomial-time approach
are often possible, and many fundamental problems admit polylogarithmic update time algo-
rithms. Notable examples include minimum spanning tree and connectivity [158, 159, 175, 258]
and spanners [29, 39, 116]. Many such efficient dynamic algorithms rely on randomization and
the assumption of a weak, oblivious adversary, i.e., an adversary which cannot decide its updates
adaptively based on the algorithm’s output. As recently pointed out by Nanongkai and Saranurak
[220],

It is a fundamental question whether the true source of power of randomized
dynamic algorithms is the randomness itself or in fact the oblivious adversary
assumption.

In this chapter, we address this question for the heavily-studied dynamic matching prob-
lem. For this problem, the assumption of an oblivious adversary is known to allow for constant-
approximate worst-case polylogarithmic update time algorithms [14, 39, 62]. In contrast, all
deterministic algorithms with worst-case time guarantees have polynomial update time [37, 48,
145, 224, 233]. The main advantage of deterministic algorithms over their randomized coun-
terparts is their robustness to adaptive adversaries; i.e., their guarantees even hold for update
sequences chosen adaptively. Before outlining our results, we discuss some implications of the
oblivious adversary assumption, which motivate the study of algorithms which are robust to
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adaptive adversaries.

Static implications. As Mądry [217] observed, randomized dynamic algorithms’ assumption of
an oblivious adversary renders them unsuitable for use as a black box for many static applica-
tions. For example, [115, 124] show how to approximate multicommodity flows by repeatedly
routing flow along approximate shortest paths, where edges’ lengths are determined by their cur-
rent congestion. These shortest path computations can be sped up by a dynamic shortest path
algorithm, provided it works against an adaptive adversary (since edge lengths are determined
by prior queries’ outputs). This application has motivated much work on faster deterministic
dynamic shortest path algorithms [33, 35, 36, 148, 157], as well as a growing interest in faster
randomized dynamic algorithms which work against adaptive adversaries [67, 68, 147].

Dynamic implications. The oblivious adversary assumption can also make a dynamic algorithm
A unsuitable for use by other dynamic algorithms, even ones which themselves assume an obliv-
ious adversary! For example, for dynamic algorithms that use several copies of A whose inputs
depend on each other’s output, the different copies may act as adaptive adversaries for one an-
other, if the behavior of copy i affects that of copy j, which in turn affects that of copy i. (See
[220].)

Faster algorithms that are robust to adaptive adversaries thus have the potential to speed up
both static and dynamic algorithms. This motivated Nanogkai et al. [221], who studied dynamic
MST, to ask whether there exist algorithms against adaptive adversaries for other well-studied
dynamic graph problems, with similar guarantees to those known against oblivious adversaries.

In this chapter we answer this question affirmatively for the dynamic matching problem,
for which we give the first randomized algorithms that are robust to adaptive adversaries (and
outperform known deterministic algorithms).

10.1.1 Our Contributions

Our main contribution is a framework for dynamically rounding fractional matchings against
adaptive adversaries. That is, we develop a method which given a dynamically-changing frac-
tional matching (i.e., a point ~x in the fractional matching polytope, P := {~x ∈ Rm

>0 |
∑

e3v xe 6
1 ∀v ∈ V }), outputs a matching M of size roughly equal to the value of the fractional match-
ing,

∑
e xe. This framework allows us to obtain dynamic matching algorithms robust to adaptive

adversaries, including adversaries that see the algorithms’ entire state after each update.
Key to our framework is a novel matching sparsification scheme, i.e., a method for computing

a sparse subgraph which approximately preserves the maximum matching size. We elaborate on
our sparsification scheme and dynamic rounding framework and their analyses in later sections.
For now, we discuss some of the dynamic matching algorithms we obtain from applying our
framework to various known dynamic fractional matching algorithms.

Our first result (applying our framework to [45]) is a (2+ε)-approximate matching algorithm
with worst-case polylogarithmic update time against an adaptive adversary.
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Theorem 10.1.1. For every ε ∈ (0, 1/2), there exists a (Las Vegas) randomized (2 +
ε)-approximate algorithm with update time poly(log n, 1/ε) w.h.p. against an adaptive
adversary.

All algorithms prior to this work either assume an oblivious adversary or have polynomial
worst-case update time, for any approximation ratio.

Our second result (applying our framework to [41]) yields amortized constant-time algo-
rithms matching Theorem 10.1.1’s approximation ratio, also against an adaptive adversary.

Theorem 10.1.2. For every ε ∈ (0, 1/2), there exists a randomized (2 + ε)-approximate
dynamic matching algorithm with poly(1/ε) amortized update time whose approximation
and update time guarantees hold in expectation against an adaptive adversary.

No constant-time algorithms against adaptive adversaries were known before this work, for
any approximation ratio. A corollary of Theorem 10.1.2, obtained by amplification, is the
first algorithm against adaptive adversaries with logarithmic amortized update time and O(1)-
approximation w.h.p.

Finally, our framework also lends itself to better-than-two approximation. In particular, plug-
ging in the fractional matching algorithm of [43] into our framework yields (2− δ)-approximate
algorithms with arbitrarily-small polynomial update time against adaptive adversaries in bipar-
tite graphs.

Theorem 10.1.3. For all constant k > 10, there exists a βk ∈ (1, 2), and a βk-approximate
dynamic bipartite matching algorithm with expected update time O(n1/k) against adaptive
adversaries.

Similar results were recently achieved for general graphs, assuming an oblivious adversary
[30]. All other (2 − δ)-approximate algorithms are deterministic (and so do not need this as-
sumption), but have Ω( 4

√
m) update time.

As a warm-up to our randomized rounding framework, we present a family of determinis-
tic algorithms with arbitrarily-small polynomial worst-case update time, yielding the following
time-approximation trade-off.

Theorem 10.1.4. For anyK > 1, there exists a deterministicO(K)-approximate matching
algorithm with worst-case Õ(n1/K) update time.

This family of algorithms includes the first deterministic constant-approximate algorithms
with o( 4

√
m) worst-case update time. It also includes the first deterministic o(log n)-approximate

algorithm with worst-case polylog update time. No deterministic algorithms with worst-case
polylog update time were known for any sublinear n1−ε approximation ratio.
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Weighted Matching. Our dynamic matching algorithms imply dynamic maximum weight match-
ing (MWM) algorithms with roughly twice the approximation ratio, with only a logarithmic
slowdown, by standard reductions (see [14, 253]). Since our matching algorithms work against
adaptive adversaries, we can apply these reductions as a black box, and need not worry about
the inner workings of these reductions. As an added bonus, the obtained MWM algorithms
work against adaptive adversaries (the first such randomized algorithms), since their constituent
subroutines do.

10.1.2 Techniques
In this section we outline our sparsification scheme and framework for dynamic matching against
adaptive adversaries. Specifically, we show how to use edge colorings—partitions of the edges
into (few) matchings—to quickly round fractional matchings dynamically against adaptive ad-
versaries. Before detailing these, we explain why the work of Gupta and Peng [145] motivates
the study of dynamic matching sparsification.

In [145], Gupta and Peng present a (1 + ε)-approximate O(
√
m/ε2)-time algorithm, using a

sparsifier and what they call the “stability” of the matching problem, which lends itself to lazy
re-computation, as follows. Suppose we compute a matching M of size at least 1/C times µ(G),
the maximum matching size in G. Then, regardless of the updates in the following period of
ε · µ(G) steps, the edges of M not deleted during the period remain a C(1 +O(ε))-approximate
matching in the dynamic graph, since both the size ofM and µ(G) can at most change by ε·µ(G)
during such a period. So, for example, using a static O(m/ε)-time (1 + ε)-approximate match-
ing algorithm [210] every ε · µ(G) updates yields a (1 + O(ε))-approximate dynamic matching
algorithm with amortized update time Oε(m/µ(G)). To obtain better update times from this ob-
servation, Gupta and Peng apply this idea to a sparsifier of size S = O(min{m,µ(G)2}) which
contains a maximum matching of G and which they show how to maintain in O(

√
m) update

time, using the algorithm of [224]. From this they obtain a (1 + O(ε))-approximate matching
algorithm with update time O(

√
m) + (S/ε)/(ε ·µ(G)) = O(

√
m/ε2). We note that this lazy re-

computation approach would even allow for polylogarithmic-time dynamic matching algorithms
with approximation ratio C+O(ε), provided we could compute C-approximate matching sparsi-
fiers of (optimal) size S = Õε(µ(G)), in time Õε(µ(G)). (We note that any sparsifier containing
a constant-approximate matching must have size Ω(µ(G)).)

In this work we show how to use edge colorings to sample such size-optimal matching sparsi-
fiers in optimal time. For simplicity, we describe our approach in terms of the subroutines needed
to prove Theorem 10.1.1, deferring discussions of extensions to future sections.

Suppose we run the dynamic fractional matching algorithm of [45], maintaining a constant-
approximate fractional matching ~x in deterministic worst-case polylog time. Also, for some ε >
0, we dynamically partitionG’s edges intoO(log n) subgraphsGi, for i = 1, 2, . . . , O(log1+ε(n)),
where Gi is the subgraph induced by edges of x-value xe ∈ ((1 + ε)−i, (1 + ε)−i+1]. By the frac-
tional matching constraint (

∑
e3v xe 6 1 ∀v ∈ V ) and since xe > (1 + ε)−i for all edges

e ∈ E(Gi), the maximum degree of any Gi is at most ∆(Gi) 6 (1 + ε)i. We can therefore
edge-color each Gi with 2(1 + ε)i(> 2∆(Gi)) colors in deterministic worst-case O(log n) time
per update in Gi, using [46]; i.e., logarithmic time per each of the poly log n many changes
which algorithm A makes to ~x per update. Thus, edge coloring steps take worst-case poly log n
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time per update. A simple averaging argument shows that the largest color in these different Gi

is an O(log n)-approximate matching, which can be maintained efficiently. Extending this idea
further yields Theorem 10.1.4 (see Section 10.3). So, picking a singe color yields a fairly good
approximation/time tradeoff. As we show, randomly combining a few colors yields space- and
time-optimal constant-approximate matching sparsifiers.

To introduce our random sparsification scheme, we start by considering sampling of a single
color M among the 2(1 + ε)i colors of the coloring of subgraph Gi. For each edge e ∈ Gi, since
xe ≈ (1 + ε)−i, when sampling a random color M among these 2(1 + ε)i colors, we sample the
unique color containing e with probability proportional to xe. Specifically, we have

Pr[e ∈M ] =
1

2(1 + ε)i
≈ xe

2
.

Our approach will be to sample min
{

2(1+ε)i, 2 logn
ε2

}
colors without replacement inGi, yielding

a subgraph H of G which contains each edge e with probability roughly

pe := min

{
1, xe ·

log n

ε2

}
. (10.1)

As shown by Arar et al. [14], sampling a subgraph H with each edge e ∈ E[G] belonging to H
independently with probability pe as above, with ~x taken to be the (2 + ε)-approximate fractional
matching output by [45], yields a (2 + ε)-approximate matching sparsifier.1 Sampling H in this
independent manner, however, requires Ω(m) time, and so is hopelessly slow against an adaptive
adversary, who can erase H in Õ(µ(G)) time, therefore forcing an update time of Ω̃(m/µ(G)).
We prove that sampling H in our above dependent manner yields as good a matching sparsifier
as does independent sampling, while allowing for Õ(1) update time.

To bound the approximation ratio of our (dependent) sampling-based sparsifiers, we appeal to
the theory of negative association (see Section 2.4.1). In particular, we rely on sampling without
replacement being a negatively-associated joint distribution. This implies sharp concentration of
weighted degrees of vertices in H , which forms the core of our analysis of the approximation
ratio of this sparsification scheme. In particular, we show that our matching sparsification yields
sparsifiers with approximation ratio essentially equaling that of any “input” fractional matching
in bipartite graphs, as well as a (2 + ε)-approximate sparsifiers in general graphs, using the
fractional matchings of [41, 45].

Finally, to derive fast dynamic algorithms from this sparsification scheme, we note that
our matching sparsifier H is the union of only poly log n many matchings, and thus has size
Õ(µ(G)). Moreover, sampling this sparsifier requires only poly log n random choices, followed
by writing H . Therefore, H can be sampled in Õ(µ(G)) time (given the edge colorings, which
we maintain dynamically). The space- and time-optimality of our sparsification scheme implies
that we can maintain a matching with approximation ratio essentially equal to that of the obtained
sparsifier, in worst-case poly log n update time. In particular, we can re-sample such a sparsi-
fier, and compute a (1 + ε)-approximate matching in it, in Õε(µ(G)) time, after every period of

1A simpler argument implying H contains a (2 + ε)-fractional matching with respect to G only implies a
(3 + ε)-approximation. This is due to the 3

2 integrality gap of the fractional matching polytope, and in particular the
fact that fractional matchings may be 3

2 times larger than the largest matching in a graph (see Chapter 2).
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ε ·µ(G) steps. This results in an Õε(µ(G))/(ε ·µ(G)) = Õε(1) amortized time per update (which
is easily de-amortized). Crucially for our use, during such periods, µ(G) and µ(H) do not change
by much, as argued before. In particular, during such short periods of few updates, an adaptive
adversary—even one which sees the entire state of the algorithm after each update—cannot in-
crease the approximation ratio by more than a 1 + O(ε) factor compared to the approximation
quality of the sparsifier. This yields a (2 + ε)-approximate dynamic matching algorithm with
worst-case polylogarithmic update time against adaptive adversaries, proving Theorem 10.1.1.
Generalizing this further, we design a framework for dynamically rounding fractional matchings
against adaptive adversaries, underlying all our algorithms of theorems 10.1.1, 10.1.2 and 10.1.3.

10.1.3 Related Work
Here we discuss the dynamic matching literature in more depth, contrasting it with the results
obtained from our dynamic rounding framework.

In 2007, Sankowski [244] presented an O(n1.495) update time algorithm for maintaining the
value (size) of a maximum matching, recently improved to O(n1.407) [260]. These algorithms,
while faster than the naïve O(m) time algorithm for sufficiently dense graphs, are far from the
gold standard for data structures – polylog update time. Several works show that this is in-
evitable, however, as polylog update time (exact) maximum matching is impossible, assuming
several widely-held conjectures, including the strong exponential time hypothesis and the 3-sum
conjecture [2, 3, 75, 156, 188]. A natural question is then whether polylog update time suffices
to maintain an approximate maximum matching.

Polylog-time algorithms: In a seminal paper, Onak and Rubinfeld [228] presented the first
polylog-time algorithm for constant-approximate matching. Baswana et al. [28] improved this
with an O(log n)-time maximal (and thus 2-approximate) matching algorithm. Some years
later Bhattacharya et al. [43] presented a deterministic (2 + ε)-approximate matching algorithm
with amortized poly(log n, 1/ε) update time. Solomon [251] then gave a randomized maxi-
mal matching algorithm with constant amortized time. Recently, several randomized (2 + ε)-
approximate/maximal matching algorithms with worst-case polylog time were developed, with
either the approximation ratio or the update time holding w.h.p. [14, 39, 62].2 All prior ran-
domized algorithms assume an oblivious adversary, and obtaining the same guarantees against
an adaptive adversary remained open. Another line of work studied the dynamic maintenance
of large fractional matchings in polylog update time, thus maintaining a good approximation of
the maximum matching’s value (though not a large matching) [41, 44, 45, 47, 143]. The best
current bounds for this problem are deterministic (2 + ε)-approximate fractional matching al-
gorithms with poly(log n, 1/ε) worst-case and poly(1/ε) amortized update times [41, 45]. Our
randomized algorithms of Theorems 10.1.1 and 10.1.2 match these bounds, for integral match-
ing, against adaptive adversaries.

2The algorithm of [39] even maintains a 2-approximate matching if one allows for (implicitly) changing the
entire matching between updates. Otherwise, the framework of [250] allows to decrease the number of changes to
the matching per update, at the cost of increasing the approximation ratio slightly to 2+ε. Our algorithms, as stated,
similarly require implicitly changing the entire matching between algorithms. For applications where this is not
desirable, we can similarly apply the framework of [250] to our algorithms, while keeping the same approximation
ratio and asymptotic update time, and keeping the number of changes to the matching per update to be constant.
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Polytime algorithms: Many sub-linear time dynamic matching algorithms were developed over
the years. The first is due to Ivkovic and Lloyd [168], who showed how to maintain maxi-
mal matchings in O((m + n)1/

√
2) amortized update time. More recent work includes (1 + ε)-

approximate algorithms with O(
√
m/ε2) worst-case update time [145, 233] (the former building

on a maximal O(
√
m)-time algorithm of [224]), and (2 + ε)-approximate algorithms with worst-

caseO(min{ 3
√
m,
√
n}/ poly(ε)) update time [48]. The fastest known algorithm with worst-case

update time is a (3
2

+ ε)-approximate O( 4
√
m/ poly(ε))-time algorithm for bipartite graphs [37]

(similar amortized bounds are known for general graphs [38]). In contrast, we obtain algorithms
with arbitrarily-small polynomial update time, yielding a constant approximation deterministi-
cally (Theorem 10.1.4), and even better-than-2 approximation in bipartite graphs against adaptive
adversaries (Theorem 10.1.3). This latter bound was previously only known for dynamic frac-
tional matching [43], and nearly matches a recent O(∆ε)-time algorithm for general graphs,
which assumes an oblivious adversary [30].

Matching sparsifiers: Sparsification is a commonly-used algorithmic technique. In the area of
dynamic graph algorithms it goes back more than twenty years [94]. For the matching problem
in various computational models, multiple sparsifiers were developed [15, 16, 37, 38, 48, 132,
145, 191, 233, 252]. Unfortunately for dynamic settings, all these sparsifiers are either polyno-
mially larger than µ(G), the maximum matching size inG, or were not known to be maintainable
in no(1) time against adaptive adversaries. In this chapter we show how to efficiently maintain a
generalization of matching kernels of [48] of size Õ(µ(G)), efficiently, against adaptive adver-
saries.

10.2 Preliminaries

In a fully-dynamic setting, the input is a dynamic graph G, initially empty, on a set of n fixed
vertices V , subject to edge updates (additions and removals). A dynamic algorithm has worst-
case update time f(n) if it requires f(n) time for each update. It is said to have amortized update
time f(n) if it requires O(t ·f(n)) time for any sequence of t updates. If we assume an oblivious
adversary, these time bounds need only hold for sequences chosen before the algorithm’s run. An
α-approximate matching algorithm A maintains a matching M of size at least |M | > 1

α
· µ(G).

If A is deterministic, |M | > 1
α
· µ(G) holds for any sequence of updates. If A is randomized,

this bound on M ’s size can hold in expectation or w.h.p., though here one must be more careful
about the sequence of updates. The strongest guarantees for randomized algorithms are those
which hold for sequences generated by an adaptive adversary.

