
Towards Universal Optimality in Distributed
Optimization

Goran Žužić

CMU-CS-20-121
August 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Bernhard Haeupler, Chair

Anupam Gupta
Gary Miller

Keren Censor-Hillel, Technion

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Goran Žužić

Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588, NSF CAREER
award CCF-1750808, a Sloan Research Fellowship and the 2018 DFINITY Scholarship. Some of this work was
completed while visiting the Nagoya Institute of Technology.

Keywords: distributed computing, CONGEST, distributed optimization, network coding, coding
gaps, low-congestion shortcuts, tree-restricted shortcuts, universal optimality, minor-free graphs,
treewidth-bounded graphs, genus-bounded graphs, moving cut

To my family that shaped my youth, and to my friends that shaped my adulthood.

iv

Abstract
The modern computation and information processing systems shaping our world

have become massively distributed and a fundamental understanding of distributed
algorithmics has never been more important. This shift towards distributed systems
has resulted in increased interest and fast acceleration in our theoretical understand-
ing of distributed optimization problems. At the same time, extremely general lower
bounds uncovered that any distributed optimization requires Ω̃(

√
n) rounds on some

worst-case network topology, even if the diameter of the network is small. Many fun-
damental optimization problems, including MST, shortest paths, and cut/flow prob-
lems, now have “optimal” algorithms matching this worst-case performance bound.

Real-world networks, however, are never worst-case and no network of interest
shares the limiting bottleneck characteristics of the lower bound topology. In fact,
there is no known barrier for ultra-fast polylogarithmic-round distributed algorithms
on any network of interest.

In this thesis, we develop a theoretical understanding of when it is possible to go
below the Θ̃(

√
n) bound. Our results include:

1. We show that planar networks, genus-bounded networks, and treewidth-bounded
networks admit Õ(D) round algorithms, where D is the network diameter.
Similarly, we show that minor-free networks, a wide family subsuming all of
the above, admit Õ(D2) round algorithms. Moreover, we give a single (uni-
form) and simple algorithm that works on all of these network classes by in-
troducing a new framework called tree-restricted shortcuts. Prior to our work,
only the planar network result was known and was significantly more compli-
cated compared to ours.

2. We resolve the following 25-year-old open problem asked by Garay, Kutten,
and Peleg: “What network topology parameters determine the complexity of
distributed optimization?” We show that a previously studied parameter, the
general shortcuts of best congestion+dilation, characterizes the complexity of
distributed optimization for every network topology. In particular, this includes
showing the first known non-trivial unconditional lower bound that is univer-
sal (i.e., applies to all graphs) and constructively matching that bound in the
distributed known-topology setting.

vi

Acknowledgments
First of all, I would like to thank my advisor Bernhard Haeupler: his guidance,

expertise, support, and kindness have been nothing short of amazing and will be a
source of inspiration for a lifetime.

I would also like to thank the rest of my thesis committee: Anupam Gupta, Gary
Miller, and Keren Censor-Hillel. I am grateful to Gary for both his academic and
non-academic guidance throughout my graduate studies. He generously allocated
his time for me to expand my research horizons with new directions: in particu-
lar, he sparked my interest in spectral graph theory and continuous methods which
eventually lead me to explore important questions at the tail end of my Ph.D. I am
grateful to Anupam for enabling and mentoring a research collaboration with Do-
magoj Bradač and Sahil Singla that introduced me to stochastic optimization. I am
grateful for his patience in answering my various class- and research-related ques-
tions I have posed to him over the years. Finally, I am also grateful to Keren for her
helpful feedback and introducing me to her students Michal Dory and Yuval Efron
with whom I had many fruitful discussions.

I have had the privilege of co-authoring papers with many people during my
time in graduate school: Domagoj Bradač, D. Ellis Hershkowitz, Taisuke Izumi,
Jason Li, Arayank Mehta, Sahil Singla, D. Sivakumar, David Wajc and Di Wang. I
would like to thank them for the numerous useful discussions and collaborations we
had throughout my time as a graduate student.

I would like to thank VMware Research and my mentors, Udi Wieder and Ittai
Abraham, for giving me an excellent summer internship opportunity, their guidance
greatly widened my scope and appreciation of theory as a field in the fledgling phase
of my graduate studies. I would also like to thank Google Research and my men-
tors D. Sivakumar and Aranyak Mehta for providing me with an amazing summer
internship that allowed me to immerse myself in new areas of computer science.

I would deeply like to thank my many friends who greatly shaped my experience
while at CMU—I genuinely appreciate their time, patience, friendship, and support
they have given me. The last five years passed in a flash in large part due to them.
The list of friends I am grateful to is too large to be included here, but I will do my
best to show my gratitude to each and every one of them.

I am indebted to my teachers and professors that had a transformative impact
on me by sparking, shaping, nurturing, and developing my interests in mathematics,
computer science, and programming before I started my graduate studies. I would
specifically like to thank Predrag Brod̄anac, Luka Kalinovčić, Spomenka Mihočinec,
Mile Šikić, and Tibor Kulcsar.

Finally, I would like to thank my family: my parents Ljiljana and Drago and my
sister Lorena, who set me on my path and encouraged my passions. Without their
active and ongoing support and love, I would have never been able to even start my
Ph.D. journey, let alone complete this dissertation.

viii

Contents

1 Introduction 1

1.1 Overview of the Thesis . 2

1.1.1 Beyond worst-case networks . 2

1.1.2 Universal optimality . 4

1.2 Technical Preliminaries . 6

1.2.1 The CONGEST model . 6

1.2.2 Low-congestion shortcut framework . 6

1.3 Structure of the Thesis . 9

2 The Tree-Restricted Shortcut Framework 13

2.1 Introduction . 13

2.1.1 Background and motivation . 13

2.1.2 Our contribution . 14

2.1.3 Subsequent work: a short survey . 16

2.2 Tree-Restricted Shortcuts . 19

2.2.1 Definition . 19

2.2.2 Shortcuts on genus-bounded and planar graphs 20

2.2.3 Deterministic routing on tree-restricted shortcuts 21

2.2.4 Main result and applications . 23

2.3 Constructing Tree Restricted Shortcuts . 24

2.3.1 Overview of the algorithmic framework 24

2.3.2 Warm-up: an O(D · c)-round version of the core subroutine 25

2.3.3 A faster O(D log n+ c)-round version of the core subroutine 27

2.3.4 Verification subroutine . 30

ix

3 Shortcuts for Treewidth-Bounded and Genus-Bounded Graphs 31

3.1 Introduction . 31

3.2 Technical Results . 32

3.3 Pathwidth Bounded Graphs . 33

3.4 Treewidth Bounded Graphs . 33

3.5 Lower Bound for Pathwidth Bounded Graphs 34

3.6 Genus-Bounded Graph . 35

3.6.1 Graph Extension . 35

3.6.2 Optimal Shortcut for Genus-g Graphs 36

3.6.3 Lower Bounds for Genus Bounded Graphs 37

3.7 Chapter Appendix: Graphs with Small Separators 39

3.8 Chapter Appendix: Deferred Proofs . 40

4 Shortcuts for Minor-Free Graphs 47

4.1 Introduction . 47

4.1.1 Outline of the Proof . 49

4.1.2 Literature note . 50

4.1.3 Preliminaries . 50

4.2 Shortcuts in Excluded Minor Graphs . 53

4.2.1 Two Parts of the Proof . 53

4.3 Shortcuts in Clique Sum Graphs . 55

4.4 Shortcuts in Almost Embeddable Graphs . 59

4.4.1 Warm-up: Non-Apex Graphs . 60

4.4.2 Apex Graphs . 61

4.4.3 Cell Partitions, β-Cell-Assignment and s-Combinatorial Gate 62

4.4.4 Graphs with s-Combinatorial Gate Property 65

4.4.5 Wrapping Up: From β-Cell-Assignment to Good Shortcuts 67

4.5 Conclusion and Open Problems . 70

4.6 Chapter Appendix: Combinatorial Gate in Genus+Vortex graphs 70

4.6.1 Planarization of Genus-g Graphs . 71

4.6.2 Combinatorial Gate in Genus-g graphs 72

4.6.3 Finalizing the Proof . 74

x

5 Network Coding Gaps for Completion-time of Multiple Unicasts 77

5.1 Introduction . 77

5.1.1 Preliminaries . 79

5.1.2 Our Contributions . 80

5.1.3 Techniques . 81

5.1.4 Related Work . 86

5.2 Upper Bounding the Coding Gap . 87

5.2.1 Moving Cuts: Characterizing Makespan 88

5.2.2 From Dual Solution to Moving Cut . 90

5.2.3 From Pairwise to All-Pairs Distances 92

5.3 Chapter Appendix: Polylogarithmic Coding Gap Instances 94

5.3.1 Gap Instances and Their Parameters . 95

5.3.2 Graph Product of Two Gap Instances 96

5.3.3 Iterating the Graph Product . 98

5.3.4 Lower Bounding the Coding Gap . 99

5.4 Coding Gaps for Other Functions of Completion Times 99

5.5 Chapter Appendix: Completion Time vs. Throughput 101

5.6 Chapter Appendix: Network Coding Model for Completion Time 103

5.7 Chapter Appendix: Deferred Proofs of Section 5.2 104

5.8 Chapter Appendix: Deferred Proofs of Section 5.3 105

5.8.1 Upper Bounding mi,r . 106

6 Shortcuts are a Universal Lower Bound for Distributed Optimization 109

6.1 Introduction . 109

6.1.1 New Results and Contributions . 110

6.2 Preliminaries . 113

6.2.1 Moving cuts . 114

6.2.2 Relation of moving cuts to communication 116

6.3 Our Lower Bound . 117

6.3.1 Lower bound witnesses . 117

6.3.2 Disjointness gadgets in any graph . 118

6.3.3 Relating MOVINGCUT(G) to SHORTCUTQUALITY(G) 119

6.3.4 Putting it all together . 119

xi

6.4 Constructing Disjointness Gadgets . 120

6.4.1 Technical overview . 120

6.4.2 Constructing crowns . 124

6.4.3 Converting crowns into relaxed disjointness gadget 129

6.4.4 Finalizing the disjointness gadget . 132

6.5 Chapter Appendix: Further Related Work . 133

6.6 Chapter Appendix: Deferred Proofs of Section 6.2 135

6.7 Chapter Appendix: Deferred Proofs of Section 6.3 138

6.7.1 β-disjointness gadgets as lower bounds certificates 138

6.7.2 Relating shortcuts for pairs and for parts 138

6.8 Chapter Appendix: Deferred proofs of Section 6.4 143

7 Near-Optimal Distributed Known-Topology Shortcut Construction 145
7.1 Introduction . 145

7.1.1 Overview of results . 147

7.2 Definitions and notations . 148

7.3 Decomposition Lemma . 149

7.4 Hop-Bounded HSTs . 151

7.4.1 Hop-bounded HST construction . 151

7.5 Hop-bounded oblivious routings . 153

7.6 Routing with Noise . 156

7.7 Distributed and Oblivious Shortcut Construction 157

8 Conclusion and Open Questions 161
8.1 Summary . 161

8.2 Open Problems and Future Work . 162

8.2.1 The shortcut framework . 162

8.2.2 Coding gaps for completion-time . 163

8.2.3 Universal optimality . 163

Bibliography 165

xii

List of Figures

2.1 Illustration of a T -restricted shortcut subgraph for a part Pi, composed of block
components b1, b2, b3 and b4. 20

3.1 Graph GP (Γ, w, δ) . 35

3.2 Graph GG(w, δ) . 38

3.3 Steps 2 and 3 in the construction of J . 45

3.4 Cycle C (The right figure is a drawing on σ1 of the left side). 45

3.5 Edge augmentation in Step 4 . 46

4.1 Ingredients of the Graph Structure Theorem . 51

4.2 Global shortcut construction. The part P is shown in red. The global T -restricted
shortcut is the intersection of T (not shown) with the shaded region. Cf denotes
the partial clique leading to the parent of h, which is not used in the global shortcut. 56

4.3 Local shortcut construction. On the left, T is solid red. Dotted black edges are
edges absent from the partial k-cliques. On the right is B0

h for the Bh on the left. . 56

4.4 Compressing a k-clique-sum decomposition tree with high depth. 58

4.5 Graphical overview of our boundary construction. The black circles are the cells.
Note that there is a cell completely contained inside another cell in the planar
embedding. The green edges are the spanning trees Ti as defined in the proof.
The blue edges form our boundary construction. 65

4.6 Definition of extremal edges between two different cells. Ti and Tj are shown in
green. The extremal edges are the blue edges reachable from the outer face, as
indicated by the paths in blue, while the other inter-cell edges are the black edges. 66

4.7 A graph embedded on a torus and its planarization after cutting the generators
colored in red. Note how the vertex v gets duplicated into v(1), . . . , v(4). 71

xiii

5.1 A family of instances with k = 5 pairs of terminals and makespan coding gap
of 5/3. Thick edges represent paths of 3 hops, while thin (black and blue) edges
represent single edges. In other words, each of the k sources si has a path of 3
hops (in black and bold) connecting it to every sink tj for all j 6= i. Moreover,
all sources si neighbor a node S, which also neighbors node T , which neighbors
all sinks tj . 82

5.2 The hard instance for distributed graph problems [27, 35, 122], as appears in
[49]. The multiple-unicast instance has Θ(n) nodes and is composed of

√
n

disjoint paths of length
√
n and a perfectly balanced binary tree with

√
n leaves.

The ith node on every path is connected to the ith leaf in the tree. There are
√
n

sessions with si, ti being the first and last node on the ith path. All capacities and
demands are one. The graph’s diameter is Θ(log n), but its coding makespan is
Ω̃(
√
n). Figure taken from Ghaffari and Haeupler [49]. 83

5.3 The concurrent flow LP relaxation and its dual. 87

6.1 A disjointness gadget’s path and tree, given by straight and rounded blue lines,
respectively. 118

6.2 A crown (T, {1, 2, 3, 4, 5}, {1, 2, 4, 5}). T is depicted in blue. Note that part 3
is sacrificial, hence is contained in T . The intersection of T and p4 is covered
by a sub-path of length at most D. Intersections with other useful part-paths are
covered by a trivial sub-path of length 0. 121

6.3 A relaxed disjointness gadget. The edges of the paths and T are horizontal and
blue lines, respectively. The intersection of p3 and T is covered by three sub-
paths of length at most D. 123

xiv

List of Tables

2.1 Upper and lower bounds for tree-restricted shortcuts. 17

3.1 Upper and lower bounds for tree-restricted shortcuts in this chapter 32

xv

xvi

Chapter 1

Introduction

Decentralization and distributed computing are becoming the computing paradigms of the fu-
ture. In fact, modern computation and information processing systems are already massively
distributed for various reasons: Moore’s law is approaching the limits of physics, data to be
processed is vastly exceeding what can be stored on a single machine, and modern services are
increasingly decentralized. A deep and fundamental understanding of distributed algorithmics
is a prerequisite to building efficient and reliable distributed systems of tomorrow and has never
been more important than today.

The CONGEST model [121] has been the standard mathematical model to study communication
in distributed algorithmics. In this model, the network topology is abstracted as an undirected
graph with n nodes and diameter D. Communication occurs in synchronous rounds in which
each node can send a bounded amount of information to each neighbor, typically O(log n) bits.
The complexity measure is the number of rounds required to solve an optimization problem.
While this classic model is decades old, it remains highly relevant and influential because it al-
lows for a clean mathematical study of communication bottlenecks in distributed optimization
algorithms. Indeed, synchronous message-passing algorithms that are closely inspired by the
CONGEST model are used by systems that account for much of modern large-scale graph pro-
cessing and network analysis, such as Google’s Pregel [111], Facebook’s Giraph [26, 72], or
Apache’s Spark GraphX [58]. These applications signify that communication remains a critical
bottleneck in any practical distributed system.

This relevance has motivated a recent, broad, concentrated, and highly successful effort to ad-
vance our understanding of distributed algorithmics with a strong focus on algorithms for funda-
mental network optimization problems, such as MST [37, 89], shortest paths [36, 44, 78, 80, 82,
84, 101, 102, 113], flows [55], cuts [51, 114], etc. As a result of these efforts, for the majority
of such fundamental optimization problems, we now know methods that achieve running times
(close to) Õ(D+

√
n)1 CONGEST rounds (where D is the diameter of the topology graph and n

is the number of nodes). Moreover, such results cannot be improved in general due to a pervasive
Ω̃(D +

√
n) lower bound that applies to all of the above problems [27, 122]. Therefore, in some

1Throughout this thesis, we mostly ignore polylogarithmic factors in n. We use Ω̃ and Õ notation to hide such
factors. For example, Õ(f(n)) = O(f(n) logO(1) n).

1

sense, the results are optimal.

1.1 Overview of the Thesis

In this section, we give a brief overview of the motivation, goals, and contributions of this thesis.

1.1.1 Beyond worst-case networks

While matching upper and lower bounds for distributed algorithmic problems are remarkable
achievements, this thesis emphatically argues that one cannot settle for such results, particu-
larly when the provable performance guarantees are too weak to be practically relevant. The
justification of optimality simply does not match any real barriers that are observed in practice.
Understanding this claim and its importance, especially in the case of distributed optimization
algorithms, requires a more detailed look at different notions of optimality.

A key abstraction in the theoretical study of algorithms is the focus on worst-case running times
expressed as asymptotic functions of the instance size, e.g., the number of nodes n for graph
problems. This perspective successfully abstracts away differences between concrete compu-
tational models/implementations, enables definitions of complexity classes like P and NP, and
provides a way to compare the efficiency and scalability of different algorithms. The theory of
distributed computing has historically followed this paradigm. The running time of a distributed
algorithm is measured against all possible inputs and all possible network topologies. For exam-
ple, one of the first distributed MST algorithms [45] runs in O(n log n) rounds. This was later
improved to an “optimal” O(n) round algorithm by Awerbuch [12].

The precise way in which the algorithm of [12] is optimal is the following: There exists a (patho-
logical worst-case) topology on n nodes on which no algorithm can do better, namely the n-node
cycle. Indeed, it is easy to see that for most network optimization problems nodes require some
knowledge about inputs that are far away from them to determine a solution. This leads to a triv-
ial Ω(D) lower bound on topologies with diameter D, which is Ω(n) in the pathological cycle
network. An algorithm for which the asymptotic worst-case running time, over all inputs and
networks of size n, that matches the worst-case running time of the best possible algorithm, is
called optimal, or more precisely, “existentially optimal” with respect to n.

Existential optimality, however, says nothing about how the performance of an algorithm com-
pares to what is achievable on non-worst-case topologies. Topologies of practical interest in par-
ticular might allow for drastically faster running times compared to a pathological worst-case in-
stance. Indeed, essentially all real-world topologies have diameters which are (poly-)logarithmic
in the size of the network and the trivial Ω(D) lower bound for global optimization algorithms on
such networks is merely Ω(logc n). This is exponentially faster than the algorithm of Awerbuch,
which requires Θ(n) rounds on any topology.

Researchers soon realized that existentially optimal algorithms in terms of n are far from satisfac-
tory and that a finer-grained way to analyze and specify distributed running times was required.

2

Kutten and Peleg [95] made progress in this direction by giving their celebrated Õ(D +
√
n)

round MST algorithm, achieving a quadratic performance improvement on any topology of in-
terest. Later, a series of works that started with Peleg and Rubinovich [122] and culminated in
the work of Das Sarma et al. [27] gave strong unconditional lower bounds using communication
complexity. They constructed certain n-node networks with logarithmic diameter in which solv-
ing any non-trivial global optimization problem requires Ω̃(

√
n) rounds. This result makes the

Kutten-Peleg MST algorithm existentially optimal with respect to n andD because for any n and
D there exists a pathological worst-case network on which no algorithm can run faster. It is this
notion of existential optimality with respect to n and D which applies to most state-of-the-art
distributed optimization algorithms. I.e., on any input and low-diameter topology these algo-
rithms achieve a Θ̃(

√
n) running time, which is the best possible—at least on the pathological

worst-case network of [27].

Unfortunately, this form of optimality and the Θ̃(D+
√
n) performance guarantees of these algo-

rithms suffer from the same drawbacks as before: Real-world networks are never worst-case and
no network of interest comes close to exhibiting any of the limiting bottleneck characteristics
of the pathological worst-case topology which is used to demonstrate (existential) optimality.
In fact, there is no plausible barrier known for ultra-fast polylogarithmic round CONGEST al-
gorithms on any network of interest for most fundamental network optimization problems. On
the other hand, essentially all optimal state-of-the-art Θ̃(

√
n + D) algorithms are specifically

designed to achieve a Θ(
√
n) running time and always require Θ(

√
n) many rounds, even when

no communication bottlenecks are present and faster algorithms are possible. This exponen-
tial gap between optimal worst-case algorithms that exhibit Θ̃(

√
n) round complexities on every

topology and the O(logc n) performance which is likely possible in most, if not all, real-world
settings forms the starting point for the studies of this thesis and is summarized in the following
objective.

Objective 1.1.1. Develop general tools for designing distributed optimization algorithms
that provably achieve ultra-fast polylogarithmic running times on practical networks.

We tackle this objective by introducing a novel tree-restricted shortcut framework that can be
used to design simple and efficient solutions for various distributed optimization tasks. In par-
ticular, the framework provides optimal Õ(D) distributed algorithms on planar, bounded genus
graphs, bounded treewidth graphs, and excluded-minor graphs. Notably, we provide a simple
distributed algorithm that is uniform over different graph classes—the same algorithm works
without any knowledge of which graph class is it being run on. (Chapters 2 to 4.)

Prior to the work of this thesis, only the Õ(D) round algorithm for planar graphs was known, and
it was significantly more complicated: requiring a distributed computation of a planar embed-
ding in Õ(D) rounds. Our methods significantly simplified this result and extended it to other
graph classes. This simplicity and uniformity give the framework qualities that might make the
framework usable even in practice.

3

1.1.2 Universal optimality

A broader goal that applies to each network (and not just real-world networks) is to uncover what
graph properties enable/preclude ultra-fast algorithms. On a high-level, this can be summarized
via the following objective.

Objective 1.1.2. Develop a theory that explains how the network topology influences optimal
distributed optimization algorithms.

As mentioned before, the network diameterD is an example of such a parameter: any distributed
algorithm that takes less than D cannot exchange information between nodes that are D hops
away from each other, hence cannot solve (global) distributed optimization problems like the
MST. Two things are important to note. First, the diameter parameter is in general not achiev-
able, as showcased by the pathological instance of [27] that has diameter D = O(log n) and
requires Ω̃(

√
n) rounds for distributed optimization. Second, the diameter gives a lower bound

that applies to all networks, i.e., it applies universally (as opposed to existentially). Universal
lower bounds give raise to a much stronger notion of impossibility than the existential bounds
as they provide evidence on why a specific network of interest cannot admit a fast distributed
algorithm. This generality might be one of the reasons why no universal lower bound other than
the (trivial) diameter one was known (prior to this thesis).

We tackle a more ambitious goal: we aim to not only find a universal lower bound but to also
match it with an algorithm. Such an algorithm would be “as fast as possible on each topology”
and is called universally optimal. The fundamental question regarding their existence was formu-
lated in an influential FOCS’93 paper by Garay, Kutten and Peleg [46]. The below is a verbatim
quote:

“The interesting question that arises is therefore whether it is possible to identify the inherent
graph parameters associated with the distributed complexity of various fundamental network
problems, and develop universally-optimal algorithms[, that are as fast as possible on every
topology.]” [46]

We note that even the MST algorithm proposed by Garay, Kutten and Peleg achieves only existen-
tial optimality—it terminates in Õ(n0.61...+D) rounds. However, at the time of their writing, they
were arguing against settling for an “optimal” O(n) algorithm; they proposed that a parametriza-
tion with respect to both n and D is more meaningful. Of course, a similar reasoning could lead
researchers to consider an increasingly complex set of parameters and find (existentially) optimal
algorithm with respect to those parameters. On the other hand, universal optimality cuts through
the question of finding the right parametrization as it does not depend on any parameters: it is
parametrized by the entire graph, without losing any topological information.

The question has remained open even for significantly simpler problems than the MST. For in-
stance, Ghaffari [48] proposed an algorithm for distributed k-message broadcast that achieves
universal optimality under certain assumptions about the optimal solution in the known-topology
setting2. In fact, Ghaffari writes:

2Interestingly, the methods presented in this thesis can be used to show the algorithm of [48] is unconditionally

4

“Although the motivation for universal optimality is clear and strong, achieving it is not straight-
forward and thus, to the best of our knowledge, there is no known distributed algorithm that
(non-trivially) achieves universal optimality.” [48].

Our contribution with respect to universal optimality focuses on the known-topology setting. In
this setting nodes know the graph upfront, but not the input to the problem (e.g., for the MST
problem they know G, but not the edge costs). This setting can be naturally motivated by the
practical need to solve multiple distributed optimization instances on the same network, hence
potentially amortizing the preprocessing overhead required to learn the graph topology before
the input is given.

Our contribution can be summarized in three parts.

1. We contribute a formal definition of universal optimality that is aligned with the notion
used in prior work (a precise definition was never put forward, most likely due to no little
progress being made towards this goal). (Chapter 6.)

2. Second, we prove that a known graph parameter called shortcut quality is a universal lower
bound for many distributed optimization problems (e.g., MST, single-source shortest path,
min-cut). We also provide several equivalent quantities (up to polylogarithmic factors)
that are based on various communication and combinatorial graph properties. Moreover,
we show that the lower bound is universal even in the known-topology setting (making the
lower bound stronger). The bound is derived via a combination of classic reductions and
novel information-theoretic arguments that characterize the limits of information transfer
in a graph while taking both the distance and congestion into account; the bound is uncon-
ditional. (Chapters 5 and 6.)

3. Third, we design a distributed algorithm in the known-topology setting that works in
Õ(shortcut quality) rounds, matching the lower bound up to polylogarithmic factors. To-
gether, these give raise to universally optimal algorithms in the known-topology setting.
The result has several important ramifications: many important distributed optimization
tasks belong to a newly identified complexity class of problems with equivalent distributed
running times. This complexity class even provides a simple and clean prototypical prob-
lem (called part-wise aggregation) that a network designer can focus on if they wish to
explore the limits of communication in a new network. Furthermore, the result stipulates
that the shortcut quality is a “sufficient statistic” that characterizes the optimal running time
of a large class of distributed tasks. It might be interesting to explore the shortcut quality
of real-world networks and see whether these theoretical predictions can be matched in
practice.
The largest obstacle we had to overcome to achieve these universally optimal algorithms
is to show there exists an extension of the classic oblivious routing strategies [126] that
take both the dilation (i.e., distance) and congestion into account (current strategies only
take the congestion into account). In fact, the construction of such congestion + dilation
oblivious routings was an open problem that was studied on special classes of graphs like
mesh graphs and geometric networks [20, 21]. Moreover, congestion + dilation oblivious

universally optimal in the known-topology setting

5

routings for general graphs with polylogarithmic approximation ratios were believed to
be impossible due to an impossibility result of Räcke [125, pg. 59]. We side-step this
barrier by using a slightly more general definition of oblivious routing that is still usable
in the distributed setting. We believe our results will be of independent interest to the
approximation algorithms community. (Chapter 7.)

1.2 Technical Preliminaries

In this section, we formally define the CONGEST model and the low-congestion shortcut frame-
work.

1.2.1 The CONGEST model

We work in the classical CONGEST model [121]. In this setting, a network is given as a con-
nected undirected graph G = (VG, EG) with n = |V | nodes and diameter D. We sometimes
write V or E if the graph is clear from the context. Initially, nodes only know their immediate
neighbors and they collaborate to compute some global function of the graph like the MST. Com-
munication occurs in synchronous rounds; during a round, each node can send O(log n) bits to
each of its neighbors. The nodes know (a polynomial bound) on the value of n, always correctly
follow the protocol, and never fail. Many of these assumptions can be removed via standard
methods with a slight round overhead but these are not in the scope of this thesis. The goal is
to design protocols that minimize the resource of time—the number of rounds before the nodes
compute the solution.

We now precisely formalize the notion of solving a problem in this model, e.g., how the input and
output are given. While the formalization is specifically given for the MST, any other problem
is completely analogous. All nodes synchronously wake up in the first round and start executing
some given protocol. Every node initially only knows its immediate neighbors and the weight
of each of its incident edges. After a specific number of rounds, all nodes must simultaneously
output (i) the weight of the computed MST τ , and (ii) for each edge e incident to it, a 0/1 bit
indicating if e ∈ τ .

1.2.2 Low-congestion shortcut framework

Next, we briefly provide some background and details on the low-congestion shortcuts frame-
work. While the framework itself was introduced in prior work [49], this thesis both makes
extensive use and extends the framework.

Broadly speaking, the shortcut framework shows how many distributed problems can be reduced
to solving a simple and natural communication problem. It also defines low-congestion shortcuts
as natural routing structures that can be used to algorithmically solve this communication prob-
lem. Lastly, it shows how the topological structure of a network influences the quality of short-

6

cuts in the network and how this quality is directly coupled to the efficiency of shortcut-based
distributed algorithms. More formally, consider the following part-wise aggregation problem.

Definition 1.2.1 (Part-wise aggregation problem). Let G = (V,EG) be a graph. Given dis-
joint and internally-connected parts P1, P2, . . . , PN ⊆ V , we want to distributedly compute
some simple part-wise aggregate (e.g., sum or max) of nodes’ private values. Specifically,
each node is initially given its part ID (or ⊥ if none) and a private value xv; at the end of
the computation each node v belonging to some part Pi should know the aggregate value of
{xv | v ∈ Pi}.

This problem arises naturally in many divide-and-conquer algorithms in which a network is sub-
divided and simple distributed computations need to be solved in each part. A prominent example
is Boruvka’s MST algorithm [115] in which the MST is constructed across O(log n) iterations
in which each connected component of edges selected so far computes and selects the smallest
weight edge leaving it. Up to a factor of O(log n) in the running time, the classic MST problem,
therefore, reduces to solving the part-wise aggregation problem.

Fact 1.2.2 ([49]). There is a distributed CONGEST algorithm for the MST problem that
makes O(log n) oracle calls to the part-wise aggregation problem and succeeds with high
probability.

Moreover, all known MST distributed algorithms can be seen as simply finding efficient ways
to solve the part-wise aggregation problem. Maybe more surprisingly, recent related work has
shown that many other, seemingly unrelated, distributed network optimization problems like
finding approximate min-cuts [49] or shortest paths [64] similarly reduce to solving the part-
wise aggregation problem.

Ideally one would like to solve this part-wise aggregation problem in D time, where D is the
diameter of the network. This would lead to essentially optimal Õ(D) round optimization al-
gorithms. Unfortunately, the lower bound of [27] shows that this is not possible, at least not on
the pathological worst-case network they construct. The reason for this, however, is somewhat
subtle. In particular, since parts are disjoint and connected one can easily solve the aggregation
problem by having nodes repeatedly forward the minimum value seen so far to neighbors in their
part. It is easy to see that the number of rounds needed for this trivial flooding strategy to con-
verge is equal to the strong diameter of any part (i.e., the diameter of the induces subgraph G[Pi]
in isolation of the rest of the graph). Unfortunately, the strong diameter of a connected subgraph
can be much larger than the diameter D of the underlying network graph.

Low-congestion shortcuts were introduced as a natural way to overcome the above issue. We
allow each part Pi to use a set of extra edges Hi ⊆ EG to more efficiently communicate with
other nodes in the same part. More precisely, part Pi is permitted to use the edges EG[Pi] ∪Hi

for communication, where EG[Pi] are edges with both endpoints in Pi. However, if too many
parts try to communicate using the same network edge they cause congestion which slows down
communication. Overall, solving part-wise aggregation efficiently requires communicating over
short paths whose edges have low congestion. Therefore, a useful shortcut needs to balance the

7

congestion c and the dilation d. In particular, a d-dilation c-congestion shortcut for a set of parts
is naturally defined as a set of shortcut edges for every part which, if added, makes the diameter
of a part at most dwhile each edge is used by at most c parts. The following definition formalizes
these notions.

Definition 1.2.3. Let G = (V,EG) be an undirected graph with vertices subdivided into
disjoint and connected subsets P = (P1, P2, ..., PN), Pi ⊆ V . In other words, EG[Pi] is
connected and Pi ∩ Pj = ∅ for i 6= j. The subsets Pi are called parts. We define a shortcut
H as (H1, H2, ..., HN), Hi ⊆ EG. A shortcut is characterized by the following parameters:

1. H has congestion c if each edge e ∈ EG is used in at most c different sets EG[Pi]∪Hi,
i.e., ∀e ∈ EG : |{i : e ∈ EG[Pi] ∪ Hi}| ≤ c. Note that the sets {EG[Pi]}Ni=1 are
disjoint.

2. H has dilation d if for each i ∈ [N] the diameter of EG[Pi] ∪Hi is at most d.

We note that the congestion and dilation are classic parameters used in routing that were co-opted
for low-congestion shortcuts. The celebrated result of Leighton, Maggs and Rao [99] shows that
given a set of paths in a graph with congestion c (each edge is used by at most c paths) and
dilation d (each path has at most d hops), one can simultaneously send packets from the start
to the end of each path in O(c + d) rounds while only sending one packet per edge per round.
However, this result is constructive and is not clearly applicable to distributed models where one
is unable to schedule packets in a centralized way (e.g., nodes in CONGEST have knowledge
only about their immediate neighborhood and need to distributedly learn information about other
parts of the graph).

However, one can recover a slightly weaker result: having access to a congestion c and dilation
d shortcut with respect to a part-wise aggregation enables the aggregation to be completed in
Õ(c+ d) CONGEST rounds. This motivates the following definition.

Definition 1.2.4. The quality q of a congestion c and dilation d shortcut is q = c+ d.

The definition of quality enables the user of the shortcut framework to focus on minimizing a
single quantity rather than a (congestion, dilation) pair. We summarize the usefulness of the
above definitions via the following result.

Fact 1.2.5 ([49]). Let P = (P1, . . . , PN) be a set of parts in a graph G. Given distributed
knowledge of quality-q shortcut (i.e., each node incident to an edge e knows the IDs of the
parts allowed to use e), a randomized distributed CONGEST algorithm can complete part-
wise aggregation on P in Õ(q) rounds with high probability.

The above result is relatively simple and utilizes the well-known technique of random delays.
Furthermore, we note that many practical networks of interest admit shortcuts of quality Õ(D)
(more on this in later chapters). However, the result assumes the shortcuts can be (efficiently)
constructed. Shortcut construction is often the bottleneck in designing distributed algorithms and
the efficient construction of good-quality shortcuts in distributed settings is the central remaining

8

open problem regarding low-congestion shortcuts (at least in the setting when nodes do not know
the topology in advance).

Open Problem 1.2.6. Let P = (P1, . . . , PN) be a set of parts in a graph G. Distributedly
construct shortcuts of quality Õ(q) in Õ(q) rounds, where q is the optimal shortcut quality
(with respect to P).

One can side-step this issue of construction by considering a more-structured tree-restricted
shortcut (defined in Chapter 2) which comes with an efficient, uniform, and distributed con-
struction technique. Alternatively, in Chapter 7 we provide efficient construction techniques in
the distributed known-topology setting.

1.3 Structure of the Thesis

The rest of the thesis is structured into (mostly self-contained) chapters that, together, culminate
in both (1) a mature tree-restricted shortcut framework, and (2) universally optimal algorithms
in the distributed known-topology setting. We note that (almost all of) the chapters were origi-
nally published as standalone conference or journal papers, and have been slightly edited for the
purposes of this thesis.

Chapter 2: The Tree-Restricted Shortcut Framework. We present the tree-restricted short-
cut framework that leads to simple Õ(D) distributed optimization algorithms for many graph
classes (e.g., planar, genus-bounded, treewidth-bounded, minor-free graphs), where D is the
diameter of the graph. Previous constructions were exceedingly complicated: even relying on
having access to a distributed planar embedding of a planar graph [49]. Our framework side-steps
this problem by defining a slightly restricted and more structured form of shortcuts and giving a
novel construction algorithm that efficiently finds a shortcut which is, up to a logarithmic factor,
as good as the best shortcut that exists for a given network. This new construction algorithm
directly leads to an Õ(D)-round algorithm for solving optimization problems like MST for any
topology for which good tree-restricted shortcuts exist.

Chapter 3: Shortcuts for Treewidth-Bounded and Genus-Bounded Graphs. We broaden
the utility of the tree-restricted shortcut framework by showing that networks with pathwidth
or treewidth k allow for good tree-restricted shortcuts. This leads to fast Õ(kD) distributed
optimization algorithms. We also improve the dependence on genus g from Õ(gD) to Õ(g

√
D).

Lastly, we prove lower bounds which show that the dependence on k and g in our shortcuts is
optimal. Overall, this significantly refines and extends the understanding of how the complexity
of distributed optimization problems depends on the network topology.

Chapter 4: Shortcuts for Minor-Free Graphs. We prove that excluded minor graphs admit
high-quality shortcuts, leading to an Õ(D2) round algorithm for the distributed optimization

9

problem. To work with excluded minor graph families, we utilize the Graph Structure Theorem
of Robertson and Seymour. To the best of our knowledge, this is the first time the Graph Structure
Theorem has been used for an algorithmic result in the distributed setting. Even though the
proof is involved, merely showing the existence of good shortcuts is sufficient to obtain simple,
efficient distributed algorithms. In particular, the shortcut framework can efficiently construct
near-optimal shortcuts and then use them to solve the optimization problems. This, combined
with the very general family of excluded minor graphs, which includes most other important
graph classes, makes this result of significant interest.

Chapter 5: Network Coding Gaps for Completion-time of Multiple Unicasts. We study
network coding gaps for the problem of makespan minimization of multiple unicasts. While the
chapter tackles a somewhat different setting than the rest of the thesis, the tooling developed in
this chapter is crucial to proving the main contributions of Chapter 6.

In the problem of makespan minimization of multiple unicasts, distinct packets at different nodes
in a network need to be delivered to a destination specific to each packet, as fast as possible. The
network coding gap specifies how much coding packets together in a network can help compared
to the more natural approach of routing. While makespan minimization using routing has been
intensely studied for the multiple unicasts problem, no bounds on network coding gaps for this
problem are known. We develop new techniques that allow us to upper bound the network
coding gap for the makespan of k unicasts, proving this gap is at most polylogarithmic in k.
Complementing this result, we show there exist instances of k unicasts for which this coding gap
is polylogarithmic in k. Our results also hold for average completion time, and more generally
any `p norm of completion times.

Chapter 6: Shortcuts are a Universal Lower Bound for Distributed Optimization. We
formally define the notion of universal optimality and prove that shortcut quality is a universal
lower bound for many distributed optimization tasks on any graph. We also provide several
different quantities that are non-trivially equivalent to the shortcut quality, up to polylogarithmic
factors. Some of them might be more appropriate in different circumstances, even though all of
them (together with the material from the next chapter) characterize the inherent complexity of
distributed optimization.

Chapter 7: Near-Optimal Distributed Known-Topology Shortcut Construction. We show
how to construct shortcuts of quality q in Õ(q) rounds of known-topology CONGEST. This re-
sult (together with the lower bound of Chapter 6) resolves the 25-year-old open problem that asks
“What network topology parameters determine the complexity of distributed optimization?” To
which the answer is shortcut quality (or some other equivalent quantity). Furthermore, this result
shows that low-congestion shortcuts are a sufficient tool to achieve universally optimal algo-
rithms and uncovers a novel distributed complexity class of problems all of which have running
times equivalent up to polylogarithmic factors. The main technical contribution is an oblivious
routing construction that minimizes congestion + dilation up to polylogarithmic factors, a result
which we believe is of independent interest for the approximation algorithms community.

10

Chapter 8: Conclusion and Open Questions. We summarize the contribution of this thesis
and address the implications, impacts on other fields and open problems.

11

12

Chapter 2

The Tree-Restricted Shortcut Framework

The results of this chapter were published in [65] with Bernhard Haeupler and Taisuke Izumi
as co-authors. The work was supported in part by KAKENHI No. 15H00852 and 16H02878
as well as NSF grants CCF-1527110 “Distributed Algorithms for Near Planar Networks” and
NSF-BSF grant “Coding for Distributed Computing”.

2.1 Introduction

2.1.1 Background and motivation

Problems such as the MST problem can be solved in the distributed CONGEST setting using
O(
√
n log∗ n + D) rounds of communication [95]. Moreover, and perhaps more surprisingly,

this bound was shown to be the best possible (up to polylogarithmic factors). Specifically, there
are graphs in which one cannot do any better than Ω̃(

√
n + D). While clearly, no algorithm can

solve any global network optimization problem faster than Ω(D), the Ω̃(
√
n) factor is harder to

discern. To make matters worse, the Ω̃(
√
n + D) lower bound was shown to be far-reaching. It

applies to a multitude of important network optimization problems including MST, minimum-
cut, weighted shortest-path, connectivity verification, and so on [27].

While this bound precludes the existence of more efficient algorithms in the general case, it was
not clear does it hold for special families of graphs. This question is especially important because
any real-world application on huge networks should exploit the special structure that the network
provides. The mere existence of “hard” networks for which one cannot design any fast algorithm
might not be a limiting factor.

In the first result that utilizes network topology to circumvent the lower bound, Haeupler and
Ghaffari designed an Õ(D)-round distributed MST algorithm for planar graphs [49]. Note that
this algorithm offers a huge advantage over older results for planar graphs with small diameters.

They achieve this by introducing an elegant abstraction for designing distributed algorithms
named low-congestion shortcuts. Their methods could in principle be used to achieve a similar

13

result for genus-bounded graphs, but their presented algorithms have a major technical obsta-
cle: they require a surface embedding of the planar/genus bounded graph to construct the low-
congestion shortcuts. While computing a distributed embedding for planar graphs has a complex
Õ(D)-round solution [49], this remains an open problem for genus-bounded graphs [49].

This chapter side-steps the issue by vastly simplifying the construction of low-congestion short-
cuts. We define a more structured version of low-congestion shortcuts called tree-restricted
shortcuts and propose a simple and general distributed algorithm for finding them. The algo-
rithm is completely oblivious to any intricacies of the underlying topology and finds universally
near-optimal tree-restricted shortcuts. As a simple consequence of our construction technique,
we get a Õ(gD)-round algorithm for genus g graphs, which is a novel result. We believe that this
simplicity makes the algorithm usable even in practice.

2.1.2 Our contribution

Roughly speaking, there are two challenges in the design of shortcut-based algorithms. Let G
be the target class of graphs we want to design distributed algorithms. The first challenge is
to identify the optimal (smallest) value q such that G has shortcuts of quality q. This is purely
a graph-theoretic problem. The second challenge is to convert the existential result proved by
the first challenge to the constructive result, i.e., we must design a distributed algorithm con-
structing efficient shortcuts for that class. This is a distributed computing problem that might
be distinctively harder than the former one. Indeed, while one can prove that bounded genus
graphs have good-quality shortcuts, the proof is not constructive because it requires access to an
embedding [49]; this is the primary reason why fast algorithms for bounded genus graphs were
not known. Even in the planar case, distributedly constructing such an embedding is known, but
complicated.

A natural idea to simplify algorithm design would be to come up with a generic procedure that
finds a shortcut of quality q for the best (or approximately best) q. Such a result would automati-
cally lift a purely existential result to a constructive one. However, such a result is possible only
in the known-topology setting (Chapter 7) and only via complicated techniques. The problem is
still open in the standard CONGEST model (we restate the formal statement for convenience).

Open Problem 1.2.6. Let P = (P1, . . . , PN) be a set of parts in a graph G. Distributedly
construct shortcuts of quality Õ(q) in Õ(q) rounds, where q is the optimal shortcut quality
(with respect to P).

In this chapter, we resolve Open Problem 1.2.6 for some important classes of graphs. We in-
troduce a more structured definition of shortcuts called tree-restricted shortcuts and give a
constructive algorithm that finds the nearly optimal tree-restricted shortcuts in any graph that
contains them. While the new shortcut definition is a strict subset of the old definition, we lever-
age them to design optimal Õ(D) round distributed algorithms for many graphs of interest (e.g.,
all planar graphs and all bounded genus graphs).

The details of our contribution are summarized as follows:

14

• In Section 2.2, we introduce tree-restricted shortcuts, which can only use edges of some
fixed spanning tree T ⊆ G. Such shortcuts are characterized by congestion c and block pa-
rameter b (which substitutes the classic dilation parameter). The block parameter is more
appropriate for tree-restricted shortcuts due to their highly-structured nature: in particular,
the new parameter is stronger in the sense that it implies an upper bound of O(bD) on the
dilation. The block parameter (upper-)bounds the number of components of Pi, where two
nodes are in different components if they cannot reach each other via Hi. In Section 2.2.3
we propose deterministic algorithms for broadcast, convergecast, and leader election (for
all parts in parallel) utilizing tree-restricted shortcuts. These yield a O(b(D + c)) round
solution to the part-wise aggregation problem (assuming constructed tree-restricted short-
cuts), a solution simpler and often faster as compared to the general-case randomized al-
gorithms from [49].