Dynamic Edge Coloring: An important ingredient in our matching algorithms are algorithms
for the “complementary” problem of edge coloring, i.e., the problem of covering the graph’s
edge-set with few matchings (colors). Vizing’s theorem [261] asserts that ∆ + 1 colors suffice to
edge color any graph of maximum degree ∆. (Clearly, at least ∆ colors are needed.) In dynamic
graphs, a deterministic (2∆− 1)-edge-coloring algorithm with O(log n) worst-case update time
is known [46]. Also, a 3∆-edge-coloring can be trivially maintained in O(1) expected update
time against an adaptive adversary, by picking random colors for each new edge (u, v) until
an available color is picked. Dynamic algorithms using fewer colors are known, though they are
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slower [82]. Moreover, as the number of colors γ∆ used only affects our update times by a factor
of γ (and does not affect our approximation ratio), the above simple 2∆- and 3∆-edge-coloring
algorithms will suffice for our needs.

10.3 Warm Up: Deterministic Algorithms
We start by discussing our deterministic matching algorithms obtained by generalizing the dis-
cussion in Section 10.1.1.

First, we note that the (2∆− 1)-edge-coloring algorithm of [46] works for multigraphs.

Lemma 10.3.1. For any dynamic multigraph G with maximum degree ∆, there exists a
deterministic (2∆− 1)-edge-coloring algorithm with worst-case update time O(log ∆).

Broadly, the algorithm of [46] relies on binary search, relying on the following simple observa-
tion. For (2∆−1) colors, if we add an edge (u, v), then the total number of colors used by u and
v for all their (at most ∆−1) edges other than (u, v), even counting repetitions, is at most 2∆−2.
That is, fewer than the number of colors in the entire palette, [2∆− 1]. Consequently, either the
range {1, 2, . . . ,∆} or {∆ + 1,∆ + 2, . . . , 2∆ − 1} has a smaller number of colors used by u
and v (again, counting repetitions). This argument continues to hold recursively in this range
in which u and v have used fewer colors than available. With the appropriate data structures,
this observation is easily implemented to support O(log ∆) worst-case update time for both edge
insertions and deletions (see [46] for details). As the underlying binary-search argument above
did not rely on simplicity of the graph, this algorithm also works for multigraphs.

We now show how to use this simple edge-coloring algorithm in conjunction with dynamic
fractional matching algorithms to obtain a family of deterministic algorithms allowing to trade
off approximation ratio for worst-case update time.

Theorem 10.1.4. For anyK > 1, there exists a deterministicO(K)-approximate matching
algorithm with worst-case Õ(n1/K) update time.

Proof. We maintain in the background a 2.5-approximate fractional matching ~x using a deter-
ministic algorithm with worst-case polylogarithmic update time, such as that of [45] run with
ε = 0.5. Letting R := n1/K , we define O(K) multigraphs whose union contains all edges in
G. Specifically, for each i = 1, 2, . . . , 2 logR(2n) we let Gi be a multigraph whose edges are
the edges of G of x-value xe ∈ [R−i,R−i+1], with each such edge e having dxe/R−ie parallel
copies in Gi. So, for example, an edge with x-value of R−i will have a single parallel copy in
Gi, and an edge wit x-value of R−i+1 will have dRe 6 n1/K + 1 parallel copies in Gi. By the
fractional matching constraint (

∑
e3v xe 6 1 ∀v ∈ V ), the maximum degree in each graph Gi

is at most ∆(Gi) 6 Ri. Therefore, using the edge coloring algorithm of [46] we can maintain
a 2∆(Gi) − 1 6 2 · Ri edge coloring in each Gi deterministically in worst-case O(log n) time
per edge update in Gi. Since for any edge e a change to xe causes at most dRe parallel copies of
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e to be added to or removed from multigraphs Gi, we find that each x-value changes performed
by the fractional matching algorithm require O(R · log n) worst-case time. As the fractional
algorithm has polylogarithmic update time (and therefore at most that many x-value changes per
update), the overall update time of these subroutines is therefore at most Õ(R) = Õ(n1/K). Our
algorithm simply maintains as its matching the largest color class in any of these multigraphs. It
remains to bound the approximation ratio of this approach.

First, we note that all edges not in any Gi, i.e., of x-value at most R− logR(2n) = 1/(4n2),
contribute at most

∑
e:xe6ε2/n2 xe 6 1/4 to

∑
e xe. So, as ~x is a 2.5-approximate fractional

matching, we have that ∑
e∈

⋃
Gi

xe >
1

2.5
· µ(G)− 1

4
>

1

O(1)
· µ(G),

where as before, µ(G) > 1 is the maximum matching size in G. (Note that if µ(G) = 0 any
algorithm is trivially 1-approximate.) Therefore, asR = n1/K at least one of these 2 logR(2n) =
O(K) multigraphs Gi must have total x-value at least∑

e∈Gi

xe >
1

O(K)
· 1

O(1)
· µ(G) =

1

O(K)
· µ(G).

But, as this multigraph Gi has at least |E(Gi)| =
∑

e∈Gidxe/R−i+1e >∑e∈Gi xe · Ri−1 edges,
one of the 2∆(Gi)− 1 6 2Ri+1 colors (matchings) in Gi must have size at least

|E(Gi)|
2∆(Gi)− 1

>

∑
e∈Gi xe · Ri−1

2Ri
>

∑
e∈Gi xe

4
>

1

4
· 1

O(K)
· µ(G) =

1

O(K)
· µ(G).

As this algorithm’s matching is the largest color class in all the edge colorings of all the different
Gi, it is O(K) approximate, as claimed.

Corollary 10.3.2. There exists a deterministic O
(

logn
log logn

)
-approximate matching algo-

rithm with worst-case poly log n update time.

Remark 1: We note that the algorithm of Theorem 10.1.4 requires O(m · n1/K) space to store
the multigraphs Gi and their relevant data structures, since each edge e in a graph Gi may have
x-value precisely R−i+1, which means we represent this edge using O(R) = O(n1/K) parallel
edges in Gi. It would be interesting to see if its approximation to worst-case update time tradeoff
can be matched by a deterministic algorithm requiring Õ(m) space.

Remark 2: We note that the matching maintained by our deterministic algorithms can change
completely between updates. For applications where this is undesirable, combining this algo-
rithm with a recent framework of Solomon and Solomon [250] yields a dynamic matching M ′ of
roughly the same size while only changing O(1/ε) edges of M ′ per update.
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10.4 Edge-Color and Sparsify
In this section we present our edge-coloring-based matching sparsification scheme, and useful
properties of this sparsifier, necessary to bound its quality. We then show how to implement this
scheme in a dynamic setting against an adaptive adversary with (1−ε) loss in the approximation
ratio. We start by defining our sparsification scheme in a static setting.

10.4.1 The Sparsification Scheme
Our edge-coloring-based sparsification scheme receives a fractional matching ~x as an input, as
well as parameters ε ∈ (0, 1), d > 1 and integer γ > 1. It assumes access to a γ∆-edge-
coloring algorithm for graphs of maximum degree ∆. For some logarithmic number of indices
i = 1, 2, . . . , 3 log1+ε(n/ε) = O(log(n/ε)/ε), our algorithm considers subgraphs Gi induced by
edges with x-value in the range ((1 + ε)−i, (1 + ε)−i+1], and γ∆(Gi) 6 γ(1 + ε)i-edge-colors
each such subgraph Gi. It then samples at most γd colors without replacement in each such
Gi. The output matching sparsifier H is the union of all these sampled colors. The algorithm’s
pseudocode is given in Algorithm 15.

Algorithm 15 Edge-Color and Sparsify

1: for i ∈ {1, 2, . . . , d2 log1+ε(n/ε)e} do
2: let Ei := {e | xe ∈ ((1 + ε)−i, (1 + ε)−i+1]}.
3: compute a γd(1 + ε)ie-edge-coloring χi of Gi := G[Ei]. . Note: ∆(Gi) < (1 + ε)i

4: Let Si be a sample of min{γdd(1 + ε)e, γd(1 + ε)ie} colors without replacement in χi.
5: return H := (V,

⋃
i

⋃
M∈SiM).

We note that H is the union of few matchings in G, all of size at most µ(G), by definition,
and so H is sparse.

Observation 10.4.1. The size of H output by Algorithm 15 is at most

|E(H)| = O

(
log(n/ε)

ε
· γ · d · µ(G)

)
.

Remark: The choice of 2 log1+ε(n/ε) ranges implies that the total x-value of edges not in these
ranges (for which xe 6 ε2/n2) is at most ε2. Thus the fractional matching ~x′ supported by these
Gi has the same approximation ratio as ~x, up to o(ε) terms. Likewise, ~x′ preserves the guarantees
of fractional matchings ~x studied in Section 10.5.2.

10.4.2 Basic Properties of Algorithm 15
In Section 10.5 we show that running Algorithm 15 on a goof approximate fractional matching ~x
yields a subgraph H which is a good matching sparsifier, in the sense that it contains a matching
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of size µ(H) > 1
c
· µ(G) for some small c. We refer to this c as the approximation ratio of H .

Our analysis of the approximation of H relies crucially on the following lemmas of this section.
Throughout our analysis we will focus on the run of Algorithm 15 on some fractional match-

ing ~x with some parameters d, γ and ε, and denote by H the output of this algorithm. For each
edge e ∈ E, we let Xe := 1[e ∈ H] be an indicator random variable for the event that e be-
longs to this random subgraph H . We first prove that the probability of this event occurring
nearly matches pe given by Equation (10.1) with logn

ε2
replaced by d. Indeed, the choice of num-

bers of colors sampled in each Gi was precisely made with this goal in mind. The proof of the
corresponding lemma below, which follows by simple calculation, is deferred to Section 10.6.

Lemma 10.4.2. If d > 1
ε

and γ > 1, then for every edge e ∈ E,

min{1, xe · d}/(1 + ε)2 6 Pr[e ∈ H] 6 min{1, xe · d} · (1 + ε).

Moreover, if xe > 1
d
, then Pr[e ∈ H] = 1.

Crucially for our analysis, which bounds weighted vertex degrees, the variables Xe for edges
of any vertex are NA.

Lemma 10.4.3. For any vertex v, the variables {Xe | e 3 v} are NA.

To prove this lemma, we rely on the following proposition.

Proposition 10.4.4. Let e1, . . . , en be some n elements. For each i ∈ [k], let Xi be an
indicator for element ei being sampled in a sample of k 6 n random elements without
replacement from e1, . . . , en. Then X1, . . . , Xn are NA.

Proof. Randomly sampling k elements from e1, . . . , en without replacement is equivalent to the
vector (X1, . . . , Xn) taking on all permutations of a 0− 1 vector with k ones, equiprobabily. So,
the proposition follows from NA of permutation distributions [171].

Proof of Lemma 10.4.3. For all Gi, add a dummy edge to v for each color not used by (non-
dummy) edges of v in Gi. Randomly sampling k = min{dγde, dγ · (1 + ε)ie} colors in the
coloring without replacement induces a random sample without replacement of the (dummy and
non-dummy) edges of v inGi. By Proposition 10.4.4, the variables {Xe | e 3 v, non-dummy e ∈
Gi} are NA (since subsets of NA variables are themselves NA). The sampling of colors in the
different Gi is independent, and so by closure of NA under independent union, the variables
{Xe | e 3 v} are indeed NA.

The negative correlation implied by negative association of the variables {Xe | e 3 v}
also implies that conditioning on a given edge e′ 3 v being sampled into H only decreases the
probability of any other edge e 3 v being sampled into H . So, from lemma 10.4.2 and 10.4.3 we
obtain the following.
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Corollary 10.4.5. For any vertex v and edges e, e′ 3 v,

Pr[Xe | Xe′ ] 6 Pr[Xe] 6 min{1, xe · d} · (1 + ε).

Finally, we will need to argue that the negative association of edges incident on any vertex v
holds even after conditioning on some edge e′ 3 v appearing in H .

Lemma 10.4.6. For any vertex v and edge e′ 3 v, the variables {[Xe | Xe′ ] | e 3 v} are
NA.

The proof of Lemma 10.4.6 is essentially the same as Lemma 10.4.3’s, noting that if e′ is
in H , then the unique matching containing e′ in the edge coloring of Gi 3 e′ must be sampled.
Thus, the remaining colors sampled in Gi also constitute a random sample without replacement,
albeit a smaller sample from a smaller population (both smaller by one than their unconditional
counterparts).

10.4.3 The Dynamic Rounding Framework

Here we present our framework for dynamically rounding fractional matchings.

Key to this framework is Observation 10.4.1, which implies that we can sample H using
Algorithm 15 and compute a (1 + ε)-approximate matching in H in Oε(µ(G)) time. This allows
us to (nearly) attain the approximation ratio of this subgraph H dynamically, against an adaptive
adversary.

Theorem 10.4.7. Let γ > 1, d > 1 and ε > 0. Let Af be a constant-approximate
dynamic fractional matching algorithm with update time Tf (n,m). Let α = α(d, ε, γ,Af )
be the approximation ratio of the subgraph H output by Algorithm 15 with parameters
d, ε and γ when run on the fractional matching of Af . Let Ac be a dynamic γ∆-edge-
coloring algorithm with update time Tc(n,m). If the guarantees ofAf andAc hold against
an adaptive adversary, then there exists an α(1 + O(ε))-approximate dynamic matching
algorithm A against an adaptive adversary, with update time

O
(
Tf (n,m) · Tc(n,m) + log(n/ε) · γ · d/ε3

)
.

Moreover, ifAf andAc have worst-case update times, so doesA, and if the approximation
ratio given by H is w.h.p., then so is the approximation ratio of A.

This theorem relies on the following simple intermediary lemma, which follows directly from
the sparsity of a graphs sampled from H, and known static O(m/ε)-time (1 + ε)-approximate
matching algorithms [161, 210].
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Lemma 10.4.8. Let ~x be a fractional matching in some graph G. LetH be the distribution
over subgraph H of G obtained by running Algorithm 15 on ~x with parameters d, ε and
γ. Then, if the edge colorings of Algorithm 15 based on ~x and the above parameters are
given, we can sample a graph H ∼ H, and compute a (1 + ε)-approximate matching in
H , in time

O

(
log(n/ε)

ε2
· γ · d · µ(G)

)
.

Our algorithm of Theorem 10.4.7 will appeal to Lemma 10.4.8 periodically, “spreading” its
across epochs of length O(dε · µ(G)e), as follows.

Proof of Theorem 10.4.7. Algorithm A runs Algorithm Af with which it maintains a fractional
matching ~x. In addition, it runs Ac to maintain a dγ(1 + ε)ie-edge-colorings in each subgraph
Gi := G[{e | xe ∈ (1 + ε)−i, (1 + ε)−i+1}], for all i = 1, 2, . . . , 2 log1+ε(n/ε) = O

( log(n/ε)
ε

)
.

Maintaining this fractional matching and the different subgraphs’ edge colorings appropriately
require at most O(Tf (n,m) · Tc(n,m)) time per update: Tc(n,m) time for each of the at most
Tf (n,m) edge value changes Af makes to the fractional matching ~x per update, as well as
Tf (n,m) time to update ~x and

∑
e xe.

By Lemma 10.4.8, the above edge colorings allow us to sample a subgraph H obtained
by running Algorithm 15 on G(t), as well as a (1 + ε)-approximate matching in H , in time
O
(

log(n/ε)
ε2
· γ · d · µ(G)

)
. We perform such computations periodically. In particular, we divide

time into epochs of different lengths (number of updates), starting the first epoch at time zero.
Denoting by G(t) and x(t) the graph G and fractional matching ~x at the beginning of epoch t, we
spread the work of computing a matching during each epoch, as follows.

If |x(t)|1 6 1
ε
, then epoch t has length one. We sample H(t) ⊆ G(t) and compute a (1 + ε)-

approximate matching M (t) in H(t) as our matching for epoch t. By Lemma 10.4.8, this takes
time

O

(
log(n/ε)

ε2
· γ · d · µ(G(t))

)
= O

(
log(n/ε)

ε3
· γ · d

)
,

which is within our claimed time bounds. Moreover, our matching at this point is α(1 + ε)-
approximate in G(t), as desired.

For an epoch with |x(t)| > 1
ε
, which we term long, we computeH(t) and a (1+ε)-approximate

matching M (t) in H(t), but spread this work over the length of the epoch, which we take to be
dε · |x(t)|1e. In particular, we use the non-deleted edges of M (t) as our matching for queries
during epoch t + 1. Ignoring the cost of maintaining additional information needed to sample
H(t) and M (t) during phase t, these steps increase the update time by

O
(

log(n/ε)
ε2
· γ · d · µ(G(t))

)
dε · |x(t)|1e

= O

(
log(n/ε)

ε3
· γ · d

)
,

since x(t) is a constant-approximate fractional matching, and therefore |x(t)|1 > Ω(µ(G(t))).
Now, in order to perform these operations efficiently during the epoch, we need to maintain the
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edge colorings at the beginning of the epoch. This, however, is easily done by maintaining a
mapping (using arrays and lists) from colors in each subgraph to a list of edges added/removed
from this color during the epoch. This allows us to maintain ~x and the colorings induced by it, as
well as maintain the colorings at the beginning of the epoch, at a constant overhead in the time
to update ~x and the colorings, as well as the time to sample H(t). Finally, if space is a concern,3

the list of updates from epoch t can be removed during epoch t+ 1 at only a constant overhead,
due to epochs t and t+ 1 having the same asymptotic length, as we now prove.

To show that if epoch t is long then epoch t + 1 has the same asymptotic length as epoch
t, we note that a long epoch t has length dε · |x(t)|1e 6 d3ε

2
· µ(G(t))e = O(ε · µ(G(t))), by the

integrality gap of the fractional matching polytope. Therefore, the maximum matchings in G(t)

and G(t+1) have similar size. In particular, since |µ(G(t+1))−µ(G(t))| 6 O(ε ·µ(G(t))), we have

µ(G(t)) · (1−O(ε)) 6 µ(G(t+1)) 6 µ(G(t)) · (1 +O(ε)). (10.2)

On the other hand, since the fractional matchings x(t) and x(t+1) are constant-approximate in
G(t) and G(t+1), respectively, then if either epoch t or t+ 1 is long, then both epochs have length
Θ(ε · µ(G(t))) = Θ(ε · µ(G(t+1))). We conclude that our algorithm runs within the claimed time
bounds. It remains to analyze its approximation ratio for long epochs.

Recall that for a long epoch t, we use the non-deleted edges of some (1 + ε)-approximate
matching M (t−1) in H(t−1) as our matching during epoch t. (Note that we have finished comput-
ing M (t−1) by the beginning of epoch t.) By assumption we have that µ(H(t−1)) > 1

α
· µ(G(t−1))

at the beginning of the epoch. Denote by M ⊆ M (t−1) the non-deleted edges of M (t−1) at some
time point in epoch t. As M contains all edges of M (t−1) (which is a (1+ε)-approximate match-
ing in H(t−1)), except the edges of M (t−1) removed during epochs t− 1 and t (of which there are
at most dε · |x(t−1)|1e+ dε · |x(t)|1e), we find that the size of M during any point in epoch t is at
least

|M (t−1)| − dε · |x(t−1)|1e − dε · |x(t)|1e

>
1

1 + ε
· µ(H(t−1))− dε · |x(t−1)|1e − dε · |x(t)|1e

>
1

α(1 + ε)
· µ(G(t−1))−

⌈
3ε

2
· µ(G(t−1))

⌉
−
⌈

3ε

2
· µ(G(t))

⌉
>

1

α(1 +O(ε))
· µ(G(t)),

where the third inequality follows from |x(t)|1 6 3
2
·µ(G(t)) for all t, by the aforementioned inte-

grality gap, and the ultimate inequality follows from consecutive epochs’ maximum matchings’
cardinalities being similar, by Equation (10.2). Therefore, our algorithm is indeed α(1 + O(ε))
approximate.

Remark. A log(n/ε)/ε factor in the above running time is due to the size of H(t) being
|E(H(t))| = O(d · γ · log(n/ε) · µ(G)/ε) and the number of subgraphs G(t)

i based on which we
sampleH(t) beingO(log(n/ε)/ε). For some of the fractional matchings we apply our framework

3And why wouldn’t it be?
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to, the sparsifierH(t) has a smaller size of |E(H(t))| = O(γ·d·µ(G)), and we only need to sample
colors fromO(γ ·d·µ(G)) edge colorings to sample this subgraph. For these fractional matchings
the update time of the above algorithm therefore becomes Tf (n,m) · Tc(n,m) +O(γ · d/ε2).

Theorem 10.4.7 allows us to obtain essentially the same approximation ratio as that of H
computed by Algorithm 15 in a static setting, but dynamically, and against an adaptive adversary.
The crux of our analysis will therefore be to bound the approximation ratio of H , which we now
turn to.

10.5 Analysis of Sparsifiers
In order to analyze the approximation ratio of the subgraph H output by Algorithm 15 (i.e.,
the ratio µ(G)/µ(H)), we take two approaches, yielding different (incomparable) guarantees.
One natural approach, which we take in Section 10.5.1, shows that Algorithm 15 run on an α-
approximate fractional matching outputs a subgraph H which itself contains a fractional match-
ing which is α-approximate in G. For bipartite graphs this implies H contains an α-approximate
integral matching. For general graphs, however, this only implies the existence of a 3α

2
-approximate

integral matching in H , due to the integrality gap of the fractional matching polytope in general
graphs. Our second approach, which we take in Section 10.5.2, does not suffer this deterioration
in the approximation ratio compared to the fractional matching, for a particular (well-studied)
class of fractional matchings.

10.5.1 Fractional Matching Sparsifiers

The approach we apply in this section to analyze Algorithm 15 consists of showing that the sub-
graph H obtained by running Algorithm 15 on a fractional matching ~x with appropriate choices
of d and ε supports a fractional matching ~y with E[

∑
e ye] >

∑
e xe(1−O(ε)). That is, we prove

H is a near-lossless fractional matching sparsifier.

Lemma 10.5.1. (Algorithm 15 Yields Fractional Matching Sparsifiers) Let ε ∈ (0, 1/2)

and d > 4 log(2/ε)
ε2

. IfH is a subgraph ofG output by Algorithm 15 when run on a fractional
matching ~x with parameters ε and d as above, then H supports a fractional matching ~y of
expected value at least

E

[∑
e

ye

]
>
∑
e

xe(1− 6ε).

Proof. We consider the intermediate assignment of values to edges inH , letting ze = xe(1−3ε)
min{1,xe·d} ·

Xe. Therefore, by our choice of ~z and by Lemma 10.4.2, each edge e has

E[ze] = E[ze | Xe] · Pr[Xe] >
xe(1− 3ε)

(1 + ε)2
> xe(1− 5ε). (10.3)
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We now define a random fractional matching ~y such that E[ye] > E[ze · Xe] · (1 − O(ε)) >
xe(1 − O(ε)), which implies the lemma, by linearity of expectation. In particular, we consider
the trivially-feasible fractional matching ~y given by

ye =

{
0 xe < 1/d and maxv∈e(

∑
e′3v ze′) > 1

ze else.

For edges e with xe > 1
d
, we always have ye = ze, so trivially E[ye] = E[ze]. Now, fix

an edge e′ = (u, v) with xe′ <
1
d
. On the one hand, ze′ < 1

d
< ε. On the other hand, by

Corollary 10.4.5 and Lemma 10.4.2, any edge e 3 v with e 6= e′ has Pr[Xe | Xe′ ] 6 Pr[Xe] 6
min{1, xe · d} · (1 + ε), and so E[ze | Xe′ ] 6 xe(1− 3ε)(1 + ε) 6 xe(1− 2ε). Consequently,

E

[∑
e3v

ze

∣∣∣∣Xe′

]
6 ε+

∑
e3v,e6=e′

xe · (1 + ε) 6 1− ε, (10.4)

where the last inequality follows from the fractional matching constraint,
∑

e3v xe 6 1. We
now upper bound the probability that this expression deviates so far above its expectation that ~z
violates the fractional matching constraint of an endpoint v of e′.

By Lemma 10.4.6, the variables {[Xe | Xe′ ] | e 3 v} are NA. So, by closure of NA un-
der scaling by positive constants, the variables {[ze | Xe′ ] | e 3 v} are similarly NA. By
Lemma 10.4.2, any edge e with xe > 1/d has Pr[Xe] = 1, and so Pr[Xe | Xe′ ] = 1. Thus,
the variance of [ze | Xe′ ] is zero. On the other hand, if xe 6 1/d, then [ze | Xe′ ] is a Bernoulli
variable scaled by 1−3ε

d
, with success probability at most Pr[Xe | Xe′ ] 6 min{1, xe ·d}·(1+ε) =

xe · (1 + ε). Therefore, the variance of this variable is at most

Var([ze | Xe′ ]) 6

(
1− 3ε

d

)2

· xe · d · (1 + ε) 6
xe
d
.

Summing over all edges e 3 v, we have that

Var

(∑
e3v

[ze | Xe′ ]

)
6
∑
e3v

xe
d

6
1

d
.

Recall that E[
∑

e3v ze | Xe′ ] 6 1 − ε, by (10.4). So, for v to have its fractional matching
constraint violated by ~z (conditioned on Xe′), the sum

∑
e3v[ze | Xe′ ] must deviate from its

expectation by at least ε, which in particular requires that the sum of the non-constant variables
[ze | Xe′ ] (i.e., for edges e 3 v with xe 6 1

d
) must deviate from its expectation by ε. So, applying

Bernstein’s Inequality (Lemma 2.4.12) to the NA variables {[ze | Xe′ ] | e 3 v, xe 6 1
d
}, each

of which has absolute value at most 1−3ε
d

6 1
d

by definition, we find that the probability that ~z
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violates the fractional matching constraint of v, conditioned on Xe′ , is at most

Pr

[∑
e3v

ze > 1

∣∣∣∣Xe′

]
6Pr

 ∑
e3v, xe6 1

d

[ze | Xe′ ] >
∑

e3v, xe6 1
d

[ze | Xe′ ] + ε


6 exp

(
− ε2

2 · (1/d+ ε/3d)

)
6 exp

(
− ε2

4/d

)
,

which is at most ε/2 by our choice of d > 4 log(2/ε)
ε2

.
By union bound, the probability that ye 6= ze (due to ~z violating the fractional matching

constraint of an endpoint of e), conditioned on e being sampled, is at most ε. That is, Pr[ye =
ze | Xe] > 1− ε. Combined with (10.3), this yields

E[ye] =
xe(1− 3ε)

min{1, xe · d}
· Pr[ye = ze | Xe] · Pr[Xe] > (1− ε) · E[ze] > xe(1− 6ε).

We conclude that the random subgraph H contains a fractional matching of expected value at
least 1− 6ε times the value of the fractional matching ~x in G.

It is well known that the integrality gap of the fractional matching polytope is one in bipartite
graphs and 3

2
in general graphs. Therefore, if H admits a fractional matching of value at least

α · µ(G), then H contains an integral matching of value at least 1
α
· µ(G) or 2

3α
· µ(G) if G is

bipartite or general, respectively. Consequently, Lemma 10.5.1 implies the following.

Lemma 10.5.2. For any ε ∈ (0, 1/2), Algorithm 15 run with an α-approximate fractional
matching and d > 4 log(2/ε)

ε2
has approximation ratio α

1−6ε
( 3α

2(1−6ε)
) in bipartite (general)

graphs.

Plugging the better-than-two approximate fractional matching algorithm of [43] into our
dynamic matching framework, we thus obtain the first (2 − δ)-approximate algorithms with
arbitrarily-small polynomial update time against adaptive adversaries in bipartite graphs, as
stated in Theorem 10.1.3.

Remark. We note that in our proof of Lemma 10.5.1 we proved a stronger guarantee, namely
that each edge e is assigned in expectation a y-value of at least E[ye] > xe(1− 6ε). This implies
that Lemma 10.5.1 extends to rounding fractional weighted matchings, which may prove useful
in designing dynamic MWM algorithms.

10.5.2 Integral Matching Sparsifiers
Here we show how to avoid the multiplicative factor of 3

2
implied by the integrality gap when

sparsifying using (particularly well-structured) fractional matchings ~x. To prove this improved
approximation ratio we generalize the notion of kernels, introduced in [48] and later used by
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[14, 43]. In particular, we extend this definition to allow for distributions over subgraphs, as
follows.

Definition 10.5.3. (Kernels) A (c, d, ε)-kernel of a graph G is a (random) subgraph H of
G satisfying:

1. For each vertex v ∈ V , the degree of v inH is at most dH(v) 6 d always.
2. For each edge e ∈ E with Pr[e 6∈ H] > ε, we have E[maxv∈e dH(v) | e 6∈ H] > d/c.

IfH is a deterministic distribution, we sayH is a deterministic kernel.

Such a graph is clearly sparse, containing at most O(nd) edges. (Crucially for our needs,
the kernels we compute even have size |E(H)| = Õ(µ(G)).) As shown in [14], deterministic
(c, d, 0)-kernels have approximation ratio 2c(1 + 1/d). Generalizing this proof, we show that a
randomized (c, d, ε)-kernel has approximation ratio 2c(1 + 1/d) in expectation. The key differ-
ence is that now rather than comparing µ(G) to the value of some fractional matching inH ∼ H,
we compare µ(G) to some (randomized) fractional matching’s expected value.

Lemma 10.5.4. LetH be a (c, d, ε)-kernel of G for c > 1
1−ε . Then

E[µ(H)] >
1

2c(1 + 1/d)
· µ(G).

Proof. Let M∗ be some maximum matching in G (i.e., |M∗| = µ(G)). For any realization H of
H, consider the following fractional matching:

fHu,v :=

{
1
d

(u, v) ∈ H \M∗

max{1− dh(u)+dH(v)−2
d

, 0} (u, v) ∈ H ∩M∗.

This is a feasible fractional matching due to the degree bound of H and the fractional values
assigned to edges of a vertex v incident on an edge e ∈ H ∩ M∗ being at most dH(v)−1

d
+

d−dH(v)+1
d

= 1. We start by showing that this fractional matching has high expected value,
EH∼H[

∑
e f

H
e ].

To lower bound the above expected value, we consider the variables yHv :=
∑

e3v f
H
e . By the

handshake lemma,
∑

u,v f
H
u,v = 1

2

∑
v y

H
v . Now, consider some edge e = (u, v) ∈ M∗. For any

realization H ofH with e ∈M∗ ∩H , we have yHu + yHv > 1(> 1
c
) by construction. Therefore if

Pr[e 6∈ H] 6 ε, we have E[yHu +yHv ] > 1−ε > 1
c

(by our choice of c > 1
1−ε ). On the other hand, if

e ∈M∗\H , then we have yHu +yHv > maxv∈e y
H
v > maxv∈e dH(v)/d. But by the second property

of (c, d, ε)-kernels we have that if Pr[e 6∈ H] > ε, then EH∼H[maxv∈e dH(v) | e 6∈ H] > d/c.
Consequently, for each edge e = (u, v) ∈M∗ with Pr[e 6∈ H] > ε we have that

EH∼H
[
yHu + yHv

]
>

1

c
· Pr[e ∈ H] +

d

c
· 1

d
· Pr[e 6∈ H] =

1

c
.
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Now, as each vertex v neighbors at most one edge of the (optimal) matching M∗, we obtain

EH∼H

[∑
e

fHe

]
=

1

2
· EH∼H

[∑
v

yHv

]
>

1

2c
· |M∗| = 1

2c
· µ(G). (10.5)

So,H contains a large fractional matching in expectation.
To show that H contains a large integral matching in expectation, we again consider a re-

alization H of H, and now construct a multigraph on the same vertex set V , with each edge e
replaced by fHe · d parallel copies (note that fHe · d is integral). By construction, the number of
edges in this multigraph is

∑
e f

H
e ·d. By feasibility of fH , this multigraph has maximum degree

at most maxv
∑

e3v f
H
v · d 6 d. By Vizing’s Theorem [261], the simple subgraph obtained by

ignoring parallel edges corresponding to edges in H ∩M∗ can be (d+ 1)-edge colored. But for
each edge e = (u, v) ∈ H ∩M∗, such a coloring uses at most dH(u) − 1 + dH(v) − 1 distinct
colors on edges other than (u, v) which are incident on u or v. To extend this d+ 1 edge coloring
to a proper coloring of the multigraph, we color the max{d − (dH(u) − 1 + dH(v) − 1), 0}
multiple edges (u, v) in this multigraph using some max{d− (dH(u)−1+dH(v)−1), 0} colors
of the palette of size d + 1 which were not used on the other edges incident on u and v. We
conclude that this multigraph, whose edges are contained in H and which has

∑
e fe · d edges, is

(d+1)-edge-colorable. Consequently, one of these d+1 colors (matchings) in this edge coloring
is an integral matching in H of size at least

µ(H) >
1

d+ 1
=

1

1 + 1/d
·
∑
e

fHe . (10.6)

Taking expectation over H ∼ H and combining (10.6) with (10.5), the lemma follows.

As we show, the subgraph H output by Algorithm 15, when run on well-structured fractional
matchings, contains such a kernel. Specifically, we show that H contains a kernel, provided the
input fractional matching is approximately maximal, as defined by Arar et al. [14].

Definition 10.5.5. A fractional matching ~x is (c, d)-maximal if every edge e ∈ E either
has fractional value xe > 1/d or it has one endpoint v with

∑
e3v xe > 1/c with all edges

e′ incident on this v having value xe′ 6 1/d.

As shown by Arar et al., sampling each edge e of a (c, d)-maximal fractional matching in-
dependently with probability min{1, xe · d} for sufficiently large d = Ωε(log n) yields a de-
terministic (c(1 + O(ε), d(1 + O(ε), 0)-kernel w.h.p. As we show, sampling each edge e with
probability roughly as above, such that the indicator variables for edges to be sampled are NA,
as in Algorithm 15, yields the same kind of kernel, w.h.p.

Lemma 10.5.6. Let c > 1, ε > 0 and d > 9c(1+ε)2·logn
ε2

. If ~x is a (c, d)-maximal fractional
matching, then the subgraph H output by Algorithm 15 when run on ~x with ε and d is a
deterministic (c(1 +O(ε), d(1 +O(ε), 0)-kernel, w.h.p.
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Proof. Consider some vertex v. By Lemma 10.4.2, we have that each edge e 3 v is sampled
with probability at most Pr[Xe = 1] 6 min{1, xe · d} · (1 + ε). Combined with the fractional
matching constraint,

∑
e3v xe 6 1, this implies that the expected degree of v in H is at most

E[dH(v)] =
∑
e3v

E[Xe] 6
∑
e

xe · d · (1 + ε) 6 d(1 + ε).

By Lemma 10.4.3, we have that the indicators {Xe | e 3 v} are NA. Therefore, appealing to
the upper tail bound of Lemma 2.4.10 for NA variables with δ = ε ∈ (0, 1), we have that, since
d > 9 logn

ε2
,

Pr[dH(v) > d(1 + 3ε)] 6 Pr[dH(v) > d(1 + ε)2] 6 exp

(−ε2d(1 + ε)

3

)
6

1

n3
.

Now, to prove the second property of kernels, consider some edge e ∈ E such that Pr[e 6∈
H] > 0. By Lemma 10.4.2, we have that xe 6 1/d. Therefore, as ~x is (c, d)-maximal, this
implies that there exists some v ∈ e with

∑
e′3v xe′ >

1
c

and xe′ 6 1
d

for all e′ 3 v. Therefore,
by Lemma 10.4.2 each edge e′ 3 v is sampled with probability at least Pr[Xe] > xe · d/(1 + ε)2.
So, by linearity of expectation, the expected degree of v in H is at least

E[dH(v)] =
∑
e3v

E[Xe] >
∑
e

xe · d/(1 + ε)2 > d/(c(1 + ε)2).

Recalling that the indicators {Xe | e 3 v} are NA, we appeal to the lower tail bound of
Lemma 2.4.10 with δ = ε > 0, from which we obtain that, since d > 9c(1+ε)2 logn

ε2
,

Pr[dH(v) 6 d(1− ε)/(c(1 + ε)2)] 6 exp

(−ε2d/(c(1 + ε)2)

2

)
6

1

n3
.

Taking union bound over theO(n2) bad events which would makeH not be kernel as desired,
we find that H is a (c(1 +O(ε)), d(1 +O(ε), 0)-kernel w.h.p., as claimed.

Indeed, even taking d to be an appropriately-chosen constant yields (randomized) kernels, as
we show in the following lemma, proved in Section 10.7.

Lemma 10.5.7. Let ε ∈ (0, 1/4), c > 1
1−ε and d > 4·log(2/ε)

ε2
. Let H be the distribution of

subgraphs output by Algorithm 15 when run on a (c, d)-approximately maximal fractional
matching ~x with ε and d as above. For any realization H of H, we let H ′ be a graph
obtained by removing all edges of vertices v of degree dH(v) > d(1 + 4ε). Then the
distributionH′ over H ′ is a (c(1 +O(ε)), d(1 + 4ε), ε)-kernel.

In light of lemmas 10.5.6 and 10.5.7, we now turn to discussing implications of Theo-
rem 10.4.7.