• In Section 2.3, we present a generic algorithm for constructing tree-restricted shortcuts.
Given a spanning tree T , we can find near-optimal T -restricted shortcuts, as formalized in
the following statement.

Theorem 2.1.1. Let P = (P1, . . . , PN) be parts in the graph G with a spanning tree
T ⊆ G such that there exists a T -restricted shortcut with congestion c and block pa-
rameter b. There exists a randomized distributed CONGEST algorithm that finds a
T -restricted shortcut with congestion O(c logN) and block parameter 3b. The short-
cut can be found in Õ(b(D + c)) rounds.

Notably, when a tree-restricted shortcut with parameters b = Õ(1) and c = Õ(D) exists,
our construction yields Õ(D)-quality shortcuts (since dilation is at most O(bD)) and, by
extension, (optimal) Õ(D)-round algorithms for MST and approximate Min-Cut.
Note: The algorithm does not know the values of b and c upfront if one is willing to suffer
a Õ(1) performance hit. In particular, it is possible to find a feasible pair (b, c) that yields
a near-optimal value of b(D + c). Given an arbitrary Q > 0, one can check if there exists
a valid pair of parameters (b, c) that yield a running time of at most Õ(b(D + c)) ≤ Q.
This is done by trying all O(log n) possible powers-of-two b that guarantee Õ(bD) ≤ Q
and Õ(bc) ≤ Q and truncating the execution after Q rounds. Given this procedure, one
can search for the smallest power-of-two Q for which the above procedure succeeds (by
checking all O(log n) possibilities).

• The final question we tackle is what graph families admit good-quality tree-restricted short-
cuts. Fortunately, one can reinterpret prior work in the novel terminology of tree-restricted
shortcuts to conclude that (any O(D)-depth spanning tree of) genus-g graphs contain tree-
restricted shortcuts with congestion O(gD logD) and block parameter O(logD). In Sec-
tion 2.2.4, we can obtain a distributed algorithm that constructs a tree-restricted shortcut
with congestion O(gD logD logN) and block parameter O(logD) for graphs with genus
at most g. For bounded genus graphs (i.e. g = O(1)), the algorithms based on our shortcut
construction achieve near-optimal time complexity (up to a polylogarithmic factor).

15

2.1.3 Subsequent work: a short survey

Significant progress has been made since the initial conference version of this chapter was pub-
lished [65]. Subsequent work has expanded on the utility of the framework by extending it to
new graph classes, new problems, and provided better construction guarantees. We intend this
section to serve as a short and convenient survey of the tree-restricted shortcut framework.

Tree-restricted shortcut quality and construction. For a spanning tree of depth O(D), we
define the T-quality (denoted qT) of a T -restricted shortcut as qT := bD + c (where b is the
block parameter and c is the congestion). This definition is simply the congestion + dilation, i.e.
quality, when one upper-bounds the dilation as O(bD) (see Section 2.2 for a proof of this fact).

T-quality combines the congestion and the block parameter into a single value that sufficiently
describes the shortcut construction and routing performance without the need to keep track of
multiple parameters.

Definition 2.1.2. A graph G = (V,EG) of diameter D admits tree-restricted shortcuts of T-
quality qT if for each spanning tree T of depth O(D) and each set of disjoint and connected
parts (Pi ⊆ V)Ni=1 there exists a T -restricted shortcut of congestion c and block parameter b
satisfying b ·D + c ≤ qT .

It is not hard to see that if one can efficiently construct shortcuts of T-quality qT , then a ran-
domized algorithm can solve the part-wise aggregation problem in Õ(qT) rounds using standard
random delay ideas [49]. However, the key benefit of using the tree-restricted shortcut frame-
work (as opposed to the general shortcut framework) is that near-optimal tree-restricted shortcuts
can be efficiently and distributedly constructed.

Theorem 2.1.3 (Theorem 1.2 of [67]). Suppose that a graph G = (V,EG) admits tree-
restricted shortcuts of T-quality qT . There exists a distributed CONGEST algorithm that finds
a T -restricted shortcut with T-quality Õ(qT) in Õ(qT) rounds and sends at most Õ(|EG|)
messages during its execution with high probability (with probability at least 1 − n−O(1),
where any constant can be chosen in the exponent). Moreover, the algorithm does not need
to know the value of qT upfront.

Note: We slightly reworded the main Theorem of [67]. An appealing property of the tree-
restricted shortcut framework (shared between this and subsequent work) is that one does not
need to know the optimal tree-restricted shortcut T-quality q∗T upfront. This can often yield much
better shortcuts than guaranteed by the theoretical bound, a property often desired in practical
applications. While the paper typically assumes the algorithm knows the congestion c and block
parameter b, one can circumvent this issue with a simple exponential parameter search like the
one described in Section 2.1.2.

Comparing Theorem 2.2.8 and [67]. Notably, the construction of [67] (unlike Theorem 2.2.8)
controls the number of messages throughout the algorithm. Furthermore, it completes in Õ(qT) =

16

Graph Family Tree-Restricted Shortcut Parameters Lower Bound
Block Congestion T-quality Ω(d+ c)

General [49] 1 2 O(
√
n) O(D +

√
n) Ω̃(D +

√
n)

Pathwidth k Chapter 3 O(k) O(k) O(kD) Ω(kD)
Treewidth k Chapter 3 O(k) O(k log n) O(kD + k log n) Ω(kD)

Genus g Chapter 3 O(
√
g) O(

√
gD logD) O(

√
gD logD) Ω(

√
gD

log g
)

Planar [49] O(logD) O(D logD) O(D logD) Ω(D logD
log logD

)

Minor-excluded [50] O(1) O(D log n) O(D log n) trivial Ω(D)
No δ-dense minors [50] O(δ) O(δD log n) O(δD log n) Ω(δD)

Table 2.1: Upper and lower bounds for tree-restricted shortcuts.

Õ(bD+c) rounds, while the construction of Theorem 2.2.8 takes Õ(b(D+c)) rounds. The latter
result is significantly slower when b = logω(1) n, in e.g., genus- or treewidth-bounded graphs
with super-polylogarithmic genus or treewidth (see Table 3.1 below). Furthermore, the results of
[67] can be made deterministic (with slightly worse guarantees, see below).

Deterministic construction. Many of the aforementioned randomized results can be recovered
in the deterministic setting while suffering only a small performance penalty. Notably, one can
still construct near-optimal tree-restricted shortcuts and solve the part-wise aggregation problem
in Õ(b(D+ c)) rounds instead of Õ(qT) = Õ(bD+ c) rounds (as guaranteed by the randomized
procedure), even while controlling the message complexity.

Theorem 2.1.4 (Deterministic construction of [67]). Suppose that a spanning tree T of a
graph G = (V,EG) admits tree-restricted shortcuts of congestion c and block parameter
b. There exists a deterministic distributed CONGEST algorithm that finds a T -restricted
shortcut of congestion Õ(c) and block parameter Õ(b) in Õ(b(D + c)) rounds and Õ(|EG|)
messages. Furthermore, one can solve the part-wise aggregation problem with the same
guarantees.

Graph families. Various graph families admit good-quality tree-restricted shortcuts. Table 3.1
lists the known results. The last row of the table references graphs that exclude δ-dense minors,
meaning that all minors of G have a density (i.e., the ratio between the number of edges and
vertices) at most δ. We note that the result of [50] implies all other known upper bounds in the
table (up to logarithmic factors): for instance, minor-excluded families have δ = O(1).1

1The excluded-dense-minor result of [50] improves the best-known quality of tree-restricted shortcuts in minor-
excluded graph families from Õ(D2) (proved in [68]) to Õ(D).

2For general graphs, each part of size |Pi| ≥
√
n is assigned the entire tree; giving them a block param. of 1 and

congestion of at most
√
n. Smaller parts can be handled separately in Õ(

√
n) rounds by using intra-part edges.

17

Applications. Numerous distributed optimization tasks can be simplified and optimized by
utilizing the part-wise aggregation primitive as a black-box subroutine. Applications include the
MST, approximate Min-Cut, and approximate single-source shortest path (SSSP) [49, 64, 67].

Corollary 2.1.5. Suppose that a graph G admits tree-restricted shortcuts of T-quality qT .
One can compute an (exact) MST in Õ(qT) rounds and Õ(m) messages with high probability.

As a reminder, in the Min-Cut problem, one is given a graph G = (V,EG) with integer weights
w : EG → [1, poly(n)] and needs to compute a set of edges F ⊆ EG that disconnect G into at
least 2 components while minimizing the sum

∑
e∈F we. An α-approximation to Min-Cut finds

a set of edges that disconnects the graph whose aggregate weight is at most a multiplicative α
factor larger than the optimal value.

Corollary 2.1.6. Suppose that a graph G admits tree-restricted shortcuts of T-quality qT .
One can compute an (1 + ε)-approximate (weighted) Min-Cut in Õ(qT) · poly(1/ε) rounds
and Õ(m) · poly(1/ε) messages with high probability.

In the Single-Source Shortest Path (SSSP), one is given a graph G = (V,EG) with integer
weights w : EG → [1, poly(n)], a source s ∈ V , and needs to compute a spanning tree T ⊆ EG
such that for each node u we have that dT (s, u) = d(s, t) where d(u, v) is the distance between
u, v ∈ V in G with respect to the weight w, and dT (u, v) is their distance in the tree (with respect
to w). An α-approximation to SSSP requires the tree to satisfy dT (u, v) ≤ α · d(u, v) (note that
the inequality dT (u, v) ≥ d(u, v) is always satisfied).

Corollary 2.1.7. Suppose that a graph G = (V,EG) admits tree-restricted shortcuts of T-
quality qT . Each edge e ∈ EG has a weight we, and let L be the weight-diameter of G. For
any β = (log n)−Ω(1) one can compute an LO(log logn)/ log(1/β)-approximate SSSP in Õ(qT/β)
rounds and Õ(m/β) messages with high probability.

For instance, in the above corollary, setting β = n−ε, β = 2−Θ(
√
n), and β = log−Θ(1/ε) n for a

constant ε > 0 one obtains a logO(1) n, 2
√

logn, and Lε approximations to SSSP, respectively. [64]

General shortcuts vs. tree-restricted shortcuts. One can easily construct pathological graph
examples that admit good-quality general shortcuts, but do not admit good-quality tree-restricted
shortcuts. For example, one can take the lower bound graph of [27] which requires Ω̃(

√
n) rounds

to solve MST and replace each edge with
√
n parallel multi-edge copies. This immediately

yields a Õ(D) = Õ(1) MST solution via general shortcuts, whereas tree-restricted shortcuts
are constrained by the original Ω̃(

√
n) lower bound. Moreover, general shortcuts allow faster

algorithms for several important graph families. For example, expander graphs and Erdős-Rényi
random graphs admit general shortcuts of dilation + congestion = Õ(1) for any set of parts;
no such result is possible in the tree-restricted setting. However, it seems that a distributed
construction of general shortcuts is a burdensome task even in highly structured graphs. The
best-known result for shortcut construction and part-wise aggregation in expander graphs has

18

round complexity 2O(
√

logn) = no(1), significantly worse than the best existential result [52].

2.2 Tree-Restricted Shortcuts

In this section we define tree-restricted shortcuts: a restricted version of low-congestion (i.e.,
general) shortcuts that are (i) simpler to work with, (ii) often equally powerful as the general
shortcuts, (iii) offer deterministic routing schemes and, most importantly, (iv) can be efficiently
constructed on any graph that contains them. Following the definitions, we rephrase the relevant
prior work in our new term, showcase an efficient deterministic routing scheme, and finally state
our main result and applications.

2.2.1 Definition

Tree-restricted shortcuts are low-congestion shortcuts with the additional property that Hi is
restricted to (the edges of) some spanning tree T . The user of the shortcut can typically choose
any tree T , so a cogent choice would be the BFS tree because of its optimal depth (or any tree of
depth O(D)).

Definition 2.2.1. Let H = (H1, H2, ..., HN) be a (general) shortcut on the graph G =
(V,EG) with respect to the parts P = (Pi)

N
i=1. Given a rooted spanning tree T = (V,ET) ⊆

G we say that a shortcut H is tree-restricted or T -restricted if for each i ∈ [N], Hi ⊆ ET
i.e., every edge of Hi is a tree edge of T .

Congestion and dilation are still well-defined for tree-restricted shortcuts. However, it is more
convenient to use an alternative block parameter in place of dilation. The block parameter
upper-bounds the number of connected components that Hi induces Pi (note that Hi might not
be connected, even though EG[Pi] ∪Hi is).

Definition 2.2.2. Let H = (H1, H2, ..., HN) be a T -restricted shortcut on the graph G =
(V,EG) with respect to the parts P = (Pi)

N
i=1. Fix a part Pi and consider the connected

components of the spanning subgraph (V,Hi). If such a connected component intersects Pi
we call it a block component. Furthermore, we sayH has block parameter b if for each part
the number of block components associated with that part is at most b.

The intersection property ensures that we do not count trivial components unrelated to Pi. Lemma 2.2.3
argues that a block parameter of b implies the dilation of b(2 · depth(T) + 1). From now on, we
will assume that T is chosen to have depth O(D), which is asymptotically minimal and achiev-
able via a BFS tree. We note that distributively computing a BFS tree is a classic problem with a
simple O(D) rounds CONGEST algorithm [121].

19

Pi

b1

T

b2

b3 b4

Figure 2.1: Illustration of a T -restricted shortcut subgraph for a part Pi, composed of block
components b1, b2, b3 and b4.

Lemma 2.2.3. Let T be a spanning tree with depth D and let H = (Hi : i ∈ [N]) be a
T -restricted shortcut with congestion c and block parameter b with respect to parts P =
(Pi : i ∈ [N]). Then the dilation ofH is at most b(2D + 1).

Proof. Fix i ∈ [N]. Contract every block component ofHi into a supernode and remove all other
nodes. This supergraph will contain b′ ≤ b supernodes and will be connected (because EG[Pi]
is connected). Hence its diameter is b′ − 1 ≤ b − 1. Every supernode corresponds to a block
component of diameter 2D, implying the diameter of EG[Pi] ∪ Hi is at most 2bD + b − 1 <
b(2D + 1).

2.2.2 Shortcuts on genus-bounded and planar graphs

Tree-restricted shortcuts are particularly useful on genus-bounded (e.g., planar) graphs. In par-
ticular, we can reinterpret the low-congestion result of Haeupler and Ghaffari [49] using our
notation.

Theorem 2.2.4 (Haeupler and Ghaffari [49]). Let G be a graph with genus g and diameter
D, and let T be any tree with depth O(D) (e.g., BFS tree). There exists a T -restricted
shortcut with congestion O(gD logD) and block parameter O(logD).

The paper originally also provided a O(D logD) upper bound on the dilation of the short-
cut. However, this bound can be implicitly recovered from Lemma 2.2.3 and block parameter
O(logD). Note that the Theorem proves only the existence of such shortcuts. While the original
paper does describe an algorithm that can in principle be used to compute them, it requires an
embedding of G on a surface of genus g. It is an open problem to compute such an embedding
efficiently in the CONGEST model [49].

20

2.2.3 Deterministic routing on tree-restricted shortcuts

In this section, we show how the structure of tree-restricted shortcuts can be useful in facilitating
communication within parts. On a high-level, the tree-like structure allows for fast, determin-
istic, and simultaneous broadcasting/convergecasting on block components; this can be easily
extended to true part-wise aggregation. For clarity, broadcast is defined as an operation on a
rooted (sub)tree that floods some value from the root down to all other nodes; convergecast is
defined as an aggregation of nodes’ private values starting from the leaves and towards the root
(ending in the root knowing the final aggregate). Lemma 2.2.5 gives a way how to simultaneously
perform these primitives on subtrees.

Lemma 2.2.5 (Routing on subtrees). Let T be a rooted tree of depth O(D) and let T1, T2,
. . . , Tk ⊆ T be a family of subtrees where each edge of T is contained in at most c subtrees,
i.e., |{i | e ∈ Ti, i ∈ [k]}| ≤ c. There is a simple deterministic algorithm that can perform a
convergecast/broadcast on all of the subtrees in O(D + c) CONGEST rounds.

Proof. We describe the convergecast algorithm. Each message sent during the algorithm will
have a subtree-ID i associated with it. Suppose that a node v is in a subtree Ti (a node can be
contained in multiple subtrees). We say (v, i) is active when v receives a message associated with
i from all of its Ti-children (if v is a leaf in Ti, then (v, i) is immediately active). When (v, i)
becomes active, it will schedule an ID-i message to be sent along its T -parent edge; note that
two messages scheduled along the same edge cannot have the same ID. Each round, if multiple
messages are scheduled over the same T -edge, the algorithm sends the message associated with
the ID i that minimizes depthT (root(Ti)). Here, depthT (v) is the length of the unique path
between root(Ti) and v path in T . Ties are broken by the ID i itself. The convergecast and
broadcast operations are symmetric, so we will only prove the Lemma for convergecasts.

We now analyze the algorithm. Fix a node v. It is sufficient to prove that no message gets
transmitted along v’s parent edge after heightT (v) + c = O(D + c) rounds where heightT (v)
is the maximum distance between v and any leaf in T that is a descendant of v (the unique path
between the T -root and the leaf goes through v).

Note that any message that gets transmitted along v’s parent edge must belong to a subtree Ti
that contains that edge. Let I = (i1, i2, ..., ik) be the IDs of subtrees that contain v’s parent
edge, ordered by their priority (as described). In particular, we say that Tip has priority p. The
congestion condition stipulates that k ≤ c.

We will prove by induction that for p ∈ [k] the message associated with ip will be transmitted no
later than round heightT (v) + p. The claim clearly holds for the leaves of T . Note that (i) the
relative priority-ordering between I is unchanged with respect to any node of T (other than v),
(ii) any subtree Ti that is contained in the set of descendants of v, but does not contain the parent
edge of v will have lower priority than any subtree in I .

Fix ip. By the induction hypothesis, messages corresponding to {i1, . . . , ip−1}will be sent strictly
before round heightT (v) + p. It is sufficient to argue that v has received messages corresponding
to ip from all of its Tip-children before round heightT (v) + p. However, this can be directly

21

argued from the induction: for any child w ∈ Tip we have heightT (w) ≤ heightT (v)− 1, hence
the priority of ip is at most p with respect to w. Hence v will send the message corresponding to
ip no later than round heightT (v) + p and we are done.

Convergecast and broadcast are used to facilitate routing in tree-restricted shortcuts. We can intu-
itively envision the shortcut edgesHi as a family of subtrees (in our notation: block components).
Aggregation of values within each block component can be exactly achieved by simultaneously
convergecasting and broadcasting in all block components. We extend this result to true part-wise
aggregation.

Theorem 2.2.6 (Routing on tree-restricted shortcuts). Given a T -restricted shortcut with
congestion c and block parameter b, there are deterministic distributed algorithms that ter-
minate in O(b(D + c)) rounds for the following problems.

1. Electing a leader for each of the parts in parallel.

2. Convergecasting O(log n)-bit messages to the leader of each part in parallel.

3. Broadcasting a O(log n)-bit message from the leader of each part in parallel.

Proof. All of these algorithms have a common flavor: for each part we perceive its shortcut
edges Hi as a supergraph of at most b supernodes where each supernode corresponds to a block
component. We proceed to describe each of the algorithms on the supergraph and implicitly
assume that intra-block communication happens after each step of the algorithm.

Communication within block components can be done in parallel using Lemma 2.2.5: all the
nodes of a block component convergecast the relevant information to the block-root and subse-
quently the block-root broadcasts the result back.

Electing a leader for each part is performed by electing a leader for each supernode (block com-
ponent) and broadcasting the leader to all neighborhood supernodes for b steps. Every supernode
keeps the smallest leader ID ever seen as its current leader. After b rounds all the supernodes
have the same leader. The algorithm requires O(b(D + c)) rounds as each of the b broadcasting
steps is followed by an O(D + c) intra-block communication step.

Broadcasting/convergecasting from/to the leader for each part can be done by building a
BFS tree from the leader-supernode. We can utilize the standard distributed BFS algorithm on
the supergraph requiringO(b) steps. The algorithm similarly requiresO(b(D+c)) rounds as each
of the O(b) BFS steps is followed by an O(D + c)-round intra-block communication step.

We also state a simple technical lemma we use for the construction of tree-restricted short-
cuts.

Lemma 2.2.7. Given a T -restricted shortcut with congestion c, a deterministic distributed
algorithm can identify all parts with at most b′ block components. Specifically, after the
algorithm terminates each node within a part i knows if Pi is composed of more than b′

block components. The algorithm executes in O(b′(D + c)) rounds.

22

Proof. Similarly to the proof of Theorem 2.2.6, for each part Pi we consider the (connected)
supergraph where each supernode corresponds to a block component of Hi. We need to find all
parts whose supergraphs have at most b′ supernodes.

Each supernode broadcasts its leader for exactly b′ rounds and every supernode keeps the mini-
mum ID as their current leader. Subsequently, each leader r (there may be multiple ones as we
have not bounded the block parameter) tries to build a BFS tree comprised of all the nodes that
believe r is the leader. We can detect the existence of multiple leaders as in that case each BFS
tree will contain two neighboring supernodes in different BFS trees and report failure. If this is
not the case (all the supernodes of a part belong to the same BFS tree), we can convergecast the
number of supernodes back to the root and subsequently broadcasts their count back.

Comparison with routing on general shortcuts: Ghaffari and Haeupler [49] give a method for
routing on general shortcuts in O(dilation · log n + congestion) rounds that is randomized and
assumes a leader is already elected for each part. They describe a process of leader election via
a complicated randomized bootstrapping process that takes O(dilation · log2 n + congestion ·
log n) rounds. We contrast those results with our current tree-restricted shortcut routing where
leader election is simple, deterministic, and essentially no more difficult than a single converge-
cast+broadcast. The downside is that non-tree-restricted shortcuts sometimes offer better quality
guarantees and therefore better performance.

2.2.4 Main result and applications

The main contribution of the chapter is to introduce a general framework for finding good-quality
shortcuts in graphs where the only assurance is that they exist.

Theorem 2.2.8. Let G be a graph with a spanning tree T ⊆ G such that there exists a
T -restricted shortcut with congestion c and block parameter b. There exists a distributed
algorithm that finds a T -restricted shortcut with congestionO(c logN) and block parameter
3b with high probability (with probability at least 1−n−O(1), where any constant can be cho-
sen in the exponent). The shortcut can be found in O(D log n logN + bD logN + bc logN)
rounds.

We note that the Theorems 2.2.4 and 2.2.8 immediately give a novel result: an algorithm for
constructing shortcuts on bounded genus graphs.

Corollary 2.2.9. Given a genus-g graph with diameter D and N parts there is a distributed
algorithm that computes a tree-restricted shortcut with congestion O(gD logD logN) and
block parameter O(logD) in O(gD log2D logN) rounds.

Next, we explain how to use tree-restricted shortcuts to distributedly compute the Minimum
Spanning Tree (MST) on genus-g graphs. Similarly to [49], we incorporate the shortcuts into the
classic 1926 algorithm of Boruvka [115].

23

Lemma 2.2.10. Given a genus-g graph with n nodes and diameter D, there is a distributed
algorithm that computes the Minimum Spanning Tree in O(gD log2D log2 n) rounds.

For completeness we give a brief proof outline:

Proof. Boruvka’s algorithm runs in O(log n) phases. Each phase starts with a partition of the
graph into connected parts; each part has previously computed the MST on the subgraph induced
by the part. Initially, the algorithm starts with the trivial partition in which each node is in its
own part. During each phase, each part Pi suggests a merge along the minimum-weighted edge
going out of Pi. It is well-known that all such edges belong to some MST. By computing a
tree-restricted shortcut for each part in O(gD log2D log n) rounds and using our convergecast
algorithm on it inO(gD log2D) rounds we can compute the min-weight outgoing edge from each
part. A slight difficulty remains: many parts could chain together to form a new part, making the
assignment of part IDs in the newly merged part difficulty. This can be avoided by restricting
the merge shapes to be star graphs: each part can independently mark itself as a head or tail
with probability 1

2
; we are only allowed to merge tails to heads. The number of phases remains

O(log n) as every minimum-weighted outgoing edge will be used for merging with probability
at least 1

4
, thus reducing the expected number of parts by a constant.

2.3 Constructing Tree Restricted Shortcuts

In this section, we describe an algorithmic framework that solves the problem of finding near-
optimal tree-restricted shortcuts.

2.3.1 Overview of the algorithmic framework

Our algorithm FindShortcut uses two separate subroutines:

• Core: This subroutine finds a good-quality shortcut with respect to at least a constant
fraction of the parts. As a prerequisite, we assume we constructed a tree T with depth
O(D) such there exists a T -restricted shortcut with congestion c and block parameter b.
Note that we only assume the shortcut’s existence.

Lemma 2.3.1. Let T be a spanning tree with depth O(D) and assume there exists
a T -restricted shortcut with congestion c and block parameter b. The subroutine
CoreFast finds a T -restricted shortcutH′ = (H ′i)

N
i=1 with the following properties:

1. The congestion ofH′ is at most 8c with high probability.

2. There exists a subset of parts P ′ ⊆ P with size at least |P ′| ≥ |P|
2

such that each
part in P ′ has at most 3b block components.

The subroutine takes O(D log n+ c) CONGEST rounds to execute. Upon completion,
each node knows for each of its incident edges which parts are they assigned to inH′.

24

We divide out the exposition of the core subroutine in two versions: a deterministic, and
simper CoreSlow requiring O(D · c) rounds; and a randomized CoreFast requiring
O(D log n + c) rounds. We note that the CoreFast subroutine is the only randomized
building block of our framework. Therefore, we can replace it with a deterministic (albeit
slower) version at a cost of an additional c

logn
factor.

• Verification: This subroutine is used to identify the parts whose shortcut edges Hi have a
sufficiently small number of block components.

Lemma 2.3.2. Given a tree T with depth D and a tentative T -restricted shortcut
H′ with congestion c, the deterministic subroutine Verification finds all parts
P ′ ⊆ P whose designated shortcuts have at most b′ block components. The subroutine
takes O(b′(D+ c)) CONGEST rounds to execute. Upon completion, each node knows
whether its part is in the set P ′ or not.

We use the subroutines in FindShortcut that implements the construction of Theorem 2.2.8.

Algorithm FindShortcut: We run the CoreFast subroutine that computes a shortcut H′ =
{H ′1, . . . , H ′N} with congestion 8c, but possibly an unacceptably large block parameter. The next
step is to run the Verification subroutine that finds all parts whose computed shortcut edges
H ′i have at most 3b block components. We call those parts good and fix their computed shortcut
edges and discard the rest. The subroutine is iteratively repeated for O(logN) rounds at which
point the parts have been marked as good.

Proof of Theorem 2.2.8. By Lemma 2.3.1, in each iteration we find a shortcut with congestion
8c and block parameter 3b for at least a half of the parts that have not yet been marked as good,
w.h.p. This implies that after O(logN) iterations all the parts are marked as good. This further
implies that the congestion ofH′ is O(c logN) as the congestion of the union of partial shortcuts
is at most the sum of congestion of individual partial shortcuts.

Finally, the number of rounds is at most O(logN) times the combined number of rounds of the
CoreFast and Verification subroutines, namely O(logN · (D log n + c + bD + bc)) =
O(D logN log n+ bD logN + bc logN).

2.3.2 Warm-up: an O(D · c)-round version of the core subroutine

In this section, we explain a simple and deterministic, but slower version of the core subrou-
tine named CoreSlow that terminates in O(D · c) CONGEST rounds. We improve its round
complexity to O(D log n+ c) in the following section.

On a high level, the subroutine takes each part Pi and tries to assign the T -ancestors of nodes in
Pi to its shortcut edges H ′i. However, this might lead to a large congestion on some edges. We
address this issue by declaring an edge unusable if more than 2c different parts try to use it. This
ensures the congestion is at most 2c. We show the process provably leads to a constant fraction
of parts having small congestion and a small block parameter.

25

Preliminaries: As standard, assume we fix a spanning tree T = (V,ET) of depth O(D) such
that G has a T -restricted shortcut with congestion c and block parameter b. During the execution
of the algorithm, some of the edges will be marked as unusable. Furthermore, we say that a tree
edge e ∈ ET can see a node v ∈ V if v is in the subtree of e and no edge on the unique path
between the lower endpoint of e and v is unusable. Analogously, an edge can see a part Pi if it
can see any node in Pi.

Outline of the CoreSlow subroutine: Initially, no edge is unusable. We process the (tree)
edges of T in order of decreasing depth (bottom to top). An edge e is assigned to all parts Pi that
e can see. If an edge is assigned to more than 2c different parts, we mark this edge e as unusable
disallow e from being used at all by any part.

Detailed description of the CoreSlow subroutine: Each node v maintains a list Lv of part IDs
that its T -parent edge can see. The lists Lv are initially empty. The subroutine runs in depth(T)
phases where in phase k all the nodes at depth depth(T)− k update Lv simultaneously and send
the entire list Lv to its T -parent. Consider a node v that receives Lv′ for all its T -children v′. We
assign the union of all received lists and the singleton part ID of v (if any) to Lv. If |Lv| ≤ 2c,
we assign the parent edge of v to all the parts in Lv and transmit Lv to its parent (potentially
requiring 2c rounds). Otherwise, if |Lv| > 2c, we declare the parent edge as unusable.

A direct implementation of this would lead to a subroutine that takes O(D · c) rounds in the
CONGEST model. Each of the O(D) levels of T must propagate at most 2c part IDs to their
parent nodes. However, this bottleneck can be improved by random sampling, as we show in the
next section with the subroutine CoreFast.

Algorithm 1 CoreSlow
1. At time k each node v at depth depth(T)− k does the following in parallel:

(a) if v is an element of Pi, set Lv ← {i}, otherwise Lv ← ∅
(b) receive all the part IDs from v’s children and assign their union to L′

(c) Lv ← Lv ∪ L′

(d) if |Lv| > 2c, mark v’s parent edge as unusable

(e) otherwise (serially) send all the part IDs of Lv up to v’s parent node

2. For each node v:

(a) if the parent edge e of v is marked as unusable, e will not be assigned to any part

(b) otherwise, e will be assigned to all Hi,∀i ∈ Lv

Lemma 2.3.3. Let T be a spanning tree of depthO(D) and assume there exists a T -restricted
shortcut with congestion c and block parameter b. The subroutine CoreSlow finds a T -
restricted shortcutH′ = (H ′1, H

′
2, ..., H

′
N) with the following properties:

1. The congestion ofH′ is at most 2c.

2. There exists a subset of parts P ′ ⊆ P with size at least |P ′| ≥ |P|
2

such that each part

26

in P ′ has at most 3b block components.

The subroutine takes O(D · c) CONGEST rounds to execute. Upon completion, each node
knows for each of its incident edges which parts are they assigned to inH′.

Proof. Let H = (Hi) be any T -restricted shortcut with congestion c and block parameter b and
let H′ = (H ′i) be the shortcut computed by CoreSlow. We call H the canonical shortcut and
H′ the computed shortcut.

By construction, the congestion of H′ is 2c as any edge that would be assigned to more than 2c
parts is marked as unusable. Hence we proved property 1.

Let U ⊆ ET be the set of unusable edges marked by the subroutine. In this paragraph, we find
an upper bound for |U |. Consider blaming a part Pi for congesting an unusable edge e ∈ U
when e 6∈ EG[Pi] ∪Hi and e can see Pi, i.e., edge e was not in the canonical shortcut Hi, but e
was congested by part Pi (and ultimately declared unusable). Each part can be blamed at most b
times because each block component can only be blamed for the first unusable edge in his T -tree
path towards the T -root. Furthermore, if e is unusable, it takes at least 2c − c different block
components (from different parts) to be blamed for congesting e. Therefore |U | ≤ N b

c
.

We say that a part Pi missed an edge e when e ∈ EG[Pi]∪Hi and e ∈ U (consequently, e 6∈ H ′i).
Furthermore, call a part bad if it missed at least 2b edges and good otherwise. Note that if
a part Pi is good, the block parameter of H ′i is at most 2b + blockParameter(H) = 3b. This is
because each missed edge induces a new block component inH′ (more precisely, we can identify
each block component of H′ by either a unique block component of H or a unique missed edge
e ∈ U). Consequently, it is sufficient to prove that the subroutine finds at least 1

2
N good parts.

As any unusable edge is assigned to at most c parts in the canonical shortcut, and for a part to
be bad we need at least 2b edges to be missed, we have that the number of bad parts is at most
|U | c

2b
≤ 1

2
N . Hence, the subroutine finds at least 1

2
N good shortcuts, proving property 2.

The subroutine terminates in O(D · c) rounds: on each of the O(D) levels of the tree T , all the
nodes in parallel must send the part IDs trying to use its parent edge up the tree. A node can send
up to 2c IDs, each requiring one round for its transmission.

2.3.3 A faster O(D log n+ c)-round version of the core subroutine

In this section, we describe a faster version of the core subroutine named CoreFast. On a high
level, we lower the running time of CoreSlow by estimating the number of parts trying to use
an edge by random sampling. In particular, each part becomes active with probability p and we
declare an edge unusable when Ω(c · p) active parts try to use that edge.

Preliminaries: In addition to the preliminaries of CoreSlow we need shared randomness be-
tween all the nodes within a part. In other words, all the nodes of the same part must have access
to the same seeds for a pseudorandom generator. This can be done by sharing O(log2 n) random
bits among all the nodes of G in O(D + log n) rounds, as described in [49].

Outline of the CoreFast subroutine: Each part becomes active with probability p = γ logn
2c

27

where γ > 0 is sufficiently large constant. We (basically) follow the CoreSlow subroutine,
but instead of propagating all O(c) part IDs of Lv, we propagate only the active ones. An edge
is declared unusable if at least 4c · p = Ω(log n) (active) part IDs want to use it. Hence, by a
standard Chernoff bound argument we can claim with high probability that (i) we never propagate
more than O(log n) part IDs through an edge, (ii) each unusable edge has at least 2c part IDs
trying to use that edge, and (iii) each usable (non-congested) edge has at most 8c part IDs. After
determining which edges are unusable in O(D log n) rounds, CoreFast must nevertheless find
the complete set of part IDs that can use each edge. This is a tree routing problem where each
message (part ID) has to be routed up the tree T until the first unusable edge. No message needs
to travel more than D edges and no edge needs to transmit more than 8c different part IDs w.h.p.
Hence this routing can be done in O(D + c) using Lemma 2.2.5.

Detailed description of the CoreSlow subroutine: Due to shared randomness, each part in-
dependently becomes active with probability p = γ logn

2c
(all the nodes within the part agree on

this label). Similarly, as in CoreSlow, each node v maintains a list L̃v of active part IDs that its
(T) parent edge can see. The lists L̃v are initially empty. The subroutine runs in depth(T) phases
where in phase k all the nodes at depth depth(T)− k try to update L̃v in parallel and send L̃v to
its T -parent. Consider a node v that receives Lv′ for all its T -children v′. We assign the union
of all received lists and the singleton part ID of v (if any) to Lv. If |Lv| ≤ 4c · p, we assign the
parent edge of v to all the parts in Lv and transmit Lv to its parent (potentially requiring O(log n)
rounds). Otherwise, if |Lv| > 4 ·p, we declare the parent edge as unusable. This finalizes the first
part of the subroutine where we determine all unusable edges. It remains to forward the complete
set of part IDs (and not just the sampled ones) that can use some edge e to the endpoints of e.
This is a classic tree routing problem where no route has its length larger than D and no edge
intersects more than 8c paths w.h.p. Lemma 2.2.5 provides a method to route all part IDs in at
most O(D + c) rounds. Note that any two part-IDs whose routes share an edge have the same
endpoint (lowest unusable ancestor edge), so any routing priority between the messages gives
the aforementioned O(D + c) bound w.h.p.

Lemma (Restated Lemma 2.3.1). Let T be a spanning tree with depth O(D) and assume
there exists a T -restricted shortcut with congestion c and block parameter b. The subroutine
CoreFast finds a T -restricted shortcutH′ = (H ′i)

N
i=1 with the following properties:

1. The congestion ofH′ is at most 8c with high probability.

2. There exists a subset of parts P ′ ⊆ P with size at least |P ′| ≥ |P|
2

such that each part
in P ′ has at most 3b block components.

The subroutine takes O(D log n + c) CONGEST rounds to execute. Upon completion, each
node knows for each of its incident edges which parts are they assigned to inH′.

Proof. This proof extensively utilizes methods used in the proof of Lemma 2.3.3. For complete-
ness, we redefine all of the used terminologies and reprove all of the intermediate results.

Let H = (Hi) be any T -restricted shortcut with congestion c and block parameter b and let
H′ = (H ′i) be the shortcut computed by CoreFast. We call H the canonical shortcut and H′
the computed shortcut.

28

Algorithm 2 CoreFast

1. Each part becomes active with probability p = γ logn
2c

2. At time k each node v at depth depth(T)− k does the following in parallel:

(a) if v is an element of Pi and Pi is active, set L̃v ← {i}, otherwise L̃v ← ∅
(b) receive all the active part IDs from v’s children and assign their union to L′

(c) L̃v ← L̃v ∪ L′

(d) if |L̃v| ≥ 4c · p, mark v’s parent edge as unusable

(e) otherwise send all the part IDs L̃v up to v’s parent node

3. Each node v initializes Qv with its part ID (or ∅ if not in any part)

4. Each node v does the following in parallel:

(a) add all received IDs to the Qv

(b) if the parent edge of v is not unusable and ∃i ∈ Qv that was never forwarded

i. forward minimum such i along the parent edge

5. Each part ID in Qv can use the parent edge of v unless it is unusable

As 4c · p = Ω(log n), a standard Chernoff bound argument demonstrates that any edge that is not
marked as unusable can see at most 8c different part IDs w.h.p. Hence, the congestion of H′ is
8c w.h.p.

Let U ⊆ ET be the set of unusable edges marked by the subroutine. In this paragraph, we find an
upper bound for |U |. Consider blaming a part Pi for congesting an unusable edge e ∈ U when
e 6∈ EG[Pi] ∪ Hi and e can see Pi, i.e., edge e was not in the canonical shortcut Hi, but e was
congested by part Pi (and ultimately declared unusable). We argue via a Chernoff bound that each
unusable edge e ∈ U can see at least 2c parts, hence we blame at least 2c− congestion(H) = c
parts for congesting e. Each part can be blamed at most b times because each block component
can only be blamed for the first unusable edge in his T -tree path towards the T -root. Furthermore,
if e is unusable, it takes at least 2c − c different block components (from different parts) to be
blamed for congesting e. Therefore |U | ≤ N b

c
.

We say that a part Pi missed an edge e when e ∈ EG[Pi]∪Hi and e ∈ U (consequently e 6∈ H ′i).
Furthermore, call a part bad if it missed at least 2b edges and good otherwise. Note that if
a part Pi is good, the block parameter of H ′i is at most 2b + blockParameter(H) = 3b. This is
because each missed edge induces a new block component inH′ (more precisely, we can identify
each block component of H′ by either a unique block component of H or a unique missed edge
e ∈ U). Consequently, it is sufficient to prove that the subroutine finds at least 1

2
N good parts.

As any unusable edge is assigned to at most c parts in the canonical shortcut and for a part to
be bad we need at least 2b edges to be missed, we have that the number of bad parts is at most
|U | c

2b
≤ 1

2
N . Hence, the subroutine finds at least 1

2
N good shortcuts.

The subroutine takes O(D log n + c) rounds: on each of the O(D) levels of the tree T , all the
nodes in parallel must send the active part IDs that its parent edge can see. If an edge e is not

29

unusable, a Chernoff bound proves that at most O(c · p) = O(log n) active part IDs can be
seen from e, hence the number of rounds for determining unusable edges is O(D log n) w.h.p.
Finally, propagating the part IDs upwards along T described in Lemma 2.2.5 takes O(D + c)
rounds, bringing the total number of rounds to O(D log n+ c).

2.3.4 Verification subroutine

In this section, we describe the Verification subroutine. Given a tree-restricted shortcut
with congestion c and possibly unbounded block parameter, it inspects each part in parallel and
marks the ones that have at most b′ = 3b block components.

The subroutine runs precisely the algorithm described in Lemma 2.2.7 which we restate here.

Lemma (Restated Lemma 2.2.7). Given a T -restricted shortcut with congestion c, a de-
terministic distributed algorithm can identify all parts with at most b′ block components.
Specifically, after the algorithm terminates each node within a part i knows if Pi is com-
posed of more than b′ block components. The algorithm executes in O(b′(D + c)) rounds.

The Lemma provides a direct method to implement the formal requirements of the Verification
subroutine which we restate here for clarity.

Lemma (Restated Lemma 2.3.2). Given a tree T with depth D and a tentative T -restricted
shortcutH′ with congestion c, the deterministic subroutine Verification finds all parts
P ′ ⊆ P whose designated shortcuts have at most b′ block components. The subroutine takes
O(b′(D + c)) CONGEST rounds to execute. Upon completion, each node knows whether its
part is in the set P ′ or not.

30

Chapter 3

Shortcuts for Treewidth-Bounded and
Genus-Bounded Graphs

The results of this chapter were published in [66] with Bernhard Haeupler and Taisuke Izumi
as co-authors. The work was supported in part by KAKENHI No. 15H00852 and 16H02878
as well as NSF grants CCF-1527110 “Distributed Algorithms for Near Planar Networks” and
NSF-BSF grant “Coding for Distributed Computing”.

3.1 Introduction

We show that many distributed network optimization problems can be solved much more ef-
ficiently in structured and topologically simple networks. We show this by utilizing the tree-
restricted shortcut framework. We show that good-quality tree-restricted shortcuts exist in path-
width-bounded graphs, treewidth-bounded graphs, well-separated graphs and genus-bounded
graphs. This existence result, together with the uniform tree-restricted shortcut construction
(Theorem 2.1.3) yields a constructive results. We also exhibit lower bounds that show one can-
not do better using any shortcut-related method (and using the methods presented in Chapter 6
one can show that no distributed algorithm can do better).

It was known that there exist low-congestion shortcuts on genus g graphs of quality Õ(gD).
However, it was not clear how to construct them, making the result algorithmically unusable [49].
Furthermore, it wasn’t known what other families allow for faster algorithms and how tight is
the bound. This chapter makes progress in exactly this direction. We show that on g-genus,
treewidth-k, pathwidth-k and k-well-separated graphs one can do much better and circumvent
the Ω̃(

√
n) lower bound. In particular, we show that bounded genus graphs admit Õ(

√
gD)

round algorithms, while the others admit Õ(kD) round algorithms for MST, min-cut and other
problems. All of this bounds are tight up to logarithmic factors and they represent the first tight
results for special families of graphs.

31

3.2 Technical Results

The contribution of this chapter is to show the existence of good-quality tree-restricted shortcuts
for multiple classes of graphs: bounded pathwidth, bounded treewidth, bounded genus and well-
separated graphs. These results, using Theorem 2.1.3, imply the first distributed MST algorithm
that circumvents the Ω̃(

√
n) lower bound for those graphs.

Furthermore, we show that by using the low-congestion shortcut framework, one cannot hope to
do much better. Specifically, we prove a lower bound on the quality (i.e., on d + c) for any low-
congestion shortcut with dilation d and congestion c on pathwidth bounded and genus bounded
graphs. These lower bounds almost match (within logarithmic factors) the proved upper bounds.
Those two lower bounds show that one typically does not lose any power by restricting oneself
from low-congestion shortcuts to tree-restricted shortcuts.As will be noted later, the k-pathwidth
bounded graphs are also k-treewidth bounded graphs and k-well-separated graphs, so the lower
bound for pathwidth bounded graphs applies to all of those classes. The results and lower bound
are summarized in Table 3.1. Note that O(bD + c) is the analogue of O(d + c) for the tree-
restricted case.

Graph Family Tree-restricted Shortcut T-Quality Lower Bound
Block Congestion O(bD + c) Ω(d+ c)

Pathwidth k O(k) O(k) O(kD) Ω(kD)
Treewidth k O(k) O(k log n) O(kD + k log n) Ω(kD)

k-Well-Separated Graphs O(k log n) O(k log n) O(kD log n) Ω(kD)

Genus g Graphs O(
√
g) O(

√
gD logD) O(

√
gD logD) Ω(

√
gD

log g
)

Planar Graphs [49] O(logD) O(D logD) O(D logD) Ω(D logD
log logD

)

Table 3.1: Upper and lower bounds for tree-restricted shortcuts in this chapter

We note here one important technical difficulty that applies to distributed algorithms on genus
bounded graphs. While we prove that optimal Õ(

√
gD) congestion and Õ(

√
g) block parameter

shortcuts do exist, their construction via Theorem 2.2.8 proven in Chapter 2 takes Õ(gD) rounds.
To mitigate this, we invoke the improved construction via Theorem 2.2.8 to produce the shortcuts
in Õ(bD + c) rounds, giving a Õ(

√
gD) construction for optimal genus bounded shortcuts.