Fast Worst-Case Algorithms: As shown in [14], the output fractional matching of [45] is
(1 + ε, d)-approximately-fractional, for some d = poly(log n, 1/ε) large enough to satisfy the
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conditions of Lemma 10.5.6. Therefore, plugging in this poly(log n, 1/ε) worst-case update time
deterministic algorithm into Theorem 10.4.7 in conjunction with the deterministic O(log n)-time
2∆-edge-coloring algorithm of [48], we obtain a Monte Carlo algorithm with guarantees similar
to that of Theorem 10.1.1. Moreover, since we can verify inO(|E(H)|) time the high-probability
events implying that H is a kernel (broadly, we need only check whether any vertex has degree
above dwhile samplingH , and verify that all vertices v of expected degree at least d/c have such
a degree), we can re-sample H if ever it is not a kernel. Thus we obtain a Las Vegas random-
ized dynamic (2 + ε)-approximate matching algorithm with poly log n update time w.h.p, which
works against adaptive adversaries, as stated in Theorem 10.1.1.

Constant-Time Algorithms: To obtain the constant-time algorithm of Theorem 10.1.2, we rely
on the constant-time fractional matching algorithm of Bhattacharya and Kulkarni [41], which we
show outputs a (1 + ε, d)-maximal matching for any d > 1 + ε (see Section 10.8). Therefore,
by Lemma 10.5.7, plugging this algorithm into the algorithm of Theorem 10.4.7 immediately
yields a logarithmic-time (2 + ε)-approximate algorithm against adaptive adversaries. Pleas-
ingly, we can improve this bound further, and obtain a constant-time such algorithm. For this
improvement, we show that the fractional matchings of [41] only define O(µ(G)) subgraphs Gi,
as they only assign one of O(µ(G)) x-values to all edges. This implies in particular that Algo-
rithm 15 can sample H from such ~x using only O(γ · d · µ(G)) random choices (saving a factor
of log n), yielding a subgraph of expected size O(d ·∑e xe) = O(γ · d · µ(G)) (where the last
inequality follows from the constant integrality gap of the fractional matching polytope). Using
a simple constant-expected-time 3∆-edge-coloring algorithm, this improves the update time to
poly(1/ε)+O(γ ·d/ε). From the above we thus obtain the first constant-time (2+ε)-approximate
algorithm against adaptive adversaries, as stated in Theorem 10.1.2.

10.6 Sampling Probabilities
Here we show that Algorithm 15 samples each edge into H with the probability given by (10.1)
with logn

ε2
replaced by d, up to multiplicative (1 + ε) terms.

Lemma 10.4.2. If d > 1
ε

and γ > 1, then for every edge e ∈ E,

min{1, xe · d}/(1 + ε)2 6 Pr[e ∈ H] 6 min{1, xe · d} · (1 + ε).

Moreover, if xe > 1
d
, then Pr[e ∈ H] = 1.

Proof. Let i be the integer for which xe ∈ ((1 + ε)−i, (1 + ε)−i+1]. That is, the i for which
e ∈ E(Gi).

If (1 + ε)i−1 < d, implying that (1 + ε)i < d(1 + ε), then Algorithm 15 samples all of the
γd(1 + ε)ie = min{γdd(1 + ε)e, γd(1 + ε)ie} colors in the edge coloring of Gi. Consequently,
the edge e is sampled with probability one. On the other hand, (1 + ε)i−1 < d also implies that
(1 + ε)−i+1 > 1

d
and therefore that xe > (1 + ε)−i > 1

d(1+ε)
. Thus, the edge e is sampled with
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probability at most

Pr[e ∈ H] = 1 6 min{1, xe · d} · (1 + ε),

and trivially sampled with probability at least

Pr[e ∈ H] = 1 > min{1, xe · d}/(1 + ε)2.

Moreover, if xe > 1
d
, then (1 + ε)−i+1 > xe >

1
d
, or put otherwise (1 + ε)i−1 < d, and so we find

that every edge e with xe > 1
d

is sampled with probability Pr[e ∈ H] = 1(= min{1, xe · d}).
It remains to consider edges e with xe 6 1

d
, for which min{1, xe · d} = xe · d, and which in

particular belong to subgraphs Gi with i satisfying (1 + ε)i−1 > d.
Now, if i satisfies (1 + ε)i−1 > d, then we sample some γdde = min{γdde, dγ · (1 + ε)ie}

colors in the edge coloring of Gi. As such, the probability of e appearing in H is precisely the
probability that the color M containing e is one of the γdde sampled colors in Gi, which by
linearity of expectation happens with probability precisely

Pr[e ∈ H] =
γdde

γd(1 + ε)ie =
dde

d(1 + ε)ie .

Now, since d > 1
ε

implies that d+ 1 6 d(1 + ε), the probability of e (which has xe > (1 + ε)−i)
appearing in H is at most

Pr[e ∈ H] =
dde

d(1 + ε)ie 6
d+ 1

(1 + ε)i
6
d(1 + ε)

(1 + ε)i
6 xe · d · (1 + ε).

On the other hand, since (1+ε)i−1 > d, and d > 1
ε
, we have that (1+ε)i > d > 1

ε
, which implies

that (1 + ε)i + 1 6 (1 + ε)i+1. Consequently, the probability of e (which has xe 6 (1 + ε)−i+1)
appearing in H is at least

Pr[e ∈ H] =
dde

d(1 + ε)ie >
d

(1 + ε)i + 1
>

d

(1 + ε)i+1
>

xe · d
(1 + ε)2

.

This completes the proof for edge e in E(Gi) for i satisfying (1 + ε)i−1 > d, as such edges e
satisfy (1 + ε)−i+1 6 1

d
and consequently min{1, xe · d} = xe · d.

10.7 Randomized Kernels
In this section we show that running Algorithm 15 with d = 1/ poly(ε) on a (c, d)-maximal
fractional matching, and removing all edges of high-degree vertices in the output graph, yields a
randomized kernel.

Lemma 10.5.7. Let ε ∈ (0, 1/4), c > 1
1−ε and d > 4·log(2/ε)

ε2
. Let H be the distribution of

subgraphs output by Algorithm 15 when run on a (c, d)-approximately maximal fractional
matching ~x with ε and d as above. For any realization H of H, we let H ′ be a graph
obtained by removing all edges of vertices v of degree dH(v) > d(1 + 4ε). Then the
distributionH′ over H ′ is a (c(1 +O(ε)), d(1 + 4ε), ε)-kernel.
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Proof. The fact thatH′ satisfies the first property of such a kernel is immediate, as we remove all
edges of vertices of degree above d(1+4ε) in H to obtain H ′. The meat of the proof is dedicated
to proving the second property.

Fix an edge e with Pr[e 6∈ H′] > ε. By Lemma 10.4.2 together with the fractional matching
constraint (

∑
e′3v xe′ 6 1), the expectedH-degree of any vertex v ∈ e is at most

E[dH(v)] =
∑
e3v

E[Xe] 6
∑
e

xe · d(1 + ε) 6 d(1 + ε).

Now, by Lemma 10.4.3, dH(v) =
∑

e′3vXe′ is the sum of NA variables. So, by the upper tail
bound of Lemma 2.4.10 with δ = ε, combined with d > 4 log(2/ε)

ε2
and ε 6 1

2
6 1, we find that

Pr[dH(v) > d(1 + 4ε)] 6 Pr
[
dH(v) > d(1 + ε)2

]
6 exp

(−ε2 · d(1 + ε)

2

)
6 ε2/2.

Therefore, by union bound, since e = (u, v) ∈ H \H ′ only if one (or both) of its endpoints have
degree above d(1 + 4ε) in H , we find that

Pr[e ∈ H \H ′] 6
∑
v∈e

Pr[dH(u) > d(1 + 4ε)] 6 ε2. (10.7)

By Equation (10.7), we have that

Pr[e 6∈ H] = Pr[e 6∈ H ′]− Pr[e ∈ H \H ′] > Pr[e 6∈ H ′]− ε2.

Combining the above with Pr[e 6∈ H ′] > ε, we find that

Pr[e 6∈ H] > Pr[e 6∈ H ′] · (1− ε). (10.8)

In what follows we use Equation (10.8) to prove the second property of kernels, namely, that for
any edge e with Pr[e 6∈ H′] > ε, we have E[maxv∈e dH′(v) | e 6∈ H′] > d

c
(1− o(1)).

By the law of total expectation, and since dH′(v) = 0 if e ∈ H\H ′, we have that E[maxv dH′(v) |
e 6∈ H ′] is equal to

E[max
v
dH′(v) | e 6∈ H] · Pr[e 6∈ H | e 6∈ H ′],

which by Equation (10.8) implies

E[max
v
dH′(v) | e 6∈ H ′] > E[max

v
dH′(v) | e 6∈ H] · (1− ε). (10.9)

We now turn to lower bounding E[maxv dH′(v) | e 6∈ H].
By Equation (10.8), we have that Pr[e 6∈ H] > ε · (1− ε) > 0. Therefore, by Lemma 10.4.2,

xe 6 1/d. But then, by the (c, d)-approximate-maximality of ~x, edge e contains a vertex v
satisfying the following. ∑

e′3v

xe′ > 1/c. (10.10)
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xe′ 6 1/d ∀e′ 3 v. (10.11)

We fix this v for the remainder of the proof, and turn to proving a lower bound on E[dH′(v) | e 6∈
H], which by Equation (10.9) would imply the desired second property of kernels.

For notational simplicity, denote by Ω the probability space obtained by conditioning on the
event Xe = [e 6∈ H], or in other words, conditioning on the color of e in the edge coloring
of Gi with e ∈ E(Gi) not being sampled. (Recall that we use Xe as an indicator for e ∈ H .)
First, this conditioning preserves the fact that colors in the different graphs are sampled without
replacement—with colors in Gi not containing e sampled from a slightly smaller population.
Consequently, Lemma 10.4.3 and Corollary 10.4.5, as well as Lemma 10.4.6, which only relied
on colors being sampled without replacement and independently in the different graphs, hold for
the probability space Ω. That is, we have the following.

Pr
Ω

[Xe′ | Xe′′ ] 6 Pr
Ω

[Xe′ ] ∀e′, e′′ : e′ ∩ e′′ 6= ∅ (10.12)

{[Xe′ | Xe′′ , Xe] | e 3 v} are NA, ∀v ∈ V, e′, e′′ 3 v. (10.13)

We now show that edges’ sampling probabilities are hardly affected by conditioning on e 6∈
H . To this end, we note that this conditioning only affects the sampling probability of edges in
the graph Gi = G[{e′ | e′ ∈ ((1 + ε)−i, (1 + ε)−i+1]}] containing e. Now, since (1 + ε)−i <
xe 6 1/d, we have that (1 + ε)i > d, and therefore the number of colors in the coloring of Gi

is γ · d(1 + ε)ie > d. Therefore, the sampling probability of edges e′ ∈ E(Gi) increases under
conditioning on Ω by a multiplicative factor of at most

d

d− 1
6 1 + ε,

due to our choice of d > 4 log(2/ε)
ε2

and ε 6 1
2
. From the above and Lemma 10.4.2 we conclude

that for all edges e′ ∈ E(Gi) \ {e},

Pr
Ω

[Xe′ ] 6 Pr[Xe′ ] · (1 + ε) 6 d · xe′ · (1 + ε)2 ∀e′ 6= e. (10.14)

On the other hand, all colors other than that containing e have their probability of being sampled
increase. In particular, we also have that

Pr
Ω

[Xe′ ] > Pr[Xe′ ] ∀e′ : e′ ∩ e = ∅. (10.15)

We now return to considering the vertex v ∈ e satisfying (10.10) and (10.11), and we fix an
edge (u, v). By Equation (10.12) and Equation (10.14), together with the fractional matching
constraint

∑
e′3v x

′
e′ 6 1, conditioned on the edge (u, v) appearing in H , the neighbor u has

expected degree in H at most

EΩ[dH(u) | X(u,v)] =
∑
e′3u

EΩ[Xe′ | X(u,v)] 6 1 +
∑
e′3u

x′e′ · d · (1 + ε)2 6 1 + d(1 + ε)2.
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We recall that [dH(u) | X(u,v), Xe] =
∑

e′3u[Xe′ | X(u,v), Xe] is the sum of NA variables, by
(10.13). So, by the upper tail bound of Lemma 2.4.10 with δ = ε ∈ (0, 1), we have that

Pr
Ω

[dH(u) > d(1 + 4ε) | X(u,v)] 6Pr
Ω

[dH(u) > (1 + d(1 + ε)2) · (1 + ε) | X(u,v)]

6 exp

(−ε2(1 + d(1 + ε)2)

3

)
6ε/2,

where we relied on d > 4 log(2/ε)
ε2

and ε 6 1/4. Denoting by Bu the bad event that u has more
than d(1 + 4ε) edges in H , we have that PrΩ[Bu | X(u,v)] 6 ε/2. Analogously, we have that
PrΩ[Bv | X(u,v)] 6 ε/2.

Since each edge (u, v) in H is also in H ′ only if both Bu and Bv do not happen, the degree
of v in H ′ is at least dH′(v) >

∑
(u,v) X(u,v) · (1−1[Bu]−1[Bv]). Now, by Equation (10.11), all

edges e′ = (u, v) have x′e′ 6
1
d
. Therefore, by Equation (10.15) and Lemma 10.4.2, these edges

are sampled with probability PrΩ[Xe′ ] > Pr[Xe′ ] > xe′ · d/(1 + ε)2. So, since
∑

e′3v xe′ >
1
c

by
Equation (10.10), the expected degree of v in H ′ conditioned on e 6∈ H, is at least

E[dH′(v) | e 6∈ H] = EΩ[dH′(v)]
∑

(u,v)6=e

Pr
Ω

[X(u,v)] · (1− Pr
Ω

[Bu | X(u,v)]− Pr
Ω

[Bv | X(u,v)])

>
∑
e′3v
e′ 6=e

(
x′e′ · d/(1 + ε)2

)
· (1− ε)

>

(
1

c
− 1

d

)
· (d/(1 + ε)2) · (1− ε)

>
d(1 + 4ε)

c(1 +O(ε))
,

where the last inequality relied on c > 1
1−ε , on d > 4 log(2/ε)

ε2
, and ε 6 1

4
.

To conclude, we have that dH′(v) 6 d(1 + 4ε) for every vertex v with probability one, while
each edge e with Pr[e 6∈ H′] > ε, satisfies

E[max
v∈e

dH′(v) | e 6∈ H′] > E[max
v∈e

dH′(v) | e 6∈ H] · (1− ε)
> d(1 + 4ε)/c(1 +O(ε)).

Thus,H′ is a (c(1 +O(ε)), d(1 + 4ε), ε)-kernel, as claimed, and the lemma follows.

10.8 Constant-Time Algorithms
In order to obtain a constant-time algorithm using Lemma 10.5.7, we need in particular some
approximately-maximal fractional matching algorithm with constant update time. As it so hap-
pens, the algorithm of Bhattacharya and Kulkarni [41] is precisely such an algorithm. As the
structure of the fractional matching output by this algorithm will prove useful in several ways for
our analysis, we take a moment to outline this fractional matching’s structure.
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We say a dynamic fractional matching algorithm maintains a (β, c)-hierarchical partition
if it assigns each vertex v a level `v, and each edge e an x−value xe = β−`e , where `e =
maxv∈e{`v} ± O(1), for some constant β. The second property this fractional matching must
guarantee is that each vertex v with `v > 0 has

∑
e3v xe > 1/c. Most prior dynamic fractional

matching algorithms [41, 44, 45, 47, 143], including that of [41], follow this approach, originally
introduced by [47].

We now show that the fractional matching of [41] is approximately-maximal.

Lemma 10.8.1. For all ε > 0, d > 1 + ε, there exists a deterministic (1 + ε, d)-maximal
fractional matching algorithm with amortized update time O(1/ε2).

Proof. The algorithm we consider is precisely that of [41]. As the update time of this algorithm
was proven in [41], it remains only to prove that it outputs an approximately-maximal fractional
matchings as stated.

The algorithm of Bhattacharya and Kulkarni [41] maintains a ((1 + ε), (1 + ε))-hierarchical
partition with xe = (1 + ε)−maxv∈e{`v}−1. For such a partition, we have that for any value
d > 1 + ε, any edge e with xe 6 1

d
must have an endpoint v ∈ e of level `v > log1+ε(d) − 1.

But then all other incident edges e′ 3 v have x-value at most xe′ 6 (1 + ε)−`v−1 6 1
d
. Moreover,

since the level of v is at least `v > log1+ε(d)− 1 > 0 (by our choice of d > 1 + ε), we also have
that

∑
e′3v xe′ >

1
c
. In other words, the fractional matching ~x output by the algorithm of [41] is

(1 + ε, d)-maximal.

Lemmas 10.5.7 and 10.8.1 together with Theorem 10.4.7 imply a (2 + ε)-approximate dy-
namic algorithm with logarithmic update time against adaptive adversaries. We now explain how
to obtain such an approximation in constant time.

We note that any (β, c)-hierarchical partition must have at most O(c · µ(G)) vertices v of
level `v > 0. To see this, recall that all such vertices have

∑
e3v xe > 1/c. Therefore,∑

e∈E

xe >
1

2

∑
v: `v>0

∑
e3v

xe >
1

2c
· |{v | `v > 0}.

But since the integrality gap of the fractional matching polytope is at most 3
2
, we also have that

3

2
· µ(G) >

∑
e∈E

xe >
1

2c
· |{v | `v > 0}|.

That is, for constant c as we consider, the number of vertices of level `v > 0 is at most O(µ(G)).
This implies in particular that there are only O(µ(G)) distinct levels assigned to vertices. But an
edge’s value is determined by the level of its highest-level endpoint. Therefore, as there are only
O(µ(G)) many values maxv∈e{`v} can take, we find that there are only O(µ(G)) values any xe
can take. Hence, when running Algorithm 15 on ~x we only sample edges from O(µ(G)) edge
colorings of subgraphs Gi (which are induced by edges of similar xe value). Thus, if we sample
d = poly(1/ε) colors per (non-empty) subgraphGi, the choice of colors to sample can be done in
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O(µ(G)/ poly(ε)) time, yielding a graph of expected size E[|E(H)|] 6∑e d·xe 6 d· 3
2
·µ(G) =

O(µ(G)/ poly(ε)). Extending the argument of Theorem 10.4.7 appropriately, using a 3∆-edge-
coloring algorithm with constant expected update time and the fractional matching algorithm of
[41], together with Lemma 10.5.7, we obtain a (2 + ε)-approximate dynamic algorithm with
constant update time. Thus, we obtain Theorem 10.1.2.

10.9 Conclusion and Open Questions
This chapter provides the first randomized dynamic matching algorithms which work against
adaptive adversaries and outperform deterministic algorithms for this problem. We obtain these
results by leveraging a new framework we introduce for rounding fractional matchings dynam-
ically against an adaptive adversary. Our work suggests several follow-up directions, of which
we state a few below.

More Applications: A natural direction is to find more applications of our rounding framework.
Recently, Bernstein et al. [40] applied our framework to a new decremental fractional matching
algorithm to obtain a (1 + ε)-approximate decremental matching algorithm for bipartite graphs
in poly(log n, 1/ε) amortized time (against adaptive adversaries). Are there more applications of
our framework?