The rest of the chapter is organized as follows: we first show that good-quality tree-restricted
shortcuts exist for pathwidth bounded graphs in Section 3.3, followed by the existence of good-
quality tree-restricted shortcuts for treewidth bounded graphs in Section 3.4. Tree-restricted
shortcuts for well-separated graphs are deferred to Section 3.7. We then prove the lower bound
for these three mentioned classes by exhibiting a lower bound for pathwidth bounded graphs
in Section 3.5. After that, we turn our attention to tree-restricted shortcuts for bounded genus
graphs in Section 3.6 and, finally, exhibit a tight lower bound for them in Section 3.6.3.

32

3.3 Pathwidth Bounded Graphs

In this section we show that k-pathwidth graphs admit tree-restricted shortcuts with congestion
O(k) and block parameter O(k). As noted before, this enables us to leverage the Construction
Theorem 2.2.8 to design efficient algorithms for pathwidth bounded graphs.

Given a graph G = (V,EG), a path decomposition of G is a sequence of subsets PD =
(X1, X2, ..., Xr), Xi ⊆ V with the following properties: i)

⋃r
i=1 = V ; ii) For all {v, w} ∈ EG

there exists i such that a ∈ Xi, b ∈ Xi; iii) For all v ∈ V there exists 1 ≤ sv ≤ tv ≤ r such that
v ∈ Xi ⇐⇒ i ∈ [sv, tv]. We call the subsets Xi bags. The width of the path decomposition
PD is k := maxi |Xi| − 1. The minimal possible width of a path decomposition of G is called
the pathwidth of G.

For v ∈ V let I(v) be the set of indices of bags that contain v. Note that property iii) implies that
I(v) is an interval of integers. Similarly, for a set P ⊆ V we define I(P) as

⋃
v∈P I(v). Note

that for a connected vertex set P (such as any part), I(P) is also an interval of integers.

Lemma 3.3.1. Let PD be a k-width path decomposition of a graph G = (V,EG). For any
rooted spanning tree T = (V,ET) ⊆ G, there exists a T -restricted shortcut with congestion
O(k) and block parameter O(k).

Proof. Deferred to Section 3.8

3.4 Treewidth Bounded Graphs

In this section we show that k-treewidth graphs with n nodes admit tree-restricted shortcuts with
congestion O(k log n) and block parameter O(k).

Given a graph G = (V,EG), a tree decomposition of G is a tree TD = (X , ET). The nodes of
TD, X = (X1, ..., X|X |) are called bags. Each bag corresponds to a subset of V , the nodes of the
original graphG. For the sake of presentation, we will identify the bagXi and this corresponding
subset of nodes. The tree decomposition has to satisfy these properties: i) the union of all sets
Xi equals V , i.e., X is a partition of V ; ii) for each v ∈ V the bags containing vertex v form a
connected subtree of TD; iii) for every edge {a, b} ∈ EG there is a bag Xi that contains both a
and b. The width of the tree decomposition TD is k := maxi |Xi| − 1. The minimal possible
width of a tree decomposition of G is called the treewidth of G.

Lemma 3.4.1. Let TD be a k-width tree decomposition of a graph G = (V,EG) rooted in
an arbitrary bag such that its depth is DTD. For any rooted spanning tree T = (V,ET) ⊆ G
there exists a T -restricted shortcut with congestion O(kDTD) and block parameter O(k).

Proof. Deferred to Section 3.8

33

Corollary 3.4.2. Given a n-node graph G with treewidth k and a spanning tree T ⊆ G,
there exist a T -restricted shortcut with congestion O(k log n) and block parameter O(k).

Proof. By Bodlaender and Hagerup [17], for a graph with treewidth k there exists a O(k)-width
tree decomposition with depth O(log n). Applying Lemma 3.4.1 finishes the argument.

3.5 Lower Bound for Pathwidth Bounded Graphs

In this section we prove a lower bound for general low-congestion shortcuts for pathwidth
bounded graphs. In particular, we prove that there exists a family of pathwidth bounded graphs
GP (Γ, w, δ) for which any low-congestion shortcut either must have large congestion or large
dilation. More precisely, we exhibit a k-pathwidth graph family such that for any shortcut with
dilation d and congestion c it must hold that d + c = Ω(kD). Note that this result also implies
a lower bound for treewidth bounded and well-separated graphs as k-pathwidth graphs are both
k-treewidth and k-well-separated.

We now describe the graph family GP (Γ, w, δ) in detail, depicted in Figure 3.1. All parameters
of the graph Γ, w, δ are positive integers. Furthermore, Γ ≥ 2, w ≥ 2, δ ≥ 2 and w is a power of
2.

The construction consists of two main parts: Γ different lanes and a tree T . The lanes are de-
noted by {L1, L2, ..., LΓ}. Each lane Ll is constructed in two steps: first we take a path consisting
of w named nodes vl0, vl1, ..., vlw−1 connected by single edges, and then we subdivide each edge
by adding 2δ − 1 unnamed nodes in its interior.

The tree T is a perfect binary tree with w leaves (note again that w is a power of 2). T has
p = 1 + log2w different levels (depths) where the root is on level p − 1 and the leaves are on
level 0. The tree nodes on level l are denoted by ul0, u

l
1, ..., u

l
2l−1

. Finally, the tree and the lanes
are connected: each named node on the lane vli is connected by a cross edge to the leaf u0

i in the
tree.
Observation 3.5.1. The graph GP (Γ, w, δ) has Θ(Γwδ) nodes. Its diameter is Θ(logw+ δ) and
pathwidth is O(w).

Proof. The only non-trivial part is the pathwidth. We construct a O(w)-width path decomposi-
tion of GP . First, construct a O(1)-width path decomposition of each lane Ll in isolation. Next,
to each bag in a decomposition of the lane Ll we add all w named nodes of that lane. Next, con-
catenate the path decompositions together and obtain a O(w) path decomposition of the union of
all lanes. Next, add all the nodes of the tree T to each bag in every lane (there are O(w) nodes
that are added). Finally, we have a valid O(w)-width path decomposition of GP .

Lemma 3.5.2. There exists a node partition on GP (Γ, w, δ) such that the (general) shortcut
for this partition either has dilation Ω(wδ) or congestion Ω(Γ

logw
).

Proof. Deferred to Section 3.8

34

u0
0 u0

1 u0
2 u0

3 u0
w−1u0

w−2

u1
0 u1

1 u1
w/2−1

up−2
0

up−1
0

v0
0 v0

1 v0
2 v0

w−1

vΓ−1
w−1vΓ−1

2vΓ−1
1vΓ−1

0

L0

LΓ−2

LΓ−1

2δ 2δ

Figure 3.1: Graph GP (Γ, w, δ)

Corollary 3.5.3. Given k ≥ 2, D = Ω(log k) and a sufficiently large n, there exists a
graph with O(n) nodes that has i) pathwidth O(k), ii) diameter Θ(D), iii) there exists a
node partition P such that any (general) shortcut for that partition must have either dilation
Ω(kD) or congestion Ω(n

Dk log k
).

Proof. This corollary follows directly from Lemma 3.5.2 by taking the graph GP (Γ, w, δ) with
Γ = n

kD
, δ = D and w = Θ(k) (note that we can always find a power of 2 within a constant

factor of any k).

3.6 Genus-Bounded Graph

The main idea of our construction is a reduction from the planar-graph case: We first construct
another planar graph J related to the original genus-g graph G, and compute a good shortcut for
J . Then, we map each shortcut subgraph in J to a subgraph in G as a shortcut in G. We first
introduce the general framework of this “mapping” strategy.

3.6.1 Graph Extension

Definition 3.6.1. A graph J is an extension of a graph G if G is obtained from J by deleting
edges or contracting vertex pairs (contracting pair may not be adjacent, and multiedges
caused by a contraction is merged into a single edge).

Throughout this section we use notation V (G) and E(G) to indicate the sets of vertices and
edges in G respectively. Node contraction maps several nodes in J to a node in G. The mapping

35

is denoted by f : V (J) → V (G). Let E be the set of deleted edges. By the definition of
contraction, for any two nodes v, u ∈ V (J) such that f(v) 6= f(u), if (v, u) ∈ E(J) \ E
holds, (f(v), f(u)) ∈ E(G) also holds. That is, there exists a mapping from E(J) \ E to E(G).
We commonly use function f to indicate this edge mapping. We define, we define f−1(v) =
{v′ ∈ V (J)|f(v′) = v} for any v ∈ V (G), and define f−1(e) for edge e ∈ E(G) similarly.
The cardinality of f−1(e) for edge e ∈ E(G) is called the multiplicity of e. The maximum
multiplicity of all edges in G are denoted by µ. The mappings f and f−1 are also extended for
the set of vertices or edges. For example, for U ∈ V (G), we define f−1(U) = ∪u∈Uf−1(u). All
other cases are defined similarly. Let λ = |V (J)| − |V (G)| for short.

A hurdle of converting a shortcut in J to G is that given a connected component U in G,
G[f−1(U)] is not necessarily connected (i.e., each part in G is fragmented into several subparts
in J). The following lemma states the bound on the number of fragments.

Lemma 3.6.2. LetG be a graph and J be its extension. Given a node subset U ⊂ V (G) such
that the subgraph of G induced by U is connected, the subgraph of J induced by f−1(U)
consists of at most |f−1(U)| − |U |+ 1 connected components.

Proof. Deferred to Section 3.8

Lemma 3.6.3. Let G be a graph, J be its extension, T be a spanning tree of G, T−1 be a
spanning tree of J , and ν = |E(T−1) \ f−1(T)|. If J has a T−1-restricted shortcut with
congestion c and block parameter b, then G has a T -restricted shortcut with congestion
µc+ α and block parameter (λb+ νc)/α + 1 for any α ≥ 1.

Proof. Deferred to Section 3.8

3.6.2 Optimal Shortcut for Genus-g Graphs

The core of the proof for genus-g graphs is the following lemma.

Lemma 3.6.4. LetG be any graph of genus g and diameterD. Then there exists an extension
J ofG satisfying the following conditions: i) J is planar, ii) There exists a spanning tree T−1

with depth at most 2D + 1, and iii) µ = 2, λ ≤ 12gD, and ν ≤ 12g for T−1.

To prove this lemma, we prepare several notions related to graph embeddings on surfaces: Let
G be a graph of genus g. In the following argument we assume that G is 2-cell embedded in an
orientable surface of genus g, which is denoted by Σg

1. A loop on a surface Σ is a continuous
function f : [0, 1]→ Σ satisfying f(0) = f(1). For any spanning tree T of G and an edge e not
contained in T , graph G + e contains exactly one simple cycle. We denote it by loop(T, e). We
also use the notation loop(T, e) as the loop on surface Σ if G is embedded in Σ. A key tool of
our proof is the following theorem.

12-cell embedding is the embedding where every face on Σ is topologically isomorphic to an open disk.

36

Theorem 3.6.5 (Eppstein [39]). LetG be a graph of genus g and consider its arbitrary 2-cell
embedding on Σg. Given any node vx ∈ V , let T be the shortest path tree of G rooted by vx.
Then there exists a set B of 2g edges = {e′1, e′2, . . . , e′2g} such that a set of loops loop(T, e′1),
loop(T, e′2), . . . , loop(T, e′2g) generates the fundamental group of the surface Σg whose base
point is vx.

Let G′ be the subgraph of G induced by the set of edges ∪2g
i=1E(loop(T, e′i)), and T ′ be a subtree

of T obtained from G′ by removing all edges in B. Then the following lemma holds:

Lemma 3.6.6. Given any 2-cell embedding of G into Σg, we remove all edges and vertices
in G − G′. After the removal, we obtain a embedding of G′ into Σg. This embedding is still
a 2-cell embedding and the number of faces is one.

Proof. Deferred to Section 3.8

This lemma implies that by “cutting” Σg along the (embedded) edges in E(G′), it becomes
topologically equivalent to a disk. In other words, if we embed some graph on Σg without
crossing ∪2g

i=1loop(T, e′i), it becomes a planar embedding. The proof of lemma 3.6.4 is to identify
a graph J which is an extension of G and planarly embeddable on Σg in the sense above.

Proof. Deferred to Section 3.8

It is known that any planar graph has a T -restricted shortcut for congestion O(DT logDT) and
blocking parameter O(logDT) [49, 65], where DT is the depth of T . Combining that fact with
Lemmas 3.6.3 and 3.6.4 with α =

√
gD logD, we obtain the main theorem.

Theorem 3.6.7. Any graph with genus g has a T -restricted shortcut with congestion O(
√
g

D logD) and blocking parameter O(
√
g) for any spanning tree T with diameter D.

3.6.3 Lower Bounds for Genus Bounded Graphs

In this section we prove a lower bound for general low-congestion shortcuts for genus bounded
graphs. More precisely, we exhibit a g-genus graph family GP (Γ, w, δ) such that for any shortcut
with dilation d and congestion c it holds that d+ c = Ω̃(

√
gD).

We now describe the graph family GG(w, δ) in detail. The family is depicted in Figure 3.2. The
construction and reasoning are very similar to the pathwidth lower bound graphs GP .

The parameters of the graph w ≥ 2, δ ≥ 2 are positive integers and w is a power of 2. The
construction consists of two main parts: δ · (w − 1) + 1 different lanes and a tree T . The lanes
are denoted by {L0, L1, L2, ..., Lδ(w−1)}. Each lane Ll is constructed in two steps: first we take
a path consisting of w named nodes vl0, vl1, ..., vlw−1 connected by single edges, and then we
subdivide each edge by adding δ − 1 unnamed nodes in its interior. Next, every we have add w
vertical paths. The i’th vertical path connects ti0, t

i
1, .., t

i
δ(w−1), where tii is the δ · i’th (named or

unnamed) vertex on the i’th lane.

37

u0
0 u0

1 u0
2 u0

3 u0
w−1u0

w−2

u1
0 u1

1 u1
w/2−1

up−2
0

up−1
0

v00

v10

v01 v0w−1
v0w−2

v1w−1

vw−1
w−1

vw−1
0

L0

L1

Lδ−1

Lδ

Lδ(w−1)
Lδ(w−1)−1

Figure 3.2: Graph GG(w, δ)

The tree T is a perfect binary tree with w leaves (note again that w is a power of 2). T has
p = 1 + log2w different levels (depths) where the root is on level p − 1 and the leaves are on
level 0. The tree nodes on level l are denoted by ul0, u

l
1, ..., u

l
2l−1

. Finally, the tree and the lanes
are connected: each named node on the lane vli is connected by a cross edge to the leaf u0

i in the
tree.
Observation 3.6.8. The graph GG(w, δ) has Θ(w2δ2) nodes. Its diameter is Θ(logw + δ) and
genus is O(w2).
Proof. The only non-trivial part is the genus. Note that if we remove the Θ(w2) cross edges we
have a planar graph (union of a grid and a tree). Also, adding an edge increases the genus by at
most 1, hence the genus is O(w2).

Lemma 3.6.9. There exists a node partition on GG(w, δ) such that the (general) shortcut for
this partition either has dilation Ω(wδ) or congestion Ω(wδ

logw
).

Proof Sketch. Deferred to Section 3.8

Corollary 3.6.10. Given g ≥ 2, D = Ω(log g) and a sufficiently large n, there exists a graph
with O(n) nodes that has i) genus O(g), ii) diameter Θ(D), iii) there exists a node partition
P such that any (general) shortcut for that partition must have either dilation Ω(

√
gD) or

congestion Ω(
√
gD

log g
).

Proof. This corollary follows directly from Lemma 3.6.9 by taking the graph GG(w, δ) with
w =

√
g and δ = D (note that we can always find a power of 2 within a constant factor of any√

g).

38

3.7 Chapter Appendix: Graphs with Small Separators

In this section we show that any well-separated graph admits good tree-restricted shortcuts. We
first define the necessary preliminaries and then proceed to prove the result.

Preliminaries: Let EG[S] denote the set of edges in EG with both endpoints in S. Let G[S]
denote the induced subgraph of G, namely (S,EG[S]). Furthermore, for some S ⊆ V , the
notation G− S denotes the subgraph (VG − S, {{a, b}|{a, b} ∈ EG, a 6∈ S, b 6∈ S}).

Let G = (VG, EG) be a (undirected) graph and S ⊆ VG be a subset of its vertices. A well-
balanced k-separator of G is a subset S ⊆ VG such that |S| ≤ k and all components of G− S
contain at most 2

3
|VG| vertices. A graph G is k-well-separated if all of its subgraphs F ⊆ G

contain a well-balanced k-separator.

Main result of this section: Let G = (VG, EG), n := |VG| be a k-well-separated graph and let
T = (VG, ET) be any rooted spanning tree ofG. We show thatG has a T -restricted shortcut with
congestion O(k log n) and block O(k log n).

We set up a recursive algorithm that takes a subgraph F = (VF , EF) as a parameter and finds
shortcut subgraphs for all parts completely contained in VF . We now present the algorithm in
detail.

Recursive algorithm: Given a subgraph F = (VF , EF), we find a well-balanced separator
S ⊆ VF , |S| ≤ k. The graph F − S collapses into several connected components. Let their
vertex sets be {C1, C2, .., Ct}, Ci ⊆ VF where the well-separation property guarantees that |Ci| ≤
2
3
|VF |. For each component Ci, i ∈ [t] we recursively apply the algorithm on the subgraph

(Ci ∪ S,EF [Ci ∪ S] − EF [S]). Finally, each part that intersects S and is completely contained
in F is given EF ∩ ET as its shortcut subgraph, i.e., such parts can use all the tree edges of
T contained in F . The recursion terminates when |VF | ≤ 10k, at which point we give all of
EF ∩ ET to all parts completely contained in F .

Lemma 3.7.1. Let G = (VG, EG), n := |VG| be a k-well-separated graph and let T =
(VG, ET) be any rooted spanning tree of G. Then G admits a T -restricted shortcut with
congestion O(k log n) and block O(k log n).

Proof. Before analyzing the recursive algorithm described above we have to describe some pre-
liminaries. For a subgraph (VF , EF) = F ⊆ G = (VG, EG) we define the boundary ∂F as the
set of nodes v ∈ VF such that there exists an edge (v, a) ∈ EG where a ∈ VG − VF .

First note that the depth of the recursion d is at most O(log n) as we always find a well-balanced
separator, thereby exponentially decreasing |VF | in each subsequent child recursive call. Also,
note that in any recursive call with F as its argument it holds that |∂F | ≤ k · d = O(k log n).
To prove this, denote the separating sets of the parent recursive call by S1, S2, ..., Sd−1 and let
S =

⋃d−1
i=1 Si. Then ∂F ⊆ S since any v ∈ VF not contained in S has the same set of direct

neighbors in F as in G, hence cannot be on the boundary of F .

We first bound the congestion. For each non-leaf recursive call we find a separator S and assign
the T -tree edges of F to at most |S| ≤ k parts, as each part that is assigned a shortcut sub-

39

graph must intersect S. Similarly, in a leaf recursive call, tree edges are assigned to O(k) parts.
Also, note that if e = {a, b} ∈ EF , then e will appear either in i) no child recursive calls (if
a ∈ S, b ∈ S) or ii) exactly one child recursive call (otherwise). Therefore, if we consider an
edge e ∈ ET , the number of recursive calls (with argument F) in which e ∈ EF is bounded by
the depth of the recursion, namely O(log n). In each of those recursive calls e can be assigned to
at most O(k) different shortcut subgraphs, hence the congestion is O(k log n).

We now bound the number of block components for a fixed part i. Similarly to the proof of
Lemma 3.4.1 we will count the maximum number of block components by counting the maxi-
mum number of possible distinct roots of those block components. All block component roots
can be constructed in the following manner: start with a node in the part v ∈ Pi and travel along
its T -parent edges while the edge exists and is in the shortcut subgraph Hi. The process clearly
ends in the root of the block component rbc. It is sufficient to prove that either i) rbc is the root of
T or ii) rbc ∈ ∂F , hence there can be O(k log n) different possibilities for rbc and, consequently,
O(k log n) block components.

By construction, i will be assigned a shortcut subgraph in exactly one recursive call. Let F be
the argument subgraph given to that specific call. Take any v ∈ Pi and travel upwards along
T , as described above. Denote the block component root we end up in by rbc. Assume, for the
sake of contradiction, that rbc is not the root of T and is not in ∂F . Then all of its original direct
neighbors in G are still neighbors in F . Specifically, its T -parent is still incident to it, hence the
process will not stop at such a node. This proves the claim.

Corollary 3.7.2. A graph with n nodes, diameter D and treewidth k admits a tree-restricted
shortcut with congestion O(k log n) and block O(k log n).

Proof. We set T to be the BFS tree of G and apply Lemma 3.7.1.

Note that the result for treewidth bounded (Corollary 3.4.2) and well-separated graphs are equiv-
alent up to logarithmic factors (Lemma 3.7.1). A graph with treewidth k is also k-well-separated
and a graph that is k-well-separated has treewidth O(k log n) [60].

3.8 Chapter Appendix: Deferred Proofs

Lemma (Restated Lemma 2.2.3).
Lemma (Restated Lemma 3.3.1). Let PD be a k-width path decomposition of a graph G =
(V,EG). For any rooted spanning tree T = (V,ET) ⊆ G, there exists a T -restricted shortcut
with congestion O(k) and block parameter O(k).

Proof. Denote the parts as P = (P1, P2, ..., PN) and fix a part Pi. Call a node v ∈ V admissible
if I(v) ⊆ I(Pi), i.e., if the interval of the node if a subset of the partwise interval. Let Ai be the
set of all admissible nodes.

40

The shortcut subgraphs Hi can be constructed in the following way: Hi contains all tree edges
{a, b} ∈ ET where a is closer to the root if b ∈ Ai.
We first prove that congestion of this tree-restricted shortcut is O(k). Fix an edge e = {a, b} ∈
ET as before and denote by Lb the lowest-numbered bag containing b. If a shortcut subgraph
Hi 3 e then by construction there exist a node v ∈ Pi that is contained in Lb. Hence the number
of shortcut subgraphs that contain e is at most |Lb| = O(k).

To bound the block parameter, fix a part Pi. Call a node v ∈ V absorbing if it is contained in
either the lowest-numbered or highest-numbered bag of I(Pi). Denote all absorbing nodes by
Bi and note that |Bi| ≤ 2k + 2 = O(k). To upper bound the number of block components of
part i, we will count the number of nodes that can be the root of a block component (each block
component can be bijectively represented by its root). Since every block component of part i
must intersect Pi, we can generate the set of roots in the following manner: start with a node
v ∈ Pi and travel along its T -parent edges while the edge exists and is in Hi. The process clearly
ends in the root of the block component rbc. It is sufficient to prove that either rbc is the root of T
or rbc ∈ Bi, hence there can be O(k) different possibilities for rbc and, consequently, O(k) block
components.

We start the process in some v ∈ Pi. By construction, v ∈ Ai =⇒ v ∈ Ai ∪ Bi. In each step
it holds that either: i) v is the root of T , in which case we are done; ii) v ∈ Bi, in which case
rbc = v and we are done. Note that its parent is not in Hi; iii) v ∈ Ai, in which case we move to
its T -parent v′. Note that, by construction, v′ ∈ Ai ∪ Bi. Hence by induction we can prove that
we always end in the root of T or Bi, which proves the claim.

Lemma (Restated Lemma 3.4.1). Let TD be a k-width tree decomposition of a graph G =
(V,EG) rooted in an arbitrary bag such that its depth is DTD. For any rooted spanning tree
T = (V,ET) ⊆ G there exists a T -restricted shortcut with congestion O(kDTD) and block
parameter O(k).

Proof. Denote the parts as P = (P1, P2, ..., PN). Fix Pi and let Bi be the set of all TD bags
that intersects Pi or whose ancestors (in the TD tree) intersects Pi and let Bi be the union of
nodes contained in any bag of Bi. The set of bags Bi corresponds to a (connected) subtree on the
(rooted) tree decomposition, hence its lower common ancestor bag Li is well-defined.

We now define Ai, the set of admissible nodes for part Pi. Ai contains all nodes that are in bags
Bi, but are not contained in the bag Li.

We are ready to define the set of edges contained in the shortcut subgraph Hi. Specifically, Hi

contains all T -tree edges {a, b} ∈ ET where a is closer to the root if b ∈ Ai.
We first prove that the congestion of this construction is O(kDTD). Let {a, b} ∈ ET be an edge
contained in Hi where a is closer to the root of T . Then, by construction, b ∈ Ai, which implies
b ∈ Bi and b 6∈ Li.
But there exists onlyO(DTD) possible bags for Li: Li has to not contain b and one of its ancestors
has to contain b - but onlyO(DTD) bags satisfy this condition. Namely, if we distinguish the bags
that contain b, those bags correspond to a connected subtree in TD. Li must be a ancestor of the
lowest common ancestor of this distinguished subtree. Furthermore, only k + 1 different parts

41

can have some fixed bag X as its lowest common ancestor bag Li. This follows because each
such part Pi must intersect X , and there are at most k+ 1 nodes in X . Hence {a, b} is contained
in at most O(kDTD) parts, as required.

We now prove that for each fixed part Pi, the number of block components is O(k). Each block
component can be represented by its root. Since every block component of part i must intersect
Pi, we can generate the set of roots in the following manner: start with a node v ∈ Pi and travel
along its T -parent edges while the edge exists and is inHi. The process clearly ends in the root of
the block component rbc. It is sufficient to prove that either rbc is the root of T or rbc ∈ Li, hence
there can be O(k) different possibilities for rbc and, consequently, O(k) block components.

We start the process in v ∈ Pi. By construction, v ∈ Bi. In each step it holds that either:

i) v is the root of T , in which case we are done.

ii) v ∈ Li, in which case rbc = v and we are done. Note that its parent is not in Hi.

iii) v ∈ Ai, in which case we move to its T -parent v′. Note that, by construction, v′ ∈ Bi.

Hence by induction we can prove that we always end in the root of T or Li, which proves the
claim.

Lemma (Restated Lemma 3.5.2). There exists a node partition on GP (Γ, w, δ) such that the
(general) shortcut for this partition either has dilation Ω(wδ) or congestion Ω(Γ

logw
).

Proof. We let each lane Ll be its own part Pl, l ∈ [Γ], as depicted by a red box in Figure 3.1.
There are Γ parts in total.

In order to prove that a shortcut subgraph for a part either has large dilation or has to congested
edges of T , we define potential on all of the edges in GP (Γ, w, δ) in the following way:

• every cross edge is assigned a potential of 0

• every edge between two nodes on a lane is assigned a potential of 1

• every tree edge between uli and ul+1
j is assigned a potential of δ2l

Define the potential of a path as the sum of potentials of the edges on that path. Observe that
the potential of any path between any leftmost node of a lane vl0 and rightmost node of the same
lane vlw−1 is at least (w − 1)2δ = Ω(wδ). Also, note that the sum of potentials of all edges in T
is O(δw logw).

For the sake of contradiction assume that there exists a shortcut H with dilation d = o(wδ)
and congestion c. Then for each part (i.e., lane) Pl there exists a path in GP [Pl] + Hl of length
O(d) between the leftmost and rightmost node in its lane. The potential of that path is at least
Ω(wδ), but at at most O(d) of this potential can come from edges from a lane. Hence, at least
Ω(wδ − d) = Ω(wδ) of the potential has to come from edges on the tree T . In other words, if
we define Tl as the subset of tree edges of T that shortcut subgraph Hl uses and define φ(Tl) as
the sum of their potentials, then φ(Tl) = Ω(wδ). Consequently,

∑Γ−1
i=0 φ(Tl) = Ω(Γwδ).

42

But on the other hand, each (tree) edge in T can only be contained in c different shortcut sub-
graphs, so

∑Γ−1
i=0 φ(Tl) = O(cδw logw) since the sum of potentials of all tree edges in T is

O(δw logw). If follows that c = Ω(Γ
logw

), as required.

Lemma (Restated Lemma 3.6.2). Let G be a graph and J be its extension. Given a node subset
U ⊂ V (G) such that the subgraph of G induced by U is connected, the subgraph of J induced
by f−1(U) consists of at most |f−1(U)| − |U |+ 1 connected components.

Proof. Let JU = J [f−1(U)] for short. Let TU be any spanning tree of G[U]. By the defi-
nition of f−1, f−1(e1) and f−1(e2) are disjoint for any e1, e2 ∈ V (G[U]) if e1 6= e2. Thus
f−1(E(TU)) is a set of edges in JU with a size at least |E(TU)| = |U | − 1. In addition, the edge
set f−1(E(TU)) is cycle-free (because if it contains a cycle C, TU must contain a cycle f(C),
which is a contradiction). Thus JU contains a forest (V (JU), f−1(E(TU)) with |U | − 1 edges.
Since |V (JU)| =

∑
u∈U |f−1(u)| holds, the number of connected components in that forest is∑

u∈U |f−1(u)| − |U | + 1 = |f−1(U)| − |U | + 1. This gives an upper bound on the number of
connected components in JU .

Lemma (Restated Lemma 3.6.3). Let G be a graph, J be its extension, T be a spanning tree of
G, T−1 be a spanning tree of J , and ν = |E(T−1) \ f−1(T)|. If J has a T−1-restricted shortcut
with congestion c and block parameter b, then G has a T -restricted shortcut with congestion
µc+ α and block parameter (λb+ νc)/α + 1 for any α ≥ 1.

Proof. Let P = {P1, P2, . . . , Pn} be the node partition of V (G) for which we want to compute
a shortcut. Now we define the node partition of V (J) from P as follows: Letting Qi = f−1(Pi)
for any i ∈ [1, N], we denote by Qi = {Qi,1, Qi,2, . . . Qi,γ(i)} the family of the vertex sets of the
connected components in J [Qi], where γ(i) is the number of connected components in J [Qi].
First, we construct a T−1-restricted shortcut for J and partition∪0≤i≤NQi. Let I ′i,k be the shortcut
subgraph augmented withQi,k, and Ii,k = I ′i,k−E(T−1)\f−1(T). The number of edges removed
from I ′i,k is denoted by νi,k. Since I ′i,k consists of at most b subtrees of T−1, after removing νi,k
edges, Ii,k consists of b + νi,k subtrees of T−1 because one edge removal separates one tree
into two (sub)trees. Let bi = γ(i)b +

∑
k∈[1,γ(i)] νi,k. The shortcut edges Hi for part Pi in G is

constructed as follows: i) SetHi = G[f(Ii)] if bi ≤ (λb+νc)/α+1 ii) Otherwise,Hi = T . Since
node contraction never increases the number of blocks, bi is the upper bound on the number of
block components for part Pi. Thus the construction above trivially achieves the block parameter
(λb+νc)/α+1. The remaining issue is that the maximum congestion is bounded by µc+α. Since
at most µ edges in T−1 are mapped into the same edge in T , the maximum congestion incurred
by the first-case construction is bounded by µc. Then it suffices to show that at most α parts
apply the second case. Suppose for contradiction that more than α parts have block parameters
larger than (λb + νc)/α + 1. Without loss of generality, we assume P1, P2, . . . Pα+1 are those
parts. Then we have

∑
i∈[1,α+1] bi ≥ (α+ 1)((λb+ νc)/α+ 1) > (λb+ νc) +α+ 1. In addition,

for any Pi such that i > α + 1, we also have bi ≥ 1. Consequently.
∑

i∈[1,N] bi > λb + νc + N .
On the other hand, since an edge in E(T−1) \ f−1(T) is used at most c times as a shortcut edge,∑

i∈[1,N] νi is at most νc. Furthermore, by Lemma 3.6.2,
∑

i∈[1,N] γ(i) ≤ λ + N also holds, and
thus we obtain

∑
i∈[1,N] bi ≤ λb+ νc+N . It is a contradiction, and the lemma holds.

43

Lemma (Restated Lemma 3.6.6). Given any 2-cell embedding ofG into Σg, we remove all edges
and vertices in G−G′. After the removal, we obtain a embedding of G′ into Σg. This embedding
is still a 2-cell embedding and the number of faces is one.

Proof. It is obvious that the embedding of G′ stated by the lemma is 2-cell embedding: If it
has a face not topologically isomorphic to a disk, by cutting and capping all the boundaries in
that face by disks, we can obtain an embedding of G′ on a surface with genus g − 1 or less,
which contradicts the fact that G′ is the union of the generators of Σg. The number of faces is
obtained by applying Euler’s formula. Since E(G′) consists of a subtree T ′ of T spanning G′

and 2g edges not in T but whose endpoints are both in T ′. Thus the total number of the edges
is |V (G′)| − 1 + 2g. Since G′ is 2-cell embedded in Σg, by applying Euler’s formula, we can
conclude that the number of faces for that embedding is one.

Lemma (Restated Lemma 3.6.4). Let G be any graph of genus g and diameter D. Then there
exists an extension J of G satisfying the following conditions: i) J is planar, ii) There exists a
spanning tree T−1 with depth at most 2D + 1, and iii) µ = 2, λ ≤ 12gD, and ν ≤ 12g for T−1.

Proof. We prove the lemma in a constructive way. Let G = G − G′ for short. Now we have
a 2-cell embedding of G (and thus an embedding of G′) into a genus-g orientable surface. It
uniquely determines a clockwise cyclic ordering of the set of edges incident to each vertex. Let
e1
i , e

2
i , . . . , v

δ(i)
i be that ordering around vi (where δ(i) is the degree of vi in G), and without

loss of generality we assume that e1
i be the upward edge in T . In addition, we also denote by

et1i , e
t2
i , e

t3
i , . . . , e

t∆(i)

i be the ordering of the edges in G′ around vi, where ∆(i) is the degree of vi
in G′. Let ei[j] = {ehi |tj < h < tj+1} if j < ∆(i) and ei[j] = {ehi |tj < h ≤ δ(i)} otherwise.

The construction of J and its embedding on Σg follow the steps below:

1. For each vi ∈ V (G′), we define Si as a mutually disjoint region topologically isomorphic
to a disk on Σg containing vi (i.e, each Si contains only one vertex vi). We also define Si,j
as a connected region containing Si, Sj and edge (vi, vj) properly (i.e., any single point
does not separate the region), but excluding all other vertices and edges not intersecting Si
or Sj (see Figure 3.3(1)). Note that those regions are always definable by taking a small
regions whose boundary arbitrarily close to the edge (vi, vj). Let S = ∪(vi,vj)∈V (G′)Si,j for
short.

2. Since exactly one node lies in Si, the set of edges in G′ (more precisely, their drawing as
a curve on Σg) separates Si into ∆(i) subregions. Let Shi be the subregion separated by
the edges ethi and eth+1

i . We add new ∆(i) nodes to G, each of which is placed in each
subregion. The node placed in Shi is denoted by vhi . For each h ∈ [1,∆(i)], we replace the
endpoint vi of all edges in ei[h] by vhi .This replacement can be done without crossing any
edges (as depicted in Figure 3.3(2)).

3. For any edge (vi, vj) ∈ E(G′), we add two corresponding edges (vr−i , vsj) and (vri , v
s−
j),

where r and s are the values such that tr and ts corresponds to the orders of edge (vi, vj)
around vi and vj and r− and s− mean the predecessors of r and s in the cyclic ordering
(see Figure 3.3(3)). We can draw these edges within Si,j so that they do not cross any edge,
and the number of edges augmented to each node is exactly two.

44

Figure 3.3: Steps 2 and 3 in the construction of J

Figure 3.4: Cycle C (The right figure is a drawing on σ1 of the left side).

4. We remove all the vertices and edges in G′. From Lemma 3.6.6, this operation makes the
graph becomes planar, which is drawn on the single disk defined by the embedding of G′.
In addition, since any edge in G′ becomes the boundary of the disk, it can be drawn on the
plane so that all the nodes and edges strictly contained in S belong to the outer boundary
(see Figure 3.4). It also implies that all the nodes in S (i.e., newly-added nodes) forms
a cycle (denoted by C) because in the subgraph induced by those vertices any node has
degree two. The final step of the construction is to shorten the diameter by augmenting
edges. Letting u1, u2, · · ·ul be the ordering of vertices in C (u1 is chosen arbitrarily), we
augment edge (u1, uiD) for all i ∈ [1, bl/Dc]. The set of edges augmented in this step is
denoted by E ′′. It is obvious that we can preserve the planarity for this augmentation (see
Figure 3.5). The resultant graph is J we construct.

It is obvious from the construction that (1) J is planar and (2) J is an extension of G: The
construction above provides a planar embedding of J , and by removing all edges in E ′′ and
contracting v1

i , v
2
i , . . . v

∆(i)
i into one node vi for all vi ∈ V (T ′) we can recover the original graph

G. Then an edge (vi, vj) in G′ with order r and s around vi and vj has the correspondence from
two edges (vr−i , vsj) and (vri , v

s−
j), and all other edges have one-to-one correspondence. Thus we

45

�
�
�
�
�

����������

Figure 3.5: Edge augmentation in Step 4

obtain µ = 2. The construction above separates one node in G′ into ∆(j) nodes. That is, the
total number of nodes in J is |V (G)| +

∑
vi∈V (T ′) ∆(j) − 1. It follows that λ ≤ 2(|E(G′)|)

holds. Since T ′ has a depth at most D and has at most 4g leaves (because any leaf node must
be an endpoint of edges in B), the total number of edges in G′ is at most 4gD + 2g. That is,
λ ≤ 12gD.The spanning tree T−1 is constructed as follows: we first take the shortest path tree of
C +E ′′, and add all the edges f−1(T). Since f−1(T) becomes a forest spanning all the nodes in
V (J)\V (C) where each subtree is rooted by a node inC and has a depth at mostD, the subgraph
T−1 above actually spans all the nodes in J . In addition, the shortest path tree of C + E ′′ has a
depth at most D + 1, the depth of T−1 is bounded by 2D + 1. The spanning tree T−1 consists
of the edges in f−1(T) ∪ f−1(B) ∪E ′′, the number of edges in E(T−1) \ f−1(T) is bounded by
|E ′′|+ |f−1(B)| ≤ |C|/D+ |f−1(B)| ≤ 2|E(G′)|/D+ |f−1(B)| ≤ 12g. The lemma is proved.

Lemma (Restated Lemma 3.6.9). There exists a node partition on GG(w, δ) such that the (gen-
eral) shortcut for this partition either has dilation Ω(wδ) or congestion Ω(wδ

logw
).

Proof Sketch. The proof is very similar to the pathwidth bounded lower bound. We similarly
define the potentials of edges such that the lowest potential of any path between the first and
the last node of any lane is Ω(wδ). A dilation d and congestion c low-congestion shortcut with
respect to every lane either has Ω(wδ) dilation or every lane uses up Ω(wδ) potential from the
tree T , for a total of Ω(w2δ) potential. But the total potential of the tree is O(w logw), hence in
this case the congestion must be Ω(wδ

logw
).

46

Chapter 4

Shortcuts for Minor-Free Graphs

The results of this chapter were published in [68] with Bernhard Haeupler and Jason Li as co-
authors. The work was supported in part by NSF grants CCF-1527110, CCF-1618280 and NSF
CAREER award CCF-1750808.

We note that most of the results of this chapter have been very recently improved by (a preprint
published by) Ghaffari and Haeupler [50].

4.1 Introduction

This chapter provides a fast distributed algorithm for such problems in excluded minor graphs in
the CONGEST model.

The next major question in algorithmic design is to determine whether one can bypass this barrier
by restricting the class of network graphs. One immediate question that arises is, what family of
graphs should one consider? Ideally, such a class of graphs should be inclusive enough to admit
most “realistic” networks, yet be restrictive enough to disallow the pathological lower bound
instances.

In our search for a restricted graph family to study, we focus on three criteria. First, we desire a
family with a rich and rigorous mathematical theory, so that our result is technically meaningful.
Second, the family should capture many networks in practice. And finally, we want robustness:
a graph with a few added or perturbed edges and vertices should still remain in the family.
Robustness is an important goal, since we want our graph family to be resistant to noise. For
example, planar graphs satisfy the first two criteria, but fail to be robust since often adding a
single random edge will make the graph non-planar. Indeed, most algorithms on planar graphs
fail completely when run on a planar graph with a few perturbed edges and vertices. Next, one
might try genus-bounded graphs, but they also suffer from similar problems since adding a single
randomly connected vertex can arbitrarily increase the genus.

A candidate graph family that fulfills all three conditions is the family of excluded minor graphs,
namely the graphs which do not have a fixed graph H as a minor. This family encompasses

47

several classes of naturally occuring networks. For example, trees which exclude K3, planar
graphs that capture the structure of two-dimensional maps exclude K5 and K3,3, and, series-
parallel graphs that capture many network backbones excludeK4 [1, 42]. Excluded minor graphs
also have a history of deep results, including the series of Graph Minor papers by Robertson and
Seymour.

In this chapter, we provide efficient distributed algorithms for the class of excluded minor graphs
which break the Ω̃(

√
n+D) lower bound for general graphs, giving evidence that most practical

networks admit efficient distributed algorithms. We show an Õ(D2) algorithm for MST and
(1 + ε) approximate min-cut, among other results. For networks having low diameter, such as
D = poly(log n) or D = no(1), our algorithms are optimal up to poly(log n) or no(1) factors,
respectively. This is a significant improvement over previous MST and min-cut algorithms,
which run in Ω(

√
n) time even on an excluded minor graph with D = poly(log n), such as a

planar graph with an added vertex attached to every other node.

Our results use the framework of low-congestion shortcuts, a powerful combinatorial abstrac-
tion to designing distributed algorithms. As a reminder, it introduces a simple, combinatorial
problem involving shortcuts on a graph, and guarantees that a good-quality solution to this com-
binatorial problem automatically translates to a simple, efficient distributed algorithm for MST
and (1 + ε) approximate min-cut, among other problems; the concepts of shortcuts and quality
will be defined later. Actually, the algorithm is the same regardless of the network or the graph
family; the purpose of the combinatorial shortcuts problem is to prove that the algorithm runs
efficiently on the graph or family.

To solve the shortcuts problem on excluded minor graphs, we appeal to the Graph Structure
Theorem of Robertson and Seymour [129, 130]. At a high level, the Graph Structure Theorem
decomposes every excluded minor graph into a set of almost-planar graphs connected in a tree-
like fashion. Our solution to the shortcuts problem is in fact a series of results, one for each step
in the structure decomposition. We remark that our result is, to the best of our knowledge, the
first in distributed computing to make use of the Graph Structure Theorem to claim a distributed
algorithm is fast. The absence of such a preceding result in distributed computing is unsurprising,
since algorithms working with the Graph Structure Theorem generally require computing the
required decomposition beforehand, and no efficient distributed algorithm to do so is known.
Even the best classical algorithm still takes O(n3) time [88], so even a sublinear distributed
algorithm is still out of reach. However, our result is unique in that we merely show the existence
of a solution to the shortcuts problem in excluded minor graphs, and as a consequence, the
simple algorithm of Chapter 2—which does not look at any structure in the network graph, let
alone compute a decomposition—is proven to run efficiently on excluded minor graphs.

The fact that this algorithm does not actually compute the Graph Structure Theorem should
be stressed further. Since the framework of Chapter 2 computes a shortcut competitive to the
optimal one, a consequence is that the running time of this algorithm rarely depends on the
(large) constants appearing in the Graph Structure Theorem. In other words, while we can only
prove that the constants in the running time are bounded by (some functions of) the constants
in the Graph Structure Theorem, the actual running time of the algorithm is likely to be much
smaller. In fact, for most excluded minor networks, we expect the running time to be Õ(D2) with

48

a small constant, or even Õ(D). In contrast, algorithms that explicitly compute a Graph Structure
Theorem decomposition have an inherent bottleneck in the form of the potentially huge constants
of the Graph Structure Theorem.

This chapter is structured as follows. After the introduction, we begin with introducing the two
main tools necessary for our main result, namely the Graph Structure Theorem and the low-
congestion shortcuts framework. Then, we prove the existence of good shortcuts one step at a
time, following the step-by-step construction in the Graph Structure Theorem.

4.1.1 Outline of the Proof

The goal of this section is to outline the proof of our main result, without delving into the tech-
nical details. Our main technical result is showing the existence of good tree-restricted shortcuts
in excluded minor graphs.

Theorem 4.1.1. [Main Theorem] Every graph in a graph family excluding a fixed minor
H admits tree-restricted shortcuts of T-quality qT (d) = Õ(d2). The constants in the big-O
depend only on the minor H .

Using Theorem 4.1.1, we get out main result.

Corollary 4.1.2. There exists an Õ(D2)-round distributed algorithm for MST and (1 + ε)-
approximate min-cut, for any ε > 0, on graph networks excluding a fixed minor.