Maximum Weight Matching (MWM): The current best approximation for dynamic MWM
with polylog worst-case update time against adaptive adversaries is (4+ε), obtained by applying
the reduction of [253] to our algorithm of Theorem 10.1.1. Indeed, even with amortization or the
assumption of an oblivious adversary, no approximation below (4 + ε) is known to be achievable
in sub-polynomial time. This is far from the ratios of 2 or (2 + ε) achievable efficiently for
MWM in other models of computation, such as streaming [127, 232] and the CONGEST model
of distributed computation [128, 199]. Attaining such bounds dynamically in polylog update
time (even amortized and against an oblivious adversary) remains a tantalizing open problem.

Better Approximation: To date, no efficient (i.e., polylog update time) dynamic matching al-
gorithm with approximation better than two is known. As pointed out by Assadi et al. [18],
efficiently improving on this ratio of two for maximum matching has been a longstanding open
problem in many models, and is known to be impossible to do in an online setting, as shown in
Chapter 3. Is the dynamic setting “easier” than the online setting, or is an approximation ratio of
2 the best approximation achievable in polylog update time?
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Chapter 11

Streaming Submodular Matching

How does this chapter differ from all other chapters (in this thesis)? In previous chapters, we
mostly focused on online algorithms. In this chapter, we will consider streaming algorithms. In
previous chapters, when studying matchings, our objective was to maximize the cardinality, or
more generally the weight of a matching. In this chapter, based on joint work with Roie Levin
[197], we study even more expressive, submodular objectives.

11.1 Background

Submodular functions are set functions which capture the notion of diminishing returns. The
study of (approximately) maximizing such functions has a long history. For example, it has been
known since the 70s that the greedy algorithm yields an e/(e − 1) ≈ 1.582 approximation for
monotone submodular maximization subject to a cardinality constraint [226]. This is optimal
among polytime algorithms with value oracle access [225], or assuming standard complexity-
theoretic conjectures [81, 102, 204]. The same problem for non-monotone submodular functions
is harder; it is hard to approximate to within a 2.037 factor [229]. Much work has been dedi-
cated to improving the achievable approximation [51, 54, 93, 108, 142, 193, 229, 264]; the best
currently stands at 2.597 [51].

Closer to the focus of this chapter is the study of submodular maximization subject to match-
ing constraints, i.e., maximum submodular matching (MSM). For this problem, the greedy algo-
rithm has long been known to be 3-approximate for monotone functions [114]. Improved approx-
imations have since been obtained [109, 142, 192, 194], with the current best being (2 + ε) and
(4+ε) for monotone and non-monotone MSM respectively [109]. The papers above studied rich
families of constraints (e.g. matroid intersection, matchoids, exchange systems), some of which
were motivated explicitly by matching constraints (see [109]). Beyond theoretical interest, the
MSM problem also has great practical appeal, since many natural objectives exhibit diminishing
returns behavior. Applications across different fields include: machine translation [198], Internet
advertising [80, 189], combinatorial auctions more broadly [57, 195, 263], and numerous other
matching problem where the goal is a submodular notion of utility such as diversity [7, 8].

The proliferation of big-data applications such as those mentioned above has spurred a surge
of interest in algorithms for the regime where the input is too large to even store in local memory.
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To this end, it is common to formulate problems in the streaming model. Here the input is
presented element-by-element to an algorithm that is restricted to use Õ(S) memory, where S is
the maximum size of any feasible solution. We study MSM in this model.

For our problem when the objective is linear, a line of work [73, 95, 104, 127, 205, 232] has
shown that a (2 + ε)-approximation is possible in the streaming model [127, 232]. Meanwhile,
for submodular objectives under cardinality constraints (which are a special case of MSM in
complete bipartite graphs), a separate line of work [9, 20, 65, 111, 180, 214] has culminated in
the same (2 + ε) approximation ratio, for both monotone and non-monotone functions (the latter
taking exponential time, as is to be expected from the lower bound of [229]); moreover, this
(2 + ε) bound was recently proven to be tight [9, 112, 227]. On the other hand, for fully general
MSM, the gap between known upper and lower bounds remain frustratingly large. Chakrabarti
and Kale [58] gave a 7.75-approximate algorithm for MSM with monotone functions. For non-
monotone functions, Chekuri et al. [65] gave a (12 + ε)-approximate algorithm, later improved
by Feldman et al. [111] to 5+2

√
6 ≈ 9.899. The only known lower bound for monotone MSM is

e
e−1
≈ 1.582 for streaming or polytime algorithms, implied respectively by [174] and [102, 225].

For non-monotone functions, [229] implies a hardness of 2.037. Closing these gaps, especially
from the algorithmic side, seems to require new ideas.

11.2 Our Contributions
We present a number of improved results for streaming maximum submodular matching (MSM)
and related problems.

Our first result is an improvement on the 7.75 approximation of [58] for monotone MSM.

Theorem 11.2.1. There exists a deterministic linear-time streaming MSM algorithm for
monotone functions which is 3 + 2

√
2 ≈ 5.828 approximate.

Our algorithm extends in various ways: First, it yields the same approximation ratio for
submodular b-matchings, where each node v can be matched bv times, improving on the pre-
vious best 8-approximations [65, 111]. For the special case of linear functions (MWM), our
algorithm—with appropriate parameters—recovers the (2 + ε)-approximate algorithm of [232].
For weighted b-matching (MWbM), a slight modification of our algorithm yields a (3 + ε)-
approximate algorithm, improving on the previous best (4 + ε)-approximation [73].

Next, we improve on the 5 + 2
√

6 ≈ 9.899 approximation of [111] for non-monotone MSM.

Theorem 11.2.2. There exists a randomized linear-time streaming MSM algorithm for
non-monotone functions which is 4 + 2

√
3 ≈ 7.464 approximate.

Our non-monotone MSM algorithm’s approximation ratio is better than the previous state-of-
the-art 7.75-approximate monotone MSM algorithm [58]. Moreover, when applied to monotone
functions, the algorithm of Theorem 11.2.2 yields the same approximation ratio as the determin-
istic algorithm of Theorem 11.2.1.
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We turn to proving hardness for monotone MSM. As stated before, the previous best lower
bounds for this problem were e

e−1
≈ 1.582. These lower bounds applied to either space-bounded

[174] or time-bounded algorithms [102, 225]. We show that the problem becomes harder for
algorithms which are both space bounded and time bounded. This answers an open problem
posed in the Bertinoro Workshop on Sublinear Algorithms 2014 [1], at least for time bounded
algorithms.1

Theorem 11.2.3. No polytime streaming MSM algorithm for monotone functions is better
than 1.914 approximate.

Finally, to demonstrate that our techniques have the potential for wider applicability, we also
use them to provide an alternative and unified proof of the results of Chakrabarti and Kale [58]
and Feldman et al. [111] for MSM.

11.2.1 Our Techniques and Overview
Our starting point is the breakthrough result of Paz and Schwartzman [232] for a special case of
our problem—maximum weight matching (MWM). They gave a (2 + ε)-approximate streaming
algorithm by extending the local-ratio technique [26]. Subsequently, Ghaffari and Wajc [127]
simplified and slightly improved the analysis of [232], by re-interpreting their algorithm in terms
of the primal-dual method.2 The primal-dual method is ubiquitous in the context of approxi-
mating linear objectives. In this chapter, we show that this method is also useful in the context
of streaming submodular optimization, where to the best of our knowledge, it has not yet been
used. For our primal-dual analysis, we rely on the concave-closure extension for submodular
functions which has a “configuration LP”-like formulation. In particular, using this extension,
we find that a natural generalization of the MWM algorithm of [232] (described in Section 11.4)
yields improved bounds for monotone MSM and its generalization to b-matchings. Our primal-
dual analysis is robust in the sense that it allows for extensions and generalizations, as we now
outline.

Our approach in a nutshell (Sections 11.4+11.5). Our approach is to keep monotone dual
solutions (initially zero), and whenever an edge arrives, discard it if its dual constraint is already
satisfied. Edges whose dual constraint is not satisfied are added to a stack S, and relevant dual
variables are increased, so as to satisfy their dual constraint. Finally, we unwind the stack S,
constructing a matchingM greedily. The intuition here is that the latter edge in the stack incident
on a common edge have higher marginal gain than earlier such edges in the stack. More formally,
we show that this matching M has value at least some constant times the dual objective cost.
Weak LP duality and the choice of LP imply that f(M) > 1

α
· f(S ∪ OPT ) for some α > 1,

which implies our algorithm is α-approximate for monotone MSM.

1We note briefly that such a bound does not follow from space lower for cardinality constrained submodular
maximization [112, 227] in a stream (a special case of our setting, with a complete bipartite graph on n and k nodes),
since a bound for that problem cannot be superlinear in n.

2A form of equivalence between local-ratio and primal-dual was established in [27], but not for the extension
of the local ratio technique given in [232].
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Extension 1 (Section 11.6). Extending our approach, which gives f(M) > 1
α
· f(S ∪OPT ),

to non-monotone functions f seems challenging, since for such functions f(S ∪ OPT ) can be
arbitrarily smaller than f(OPT ). To overcome this challenge, we note that our dual updates over-
satisfy dual constraints of edges in S. We can therefore afford to randomly discard edges whose
dual is not satisfied on arrival (and not add them to S), resulting in these edges’ dual constraints
holding in expectation. This allows us to argue, via a generalization of the randomized primal-
dual method of Devanur et al. [79] (on which we elaborate in Section 11.3), that E[f(M)] >
1
α
· E[f(S ∪ OPT )]. As S contains each element with probability at most some q, a classic

lemma of [54] allows us to show that E[f(S ∪ OPT )] > (1 − q) · f(OPT ), from which we
get our results for non-monotone MSM.3 Given the wide success of the randomized-primal dual
method of [79] in recent years [97, 143, 162–166, 256], we believe that our extension of this
method in the context of submodular optimization will likely find other applications.

Extension 2 (Section 11.7). For maximum weight b-matching (MWbM), the dual updates
when adding an edge to the stack are not high enough to satisfy this edge’s dual constraint.
However, since we do cover each edge outside the stack S, weak duality implies that a maximum-
weight b-matching M in the stack S has value at least as high as f(M) > 1

2+ε
· f(OPT \ S),

and trivially at least as high as f(M) > f(OPT ∩ S). Combining these lower bounds on
f(M) imply our improved (3+ε) approximation ratio for MWbM. This general approach seems
fairly general, and could find uses for other sub-additive objectives subject to downward-closed
constraints.

Unifying Prior Work (Section 11.8). To demonstrate the usefulness of our primal-dual
analysis, we also show that this (randomized) primal-dual approach gives an alternative, unified
way to analyze the MSM algorithms of [58, 111].

Lower bound (Section 11.9). Our lower bound instance makes use of two sources of hard-
ness: computational hardness under ETH ([81, 102]) and information-theoretic hardness result-
ing form the algorithm not knowing the contents or order of the stream in advance ([132]). In
particular, our proof embeds a submodular problem (specifically, set cover) in parts of the linear
instance of [132], and hence exploits the submodularity in the MSM objective. Interestingly, our
lower bound of 1.914 is higher than any convex combination of the previous hardness results we
make use of, both of which imply a lower bound no higher than e/(e− 1).

11.3 Preliminaries
A set function f : 2N → R is submodular if the marginal gains of adding elements to sets,
denoted by fS(e) := f(S ∪ {e}) − f(S), satisfy fS(e) > fT (e) for e 6∈ T and S ⊆ T ⊆ N.
We say f is monotone if f(S) 6 f(T ) for all S ⊆ T ⊆ N . Throughout this chapter we require
only oracle access to the submodular function. The maximum submodular matching (MSM)
problem is defined by a non-negative submodular function f : 2E → R>0, where E is the edge-

3Incidentally, for monotone functions, for whichE[f(M)] > 1
α ·E[f(S∪OPT )] > 1

α ·f(OPT ), this algorithm
is α approximate. This is somewhat surprising, as this algorithm runs an α-approximate monotone algorithm (and
this analysis is tight, by Section 11.10) on a random q-fraction of the input, suggesting an α/q approximation.
Nonetheless, we show that for q not too small in terms of α, we retain the same approximation ratio even after this
sub-sampling.
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set of some n-node graph G = (V,E), and feasible sets are matchings in G. The more general
maximum submodular b-matching (MSbM) problem, has as feasible sets subgraphs in which the
degree of each vertex v does not exceed bv, for some input vector ~b. Our objective is to design
algorithms with low approximation ratio α > 1, that is algorithms producing solutions M such
that E[f(M)] > 1

α
· f(OPT ) for the smallest possible value of α.

For streaming MSM, edges of E are presented one at a time, and we are tasked with com-
puting a matching in G at the end of the stream, using little memory. Since any matching’s
size is at most n/2, we restrict our algorithms to using the bare minimum space, Õ(n) (while
the entire graph can have size Ω(n2)). On a technical note, we will only allow the algorithm
to query the value oracle for f on subsets currently stored in memory. As is standard (see e.g.,
[139, 269]), we assume the range of f is polynomially bounded. More precisely, we assume
that maxe,S fS(e)

mine,S fS(e)
= nO(1), where the max and min are taken over e, S for which fS(e) 6= 0. This

implies in particular that we can store values of the form fS(e) using O(log n) bits.

Useful Notation: Throughout this chapter we will rely on the following notation. First, we
denote by e(1), e(2), . . . , the edges in the stream, in order. For edges e = e(i), e′ = e(j), we
write e < e′ if and only if i < j, i.e., if e arrived before e′. Similarly to [65, 111], we will
also use f(e : S) := fS∩{e′<e}(e) as shorthand for the marginal gain from adding e to the set
of elements which arrived before e in S. One simple yet useful property of this notation is that∑

e∈S f(e : S) = f(S) ([65, Lemma 1].) Other properties of this notation we will make use
of, both easy consequences of submodularity, are f(e : S) 6 fS(e), as well as monotonicity of
f(e : S) in S, i.e., f(e : A) > f(e : B) for A ⊆ B.

11.3.1 The Primal-Dual Method in Our Setting

As discussed in Section 11.2.1, the main workhorse of our algorithms is the primal-dual method.
In this method, we consider some linear program (LP) relaxation, and its dual LP. We then design
an algorithm which computes a (primal) solution of value P , and a feasible solution of value D,
and show that P > 1

α
·D, which implies an approximation ratio of α, by weak duality, since

P >
1

α
·D >

1

α
· f(OPT ).

For linear objectives, the first step of the primal-dual method—obtaining an LP relaxation—
is often direct: write some integer linear program for the problem and drop the integrality con-
straints. For submodular objective functions, which are only naturally defined over vertices of
the hypercube, ~x ∈ {0, 1}E , and are not defined over fractional points ~x ∈ [0, 1]E \ {0, 1}E , the
first step of defining a relaxation usually requires extending f to real vectors. For this, we use
the concave closure (see e.g.[262] for a survey of its history and further properties).
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Definition 11.3.1. The concave closure f+ : [0, 1]E → R of a set function f : 2E → R is
given by

f+(~x) := max

{∑
T⊆E

αT · f(T )

∣∣∣∣∣ ∑
T⊆E

αT = 1, αT > 0 ∀T ⊆ E,
∑
T3e

αT = xe ∀e ∈ E
}
.

In words, the concave closure is the maximum expected f -value of a random subset T ⊆ E,
where the maximum is taken over all distributions matching the marginal probabilities given by
~x. This is indeed an extension of set functions (and in particular submodular functions) to real-
valued vectors, as this distribution must be deterministic for all ~x ∈ {0, 1}E . Consequently, for
any set P ⊆ [0, 1]E containing the characteristic vector ~xOPT of an optimal solution OPT , we
have that max~x∗∈P f

+(x) > f+(xOPT ) = f(OPT ).
Now, to define an LP relaxation for submodular maximization of some function g subject to

some linear constraints A~x 6 ~c, we simply consider max
{
g+(~x)

∣∣ A~x 6 ~c
}

. For MSbM, we
obtain the primal and dual programs given in Figure 11.1.

Primal (P ) Dual (D)
max

∑
T⊆E αT · g(T ) min µ+

∑
v∈V bv · φv

subject to subject to
∀T ⊆ E :

∑
T3e αT = xe ∀T ⊆ E : µ+

∑
e∈T λe > g(T )∑

T⊆E αT = 1 ∀e ∈ E :
∑

v∈e φv > λe
∀v ∈ V :

∑
e3v xe 6 bv

∀e ∈ E, T ⊆ E : xe, αT > 0 ∀v ∈ V : φv > 0

Figure 11.1: The LP relaxation of the MSbM problem and its dual

11.3.2 Non-Montone MSM: Extending the Randomized Primal-Dual Method
To go from monotone to non-monotone function maximization, we make use of our dual up-
dates resulting in dual solutions which over-satisfy (some) dual constraints. This allows us to
randomly sub-sample edges with probability q when deciding whether to insert them into S, and
still have a dual solution which is feasible in expectation over the choice of S. This is akin to
the randomized primal-dual method of Devanur et al. [79], who introduced this technique in the
context of maximum cardinality and weighted matching. However, unlike in [79] (and subse-
quent work [97, 143, 162–166, 166, 256]), for our problem the LP is not fixed. Specifically, we
consider a different submodular function in our LP based on S, denoted by gS(T ) := f(T ∪ S).
This results in random primal and dual LPs, depending on the random set S. We show that our
(randomized) dual solution is feasible for the obtained (randomized) dual LP in expectation over
S. Consequently, our expected solution’s value is at least as high as some multiple of an expected
solution to the dual LP, implying

ES[f(M)] >
1

α
· ES[D] >

1

α
· ES[f(S ∪OPT )]. (11.1)
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Equation (11.1) retrieves our bound for monotone functions, as these satisfy ES[f(S∪OPT )] >
f(OPT ). To obtain bounds for non-monotone functions, we show that ES[f(S ∪ OPT )] >
(1− q) · f(OPT ), by relying on the following lemma, due to Buchbinder et al. [54, Lemma 2.2].

Lemma 11.3.2. Let h : 2N → R>0 be a non-negative submodular function, and let B
be a random subset of N containing every element of N with probability at most q (not
necessarily independently), then E[h(B)] > (1− q) · h(∅).

11.4 Our Basic Algorithm
In this section we describe our monotone submodular b-matching algorithm, which we will use
with slight modifications and different parameter choices in coming sections.

The algorithm maintains a stack of edges S, initially empty, as well as vertex potentials
~φ ∈ R|V |. When an edge e arrives, we compare the marginal value of this arriving edge with
respect to the stack to the sum of vertex potentials of the edge’s endpoints times a slack parameter
C. If C ·∑v∈e φv is larger, we continue to the next edge. Otherwise, with probability q we add
the edge to the stack and increment the endpoint vertex potentials. At the end of the stream,
we construct a b-matching greedily by unwinding the stack in reverse order. The pseudocode is
given in Algorithm 16.

Algorithm 16 The MSbM Algorithm

Initialization
1: S ← emptystack
2: ∀v ∈ V : φ

(0)
v ← 0

Loop
3: for t ∈ {1, . . . , |E|} do
4: e← e(t)

5: ∀v ∈ V : φ
(t)
v ← φ

(t−1)
v

6: if C ·∑v∈e φ
(t−1)
v > f(e : S) then

7: continue . skip edge e
8: else
9: with probability q do

10: S.push(e)
11: for v ∈ e do
12: wev ← f(e:S)−

∑
v∈e φ

(t−1)
v

bv

13: for v ∈ e do
14: φ

(t)
v ← φ

(t−1)
v + wev

Post-Processing
15: M ← ∅
16: while S 6= emptystack do
17: e← S.pop()
18: if |M ∩ N(e)| < bv for all v ∈ e

then
19: M ←M ∪ {e}
20: return M

Algorithm 16 clearly outputs a feasible b-matching. In subsequent sections we analyze this
algorithm for various instantiations of the parameters C and q. Before doing so, we show that
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this algorithm when run with C = 1 + Ω(1) is indeed a streaming algorithm, and in particular
uses space Õ(

∑
v bv).

Lemma 11.4.1. For any constant ε > 0, Algorithm 16 run with C = 1 + ε uses Õ(
∑

v bv)
space.

The proof broadly relies on the observation that every edge incident on vertex v inserted to the
stack increases φv by a multiplicative factor of (C−1)/bv, coupled with the fact that the minimum
and maximum non-zero values which φv can take are polynomially bounded in each other, due
to f being polynomially bounded. See Section 11.11 for a proof.

We further note that as Algorithm 16 only evaluates f a constant number of times per edge
arrival, followed by an algorithm with time O(|S|) 6 O(|E|), this algorithm runs in time linear
in |E|, times the time to evaluate f .

Lemma 11.4.2. Algorithm 16 requires O(1) operations and function evaluations per ar-
rival, followed by O(|E|) time post-processing.

11.5 Monotone MSbM
In this section we will consider a deterministic instantiation of Algorithm 16 (specifically, we
will set q = 1) in the context of monotone submodular b-matching.

To argue about the approximation ratio, we will fit a dual solution to this algorithm. Define
the auxiliary submodular functions gS : 2E → R+ to be gS(T ) := f(S ∪ T ). We will work with
the dual LP (D) for the function gS , and consider the following dual solution.

µ := f(S) = gS(∅),
φv := C · φ(|E|)

v

λe :=

{
f(e : S) e 6∈ S
0 e ∈ S.

We start by showing that the above is indeed dual feasible.

Lemma 11.5.1. The dual solution (µ, ~φ,~λ) is feasible for the LP (D) with function gS .

Proof. To see that the first set of constraints are satisfied, note that by submodularity of f∑
e∈T

λe =
∑
e∈T\S

f(e : S) >
∑
e∈T\S

fS(e) > fS(T \ S) = f(S ∪ T )− f(S) = gS(T )− µ.
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For the second set of constraints, note that an edge e = e(t) is not added to the stack if and
only if the check at Line 6 fails. Therefore, since φ(t)

v values increase monotonically with t, we
have ∑

v∈e

φv = C ·
∑
v∈e

φ(|E|)
v > C ·

∑
v∈e

φ(t−1)
v > f(e : S) = λe.

It remains to relate the value of the solution M to the cost of this dual. We first prove an
auxiliary relationship that will be useful:

Lemma 11.5.2. The b-matching M output by Algorithm 16 satisfies

f(M) >
1

2
·
∑
e∈S

∑
v∈e

bv · wev.

Proof. We first note that for any edge e = e(t) and v ∈ e, since φ(t−1)
v =

∑
e′3v,e′<ewe, we have

that
f(e : S) = bv · wev +

∑
u∈e

φ(t−1)
u > bv · wev + φ(t−1)

v = bv · wev +
∑
e′3v
e′<e

we′v.

Combined with submodularity of f , the above yields the following lower bound on f(M),

f(M) =
∑
e∈M

f(e : M) >
∑
e∈M

f(e : S) >
∑
e∈M

∑
v∈e

(
bv · wev +

∑
e′3v
e′<e

we′v
)
.

On the other hand, the greedy manner in which we constructM implies that any edge e′ ∈ S \M
must have at least one endpoint v with bv edges e > e′ in M . Consequently, the term we′v
for such e and v is summed bv times in the above lower bound for f(M). On the other hand,
bv ·wev = bu ·weu for e = (u, v), by definition. From the above we obtain our desired inequality.

f(M) >
∑
e∈M

∑
v∈e

bv · wev +
1

2
·
∑

e∈S\M

∑
v∈e

bv · wev >
1

2
·
∑
e∈S

∑
v∈e

bv · wev.

We can now bound the two terms in the dual objective separately with respect to the primal,
using the following two corollaries of Lemma 11.5.2.

Lemma 11.5.3. The b-matchingM output by Algorithm 16 satisfies f(M) > 1
2C

∑
v∈V bv ·

φv.

Proof. Since φv = C · φ(|E|)
v , and wev = φ

(t)
v − φ(t−1)

v for all v ∈ e = e(t), Lemma 11.5.2 implies
that

f(M) >
1

2
·
∑
e∈S

∑
v∈e

bv ·wev =
1

2
·
∑
v∈V

|E|∑
t=1

bv ·
(
φ(t)
v − φ(t−1)

v

)
=

1

2
·
∑
v∈V

bv ·φ(|E|)
v =

1

2C
·
∑
v∈V

bv ·φv.
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Lemma 11.5.4. The b-matching M output by Algorithm 16 satisfies f(M) >
(
1− 1

C

)
µ.

Proof. We note that we > 0 for an edge e = e(t) if and only if f(e : S) > C ·∑v∈e φ
(t−1)
v .

Hence,

bv · wev = f(e : S)−
∑
v∈e

φ(t−1)
v >

(
1− 1

C

)
· f(e : S).

Combining the above with Lemma 11.5.2, and again recalling that for e = (u, v), we have that
bv · wev = bu · weu, by definition, we obtain the desired inequality.

f(M) >
1

2
·
∑
e∈S

∑
v∈e

bv · wev >
(

1− 1

C

)∑
e∈S

f(e : S) =

(
1− 1

C

)
f(S).

Combining the above two corollaries and Lemma 11.5.1 with LP duality, we can now analyze
the algorithm’s approximation ratio.

Theorem 11.5.5. Algorithm 16 run with q = 1 and C on a monotone MSbM instance
outputs a b-matching M of value(

2C +
C

C − 1

)
· f(M) > f(OPT).

This is optimized by taking C = 1 + 1√
2
, which yields a 3 + 2

√
2 ≈ 5.828 approximation.

Proof. By weak LP duality and Lemma 11.5.1, together with monotonicity of f , we have that

C ·
∑
v

bv · φv + µ > max
T

gS(T ) = max
T

f(S ∪ T ) > f(S ∪OPT) > f(OPT).

Combining Lemma 11.5.3 and Lemma 11.5.4 and rearranging, we get the desired inequality,(
2C +

C

C − 1

)
· f(M) > C ·

∑
v

bv · φv + µ > f(OPT).

In Section 11.10 we show that our analysis of Algorithm 16 is tight.
We note that our analysis of this section required monotonicity, as we lower bounded f(M)

by (a multiple of) f(S ∪OPT ) > f(OPT ), where the last step crucially relies on monotonicity.
In the next section, we show how the use of randomness (namely, setting q 6= 1) allows us to
obtain new results for non-monotone MSM.
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11.6 Non-Monotone MSM
In this section we consider MSM (so, bv = 1 for all v in this section), for non-monotone func-
tions.

To extend our results to non-monotone MSM, we make use of the freedom to choose q 6∈
{0, 1}, resulting in a randomized algorithm. This will allow us to lower bound ES[f(S ∪OPT )]
in terms of f(OPT ). But first, we show that for appropriately chosen q, the output matching
M has high value compared to ES[f(S ∪ OPT )]. The analysis of this fact will follow the same
outline of Section 11.5, relying on LP duality, but with a twist.

For our dual fitting, we use the same dual solution as in Section 11.5. However, this time
this dual solution will only be feasible in expectation, in the following sense. Since we now have
q 6∈ {0, 1}, Algorithm 16 is now a randomized algorithm, S is a random set, gS is a random
submodular function, and thus (D) is a random LP. Let E[(D)] denote this LP, which is (D) with
the submodular function g(T ) := ES[gS(T )]. We now show that our dual solution’s expectation
is feasible for E[(D)].

Lemma 11.6.1. For q ∈ [1/(2C + 1), 1/2], the expected dual solution (E[µ],E[~φ],E[~λ]) is
feasible for the expected LP E[(D)].

Proof. The first set of constraints is satisfied for any realization of the randomness. Indeed, as in
the proof of Lemma 11.5.1, for any realization of S, by submodularity of f , we have∑

e∈T

λe =
∑
e∈T\S

f(e : S) >
∑
e∈T\S

fS(e) > fS(T \ S) = f(S ∪ T )− f(S) = gS(T )− µ.

Consequently, taking expectation over S, we have that indeed, ES[µ]+
∑

e∈T ES[λe] > ES[gS(T )].
We now tun to proving the second set of constraints, which will only hold in expectation.

Fix an edge e = e(t), and define the event Ae := [f(e : S) 6 C ·∑v∈V φ
(t−1)
v ]. Then, by

definition of Ae and monotonicity of φ(t)
v in t, we have that

E

[∑
v∈e

φv

∣∣∣∣∣ Ae
]
> E

[
C ·
∑
v∈e

φ(t−1)
v

∣∣∣∣∣ Ae
]
> E[f(e : S) | Ae] = E[λe | Ae]. (11.2)

We now prove the same inequality holds when conditioning on the complement, Ae.
Fix a realization of the randomness R for which Ae holds. Then, e = e(t) fails the test

in Line 6, and so with probability q, we have
∑

v∈e φ
(t)
v =

∑
v∈e(φ

(t−1)
v + we) = 2 · f(e :

S)−∑v∈e φ
(t−1)
v , and with probability (1− q), we have

∑
v∈e φ

(t)
v =

∑
v∈e φ

(t−1)
v . Hence, in this

case, as q 6 1
2
, we have

E

[∑
v∈e

φ(t)
v

∣∣∣∣∣ R
]

= 2q · f(e : S) + (1− 2q) ·
∑
v∈e

φ(t−1)
v > 2q · f(e : S).
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Now, since φv > C · φ(t), and q > 1/(2C + 1) and since λe is set to f(e : S) if e is not added to
S (with probability 1− q) and set to zero otherwise, the above implies that

E

[∑
v∈e

φv

∣∣∣∣∣ R
]
> 2qC · f(e : S) > (1− q) · f(e : S) = E[λe | R].

By the law of total expectation, taken over all R ⊆ Ae, we have

E

[∑
v∈e

φv

∣∣∣∣∣ Ae
]
> E

[
λe
∣∣ Ae]. (11.3)

Combining inequalities (11.2) and (11.3) with the law of total expectation gives the desired
inequality,

E

[∑
v∈e

φv

]
> E[λe].

To bound the performance of this section’s randomized variant of Algorithm 16, we can reuse
corollaries 11.5.3 and 11.5.4, since these follow from Lemma 11.5.1, which holds for every
realization of the random choices of the algorithm. We now use these corollaries, LP duality and
Lemma 11.6.1, together with Lemma 11.3.2, to analyze this algorithm.

Theorem 11.6.2. Algorithm 16 run with q = 1/(2C+ 1) and C on a non-monotone MSM
instance outputs a matching M of value(

4C2 − 1

2C − 2

)
· f(M) > f(OPT).

This is optimized by taking C = 1 +
√

3
2

, resulting in an approximation ratio of 4 + 2
√

3 ≈
7.464. Moreover, the same algorithm is 2C+C/(C−1) approximate for monotone MSM.

Proof. First, by Lemma 11.5.3 and Lemma 11.5.4, for every realization of the algorithm, we
have (

2C +
C

C − 1

)
· f(M) >

∑
v

φv + µ,

and thus this relationship holds in expectation as well.(
2C +

C

C − 1

)
· E[f(M)] > E

[∑
v

φv + µ

]
. (11.4)

On the other hand, by Lemma 11.6.1, the expected dual LP solution is feasible for E[(D)].
Therefore, by weak LP duality, we have

E

[∑
v

φv + µ

]
> max

T
E[g(T )] = max

T
E[f(S ∪ T )] > E[f(S ∪OPT)]. (11.5)
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The result for monotone MSM follows from equations (11.4) and (11.5), together with mono-
tonicity implying E[f(S ∪OPT)] > f(OPT).

For non-monotone MSM, let us define the additional auxiliary function h : 2E → R+, with
h(T ) := h(OPT∪T ). Now note that by our sampling procedure, S is a random subset of E
containing every edge with probability at most q. Hence, by Lemma 11.3.2, we have

E[f(S ∪OPT)] = E[h(S)] > (1− q) · h(∅) = (1− q) · f(OPT). (11.6)

Combining equations (11.4), (11.5) and (11.6), together with our choice of q = 1/(2C + 1),
the desired inequality follows by rearranging terms.

Having explored the use of Algorithm 16 for submodular matchings, we now turn to consider
this algorithm’s use in the context of streaming linear objectives.

11.7 Linear Objectives
In this section we address the use of Algorithm 16 to matching and b-matching with linear ob-
jectives, i.e., MWM and MWbM, using a deterministic variant, with q = 1.

For MWM, this algorithm with C = 1 + ε is essentially the algorithm of [232], and so
it retrieves the state-of-the-art (2 + ε)-approximation for this problem, previously analyzed in
[127, 232]. We therefore focus on MWbM, for which a simple modification of Algorithm 16
yields a 3 + ε approximation, improving upon the previous best 4 + ε approximation due to [73].

The modification to Algorithm 16 which we consider is a natural one: instead of computing
M greedily, we simply compute an optimal MWbM M in the subgraph induced by S, using a
polytime linear-space offline algorithm (e.g., [12, 117]). Trivially, the b-matching M has weight
at least

w(M) > w(OPT ∩ S). (11.7)

Moreover, this b-matching has weight no lower than the greedily-constructed b-matching of lines
15-20. We use LP duality to show that this modified algorithm with C = 1 + ε outputs a b-
matching M of weight at least w(M) > 1

2+ε
· w(OPT \ S).

Lemma 11.7.1. Let M be a MWbM in the stack S obtained by running Algorithm 16 with
C = 1 + ε/2 and q = 1 until Line 15. Then, we have w(M) > 1

2+ε
· w(OPT \ S).

Proof. Consider the matching M ′ obtained by greedily unwinding the stack, as in Algorithm 16.
Clearly, w(M) > w(M ′). So, by Lemma 11.5.3, we have w(M) > 1

2+ε
·∑v∈V φv, for φv =

C ·φ(|E|)
v . To relate

∑
v∈V φv to w(OPT ), we show that the dual solution (0, ~φ, ~w) is dual feasible

for the LP (D) with function w.
The first set of constraints are trivially satisfied, due to linearity ofw, as 0+

∑
e∈T we = w(T ).

For the second set of constraints, note that an edge e = e(t) is not added to the stack if and
only if the check at Line 6 fails. Therefore, since φ(t)

v values increase monotonically with t, we
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have ∑
v∈e

φv = C ·
∑
v∈e

φ(|E|)
v > C ·

∑
v∈e

φ(t−1)
v > f(e : S) = we.

Therefore, by weak LP duality, we have w(M) > 0 + 1
2+ε
·∑v∈V φv >

1
2+ε
· w(OPT ).

We are now ready to analyze the approximation ratio of this MWbM algorithm.

Theorem 11.7.2. For any ε > 0, Algorithm 16 run with C = 1 + ε/2 and q = 1 until
Line 15, followed by a linear-space offline MWbM algorithm run on S to compute a
solution M is a (3 + ε)-approximate streaming MWbM algorithm.

Proof. To see that this is a streaming algorithm, we recall that |S| = Õ(
∑

v bv), by Lemma 11.4.1.
Since we compute M by running an offline linear-space algorithm on the subgraph induced by
S, therefore using O(|S|) space for this last step, the desired space bound follows.

To analyze the algorithm’s approximation ratio, let α ∈ [0, 1] be the weighted fraction of
OPT in S. That is, w(OPT ∩ S) = α · w(OPT ), and by linearity, w(OPT \ S) = (1 − α) ·
w(OPT ). Therefore, by Equation (11.7) and Lemma 11.7.1 we have the following.

w(M) > w(OPT ∩ S) = α · w(OPT ).

w(M) >
1

2 + ε
· w(OPT \ S) =

1− α
2 + ε

· w(OPT ).

We thus find that the approximation ratio of this algorithm is at most 1/min{α, 1−α
2+ε
} 6 3+ε.

Remark. We note that this approach—dual covering constraints for elements outside of the
algorithm’s memory S, and solving the problem optimally for S—is rather general. In particu-
lar, it applies to matching under any sub-additive (not just submodular) set function f , for which
f(OPT ) 6 f(OPT \ S) + f(OPT ∩ S). Moreover, this approach extends beyond matchings,
to any downward-closed constraints, for which OPT \ S and OPT ∩ S are both feasible solu-
tions. So, it seems like this approach could find applications to streaming algorithms for other
objectives and constraints, provided dual feasibility can be guaranteed using a dual solution of
value bounded by that of the output solution.

11.8 Explaining Prior Work using LP Duality
In this section we further demonstrate the generality of our (randomized) primal-dual analysis,
showing that it provides fairly simple alternative analyses of the algorithms of [58, 111], giving
one unified analysis for these algorithms and ours. To keep things simple, we focus only on
MSM, though [58, 111] show that their algorithms also work more broadly for k-matchoid and
k-set system constraints.

In [58], Chakrabarti and Kale presented a reduction from MSM to MWM, by showing how
to use a subclass of MWM algorithms to solve MSM. We now introduce the algorithm of [58]
instantiated with the MWM algorithm of McGregor [205]. The algorithm is a natural and elegant
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one: when an edge e arrives, we consider its marginal gain with respect to the current matching.
If this marginal gain is higher than some slack parameter C times the marginal gains of the
currently blocking edges e′ ∈ N(e) ∩M , we preempt those edges and add e to the matching.

In anticipation of our analysis of the algorithm of [111] in Section 11.8.2, we generalize the
algorithm’s description and allow the algorithm to preempt with some probability q ∈ [0, 1]. The
full pseudo-code is given in Algorithm 17.