For excluded minor graphs of diameter no(1), as is the case for many practical networks, our
algorithms also run in no(1) time, which is optimal up to lower order terms. This is a significant
improvement over the previously known Ω̃(

√
n) time algorithms and it avoids the Ω̃(

√
n) lower

bound for general graphs, even when they have no(1) diameter.

Corollary 4.1.3. There exists an no(1)-round distributed algorithm for MST and (1 + ε)-
approximate min-cut, for any ε > 0, on graph networks with diameter no(1) and excluding a
fixed minor.

In order to work with excluded minor families, we appeal to the Robertson-Seymour Graph
Structure Theorem. At a high level, this theorem states that every graph in an excluded minor
family can be decomposed into a set of graph almost embeddable in a bounded genus surface
that are glued together in a tree-like fashion. Naturally, our approach is to first construct good-
quality shortcuts for the entire family of almost embeddable graphs, and then modify them in
a robust manner as they are patched together in the composition. While this approach works
in general, the patching required is very involved because of various interactions between the
many ingredients involved in the decomposition. For example, one step in the construction of
an almost embeddable graph is the addition of an “apex” vertex that connects arbitrarily to all
previous vertices. While the addition of only one vertex appears harmless at first glance, observe
that the diameter can shrink arbitrarily, e.g., to 2 if the apex is connected to all other vertices. If

49

the graph without the apex has large diameter D, and its shortcuts solution leads to an Õ(D2)-
round algorithm, this same algorithm will not suffice on the graph with the apex, which can have
diameter 2. A lot of technical effort goes into reconstructing shortcuts upon the addition of an
apex, in order to handle the arbitrary decrease in graph diameter. Hence, as a consequence of
all these difficulties, we settle for Õ(d2)-quality shortcuts, and leave the improvement to Õ(d)-
quality shortcuts as an open problem.

4.1.2 Literature note

The Graph Structure Theorem originates from a series of deep results on graph minor theory by
Robertson and Seymour [129, 130]. It provides a structural decomposition to all excluded minor
graphs, transforming a negative property—not containing a minor—to a positive and construc-
tive property that is more useful for algorithm design. The original statement of the theorem
only states that such a structure exists, but in a later breakthrough, Demaine et al. developed a
polynomial-time algorithm to compute the decomposition guaranteed by the theorem[30]. Since
then, the graph structure decomposition has found numerous algorithmic applications on ex-
cluded minor graphs, such as polynomial-time approximation schemes [30, 59], subexponential
algorithms [29], graph coloring [31], and computing separators [1, 59]. Since then, simpler
proofs of the Graph Structure Theorem have been discovered [88], as well as more efficient al-
gorithms, with the fastest known one running in time f(H) · n3 for a function f depending only
on the excluded minor H [88]. However, we believe this is the first time the theorem is used for
an algorithmic result in the distributed setting.

4.1.3 Preliminaries

For a graphG, let V (G) andE(G) denote the vertices and edges, respectively. Given P ⊆ V (G),
G[P] denotes the induced subgraph, namely, the one obtained by removing V (G) \ P from G.
Finally, when G is the underlying network graph, we always assume that G is connected and
contains no self-loops (which can be ignored in the distributed setting anyway).

Graph Structure Theorem

In this section we introduce Robertson and Seymour’s Graph Structure Theorem, following the
survey of Lovász [109]. This theorem is instrumental in our shortcut construction, since it pro-
vides structure for all graphs that are H-free, for any minor H . At a high level, the theorem
says that every H-free graph can be glued together in a tree-like fashion from graphs that can be
“almost” embedded in a fixed surface. To elaborate on this statement, we need a few definitions.
The first definition, k-clique-sum, captures the tree-like structure of the graph.

Definition 4.1.4 (k-clique-sum). LetG1 andG2 be two graphs, and let Si ⊆ Gi be a k-clique
for i = 1, 2. Let G be obtained by identifying S1 with S2 and deleting some (possibly none,

50

G′
3 G′′

3

(a) A planar graph
with an added apex.

(b) A cycle with an added
vortex of depth 2.

(c) 3-clique-sum between
G′

3 and G′′
3 .

Figure 4.1: Ingredients of the Graph Structure Theorem

possibly all) edges between the nodes in S1 = S2. We say that G is a k-clique-sum of G1

and G2. More generally, G is a k-clique-sum of G1, G2, . . . , G` if G is formed by starting
withG1 and iteratively taking the k-clique-sum of the current graph withGi, for i = 2, . . . , `
in that order.

The next few definitions classify the graphs which are almost embeddable on a surface. We start
with the three main ingredients in constructing such a graph, and then define what it means to be
almost-embeddable.

Definition 4.1.5 (Apex). Define adding an apex to graph G as follows: create a new vertex
called the apex, and connect it to an arbitrary subset of the vertices in G.

Definition 4.1.6 (Surface of genus g). A graph G has genus g if there is a 2-cell embedding
in a surface of genus g. In other words, this means: (i) there exists an oriented or unoriented
surface (i.e., 2-manifold) Σ of genus g, (ii) vertices of G are mapped to distinct points of
Σ, (iii) edges are mapped to simple paths whose interiors do not contain any vertices of G
nor do path interiors mutually intersect, and (iv) each face defined by such embedding is
homeomorphic to a unit disk, i.e., contains no holes or handles in it.

Definition 4.1.7 (Vortex [109]). Let G be a graph with a 2-cell embedding. Let C be a cycle
in G that corresponds to a face on the surface. Call a continuous interval on the cycle an
arc. Select a family of arcs on C so that each node is contained in at most k of these arcs.
For each arc A, create a new node vA and connect vA to a subset of the vertices in C that
lie on arc A. Such nodes vA are called internal vortex nodes. Finally, for any two arcs A
and B sharing a common vertex in C, we may add the edge {vA, vB}. We call this operation
adding a vortex of depth k to cycle C.

Definition 4.1.8. A graph G is (q, g, k, `)-almost-embeddable if it can be constructed ac-
cording to the three steps below.

51

(i) Start with a graph G′ embedded on a surface of genus at most g.

(ii) We select at most ` faces of G′ and add a vortex of depth at most k to each of them.
Call the result G′′.

(iii) We add q apices to G′′, connected arbitrarily to vertices in G′′ and to each other, and
obtain the desired graph G.

For simpler notation, we say a graph is h-almost-embeddable if it is (h, h, h, h)-almost
embeddable.

By this definition, the planar graphs are precisely the (0, 0, 0, 0)-almost-embeddable graphs,
and the genus-g graphs are precisely the (0, g, 0, 0)-almost-embeddable graphs. Later on, we
will study the planar graphs with added vortices, in particular the (0, 0, k, `)-almost-embeddable
graphs for constants k and `.

As a final ingredient to the Graph Structure Theorem, we construct a graph family Lk as fol-
lows.

Definition 4.1.9. Let Lk denote all graphs that can be represented as a k-clique-sum of k-
almost-embeddable graphs. That is, a graph G is in Lk if there exist k-almost-embeddable
graphs G1, G2, . . . , G` such that G is a k-clique-sum of G1, G2, . . . , G`.

In other words, take any set of k-almost-embeddable graphs G1, G2, . . . , G` for ` ≥ 1, and let
G be their k-clique-sum. Construct a graph G by repeatedly taking a k-clique-sum operation
between multiple Gi’s constructed using step (i)–(iii) and connect them in a tree-like fashion.
Define Lk as precisely all graphs G that can be constructed in this way.

Finally, we present the Graph Structure Theorem, which states that for any H , there is a k such
that Lm includes (but does not exactly characterize) all graphs that are H-free [109].

Theorem 4.1.10 (Graph Structure Theorem). For every graph H there is a fixed integer
k = k(H) such that any H-free graph G is contained in Lk.

Below, we include additional terminology on clique-sums and vortices used in the shortcut con-
struction.

Definition 4.1.11 (Vortex terminology). LetC be a cycle ofG, and add a vortex of depth k to
C, following Definition 4.1.7. Let v1, v2, . . . be the vertices created when adding a vortex of
depth k to C. The vertices in C form the vortex boundary, and the added vertices v1, v2, . . .
are called inside the vortex and internal vortex nodes. Moreover, suppose an internal vertex
vi corresponds to arc Ai of C in the vortex construction. Define the vortex decomposition to
be the map P satisfying P(vi) = Ai. Finally, if G is embedded on a closed surface such that
C forms a face in the embedding, then that face is called the vortex face.

Definition 4.1.12 (k-Clique-sum decomposition tree). Let the graph G be constructed as
the k-clique-sum of subgraphs B1, B2, . . . , B`. The subgraphs Bi ⊆ G are denoted as bags.

52

A k-clique-sum decomposition tree of G is a tree DT whose vertices V (DT) are identified
with bags Bi. The edges of the decomposition f ∈ E(DT) correspond to a clique in two of
the bags, with possibly some removed edges. Therefore, we refer to them as partial k-cliques
Cf . The decomposition satisfies the following properties:

1.
⋃
i∈DT

V (Bi) = V (G).

2. For all i ∈ V (DT), Bi ⊆ G.

3. For all f = {i, j} ∈ E(DT), Bi ∩Bj = Cf .

4. For all v ∈ V (G), the set {i ∈ V (DT) | v ∈ V (Bi)} is connected in DT.

5. For all e ∈ E(G), there exists i ∈ V (DT) with e ∈ E(Bi).

We conclude with a statement that the above clique-sum decomposition tree captures all possible
ways to take clique-sums of graphs.

Fact 4.1.13. Let a graph G be the k-clique-sum of graphs from a family F . Then, G has a
k-clique-sum decomposition tree whose bags are graphs in F .

4.2 Shortcuts in Excluded Minor Graphs

Our main result extends tree-restricted shortcut results to excluded minor graphs, showing that
any family of graphs excluding a fixed minor has good tree-restricted shortcuts. We repeat The-
orem 4.1.1 with a bit of extra detail.

Theorem 4.2.1. [Main Theorem, Extended Version] The family of graphs excluding a fixed
minor H admits tree-restricted shortcuts of T-quality qT (d) = Õ(d2). More generally, the
family admits block parameter b(d) = O(d) and congestion c(d) = O(d log n+ log2 n). The
constants in the big-O depend only on the minor H .

Using the shortcuts framework, the above theorem translates to the algorithmic result of Corol-
lary 4.1.2.

4.2.1 Two Parts of the Proof

Recall that the Graph Structure Theorem says that any excluded minor graph can be represented
as a k-clique-sum of k-almost-embeddable graphs, for some constant k depending on the ex-
cluded minor. As with most results utilizing the Graph Structure Theorem, our proof is split into
two parts, one handling the k-clique-sums and one for the k-almost-embeddable graphs.

Our proof has two main components, namely, Theorem 4.2.2 and Theorem 4.2.3 that we state
below. It should be clear that they are sufficient to prove the main technical result, Theorem 4.2.1.

53

Clique Sums Part: In the k-clique-sums part, we show that if a family of graphs admits shortcuts
with good T-quality, then so does any k-clique-sum of graphs from this family, for any constant
k. In other words, having good tree-restricted shortcuts is a property robust under taking k-
clique-sums for a fixed integer k. The theorem below is proved in Section 4.3.

Theorem 4.2.2. [Shortcuts in Clique Sums] Let F be a family of graphs that admits tree-
restricted shortcuts with block parameter bF and congestion cF . Let G be a k-clique-sum
of graphs in F . Then G admits tree-restricted shortcuts with block parameter bG(d) ≤
2k +O(bF(dT)) and congestion cG(d) ≤ O(k log2 n) + cF(dT).

On a high level, the proof relies on carefully charging the congestion to bags in the k-clique-sum
decomposition. This leads to a bound that relies on the depth of the decomposition, which can
be controlled by folding up long bag-paths in the decomposition.

To prove the full result, we use Theorem 4.2.2 with F as the family of k-almost-embeddable
graphs, which we show admits tree-restricted shortcuts with block parameter and congestion
Õ(d). Plugging in these parameters, we obtain bG(d) = 2k + Õ(d) and cG(d) = O(k log2 n) +
Õ(d) for the final result, which are both Õ(d) since k is a constant. Note that Theorem 4.2.2 does
not assume that F is any particular family, so it may be of independent interest.

Almost Embeddable Part: The second part of the proof establishes good T-quality shortcuts
for k-almost-embeddable graphs, namely the theorem below, proved in Section 4.4.

Theorem 4.2.3. [Shortcuts in Almost Embeddable Graphs] An (qT , g, k, `)-almost-embeddable
graph G admits tree-restricted shortcuts with block parameter b(d) = O(qT + (g + 1)k`2d)
and congestion c(d) = O(qT + k`2d(g + log n)).

The proof is fairly technical and uses several novel ideas. The most prominent one is the con-
struction of a structure we call the “combinatorial gate”. Intuitively, when given a partition of a
genus-bounded graph into balls of low diameter, there exists a small number of special vertices
such that any subgraph that intersects many balls has to contain many of these special vertices.
We use these combinatorial gates to set up a careful charging scheme that allows high-diameter
parts to be given more shortcut edges without a catastrophic increase in the congestion.

Putting Them Together: The main theorem, restated below, follows immediately from Theo-
rem 4.2.2 and Theorem 4.2.3.

Theorem 4.2.1. [Main Theorem, Extended Version] The family of graphs excluding a fixed
minor H admits tree-restricted shortcuts of T-quality qT (d) = Õ(d2). More generally, the
family admits block parameter b(d) = O(d) and congestion c(d) = O(d log n+ log2 n). The
constants in the big-O depend only on the minor H .

Proof. By Theorem 4.1.10, there is a constant k such that the family of H-free graphs is con-
tained in Lk, so it suffices to prove the claim for Lk. LetF be the family of k-almost-embeddable
graphs. By Theorem 4.2.3, F admits tree-restricted shortcuts with block parameter bF(d) =
O(d) and congestion cF(d) = O(d log n). Plugging in F , bF , and cF into Theorem 4.2.2,

54

we conclude that Lk admits tree-restricted shortcuts with block parameter O(d) and congestion
O(d log n+ log2 n), as desired.

4.3 Shortcuts in Clique Sum Graphs

In this section, we prove Theorem 4.2.2, restated below.

Theorem 4.2.2. [Shortcuts in Clique Sums] Let F be a family of graphs that admits tree-
restricted shortcuts with block parameter bF and congestion cF . Let G be a k-clique-sum
of graphs in F . Then G admits tree-restricted shortcuts with block parameter bG(d) ≤
2k +O(bF(dT)) and congestion cG(d) ≤ O(k log2 n) + cF(dT).

Local and Global Shortcuts: The intuition behind our construction is as follows. Let G be
a k-clique-sum of graphs in F , and consider a k-clique-sum decomposition tree DT of G. Its
existence is guaranteed by Fact 4.1.13. Consider a part P ⊆ V (G), which could either span
much of a single bag in DT, or traverse through multiple bags, or both. As a result, we construct
two types of shortcuts—local shortcuts and global shortcuts—to handle each case separately. At
a high level, local shortcuts, which are constrained within a single bag, are meant to deal with
parts that behave wildly within a bag, while global shortcuts, which can span multiple bags, treat
parts that stretch across many different bags. In particular, for each part P , we specify one bag on
which we construct local shortcuts for P , and let global shortcuts handle the rest. The shortcut
for P is simply the union of the local and global shortcuts.

Root DT at an arbitrary bag, and define dDT to be the depth of the rooted tree DT. We first
prove a weaker result whose global shortcut depends on the value of dDT in its congestion, then
later show how to “compress” DT to a low depth independent of dDT, thereby removing the
dependence of dDT.

Lemma 4.3.1. Let F be a family of graphs that admits tree-restricted shortcuts with block
parameter bF and congestion cF . LetG be a k-clique-sum of graphs inF with decomposition
tree DT. ThenG admits tree-restricted shortcuts with block parameter bG(dT) ≤ k+bF(dT)
and congestion cG(dT) ≤ kdDT + cF(dT). (Note the dependence on dDT, the depth of the
decomposition tree DT, which is unrelated to dT , the diameter of the spanning tree T .)

Proof. Let T be an arbitrarily rooted spanning tree of G of diameter dT . Take a k-clique-sum
decomposition tree DT, root it at an arbitrary bag, and suppose that the rooted tree has depth
dDT. In the rooted setting, define the set desc(i) ⊆ V (DT) for i ∈ V (DT) to be i along with all
of its descendants in DT.

Consider a part P ⊆ V (G). Since P is connected, we know, by properties (4) and (5) of
Definition 4.1.12, that the set of bags SP := {j ∈ V (DT) | V (Bj) ∩ P 6= ∅} is connected in
DT. Therefore, the lowest common ancestor, denoted by hP , of SP is also inside SP . Similarly,
for an edge e ∈ E(G) we can define the set of bags that contain that edge Se := {j ∈ V (DT) |
e ∈ E(Bj)} and its lowest common ancestor he ∈ Se.

55

BhCf

P

Figure 4.2: Global shortcut construction. The part P is shown in red. The global T -restricted
shortcut is the intersection of T (not shown) with the shaded region. Cf denotes the partial clique
leading to the parent of h, which is not used in the global shortcut.

Cf
Bh

Gh

B0
h

Figure 4.3: Local shortcut construction. On the left, T is solid red. Dotted black edges are edges
absent from the partial k-cliques. On the right is B0

h for the Bh on the left.

Global Shortcuts: See Figure 4.2. The construction of the global shortcut is simple. For
each edge f ′ to a child i of hP such that P ∩ V (Cf ′) 6= ∅, allow part P to use all edges in ⋃
j∈desc(i)

E(Bj) ∩ T

 \ E(BhP). Informally, the global shortcut “takes care” of all vertices in

P except for those in BhP , which leaves constructing the local shortcut for P in BhP . More
precisely, remember that T is rooted and consider the roots of the block components of P when
using only the global shortcut: they are restricted to BhP .

We now argue about the congestion. Consider an edge e ∈ E(G), and let B be the set of bags on
the DT-root-path to he, including he. Clearly, |B| ≤ dDT. Edge e can only be assigned to parts
that contain a vertex in the partial-clique on a parent edge of a bag in B. Hence its congestion is
at most k|B| ≤ kdDT.

56

Local Shortcuts: See Figure 4.3. Let h be an arbitrary bag, we apply the following argument to
all of them. We now focus on the local shortcut within Bh. Let T 1

h := T ∩Bh be the forest when
we look at Bh in isolation (note that the tree T can become disconnected). We will repair T 1

h in
the next paragraph.

Let B0
h ∈ F be the original bag of Bh, which is Bh with all partial k-cliques involved in the

clique-sum completed to full k-cliques (see Figure 4.3). In particular, V (Bh) = V (B0
h). We

emphasize that B0
h ∈ F by the definition of partial-cliques.

In order to find a tree-restricted shortcut on Bh, we have to define the tree. The forest T 1
h :=

T ∩ B0
h might be disconnected, so we have to repair it. First, we define a path contraction

operation between two vertices s, t ∈ V (B0
h). Consider the unique path between s and t in T ,

represented as a sequence of vertices s = u0, u1, . . . , u∗ = t. Delete any vertex ui 6∈ V (Bh) and
one is left with (a sequence of vertices representing a) valid path in B0

h between s and t. Note
that the contracted path is a graph minor of T .

We form the repaired tree T 2
h in the following way: for every two s, t ∈ V (B0

h), take the path
contraction between them and union it into T 2

h . It is clear that (1) T 2
h is a subgraph of B0

h, in fact,
it is a spanning tree of B0

h, (2) T 1
h is a subgraph of T 2

h , and (3) T 2
h is a contraction of T . The last

property implies that T 2
h is connected and that its diameter is at most dT . Also, note that the same

argument shows that for any part P , its restriction B0
h[P] is also connected since we can contract

any path inside P and the resulting path is still in B0
h and contains only vertices in P—the only

unimportant difference being that this path might be on T .

Next, construct a T 2
h -restricted shortcut, discard all edges in T 2

h \ T = T 2
h \ T 1

h , and discard all
edges contained in Cf , where f is the parent DT-edge of h. The resulting assignment is the local
shortcut of Bh.

The congestion of the local shortcut is cF(dT). Fix an edge e ∈ E(G), and note that it is only
locally assigned in the bag he (due to discarding edge of Cf). But the local congestion of he is
cF(dT), as claimed. The total congestion is at most the sum of the local and global one, hence it
is at most kdDT + cF(dT).

Bounding the Block Parameter: With all shortcut edges established, we now upper bound the
block parameter for each part P ⊆ V (G). Remember that T is, arbitrarily, rooted. We will bound
the number of nodes v ∈ V (G) that are roots of block components. Note that v ∈ BhP since
otherwise the global shortcut assigns the T -parent edge of v to P . But in the lowest common
ancestorBhP , v can be a block root only if either (a) it is a vertex inCf , where f is the parent DT-
edge of hP , or (b) it is a block root of a local shortcut inside BhP . Summing up the contributions
of these two cases, the total number of block roots, and therefore block components, can be at
most k + bF(dT).

To improve the dDT factor in the congestion and prove the main result of this section, we compress
the decomposition tree DT to reduce its depth to O(log2 n), in a similar way to the compression
scheme in [16] for treewidth decompositions.

57

B7B6B5B4B3B2B1 →

B1 ∪B4 ∪B7

B2 ∪B3 B5 ∪B6

Figure 4.4: Compressing a k-clique-sum decomposition tree with high depth.

Theorem 4.2.2. [Shortcuts in Clique Sums] Let F be a family of graphs that admits tree-
restricted shortcuts with block parameter bF and congestion cF . Let G be a k-clique-sum
of graphs in F . Then G admits tree-restricted shortcuts with block parameter bG(d) ≤
2k +O(bF(dT)) and congestion cG(d) ≤ O(k log2 n) + cF(dT).

Proof. Let DT be a k-clique-sum decomposition tree of G. To motivate the main proof, we first
consider the case when DT is a single path from root to leaf. This case will directly help in the
general case, in which we apply heavy-light decomposition to the tree, breaking it up into chains,
and then treat each chain as a single path; we will present this general case next.

Case When DT Is a Path: Assume that DT is a rooted path with bags B1, . . . , BdDT , in that
order. We recursively construct a balanced binary decomposition tree DT′ as follows.

1. Group the bags B1, BddDT/2e, BdDT into a single bag Br.

2. Recursively solve the paths B2, . . . , BddDT/2e−1 and BddDT/2e+1, . . . , BdDT .

3. Attach the two resulting trees as subtrees of Br (see Figure 4.4).

We call this operation folding a path.

Call the new decomposition tree DT′; it is almost a k-clique-sum decomposition tree, with one
exception: an edge may no longer a partial k-clique, but a union of two partial k-cliques. We call
such edges double edges. Note that, while we can add edges within each of the two partial k-
cliques and keep the graph in the family F , we cannot add edges between a vertex in one partial
k-clique and a vertex in the other. Hence, we cannot simply treat the union of two partial k-
cliques as a single partial 2k-clique. However, a bag Bi can have at most two children connected
by double edges.

Using the terminology of the above proof, let B0
h still be the bag Bh with all partial cliques filled

in with edges (the union of two cliques in a double edge will not have edges between them). The
only difference this incurs in the proof is the following: in the global shortcut, partial cliques on

58

the edge of DT can now contain 2k vertices instead of k, doubling the congestion; and, in the
local shortcut, a part restricted to to a bag B0

h[P] might not be connected anymore. However,
we claim that it consists of at most O(1) connected components: for each connected component
we find a “representative vertex” in that component as follows. If (1) the component touches a
partial clique in a double edge to a child, then the representative is the lowest numbered vertex
in such a partial clique, and otherwise (2) we pick any vertex in the component. Now there
will be at most O(1) different representatives, thereby finishing the claim since no two different
components can have the same representative. One can see this by arguing if (1) a part touches a
partial clique in a double edge to a child, the it has at most 4 possibilities; otherwise (2) the part
is already connected via the previous proof.

We construct local shortcuts considering connected components of the parts as separate (sub)parts
and union the assignment in the end. This only decreases the congestion, and increases the block
by a multiplicative O(1) to a total of 2k +O(bF(dT)).

We now discuss the general case, when DT is an arbitrary tree. The main steps of the proof are as
follows. First, we compute a heavy-light decomposition [73] of DT. Then, we fold every chain
in the heavy-light decomposition the same way we fold a single path, so that the resulting tree
decomposition has depth O(log2 n).

Heavy-Light Decomposition: The heavy-light decomposition is a decomposition of any rooted
tree into vertex-disjoint paths, called heavy chains, such that any path from the root to a leaf
changes at most O(log n) heavy chains, where n is the number of vertices in the tree. The
decomposition is simple: for each non-leaf vertex of the tree, connect it to the child vertex with
the largest number of vertices in its own subtree. On any path from root to leaf, if traveling from
vertex u to vertex v changes heavy chains, then vertex u has at least twice as many vertices in its
subtree than does v; such an event can only occur log2 n times along the path.

Folding a Chain: Once we compute the heavy-light decomposition, we partition the vertices of
DT into heavy chains, and then fold each chain independently. Then, we connect the resulting
binary trees in the following natural way: if the root of chain C1 is a child of some vertex v,
then we connect the root of the binary tree of C1 to v. Note that this is not a double edge. We
get a rooted tree DT′ of depth O(log2 n) with the following key property: while every vertex in
the new decomposition tree can have many children, it has at most two children connected via
double edges. Therefore, the same argument for double edges in the single path case also applies
here. With the depth of DT′ reduced to O(log2 n), the result follows.

4.4 Shortcuts in Almost Embeddable Graphs

In this section, we prove Theorem 4.2.3. In particular, we prove that k-almost-embeddable graphs
admit good shortcuts. Recall that these graphs have bounded genus with an additional constant
number of apices and vortices of constant depth added.

59

4.4.1 Warm-up: Non-Apex Graphs

As a warm-up, we disregard apices and only consider graphs of bounded genus with vortices,
i.e., the “Genus+Vortex” graphs. We establish tree-restricted shortcuts with block parameter
O((g+1)kD) and congestionO((g+1)kD log n) for graphs of genus g with a k-vortex included.
We first show that such a graph must have treewidth at most O((g + 1)kD), and then use the
treewidth-based shortcut construction of [66]. We note that this lemma is not novel, it is a simple
consequence of the work by Dujmovic, Morin and Wood [32], but we chose to include it because
it illustrates how to deal with vortices.

At this point, we introduce our notation for treewidth decompositions. A treewidth decomposi-
tion of a graph G is a tree DT whose vertices, called bags, are subsets of V (G). The tree DT
satisfies three properties: (i) the union of vertices over all bags equals V (G); (ii) for each v ∈ V ,
the set of bags containing v is connected in DT; (iii) for each edge (u, v) ∈ E(G), there is a bag
containing both u and v. The treewidth of a graph G is the minimum k such that there exists a
tree decomposition DT of G whose bag sizes are all at most k + 1.

Lemma 4.4.1. A graph G of diameter D and genus g with a single vortex of depth k has
treewidth O((g + 1)kD).

Proof. First, we transform G into a graph G′ of genus g and diameter at most D + 1 as follows:
remove all the vertices inside the vortex, and add a single vertex r in the vortex face with an edge
to all vertices on the vortex boundary. Since pairwise distances between vertices on the boundary
do not increase by more than 1, the diameter of G′ is at most D + 1.

Eppstein [38] proves that graphs of genus g have treewidth O((g+ 1)D). Therefore, there exists
a tree decomposition DT′ of G′ with bag size O((g + 1)D). Remove r from DT′. To add the
vortex back in, first take a vortex decomposition P . Then, for each vertex v inside the vortex that
was removed, add v to every bag in DT′ that intersects P(v), i.e., contains a boundary vertex on
the corresponding arc of v. It remains to prove that the resulting tree decomposition DT is valid
and has bag size O((g + 1)kD).

To show the former, fix a vertex v inside the vortex. Since the neighboring boundary vertices
in P(v) are connected by edges, there exists a common bag between every two neighboring
boundary vertices. Therefore, the entire set of bags containing v is connected. In addition, v
shares a common bag with any boundary vertex in P(v), as well as any other vertex v′ in the
vortex with P(v) ∩ P(v′) 6= ∅. It follows that for each edge incident to v, there exists a bag
containing both of its endpoints.

Finally, since the vortex decomposition P has depth at most k, each vertex on the boundary is
responsible for at most k new vertices in its bags. Since each bag has at most O((g + 1)D)
boundary vertices, the new bag size is O((g + 1)kD).

This proof easily generalizes to the case when G has ` vortices, each of depth k.

60

Lemma 4.4.2. A graphG of diameterD and genus g with ` vortices of depth k has treewidth
O((g + 1)k`D).

Finally, applying the treewidth-based shortcut construction gives the desired result.

Theorem 4.4.3. A genus g and diameter D graph with ` vortices of depth k has tree-
restricted shortcuts with congestion O((g + 1)k`D log n) and block parameter O((g +
1)k`D).

In particular, since planar graphs have genus 0, we get the following corollary:

Corollary 4.4.4. A diameter D planar graph with ` vortices of depth k has tree-restricted
shortcuts with congestion O(k`D log n) and block parameter O(k`D).

4.4.2 Apex Graphs

In this section, we add apices to (0, g, k, l)-almost-embeddable (“Genus+Vortex”) graphs. At
first glance, the addition of an apex to a graph might seem trivial, since the graph only changes
by one vertex, and using that vertex can only make the shortcuts better. However, notice that the
diameter of the graph can shrink arbitrarily with the addition of an apex, and our shortcuts on
the apex graph must be competitive with the new diameter. Hence, we need ideas beyond our
shortcut constructions for the graph without the apex. For a simple example, in a cycle graph,
shortcuts with T-quality Θ(n) are considered good. However, by adding a single central vertex,
we can transform the graph into the wheel graph where “good” shortcuts should have T-quality
Θ(1). While good shortcuts actually do exist in the wheel graph, there are examples of graphs
with good shortcuts where adding a apex makes good shortcuts impossible.

To streamline our arguments for (qT , g, k, l)-almost-embeddable graphs (“Apex+Genus+Vortex”)
graphs, we will define a couple of intermediate properties which do not depend on the graph
topology. More precisely, we will define the notions of β-cell-assignment and s-combinatorial
gates. On a very high level, We will show that:

1. A Genus+Vortex graph has an s-combinatorial gate, for an appropriately chosen s. (Sec-
tion 4.4.4 and the Appendix)

2. Graphs with s-combinatorial gate are β-cell-assignable, for appropriately chosen β and
some technical stipulations. (Section 4.4.3)

3. Graphs that are β-cell-assignable and each cell locally admits good tree-restricted short-
cuts also globally admit good tree-restricted shortcuts, barring various technicalities. (Sec-
tion 4.4.5)

In each part, we separately prove the statements with Genus+Vortex graphs replaced by planar
graphs. It is recommended that the reader, in their first reading, focus only on the lemmas
regarding planar graphs with a single apex, namely Lemmas 4.4.9, 4.4.10, 4.4.12, and 4.4.14.

61

4.4.3 Cell Partitions, β-Cell-Assignment and s-Combinatorial Gate

In this section, we first introduce the notions of “cell partitions”, “β-cell-assignment” and “s-
combinatorial gates”. Second, we prove that the second property implies the first.

Definition 4.4.5. A cell partition of G is simply a partition of VG into disjoint, connected
components with a small diameter, called the cells.

Note that the diameter condition is the only thing differentiating it from the definition of parts. It
is helpful to think of cells as low-diameter components, whereas parts may be long and skinny.
A canonical example for a cell partition is the following. Given an apex graph of diameter D,
remove the apex and start a concurrent BFS from each node adjacent to the removed apex. Each
node in the graph (except the apex) gets assigned to exactly one BFS component. We call such
BFS components cells. For most of this section, we will ignore any extra property that a cell
partition might have and assuming nothing besides them being disjoint, connected and having a
controlled diameter.

A graph is cell-assignable if we can relate its cells and parts in a way that no cell is assigned to
too many parts and parts are assigned to almost all intersecting cells.

Definition 4.4.6. A graph G = (VG, EG) is β-cell-assignable if the following holds. For
every valid family of parts P (as in the part-wise aggregation Definition 1.2.1) and every
valid cell partition C of diameter d there exists a relation R ⊆ C × P with the following
properties:

(i) each part is in relation with all cells it intersects, except for at most 2 of them

(ii) each cell is in relation with at most β parts

Note: β is a function of the cell diameter d.

We will not prove directly that Genus+Vortex graphs are β-cell-assignable. Instead, we focus
on a combinatorial property that we show implies cell-assignment. This property is called a
“combinatorial gate” and it intuitively asserts that every two touching cells have a “gate” that
covers all the edges between them. Furthermore, the boundary of such a gate is called a “fence”
and its size should be controlled. The reader is encouraged to review Figure 4.5 for a mental
picture of combinatorial gates on a planar graph.

Definition 4.4.7. For a subset of vertices S ⊆ V , define the ∂S to be the set of vertices in S
on the boundary of S, i.e., the vertices in S whose neighborhoods intersect V \ S.

Definition 4.4.8. Let G = (V,E) be a graph from a family F , and let C be a partition of G
into cells. We define a s-combinatorial gate to be a collection S = {(Fi, Si)}i where F ⊆ V
are called fences, S ⊆ V are gates, and the following properties hold:

1. Fences are a subset of their corresponding gates. I.e., F ⊆ S for all (F, S) ∈ S.

62

2. The boundary of a gate are included in its fence. I.e., ∂(S) ⊆ F for all (F, S) ∈ S.

3. Each edge {a, b} ∈ E whose endpoints are in different cells must be covered by some
gate. I.e., a ∈ S ∧ b ∈ S for some gate S.

4. Each gate S intersects at most two cells in C.

5. The non-fence vertices of the gates are disjoint. I.e., for every v ∈ V there is at most
one (Fi, Si) ∈ S s.t. v ∈ Si \ Fi.

6. The average size of fences compared to the number of cells is at most s. I.e.,
∑

(F,S)∈S |F |
≤ s|C|.

Since this condition is entirely combinatorial, the proofs that imply β-cell-assignment are also
combinatorial. Therefore, these results are self-contained and disregard any possible structure
in the graph, for example, planarity. Next, we prove that the s-combinatorial boundary implies
β-cell-assignment via the following two lemmas.

Lemma 4.4.9. Suppose a graphGwith cell partition C has an s-combinatorial gate S. Then,
for any collection of parts P , either there exists a part intersecting at most two cells, or there
exists a cell intersecting at most 2s parts.

Proof. Let I ⊆ P × C be the set of pairs (P,C) s.t. P ∩ C 6= ∅. Let the “degree of a part P ”
be the cardinality deg(P) := |{C | (P,C) ∈ I}|, and similarly define the “degree of a cell C”
deg(C).

We are done if there is a part with degree at most 2, hence we can assume deg(P) ≥ 3,∀P ∈ C.
Fix a part P and defineBP = {i | P ∩Fi 6= ∅, Fi is a fence} be the indices of fences it intersects.
Then

∑
P∈P |BP | ≤

∑
i |Fi| since every fence vertex can be contained in at most 1 part.

Furthermore, fix a part P ; we claim that deg(P) ≤ |BP |+ 1 ≤ 2|BP |. This paragraph proves the
first inequality, the second being trivial. Since P intersects deg(P) many different cells, there
must be deg(P) − 1 edges whose endpoints are in different cells and are both in P ; even more,
each of these edges connects a different (unordered) pair of cells. Property (3) of the combi-
natorial gate definition implies that all of these edges must be inside some gate Si. However,
it is impossible that P ⊆ Si, otherwise property (4) would imply deg(P) ≤ 2. Therefore, P
must contain a vertex ∂(Si), which is also included in the fence ∂(Si) ⊆ Fi by property (2). We
conclude that i ∈ BP . Moreover, the i’s corresponding to different edges are distinct since the
unordered pair of cells they are connecting is different.

We are now ready to prove the Lemma via the following claim: |I| =
∑

P∈P ≤ 2
∑

P∈P |BP |
≤ 2s|C|. Hence |I||C| ≤ 2s, implying there exists a cell with degree at most 2s by the pigeonhole
principle.

Lemma 4.4.10. Let F be a family of graphs that is closed under taking minors. Suppose
that there is a function s(d) : N → N such that every graph G ∈ F satisfies the following
property:

63

• If G has a cell partition of diameter d, then there exists an s(d)-combinatorial gate S
of subsets of V (G).

Then, every graph G ∈ F with a cell partition of diameter d is 2s(d)-cell-assignable.

Proof. Fix a graphG ∈ F , cells C = {C1, . . . , C|C|} of diameter d, and partsP = {P1, . . . , P|P|}.
We construct an assignment R following Definition 4.4.6. Assume that G is connected; other-
wise, we can repeat the argument below on each connected component of G. We proceed by
induction on |C|+ |P|, with the base case |C| = 1 or |P| = 1 being trivial.

Suppose that |C| > 1 and |P| > 1. By Lemma 4.4.9, either there is a part P ∈ P intersecting at
most two cells, or there exists a cell intersecting at most 2s(d) parts. In the former case, we do
not assign any cell to P inR and proceed by induction on the instance (G, C,P \ P).

In the latter case, we find a cell C ∈ C intersecting at most 2s(d) parts and R-assign C to all
parts it intersects. Then, iteratively remove C from the graph by contractions. Repeatedly pick
any remaining v ∈ C. If v belongs to some part P ∈ P and has a neighbor in P , then contract
v along any incident edge that has both of its endpoints in P . Note that, by the connectedness of
P , v ∈ P must have a neighbor in P unless P = {v}. Otherwise, contract a vertex v it along any
incident edge.

Let G′ be the resulting graph, let P ′ = {P \C | P ∈ P} be the new partition, and C ′ = C \C be
the remaining cells. Note that, by our edge contraction scheme, all parts in P ′ remain connected
in G′, all remaining cells remain connected, and incidences between the remaining cells and
parts are unchanged. In addition, since the graph family F is closed under edge contraction,
G′ ∈ F . We apply induction on the instance (G′, C ′,P ′) and union the resulting relationR′ with
the assignments made in the current iteration.

While Lemma 4.4.10 works well for planar graphs that are closed under taking minors, Genus+Vortex
graphs do not have that property due to the existence of a bounded number of vortices. In particu-
lar, if one contracts an edge inside the vortex, the resulting graph is not Genus+Vortex. Therefore,
we will deal with cells touching vortices as “special cells” that are not allowed to be contracted.

Lemma 4.4.11. Let F be a family of graphs, not necessarily closed under taking minors.
Suppose that there is a function s(d) : N → N such that every graph G ∈ F satisfies the
following property:

• If G has a cell partition of diameter d, then there exists an s(d)-combinatorial gate S
of subsets of V (G).

Consider a graph G ∈ F with a cell partition into two types of cells—normal cells and `
special cells—both of diameter d. Let E∗ denote the set of edges in special cells. Assume
that any graph G′ obtained by deleting vertices and contracting edges outside of special
cells is still in F . Then, G is 2`s(d)-cell-assignable with respect to a cell partition of only
the normal cells.

Proof. Fix a graph G ∈ F , normal cells C0, special cells C∗, and parts P = {P1, . . . , P|P|}.
Similarly to Lemma 4.4.10. we proceed by induction on |C0| + |P|, with the same base case

64

Figure 4.5: Graphical overview of our boundary construction. The black circles are the cells.
Note that there is a cell completely contained inside another cell in the planar embedding. The
green edges are the spanning trees Ti as defined in the proof. The blue edges form our boundary
construction.

being trivial.

Suppose that |C0| > 1 and |P| > 1. If there is a part P ∈ P intersecting at most two cells,
then we proceed as in Lemma 4.4.10. Otherwise, as in the proof of Lemma 4.4.9, we show that
the total number of pairs (P,C) where a part P ∈ P intersects a cell C ∈ C ∪ C∗ is at most
2s(d)|C0 ∪ C∗|. Since |C0| ≥ |C0 ∪ C∗| − ` ≥ |C0 ∪ C∗|/`, the number of (P,C) is at most
2`s(d)|C0|, so there exists a normal cell intersecting at most 2`s(d) parts. The rest of the proof is
identical to that in Lemma 4.4.10, except we note that since we only remove vertices in a normal
cell, the new graph G′ still satisfies the conditions in the lemma.

4.4.4 Graphs with s-Combinatorial Gate Property

In this section, we show that Genus+Vortex graphs satisfy the s-combinatorial property. We
highlight our main ideas by proving the statement for planar graphs before moving on to genus-
bounded graphs (Section 4.6).

Lemma 4.4.12. Let G be a planar graph with a cell partition of diameter d. Then, there is
an 36d-combinatorial gate S.

Proof. Fix a planar embedding ofG in the planar region R2. Define an auxiliary graph A formed
by contracting each cell into a single vertex, then removing parallel edges. In other words, two
vertices in A are adjacent iff their corresponding cells are connected by an edge; we call two
such cells “adjacent”. Our goal is to, for each pair of adjacent cells, define a closed loop that
separates the planar embedding in a laminar way1. Figure 4.5 gives a graphical overview of our
boundary construction, which we make more precise below. We note for later that the planarity
of A implies |E(A)| ≤ 3|V (A)| − 6 = 3|C| − 6.

For each cell Ci, define Ti to be a spanning tree of Ci with diameter at most d. For any two cells
Ci, Cj ∈ C, define the set of “(Ci, Cj)-inter-cell edges” as those in F that connect the two cells.

1A family of sets is laminar when any two members are either disjoint or one is a subset of another.

65

Figure 4.6: Definition of extremal edges between two different cells. Ti and Tj are shown in
green. The extremal edges are the blue edges reachable from the outer face, as indicated by the
paths in blue, while the other inter-cell edges are the black edges.

Given two (Ci, Cj)-inter-cell edges eu := (ui, uj) and ev := (vi, vj), define the “cycle along eu
and ev” to be the union of edge eu, edge ev, the path along Ti from ui to vi, and the path along Tj
from uj to vj . We denote the cycle by cyc(eu, ev). Note that every such cycle has at most 4d+ 2
vertices. Our next step is to find two special (Ci, Cj)-inter-cell edges eL and eR such that if we
consider the cycle along eL and eR, the boundary and interior of this loop, i.e., the set of points
in the plane enclosed by the cycle, contain all (Ci, Cj)-inter-cell edges. We call eL and eR the
“extremal edges” between Ci and Cj .

Intuitively, we choose the extremal edges to be the “left-most” and “right-most” (Ci, Cj)-inter-
cell edges, but these can be formally defined as follows (see Figure 4.6). Define a planar graph
Tij to be the union of Ti, Tj , and all (Ci, Cj)-inter-cell edges. Note that Tij ⊆ G inherits the
planar embedding from G. Draw a loop starting and ending in the outside face that encloses Ti
but lies outside of Tj; this can always be done because the trees are disjoint. The first and last
(Ci, Cj)-inter-cell edge intersected by the loop must lie on the outside face and form our extremal
edges eL, eR2.

Take all pairs of adjacent cells (Ci, Cj) and consider the cycle Kij ⊆ G along their extremal
edges cyc(eL, eR). Let K be the set of all such cycles.

For a cycle K ∈ K define the set of points in the embedding enclosed within the cycle as
reg(K). Note that reg(K) is closed set. An important property of {reg(K) | K ∈ K} is that
two reg(K), reg(K ′) are either disjoint or one is a subset of another, i.e., they form a laminar
family and the notions of minimal cycle and maximal cycle are well-defined inside the family.

We are ready to construct the combinatorial gate. Given a cycle Kij ∈ K, let own(K) :=
reg(K) \

(
∪reg(K′)⊆reg(K)int(reg(K ′))

)
, where int(·) is the topological interior. In other words,

reg(K) is the set of points in the embedding that are enclosed in the cycle, but are outside of
the strict interiors of any other cycles K ′ ∈ K enclosed in K. Let Sij ⊆ V (G) be the set of
vertices v ∈ Ci ∪ Cj where the corresponding point in the embedding pv ∈ R2 is in own(K).
Similarly, let Fij ⊆ V (G) be the set of vertices v ∈ Ci ∪ Cj which are not in the topological
interior of own(Kij) (again, in terms of the embedding). The combinatorial gate is then defined
as S := {(Fij, Sij) | Kij ∈ K}.
Property (1), i.e., Fij ⊆ Sij , and Property (4), i.e., Sij ⊆ Ci ∩ Cj , trivially follow from the
definition. Property (5): the laminarity of {reg(K) | K ∈ K} implies that {own(K) | K ∈ K}

2If there is only one (Ci, Cj)-inter-cell edge, then we set both eL and eR to that edge.

66

can only share a boundary, hence their interiors are disjoint; therefore, non-fence vertices have
at most one own(K) region they are contained in, implying the Property.

Property (3): fix any (Ci, Cj)-inter-cell edge e. By construction, pe ⊆ reg(Kij), where pe ⊆ R2

is the set of points the edge corresponds to in the embedding. We also claim that pe ⊆ own(Kij),
which would imply the Property. Assume this is not true, then pe ⊆ reg(Ki′j′) for some Ki′j′ 6=
Kij such that reg(Ki′j′) ⊆ reg(Kij). We can assume without loss of generality that i 6∈ {i′, j′}.
By planarity of the graph and the connectedness ofCi, the points in the embedding corresponding
with Ci would have to lie inside of reg(Ki′j′) since no edge of Ci can cross Ki′j′ ⊆ Ci′ ∪ Cj′ .
But that contradicts the assumption that reg(Ki′j′) ⊆ reg(Kij), implying the Property.

Finally, we prove Property (6) with the parameter s := 36|C|d. Every fence vertex v ∈ Fij
must either lie on Kij or on a maximal cycle nested within Kij . If v ∈ Kij , we will charge
it to Kij; otherwise, if v is on a maximal nested cycle K ′ ∈ K inside of Kij , we charge it to
K ′. Note that for any K ∈ K, only vertices on K and the the unique enclosing cycle (if one
exists) can charge to K. Therefore, the total number of vertices charged to any K ∈ K is at most
2 ·maxK′∈K |K ′| ≤ 2 · (4d+ 2) ≤ 12d, from before. The number of incident cells, |K|, is equal
to |E(A)| ≤ 3|C| − 6 ≤ 3|C|; leading to

∑
(F,S)∈S |F | ≤ 3|C| · 12d ≤ 36|C|.

The full result is rather technical and tangential; hence is proved in Section 4.6.

Lemma 4.4.13. Let G be a genus-g graph with (a possibly unbounded number of) vortices
of depth k, and consider a cell partition of diameter d such that no vortex is split between
more than one cell. Then, there exists an O((g + 1)kd)-combinatorial gate of G.

4.4.5 Wrapping Up: From β-Cell-Assignment to Good Shortcuts

In this section, we finalize our proof for tree-restricted shortcuts in almost embeddable graphs.
We do this by showing that if an (0, g, k, l)-almost-embeddable (“Genus+Vortex”) graph is β-
cell-assignable for small enough parameter β, then the same graph with qT added apices admits
good tree-restricted shortcuts. We first assume that the apex graph has exactly one apex, then
establish a simple reduction from the multiple apices case. We begin with the same statement for
(1, 0, 0, 0)-almost-embeddable (“Apex+Planar”) graphs, continue with the full statement apart
from the single apex, and finally finish with the most general statement.

Lemma 4.4.14. LetG be a planar graph with a single apex and a diameter dT spanning tree
T of G. For a given set of parts, there exists a T -restricted shortcut with block parameter
O(log dT) and congestion O(dT log dT).

Proof. Let x be the apex, and let H := G − x be the planar region. First, if a part P contains
x, we give P the entire spanning tree; there can be at most one such part, so the congestion does
not change asymptotically. From now on, assume that no part contains the apex x.

67

Consider removing the apex x, which breaks the tree T into multiple connected subtrees in H .
Note that each subtree has diameter at most dT . For each subtree, let its vertices be a new cell
C, and denote the subtree by T [C]. Since the family of planar graphs is closed under edge
contraction, we can invoke Lemma 4.4.10, so H with cell partition C is β-cell-assignable for
β(d) := O(d), so there is a corresponding relationR ⊆ C×P . As in Lemma 4.3.1, we construct
local and global shortcuts separately, using ideas from Section 4.4.1 for the local shortcuts and
the relationR for the global shortcuts.

We first begin with global shortcuts. For each part P ∈ P and every cell C ∈ C assigned to
P in the relation R, assign all edges in T [C] to part P , as well as the edge connecting the apex
x to TC , called the uplink. Since every edge, with the exception of uplinks, belongs to one
cell, and since every cell is in relation with at most β(dTC) parts, the congestion on each edge is
β(dTC) ≤ β(dT) from global shortcuts.

Next, we define local shortcuts by repeating the following for each C ∈ C individually. (i)
Take the graph H , and iteratively contract all edges in EH \ EH[C], i.e. all edges outside the
graph induced by C. (They are contracted in the same way as in Lemma 4.4.10, so that all parts
P ∩ C remain connected in the resulting graph. Denote the graph by HC . (ii) Next, construct
a b(d) := O(log d) block parameter, c(d) := O(d log d) congestion TC-restricted shortcut us-
ing Theorem 2.2.4 on HC with the parts {P ∩C : P ∈ P}. Note that the parts are still connected
via the contractions. Add it as a local shortcut of the cell C. Each edge in T has congestion
c(dTC) ≤ c(dT) from local shortcuts.

Finally, we argue about block parameter. For each part P , there are at most 2 cells intersecting
P but not in relation with P in R. Each of these cells C generates b(dTC) ≤ b(dT) additional
blocks, and together with the single block from the global shortcuts, gives a blocking parameter
of 1 + 2 · b(dT).

Plugging in β(dT) = O(dT), b(dT) = O(log dT), and c(dT) = O(dT log dT), we get block
parameter 1 + 2 · b(dT) = O(log dT) and congestion β(dT) + c(dT) = O(dT log dT).

Lemma 4.4.15. LetG be a genus-g graph with ` vortices of depth k and a single apex and T
a spanning tree of G. For a given set of parts, there exists a T -restricted shortcut with block
parameter O((g + 1)k`2dT) and congestion O(k`2dT (g + log n)).

Proof. We proceed similarly as in Lemma 4.4.14, with different parameters β, b, and c. Let G
be the entire graph, let x be the apex, and let H := G − x be the graph without the apex. Let
C be the cell partition as defined in Lemma 4.4.14. To obtain the actual partition C ′ that we can
use as a precondition in Lemma 4.4.13, we first start with C and then, iteratively, for each vortex
in H , merge all cells that intersect the vortex. Note that if a cell in C ′ intersects a vortex, then
it completely contains the vortex, and a cell may contain multiple vortices. We let all cells that
contain, or equivalently, intersect, a vortex to be special, so that there are at most ` special cells.
The remaining cells are normal cells. At this point, all normal cells have diameter O(dT), but
special cells can have unbounded diameter due to the individual vortices. To remedy this issue,
for each vortex, we create a star vertex that connects to all boundary vertices of the vortex, and
add it to the special cell containing this vortex. Doing so increases the depth of each vortex by at

68

most 1 and decreases the diameter of each special cell to O(`dT). Denote the normal cells by C0

and the special cells by C∗.
Define a graph family F to be all genus-g graphs with at most ` vortices of depth at most k,
so that H ∈ F . Note that for each graph F ∈ F , contracting an edge outside of any vortex
still leaves a graph in F . Since every normal cell is in the genus-g region of the graph, any
graph obtained by contracting edges in normal cells in H is still in F . Therefore, we can apply
Lemma 4.4.13 with cell diameter O(`dT) to get an O((g+ 1)k`dT)-combinatorial gate, and then
apply Lemma 4.4.11 to obtain a relationR ⊆ C ′ ×P with β(dT) := 2`((g + 1)k`dT). Note that
our combinatorial gate applies to the graph with the extra star vertices added, not the original
graph. However, only special cells get star vertices and the relation R does not touch special
cells, soR is valid for the original graph.

The global shortcuts for normal cells are the same as those in Lemma 4.4.14, giving a congestion
of at most β(dT). Note that there are no global shortcuts for special cells, since R does not
associate special cells. For local shortcuts in a normal cell C ∈ C0, we define HC as follows: we
first contract all edges inEH \

(
EH[C] ∪

⋃
C′∈C∗ EH[C′]

)
, i.e., all edges not insideC or any special

cell, in the same way as in Lemma 4.4.10. We then contract the edges in
⋃
C′∈C∗ EH[C′] \EH[C],

i.e., the remaining edges not inside C, in the same way as in Lemma 4.4.10 to obtain HC . The
first set of contractions leaves C with the special cells. With the star vertices added, this graph
is a genus g graph with ` vortices and diameter O(`dT), so by Lemma 4.4.2, it has treewidth
O((g + 1)k`2dT); disregarding the star vertices can only decrease the treewidth. The second set
of contractions also cannot increase the treewidth, so HC also has treewidth O((g + 1)k`2dT).
Applying the treewidth-based shortcut construction from [66] gives block parameter b(dT) :=
O((g + 1)k`2dT) and congestion c(dT) := O((g + 1)k`2dT log n).

For local shortcuts in special cells, we construct them in all special cells simultaneously. Let
C∗ :=

⋃
C∈C∗ C be the union of all special cells. Define the tree T ∗ := T [x∪C∗] to be the union

of C∗ with all uplinks in C∗. Take the graph H and contract all edges in EH \
⋃
C∈C∗ EH[C],

i.e., all edges not inside any special cell, in the same way as in Lemma 4.4.10, obtaining a genus
g graph with ` vortices and diameter O(`dT); This graph has treewidth O((g + 1)k`2dT). Add
the apex x back to H and connect it to its neighbors in G that are vertices of H , which increases
the treewidth by at most 1. The resulting graph is spanned by T ∗, so it has shortcuts with block
parameter b(dT) and congestion c(dT), as defined above.

Finally, we argue about block parameter. For each part P , there are at most 2 normal cells
intersecting P but not in relation with P in R, and at most ` special cells. Each of these cells
generates b(dT) additional blocks, and together with the single block from the global shortcuts,
gives a block parameter of 1 + (2 + `) · b(dT).

Plugging in β(dT) = O((g+ 1)k`2dT), b(dT) = O((g+ 1)k`2dT), and c(dT) = O(k`2dT log n),
we get block parameter 1 + 2 · b(dT) = O((g + 1)k`2dT) and congestion β(dT) + c(dT) =
O(k`2dT (g + log n)).

We finally prove the main theorem of this section, with multiple apices.

69

Theorem 4.2.3. [Shortcuts in Almost Embeddable Graphs] An (qT , g, k, `)-almost-embeddable
graph G admits tree-restricted shortcuts with block parameter b(d) = O(qT + (g + 1)k`2d)
and congestion c(d) = O(qT + k`2d(g + log n)).

Proof. Let G be the apex graph and T a the spanning tree of G. If a part contains one of the qT
apices, we give the entire tree T to the part. This increases the congestion by at most qT . For the
remaining parts, we do the following. First, add an auxiliary new vertex x that connects to each
of the qT apices; the diameter can grow by at most 1. Contract these qT + 1 vertices to a single
apex to form graph G′; T might now contain cycles, so take a spanning subtree of depth dT in
the contracted T . Apply Lemma 4.4.15 to the single apex graph G′. If we extend the shortcuts
for each part in the natural way to G, the congestion does not change any further. Furthermore,
the block parameter increases by at most qT − 1 because a block component containing x splits
into at most qT block components.

4.5 Conclusion and Open Problems

We have proved all the ingredients we need to prove our main theorem, which we restate for
convenience.

Theorem 4.2.1. [Main Theorem, Extended Version] The family of graphs excluding a fixed
minor H admits tree-restricted shortcuts of T-quality qT (d) = Õ(d2). More generally, the
family admits block parameter b(d) = O(d) and congestion c(d) = O(d log n+ log2 n). The
constants in the big-O depend only on the minor H .

An obvious open question is whether the block parameterO(dT) can be improved to Õ(1), which
would result in a near-optimal Õ(D)-round algorithm for MST and (1 + ε)-approximate mincut
on excluded minor network graphs. The bottleneck in the current proof lies in the treewidth
argument when arguing about Genus+Vortex graph, which produces the O(dT) block parameter.
This treewidth argument cannot be improved due to lower bounds on treewidth-k graphs, as pre-
sented in [66]. Hence, an improvement on Genus+Vortex graphs requires a better understanding
of vortices, beyond treating them as simply low-treewidth (or pathwidth) graphs.

4.6 Chapter Appendix: Combinatorial Gate in Genus+Vortex
graphs

In this section we prove Lemma 4.4.13. Namely, that the Genus+Vortex graphs have an s-
combinatorial gate. The exposition is split into three parts: (1) a general “Planarization” Lemma
that converts a genus-g graph into a planar one, (2) proof that Genus-g graphs have an s-
combinatorial boundary, and finally (3) the proof of Lemma 4.4.13.

70

4.6.1 Planarization of Genus-g Graphs

Genus-g graphs are relatively hard to analyze. This is in contrast to planar graphs for which many
tools are available. In this section we state a lemma that will help us analyzing genus-g graphs
by “cutting and developing them on a plane”. The high-level idea is to “cut” the genus-g graph
SG along multiple cycles, providing us with a “planarization” PG that is planar (see Figure 4.7).
By “cutting” we informally mean taking scissors and cutting along edges in a cycle in a way that
splits each edge into two sub-edges, one for each side of the cut. This also splits the nodes into
multiple sub-nodes, possibly more than 2. For example, if a node lies on k edge-disjoint cutting
paths, we split the node into 2k sub-nodes. Such a planarization is illustrated on Figure 4.7.

v

w
u

v(1)

v(2) v(3)

v(4)

w

u(1) u(2)

Figure 4.7: A graph embedded on a torus and its planarization after cutting the generators colored
in red. Note how the vertex v gets duplicated into v(1), . . . , v(4).

On a more technical note, we have some control over the cycles which are cut. We can choose
any spanning tree T ⊆ SG. Then the cut can be represented by g non-tree edges and their
induced cycles w.r.t. T . A cycle induced by a non-tree edge e is the unique cycle in T ∪ {e}. We
first formalize the cutting procedure and then we state the Planarization Lemma in all all detail.

Definition 4.6.1 (Cut Graph). Given a graph SG embedded on a surface and a subset of cut
edges R ⊆ E(SG), we define the cut graph PG as follows.

• For each v ∈ V (SG) consider the local planar embedding on the surface (effectively
an ordering of edges incident to v). Consider all maximal edge-intervals of non-cut
edges in this ordering of v including the two bounding cut edges. For all such edge-
intervals construct a new copy of v and include it in V (PG). E.g., if v is adjacent to k
cut edges, the vertex will be copied k times.

• Define the "projection" p : V (PG) → V (SG) that maps v ∈ V (PG) to the original
vertex in V (SG) of which v is a copy.

• Connect two vertices in V (PG) when their corresponding edge-intervals contain ei-
ther (i) the same non-cut edge or (ii) the same cut edge while the edge-intervals are
on the appropriate sides of their local embeddings. In other words, the cut edge is the
clockwise boundary of one edge-interval and counter-clockwise boundary of the other;
or vice versa. This should intuitively correspond to “cutting an edge with scissors”.

71

On such a cut graph, denote by outer nodes all nodes v ∈ V (PG) s.t. |p−1(p(v))| >
1 and also their projections into SG. The outer nodes in v ∈ V (SG) are exactly those
corresponding to edge-intervals that do not contain the entire neighborhood, or equivalently,
those without any cut edges incident to them.

Similarly, denote the complement of outer nodes (on both PG and SG) as the inner nodes.
Note that, by the cutting procedure, there is a one-to-one correspondence between inner
nodes on PG and inner nodes on SG.

Lemma 4.6.2 (Planarization Lemma). Consider a genus-g graph SG and a spanning tree
T ⊆ SG. There exists a set of g cycles induced by (adversarially chosen) non-T edges. Call
them the generating cycles. Let PG be the cut graph of SG with respect to the union of
the generating cycles. Then (i) PG is a planar graph, and (ii) outer nodes, as defined in
Definition 4.6.1, are on the outer face of PG.

Proof. Consider the dual graph of SG, denoted by SG∗. The vertices/edges/faces of SG∗ corre-
spond one-to-one with faces/edges/vertices of SG, respectively. Then there exists a spanning tree
T ∗ of SG∗, called a co-tree, that is disjoint from T . In other words, there is no edge of T ∗ that
corresponds to an edge of T . This claim is a direct consequence of Lemma 1 in Eppstein [39].

Let C be the set of edges not in either T nor T ∗. Then Lemma 2 in Eppstein [39] asserts that the
cycles induced by the edges of T generate the fundamental group of the surface on which SG
is embedded. In other words, contracting the tree T to a single node and deleting E(T ∗) would
give us an embedded graph with exactly one node and one face. Denote this face by F . Because
SG is 2-cell embedded in the surface, F is homeomorphic to some plane which we denote by Π.

We are now ready to prove the Lemma. Our argument will be that the cut graph can be embedded
without intersections in the plane Π. Note that the points that are not on the cut edges have a
natural embedding into Π, namely, they have a position in F which corresponds to a point in
the plane Π. This fixes the embedding of the inner nodes of PG. However, this also forces
the embedding of the outer nodes v ∈ V (PG). Such nodes correspond to an edge-interval of
w ∈ V (SG). Since the surface points sufficiently close inside the edge-interval and arbitrarily
close to v are embedded into Π, we just set the embedding of w to be the limit of such surface
points.

Such an embedding has no intersections since non-cut-edges correspond one-to-one with edges
on F which do not intersect. Cut edges cannot intersect by the cutting procedure. This proves
claim (i). Also, note that the boundary of the face F corresponds to the outer face boundary of
Π and that exactly outer nodes get mapped to that boundary. This proves claim (ii).

4.6.2 Combinatorial Gate in Genus-g graphs

We begin with a strengthening of Lemma 4.4.12, whose proof is immediate following the proof
of Lemma 4.4.12.

72

Lemma 4.6.3. Let G be a planar graph with a cell partition of diameter d. Fix a planar
embedding of G. Then, there is an 36d-combinatorial gate S, and furthermore, each node
on the outer face of G contained in a gate Si is also in the corresponding fence Fi.

Now, we present the combinatorial gate proof for bounded genus graphs.

Lemma 4.6.4. A genus-g graph SG with a diameter-d cell partition CSG has a O((g+ 1)d)-
combinatorial gate.

Proof. The main idea is to planarize the graph using Lemma 4.6.2, find a combinatorial gate for
the planar graph and project it back to the surface graph SG. The details follow.

We construct a rooted spanning tree T of SG by first constructing a spanning tree of each cell,
connecting them arbitrarily into a spanning tree, and arbitrarily rooting it. Denote the inter-cell
tree edges as connecting edges. For concreteness, assume directed tree edges go towards the
root.

Planarize the graph SG into PG = (V (PG), E(PG)) w.r.t. T using Lemma 4.6.2. Let p :
V (PG) → V (SG) denote the corresponding projection. We define a cell decomposition CPG
that will intuitively match the decomposition on CSG, except that some cells get split in multiple
ones to respect the planarization. We formalize it by defining CPG on the planar graph PG in
an implicit manner: we will define them as connected components of a forest of rooted trees
TPG ⊆ PG that is defined as follows. For x, y ∈ V (PG) there is an directed edge x→ y in TPG
when all three of (i) p(x) and p(y) are in the same cell of CSG, (ii) (p(x)→ p(y)) ∈ T , and (iii)
{x, y} ∈ E(PG) hold. This completely defines TPG and therefore CPG.

Note that (i) TPG is a tree (when ignoring directions) and (ii) each vertex x ∈ V (PG) has
outdegree at most 1. Claim (i) follows because any cycle in TPG would project into a cycle in
T ; and claim (ii) follows from construction since p(x) ∈ T has outdegree at most 1 and the
projections of neighboring nodes of x in PG are all distinct.

Next, we analyze the cells CPG. Note that cells in CPG have diameter at most 2d = O(d) since
traveling via out-edges towards the root will reach it within d steps. This can be argued from the
projection of such a travel reaching its root in at most d steps.

Furthermore, we claim that each cell splits into at most O(g + 1) new cells. We can represent
each cell C ∈ CPG with its root node in TPG. And since every node in PG corresponds to an
edge-interval of a vertex in SG (c.f. planarization), we can represent C by an edge-interval.
Finally, we say that C ∈ CPG splits from C ′ ∈ CSG when the projection of the root of C maps to
a node in C ′.

We fix a cell C ′ ∈ CSG, i.e., on the surface graph, and argue about the number of nodes that split
from from C ′. Let C ∈ CPG be such a cell and let v be the root of its corresponding component
of TPG. Note that node v being a root in TPG implies that either (i) its edge-interval does not
contain the unique outgoing edge out of p(v) or (ii) it contains an outgoing connecting edge, i.e.,
unique edge connecting T ⊆ SG with its parent. The number of cases (i) increases by O(1) with
each new generating cycle, of which there are O(g + 1). Case (ii) can occur only twice since the

73

construction implies each edge gets duplicated at most twice. This concludes the argument that
there are |CPG| ≤ O(g + 1)|CSG|.
To summarize, we have constructed a planar PG and a diameter-O(d) cell partition CPG. We
now apply Lemma 4.4.12 to find a O(d)-combinatorial gate S = {(Fi, Si)}i.
In order to construct a combinatorial gate in SG, we project S. To that end, we extend the
projection p to work on subsets 2V (SG) in the obvious manner: p(A) =

⋃
a∈A p(a). Next, let

S ′ = {p(Fi), p(Si) | (Fi, Si) ∈ S}i. We claim that S ′ is an O((g + 1)d)-combinatorial gate in
SG and we prove it by verifying its properties one by one.

(1) p(Fi) ⊆ p(Si) is clear because p is an increasing function w.r.t. ⊆.

(2) We want to show that ∂p(Si) ⊆ p(Fi). Let v′ ∈ ∂p(Si). If v′ is an inner node and w′ ∈
V (SG) \ p(Si) is its neighbor outside of p(Si), then any preimage w ∈ p−1(w′) must be outside
of Si, hence the unique p−1(v′) ∈ ∂Si ⊆ Fi. This implies that v′ ∈ p(Fi) as needed. On the
other hand, if v′ is not an inner node, then any preimage v ∈ p−1(v′)∩ Si must be an outer node,
hence on the outer face of PG by Lemma 4.4.12. If we go through the proof of Lemma 4.4.12,
we observe that construction of the planar combinatorial gate in the lemma has an additional
property: if a node on the outer face of the planar graph is contained in a gate Si, then it is also
in the corresponding fence Fi. Thus by construction of S it is included in Fi, which implies
v′ ∈ p(Fi).

(3) Let {a′, b′} ∈ E(SG) be an edge whose endpoints are in different cells of CSG. Then
{p(a′), p(b′)} is covered by a gate S in PG. Hence the gate p(S) covers {a′, b′}.
(4) Each gate S ′ intersects at most 2 cells in COG since the projection maps the same cell into the
same cell.

(5) Let v′ ∈ p(Si) \ p(Fi). We want to show that there can be at most one such i. On one
hand, if v′ ∈ V (SG) is an outer node, then its preimage p−1(v′) ∩ Si must be an outer node and
hence included in Fi. This is a contradiction since then v′ 6∈ p(Si) \ p(Fi). On the other hand, if
v′ ∈ V (SG) is an inner node, then it has a unique preimage v = p−1(v′). If v′ ∈ p(Si) \ p(Fi),
then v ∈ Si \ Fi. Hence by claim (5) on S there can be at most one such i.

(6)
∑

(F ′,S′)∈S′ |F ′| ≤
∑

(F,S)∈S |p(F)| ≤
∑

(F,S)∈S |F | ≤ O(d)|CPG| ≤ O((g + 1)d)|COG|

4.6.3 Finalizing the Proof

Finally, we extend the combinatorial gate proof for bounded genus graphs to include vortices.

Lemma 4.4.13. Let G be a genus-g graph with (a possibly unbounded number of) vortices
of depth k, and consider a cell partition of diameter d such that no vortex is split between
more than one cell. Then, there exists an O((g + 1)kd)-combinatorial gate of G.

Proof. For notation, rename the graph G to OG for “original graph”. We first replace the Genus-
g+Vortex-k OG graph with a tightly related genus-g graph SG by the following method: for
each vortex A in OG, remove all the internal vortex nodes and replace it with a star node sA that

74

is connected to all nodes in the cycle of the vortex. Name the final graph SG and note that it is
genus g by construction.

Next, we construct a corresponding cell partition CSG: all non-star nodes get included in the same
cell as they were in OG, while the star node gets included in the cell of its vortex. Note that the
preconditions ensure that all vortex nodes are in the same cell. Furthermore, the diameter of the
cell partition CSG is at most d + 1 = O(d), hence we can apply Lemma 4.6.4 on it and obtain a
O((g + 1)d)-combinatorial gate S .

We now convert S into a O((g + 1)kd)-combinatorial gate S ′ on OG, hence completing the
theorem. First, define an expansion E : V (SG)→ 2V (OG) in the following manner: if v is a star
node, then E(v) = ∅; if v is a node on a vortex cycle, then E contains the set of all internal vortex
nodes of OG whose arcs contain v and v itself; finally, if v is neither a star nor vortex cycle node,
then E(v) = {v}. Note that E furnishes a one-to-one correspondence between non-star nodes of
SG and non-internal vortex nodes of OG.

This allows us to define S ′. First, extend the expansion to work on subsets 2V (SG) in the obvious
manner: E(A) =

⋃
a∈A E(a). Then set S ′ := {(E(Fi), E(Si) | (Fi, Si) ∈ S}. In other words, we

expand the gates and fences in S to obtain S ′.
We prove that S ′ is an O((g + 1)kd)-combinatorial gate by verifying its properties one by one.

1. It is clear that F ′i ⊆ S ′i for each (F ′i , S
′
i) ∈ S since E is an increasing function w.r.t. ⊆.

2. We want to show that ∂S ′i ⊆ F ′i . Let v′ ∈ ∂S ′i where S ′i = E(Si), F
′
i = E(Fi). We split

into three cases, depending on the location of v′.

• If v′ is an internal vortex node, it is enough to prove that Fi contains at least one node
in the arc of v′, since this would imply that v′ ∈ F ′i . Suppose, otherwise, that Fi does
not intersect the arc of v′. Knowing that Si contains at least one node in the arc of v′,
we conclude that Si contains the entire arc of v′. Therefore, all neighbors of v′ on the
vortex boundary are in S ′i. Moreover, every neighbor of v′ internal to the vortex must
share a boundary vertex in the arc of v′, so the neighbor is also in S ′i. Therefore, all
neighbors of v′ are contained in S ′i, a contradiction.

• If v′ is neither an internal vortex node nor on the vortex cycle, then there is a one-
to-one correspondence via E between its neighborhood and gate incidence as in SG
since v′ cannot be connected to a vortex internal vertex. Hence the claim follows
from the same claim for S ′.

• If v′ ∈ ∂S ′i is on a vortex cycle, let w′ ∈ N(v′) \ S ′i be its neighbor outside of S ′i. If
w′ is not internal to the vortex, then this case is equivalent to the previous one. If w′

is internal to the vortex, then w′ would be in S ′i since S ′i = E(Si) ⊆ E(E−1(v′)) 3 w′.

3. An edge {a′, b′} ∈ E(OG) whose endpoint are in different cells of COG cannot have any of
its endpoints as an internal vortex node, hence it has a corresponding edge {E−1(a), E−1(b)}
in E(SG). The claim now follows from the same claim in S .

4. Let S ′ be a gate we want to prove intersects at most 2 cells. If S ′ does not intersect
the vortex internals, then it has a corresponding gate E−1(S ′) in S from which the claim

75

follows. If it intersects the vortex, then each internal vortex node belongs to the same
cell denoted by c. Furthermore, the cells intersecting S ′ are exactly the same as those
intersecting E−1(S ′) together with c. But the cells intersecting E−1(S ′) are either an empty
set or already include c, hence the claim follows.

5. Let v′ ∈ S ′i \ F ′i . If v′ is not an internal vortex node, then there can be only one such
S ′ \ F ′ 3 v′ from the claim for S. On the other hand, if v′ is a internal vortex node, then
S ′i \ F ′i must contain the entire arc of v′. Then the claim follows from the non-internal
vortex node case by picking any such node on the arc.

6. We first note that |E(X)| ≤ k|X| since the vortex is of depth k. Then we have∑
(F ′,S′)∈S′

|F ′| ≤
∑

(F,S)∈S

|E(F)| ≤ k
∑

(F,S)∈S

|F | ≤ kO((g + 1)d)|CSG| ≤ O((g + 1)kd)|COG|.

76

Chapter 5

Network Coding Gaps for Completion-time
of Multiple Unicasts

The results of this chapter were published in [69] with Bernhard Haeupler and David Wajc as
co-authors. The work was supported in part by NSF grants CCF-1618280, CCF-1814603, CCF-
1527110, NSF CAREER award CCF-1750808, and a Sloan Research Fellowship, as well as a
DFINITY scholarship.

5.1 Introduction

In this chapter we study the natural mathematical abstraction of what is arguably the most com-
mon network communication problem: multiple unicasts. In this problem, distinct packets of
different size are at different nodes in a network, and each packet needs to be delivered to a
specific destination as fast as possible. That is, minimizing the makespan, or the time until all
packets are delivered.

All known multiple-unicast solutions employ (fractional) routing (also known as store-and-
forward protocols), i.e., network nodes potentially subdivide packets and route (sub-)packets
to their destination via store and forward operations, while limited by edge capacities. The prob-
lem of makespan minimization of routing has been widely studied over the years. A long line of
work [10, 14, 19, 92, 99, 100, 117, 119, 120, 124, 131, 132, 135], starting with the seminal work
of Leighton, Maggs, and Rao [99], studies makespan minimization for routing along fixed paths.
The study of makespan minimization for routing (with the freedom to pick paths along which to
route) resulted in approximately-optimal routing, first for asymptotically-large packet sizes [14],
and then for all packet sizes [135].

It seems obvious at first that routing packets, as though they were physical commodities, is the
only way to solve network communication problems, such as multiple unicasts. Surprisingly,
however, results discovered in the 2000s [7] suggest that information need not flow through a
network like a physical commodity. For example, nodes might not just forward information, but

77

instead send out XORs of received packets. Multiple such XORs or linear combinations can then
be recombined at destinations to reconstruct any desired packets. An instructive example is to
look at the XOR C ⊕M of two s-bit packets, C and M . While it is also s bits long, one can use
it to reconstruct either all s bits of C or all s bits of M , as long as the other packet is given. Such
network coding operations are tremendously useful for network communication problems, but
they do not have a physical equivalent. Indeed, the C ⊕M packet would correspond to some s
ounces of a magic “café latte” liquid with the property that one can extract either s ounces of milk
or s ounces of coffee from it, as long as one has enough of the other liquid already. Over the last
two decades, many results demonstrating gaps between the power of network coding and routing
have been published (e.g., [7, 8, 25, 28, 43, 57, 62, 63, 76, 87, 97, 103, 138, 139, 140]). Attempts
to build a comprehensive theory explaining what is or is not achievable by going beyond routing
have given rise to an entire research area called network information theory.

The question asked in this chapter is:

“How much faster than routing can network coding be for any multiple-unicast instance?”

In other words, what is the (multiplicative) network coding gap for makespan of multiple uni-
casts. Surprisingly, no general makespan coding gap bounds were known prior to this work.
This is in spite of the vast amount of effort invested in understanding routing strategies for this
problem, and ample evidence of the benefits of network coding.

This question was studied in depth for the special case of asymptotically-large packet sizes, oth-
erwise known as throughput maximization (e.g., [3, 8, 75, 76, 85, 93, 97, 103, 103, 140, 141]).
Here, the maximum throughput of a multiple-unicast instance can be defined as supw→∞w/C(w),
where C(w) is the makespan of the fastest protocol for the instance after increasing all packet
sizes by a factor of w (see Section 5.5). In the throughput setting, no instances are known where
coding offers any advantage over routing, and this is famously conjectured to be the case for all
instances [75, 103]. This conjecture, if true, has been proven to have surprising connections to
various lower bounds [3, 5, 41]. Moreover, by the work Afshani et al. [5], a throughput coding
gap of o(log k) for all multiple-unicast instances with k unicast pairs (k-unicast instances, for
short) would imply explicit super-linear circuit lower bounds—a major breakthrough in com-
plexity theory. Such a result is currently out of reach, as the best known upper bound on through-
put coding gaps is O(log k), which follows easily from the same bound on multicommodity
flow/sparsest cut gaps [11, 106].

In this work we prove makespan coding gaps for the general problem of arbitrary packet sizes.
In particular, we show that this gap is at most O(log2 k) for any k-unicast instance (for the most
interesting case of similar-sized packet sizes). We note that any coding gap upper bound for this
more general setting immediately implies the same bound in the throughput setting (Section 5.5),
making our general bound only quadratically larger than the best known bound for the special
case of throughput. Complementing our results, we prove that there exist k-unicast instances
where the network coding gap is Ω(logc k) for some constant c > 0.

To achieve our results we develop novel techniques that might be of independent interest. The
need for such new tools is due to makespan minimization for general packet sizes needing to

78

take both source-sink distances as well as congestion issues into account. This is in contrast with
the throughput setting, where bounds must only account for congestion, since asymptotically-
large packet sizes make distance considerations inconsequential. For our more general problem,
we must therefore develop approaches that are both congestion- and distance-aware. One such
approach is given by a new combinatorial object we introduce, dubbed the moving cut, which
allows us to provide a universally optimal characterization of the coding makespan. That is, it
allows us to obtain tight bounds (up to polylog terms) on the makespan of any given multiple-
unicast instance. We note that moving cuts can be seen as generalization of prior approaches that
were (implicitly) used to prove unconditional lower bounds in distributed computing on specially
crafted networks [27, 122]; the fact they provide a characterization on all networks and instances
is novel. This underlies our main result—a polylogarithmic upper bound on the makespan coding
gap for any multiple-unicast instance.

5.1.1 Preliminaries

In this section we define the completion-time communication model. We defer the, slightly more
general, information-theoretic formalization to Section 5.6.

A multiple-unicast instanceM = (G,S) is defined over a communication network, represented
by an connected undirected graph G = (V,E) with capacity ce ∈ Z≥1 for each edge e. The
k , |S| sessions ofM are denoted by S = {(si, ti, qi)}ki=1. Each session consists of source node
si, which wants to transmit a packet to the sink ti, consisting of qi ∈ Z≥1 sub-packets. Without
loss of generality we assume that a uniform sub-packetization is used; i.e., all sub-packets have
the same size (think of sub-packets as the underlying data type, e.g., field elements or bits). For
brevity, we refer to an instance with k sessions as a k-unicast instance.

A protocol for a multiple-unicast instance is conducted over finitely-many synchronous time
steps. Initially, each source si knows its packet, consisting of di sub-packets. At any time step,
the protocol instructs each node v to send a different packet along each of its edges e. The packet
contents are computed with some predetermined function of packets received in prior rounds by
v or originating at v. Network coding protocols are unrestricted protocols, allowing each node to
send out any function of the packets it has received so far. On the other hand, routing protocols
are a restricted, only allowing a node to forward sub-packets which it has received so far or that
originate at this node.

We say a protocol for multiple-unicast instance has completion times (T1, T2, . . . , Tk) if for each
i ∈ [k], after Ti time steps of the protocol the sink ti can determine the di-sized packet of its
source si. The complexity of a protocol is determined by functions C : Rk

≥0 → R≥0 of its
completion times. For example, a protocol with completion times (T1, T2, . . . , Tk) has makespan
maxi∈[k] Ti and average completion time (

∑
i∈[k] Ti)/k. Minimizing these measures is a special

case of minimizing weighted `p norms of completion time, namely minimizing (
∑

i∈[k] wi ·T
p
i)1/p

for some ~w ∈ Rk and p ∈ R≥0.

Since coding protocols subsume routing ones, for any function C of completion times, and for
any multiple-unicast instance, the fastest routing protocol is no faster than the fastest coding

79

protocol. Completion-time coding gaps characterize how much faster the latter is.

Definition 5.1.1. (Completion-time coding gaps) For any function C : Rk
≥0 → R≥0 of com-

pletion times, the network coding gap for C for a k-unicast instance M = (G,S) is the
ratio of the smallest C-value of any routing protocol forM and the smallest C-value of any
network coding protocol forM.

We note that the multiple-unicast instance problem can be further generalized, so that each edge
has both capacity and delay, corresponding to the amount of time needed to traverse the edge.
This more general problem can be captured by replacing each edge e with a path with unit
delays of total length proportional to e’s delay. As we show, despite path length being crucially
important in characterizing completion times for multiple-unicast instances, this transformation
does not affect the worst-case coding gaps, which are independent of the network size (including
after this transformation). We therefore consider only unit-time delays in this chapter, without
loss of generality.

5.1.2 Our Contributions

In this work we show that completion-time coding gaps of multiple unicasts are vastly different
from their throughput counterparts, which are conjectured to be trivial (i.e., equal to one). For
example, while the throughput coding gap is always one for instances with k = 2 sessions [81],
for makespan it is easy to derive instances with k = 2 sessions and coding gap of 4/3 (based
on the butterfly network). Having observed that makespan coding gaps can in fact be nontriv-
ial, we proceed to study the potential asymptotic growth of such coding gaps as the network
parameters grow. We show that the makespan coding gap of multiple unicasts with k sessions
and packet sizes {di}i∈[k] is polylogarithmic in the problem parameters, k and

∑
i di/mini di,

but independent of the network size, n. The positive part of this result is given by the following
theorem.

Theorem 5.1.2. The network coding gap for makespan of any k-unicast instance is at most

O

(
log(k) · log

(∑
i

di/min
i
di

))
.

For similarly-sized packets, this bound simplifies to O(log2 k). For different-sized packets, our
proofs and ideas in [123] imply a coding gap of O(log k · log(nk)). Moreover, our proofs
are constructive, yielding for any k-unicast instance M a routing protocol which is at most
O(log k · log(

∑
i di/mini di)) and O(log k · log(nk)) times slower than the fastest protocol (of

any kind) forM. We note that our upper bounds imply the same upper bounds for throughput
(see Section 5.5). Our bounds thus also nearly match the best coding gap of O(log k) known for
this special case of makespan minimization.

On the other hand, we prove that a polylogarithmic gap as in Theorem 5.1.2 is inherent, by

80

providing an infinite family of multiple-unicast instances with unit-sized packets (di = 1 for all
i ∈ [k]) exhibiting a polylogarithmic makespan coding gap.

Theorem 5.1.3. There exists an absolute constant c > 0 and an infinite family of k-unicast
instances whose makespan coding gap is at least Ω(logc k).

Building on our results for makespan we obtain similar results to Theorems 5.1.2 and 5.1.3 for
average completion time and more generally for any weighted `p norm of completion times.

5.1.3 Techniques

Here we outline the challenges faced and key ideas needed to obtain our results, focusing on
makespan.

Upper Bounding the Coding Gap

As we wish to bound the ratio between the best makespan of any routing protocol and any coding
protocol, we need both upper and lower bounds for these best makespans. As it turns out, upper
bounding the best makespan is somewhat easier. The major technical challenge, and our main
contribution, is in deriving lower bounds on the optimal makespan of any given multiple-unicast
instance. Most notably, we formalize a technique we refer to as the moving cut. Essentially the
same technique was used to prove that distributed verification is hard on one particular graph
that was designed specifically with this technique in mind [27, 35, 122]. Strikingly, we show that
the moving cut technique gives an almost-tight characterization (up to polylog factors) of the
coding makespan for every multiple-unicast instance (i.e., it gives universally optimal bounds).

We start by considering several prospective techniques to prove that no protocol can solve an
instance in fewer than T rounds, and build our way up to the moving cut. For any multiple-unicast
instance, maxi∈[k] dist(si, ti), the maximum distance between any source-sink pair, clearly lower
bounds the coding makespan. However, this lower bound can be arbitrarily bad since it does
not take edge congestion into account; for example, if all source-sink paths pass through one
common edge. Similarly, any approach that looks at sparsest cuts in a graph is also bound to fail
since it does not take the source-sink distances into account.

Attempting to interpolate between both bounds, one can try to extend this idea by noting that a
graph that is “close” (in the sense of few deleted edges) to another graph with large source-sink
distances must have large makespan for routing protocols. For simplicity, we focus on instances
where all capacities and demands are one, i.e., ce = 1 for every edge e and di = 1 for all i, which
we refer to as simple instances. The following simple lemma illustrates such an approach.

Lemma 5.1.4. LetM = (G,S) be a simple k-unicast instance. Suppose that after deleting
some edges F ⊆ E, any sink is at distance at least T from its source; i.e., ∀i ∈ [k] we have
distG\F (si, ti) ≥ T . Then any routing protocol forM has makespan at least min {T, k/|F |}.

81

Proof. For any sets of flow paths between all sinks and source, either (1) all source-sink flow
paths contain at least one edge from F , incurring a congestion of k/|F | on at least one of these
|F | edges, or (2) there is a path not containing any edge from F , hence having a hop-length of at
least T . Either way, any routing protocol must take at least min{T, k/|F |} to route along these
paths.

Perhaps surprisingly, the above bound does not apply to general (i.e., coding) protocols. Consider
the instance in Figure 5.1. There, removing the single edge {S, T} increases the distance between
any source-sink pair to 5, implying any routing protocol’s makespan is at least 5 on this instance.
However, there exists a network coding protocol with makespan 3: Each source si sends its input
to its neighbor S and all sinks tj for i 6= j along the direct 3-hop path si − − − tj . Node S
computes the XOR of all inputs, passes this XOR to T who, in turn, passes this XOR to all sinks
tj , allowing each sink tj to recover its source sj’s packets by canceling all other terms in the
XOR.

S

T

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

Figure 5.1: A family of instances with k = 5 pairs of terminals and makespan coding gap of 5/3.
Thick edges represent paths of 3 hops, while thin (black and blue) edges represent single edges.
In other words, each of the k sources si has a path of 3 hops (in black and bold) connecting it
to every sink tj for all j 6= i. Moreover, all sources si neighbor a node S, which also neighbors
node T , which neighbors all sinks tj .

One can still recover a valid general (i.e., coding) lower bound by an appropriate strengthening of
Lemma 5.1.4: one has to require that all sources be far from all sinks in the edge-deleted graph.
This contrast serves as a good mental model for the differences between coding and routing
protocols.

Lemma 5.1.5. LetM = (G,S) be a simple k-unicast instance. Suppose that after deleting
some edges F ⊆ E, any sink is at distance at least T from any source; i.e., ∀iii, jjj ∈ [k] we
have distG\F (sisisi, tjtjtj) ≥ T . Then any (network coding) protocol forM has makespan at least
min {T, k/|F |}.

Proof. We can assume all sources can share information among themselves for free (e.g., via a
common controlling entity) since this makes the multiple-unicast instance strictly easier to solve;
similarly, suppose that the sinks can also share information. Suppose that some coding protocol
has makespan T ′ < T . Then all information shared between the sources and the sinks has to pass
through some edge in F at some point during the protocol. However, these edges can pass a total

82

of |F | · T ′ packets of information, which has to be sufficient for the total of k source packets.
Therefore, |F | · T ′ ≥ k, which can be rewritten as T ′ ≥ k/|F |. The makespan is therefore at
least T ′ ≥ min{T, k/|F |}.

Unfortunately, Lemma 5.1.5 is not always tight and it is instructive to understand when this hap-
pens. One key example is the previously-mentioned instance studied in the influential distributed
computing papers [27, 35, 122] (described in Figure 5.2), where congestion and dilation both
play key roles. Informally, this network was constructed precisely to give an Ω̃(

√
n) makespan

lower bound (leading to the pervasive Ω̃(
√
n + D) lower bound for many global problems in

distributed computing [27]). The intuitive way to explain the Ω̃(
√
n) lower bound is to say that

one either has to communicate along a path of length
√
n or all information needs to shortcut

significant distance over the tree, which forces all information to pass through near the top of
the tree, implying congestion of Ω̃(

√
n). Lemma 5.1.5, however, can at best certify a lower

bound of Ω̃(n1/4) for this instance. That is, this lemma’s (coding) makespan lower bound can be
polynomially far from the optimal coding protocol’s makespan.

Figure 5.2: The hard instance for distributed graph problems [27, 35, 122], as appears in [49].
The multiple-unicast instance has Θ(n) nodes and is composed of

√
n disjoint paths of length√

n and a perfectly balanced binary tree with
√
n leaves. The ith node on every path is connected

to the ith leaf in the tree. There are
√
n sessions with si, ti being the first and last node on the

ith path. All capacities and demands are one. The graph’s diameter is Θ(log n), but its coding
makespan is Ω̃(

√
n). Figure taken from Ghaffari and Haeupler [49].

A more sophisticated argument is needed to certify the Ω̃(
√
n) lower bound for this specific

instance. The aforementioned papers [27, 35, 122] prove their results by implicitly using the
technique we formalize as our moving cut in the following definition and lemma (proven in
Section 5.2.1).

Definition 5.1.6. (Moving cut) LetG = (V,E) be a communication network with capacities
c : E → Z≥1 and let {(si, ti) | i ∈ [k]} be source-sink pairs. A moving cut is an assignment
` : E → Z≥1 of positive integer lengths to edges of G. We say the moving cut has capacity
C, if

∑
e∈E ce(`e − 1) = C, and distance T , if all sinks and sources are at distance at least

T with respect to `; i.e., ∀i, j ∈ [k] we have d`(si, tj) ≥ T .

83

Lemma 5.1.7. Let M = (G,S) be a unicast instance which admits a moving cut ` of
capacity strictly less than

∑
i∈[k] di and distance T . Then any (coding) protocol forM has

makespan at least T .