Algorithm 17 The MSM Algorithm of [58] and [111]

Initialization
1: M ← ∅

Loop
2: for t ∈ {1, . . . , |E|} do
3: e← e(t)

4: B(e)←∑
e′∈N(e)∩M f(e′ : M)

5: if f(e : M) 6 C ·B(e) then
6: continue . skip edge e
7: else
8: with probability q do
9: M ← (M \N(e)) ∪ {e}

10: return M

This algorithm only ever adds an edge e to M upon its arrival. After adding an edge to
M , this edge can be preempted, i.e., removed from M , after which it is never added back to
M . Thus we note that this algorithm is not only a streaming algorithm, but also a so-called
preemptive algorithm: it only stores a single matching in memory and therefore trivially requires
Õ(n) space.

For convenience, we let M (t) denote the matching M at time t, and let S :=
⋃
tM

(t) denote
the set of edges ever added to M . For an edge e let B(t)(e) =

∑
e′∈N(e)∩M(t) f(e′ : M (t)). We

will also denote by P := S \M the set of preempted edges.

11.8.1 The Framework of [58], Applied to the Algorithm of [205]

In this section we analyze the deterministic algorithm obtained by applying the framework of
Chakrabarti and Kale [58] to the MWM algorithm of McGregor [205], corresponding to Algo-
rithm 17 run with q = 1.

To argue about the approximation ratio, we will again fit a dual solution to this algorithm.
Define the auxiliary submodular functions gS : 2E → R+ to be gS(T ) := f(S ∪T ). Similarly to
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our analysis of Algorithm 16, we define the following dual.

µ := f(S) = gS(∅),
φv := C ·max{f(e : M (t)) | t ∈ [|E|], v ∈ e ∈M (t)},

λe :=

{
f(e : S) e 6∈ S
0 e ∈ S.

Note the difference here in the setting of φv from the algorithms of Sections 11.5 and 11.6. We
start by showing that this is a dual feasible solution to the LP (D) for the function gS .

Lemma 11.8.1. The dual solution (~λ, ~φ, µ) is feasible for the LP (D) with function gS .

Proof. To see that the first set of constraints are satisfied, note that by submodularity of f ,∑
e∈T

λe =
∑
e∈T\S

f(e : S) >
∑
e∈T\S

fS(e) > fS(T \ S) = f(S ∪ T )− f(S) = gS(T )− µ.

For the second set of constraints, we note that if e = e(t) 6∈ S, then by the test in Line 5 and
submodularity, we have that

λe = f(e : S) 6 f(e : M (t−1)) 6 C ·B(t−1)(e) 6
∑
v∈e

φv.

It remains to relate the value of the solution M to the cost of this dual. For this, we introduce
the following useful notation. For any edge e ∈ S, we define the weight of e to be

we :=

{
f(e : M) e ∈M
f(e : M (t)) e ∈M (t−1) \M (t) ⊆ P.

In words, the weight of an edge in the matching is f(e : M), and the weight of a preempted
edge is frozen to its last value before the edge was preempted. One simple consequence of the
definition of the weights we is the following relationship to f(M).

Observation 11.8.2. f(M) =
∑

e∈M f(e : M) =
∑

e∈M we = w(M).

We now show that the preempted edges’ weight is bounded in terms of the weight of M .

Lemma 11.8.3. The weights of P and M satisfy w(P ) 6 w(M) · 1
C−1

.
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Proof. For any edge e, we define the following set of preempted edges which are preempted in
favor ofe or in favor of an edge (recursively) preempted due to e.4 First, for an edge e = e(t),
we let the set P 1(e) := N(e) ∩M (t−1) denote the edges preempted when e is added to M . For
any i > 1, we let P i(e) := P 1(P i−1(e)) be the set of edges preempted by an edge with a trail of
preemptions of length i− 1 from e. By Line 6, we have that any edge e ∈ S has weight at least
we > C · P 1(e). By induction, this implies that we > C · w(P (i−1)(e)) > Ci · w(P i(e)). Now,
since each preempted edge e′ ∈ P belongs to precisely one set P i(e) for some i > 1 and e ∈M ,
we find that indeed,

w(P ) =
∑
e∈M

∑
i>1

w(P i(e)) 6
∑
e∈M

∑
i>1

1

Ci
·we = w(M)·

(
1

C
+

1

C2
+

1

C3
+ . . .

)
= w(M)· 1

C − 1
.

Using Lemma 11.8.3, we can now relate the value of the primal solution M to the cost of the
our dual solution, µ+

∑
v φv. We start by bounding µ in terms of f(M).

Lemma 11.8.4. The matching M output by Algorithm 17 satisfies f(M) >
(
1− 1

C

)
· µ.

Proof. By submodularity of f , Lemma 11.8.3, and Observation 11.8.2 we obtain the desired
inequality,

µ = f(S) = f(M∪P ) 6 f(M)+
∑
e∈P

f(e : M) = w(M)+w(P ) 6

(
1 +

1

C − 1

)
·f(M).

We next bound
∑

v φv in terms of f(M).

Lemma 11.8.5. The matching M output by Algorithm 17 run with C > 1 satisfies

f(M) >
1

2C + C/(C − 1)
·
∑
v∈V

φv.

Proof. Fix a vertex v and edge e ∈ M (t−1) \M (t) ⊆ P preempted at time t in favor of edge
e′ = e(t) 3 v. For this edge e, by monotonicty in t′ of f(e′ : M (t′)), the test of Line 5, non-
negativity of f(e′′ : M (t−1)) for any edge e′′ ∈M (t−1) and C > 1 we have that

we′ > f(e′ : M (t−1)) > C ·B(t−1)(e′) > C · f(e : M (t−1)) = C · we > we.

Consequently, again relying on monotonicity in t′ of f(e′ : M (t′)), we have that for any edge e ∈
P , there is at most one vertex v ∈ e such that we = f(e : M (t−1)) is equal to φv = max{f(e′ :
M (t′)) | v ∈ e′ ∈M (t′)} . Edges e ∈M , on the other hand, clearly have we = f(e : M) equal to

4In [104, 205], these sets are referred to by the somewhat morbid term “trail of the dead”.
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φv = max{f(e′ : M (t−1)) | v ∈ e′ ∈ M (t−1) \M (t)} for at most two vertices v ∈ e. Combined
with Lemma 11.8.3 and Observation 11.8.2, this yields the desired inequality,

∑
v∈V

φv 6 C ·
(

2
∑
e∈M

we +
∑
e∈P

we

)
6

(
2C +

C

C − 1

)
·w(M) =

(
2C +

C

C − 1

)
· f(M).

Equipped with the above lemmas, we can now analyze Algorithm 17’s approximation ratio.

Theorem 11.8.6. Algorithm 16 run with C > 1 and q = 1 on a monotone MSM instance
outputs a matching M of value(

2C +
2C

C − 1

)
· f(M) > f(OPT).

This is optimized by taking C = 2, resulting in an approximation ratio of 8.

Proof. By weak LP duality and Lemma 11.8.1, together with monotonicity of f , we have that

C ·
∑
v

φv + µ > max
T

gS(T ) = max
T

f(S ∪ T ) > f(S ∪OPT) > f(OPT).

Combining Lemma 11.8.5 and f(M) = µ by definition and rearranging, we get the desired
inequality, (

2C +
2C

C − 1

)
· f(M) > C ·

∑
v

φv + µ > f(OPT).

As with our algorithm of Section 11.5, our analysis of Algorithm 17 relied on monotonicity,
crucially using f(S ∪ OPT ) > f(OPT ). To extend this algorithm to non-monotone MSM, we
again appeal to Lemma 11.3.2, setting q = 1

2C+1
. This is precisely the algorithm of Feldman

et al. [111], which we analyze in the following section.

11.8.2 The Algorithm of Feldman et al. [111]
In [111], Feldman et al. showed how to generalize the algorithm of [58] to non-monotone func-
tion maximization. Here we show an analysis of their algorithm in our primal dual framework.
Our proof is an extension of the one in Section 11.8.1 in a way that is analogous to how Sec-
tion 11.6 extends Section 11.5.

We reuse the same dual from Section 11.8.1, only this time, both our dual object and the
function gS are random variables. The proof of expected dual feasibility for this variant of
the algorithm of Section 11.8.1 is analogous to that of Lemma 11.6.1, so we only outline the
differences here.

We start with expected feasibility.
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Lemma 11.8.7. The dual solution (E[~λ],E[~φ],E[µ]) is feasible for the expected LP E[(D)].

Proof (Sketch). The first set of constraints is satisfied for any random realization. Indeed, as in
the proof of Lemma 11.8.1, for any realization of S, by submodularity of f , we have∑

e∈T

λe =
∑
e∈T\S

f(e : S) >
∑
e∈T\S

fS(e) > fS(T \ S) = f(S ∪ T )− f(S) = gS(T )− µ.

Consequently, taking expectation over S, we have that indeed, ES[µ]+
∑

e∈T ES[λe] > ES[gS(T )].
For the second set of constraints, the proof is nearly identical to that of Lemma 11.6.1, where

we show that

E

[∑
v∈e

φv

]
> E[λe].

This is proved by taking total probability over the event Ae := [f(e : S) 6 C ·∑v∈V φ
(t−1)
v ] and

its complement. The key inequality to prove here is that for any realization of randomness R for
which Ae holds, we have that

E

[∑
v∈e

φ(t)
v

∣∣∣∣∣ R
]

= 2q · f(e : S) + (1− 2q) ·
∑
v∈e

φ(t−1)
v > 2q · f(e : S).

And indeed, conditioned on R, the edge e = e(t) fails the test in Line 5, and so with probability
q, we have

∑
v∈e φ

(t)
v = 2 · f(e : S). To see this, note that if e is added to the matching, then for

both v ∈ e, by definition φ(t)
v must be at least f(e : S). Hence, in this case

E

[∑
v∈e

φ(t)
v

∣∣∣∣∣ R
]
> 2q · f(e : S).

The proof then proceeds as that of Lemma 11.6.1.

To relate the value of the solution M to the cost of the dual, we can define weights as in
Section 11.8.1 and reuse lemmas 11.8.3, 11.8.4, and 11.8.5, which hold for every realization of
the random choices of the algorithm. From here, following our template, we can use these along
with LP duality, Lemma 11.8.7 and Lemma 11.3.2, to analyze this algorithm.

Theorem 11.8.8. Algorithm 17 run with q = 1/(2C+ 1) and C on a non-monotone MSM
instance outputs a matching M of value(

2C2 + C

C − 1

)
· f(M) > f(OPT).

This is optimized by taking C = 1 +
√

3
2

, resulting in an approximation ratio of 5 + 2
√

6 ≈
9.899. Moreover, the same algorithm is 2C + 2C/(C − 1) approximate for monotone
MSM, yielding an approximation ratio of 8 for C = 2.
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11.9 Lower Bound for MSM
Previous work shows that beating a e

e−1
≈ 1.582 approximation for MSM in the streaming model

is impossible for quasilinear space bounded algorithms [174], or polytime bounded algorithms
[81, 102, 204]. In this section, we show that assuming the exponential time hypothesis (ETH),
whereby NP 6⊆ TIME(2o(n)) [167], beating 1.914 is impossible for any algorithm that is both
space and time bounded. In particular, we will rely on seminal hardness of approximation results
SET COVER from [81]. Recall:

Definition 11.9.1. A SET COVER instance consists of a set system (U ,S), with S ⊆ 2U .
The goal is to pick the smallest number k of sets S1, . . . Sk such that

∣∣∣⋃i∈[k] Si

∣∣∣ = |U|. We
use K to denote the size of minimal cover for the instance (U ,S), and N = |U| + |S| to
denote the description size.

Lemma 11.9.2. Assuming ETH, every algorithm achieving an approximation ratio (1 −
α) ln |U| for SET COVER runs in time strictly greater than 2N

γ·α
for some γ > 0. Further-

more, this holds even under the assumptions that |S| 6 K1/(γα) and |U| 6 |S|1/(γα).

See Section 11.12 for a proof that the hardness holds even under the extra assumptions. To
describe the instance, we will also use some extremal graph theory results from [132].

Definition 11.9.3. An α-Ruzsa-Szemerédi graph (α-RS graph) is a bipartite graph G =
(P,Q,E) with |P | = |Q| = n that is a union of induced matchings of size exactly αn.

Theorem 11.9.4 (Lemma 53 of [132]). For any constant ε > 0, there exists a family of
balanced bipartite (1/2− ε)-RS graphs with n1+Ω(1/ log logn) edges.

In what follows we will show a randomized reduction from SET COVER to streaming MSM.
Specifically, we will show that if there is a polytime streaming algorithm for MSM achieving
ratio better than 1.914, then there is an algorithm for SET COVER violating Lemma 11.9.2. We
proceed to describing our reduction.

The Reduction. The input is a SET COVER instance (U ,S) for which the minimal cover
contains K sets. Fix n = 2k

1/d for a degree d to be determined later.
We create an underlying bipartite graph G = (L,R,E) with n poly log n vertices as follows.

The left/right vertex sets are partitioned into L = P t P ′, R = Q tQ′. We let |P | = |Q| = 2n,
and we let |P ′| = |Q′| = n · |S|/K.

The edge set E arrives in two phases. In phase 1, all the edge of a set E1 arrive, in phase 2 the
edges ofE2 arrive. To defineE1, letG0 be a fixed (1/2−ε)-RS graph withm = Ω

(
n1+1/ log logn

)
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edges between P and Q, and let this graph be the union of the matchings M1, . . . ,Mt. Let M ′
i be

a random subset ofMi of size (1/2−δ)n for a parameter ε < δ < 1/4 and letE1 = M ′
1∪. . .∪M ′

t .
Choose one index r ∈ [k] uniformly at random, and call M ′

r the distinguished matching. Note
that the index r is unknown to the algorithm.

Define E2 as follows. Let P1 t P2 t . . . t Pn/K and Q1 t Q2 t . . . t Qn/K be partitions of
the the vertices of P and Q respectively not matched by Mr into subsets of size K. Similarly, let
P ′1tP ′2t . . .tP ′n/K and Q′1tQ′2t . . .tQ′n/K be partitions of P ′ and Q′ into subsets of size |S|.
Let Fi be the edges of the complete bipartite graph between Pi and Q′i, and let Gi be the edges of
the complete bipartite graph between Qi and P ′i . Finally, set E2 =

⋃
i Fi ∪Gi. See Figure 11.2.

P Q

Qi
P ′iPiQ′i

P ′Q′

Figure 11.2: Illustration of lower bound instance.
Red edges represent the edges of the distinguished matchingMr inE1, purple edges represent other edges
in E1, green edges represent edges of E2. The red and purple edges together form the (1/2− ε)-RS graph
G0, subsampled.

It remains to describe the submodular function f . First, define the set function f1(E) =
|E ∩ E1|. Next, we define the function f2 which is parametrized by the SET COVER instance.
We identify each set of vertices P ′i and Q′i with a disjoint copy of S. For every edge e ∈ E2,
let φ(e) denote the set with which the endpoint of e in P ′ ∪ Q′ is associated. Now, for some
parameter η > 0 to be determined later, we define

f2(E) :=
ηK

|U| ·
∣∣∣∣∣⋃
e∈E

φ(e)

∣∣∣∣∣ .
Finally, set f := f1 +f2. Note that f is submodular since it the sum of a scaled coverage function
and a linear function. On a technical note, since we assume that |U| is polynomially bounded in
|S|, we can represent the values of this function with poly log n bits.
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Some intuition. Intuitively, we can imagine that all edges ofE1 are worth 1. We imagine that
each edge ofE2 is a set in one of the copies of the instance (S,U), and we let the value of all edges
selected in the second phase be the coverage of all the associated sets (scaled by ηK/|U|). First
we we will argue that the algorithm can output almost none of the edges ofM ′

r, since it after phase
1 it has no information as to which matching is the distinguished one. Hence the majority of the
edges it uses from phase 1 must be from E1\M ′

r. However, each edge the algorithm chooses
from E1\M ′

r precludes it from taking between 1 and 2 edges of E2. Furthermore, maximizing
the value of edges of E2 amounts to solving a hard MAX K-COVERAGE instance. The coverage
is scaled by the parameter η, and as a result, the algorithm is incentivized to take some k := cK
edges from each of the bipartite graphs (Pi, Q

′
i) (and (Qi, P

′
i )) of E2 and the remaining edges

from E1\M ′
r. Meanwhile, OPT can take the distinguished matching edges M ′

r as well as the
edges of E2 maximizing the coverage instance. Our bound will follow by setting η to maximize
the ratio between these.

To start, we show that no streaming algorithm can “remember” more than a o(1) fraction of
the edges of the distinguished matching Mr. Since phase 1 of our construction is identical to
the one in Appendix H of [132] which shows a 3/2 semi-streaming lower bound for max weight
matching., we can reuse their result here.

Lemma 11.9.5. For any constants γ, δ ∈ (0, 1/4), let A be an algorithm that at the end of
phase 1, with constant probability, outputs at least γn of the the edges of M ′

r. ThenA uses
Ω(E1) > n1+Ω(1/ log logn) bits of space.

We reproduce a version of the proof in Section 11.12 for completeness. With this, we are
finally ready to prove the main theorem of the section.

Theorem 11.9.6. Assuming ETH, there exists a distribution over MSM instances such
that any deterministic algorithm achieving an 1.914 approximation must use either
n1+Ω(1/ log logn) space or 2(logn)10.

Proof. Our proof is a randomized polytime reduction from SET COVER to streaming MSM.
We will show that if there is a randomized streaming algorithm achieving ratio better than
1.914 for MSM, then there is an algorithm for SET COVER achieving approximation ratio
(1−α) ln(|U|) for constant α > 0 that only requires polynomial extra overheard. We then argue
that Lemma 11.9.2 implies that the streaming MSM algorithm must run in super polynomial
time, assuming ETH.

Fix a deterministic algorithm A for streaming MSM. Now, given an instance of SET COVER

(U ,S) with minimum cover size K and description size N = |U|+ |S|, create a random instance
of streaming MSM according to the reduction described in this section. For each bipartite graph
(Pi, Q

′
i) (or (Qi, P

′
i )), if the algorithm A chooses cK edges from this graph, it can select at most

2(1 − c)K edges from E1 that are adjacent to Pi (or Qi). Suppose WLOG that it can always
achieve the 2(1− c)k bound. In this case we can also assume WLOG the algorithm chooses the
same number c ·K of edges from each such graph, and furthermore that it selects the same sets
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in the set system (S,U). Otherwise it can locally improve its solution by copying the solution
for the best index i.

Suppose this solution achieves coverage of (1−e−c+γ)·|U|. Since the matchingsM1, . . . ,Mt

are induced, and by Lemma 11.9.5 w.h.p. the algorithm can only output o(n) edges of M ′
r after

phase 1, the algorithm can only select o(n) edges not incident to some Pi or Qi. Thus the total
value achieved by the algorithm is at most:

[
2(1− e−c + γ) · η ·K + 2(1− c) ·K

]
· n
K

+ o(n)

6 2(1− e−c + γ) · ηn+ 2(1− c) · n+ o(n)

6 (2η − 2 ln(η) + 2γ) · n+ o(n),

where the last step follows since the expression is maximized at c = ln η. On the other hand, the
optimal solution can select the distinguished matching edge M ′

r, as well as K edges adjacent to
each set Pi corresponding to the minimum SET COVER solution. Thus the total value of OPT is
at least:

(1− δ + 2η) · n.

Thus the ratio between the maximum value achievable by the algorithm and the optimal value is
bounded by:

1 + 2η − δ
2η − 2 ln(η) + 2γ + o(1)

.

Finally, we set η = 2.09 and let δ → 0. If this ratio converges to a value strictly below 1.914,
then we can conclude that γ = Ω(1) and γ > 0.

We have shown that A can be used to pick cK sets with coverage (1−e−c+γ) · |U|. To finish
the proof, we now show that this can be used to recover an approximation algorithm B for SET

COVER. For convenience, set constant γ′ such that (1 − e−c−γ′) := (1 − e−c + γ). Then, guess
K, and repeat algorithmA recursively dln |U|/(c+γ′)e 6 ln |U|/(c+γ′)+1 times, each time on
the residual uncovered set system. Each call to A covers (1− e−c−γ′) of the elements remaining,
so after this number of iterations, the fraction of uncovered elements is less than 1/|U|, i.e. all
elements are covered. Since each iteration costs c ·K, the total number of sets picked here is at
most

c

(
ln |U|
c+ γ′

+ 1

)
·K =

(
c

c+ γ′
+

c

ln |U|

)
· ln |U| ·K.

Defining the constant α = γ′/(c + γ′), this is a (1 − α − o(1)) ln |U| approximation to the SET

COVER instance. Furthermore, if A runs in time T then B runs in time poly(N) · T (where
N = |U|+ |S|).

To conclude, if T < 2N
∆ for a constant ∆ < γ ·α, thenB runs faster than 2N

γα , contradicting
Lemma 11.9.2. Thus the algorithm A must run in time at least 2N

γ·α
> 2|S|

γ·α
> 2(logn)d·γ·α .

Setting d = 10/(γ · α), this running time is 2(logn)10 , which is superpolynomial in n.

Theorem 11.2.3 therefore follows from Theorem 11.9.6 and Yao’s minimax principle [270].
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11.10 Tight instance for Algorithm 16
In this section we show that there exists a family of instances of MSM instances parametrized
by C for which Algorithm 16 with parameter C > 1 yields an approximation factor of 2C +
C/(C − 1).

Lemma 11.10.1. The approximation ratio of Algorithm 16 with C > 1 and q = 1 for
monotone MSM is at least 2C + C

C−1
.

Proof. Define the graph G as follows. The vertex set V (G) consists of {xi, yi}i∈[0,n]. For conve-
nience, for every i ∈ [1, n] we define the edges di = (x0, xi) and ei = (xi, yi). Then the edge set
E(G) consists of the edges {di}ni=1 ∪ {ei}ni=0.

x0

...

y0

x1

x2

x2

xn

y1

y2

y2

yn

Figure 11.3: Tight Example for Algorithm 16

To define the (monotone) submodular function, we first define an auxiliary weight function
w : E(G)→ R>0. The weights are:

w(di) = Ci−1 (n > i > 1)
w(e1) = 1 + C − ε
w(ei) = Ci − ε (n > i > 2)
w(e0) = Cn − ε

Now the submodular function is:

f(T ) := w(T ∩ {e0}) +
n∑
i=0

min(w(T ∩ {di, ei}), w(ei))

Since weights are non-negative, this function is monotone. Submodularity follows from presere-
vation of subdmodularity under linear combinations (and in particular sums), and min{w(S), X}
being submodular for any linear function w.

The stream reveals the edges d1, . . . , dn in order, and subsequently reveals e0, e1, . . . , en in
order. For a run of Algorithm 16 with this choice ofC and q = 1, several claims hold inductively:
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(a) On the arrival of edge di, we have φx0 = Ci−2 (except for the arrival of d1, at which point
φ0 = 0) and φxi = 0.

(b) The algorithm takes every edge di into the stack.
(c) After di is taken into the stack, we have φx0 = Ci−1 and φxi = Ci−1 + Ci−2 (except for φx1

which is set to 1).
(d) The algorithm does not take ei into the stack.

Let Λt be the statement that these claims holds for time t. By inspection Λ1 holds, now
consider some time i > 1. Claim (a) follows directly from claim (c) of Λi−1. Claim (b) follows
from (a) since fS(di) = Ci−1 = C · φ0 when di arrives. Claim (c) is a consequence of how
the algorithm increases the potentials φ when taking edges into the stack. Claim (d) holds since
fS(ei) = w(ei)− w(di) = Ci − Ci−1 − ε < C · φxi .

From the above, we find that Algorithm 16 with parameter C as above and q = 1 will have
all edges d1, . . . , dn in its stack by the end, resulting in it outputting the matching consisting of
the single edge dn. The value of this edge (and hence this matching) is Cn−1, while on the other
hand OPT can take the edges {ei}ni=0, which have value

n∑
i=0

w(ei) = Cn +
n∑
i=0

Ci − ε(n+ 1)→ Cn−1

(
2C +

C

C − 1

)
. (as n→∞ and ε→ 0)

so long as C > 1. Hence c(OPT)/c(ALG)→ 2C + C/(C − 1). The lemma follows.

11.11 Space Bound of Algorithm 16
In this section we bound the space usage of Algorithm 16, as restated in the following lemma.

Lemma 11.4.1. For any constant ε > 0, Algorithm 16 run with C = 1 + ε uses Õ(
∑

v bv)
space.

Proof. Fix a vertex v ∈ V . If an edge e 3 v is added to S at time t, then by the test in Line 6,
f(e : S) > (1 + ε) ·∑u∈e φ

(t−1)
u . Consequently, and since φ values are easily seen to always be

positive, we have

φ(t)
v − φ(t−1)

v = w′ev =
f(e : S)−∑u∈e φ

(t−1)
u

bv
>
ε ·∑u∈e φ

(t−1)
u

bv
>
ε · φ(t−1)

v

bv
.

Thus, adding this edge e 3 v to S results in φ(t)
v > φ

(t−1)
v · (1 + ε/bv). Moreover, if e is the first

edge of v added to S, then, letting fmin := min{f(e : S) 6= 0 | e ∈ E, S ⊆ E} be the minimum
non-zero marginal gain, we have

φ(t)
v =

f(e : S)−∑u∈e φ
(t−1)
u

bv
>

(ε/(1 + ε)) · f(e : S)

bv
>

(ε/(1 + ε)) · fmin
bv

.
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Therefore, if v had k edges added to the stack by time t, then

φ(t)
v > (ε/(1 + ε)) · (fmin/bv) · (1 + ε/bv)

k−1. (11.8)

On the other hand, since f is polynomially bounded, we have that for some constant d

φ(t)
v 6

∑
e3v

fSe(e)/bv 6 nd · (fmin/bv). (11.9)

Combining equations (11.8) and (11.9) and simplifying, we obtain (1+ε/bv)
k−1 6 nd ·(1+ε)/ε.

Taking out logarithms and simplifying further, we find that

k 6 1 +
d log n+ log(1 + ε) + log(1/ε)

log(1 + ε/bv)
= O((bv/ε) · (log n+ log(1/ε))) = Õ(bv).

That is, the number of edges of v in the stack is at most Õ(bv). Since each edge requires only
O(log n) bits of space (and the φv variables can be specified using O(log n) bits each), the algo-
rithm’s space usage is indeed at most Õ(

∑
v bv).

11.12 Deferred Proofs of Section 11.9

Lemma 11.12.1. Assuming ETH, every algorithm achieving an approximation ratio
(1−α) ln |U| for SET COVER runs in time strictly greater than 2N

γ·α
for some γ > 0. Fur-

thermore, this holds even under the assumptions that |S| 6 K1/(γα) and |U| 6 |S|1/(γα).

Proof. The first statement is precisely Corollary 1.6 of [81].
For the extra assumptions, if K < |S|γα then the brute force algorithm that checks all subsets

of size K runs in time |S|K < 2|S|
γα log |S| 6 2N

γα . If |S| < |U|γα , then one can brute force
over all sub collections of S in time 2|S| 6 2|U|

γα
6 2N

γα . Both running times contradict
Lemma 11.9.2.

Lemma 11.12.2. For any constants γ, δ ∈ (0, 1/4), let A be an algorithm that at the end
of phase 1, with constant probability, outputs at least γn of the the edges of M ′

r. Then A
uses Ω(E1) > n1+Ω(1/ log logn) bits of space.

Proof. Let A be an algorithm that outputs γn of the edges of M ′
r at the end of phase 1 that uses

fewer than s = n poly log n bits. We will show that γ = o(1).
Let G be the set of possible first phase graphs. Then

|G| =
(
n/2

δn

)t
= 2γm
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for some γ > 0. Let φ : G → {0, 1}s be the function that takes an input graph G to the state
of the algorithm A after running A on G. Let Γ(G) = {H | φ(G) = φ(H)}, that is the set of
graphs inducing the same internal state for A at the end of phase 1.

Define Ψ(G) =
⋂
H∈Γ(G) E(H). Note that for any input graph G, the algorithmA can output

an edge e if and only if e ∈ Ψ(G). Also, for any G let t′ be the number of matchings in the RS
graph G0 for which Ψ(G) contains at least γn edges. Since algorithm A outputs γn edges of
M ′

r, the number of graphs in Γ(G) is bounded by(
(1/2− γ)n

δn

)t′(
n/2

δn

)t−t′
=

(
2−Ω(γn)

(
n/2

δn

))t′ (
n/2

δn

)t−t′
= 2−Ω(t′γn)2γm (∗)

On the other hand, since the first phase graphG is chosen uniformly at random, by a counting
argument, with probability at least 1 − o(1) we have that |Γ(G)| > 2(γ−o(1))m. Conditioning on
this happening, we also know that t′ > Ω(t) since the input graph is uniformly chosen within
Γ(G), and the algorithm succeeds with constant probability. These two facts together with (∗)
imply that γ = o(1).

11.13 Conclusion and Open Questions
In this chapter, we presented improved algorithms and lower bounds for streaming maximum
submodular matching. The most natural question for this problem is determining the optimal ap-
proximation ratio of streaming algorithms for MSM. Can one show a lower bound strictly higher
than 2 for monotone MSM? This would provide a separation between the streaming version of
this problem and its offline counterpart, for which (2 + ε)-approximate algorithms are known
[109, 194]. More broadly, looking beyond submodular matching, the natural question is whether
the techniques presented here can be leveraged to obtain results for other problems. In this chap-
ter, we provide a principled way of analyzing streaming algorithms for submodular (matching)
maximization; in particular, we show the usefulness of the (randomized) primal-dual method,
and its extensions, for streaming MSM. We use this machinery to improve the upper bounds
for this problem, and also show how to analyze known algorithms in this framework. The most
appealing (and most open-ended) question here is to find more applications of this framework to
other streaming (submodular) problems.
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Chapter 12

Conclusion and Open Questions

In this thesis, we make progress on a number of long-standing open problems in the area of
matching theory under uncertainty. For some of these problems we give a complete characteri-
zation of achievable approximation/competitive ratios, while for others, we improve on the prior
bounds. There are naturally still many intriguing open questions which remain, some of which
we have already addressed in earlier chapters. Beyond the intellectual interest in these problems
for their own merit, progress on these problems will likely require new tools and techniques,
and hopefully shed light on computation under uncertainty more broadly. We list some such
problems here.

Edge Arrivals: In Chapter 3 we show that no online algorithm, even a fractional one, can achieve
competitive ratio beyond 1/2 +O(1/n) under edge arrivals. Given that greedy gives a competitive
ratio of 1/2, this problem is in some sense completely resolved. There does, however, remain
the question of pinning down the correct o(1) term in the optimal 1/2 + o(1) competitive ratio.
Buchbinder et al. [55] and [191] give (1/2 + Ω(2−n))-competitive randomized algorithms for
this problem. What is the correct o(1) term in the optimal 1/2 + o(1) competitive ratio? Is it
Θ(1/n)? Is it Θ(2−n)? Somewhere in between? Determining the correct o(1) term will give us
a more detailed and nuanced understanding of the problem, and possibly shed light on online
computation more broadly. Next, the nearly-complete picture we have for online matching under
adversarial edge arrivals serves as a renewed motivation to (re)study this problem under various
relaxations. For example, Guruganesh and Singla [146], building on a streaming algorithm of
Konrad et al. [187], gave a (1/2 + Ω(1))-competitive algorithm for this online matching under
random-order edge arrivals. There has been much work on improving the results for streaming
under random-order arrivals [17, 34, 99, 119, 186]. It would be interesting to see what improve-
ments are achievable for online matching under random-order edge arrivals.

General vertex arrivals: In Chapter 4 we broke the barrier of 1/2 for online matching under gen-
eral arrivals, presenting a (1/2+Ω(1))-competitive algorithm for this problem. This Ω(1) is rather
small, and is left unspecified. It would be interesting to see what better (explicit) competitive ra-
tios are achievable for this problem. Can one match the 0.526 bound of Wang and Wong [267]
for fractional matching under general arrivals? Can one surpass this bound? Improving on this
0.526 bound would be interesting even for fractional algorithms, as it would likely require some
non-trivial ideas to improve on the factional algorithm of [267]. On the hardness front, it seems
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plausible that the 0.591 lower bound of Buchbinder et al. [55] can be strengthened. How much
harder is online matching under general vertex arrivals than the bipartite one-sided vertex arrival
model of Karp et al. [179]? Finally, we note the recent work of Huang et al. [163, 165, 166]
for online matching with deadlines. Online matching under general arrivals is more general the
fully-online problem studied by Huang et al., and so any competitive ratio achievable for our
problem yields a competitive ratio in theirs. Huang and Zhang [162] recently showed a sepa-
ration between these problems for fractional algorithms, showing that the fully-online matching
problem is strictly easier than online matching under general arrivals. Can one show a similar
separation for randomized (integral) algorithms?

Online Dependent Rounding: In Chapter 5 we give an online dependent rounding scheme for
bipartite fractional matching, in some sense mirroring the offline dependent rounding scheme of
Gandhi et al. [122]. We give applications of this scheme to matching in regular graphs, as well as
the online edge coloring in Chapter 6. Given the number of applications of the offline rounding
scheme of [122] and its generalization over the years, the most natural question here is to find
further applications of our online rounding schemes and its possible generalizations.

Online Edge Coloring: In chapters 6 and 9 we obtain optimal online edge coloring algorithms
in the large ∆ = ω(log n) regime. In particular, we show that for both adversarial one-sided
vertex arrivals in bipartite graphs and random-order edge arrivals, the optimal competitive ratio
is 1 + o(1) (provided ∆ is known), thus resolving a conjecture of Bar-Noy et al. [25]. We note
that these results still leave something to be desired, as the lower bound of 2 for both problems
holds for ∆ = O(

√
log n). While intuitively a super-logarithmic threshold seems natural for

making the problem “easier”, a proof of this fact remains illusive. Alternatively, an algorithm
whose competitive ratio outperforms greedy for some sub-logarithmic ∆ = ω(

√
log n) would be

surprising. Next, for adversarial bipartite edge coloring, we proved that not knowing ∆ results
in a strictly harder problem. Can the same be said for random-order edge arrivals? (In this
case, one would need to also consider unknown number of edges, m, as estimating ∆ given
m in such a random-order arrival model is easy.) Finally, the question of achieving optimal
competitive ratio for online edge coloring under adversarial edge arrivals remains a tantalizing
open question. Making progress on more general adversarial vertex arrivals would likely prove
a useful stepping stone in this direction.

Online Matching under Structural Assumptions: In Chapter 7 we give an explanation for the
empirical success of online matching and AdWords algorithms on real-world data, by introduc-
ing and studying a class of graphs with properties arising in practice in the context of Internet
advertising. We further present optimal deterministic algorithms for such inputs. What can be
said about randomized algorithms for these inputs? Generally, studying online matching and
other online problems under structural assumptions relevant to their motivating applications is a
worthwhile objective. See the upcoming book of Roughgarden [243] for surveys on problem-
specific approaches for algorithm analysis beyond the worst case.

Online Stochastic Metric Matching: In Chapter 8, we give a doubly-exponential improvement
in the competitive ratio for stochastic metric matching over the previous best, which is implied
by the optimal bound for metric matching under random-order arrivals [239]. Beyond the natural
question of proving our algorithm (or indeed, any other) is O(1) approximate, several questions
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remain. The first is whether similar improvements over the optimal random-order arrivals bounds
[239] are achievable for stochastic arrivals drawn from an unknown distribution. Our approach
does not work in this scenario. Can one do better than O(log n) approximation? Another point
not addressed in our work is the question of imperfect matching, when the number of requests k
is smaller than n. Our analysis does not seem to extend to this regime. What can be said of the
optimal competitive ratio as k varies?

Dynamic Matching: In Chapter 10 we present a framework for deriving randomized dynamic
matching algorithm against adaptive adversaries from fractional matching algorithms against
adaptive adversaries. It is natural to ask for further instantiations of this framework, motivating
further study of the dynamic fractional matching problem. Beyond the problems specifically
related to dynamic matching, there are broader questions which still remain for dynamic algo-
rithms more broadly, some of which our work touched upon: is there a separation between worst-
case and amortized update time? Is there a separation between randomized algorithms against
adaptive and oblivious adversaries? Is there a separation between deterministic and randomized
algorithms? As a field, our current proof techniques do not seem to be refined enough to sep-
arate these computational models. Making progress on these meta-questions, even for specific
problems, would therefore likely require new ideas.

Streaming Matching: In Chapter 11 we obtain improved bounds for streaming submodular
matchings. The most natural research direction here is to improve on these bounds further, and
possibly close the gap between upper and lower bounds for these problems. For the weighted
matching problem, for which a (2 + ε)-approximation is known due to the work of [232] (see
also [127] and Chapter 11), we are at something of an impasse, as any improvement beyond a
2 approximation would require an improvement for the unweighted problem. Indeed, the most
tantalizing open problem here is whether a (2− ε)-approximate maximum cardinality matching
algorithm is possible. This is even open for any algorithm using O(n1.999) space. As mentioned
above, the same question has been studied intensely under random-order edge arrivals [17, 34, 99,
119, 186, 187]. In a recent result, Bernstein [34] gave a 3/2-approximate algorithm for maximum
matching under random-order edge arrivals. This bound is optimal for his approach, which relies
on the EDCS matching sparsifiers introduced in the context of dynamic matching by Bernstein
and Stein [37, 38]. Does this approach indeed yield the optimal approximation ratio for this
problem, or are better bounds possible?

We hope the progress we have made in this thesis will initiate follow-up work in many of the
above directions, and that the techniques developed here will prove useful for such follow ups
and other problems.
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