Lemma 5.1.7 can be seen as a natural generalization of Lemma 5.1.5, which can be equivalently
restated in the following way: “Suppose that after increasing each edge e’s length from one to
`e ∈ {111,T + 1T + 1T + 1}, we have that (1)

∑
e∈E ce(`e − 1) <

∑k
i=1 di, and (2) dist`(si, tj) ≥ T . Then

any (coding) protocol M has makespan at least T”. Dropping the restriction on `e recovers
Lemma 5.1.7.

Strikingly, the moving cut technique allows us not only to prove tight bounds (up to polylog
factors) for the instance of Figure 5.2—it allows us to get such tight bounds for every multiple-
unicast instance. In order to upper bound the makespan coding gap, we therefore relate such a
moving cut with the optimal routing makespan, as follows.

To characterize the optimal routing makespan, we study hop-bounded multicommodity flow,
which is an LP relaxation of routing protocols of makespan T . First, we show that a fractional
LP solution of high value to this LP implies a routing with makespan O(T). Conversely, if the
optimal value of this LP is low, then by strong LP duality this LP’s dual has a low-valued solution,
which we us to derive a moving cut and lower bound the coding makespan. Unfortunately, the
dual LP only gives us bounds on (average) distance between source-sink pairs (si, ti), and not
between all sources si and sinks tj (including j 6= i), as needed for moving cuts. For this
conversion to work, we prove a generalization of the main theorem of Arora, Rao and Vazirani
[9] to general metrics, of possible independent interest. (See Section 5.2.3.) This allows us to
show that a low-valued dual solution implies a moving cut certifying that no coding protocol has
makespan less than T/O(log k · log(

∑
i di/mini di)). As the above rules out low-valued optimal

solutions to the LP for T = T ∗ · O(log k · log(
∑

i di/mini di)) with T ∗ the optimal coding
makespan, the LP must have high optimal value, implying a routing protocol with makespan
O(T), and thus our claimed upper bound on the makespan coding gap.

Lower Bounding the Coding Gap

To complement our polylogarithmic upper bound on the makespan gap, we construct a family of
multiple-unicast instancesM that exhibit a polylogarithmic makespan coding gap. We achieve
this by amplifying the gap via graph products, a powerful technique that was also used in prior
work to construct extremal throughput network coding examples [15, 18, 110]. Here we outline
this approach, as well as the additional challenges faced when trying to use this approach for
makespan.

We use a graph product introduced by Braverman et al. [18] (with some crucial modifications).
Braverman et al. [18] use their graph product to prove a conditional throughput coding gap
similar to the one of Theorem 5.1.3, conditioned on the (unknown) existence of a multiple-
unicast instance I with non-trivial throughput coding gap. The graph product of [18] takes
instances I1, I2 and intuitively replaces each edge of I1 with a source-sink pair of a different
copy of I2. More precisely, multiple copies of I1 and I2 are created and interconnected. Edges

84

of a copy of I1 are replaced by the same session of different copies of I2; similarly, sessions
of a copy of I2 replace the same edge in different copies of I1. This product allows for coding
protocols in I1 and I2 to compose in a straightforward way to form a fast coding protocol in the
product instance. The challenge is in proving impossibility results for routing protocols, which
requires more care in the definition of the product graph.

To address this challenge, copies of instances are interconnected along a high-girth bipartite
graph to prevent unexpectedly short paths from forming after the interconnection. For example,
to prove a throughput routing impossibility result, Braverman et al. [18] compute a dual of the
multicommodity flow LP (analogous to our LP, but without any hop restriction) to certify a limit
on the routing performance. In the throughput setting, a direct tensoring of dual LP solutions
of I1 and I2 gives a satisfactory dual solution of the product instance. In more detail, a dual LP
solution in I assigns a positive length `I(e) to each edge in I; each edge of the product instance
corresponds to two edges e1 ∈ I1 and e2 ∈ I2, and the direct tensoring `+((e1, e2)) = `I1(e1) ·
`I2(e2) provides a feasible dual solution with an adequate objective value. To avoid creating
edges in the product distance of zero `+-length, they contract edges assigned length zero in the
dual LP of either instance. Unfortunately for us, such contraction is out of the question when
studying makespan gaps, as such contractions would shorten the hop length of paths, possibly
creating short paths with no analogues in the original instance.

Worse yet, any approach that uses the dual of our T -hop-bounded LP is bound to fail in the
makespan setting. To see why, suppose we are given two instances I1, I2, both of which have
routing makespan at least T and expect that the product instance I+ to have routing makespan
at least T 2 by some construction of a feasible dual LP solution. Such a claim cannot be directly
argued since a source-sink path in the product instance that traverses, say, T − 1 different copies
of I2 along a path of hop-length T + 1 in I2 could carry an arbitrary large capacity! This is
since the hop-bounded LP solution on I2 only takes short paths, of hop-length at most T , into
account. Since there is no direct way to compose the dual LP solutions, we are forced to use a
different style of analysis from the one of [18], which in turn forces our construction to become
considerably more complicated.

To bound the routing makespan in the product instance we rely on Lemma 5.1.4: We keep a list
of edges F along with each instance and ensure that (i) all source-sink distances in the F -deleted
instance are large and that (ii) the ratio of the number of sessions k to |F | is large. We achieve
property (i) by interconnecting along a high-girth graph and treating the replacements of edges
in F in a special way (hence deviating from the construction of [18]). Property (ii) is ensured by
making the inner instance I2 significantly larger than the outer instance I1, thus requiring many
copies of I1 and resulting in a large number of sessions in the product graph. To allow for this
asymmetric graph product, we need an infinite number of base cases with non-trivial makespan
coding gap for our recursive constructions (rather than a single base instance, as in the work of
Braverman et al. [18]). This infinite family is fortunately obtained by appropriately generalizing
the instance of Figure 5.1.

The main challenge in our approach becomes controlling the size of the product instance. To
achieve this, we affix to each instance a relatively complicated set of parameters (e.g., coding
makespan, number of edges, number of sessions, etc.) and study how these parameters change

85

upon applying the graph product. Choosing the right set of parameters is key—they allow us to
properly quantify the size escalation. In particular, we show that the coding gap grows doubly-
exponentially and the size of the instances grow triply-exponentially, yielding the desired poly-
logarithmic coding gap.

5.1.4 Related Work

This work ties in to many widely-studied questions. We outline some of the most relevant here.

Routing multiple unicasts. Minimizing the makespan of multiple unicasts using routing has
been widely studied. When packets must be routed along fixed paths, two immediate lower
bounds on the makespan emerge: dilation, the maximum length of a path, and congestion, the
maximum number of paths crossing any single edge. A seminal result of Leighton et al. [99]
proves one can route along such fixed paths inO(congestion+dilation) rounds, making the result
optimal up to constants. Follow ups include works improving the constants in the above bound
[119, 132], computing such protocols [100], simplifying the original proof [131], routing in
distributed models [117, 124], and so on. When one has the freedom to choose paths, Bertsimas
and Gamarnik [14] gave near-optimal routing solutions for asymptotically-large packet sizes,
later extended to all packet sizes by Srinivasan and Teo [135]. The power of routing for multiple
unicasts is therefore by now well understood.

Network coding gains. The utility of network coding became apparent after Ahlswede et al.
[7] proved it can increase the (single multicast) throughput of a communication network. Fol-
lowing their seminal work, there emerged a vast literature displaying the advantages of network
coding over routing for various measures of efficiency in numerous communication models, in-
cluding for example energy usage in wireless networks [43, 57, 139], delay minimization in
repeated single unicast[25, 138], and makespan in gossip protocols [28, 62, 63]. The throughput
of a single multicast (i.e., one single node sending to some set of nodes), arguably the simplest
non-trivial communication task, was also studied in great detail (e.g., [6, 7, 79, 83, 104, 105]). In
particular, Agarwal and Charikar [6] showed that the throughput coding gap for a single multi-
cast equals the integrality gap of natural min-weight Steiner tree relaxations, for which non-trivial
bounds were known (see, e.g., [71, 142]). While the throughput coding gap for a single multi-
cast is now fairly well understood, the case of multiple senders seems to be beyond the reach of
current approaches.

Throughput gaps for multiple unicasts. The routing throughput for multiple unicasts is cap-
tured by multicommodity max-flow, while the coding throughput is clearly upper bounded by
the sparsest cut. Known multicommodity flow-cut gap bounds therefore imply the through-
put coding gap for k unicasts is at most O(log k) [11, 106], and less for special families of
instances [22, 23, 24, 91, 94, 98, 127]. In 2004 Li and Li [103] and Harvey et al. [75] inde-
pendently put forward the multiple-unicast conjecture, which asserts that the throughput coding

86

gap is trivial (i.e., it is one). This conjecture was proven true for numerous classes of instances
[3, 81, 85, 93, 116]. More interestingly, a positive resolution of this conjecture has been shown
to imply unconditional lower bounds in external memory algorithm complexity [3, 41], com-
putation in the cell-probe model [3], and (recently) an Ω(n log n) circuit size lower bound for
multiplication of n-bit integers [5] (matching an even more recent breakthrough algorithmic re-
sult for this fundamental problem [74]). Given this last implication, it is perhaps not surprising
that despite attempts by many prominent researchers [8, 76, 85, 97, 103, 140, 141], the conjec-
ture remains open and has established itself as a notoriously hard open problem. Indeed, even
improving the O(log k) upper bound on throughput coding gaps seems challenging, and would
imply unconditional super-linear circuit size lower bounds, by the work of Afshani et al. [5].
Improving our upper bound on makespan coding gaps to o(log k) would directly imply a similar
improvement for throughput coding gaps, together with these far-reaching implications.

5.2 Upper Bounding the Coding Gap

In this section we prove Theorem 5.1.2, upper bounding the makespan network coding gap.
Given a multiple-unicast instance M we thus want to upper bound its routing makespan and
lower bound its coding makespan. To characterize these quantities we start with a natural hop-
bounded multicommodity flow LP, CONCURRENTFLOWM(T), which serves as a “relaxation”
of routing protocols of makespan at most T . The LP, given in Figure 5.3, requires sending a flow
of magnitude z · di between each source-sink pair (si, ti), with the additional constraints that (1)
the combined congestion of any edge e is at most T · ce where ce is the capacity of the edge (as
only ce packets can use this edge during any of the T time steps of a routing protocol), and (2)
the flow is composed of only short paths, of at most T hops. Specifically, for each i ∈ [k], we
only route flow from si to ti along paths in Pi(T) , {p : si ti | |p| ≤ T, p is simple}, the set
of simple paths of hop-length at most T connecting si and ti in G.

Primal: CONCURRENTFLOWM(T) Dual: CUTM(T)
maximize z minimize T ·

∑
e∈E ce`e

subject to: subject to:
∀i ∈ [k]:

∑
p∈Pi(T) fi(p) ≥ z · di ∀i ∈ [k], p ∈ Pi(T):

∑
e∈p `e ≥ hi

∀e ∈ E:
∑

p3e fi(p) ≤ T · ce
∑

i∈[k] dihi ≥ 1

∀i ∈ [k], p: fi(p) ≥ 0 ∀e ∈ E: `e ≥ 0
∀i ∈ [k]: hi ≥ 0

Figure 5.3: The concurrent flow LP relaxation and its dual.

A routing protocol solving M in T rounds yields a solution to CONCURRENTFLOWM(T) of
value z = 1, almost by definition.1 A partial converse is also true; a feasible solution to CON-
CURRENTFLOWM(T) of value at least Ω(1) implies a routing protocol forM in timeO(T). This
can be proven using standard LP rounding [135] and O(congestion + dilation) path routing [99].
(See Section 5.7.)

1Such a protocol must send di packets along paths of length at most T between each sour-sink pair (si, ti), and
it can send at most ce packets through each edge e during any of the T rounds, or at most ce · T packets overall.

87

Proposition 5.2.1. Let z, {fi(p) | i ∈ [k], p ∈ Pi(T)} be a feasible solution for CONCURRENTFLOWM(T).
Then there exists an integral routing protocol with makespan O(T/z).

Complementing the above, we show that a low optimal LP value for CONCURRENTFLOWM(T)
implies that no coding protocol can solve the instance in much less than T time.

Lemma 5.2.2. If the optimal value of CONCURRENTFLOWM(T) is at most z∗ ≤ 1/10, then
the coding makespan forM is at least T/(C ·log(k)·log (

∑
i di/mini di)) for some constant

C > 0.

Before outlining our approach for proving Lemma 5.2.2, we show why this lemma together with
Proposition 5.2.1 implies our claimed upper bound for the makespan network coding gap.

Theorem 5.1.2. The network coding gap for makespan of any k-unicast instance is at most

O

(
log(k) · log

(∑
i

di/min
i
di

))
.

Proof. Fix a multiple-unicast instance M. Let T ∗ be the minimum makespan for any coding
protocol forM. Let T = (C + 1) · T ∗ · (log(k) · log(

∑
i di/mini di)) for C as in Lemma 5.2.2.

Then, the LP CONCURRENTFLOWM(T) must have optimal value at least z∗ ≥ 1/10, else by
Lemma 5.2.2 and our choice of T , any coding protocol has makespan at least T/O(log(k) ·
log(

∑
i di/mini di)) > T ∗, contradicting the definition of T ∗. But then, by Proposition 5.2.1,

there exists a routing protocol with makespan O(T/z∗) = O(T ∗ · log(k) · log(
∑

i di/mini di).
The theorem follows.

The remainder of the section is dedicated to proving Lemma 5.2.2. That is, proving that a low
optimal value for the LP CONCURRENTFLOWM(T) implies a lower bound on the makespan
of any coding protocol for M. To this end, we take a low-valued LP solution to the dual LP
CUTM(T) (implied by strong LP duality) and use it to obtain an information-theoretic certificate
of impossibility, which we refer to as a moving cut. Section 5.2.1 introduces a framework to
prove such certificates of impossibility, which we show completely characterizes any instance’s
makespan (up to polylog terms). We then explain how to transform a low-value dual LP solution
to such a moving cut in Section 5.2.2. For this transformation, we prove a lemma reminiscent of
Arora et al. [9, Theorem 1] for general metrics, in Section 5.2.3.

5.2.1 Moving Cuts: Characterizing Makespan

In this section we prove that moving cuts characterize the makespan of a multiple unicast in-
stance. For ease of reference, we re-state the definition of moving cuts.

Definition 5.1.6. (Moving cut) LetG = (V,E) be a communication network with capacities
c : E → Z≥1 and let {(si, ti) | i ∈ [k]} be source-sink pairs. A moving cut is an assignment

88

` : E → Z≥1 of positive integer lengths to edges of G. We say the moving cut has capacity
C, if

∑
e∈E ce(`e − 1) = C, and distance T , if all sinks and sources are at distance at least

T with respect to `; i.e., ∀i, j ∈ [k] we have d`(si, tj) ≥ T .

We start by proving Lemma 5.1.7, whereby moving cuts with small capacity and large distance
imply makespan lower bounds.

Lemma 5.1.7. Let M = (G,S) be a unicast instance which admits a moving cut ` of
capacity strictly less than

∑
i∈[k] di and distance T . Then any (coding) protocol forM has

makespan at least T .

Proof. We will show via simulation that a protocol solvingM in at most T − 1 rounds would
be able to compress

∑k
i=1 di random bits to a strictly smaller number of bits, thereby lead-

ing to a contradiction. Our simulation proceeds as follows. We have two players, Alice and
Bob, who control different subsets of nodes. In particular, if we denote by Ar , {v ∈ V |
mini dist`(si, v) ≤ r} the set of nodes at distance at most r from any source, then during any
round r ∈ {0, 1, . . . , T − 1} all nodes in Ar are “spectated” by Alice. By spectated we mean
that Alice gets to see all of these nodes’ private inputs and received transmissions during the first
r rounds. Similarly, Bob, at time r, spectates Br , V \ Ar. Consequently, if at round r a node
u ∈ V spectated by Alice sends a packet to a node v ∈ V , then Bob will see the contents of
that packet if and only if Bob spectates the node v at round r + 1. That is, this happens only if
u ∈ Ar and v ∈ Br+1 = V \ Ar+1. Put otherwise, Bob can receive a packet from Alice along
edge e during times r ∈ [mini dist`(si, u),mini dist`(si, v)−1]. Therefore, the number of rounds
transfer can happen along edge e is at most mini dist`(si, v) − mini dist`(si, u) − 1 ≤ `e − 1.
Hence, the maximum number of bits transferred from Alice to Bob via e is ce(`e− 1). Summing
up over all edges, we see that the maximum number of bits Bob can ever receive during the sim-
ulation is at most

∑
e∈E ce(`e − 1) <

∑k
i=1 di. Now, suppose Alice has some

∑k
i=1 di random

bits. By simulating this protocol with each source si having (a different) di of these bits, we find
that if all sinks receive their packet in T rounds, then Bob (who spectates all tj at time T − 1, as
mini dist`(si, tj) ≥ T for all j) learns all

∑k
i=1 di random bits while receiving less than

∑k
i=1 di

bits from Alice—a contradiction.

Lemma 5.1.7 suggests the following recipe for proving makespan lower bounds: Prove a lower
bound on the makespan of some sub-instance M′ = (G,S ′) with S ′ ⊆ S induced by indices
I ⊆ [k] using Lemma 5.1.7. As any protocol solving M solves M′, a lower bound on the
makespan ofM′ implies a lower bound on the makespan ofM. So, to prove makespan lower
bounds forM, identify a moving cut for some sub-instance ofM. If this moving cut has capacity
less than the sum of demands of the sub-instance and distance at least T , then the entire instance,
M, has makespan at least T .

By the above discussion, the worst distance of a (low capacity) moving cut over any sub-instance
serves as a lower bound on the makespan of any instance. The following lemma, whose proof
is deferred to the end of Section 5.2.2, asserts that in fact, the highest distance of a moving
cut over any sub-instance is equal (up to polylog terms) to the best routing makespan of M.

89

Consequently, by Theorem 5.1.2, the strongest lower bound obtained using moving cuts is equal
up to polylog terms to the optimal (coding) makespan forM.

Lemma 5.2.3. If a k-unicast instance M has no routing protocol with makespan T , then
there exists a set of sessions I ⊆ [k] with a moving cut of capacity strictly less than

∑
i∈I di

and distance at least T/O(log k · (
∑

i di/mini di)) with respect to the unicast sub-instance
induced by I .

We now turn to leveraging moving cuts to prove makespan lower bounds. Specifically, Lemma 5.2.2.

5.2.2 From Dual Solution to Moving Cut

Proposition 5.2.1 shows that high objective value for the primal LP, CONCURRENTFLOWM(T)
implies an upper bound on the routing time for the given instance. In this section we prove the
“converse”, Lemma 5.2.2, whereby low objective value of the primal LP implies a lower bound
on the coding time for the given instance.

Our approach will be to prove that a low objective value of the primal LP —implying a fea-
sible dual LP solution of low value—yields a moving cut for some sub-instance. This, by
Lemma 5.1.7, implies a lower bound on protocols for this sub-instance, and thus for the en-
tire instance, from which we obtain Lemma 5.2.2. We turn to converting a low-valued dual LP
solution to such a desired moving cut.

By definition, a low-value feasible solution to the dual LP, CUTM(T), assigns non-negative
lengths ` : E → R≥0 such that (1) the c-weighted sum of `-lengths is small, i.e.,

∑
e∈E ce`e =

Õ(1/T), as well as (2) if hi is the `-length of the T -hop-bounded `-shortest path between si and
ti, then

∑
i∈[k] di · hi ≥ 1. Property (1) implies that appropriately scaling the lengths ` yields a

moving cut given by lengths ˜̀of bounded capacity,
∑

e ce
˜̀
e. For this moving cut to be effective

to lower bound the makespan of some sub-instance using Lemma 5.1.7, the cut must have high
distance w.r.t. this sub-instance. As a first step to this end, we use Property (2) to identify a
subset of source-sink pairs I ⊆ [k] with pairwise ˜̀-distance at least Ω̃(T). Claim 5.2.4, proven
in Section 5.7 using a “continuous” bucketing argument, does just this. The claim introduces a
loss factor αgap that we use throughout this section.

Claim 5.2.4. Given sequences h1, . . . , hk, d1, . . . , dk ∈ R≥0 with
∑

i∈[k] di · hi ≥ 1 there ex-

ists a non-empty subset I ⊆ [k] with mini∈I hi ≥ 1
αgap·

∑
i∈I di

for αgap ∈
[
1, O

(
log

∑
i∈[k] di

mini∈[k] di

)]
.

Scaling up the ` lengths yields a sub-instance induced by pairs I ⊆ [k] and moving cut with
bounded capacity and with ˜̀-distance between every source and its sink of at least Ω̃(T), i.e.,
d˜̀(si, ti) ≥ Ω̃(T) for all i ∈ I . However, Lemma 5.1.7 requires ˜̀-distance Ω̃(T) between any
source and sink, i.e., d˜̀(si, tj) ≥ Ω̃(T) for all i, j ∈ I . To find a subset of source-sink pairs with
such distance guarantees, we rely on the following metric decomposition lemma, whose proof is
deferred to Section 5.2.3.

90

Lemma 5.2.5. Let (X, d) be a metric space. Given n pairs {(si, ti)}i∈[n] of points in X with
at most k distinct points in

⋃
i{si, ti} and pairwise distances at least d(si, ti) ≥ T , there

exists a subset of indices I ⊆ [n] of size |I| ≥ n
9

such that d(si, tj) ≥ T
O(log k)

for all i, j ∈ I .
Moreover, such a set can be computed in polynomial time.

We are now ready to construct the moving cut.

Lemma 5.2.6. If the optimal value of CONCURRENTFLOWM(T) is at most z∗ ≤ 1/10,
then there exists Ĩ ⊆ [k] and a moving cut ˜̀ of capacity strictly less than

∑
i∈Ĩ di and

distance at least T/O(αgap log k) with respect to the unicast sub-instance induced by Ĩ (i.e.,
M̃ = (G, S̃) where S̃ = {(si, ti, di)}i∈Ĩ).

Proof. By strong duality, the dual LP CUTM(T) has a feasible solution {hi, `e | i ∈ [k], e ∈ E}
to CUTM(T) with objective value T

∑
e∈E ce`e = z∗. Fix such a solution. Let I ⊆ [k] be a

subset of indices as guaranteed by Claim 5.2.4. Define ˜̀
e , 1 + b`e · T ·

∑
i∈I dic for all e ∈ E

and note that ˜̀
e ∈ Z≥1. By definition of ˜̀and T

∑
e ce`e = z, we get a bound on the capacity of

˜̀: ∑
e∈E

ce(˜̀
e − 1) ≤

∑
e

ce`e · T ·
∑
i∈I

di = z∗ ·
∑
i∈I

di ≤
1

10

∑
i∈I

di <
1

9

∑
i∈I

di.

We now show that d˜̀(si, ti) > T/αgap for all i ∈ I . Consider any simple path p between si ti.
Denote by ˜̀(p) and `(p) the length with respect to ˜̀ and `, respectively. It is sufficient to show
that ˜̀(p) > T/αgap. If p 6∈ Pi(T), i.e., the hop-length of p (denoted by |p|) is more than T . Then
˜̀(p) ≥ |p| > T ≥ T/αgap, since ˜̀

e ≥ 1 ∀e ∈ E. Conversely, if p ∈ Pi(T), then by our choice of
I as in Claim 5.2.4 and the definition of hi, we have that `(p) ≥ hi ≥ 1

αgap
∑
i∈I di

, hence

˜̀(p) ≥ `(p) · T ·
∑
i∈I

di =
1

αgap

∑
i∈I di

· T ·
∑
i∈I

di = T/αgap.

Finally, we choose a subset Ĩ ⊆ I s.t. d˜̀(si, tj) > T/O(αgap log k) for all i, j ∈ Ĩ . By
Lemma 5.2.5 applied to the graphic metric defined by ˜̀ and each pair (si, ti) repeated di times,
there exists a multiset of indices Ĩ ⊆ I ⊆ [k] such that d˜̀(si, tj) ≥ T/O(αgap log k) for all
i, j ∈ Ĩ and such that |Ĩ| ≥

∑
i di/9. Therefore, taking each pair (si, ti) indexed by Ĩ at least

once, we find a subset of sessions Ĩ ⊆ [k] such that
∑

i∈Ĩ di ≥
1
9

∑
i∈[k] di >

∑
e ce · (˜̀

e − 1)

and d˜̀(si, tj) ≥ T/O(αgap log k) for all i, j ∈ Ĩ . In other words, ˜̀ is a moving cut of capacity
strictly less than

∑
i∈Ĩ di and distance T/O(αgap log k) with respect to the sub-instance induced

by Ĩ .

Combining Lemma 5.2.6 with Lemma 5.1.7, we obtain this section’s main result, Lemma 5.2.2.

91

Lemma 5.2.2. If the optimal value of CONCURRENTFLOWM(T) is at most z∗ ≤ 1/10, then
the coding makespan forM is at least T/(C ·log(k)·log (

∑
i di/mini di)) for some constant

C > 0.

Remark 1. We note that the log k term in Lemma 5.2.2’s bound is due to the log k term in the
bound of Lemma 5.2.5. For many topologies, including genus-bounded and minor-free networks,
this log k term can be replaced by a constant (see Section 5.2.3), implying smaller makespan gaps
for such networks.

Remark 2. Lemma 5.2.3, which states that a lower bound on routing makespan implies the ex-
istence of a moving cut of high distance with respect to some sub-instance, follows by Lemma 5.2.6
and Proposition 5.2.1, as follows. By Proposition 5.2.1, M having no routing protocol with
makespan T implies that for some constant c > 0, the LP CONCURRENTFLOWM(c · T) has
objective value at most 1/10. Lemma 5.2.6 then implies the existence of the moving cut claimed
by Lemma 5.2.3.

5.2.3 From Pairwise to All-Pairs Distances

This section is dedicated to a discussion and proof of the following Lemma that seems potentially
useful beyond the scope of this chapter.

Lemma 5.2.5. Let (X, d) be a metric space. Given n pairs {(si, ti)}i∈[n] of points in X with
at most k distinct points in

⋃
i{si, ti} and pairwise distances at least d(si, ti) ≥ T , there

exists a subset of indices I ⊆ [n] of size |I| ≥ n
9

such that d(si, tj) ≥ T
O(log k)

for all i, j ∈ I .
Moreover, such a set can be computed in polynomial time.

We note that the above lemma is similar to the main Theorem of Arora et al. [9]. Our result holds
for general metrics with a factor of O(log k) in the distance loss, while their holds for `2

2 metrics
with a factor of O(

√
log k). The results are incomparable and both are tight. (The tightness

of Lemma 5.2.5 can be shown to be tight for graph metrics, for example in graph metrics of
constant-degree expanders.)

To prove Lemma 5.2.5 we rely on padded decompositions [61]. To define these, we introduce
some section-specific notation. Let (X, dist) be a metric space. Let the (weak) diameter of
a set of points U ⊆ X be denoted by diam(U) , maxx,y∈U dist(x, y). We say a partition
P = {X1, X2, . . . , Xt} of X is ∆-bounded if diam(Xi) ≤ ∆ for all i. Next, for U ⊆ X and a
partition P as above, we denote by U ⊆ P the event that there exists a part Xi ∈ P containing
U in its entirety; i.e., U ⊆ Xi. Let B(x, ρ) , {y ∈ X | dist(x, y) ≤ ρ} denote the ball of radius
ρ ≥ 0 around x ∈ X .

92

Definition 5.2.7. Let (X, dist) be a metric space. We say that a distribution P over ∆-
bounded partitions of X is (β,∆)-padded if, for some universal constant δ, it holds that for
every x ∈ X and 0 ≤ γ ≤ δ,

Pr
P∼P

[B(x, γ∆) 6⊆ P] ≤ βγ.

In words, each part of the partition has diameter at most ∆ and the probability of any point x in
the metric being at distance less than γ∆ from a different part than its own part is at most βγ.
Such decompositions were presented, for example, by Gupta et al. [61].

Lemma 5.2.8 ([61]). Any metric (X, dist) on k points admits a (β,∆)-padded decomposi-
tion, for any ∆ > 0 and some β = O(log k). Such a decomposition can be computed in
polynomial time.

We are now ready to prove Lemma 5.2.5.

Proof of Lemma 5.2.5. First note that we can focus on the metric space induced by the k distinct
points. Let P be a ∆-bounded β-padded decomposition with ∆ = T − 1 and β = O(log k). We
first note that for all i ∈ [k], si and ti are contained in different parts since the diameter of each
part Xi is at most ∆ = T − 1 and dist(si, ti) ≥ T . Furthermore, letting γ = 1

2β
, we have that

Pr[B(si, γ∆) ⊆ P] ≥ 1
2
. Let I ′ ⊆ [n] be the subset of indices i with B(si, γ∆) ⊆ P . Then we

have Pr[i ∈ I ′] ≥ 1
2

for all i ∈ [n].

Flip a fair and independent coin for each part in P . Let U ⊆ X be the set of points in parts whose
coin came out heads, and V ⊆ X be the analogous set for tails. Then for each i ∈ I ′ we have
that Pr[si ∈ U and ti ∈ V] = 1

4
. Let I ⊆ I ′ be the subset of indices i with si ∈ U and ti ∈ V ,

giving Pr[i ∈ I] = Pr[i ∈ I ′] · Pr[i ∈ I | i ∈ I ′] = 1
2
· 1

4
= 1

8
∀i ∈ [n]. We also have that

dist(si, tj) > ρ = T−1
2β

for all i, j ∈ I , since B(si, ρ) ⊆ U for all i ∈ I ⊆ I ′ and {tj}j∈I ∩U = ∅.
Therefore, this random process yields a subset of indices I ⊆ [n] such that dist(si, tj) > T−1

2β

for all i, j ∈ I , of expected size at least E[|I|] ≥
∑

i∈[n] Pr[i ∈ I] ≥ n
8
. As n − E[|I|] is a non-

negative random variable, Markov’s inequality implies that with constant probability n − |I| ≤
64
63
· (n− E[|I|]) ≤ 8n

9
. The lemma follows.

Remark: The O(log k) term in Lemma 5.2.5’s bound is precisely the smallest possible β for
which (β,∆)-padded decompositions of the metric exist. For many graphic metrics, such as
those of minor-excluded, bounded-genus, and bounded-doubling-dimension networks, padded
decompositions with smaller β exist [2, 61, 98]. This improves the bounds of Lemma 5.2.5 and
thus Lemma 5.2.2 by (log k)/β, implying the same improvement for our makespan coding gaps
for such networks.

93

5.3 Chapter Appendix: Polylogarithmic Coding Gap Instances

In this section we construct a family of multiple-unicast instances with polylogarithmic makespan
coding gap. More precisely, we construct instances where the coding gap is at least (5/3)2i and
the size (both the number of edges and sessions) is bounded by 22O(2i) . Here we give a bird’s
eye view of the construction and leave the details to subsequent subsections. We clarify that all
big-O bounds like f = O(g) mean there exists a universal constant c > 0 s.t. f ≤ c · g for all
admissible values (in particular, there is no assumption on f or g being large enough).

We use the graph product of [18] as our main tool. Given two multiple-unicast instances I1, I2

(called the outer and inner instance, resp.) we create a new instance I+ where the coding gap is
the product of the coding gaps of I1 and I2. The product is guided by a colored bipartite graph
B = (V1, V2, E) where each edge is labeled by (χ1, χ2) = (edge in I1, session in I2). Precisely,
we create |V1| copies of I1, |V2| copies of I2 and for each edge (a, b) ∈ E(B) with label (χ1, χ2)
we replace the edge χ1 in the ath copy of I1 with session χ2 in the bth copy of I2.

To prove a lower bound on the coding gap, one needs to upper bound the coding makespan and
lower bound the coding makespan. The former is easy: the coding protocols nicely compose.
The latter, however, is more involved. Our main tool is Lemma 5.1.4, which necessitates (i)
keeping track of cut edges F along each instance I such that all source-sink pairs of I are well-
separated after edges in F are deleted, and (ii) keeping the ratio r , k

|F | , number of sessions to
cut edges, high. We must ensure that the properties are conserved in the product instance I+.
For (i), i.e., to disallow any short paths from forming as an unexpected consequence of the graph
product, we choose B to have high girth. Also, we replace edges F in the outer instances with
paths rather than connecting them to a session in the inner instance. Issue (ii) is somewhat more
algebraically involved but boils down to ensuring that the ratio of sessions to cut edges (i.e., r)
in the inner instance is comparable to the size (i.e., number of edges) of the outer instance itself.
Note that makes the size of the outer instance I1 insignificant when compared to the size of the
inner instance I2.

We recursively define a family of instances by parametrizing them with a “level” i ≥ 0 and a
lower bound on the aforementioned ratio r, denoting them by I(i, r). We start for i = 0 with the
5/3 instance of Figure 5.1 where we can control the ratio the aforementioned ratio r by changing
the number of sessions k (at the expense of increasing the size). Subsequently, an instance on
level i is defined as a product two of level i−1 instances with appropriately chosen parameters r.
One can show that the coding makespan for a level i instance is at most 52i and routing makespan
is at least 32i , hence giving a coding gap of (5/3)2i . Furthermore, we show that the size of I(i, r)

is upper bounded by r2O(2i) , giving us the full result.

Finally, we note an important optimization to our construction and specify in more detail how
I(i, r) is defined. Specifically, it is defined as the product of I1 , I(i − 1, 3r) being the outer
instance and I2 , I(i− 1,m1/f1) being the inner instance, where m1 and f1 are the number of
total and cut edges of I1. This necessitates the introduction and tracking of another parameter
u , m/f to guide the construction. We remark that this might be necessary since if one uses a
looser construction of I2 , I(i − 1,m1) the end result I(i, r) would be of size r2O(i·2i) and give

94

a coding gap of exp
(

log log k
log log log k

)
, just shy of a polylogarithm.

5.3.1 Gap Instances and Their Parameters

In this section we formally define the set of instance parameters we will track when combining
the instances.

A gap instance I = (G,S, F) is a multiple-unicast instance M = (G,S) over a connected
graph G, along with an associated set of cut edges F ⊆ E(G). We only consider gap instances
where the set of terminals is disjoint, i.e., si 6= sj, si 6= tj, ti 6= tj for all i 6= j. Furthermore,
edge capacities and demands are one; i.e., ce = 1 ∀e ∈ E(G), and di = 1 ∀(si, ti, di) ∈ S . A
gap instance I = (G,S, F) has parameters (a, b, f, k,m, r, u) when:

• M admits a network coding protocol with makespan at most a.
• Let distG\F (·, ·) be the hop-distance in G after removing all the cut edges F . Then for all

terminals i ∈ [k] we have that distG\F (si, ti) ≥ b.
• The number of cut edges is f = |F |.
• The number of sessions is k = |S|.
• The graph G has at most m edges; i.e., |E(G)| ≤ m.
• r is a lower bound on the ratio between number of sessions and cut edges; i.e., k/f ≥ r.
• u is an upper bound on the ratio between number of total edges and cut edges; i.e., m/f ≤
u.

We note that the parameters of a gap instance immediately imply a lower bound on the optimal
routing makespan via Lemma 5.1.4. Indeed, all packets transmitted in the first b− 1 rounds must
pass through F , and thus at most f · (b− 1) packets can be sent between any source and its sink
in the first b−1 rounds, implying that under any routing protocol, most sessions have completion
time at least b.

Observation 5.3.1. Let I be a gap instance with parameters (a, b, f, k,m, r, u) and b ≤ r.
Then the routing makespan for (G,S) is at least b. Moreover, for any routing protocol of I ,
at least k · (1− b−1

r
) sessions have completion time at least b.

As an application of the above observation, we obtain another proof of the lower bound of the
routing makespan for the family of instances of Figure 5.1. More generally, letting the cut edges
be the singleton F = {(S, T)}, we obtain a family of gap instances with the following parame-
ters.

Fact 5.3.2. The family of gap instances of Figure 5.1 have parameters (3, 5, 1, k, θ(k2), k, θ(k2))
for k ≥ 5.

The above family of gap instances will serve as our base gap instances in a recursive construction
which we describe in the following section.

95

5.3.2 Graph Product of Two Gap Instances

In this section we present the graph product that combines two instances to obtain one a with
higher coding gap.

Definition 5.3.3. Colored bipartite graphs are families of bipartite graphsB(n1, n2,m, k, g).
Graphs B = (V1, V2, E) ∈ B(n1, n2,m, k, g) are bipartite graphs with |V1| = n1 (resp.
|V2| = n2) nodes on the left (resp., right), each of degree m (resp., k), and these graphs have
girth at least g. In addition, edges of B are colored using two color functions, edge color
χ1 : E(B)→ [m] and session color χ2 : E(B)→ [k], which satisfy the following.

• ∀v ∈ V1, the edge colors of incident edges form a complete set {χ1(e) | e 3 v} = [m].

• ∀v ∈ V2, the session colors of incident edges form a complete set {χ2(e) | e 3 v} =
[k].

• ∀v ∈ V1, the session colors of incident edges are unique |{χ2(e) | e 3 v}| = 1.

• ∀v ∈ V2, the edge colors of incident edges are unique, i.e, |{χ1(e) | e 3 v}| = 1.

The size of the colored bipartite graphs will determine the size of the derived gap instance ob-
tained by performing the product along a colored bipartite graph. The following gives a concrete
bound on the size and, in turn, allows us to control the growth of the gap instances obtained this
way.

Lemma 5.3.4 ([18]). ∀r,m, g ≥ 3, there exists a colored bipartite graphB ∈ B(n1, n2,m, k, 2g)
with n1, n2 ≤ (9mk)g+3.

Performing the product along a colored bipartite graph. Having defined colored bipartite
graphs, we are now ready to define the graph product of I1 and I2 along B.

For i ∈ {1, 2} let Ii = (Gi,Si, Fi) be a gap instance with parameters (ai, bi, fi, ki,mi, ri, ui)
and let B ∈ B(n1, n2, 2(m1 − f1), k2, g) be a colored bipartite graph with girth g , 2b1b2.
We call I1 the outer instance and I2 the inner instance. Denote the product gap instance
I+ , T (I1, I2, B) by the following procedure:

• Replace each non-cut edge e = {u, v} ∈ E(G1) \ F1 with two anti-parallel arcs ~e =

(u, v), ~e = (v, u) and let ~E(G1) = {~e1, ~e2, . . . , ~e2(m1−f1)} be the set of all such arcs.

• Construct n1 copies of (V (G1), ~E(G1)) and n2 copies of G2. Label the ith copy as G(i)
1

and G(i)
2 .

• Every cut edge e ∈ F1 and every i ∈ [n1] replace edge e in G(i)
1 by a path of length a2 with

the same endpoints. Let f (i)
e be an arbitrary edge on this replacement path.

• For every (i, j) ∈ E(B) where i ∈ [n1], j ∈ [n2] with edge color χ1 and session color χ2

do the following. Let ~e(i)
χ1 = (x, y) be the χ1

th arc in G(i)
1 and let (s, t) be the χ2

th terminal
pair in G(j)

2 . Merge x with s and y with t; delete ~e(i)
χ1 = (x, y) from G

(i)
1 .

96

• For each session in the outer instance (si, ti, di = 1) ∈ S1 add a new session (s
(j)
i , t

(j)
i , 1)

in G(j)
1 for j ∈ [n1] to the product instance.

• The cut edges F+ in the product instance I+ consist of the the union of the following: (i)
one arbitrary (for concreteness, first one) edge from all of the a2-length paths that replaced
cut edges in G(i)

1 , i.e., {f (i)
e | e ∈ F1, i ∈ [n1]}, and (ii) all cut edges in copies of G2, i.e.,

{e(i) | e ∈ F2, i ∈ [n2]}.

We now give bounds on how the parameters change after combining two instances. First, we note
that by composing network coding protocols for I1 and I2 in the natural way yields a network
coding protocol whose makespan is at most the product of these protocols’ respective makespans.

Lemma 5.3.5. (Coding makespan) The product instance I+ admits a network coding proto-
col with makespan at most a1a2.

Less obviously, we show that if we choose a large enough girth g for the colored bipartite graph,
we have that the b parameter of the obtained product graph is at least the product of the corre-
sponding b parameters of the inner and outer instances.

Lemma 5.3.6 (Routing makespan). Let I+ = (G+,S+, F+) be the product instance using a
colored bipartite graph B of girth g , 2b1b2 and let distG+\F+(·, ·) be the hop-distance in
G+ with all the edges of F+ deleted. We have that distG+\F+(si, ti) ≥ min(b1b2,

g
2
) = b1b2

for all (si, ti, di) ∈ S+.

Proof. Let p be a path inG+\F+ between some terminals si ti that has the smallest hop-length
among all (si, ti, di) ∈ S+. We want to show that |p| ≥ min(b1b2,

g
2
).

First, let q be the path in the colored bipartite graphB that corresponds to p. There are some tech-
nical issues with defining q since merging vertices in the graph product has the consequence that
some v ∈ V (G+) belong to multiple nodes V (B). To formally specify q, we use the following
equivalent rephrasing of the graph product that will generate an “expanded instance”G′+. Instead
of “merging” two vertices u, v as in G+, connect then with an edge e of hop-length h(e) = 0
and add e to G′+. Edges from G+ have hop-length h(e) = 1 and are analogously added to G′+.
The path p can be equivalently specified as the path between si ti in G′+ \ F+ that minimizes
the distance disth(si, ti). Now, each vertex V (G′+) belongs to exactly one vertex V (B), hence
the path q in B corresponding to p is well-defined. Note that p is a closed path in G+ and q is a
closed path in B.

Suppose that q spans a non-degenerate cycle in B. Then |p| ≥ |q|
2
≥ g

2
, where the last inequality

|q| ≥ g is due to the girth ofG. The first inequality |p| ≥ |q|
2

is due to the fact that when q enters a
node v ∈ V2(B), a node representing an inner instance, the corresponding path p had to traverse
at least one inner instance edge before its exit since the set of terminals is disjoint and a path can
enter/exit inner instances only in terminals.

Suppose now that q does not span a cycle in B, therefore the set of edges in q span a tree T
in B and q is simply the (rotation of the unique) Eulerian cycle of that tree. Notation-wise, let
v ∈ V1(B) be the node in the colored bipartite graph B that contains the critical terminals si and

97

ti and suppose that T is rooted in v. If the depth of T is 1 (i.e., consists only of v ∈ V1(B) and
direct children w1, . . . , wt ∈ V2(B)), then p must correspond to a si ti walk in v, where each
(non-cut) edge traversal is achieved by a non-cut walk in the inner instance wj between a set of
inner terminals. Note that every si ti non-cut walk has hop-length at least b1 and each non-cut
walk in the inner instance has hop-length at least b2, for a cumulative b1 · b2.

Finally, suppose that T has depth more than 1, therefore there exists two v, w ∈ V (T) and
v, w ∈ V1(B). Since T is traversed via an Eulerian cycle, the path p passes through two terminals
of (sj, tj, ·) ∈ S+. Let p′ be the natural part of p going from sj tj , e.g., obtained by clipping the
path corresponding to the subtree of q in S . Furthermore, let p′′ be the part of the p connecting
v and w and is disjoint from p′′. From the last paragraph we know that |p′′| ≥ 1 since it passes
through at least one u ∈ V2(B). Also, by minimality of si ti we have that disth(sj, tj) ≥
disth(si, ti). Now we have a contradiction since disth(si, ti) = |p| ≥ |p′|+|p′′| ≥ 1+disth(sj, tj).

Combining Lemmas 5.3.5 and 5.3.6 together with some simple calculations (deferred to Sec-
tion 5.8), we find that the product instance is a gap instance with the following parameters.

Lemma 5.3.7. For i ∈ {1, 2} let Ii = (Gi,Si, Fi) be a gap instance with parameters
(ai, bi, fi, ki,mi, ri, ui) with mi

fi
≥ 2 and ai ≥ 2; let B ∈ B(n1, n2, 2(m1 − f1), k2, 2b1b2)

be a colored bipartite graph. Then I+ , T (G1, G2, B) is a gap instance with parame-
ters a+ , a1a2, b+ , b1b2, f+ , n1f1 + n2f2, k+ , n1k1, m+ , a2n1f1 + n2m2,
r+ , r1

1
1+2u1/r2

, u+ , u2
1+a2/2

1+r2/(2u1)
. Moreover, m+

f+
≥ 2 and a+ ≥ 2.

5.3.3 Iterating the Graph Product

Having bounded the parameters obtained by combining two gap instances, we are now ready to
define a recursive family of gap instances from which we obtain our polylogarithmic makespan
network coding gap.

Definition 5.3.8. We recursively define a collection of gap instances (I(i, r))i≥0,r≥5, and
denote its parameters by (ai,r, bi,r, fi,r, ki,r,mi,r, ri,r, ui,r). For the base case, we let I(0, r)
be the gap instance of Fact 5.3.2 with parameters (3, 5, 1, r, θ(r2), r, θ(r2)). For i + 1 > 0
we define I(i + 1, r) , T (I1, I2). Here, I1 , I(i, 3r) and I2 , I(i, ui,3r), with parameters
(a1, . . . , u1) and (a2, . . . , u2), respectively.

In other words, I1 is defined such that r1 = 3r+ and I2 such that r2 = u1. In Section 5.8 we
study the growth of the parameters of our gap instance families. Two parameters that are easy to
bound for this construction are the following.

Observation 5.3.9. For any i ≥ 0 and r ≥ 5, we have ai,r = 32i and bi,r = 52i .

98

A less immediate bound, whose proof is also deferred to Section 5.8, is the following bound on
the number of edges of the gap instances..

Lemma 5.3.10. We have that logmi,r ≤ 2O(2i) log r for all i ≥ 0, r ≥ 5.

5.3.4 Lower Bounding the Coding Gap

We are now ready to prove this section’s main result – a polylog(k) makespan coding gap.

Theorem 5.1.3. There exists an absolute constant c > 0 and an infinite family of k-unicast
instances whose makespan coding gap is at least Ω(logc k).

Proof. For each i ≥ 0 and r , 52i , consider Ii,r as defined above. By Observation 5.3.9 this
gap instance has coding makespan at most ai,r = 32i . Moreover, also by Observation 5.3.9, this
instance has bi,r = 52i , and so by Observation 5.3.1 its routing makespan is at least 52i . Hence the
makespan coding gap of Ii,r is at least (5/3)2i . It remains to bound this gap in terms of k , ki.r.

As the terminals of Ii,r are disjoint, we have that k is upper bounded by the number of nodes of
Ii,r, which is in turn upper bounded bymi,r, as Ii,r is connected and not acyclic. That is, k ≤ mi,r.
But by Lemma 5.3.10, we have that logmi,r ≤ 2O(2i) · log r = 2O(2i) · O(2i) ≤ 2O(2i) ≤ 2c

′·2i ,
for some universal constant c′ > 0. Therefore, stated in terms of k, the makespan coding gap is
at least

(5/3)2i = 22i log 5/3 = (2c
′2i)

log 5/3

c′ ≥ (logmi,r)
c ≥ logc k,

where c , log 5/3
c′

> 0 is a universal constant, as claimed.

5.4 Coding Gaps for Other Functions of Completion Times

In this section we extend our coding gap results to other time complexity measures besides the
makespan. For our upper bounds, we show that our coding gaps for `∞ minimization of the
completion times (makespan) implies similar bounds for a wide variety of functions, including
all weighted `p norms; proving in a sense that `∞ is the “hardest” norm to bound. The following
lemma underlies this connection.

Lemma 5.4.1. Let α be an upper bound on the coding gap for completion times’ `∞ norm
(makespan). Then, if multiple-unicast instanceM admits a coding protocol with completion
times (T1, T2, . . . , Tk), there exists a routing protocol forM with completion times placewise
at most (4α · T1, 4α · T2, . . . , 4α · Tk).

Proof. LetM be a multiple-unicast instance. Let (T1, T2, . . . , Tk) be the vector of completion
times of some coding protocol. Without loss of generality, assume T1 ≤ T2 ≤ · · · ≤ Tk. Next,

99

for any j ∈ Z, denote byMj the sub-instance ofM induced by the unicasts with completion
time Ti ∈ [2j, 2j+1). Then, there exists a network coding protocol for eachMj with makespan at
most 2j+1. Consequently, there exists a routing protocol forMj with makespan at most α · 2j+1.
Scheduling these protocols in parallel, in order of increasing j = 0, 1, 2, . . . , we find that a
unicast with completion time Ti ∈ [2j, 2j+1) in the optimal coding protocol has completion time
in the obtained routing protocol which is at most∑

j′≤j

α · 2j′+1 ≤ 2α · 2j+1 ≤ 4α · Ti.

Note that unlike our routing protocols for makespan minimization of Theorem 5.1.2, the proof
here is non-constructive, as it assumes (approximate) knowledge of the completion times of
each unicast in the optimal coding protocol. Nonetheless, this proof guarantees the existence
of a protocol, which suffices for our needs. In particular, applying Lemma 5.4.1 to the coding
protocol minimizing a given weighted `p norm, we immediately obtain the following.

Corollary 5.4.2. Let α be an upper bound on the coding gap for completion times’ `∞ norm
(makespan). Then the coding gap for any weighted `p norm of the completion times is at
most 4α.

Plugging in our coding gap upper bound of Theorem 5.1.2, we therefore obtain a generalization
of Theorem 5.1.2 to any weighted `p norm, as well as average completion time (which corre-
sponds to `1).

Theorem 5.4.3. The network coding gap for any weighted `p norms of completion times is
at most

O

(
log(k) · log

(∑
i

di/min
i
di

))
.

Note that similar bounds hold even more generally. In particular, for any sub-homogeneous
function of degree d (i.e., f(c · ~x) ≤ cd · f(~x), Lemma 5.4.1 implies a coding gap of at most
(4α)d, where α is the best upper bound on the coding gap for makespan minimization.

Lower bounds. As with makespan minimization, a polylogarithmic dependence in the problem
parameters as in Theorem 5.4.3, as we prove below. Crucially, we rely on our makespan coding
gap’s examples displaying the property that under coding nearly all unicast sessions’ completion
time is at least polylogarithmically larger than under the best coding protocol.

Theorem 5.4.4. There exists an absolute constant c > 0 and an infinite family of k-unicast
instances whose `p-coding gap is at least Ω(logc k).

Proof. We follow the proof of Theorem 5.1.3 and consider Ii,r, this time setting r , (52i)2 =

52i+1 . This does not change the parameters ai,r = 32i and bi,r = 52i , nor the bound α , (5/3)2i ≥

100

logc k for some absolute constant c > 0. This instance has a coding protocol with completion
times (ai,r, . . . , ai,r), and so this coding protocol’s completion times’ `p value is ai,r. On the other
hand, by Observation 5.3.1, at least k · (1− bi,r

r
) ≥ (1− o(1)) · k pairs have routing completion

time at least bi,r, where o(1) tends to 0 as i → ∞. Consequently, the `p-value of any routing
protocol’s completion times is at least (1 − o(1)) · bi,r. Since bi,r/ai,r = α ≥ logc k, we obtain
the required coding gap.

Acknowledgements The authors would like to thank Mohsen Ghaffari for suggesting an im-
provement to Theorem 5.1.2 which resulted in a coding gap independent of n, Anupam Gupta
for pointing out a simplification of Lemma 5.2.5 and the Lemma’s similarity to [9, Theorem 1],
and Paritosh Garg for bringing [18] to our attention.

5.5 Chapter Appendix: Completion Time vs. Throughput

In this section we argue why network coding upper bounds for makespan imply coding gaps
for throughput maximization. We first introduce the standard definitions of the throughput max-
imization model [3, 18]. The differences between the throughput and completion-time model
(see Section 5.1.1) are highlighted in blue.

Throughput maximization model. A multiple-unicast instance M = (G,S) is defined over
a communication network, represented by an undirected graph G = (V,E, c) with capacity
ce ∈ Z≥1 for each edge e. The k , |S| sessions of M are denoted by S = {(si, ti, di)}ki=1.
The (maximum) throughput of M is the supremum r > 0 such that there exists a sufficiently
large b > 0 where the following problem has a correct protocol. Each session consists of source
node si, which wants to transmit a packet to its sink ti, consisting of dr · b · die sub-packets (e.g.,
an element of an underlying field). A protocol for a multiple-unicast instance is conducted over
finitely-many synchronous time steps. Initially, each source si knows its packet, consisting of
di sub-packets. At any time step, the protocol instructs each node v to send a different packet
along each of its edges e. The packet contents are computed with some predetermined function
of packets received in prior rounds by v or originating at v. The total number of sub-packets
sent through an edge e over the duration of the entire protocol is at most b · ce. We differentiate
the maximum throughput achievable by coding and routing protocols as rC and rR, respectively.
The throughput coding gap is the largest ratio rC/rR that can be achieved for any instance.

Relating completion times and throughput. The throughput maximization intuitively cor-
responds to the makespan minimization of an instance with asymptotically-large packet sizes.
More formally, we modify a multiple unicast instanceM by increasing its demands by a factor
of w while keeping the capacities the same. This causes the makespan to increase. We argue that
the slope of the increase with respect to w is exactly the throughput ofM.

Definition 5.5.1. Given a multiple-unicast instanceM we define CC(w) and CR(w) to be
the makespan of the fastest coding and routing protocols when the all demands are multiplied

101

by a common factor w.

Observation 5.5.2. Let M be a multiple-unicast instance. The maximum throughput r
corresponding to M is equal to supw→∞w/C(w) for both coding and routing. Formally,
rC = supw→∞w/C

C(w) and rR = supw→∞w/C
R(w).

Proof. We drop the R/C superscripts since the proof holds for both without modification. Let
L , supw→∞w/C(w). We first argue that L ≥ r, i.e., we can convert a throughput protocol
to a makespan-bounded one. For simplicity, we will assume that b = 1 (b from the throughput
definition); when this is not the case one needs to appropriately re-scale the sub-packets for the
completion-time protocol.

Let T be a protocol of throughput at least r − o(1) and let T be the total number of rounds T
uses (note that in the throughput setting T has no impact on the quality of T). Let w ∈ Z be
a sufficiently large number. We use pipelining by scheduling w′ , w/(r − o(1)) independent
copies of T : the first one starting at time 1, second at time 2, ..., last one at time w′. Each
copy operates on a separate set of sub-packets, with the pipelined protocol being able to transmit
(r−o(1)) ·di ·w′ = di ·w sub-packets across the network (in line with Definition 5.5.1) in at most
w′+T rounds. Note that T sends at most ce sub-packets over an edge e over its entire execution,
hence the pipelined version of T never sends more than ce sub-packets during any one round. In
other words, we have that C(w) ≤ w′ + T . Letting w → ∞ (which implies w′ → ∞), we have
that

L ≥ w

C(w)
≥ w

w′ + T
= (r − o(1))

w′

w′ + T
= r − o(1).

We now argue the converse r ≥ L, i.e., we can convert a completion-time protocol into a
throughput protocol with the appropriate rate. The result essentially follows by definition. By
assumption, for some sufficiently large w > 0 there exists a protocol with makespan at most
C(w) ≤ w/(L − o(1)). The protocol sends a total of at most C(w)ce sub-packets over an edge
e. Furthermore, by construction of C(w), each source-sink pair successfully transmits w · di
sub-packets. By noting that w · di = (L − o(1))C(w)di, we conclude that by using b , C(w)
we get a protocol with rate L− o(1).

Corollary 5.5.3. Suppose that the makespan coding gap is at most α (over all instances).
Then the throughput coding gap is at most α.

Proof. Consider some multiple unicast instance M, with coding throughput r. By Observa-
tion 5.5.2, for sufficiently large w there is a coding protocol P1 satisfying w/CC(w) ≥ r− o(1),
i.e., CC(w) ≤ w/(r − o(1)). By the makespan coding gap assumption, there exists a routing
protocol P2 implying that CR(w) ≤ α · w/(r − o(1)). Furthermore, following the proof of
Observation 5.5.2, protocol P2 implies a routing throughput of r′ for the original instance M,
satisfying

r′ ≥ w/CR(w) ≥ (r − o(1))/α = r/α− o(1).

In other words, r/r′ ≥ α + o(1) and we are done.

102

5.6 Chapter Appendix: Network Coding Model for Comple-
tion Time

In this section we formalize the k-session unicast communication problem and the notion of
completion time for it. We note that our model is not new—e.g., it is equivalent to the models of
Chekuri et al. [25], Wang and Chen [138] that study delay in communication networks.

The input to a k-session unicast problem (G,S) consists of a graph G = (V,E, c), where edges
have capacities c : E → R≥0, and a set of k sessions S = {(si, ti, di)}ki=1. Each triplet (si, ti, di)
corresponds to the source si ∈ V , sink ti ∈ V and the demand di ∈ R≥0 of session i. The graph
G can be either directed or undirected, where in the latter case we model an undirected edge e as
two directed edges ~e, ~e where both of them have equal capacity c(~e) = c(~e) = ce.2

Each source si is privy to an input message mi ∈Mi generated by an arbitrary stochastic source
with entropy at least di, hence the entropy of the random variable mi is di. The sources corre-
sponding to different sessions are independent.

A T -round network coding computation consists of a set of |E|×T coding functions {f~e,r : M →
Γ}~e∈E,1≤r≤T , where Γ is some arbitrary alphabet and M ,

∏
iMi. These functions satisfy the

following properties:

• The entropy of any coding function f~e,r never exceeds the edge capacity c(~e), i.e.,H(f~e,r) ≤
c(~e) for all ~e ∈ E, 1 ≤ r ≤ T .

• For each directed edge ~e = (u, v) ∈ E and round 1 ≤ r ≤ T the function f~e,r is com-
putable from communication history received strictly before round r at node u. In other
words, let the communication history Yu,r be defined as {mi | i ∈ [k], si = u} ∪ {f(x,y),r′ |
y = u and r′ < r}, then H(f(u,v),r|Yu,r) = 0.

• The completion times of a network coding computation are (T1, T2, . . . , Tk) ∈ Zk≥0 when
the following holds. For every session i, the message mi of the session (si, ti, di) must be
computable from the sink ti’s history after Ti rounds are executed, i.e.,H(mi|Yti,Ti+1) = 0.

Remark: The above “bare-bones” formalization is sufficient for all of our results to hold. How-
ever, such a formalization can be unwieldy since a complete instance description would also need
to specify a stochastic distribution corresponding to each source si. A standard way of avoiding
this issue is to simply assume the sources generate a uniformly random binary string of length di
(forcing di to be an integer). Without going into too much detail, we mention this assumption can
be made without loss of generality if we allow for (1) an arbitrarily small decoding error ε > 0,
(2) slightly perturbing the edge capacities ce and source entropies di by ε, and (3) scaling-up
both ce’s and di’s by a common constant b > 0; this approach is standard in the literature (e.g.,
see [3, 18]).

2Papers such as Adler et al. [3] often impose an alternative condition c(~e) + c(~e) = c(e), which would make our
proofs slightly heavier on notation. However, their convention can only impact the results up to a factor of 2, which
we typically ignore in this chapter.

103

5.7 Chapter Appendix: Deferred Proofs of Section 5.2

In this section we provide proofs deferred from Section 5.2, starting with the proof of Proposi-
tion 5.2.1, restated here for ease of reference.

Proposition 5.2.1. Let z, {fi(p) | i ∈ [k], p ∈ Pi(T)} be a feasible solution for CONCURRENTFLOWM(T).
Then there exists an integral routing protocol with makespan O(T/z).

To prove the above, we rely on the celebrated O(congestion + dilation) packet scheduling theo-
rem of Leighton et al. [99]. In particular, we use the solution to CONCURRENTFLOWM(T) to
obtain a collection of short paths with bounded congestion (i.e., bounded maximum number of
paths any given edge belongs to). We then route along these paths in time proportional to these
paths’ maximum length and congestion. The issue is that the feasible LP solution provides frac-
tional paths, hence requiring us to round the LP solution. Independent rounding would result in
paths of length T and congestion T/z +O(log n) (with high probability). To avoid this additive
dependence on n, we rely on the following theorem of Srinivasan and Teo [135].

Lemma 5.7.1 ([135], Theorem 2.4, paraphrased). LetM be a multiple-unicast instance and
for each i ∈ [k] let Di be a distribution over si ti paths of hop-length at most L. Suppose
that the product distribution

∏
Di has expected congestion for each edge at most L. Then

there exists a sample ω ∈
∏
Di (i.e., a choice of a from Di between each si ti) with

(maximum) congestion O(L).

Using the above lemma to round the LP and using Leighton et al. [99] path routing to route along
the obtained paths yields Proposition 5.2.1.

Proof of Proposition 5.2.1. Consider an optimal solution to this CONCURRENTFLOWM(T). Clearly,
picking for each pair (si, ti) some di paths in Pi(T) with each p ∈ Pi(T) picked with probability
fi(p) ·di/

∑
p∈Pi(T) fi(p) ≤ fi(p)/z yields an expected congestion at most T · ce/z for each edge

e. That is, thinking of G as a multigraph with ce copies per edge, each such parallel edge has
congestion T/z. On the other hand, each such path has length at most T ≤ T/z (since z ≤ 1).
Therefore, by Lemma 5.7.1, there exist choices of paths for each pair of (maximum) congestion
and hop-bound (i.e., dilation) at most O(T/z). But then, using O(congestion + dilation) routing
[99] this implies an integral routing protocol with makespan O(T/z), as claimed.

Here we prove Claim 5.2.4, restated here for ease of reference.

Claim 5.2.4. Given sequences h1, . . . , hk, d1, . . . , dk ∈ R≥0 with
∑

i∈[k] di · hi ≥ 1 there ex-

ists a non-empty subset I ⊆ [k] with mini∈I hi ≥ 1
αgap·

∑
i∈I di

for αgap ∈
[
1, O

(
log

∑
i∈[k] di

mini∈[k] di

)]
.

Proof. Suppose (without loss of generality) that h1 ≥ h2 ≥ . . . hk and assume for the sake of
contradiction that none of the sets [1], [2], . . . , [k] satisfy the condition. In other words, if we
let d([j]) ,

∑j
i=1 dj , then hi <

1
α
· 1
d([i])

for all i ∈ [k]. Multiplying both sides by di and

104

summing them up, we get that 1 ≤
∑k

i=1 dihi <
1
α

∑k
i=1

di
d([i])

. Reordering terms, this implies∑k
i=1

di
d([i])

> α.

Define f(x) as 1/d1 on [0, d1); 1/(d1 + d2) on [d1, d1 + d2); ...; 1/d([i]) on [d([i− 1]), d([i])) for
i ∈ [k]. Now we have∫ d([k])

0

f(x) =
d1

d1

+
d2

d1 + d2

+
d3

d1 + d2 + d3

+ . . .+
dk

d([k])
.

However, since f(x) ≤ 1/x∫ d([k])

0

f(x) =

∫ d1

0

f(x) dx+

∫ d([k])

d1

f(x) dx

≤ 1 +

∫ d([k])

d1

1

x
dx = 1 + ln

d([k])

d1

.

Hence by setting α , 1 + ln d([k])
d1

we reach a contradiction and finish the proof.

5.8 Chapter Appendix: Deferred Proofs of Section 5.3

Here we provide the deferred proofs of lemmas of Section 5.3, restated below for ease of refer-
ence.

Lemma 5.3.5. (Coding makespan) The product instance I+ admits a network coding proto-
col with makespan at most a1a2.

Proof. Suppose there exists a network coding protocol with makespan ti ≤ ai that solves (Gi,Si)
for i ∈ {1, 2}. Functionally, each round in the outer instance (G1,S1) consists of transmitting ce
bits of data from u to v for all arcs (u, v) where {u, v} ∈ E(G1). This is achieved by running
the full t2 rounds of the inner instance protocol over all copies of the instances which pushes
di bits from si to ti for all (si, ti, di) and all copies of the inner instance. The reason why such
inner protocol pushes the information across each arc (u, v) is because u is merged with some
si, v is merged with ti, and with di = ce for some (si, ti, di) ∈ S2 and some copy of the inner
instance. In conclusion, by running t1 outer rounds, each consisting of t2 inner rounds, we get a
t1t2 ≤ a1a2 round protocol for the product instance.

Lemma 5.3.7. For i ∈ {1, 2} let Ii = (Gi,Si, Fi) be a gap instance with parameters
(ai, bi, fi, ki,mi, ri, ui) with mi

fi
≥ 2 and ai ≥ 2; let B ∈ B(n1, n2, 2(m1 − f1), k2, 2b1b2)

be a colored bipartite graph. Then I+ , T (G1, G2, B) is a gap instance with parame-
ters a+ , a1a2, b+ , b1b2, f+ , n1f1 + n2f2, k+ , n1k1, m+ , a2n1f1 + n2m2,
r+ , r1

1
1+2u1/r2

, u+ , u2
1+a2/2

1+r2/(2u1)
. Moreover, m+

f+
≥ 2 and a+ ≥ 2.

105

Proof of Lemma 5.3.7. First, the set of terminals in the product instance I+ is disjoint, as distinct
terminals of copies of the outer instance I1 have their edges associated with distinct terminals
source-sink pairs of the inner instance I2. Consequently, no two terminals of the outer instance
are associated with the same node of the same copy of an inner instance. The capacities and
demands of I+ are one by definition. We now turn to bounding the gap instance’s parameters.

Parameters a+ and b+ are directly argued by Lemma 5.3.5 and Lemma 5.3.6. Furthermore,
f+, k+,m+ are obtained by direct counting, as follows.

Recall that the cut edges of the outer instance get replaced with a path of length a2. Since there
are n1 copies of outer instances, each having f1 cut edges, this contributes a2n1f1 edges to m+.
The non-cut edges of the outer instance get deleted and serve as a merging directive, hence they
do not contribute tom+. Finally, each edge of the inner instance gets copied into I+, contributing
n2m2 as there are n2 copies of the inner instance.

For r+ we need to show it is a lower bound on k+/f+. We note that |E(B)| = n1 · 2(m1− f1) =
n2k2 and proceed by direct calculation:

k+

f+

=
n1k1

n1f1 + n2f2

=
k1

f1

· 1

1 + n2

n1

f2

f1

≥ k1

f1

· 1

1 + 2(m1−f1)
k2

f2

f1

≥ k1

f1

· 1

1 + 2m1

f1

f2

k2

≥ k1

f1

· 1

1 + 2u1

r2

= r1 ·
1

1 + 2u1

r2

= r+.

For u+ we need to show it is an upper bound on m+/f+. Note that k2 ≤ m2 since the set of
terminals is disjoint and the graph is connected.

m+

f+

=
n2m2 + a2n1f1

n2f2 + n1f1

=
m2

f2

·
1 + a2

n1

n2

f1

m2

1 + n1

n2

f1

f2

≤ u2 ·
1 + a2

k2

2(m1−f1)
f1

m2

1 + k2

2(m1−f1)
f1

f2

≤ u2 ·
1 + a2

k2

2(m1/f1−1)
1
m2

1 + f1

2m1

k2

f2

≤ u2 ·
1 + a2 · 1

2
· 1

1 + 1
2
r2
u1

= u+.

Here the last inequality relies on m1/f1 ≥ 2 and on k2 ≤ m2, which follows from the set of
terminals being disjoint and the graph G2 being connected.

For the final technical conditions, note that a+ ≥ 2 is clear from a+ = a1a2 ≥ 4 ≥ 2. Finally,
m+

f+
≥ 2 follows from the following.

m+

f+

=
a2n1f1 + n2m2

n1f1 + n2f2

= a2
n1f1

n1f1 + n2f2

+
m2

f2

n2f2

n1f1 + n2f2

≥ 2

(
n1f1

n1f1 + n2f2

+
n2f2

n1f1 + n2f2

)
= 2.

5.8.1 Upper Bounding mi,r

For readability, we sometimes write u(i, r) instead of ui,r and similarly for m(i, r). Also, we
note that the technical conditions ai,r ≥ 2 and mi,r

fi,r
≥ 2, which clearly hold for i = 0, hold for all

i > 0, due to Lemma 5.3.7. Finally, we note that by Lemma 5.3.7, since r2 = u1 and a2 ≥ 1, we
have that u+ ≥ u2 and so for all gap instances in the family we have ui,r ≥ ui−1,u(i−1,3r) ≥ 5.

106

Lemma 5.8.1. The parameter of I(i, r) for any i ≥ 0, r ≥ 5 satisfy the following.

(i) ki,r
fi,r
≥ r,

(ii) ui+1,r ≤ 32i · ui,u(i,3r) and

(iii) logm(i+ 1, r) ≤ O(52i+1
) · log(mi,3r ·mi,u(i,3r)).

Proof. Claim (i) follows from Lemma 5.3.7, as follows.

ki+1,r

fi+1,r

≥ ri+1,r = ri,3r ·
1

1 + 2ui,3r/ri,u(i,3r)

≥ 3r · 1

1 + 2ui,3r/ui,3r
= 3r · 1

3
= r.

We now prove claims (ii) and (iii). Fix i, r and define I1 , I(i, 3r) (with parameters (a1, . . . , u1))
and I2 , I(i, ui,r) (with parameters (a2, . . . , u2)). We have u(i + 1, r) = u2

1+a2/2
1+r2/(2u1)

≤
u2

1+a2/2
1+1/2

≤ u2 · a2 (Lemma 5.3.7), with a2 = ai,u(i,3r) = 32i and u2 = u(i, u(i, 3r)) from the

iterated tensoring process. Therefore, we conclude that u(i+ 1, r) ≤ 32i · ui,u(i,3r), as claimed.

We now prove Claim (iii). The corresponding colored bipartite graph B ∈ B(n1, n2, 2(m1 −
f1), k2, 2b1b2) used to produce the product Ii,r has max(n1, n2) ≤ (2(m1 − f1)k2)O(b1b2), by
Lemma 5.3.4. Therefore, as k2 ≤ m2, we have that max(n1, n2) ≤ (m1 · m2)O(b1b2). This
implies the following recurrence for mi,r.

mi+1,r = a2n1f1 + n2m2 ≤ a2 max(n1, n2)m1m2.

Taking out logs, we obtain the desired bound.

logmi+1,r ≤ log a2 + log max(n1, n2) + logm1m2

= O(2i) +O(b1b2) log(m1m2) + log(m1m2)

= O(2i) +O(52i) log(m1m2)

= O(52i) · log(mi,3r ·mi,u(i,3r)).

Given Lemma 5.8.1 we obtain the bound on ui,r in terms of i and r.

Lemma 5.8.2. We have that log ui,r ≤ 2O(2i) log r for all i ≥ 0, r ≥ 5.

Proof. By Lemma 5.8.1, we have the recursion u(i + 1, r) ≤ 32i · u(i, u(i, 3r)) with initial
condition u(0, r) = O(r2), by Fact 5.3.2. Taking out logs, we obtain log u(i + 1, r) ≤ O(2i) +
log u(i, u(i, 3r)) and log u(0, r) = O(log r). We prove via induction that log u(i, r) ≤ 1

c
(c2)2i ·

log r for some sufficiently large c > 0. In the base case log u(0, r) = O(log r) ≤ 1
c
(c2) log r =

107

c log r. For the inductive step we have:

log u(i+ 1, r) ≤ O(2i) + log u(i, u(i, 3r))

≤ O(2i) +
1

c
(c2)2i log u(i, 3r)

≤ O(2i) +
1

c
(c2)2i 1

c
c2i log 3r

≤ O(2i) +
1

c2
(c2)2i+1

log 3r

≤ 1

c
(c2)2i+1

log r,

where the last inequality holds for i ≥ 1 and r ≥ 5 and a sufficiently large c > 0.

Plugging in the bound of Lemma 5.8.2 and Lemma 5.8.1 we can prove inductively the upper
bound on the number of edges of Ii,r in terms of i and r given by Lemma 5.3.10, restated
here.

Lemma 5.3.10. We have that logmi,r ≤ 2O(2i) log r for all i ≥ 0, r ≥ 5.

Proof. By Lemma 5.8.1, we have the recursion logm(i+ 1, r) ≤ O(52i+1
) · log(mi,3r ·mi,u(i,3r))

with initial condition logm(0, r) = O(log r), by Fact 5.3.2. We prove via induction that logmi,r ≤
c2i log r for a sufficiently large universal constant c > 0. In the base case logm0,r ≤ O(log r) ≤
c log r = c20

log r. For the inductive step, using Lemma 5.8.2 to bound log u(i, 3r), we have:

logmi+1,r ≤ O(52i+1

) · (logmi,3r + logmi,u(i,3r))

≤ O(52i+1

) ·
(
c2i log 3r + c2i log u(i, 3r)

)
≤ O(52i+1

) ·
(
c2i log 3r + c2i2O(2i) log 3r

)
= c2i ·O(52i+1

) · 2O(2i) log 3r

≤ c2i+1 log r,

where the last inequality holds for i ≥ 1 and r ≥ 5 and a sufficiently large c > 0.

108

Chapter 6

Shortcuts are a Universal Lower Bound for
Distributed Optimization

The results of this chapter were published in [70] with Bernhard Haeupler and David Wajc as
co-authors. The work was supported in part by NSF grants CCF-1910588, CCF-1814603, CCF-
1618280, CCF-1527110, NSF CAREER award CCF-1750808, and a Sloan Research Fellowship.

6.1 Introduction

Much of modern large-scale graph processing and network analysis is done using systems like
Google’s Pregel [111], Facebook’s Giraph [26, 72], or Apache’s Spark GraphX [58] which im-
plement synchronous message-passing algorithms, in which nodes send (small) messages to their
neighbors in each round.1

This has motivated a recent, broad, concentrated, and highly-successful effort to advance our
theoretical understanding of message-passing algorithms for fundamental network optimization
problems, such as minimum-spanning trees (MST) [34, 37, 89, 96, 118], shortest paths [36, 44,
78, 80, 82, 84, 101, 102, 113], flows [55], and cuts [49, 114]. As a result, many fundamen-
tal optimization problems now have worst-case-optimal message-passing algorithms, running in
Θ̃(
√
n+D) rounds on every n-node network with diameter D.2 In general, these running times

cannot be improved due to unconditional lower bounds [27, 122] showing some pathological
n-node topologies with small diameter on which any non-trivial optimization problem requires
Ω̃(
√
n) rounds. This type of worst-case optimality is also called existential optimality.

Unfortunately, while network diameters tend to be small in practice, a Θ̃(
√
n) round complexity

is completely impractical. On the other hand, existential optimality says little about the dis-

1For the sake of concreteness, we limit message sizes to O(log n) bits where n is the number of network nodes.
This is exactly the classic CONGEST model of distributed computation [121]. Throughout this paper we use the
terms distributed, message-passing, or CONGEST algorithm interchangeably.

2Throughout, we use Õ, Ω̃ and Θ̃ to suppress poly log n terms. E.g., Õ(f(n)) = O(f(n) logO(1) n).

109

tributed complexity of optimization problems on non-worst-case topologies. Indeed, evidence
suggests [49, 52, 56, 65, 66, 67, 68, 90] that most, if not all, networks of interest allow for
exponentially faster Õ(1)-round optimization algorithms.

“The interesting question that arises is therefore whether it is possible to identify the inherent
graph parameters associated with the distributed complexity of various fundamental network
problems, and develop universally-optimal algorithms[, that are as fast as possible on every
topology.]” [46]

These two fundamental questions have a 25+ year old history. In fact, the above is a verba-
tim quote from the influential FOCS’93 paper of Garay, Kutten and Peleg, which started and
majorly shaped the area of distributed optimization algorithms. Despite this, both questions
have remained wide open. Indeed, besides universal optimality seeming out of reach of current
techniques, it is unclear whether this notion should even be possible at all. After all, universal
optimality asks for a uniform algorithm running on an unknown topology G to be competitive
with the best non-uniform algorithmAG, which is specifically designed for a topology G known
to it.

The closest thing towards algorithms for non-worst-case topologies has been the low-congestion
shortcut framework, introduced by Ghaffari and Haeupler in [49] and further developed in [52,
54, 64, 65, 66, 68, 90].3 This framework identifies partwise aggregation as a simple communi-
cation primitive which is sufficient to efficiently solve many distributed optimization problems,
including (1 + ε)-min-cuts, various approximate shortest-path problems, and MST. It further-
more introduces low-congestion shortcuts as a graph structure that can be used to solve partwise
aggregation quickly. This leads to distributed optimization algorithms with Õ(Q(G) + T (G))
running times, where Q(G) = SHORTCUTQUALITY(G) is the best shortcut quality admitted by
G, and T (G) is the time to construct an approximately-optimal shortcut, of quality Õ(Q(G)).
It is furthermore shown that bounding some graph parameters such as genus, tree-width [66],
expansion [52], or the largest clique-minor [68] results in topologies with good and efficiently
constructable [65] shortcuts. These graph parameters are therefore sufficient to imply fast dis-
tributed optimization algorithms and give some insights into which topologies are “easy”. On
the other hand, no lower bound relating any “hard” feature of a general topology to a non-trivial
Ω(D) distributed complexity is known for any optimization problem.

6.1.1 New Results and Contributions

This chapter makes significant progress on the above two questions of [46] by proving the first
universal lower bounds on the distributed complexity of many important optimization problems.
Most importantly, we prove that SHORTCUTQUALITY(G), which is the key parameter in the
running time of shortcut-based distributed optimization algorithms for these same problems, is
itself a universal lower bound. This means that the different lower bounds provided in this

3The k-broadcast algorithm of [48] also goes into the direction of universal-optimality except that its running
time is competitive with the best routing schedule in G (and not the best CONGEST algorithm which might be much
faster). Some time to preprocess the topology is also required.

110

chapter are likely the tight and long thought-after characterizations which tightly determine the
complexity of distributed optimization for any topology. It also implies that the only ingredient
missing for achieving provably universally-optimal algorithms for many important distributed
optimization problems is an improved shortcut construction or approximation algorithm.

Generalizing [27] to worst-case subnetworks in general topologies

To achieve our results we give a robust definition of a worst-case subnetwork, which generalizes
the pathological worst-case topology of the existential lower bound of Das Sarma et al. [27] to
subnetworks in general graphs. This generalization builds on insights and crucial definitions from
a recent work [69] which connects the lower bound of [27] to network coding gaps for multiple
unicasts. Once the new definition is in place it is easy to verify that the proof of [27] generalizes
to our worst-case subnetworks. Defining WCSUBNETWORK(G) to be the size of the largest such
worst-case subnetwork in G then gives a lower bounds for any network, instead of just a single
graph that is carefully chosen to facilitate the lower bound proof.4 One particularly nice aspect
of this universal lower bound is that it brings the full strength and generality of the lower bound
of [27] to general topologies. In particular, it applies to a myriad of different optimization and
verification problems, holds for deterministic and randomized algorithm alike, holds regardless
of whether the input topology is known or not, and extends in full strength to any non-trivial
approximations.

Lemma 6.1.1. For any topology G = (V,E), any message-passing algorithm AG that de-
termines for any given subgraph H ⊆ G whether it is a connected spanning subgraph has
a running time of at least Ω̃(WCSUBNETWORK(G) + D) rounds. This holds even if AG is
randomized and knows G.

By the simple reductions to the connected spanning subgraph problem described in detail in [27],
this extends to lower bounds for MST, cut, min-cut, s-source distance, shallow light trees, min-
routing cost trees and many other problems as well as to any non-trivial approximations for these
problems.

Shortcut quality is a universal lower bound, and implications for universal optimality

A priori, it is not clear how strong or interesting the WCSUBNETWORK(G) lower bound is.
By definition, it only applies to networks with subnetworks displaying similar characteristics
to the pathological worst-case topology from [27], which seems very specific. Surprisingly,
however, the main contribution of this chapter proves several other universal lower bounds, in-
cluding and most importantly SHORTCUTQUALITY(G), by showing them to be equivalent to
WCSUBNETWORK(G).

4Indeed, Das Sarma et al. [27] state concerning their existential lower bound that “The choice of graph G is
critical.”

111

Theorem 6.1.2. For any graph G,

SHORTCUTQUALITY(G) = Θ̃(WCSUBNETWORK(G) +D).

As a corollary of Lemma 6.1.1 and Theorem 6.1.2, the parameter Θ̃(SHORTCUTQUALITY(G))
is also a lower bound for the complexity of the very same optimization problems for which
the low-congestion framework has already established algorithmic results with running times
mostly depending on SHORTCUTQUALITY(G). This strongly suggests that all our lower bound
parameters are not just equivalent to each other, but indeed serve as tight characterizations (up to
Õ(1) terms) of the inherent distributed complexity of a wide variety of optimization problems.

This also stops just short of completely resolving the 25+ year long quest for a universally-
optimal MST algorithm. All that is needed is an efficient shortcut construction. More precisely,
a distributed algorithm which for every topologyG computes Õ(1)-approximately optimal short-
cuts of quality Õ(SHORTCUTQUALITY(G)) in Õ(D + SHORTCUTQUALITY(G)) time. Using
such an algorithm as a shortcut-construction subroutine in the existing shortcut-based optimiza-
tion algorithms would immediately give universally-optimal algorithms for MST, the various
approximate shortest path type problems in [64], (1 + ε)-approximate min-cuts, connectivity,
and several other problems. This would mark a tremendous achievement and crowning victory
for the intensive decades-long research efforts which have contributed to this algorithmic under-
standing of distributed optimization.

We remark that initially it may look circular and too good to be true to ask for the efficiency
of the construction algorithm to be upper bounded by the quality of the near-optimal shortcuts
it is supposed to find: How can the algorithm profit from merely the existence of the unknown
high-quality shortcut it is supposed to find? This barrier, however, has already been overcome
by the recursive approach of the shortcut-construction algorithm in [65]. Indeed, this algorithm’s
running time and approximation guarantees have exactly the desired form, except that the algo-
rithm in [65] only approximates a somewhat restricted form of shortcuts. We are hopeful that the
ideas from [65] can be used nonetheless to create a shortcut construction algorithm without this
restriction.

Different characterizations of a topology’s inherent distributed complexity

Assuming the existence of a good shortcut-construction algorithm, proving that SHORTCUTQUALITY(G)
is a universal lower bound is sufficient for certifying universal optimality of algorithms within
the low-congestion shortcut framework. However, as mentioned before, identifying, understand-
ing, and characterizing the aspects of a topology that influence and determine the complexity of
distributed optimization problems is in itself a worthwhile goal. Indeed, there are a multitude of
reasons why a detailed understanding of the relationship between topology and complexity is im-
portant. Among other reasons, it (a) can be important for the design of good networks, (b) might
give important leads for understanding the structure of existing natural and artificial networks
occurring in society, biology, and other areas, and (c) is necessary to provide quantitative and
provable running time guarantees for universally-optimal algorithms run on a known topology

112

G, beyond a simple “it runs as fast as possible”.

As such, another important contribution of the tight lower bounds proven in this chapter consists
of giving different characterizations and ways to think about what makes a topology hard (or
easy). For example, while WCSUBNETWORK(G) and SHORTCUTQUALITY(G) are both quan-
titatively equal, the fact that they both characterize the complexity of distributed optimization
lends itself to very different interpretations and conclusions.

Indeed, SHORTCUTQUALITY(G) can be seen as the best routing schedules for the partwise ag-
gregation problem, which is the very natural communication primitive underlying distributed
divide-and-conquer style algorithms (see, e.g., [65]). Shortcut quality being a tight universal
lower bound further demonstrates the key role partwise aggregation plays for distributed opti-
mization algorithms, even to the extent that the complexity of many very different optimization
tasks is dominated by how fast this simple aggregation procedure can be performed on a given
topology.

The tightness of WCSUBNETWORK(G) as a lower bound, on the other hand, points to the patho-
logical network structure identified by Peleg and Rubinovich [27, 122] as indeed the only way in
which a topology can be hard for optimization. Put otherwise, a topology is exactly as hard as
the worst obstruction of this type within a network.

As part of our proof of Theorem 6.1.2 we identify, define, and expose several other graph param-
eters which similarly characterize the complexity of a topology G, such as, MOVINGCUT(G),
ROUTING(G) and others. Many of these parameters have very different flavors. For example
the MOVINGCUT(G) parameter can be seen as identifying crucial communication bottlenecks
within a topology via a sequence of cuts. It is also known [69] to characterize the time needed
to solve a simple multiple unicast communication problem which requires information to be sent
between different sender-receiver pairs in the network. ROUTING(G) relates to the same commu-
nication problem, but with the restriction that information is routed (without any coding) which,
by Leighton, Maggs, and Rao [99], is equivalent to the best congestion and dilation of paths con-
necting the sender-receiver pairs. We give precise definitions and further explanations for these
and other equivalent universal lower bound parameters in the technical sections of this chapter.
We hope that they will help to further illuminate different aspects of the topology-complexity
interplay.

6.2 Preliminaries

In this work we study universal optimality, achieved by uniform algorithms whose running time
is competitive with the fastest algorithm tailor-made for the given graph, for any graph. More
precisely, if we denote by TA(G) the worst-case running time of algorithm A for problem Π
on any input with topology G (i.e., the maximum number of rounds A takes over all possible
inputs), then universal optimality is defined as follows.

113

Definition 6.2.1. An algorithm A for problem Π is universally optimal if for every graph G
and algorithm AG for Π, we have

TA(G) = Õ(1) · TAG(G).

An alternative view would be to say A must be competitive with the best algorithm that knows
the topologyG, but not the problem input (e.g., H in the spanning connected subgraph problem).
We note that a similar notion of competitiveness with the fastest tailor-made algorithm for any
input is hopeless, since any input has a zero-round algorithm: just output the solution!

Shortcuts and partwise aggregation. In the partwise aggregation problem, the input consists
of disjoint subsets of nodes in G, denoted by S1, . . . , Sk and called parts, inducing connected
subgraphs G[Si]. Each node has some private input, and the goal is to compute some simple
aggregate function (e.g., the minimum) of these private inputs, and send this value to all nodes in
each part. This problem appears frequently in numerous distributed graph algorithms, showing
that Õ(1) invocations of algorithms for this problem allow to solve problems such as MST,
approximate SSSP and global min-cut, and numerous graph verification problems (see [27, 34,
45, 46, 47, 49, 51, 55, 64, 96, 114]).

Partwise aggregation can be solved by a routing-based approach. We remind the reader that we
say a set of subgraphs Hi ⊆ G are q-quality shortcuts for S1, . . . , Sk if each edge is contained in
at most q subgraphs G[Si] +Hi and the diameter of each such subgraph G[Si] +Hi is at most q.
Extending the random delay method of [99], Ghaffari and Haeupler [49] propose a framework
for solving partwise aggregation using q-quality shortcuts in Õ(q) time. Given the wide applica-
bility of partwise aggregation, this framework has unsurprisingly found numerous applications
in distributed algorithms. The following notation is useful when assessing the usefulness of this
shortcut-based approach to partwise aggregation. For parts P = (S1, . . . , Sk) as above, we de-
note by SHORTCUTQUALITY(P) the minimum q such that there exist q-quality shortcuts for P .
The shortcut quality of a graph G, SHORTCUTQUALITY(G) = maxP SHORTCUTQUALITY(P),
is the worst-case shortcut quality over all such {Si}i in G. As we show, this graph parameter is
intimately related to the time needed to solve many distributed problems.

6.2.1 Moving cuts

In this section we reinterpret the moving cuts of Chapter 5 in order to facilitate distributed lower
bounds. Moving cuts represent an important tool for giving distributed information-theoretic
lower bounds. Moving cuts are used to lift strong unconditional lower bounds from the clas-
sic communication complexity setting into the distributed setting. This approach was used to
prove existentially-optimal lower bounds in Das Sarma et al. [27], and moving cuts can be seen
as a generalization of their techniques. However, moving cuts were only explicitly defined for-
mally Chapter 5, which used them to relate the maximum worst-case time gap between coding
and store-and-forward protocols for pairwise communication. Before defining moving cuts, we

114

briefly discuss the communication complexity model and distributed function computation prob-
lems.

Distributed computation of a Boolean function f is a problem (in the CONGEST model).
Two distinguished (multi-)sets of nodes {si ∈ V }ki=1 and {ti ∈ V }ki=1 are given. For a given
function f : {0, 1}k × {0, 1}k → {0, 1} and inputs x, y ∈ {0, 1}k, we want every node in G to
learn f(x, y). However, xi and yi are given only to si and ti as their respective private inputs.
Nodes in G have access to shared random coins. We are interested in the worst-case running
time to complete the above task. The problem is motivated by the (classic) communication
complexity model, which is the special case of CONGEST with a two-node, single-edge graph,
where Alice controls one node (with k input bits) and Bob controls the other node (ditto), and
single-bit messages are sent in each round. The time to compute f in this model is referred to as
its communication complexity. In this chapter we are mostly interested in the k-bit disjointness
function, disj : {0, 1}k × {0, 1}k → {0, 1}, given by disj(x, y) = 1 if for each i ∈ [k], we
have xi · yi = 0, and disj(x, y) = 0 otherwise. I.e., if x and y are indicator vectors of sets, this
function indicates whether these sets are disjoint. This function is known to have communication
complexity Θ(k) [27, 128].

Having defined the distributed function computation model, we are now ready to define our
lower-bound certificate on the time to compute a function between nodes {si}ki=1 and {ti}ki=1: a mov-
ing cut. We restate the moving-cut definition.

Definition 6.2.2 ([69]). Let S = {(si, ti)}ki=1 be a set of source-sink pairs in a graph G =
(V,E). A moving cut for S is an assignment of positive integer edge lengths ` : E → Z≥1.
We say that:

(i) ` has capacity γ :=
∑

e∈E(`e − 1);

(ii) ` has distance β when dist`({si}ki=1, {tj}kj=1) ≥ β, i.e., the `-distance between all
sinks and sources is at least β.

The utility of moving cuts is showcased by the following lemma.

Lemma 6.2.3. If G contains a moving cut for k pairs S = {(si, ti)}ki=1 with distance at least
β and capacity strictly less than k, then distributed computation of disj between {si}i∈[k]

and {ti}i∈[k] takes Ω̃(β) time. This lower bound holds even for bounded-error randomized
algorithms that know G and S.

Broadly, Lemma 6.2.3 follows from a simulation argument. Given a sufficiently-fast Õ(β)-time
distributed algorithm for disj between {si}ki=1 and {ti}ki=1 and a moving cut for {(si, ti)}ki=1 of
capacity less than k and distance β, we show how to obtain a communication complexity pro-
tocol with a sufficiently small complexity O(k) to contradict the classic Ω(k) communication
complexity lower bound for disjointness. This yields the lower bound. The full proof follows the
arguments (implicitly) contained in [27] and Chapter 5, and is given in Section 6.6 for complete-
ness.

115

Lemma 6.2.3 motivates the search for moving cuts of large distance and bounded capacity. For a
fixed set of k pairs S, we denote by MOVINGCUT(S) the largest distance β of a moving cut for
S of capacity strictly less than k.

6.2.2 Relation of moving cuts to communication

Consider the simple communication problem for pairs S = {si, ti}, termed multiple unicasts.
In this problem, each si has a single-bit message xi it wishes to transmit to ti. We denote by
COMMUNICATING(S) the time of the fastest algorithm for this problem which knows G and S
(but not the messages). One natural way to solve this problem is to store-and-forward (or “route”)
the messages xi through the network. We denote the fastest such algorithm’s running time by
ROUTING(S). While faster solutions can be obtained by encoding and decoding messages in
intermediary nodes, prior work has shown the gap between the fastest routing and unrestricted
(e.g., coding-based) algorithms is at most Õ(1) [69].

Furthermore, the following lemma shows that moving cuts characterize the time required to
complete multiple unicasts. As the model and terminology of [69] is slightly different from ours,
we provide a proof of this lemma in Section 6.6.

Lemma 6.2.4. ([69]) For any set of pair S, we have that

MOVINGCUT(S) = Θ̃(COMMUNICATING(S)) = Θ̃(ROUTING(S)).

Furthermore, routing algorithms (and, by extension, moving cuts) are intricately related to short-
cuts. We first extend shortcuts to (not necessarily connected) pairs in the straightforward way:
given a set of pairs S = {{si, ti}}ki=1 we say that a set of paths {Hi}ki=1 with endpoints {si, ti}
are q-quality shortcuts if both their dilation (longest path) and congestion (maximum number
of paths containing the same edge) are at most q. We define SHORTCUTQUALITY2(S) as the
minimum shortcut quality achievable for S. The seminal work of Leighton et al. [99] relates
(pairwise) shortcuts and routing algorithms.

Lemma 6.2.5. ([99]) For any set of pairs S, we have that

ROUTING(S) = Θ̃(SHORTCUTQUALITY2(S)).

Note that the above statements hold for all sets of pairs. However, in this chapter we will mostly
be concerned with sets of pairs S for which there exist vertex-disjoint paths connecting them,
which we refer to as connectable pairs. We argue that worst-case connectable pairs charac-
terize distributed optimization, hence we define MOVINGCUT(G) := max{MOVINGCUT(S) |
S is connectable}, and analogously for COMMUNICATING(G), ROUTING(G) and SHORTCUTQUALITY2(G).

116

6.3 Our Lower Bound

In this section we present our proof of our universal lower bounds in terms of shortcut quality.
In particular, this section is dedicated to proving the following theorem.

Theorem 6.3.1. The time to solve the spanning connected subgraph problem in any graph
G by a randomized algorithm which knows G is at least

Tconn(G) = Ω̃(SHORTCUTQUALITY(G)).

We defer most proofs of this section to Section 6.4 and Section 6.7, focusing on a high-level
overview. We start by introducing disjointness gadgets, which are pathological sub-graphs
for distributed optimization, and outline their use in proving distributed lower bounds, in Sec-
tion 6.3.1. In order to obtain informative lower bounds from these gadgets, we then relate the
worst such subgraph to the highest distance of any moving cut in G, MOVINGCUT(G), in Sec-
tion 6.3.2. This is the technical meat of the paper, and Section 6.4 is dedicated to proving this
relation. We then relate the obtained lower bounds to shortcut quality in Section 6.3.3. Finally,
we conclude with the proof of Theorem 6.3.1, as well as discussions of its implications to other
distributed problems, in Section 6.3.4.

6.3.1 Lower bound witnesses

In this section we define β-disjointness gadgets, a structure that connects together information-
theoretic bounds with higher-level distributed optimization problems like MST. The structure
can be seen as a generalization of previous existential lower bounds that show many distributed
problems cannot be solved faster than Ω̃(D +

√
n) on a specific graph family [27, 35, 122]. We

argue that β-disjointness gadgets are the “right” way to generalize their approaches to arbitrary
graphs.

Definition 6.3.2. A β-disjointness gadget (P, T, `) in graph G consists of a set of vertex-
disjoint paths P 6= ∅, each of length at least three; a tree T ⊆ G which intersects each path
in P exactly at its endpoint vertices; and a moving cut of capacity strictly less than |P | and
distance β with respect to the pairs {(si, ti)}|P |i=1 of endpoints of paths pi ∈ P .

As we show, such disjointness gadgets are precisely the worst-case subgraphs which cause
distributed verification (and optimization) to be hard. In particular, denoting by WCSUBNET-
WORK(G) the highest value of β for which there exists a β-disjointness gadget in G (or zero, if
none exists). This quantification the most pathological subgraph in G. We prove the following.

Lemma 6.3.3. The time to solve spanning connected subgraph verification algorithm in a
graph G by any algorithm (even one which knows G) is at least

Tconn(G) = Ω̃(WCSUBNETWORK(G) +D).

117

Figure 6.1: A disjointness gadget’s path and tree, given by straight and rounded blue lines,
respectively.

The non-trivial part of this lemma is the lower bound Tconn(G) = Ω̃(WCSUBNETWORK(G)).
Our proof of this bound (see Section 6.7) follows the approach implicit in [27]. Broadly, we use
a disjointness gadget (P, T, `) to construct a subgraph H determined by private |P |-bit inputs
x, y for the endpoints of the paths, such that H is a spanning and connected subgraph of G if
and only if disj(x, y) = 1. Combined with Lemma 6.2.3, this equivalence and the moving cut `
yield a lower bound on subgraph connectivity in a graph G containing a β-disjointness gadget.
In following sections we show how to use this bound to prove lower bounds for this problem in
any graph G.

6.3.2 Disjointness gadgets in any graph

The first challenge in deriving an informative lower bound on the time for spanning connected
subgraph verification from Lemma 6.3.3 is that graphs need not contain disjointness gadgets.
For example, as disjointness gadgets induce cycles, trivially no such gadgets exist in a tree.
Consequently, for trees Lemma 6.3.3 only recreates the trivial lower bound of Ω̃(D).

The following theorem implies that for any graphs where MOVINGCUT(G) is sufficiently larger
than D, disjointness gadgets do exist. More precisely, we prove the following theorem.

Theorem 6.3.4. For any graph G,

WCSUBNETWORK(G) +D = Θ̃(MOVINGCUT(G)).

Theorem 6.3.4 is the technical core of this chapter, and Section 6.4 is dedicated to its proof. At
a (very) high level, what we prove there is that, while disjointness gadgets do not always exist,
some relaxation of them always does. In particular, we show that for any graph G and set of
connectable pairs S in G, some relaxed notion of disjointness gadgets always exists for a subset
S ′ ⊆ S of size |S ′| = Ω(|S|). The majority of Section 6.4 is dedicated to proving the existence of
such relaxed disjointness gadgets. We then show how to extend a moving cut of distance β ≥ 9D
on S to (strict) disjointness gadgets: construct a relaxed disjointness gadget on a large subset of
S (since S are connectable), then clean-up the structure using β ≥ 9D to transform it to a (strict)
β-disjointness gadget.

118

6.3.3 Relating MOVINGCUT(G) to SHORTCUTQUALITY(G)

So far we have shown that (up to polylog multiplicative terms and additive O(D) terms), the
time to solve subgraph connectivity is at least the length of the worst moving cut in G, which we
denote by MOVINGCUT(G). More precisely, so far we proved that

Tconn(G) ≥ Θ̃(WCSUBNETWORK(G) +D) = Θ̃(MOVINGCUT(G)).

In this section we show that the above terms we have proven to be equivalent (up to polylog
factors) are in turn equivalent to the graph’s shortcut quality.

Indeed, by lemmas 6.2.4 and 6.2.5, we have that MOVINGCUT(G) = Θ(SHORTCUTQUALITY2(G)).
The following lemma proves an equivalence (up to polylog factors) between shortcut quality for
pairs to the graph’s shortcut quality (for parts).

Lemma 6.3.5. For any graph G,

SHORTCUTQUALITY(G) = Θ̃(SHORTCUTQUALITY2(G)).

Broadly, we use heavy-light decompositions [133] of spanning trees of parts, to show how to
obtain shortcuts for parts by gluing together a polylogarithmic number of shortcuts for connected
pairs. The overall dilation and congestion of the obtained shortcuts for the parts are at most
polylogarithmically worse than those of the shortcuts for the pairs. (See Section 6.7.2 for proof.)

6.3.4 Putting it all together

In this section we review our main result, whereby shortcut quality serves as a universal lower
bound for the spanning connected subgraph problem, as well as numerous other problems.

Theorem 6.3.1. The time to solve the spanning connected subgraph problem in any graph
G by a randomized algorithm which knows G is at least

Tconn(G) = Ω̃(SHORTCUTQUALITY(G)).

Proof. Putting all the lemmas above together, we have

Tconn(G) ≥ Θ̃(WCSUBNETWORK(G) +D) Lemma 6.3.3

= Θ̃(MOVINGCUT(G)) Theorem 6.3.4

= Θ̃(COMMUNICATING(G)) Lemma 6.2.4

= Θ̃(ROUTING(G)) Lemma 6.2.4

= Θ̃(SHORTCUTQUALITY2(G)) Lemma 6.2.5

= Θ̃(SHORTCUTQUALITY(G)) Lemma 6.3.5

119

Known reductions presented in Das Sarma et al. [27] extend the same universal lower bounds
of Theorem 6.3.1 to numerous problems such as the MST, shallow-light tree, SSSP, min-cut and
others. The reductions hold for both non-trivial approximation factors as well as randomized
algorithms.

6.4 Constructing Disjointness Gadgets

The goal of this section is to prove Theorem 6.3.4, namely that WCSUBNETWORK(G) +D and
MOVINGCUT(G) are equivalent, up to Õ(1) factors. At the heart of this proof is a lemma that
extends a moving cut between connectable pairs to a disjointness gadget. The proof is fairly
involved—which is why we first provide an abbreviated summary before presenting the formal
argument.

6.4.1 Technical overview

At a high level, the proof defines two auxiliary structures: crowns and relaxed disjointness struc-
tures (both defined below). Given k connectable pairs, we first show that one can always con-
struct a crown on a large, Ω(k)-sized, subset of these pairs. Next, we show that one can always
construct relaxed disjointness gadgets on an Ω(k)-sized subset of the pairs, by converting a crown
to a relaxed disjointness gadget. Finally, to obtain a (strict) disjointness gadget, which also re-
quires a moving cut, we show how to construct a disjointness gadget by considering a moving cut
between connectable pairs and then adapting a (relaxed) disjointness structure on a large fraction
of those pairs.

Crowns. As crowns have a somewhat technical definition, we start by motivating their defini-
tion.

Given k vertex-disjoint paths {pi}ki=1 in G, we call the pi’s part-paths and the indices i parts.
Suppose that the following (false) statement holds: “One can always find a connected subgraph
T ⊆ E(G) that touches Ω̃(k) part-paths”. By touching we mean that exactly one node and zero
edges lie in the intersection of pi and T . Such a structure would be highly interesting—it would
show, in an analogous fashion to Lemma 6.3.3, that a moving cut on k connectable pairs can
be extended to a universal lower bound for the SSSP problem, by reducing disjointness to SSSP
using this structure, and then appealing to Lemma 6.2.3.

Unfortunately, the statement as written does not hold (e.g., when G is a path), but can be relaxed
in a way that is both true and does not break the reduction: we allow the intersection of T and
pi to be coverable by a sub-path of pi of length at most D—the graph diameter. This makes the
path example trivial and changes the reduction up to a multiplicative constant and additive Õ(D)
factors, both of which are insignificant in the context of this chapter. This relaxed structure is a
(global) crown. However, constructing global crowns is challenging; our definition is essentially
a local version of the above relaxed structure.

120

Definition 6.4.1 (Crown). Let {pi}ki=1 be a set of vertex-disjoint paths in a graph G of di-
ameter D. A triplet (T,A, U), where T ⊆ G is a connected subset of edges in G, and
U ⊆ A ⊆ [k] are two subsets of parts, is a crown if the following properties hold:

1. |U | ≥ 1
4
|A|+ 2.

2. T only intersects parts in A. More precisely, V (T) ∩ V (pi) = ∅ for all i ∈ [k] \ A.

3. T intersects each part i ∈ U , and this (non-empty) intersection, V (T)∩V (pi), can be
covered by a single sub-path of pi of length at most D.

We use the following crown terminology for expressiveness (see Figure 6.2). We say that part
i belongs to crown (T,A, U) if i ∈ A; i is useful if i ∈ U ; i is sacrificial if i ∈ A \ U (note:
A stands for “all”, U stands for “useful”). While not a part of the definition, for the crowns
we consider, the sacrificial parts will always be fully contained in T , i.e., if i ∈ A \ U , then
E(pi) ⊆ T .

p1

p2

p3

p4

p5

≤ D

Figure 6.2: A crown (T, {1, 2, 3, 4, 5}, {1, 2, 4, 5}). T is depicted in blue. Note that part 3 is
sacrificial, hence is contained in T . The intersection of T and p4 is covered by a sub-path of
length at most D. Intersections with other useful part-paths are covered by a trivial sub-path of
length 0.

We say that two crowns (T1, A1, U1) and (T2, A2, U2) are disjoint if A1 ∩A2 = ∅ (though T1 and
T2 can intersect arbitrarily). A set of crowns is disjoint if every pair is disjoint. The definition of
crowns implies that a set of disjoint crowns can be easily merged into a single crown, as follows.
Consider a path q between two crowns (T1, A1, U1) and (T2, A2, U2) that does not touch any other
crown (such a path must exist). Merge the two crowns via (T1 ∪ T2 ∪ E(q), A1 ∪ A2, U1 ∪ U2)
and declare all part-paths that q touches sacrificial (at most 2). All crown properties continue to
hold.

We take a step back and compare the crown definition with the above SSSP motivation. In order
for the reduction to work, it is sufficient to prove that “for every k part-paths one can construct a
crown (T,A, U) with |A| ≥ Ω(k)’ (while only useful parts have a bounded intersection and can
be used in the reduction, Property 1 of crowns relaxes this requirement to the previous statement).
Combining this with the merging property, it is sufficient to show that “for every set of k part-
paths one can partition Ω(k) of them into crowns”. We argue this is true by considering two

121

sub-cases, phrased in terms of the contraction graph R, whose vertices are parts [k] whose edges
{i, j} corresponds to pairs of indices with a path (in G) between pi and pj that does not touch
any other part-path. In the (high-degree case), Ω(k) part-paths are adjacent to at least three other
part-paths, and in the (low-degree case) when almost all part-paths are adjacent to at most two
other part-paths.

High-degree case. We consider the case when Ω(k) parts have R-degree at least three. Pick a
part i and seed (i.e., start) a crown from it: declare i sacrificial and all of its R-neighbors useful.
Continue growing the crown as long as a useful part j with at least two “unused” R-neighbors
exists, in which case declare j sacrificial and its neighbors to the useful parts to the crown. When
we cannot grow the crown anymore we add it to the collection, delete the used parts from the
graph and repeat the process with another seed i that has three unused neighbors. It is easy to
argue that Ω(k) parts belong to some crown: an unused part i of R-degree three or more has at
least one neighboring part j in some crown (otherwise i would start its own crown), and j is a
useful part in its crown (otherwise j’s crown would absorb i). However, useful parts belonging
to some crown can have only one unused neighbor (otherwise they would grow a crown), hence
we can charge each unused part to a unique useful part in a crown. This shows that only a small
fraction of parts of degree at least three can be unused.

Low-degree case. We illustrate our techniques on the case when all vertices in R have degree
two (the formal proof handles the case when most nodes have this property). We decompose R
into cycles and paths and construct crowns on a constant fraction of each. For an R-path, we
show one can construct a crown on any three consecutive parts (a, b, c), thereby proving one can
construct a crown on a constant fraction of a R-path (of length at least three). Fix (a, b, c) and
consider the shortest path f from any node in pa to any node in pc; the length of f is at most
the diameter of G, namely D. Note that f intersects pb, but if the intersection is coverable by
a sub-path of length at most D then one can make a crown (E(f), {a, b, c}, {a, b, c}). If this is
not the case, we can “replace” the part of pb between the first and last intersection with f with
the appropriate part of f , forcing the intersection to be coverable by a short sub-path; this proves
one can construct a crown on {a, b, c}. Cycles can be handled similarly. Combining both cases,
we conclude that for every set of k part-paths, there exists a crown on some Ω(k)-sized subset of
them.

Converting a crown into a relaxed disjointness gadget. Relaxed disjointness gadgets are an
intermediate step between crowns and disjointness gadgets. Relaxed disjointness gadgets require
both endpoints of part-paths to be included in T (like a disjointness gadget), but also allow for
three exceptional sub-paths of length at most D on each part-path (unlike crowns that allow only
one). Moreover, relaxed disjointness gadgets do not require a moving cut.

Definition 6.4.2. A relaxed disjointness gadget (P, T) in graph G of diameter D consists
of vertex-disjoint paths P = {pi}ki=1 and a connected subset of edges T ⊆ E(G) which

122

intersects all paths at their endpoint vertices, and such that for each i ∈ |P |, V (T) ∩ V (pi)
can be covered by at most three sub-paths of pi of length at mostD. We say that the endpoints
of (P, T) are the endpoints of {pi}ki=1.

p1

p2

p3
≤ D≤ D ≤ D

Figure 6.3: A relaxed disjointness gadget. The edges of the paths and T are horizontal and blue
lines, respectively. The intersection of p3 and T is covered by three sub-paths of length at most
D.

We show that “for every crown (T,A, U) on k parts, one can construct a relaxed disjointness
gadget on Ω(k) parts”. The proof sketch is fairly simple: we need to “connect” the endpoints
{si, ti} of Ω(k) parts to T . Fix some i and find the shortest path from each endpoint of pi to
T . If both si and ti can connect to T without intersecting another part-path pj , we include the
connections in T and continue to the next i. If this is not the case, we can either connect i
and sacrifice (at most two) other part-paths, or not include i. One can always choose a constant
fraction of i’s that can be simultaneously connected to T : consider the “interference graph” that
has a directed edge i → j if connecting i sacrifices j. The graph has out-degree at most two,
hence total (in+out) average degree at most four; by Turan’s theorem, there exists an independent
set of size k/5, which can be simultaneously connected and, conceptually, we are done. There
are significant technical challenges that lie beyond this simple sketch: the connections from si
and ti could arbitrarily intersect pi (i.e., not be coverable by a sub-path of length at most D).
This can be dealt with by path-replacement strategies such as the ones in the low-degree crown
construction. However, a replacement could start to intersect other connections which are not
accounted for in the interference graph, requiring special care.

Converting a relaxed disjointness gadget to a disjointness gadget. To prove Theorem 6.3.4
we need to bring together moving cuts and relaxed disjointness structures. Suppose we are given
a moving cut ` between k connectable pairs. As previously argued, we can construct a relaxed
disjointness gadget ({pi}i, T) on Ω(k) of such pairs. The moving cut ` ensures that the `-length
of each pi is at least β (assume β ≥ 9D). One can assume WLOG that `(e) = 1 for each edge on
each part-path. For each pi we exclude the sub-paths that intersect T (total exclusion has `-length
and length at most 3D); this partitions pi into two sub-paths, one of which (denoted by p′i) has `-
length at least (β−3D)/2. Adding

⋃
i pi \p′i to T , we maintain the property that the endpoints of

p′i connect to T and that p′i does not intersect T internally. This almost completes the disjointness
structure construction. Denote the endpoints of p′i with s′i, t

′
i. The final property we need to

ensure is that dist`(s
′
iii, t
′
jjj) ≥ Ω̃(β) for all i, j; instead, we only ensured that dist`(s

′
i, t
′
i) ≥ Ω̃(β)

for all i. However, going between one such distance guarantee and the other can be done via a

123

structural lemma from prior work by losing an extra O(log n) factor in β [69, Lemma 2.5]. This
completes the full proof.

6.4.2 Constructing crowns

In this section we show that large crowns exist in all graphs (see Definition 6.4.1). We first
describe the crown merging procedure and show how to construct them. The construction is
partitioned into the high-degree case and the low-degree case. We start by defining some notation
we will be using throughout this section.

Notation specific to Section 6.4. We denote the disjoint union via AtB, where we guarantee
A ∩ B = ∅. For a graph H , we denote by V (H) and E(H) the vertices and edges of H ,
respectively. For a set of edges T ⊆ E(H), we denote by V (T) :=

⋃
e∈T e the set of endpoints

of edges in T . Similarly, for a path p we denote by V (p) the set of nodes on the path (including
its endpoints).

We denote the degree of a vertex v in graph H by degH(v), and its neighborhood in H by
ΓH(v). We extend the neighborhood definition to sets of vertices X ⊆ V (H), letting ΓH(X) :=⋃
v∈X ΓH(v) (i.e., the set of vertices in V (H) that have a neighbor inX). Furthermore, we denote

the inclusive and exclusive neighborhoods by Γ+
H(X) := ΓH(X)∪X and Γ−H(X) := ΓH(X)\X .

A walk inH is a sequence of verticesw = (w0, w1, . . . , w`), wherewi ∈ V (H) and {wi, wi+1} ∈
E(H) for all 0 ≤ i ≤ ` − 1. The indices i are often called steps. The length of the walk is
denoted by |w| := `. Given two steps i ≤ j we denote by w[i,j] the subwalk (wi, wi+1, . . . , wj).
Furthermore, we define E(w) as the set of edges the walk traverses over and we define V (w) :=⋃`
i=0{wi}. Given two nodes u, v ∈ V (H) the distance distH(u, v) is the length of the shortest

walk between them. We extend the distance definition to sets X, Y ⊆ V (H) in the natural way,
letting distH(X, Y) := minx∈X,y∈Y distH(x, y).

We define walk clipping. For a walk w in graph H , and two sets A,B ⊆ V (H), we denote the
subwalk of w from the last step i := max{i | wi ∈ A} corresponding to a vertex in A to the first
step j := min{j | wj ∈ B, j > i} corresponding to a vertex in B by clip(w,A,B) := w[i,j]. We
note that the clipping operation is well defined only when after each step i where wi ∈ A there
exists a step j ≥ i such that wj ∈ B. This will always be the case when we use this operation.
(This is, for instance, true if w0 ∈ A and w` ∈ B.)

The definition of crowns allows for disjoint crowns to merged rather directly, by sacrificing at
most one part in each crown in order to merge the trees. See Section 6.8 for a full proof.

Lemma 6.4.3. (Crown merging) Let {(Ti, Ai, Ui)}i∈I be a set of disjoint crowns of vertex-
disjoint paths {pi}ki=1. Then there exists a single crown (T∗, A∗, U∗) of {pi}i∈A∗ such that
A∗ =

⊔
i∈I Ai.

124

Contraction graph

In this section we define the contraction graph which we will extensively used in the crown
construction.

Definition 6.4.4 (Contraction graph). A contraction graph R with respect to k fixed vertex-
disjoint paths {pi}ki=1 has vertex set V (R) = [k]. The edges of R consist of all pairs {i, j}
such that there exists a simple path (v0, v1, . . . , v`) in G where v0 ∈ V (pi), v` ∈ V (pj), and
the internal nodes do not belong to any part-path, i.e.

⋃`−1
x=1{vx} ∩

⋃k
y=1 V (py) = ∅. We

denote this path by EG({i, j}).

Closely related to the contraction graph, is the projection πG→R, which is a mapping between
walksw = (v0, v1, . . . , v`) inG and walks inR. We first fix a v ∈ V (G) and define πG→R(v) = x
if v ∈ px and πG→R(v) = ⊥ if v does not belong to any part-path (note that our defini-
tion is well-defined because the part-paths are disjoint). We now extend the function to walks
w = (v0, . . . , v`) on G. We define w′ := (πG→R(v0), πG→R(v1), . . . , πG→R(v`)). Furthermore,
we let w′′ be the sequence w′ with elements ⊥ removed, and consecutive duplicate elements
merged down to a single element. For instance, if w′ = (5, 1,⊥, 1, 1,⊥, 2, 2,⊥, 2, 3}, then
w′′ = (5, 1, 2, 3). The projection πG→R maps w 7→ w′′. It is easy to see that w′′ is a walk on R.

Observation 6.4.5. The contraction graph R is connected.

Proof. Let a, b ∈ V (R) be parts and let a′, b′ be arbitrary nodes satisfying a′ ∈ pa, b
′ ∈ pb. Since

G is connected, there exists a walk w connecting a′ and b′. Projecting the walk to R, πG→R(w)
is a walk in R connecting a and b, proving the claim.

Constructing crowns in the high-degree case

In this section we consider the case where a large fraction of parts either have R-degree of at
least three or a neighbor with this property. In this case, combining with the crown-merging
Lemma 6.4.3, we can successfully construct a global crown on a constant fraction of parts.

Lemma 6.4.6. Let R be a contraction graph R, and let H = {v ∈ V (R) | degR(v) ≥ 3}. If
|Γ+
R(H)| ≥ 1

10
k, then there exists a collection of disjoint crowns C = {(Ti, Ai, Ui)}i∈I , with∑

i∈I |Ai| ≥
1
70
k.

Proof. We perform an iterative procedure to find the required collection. Let be C an (initially
empty) list of disjoint valid crowns. Initially, we let the set of “available parts” be L ← V (R)
(i.e., all parts).

The procedure repeatedly “seeds” a new crown and then it proceeds to “grow” it until no longer
possible. We describe the seeding procedure. Find a part v ∈ L with at least three C-neighbors
in L (i.e. |ΓR(v) ∩ L| ≥ 3); the procedure stops when no viable v can be found. We seed a new
crown (T,A, U) from v: We define A ← Γ+

R(v) ∩ L, and L ← L \ A. The part v is sacrificial

125

and the R-neighbors of v are useful, i.e., U ← A \ {v}. We assign T ⊆ E(G) to the union of
E(pv) (edges in G corresponding to the part-path pv) and

⋃
w∈U EG({v, w}) (all of the simple

paths corresponding to R-edges between v and its useful neighbors). This completes the seeing
portion.

We proceed to “grow” the new crown. Find a useful part w ∈ U in the current crown with at least
two R-neighbors in L (i.e., |ΓR(w) ∩ L| ≥ 2). Let X ← ΓR(w) ∩ L. We add these neighbors
to the crown and sacrifice w: A ← A ∪ X , U ← U \ {w} ∪ X and L ← L \ A. We add to
T the part-path corresponding to w and the simple paths connecting w to the new useful parts
T ← T ∪E(pw)∪

⋃
x∈X EG({w, x}). We repeat the growing step until no viable w can be found.

At that point we add (T,A, U) to C and the seeding procedure is restarted.

Suppose the above procedure yields crowns C = {(Ti, Ai, Ui)}i∈I . We proceed to analyze it.
Note that by construction V (R) = L t

(⋃
i∈I Ai

)
where t denoted disjoint union. Let us define

H = Hin t Hout (disjoint union) where Hin are the parts of H that are inside some crown
(Hin = H ∩ (

⋃
iAi)) and Hout outside Hout = H ∩ L, therefore we have |H| = |Hin|+ |Hout|.

Subclaim: we argue that |
⋃
i∈I Ai| ≥

1
2
|H|. However, we first establish that |Hout| ≤ |

⋃
i∈I Ai|

via a charging argument from Hout to
⋃
i∈I Ai. Let h ∈ Hout. Since h ∈ L it must have at least

one neighbor v that belongs to some crown (T,A, U) (choose an arbitrary v if multiple neighbors
fit the condition); if this were not the case then |ΓR(h)| ≥ 3 would ensure that a crown would
be seeded from h. Furthermore, it must be that v ∈ U , since sacrificial parts absorb all of their
available neighbors when joining a crown. We “charge” h to v. On the other hand, fix a part c in
some crown. Note that at most one h ∈ Hout can charge itself to c: if two parts in Hout charge
themselves to c, we would grow the crown via c (note that v must be a useful part in its crown if
anyone charges to it since sacrificial parts absorb their available neighbors). Since each h ∈ Hout

can be charged to a unique part in
⋃
i∈I Ai we conclude that |

⋃
i∈I Ai| ≥ |Hout|. We complete

the subclaim by noting that |
⋃
i∈I Ai| ≥ |Hin| = |H| − |Hout| ≥ |H| − |

⋃
i∈I Ai|, which can be

rewritten as |
⋃
i∈I Ai| ≥

1
2
|H|.

Let use define M := ΓR(H) \ H . Furthermore, partition M = Min t Mout where Min =
M ∩ (

⋃
i∈I Ai) and Mout = M ∩ L. Subclaim: we prove that |H| ≥ 1

2
|Mout| by charging

elements of Mout to H in such a way that at most two elements of Mout get charged to the same
H . Fix v ∈Mout ⊆ ΓR(H)∩L. By definition of ΓR(H), there exists h ∈ ΓR(v)∩H; we charge
v to h. We now argue that at most two different parts can charge the same h. First, note that
a part h ∈ H that is being charged to by at least one part must be either available (i.e., in L),
or a useful part in some crown (since sacrificial parts in a crown consume all of their available
neighbors). Assume, for the sake of contradiction, that a node h is charged more than two times.
Then the construction would either seed a crown (if h ∈ L) or grow a crown via h. We conclude
that |H| ≥ 1

2
|Mout|.

We finalize the proof using the two subclaims and Min ⊆
⋃
i∈I Ai:

1

10
k ≤ |Γ+

R(H)| = |H|+ |Min|+ |Mout|

≤ |H|+ |
⋃
i∈I

Ai|+ 2|H| ≤ (2 + 1 + 4)|
⋃
i∈I

Ai| = 7|
⋃
i∈I

Ai|.

126

This can be rewritten as |
⋃
i∈I Ai| =

∑
i∈I |Ai| ≥

1
70
k.

Constructing crowns in the low-degree case

In this section we consider the second case, where a large fraction of parts haveR-degree at most
two.

We start by introducing the notion of minimal part-paths with endpoints S := {(si, ti)}ki=1.
A set of vertex-disjoint paths {pi}ki=1 with endpoints S is called minimal if they minimize∑

i∈[k] |pi| among all such sets with endpoints S.

Lemma 6.4.7. Let R be a contraction graph with respect to some minimal part-paths, and
let H = {v ∈ V (R) | degR(v) ≥ 3}. If |Γ+

R(H)| ≤ 1
10
k, then there exists a collection of

disjoint crowns C = {(Ti, Ai, Ui)}i∈I with
∑

i∈I |Ai| ≥
3

100
k.

The rest of this section will function as a proof of Lemma 6.4.7. This will allow us to break down
its complexity into smaller pieces.

We defineM0 := Γ+
R(H),Mi := Γ−(Mi−1) for i ∈ {1, . . . , 8}, andM :=

⋃8
i=0Mi. In particular,

for each m ∈Mi (i ∈ {0, . . . , 8}) we have that distR(m,H) = i+ 1.

Claim 6.4.8. |Mi| ≤ |Mi−1| for i = 1, . . . , 8.

Proof. By definition, each m ∈ Mi is a neighbor of some m′ ∈ Mi−1 of degree at most two
(there might be two choices for m′, but in this case we choose arbitrarily). We charge m to m′.
At most one part can be charged to m′: otherwise m′ could not be with distance i from H since
then i = distG(m′, H) = distG(ΓG(m′), H) + 1 = i+ 2.

We now define O := V (R) \ M . We have that |M8| ≤ . . . ≤ |M0| ≤ 1
10
k, implying that

|M | ≤ 9
10
k, and giving us that |O| ≥ k − 9

10
k = 1

10
k.

Consider the induced subgraph R′ := R[V (R) \ H]. R is connected (Observation 6.4.5). By
definition ofH , all parts in this subgraph haveR-degree at most two, hence we can decomposeR′

into paths. Note that cycles are not allowed since they would be an isolated connected component
of R. There are two special cases: k ≤ 2 which is a trivial case, or the entire graph being a cycle
in which case we redefine R′ = R[V (R) \ {v}] where v is an arbitrary part and the rest of the
proof remains unchanged. Let {qi}i∈J be the collection of paths inR′ of length at least 9 (discard
all shorter paths), in other words, |V (qi)| ≥ 10.

Claim 6.4.9.
∑

i∈J |V (qi)| ≥ 1
10
k.

Proof. We argue that O ⊆
⋃
i∈J V (qi) which would, together with disjointness of V (qi) ∩

V (qj) = ∅, imply that
∑

i∈J |V (qi)| = |
⋃
i∈J V (qi)| ≥ |O| ≥ 1

10
k. Fix a part v ∈ O. By

definition, we have that distR(v,H) ≥ 10, hence the R′-connected-component that includes v
must be a path of length at least 9, leading to the required conclusion.

127

We introduce some notation: we say that a crown (T,A, U) is supported on a subset of parts
X ⊆ [k] if A ⊆ X . Similarly, for a path f in R we say that a (T,A, U) is supported on the path
if A ⊆ V (f) (note that V (f) ⊆ V (R) ⊆ [k]).

Claim 6.4.10. Let f be a simple path in R with |V (f)| ≥ 10 and the extra condition that
for all v ∈ V (f) we have degR(v) ≤ 2. Then, there exists a collection of disjoint crowns
supported on f such that C = {(Ti, Ai, Ui)}i∈I′ with

∑
i∈I′ |Ai| ≥

3
10
|V (f)|.

Proof. Suppose that f = (f0, f1, f2, . . . , f`) with ` = |V (f)| − 1 ≥ 9, where fi ∈ V (R)
are parts. Let x = 3d`/9e − 1. We note that f0, fx and f2x are all valid parts since 2x =
6d`/9e − 2 ≤ 6`/9 + 6 − 2 = 2

3
` + 4 ≤ `, where the last inequality holds for ` ≥ 12 and

can be manually checked for ` = 9, 10, 11 (giving 2x = 4, 10, 10, respectively). Furthermore,
we note that x + 1 ≥ 3

10
|V (f)| for |V (f)| ≥ 10 since x + 1 = 3d`/9e ≥ `/3 = |V (f)|−1

3
=

0.9|V (f)|+0.1|V (f)|−1
3

≥ 0.9|V (f)|
3

= 3
10
|V (f)|.

Subclaim: there exists a simple path w′ in G (note: not R) of length at most D whose projection
πG→R is supported on f and intersects exactly x+1 part-paths. More precisely, V (πG→R(w′)) ⊆
V (f) and |V (πG→R(w′))| = x + 1. Let a, b ∈ V (G) be arbitrary nodes on the part-paths
corresponding to fx and f2x−1, respectively. Since the diameter of G is at most D, there exists a
simple path w = (w0 = a, w1, . . . , wd = b) in G from a to b of length at most d ≤ D. Consider
w′ := clip(w, V (pfx), V (pf0)∪ V (pf2x)); the clipping is well-defined because the walk starts on
pfx and ends on f2x. Furthermore, we claim that πG→R(w′) is supported on f : either πG→R(w′)
is supported on f and the statement is immediate or w′ exists f , in which case it must go through
pf0 or pf2x; in both cases the path is clipped only to the subwalk supported on f . We conclude
that f intersects exactly x+1 part-paths since it starts on pfx and ends in pf0 or pf2x . It must cover
all parts in between due to the projection πG→R being a walk on R and cannot cover anything
outside do to clipping. This completes the subclaim.

Let πG→R(w′) intersect exactly f ′ := {f ′0, f ′1, . . . , f ′x}, where f ′i and f ′i+1 are consecutive parts
on the path f and w′ start (resp., end) on a node corresponding to pf ′0 (resp., pf ′x).

We construct crowns on f ′ by partitioning f ′ into triplets (f ′0, f
′
1, f

′
2), (f ′3, f

′
4, f

′
5), . . . , (f ′x−2, f

′
x−1,

f ′x) (note that 3 | x + 1, i.e., x + 1 is divisible by 3). Fix a triplet (f ′i , f
′
i+1, f

′
i+2) for 3|i and

construct a crown on it as follows.

Let wi := clip(w′, V (pf ′i), V (pf ′i+2
)) and note that |wi| ≤ D. The clipping is well defined

because since every subwalk ofw′ that passes through pf ′i must eventually cross over pf ′i+2
before

ending at pf ′x . Let w̃i be the subwalk of wi between the first and last occurrence of a node that
is on pf ′i+1

; this is well-defined since wi intersects pf ′i+1
. Let u, v be the first and last node of

w̃i. Note that, because of path minimality, pf ′i+1
connects u and v via some shortest path in the

subgraph of G that excludes the other part-paths (otherwise we could shorten the pi); call this
sub-path q. This is because each sub-path of the shortest path (e.g., q) is also a shortest path.
On the other hand, w̃i is some walk connecting u and v that does not touch any other part-path
outside of V (pf ′i+1

). Therefore, the length of w̃i cannot be smaller than q. This allows us to swap
the subwalk of wi corresponding to w̃i with q without increasing the length of the walk wi. In
the reminder we assume we have performed this replacement.

128

We construct a crown (T,A, U) by assigning T ← wi, A ← U ← {f ′i , f ′i+1, f
′
i+2} and verify

it is a valid crown. T is connected since it is a walk. Property 1 is satisfied since 3 = |U | ≥
1
4
|A|+2 = 3

4
+2. Property 2: considering πG→R(wi) ⊆ {f ′i , f ′i+1, f

′
i+2}we conclude that no part-

path outside of A is intersected. Property 3: by the clipping, T intersects pf ′i and pf ′i+2
in a single

node. Furthermore, T intersects pf ′i+1
in at most D consecutive nodes due to the replacement;

the property is satisfied.

This concludes the proof because we constructed valid disjoint crowns containing (in union)
exactly x+ 1 ≥ 3

10
|V (f)| parts.

We finalize the proof of the main result of this section by applying Claim 6.4.10 to all {qi}i∈J
and concatenating the collections of crowns constructed this way (they are clearly disjoint since
they are supported on disjoint paths of R). We establish a disjoint collection of crowns C =
{(Ti, Ai, Ui)}i∈I with

∑
i∈I |Ai| ≥

1
10
k · 3

10
= 3

100
k. This completes the proof of Lemma 6.4.7.

�

Finalizing the crown construction

Combining the high-degree case (Lemma 6.4.6) and the low-degree case (Lemma 6.4.7) with
crown merging (Lemma 6.4.3) we conclude the crown construction with the following result.

Lemma 6.4.11. For every set of k minimal part-paths {pi}ki=1, there always exists a crown
(T,A, U) with respect to {pi}i∈A, where U ⊆ A ⊆ [k] and |U | ≥ 1

280
k.

Proof. LetR be the contraction graph of {pi}ki=1. By applying Lemma 6.4.6 and Lemma 6.4.7 to
R, we can find a set of disjoint crowns C = {(Ti, Ai, Ui)}i∈I where

∑
i∈I |Ai| ≥ min(1

70
k, 3

100
k) =

1
70
k. Merging the crowns via Lemma 6.4.3 we construct a single crown (T∗, A∗, U∗) of {pi}i∈A∗

satisfying |A∗| =
∑

i∈I |Ai| ≥
1
70
k. We deduce that |U∗| ≥ 1

4
|A∗| + 2 ≥ 1

280
k by Property 1 of

crowns.

6.4.3 Converting crowns into relaxed disjointness gadget

In this section we prove the following result.

Lemma 6.4.12. Given a set of k connectable pairs {(si, ti)}ki=1, there always exists a sub-
set U ⊆ [k] of size |U | ≥ 1

1400
k and a relaxed disjointness gadget (P, T) with endpoints

{(si, ti)}i∈U .

We prove this result by the following lemma, which converts a large crown (in terms of number
of parts belonging to a it) into a large relaxed disjointness gadget (Definition 6.4.2).

Lemma 6.4.13. Let (T,A, U) be a crown with respect to {pi}ki=1 with endpoints {(si, ti)}ki=1.
There exists a subset U ′ ⊆ U of size |U ′| ≥ 1

5
|U | and a relaxed disjointness gadget (P, T)

129

with endpoints {(si, ti)}i∈U ′ .

Proof. We build a directed “interference graph” I: the vertices correspond to parts U and the
outgoing edges of a part i ∈ U are defined by the following.

For every i ∈ U let psi be the shortest walk in G from si to the closest vertex in V (T). If psi
touches another part-path, we clip-off anything beyond the first touch, i.e., psi ← clip(psi, {si},⋃
j∈U,j 6=i V (pj)). In this case, let j be the part index psi touches. We add the directed edge i→ j

to the interference graph I . Finally, we “associate” the walk psi to part i (regardless of whether
it touches another part or not).

We repeat the exact same steps for ti: let pti be the shortest walk from ti to V (T); we clip-off a
suffix and add an edge i→ j′, if needed; finally, associate pti with part i. Exactly two walks are
associated with each part.

Let I ′ be the undirected version of I (directed edges i → j are transformed to undirected edges
{i, j}). Since the out-degree of I is at most two, the average degree of I ′ is at most 4. Then, by
Turan’s theorem, there exists an independent set U ′ ⊆ U in I ′ with |U ′| ≥ 1

1+d
k ≥ 1

5
k where

d ≤ 4 is the average degree. We will call the parts U \ U ′ (i.e., outside of the independent set)
“sacrificial”.

We initialize T ′ with by adding all part-paths of sacrificial parts to T , i.e., T ′ ← T∪
⋃
j∈U\U ′ E(pj).

Note that this T ′ is connected since the crown ensures T touches each part-path. We will later
adjust T ′ and we maintain its connectivity.

As warm-up, suppose that for all i ∈ U ′ (called “useful” parts) all walks associated with i do
not intersect pi (except at the starting endpoint of the walk). In this case, for each i ∈ U ′ (in
arbitrary order) we do the following. Consider each of the two walks f associated with i (in
arbitrary order). We reassign T ′ ← T ′ ∪ f , ensuring {si, ti} 3 f0 ∈ V (T ′) (i.e., T ′ touches
an endpoint of pi). We also maintain the connectivity of T ′ because either f|f | ∈ V (T) (i.e.,
no clipping occurred, f connects to T , in which case the claim is obvious) or it connects to
another part-path pj , which necessarily must be sacrificial (i.e., j 6∈ U ′) and therefore added to
T since i ∈ U ′ and U ′ is an independent set. After the process is finished for all i ∈ U ′ we
have that ({pi}i∈U ′ , T ′) is a relaxed disjointness gadget: we already argued that connectivity of
T ′ is maintained; si, ti ∈ V (T ′) since the two walks associated with i ∈ U ′ contain si and ti as
endpoints and always get added to T ′. Lastly, we argue about covering V (T ′) ∩ V (pi): we have
that T ′ = T ∪

⋃
j∈U\U ′ E(pj) ∪

⋃
j∈J fj where {fj}j∈J is a collection of walks associated with

parts in U ′ (i.e., useful parts). For some i ∈ U ′ we have:

V (T ′) ∩ V (pi) = (V (T) ∩ V (pi)) ∪

 ⋃
j∈U\U ′

V (pj) ∩ V (pi)

 ∪(⋃
j∈J

V (pj) ∩ V (pi)

)
⊆ (V (T) ∩ V (pi)) ∪ ∅ ∪ {si, ti}.

Here we used that pi, pj are vertex-disjoint for i, j ∈ U, i 6= j; walks {fj}j∈J do not intersect
useful part-paths except in endpoints {si, ti}; V (T) ∩ V (pi) can be covered by one path of
length at most D (from Property 3 of crowns). In conclusion, V (T ′) ∩ V (pi) can be covered by

130

{si}, {ti} and one sub-path of length at mostD; (T ′, U ′) is a disjointness gadget. This completes
the warm-up.

We now consider general f , i.e., we allow f associated with i to intersect pi. To achieve this, we
will need to iteratively adjust the part-paths. We initialize p′i ← pi, ∀i ∈ U ′ and adjust {p′i}i∈U ′
as needed. We will maintain the following invariant: for all vertices v ∈ V that, at any point, are
in the set v ∈

⋃
j∈U ′ V (p′j) and v 6∈

⋃
j∈U ′ V (pj) (i.e., were not in the same set for the original

definition of part-paths), it will hold that v ∈ V (T ′).

For each i ∈ U ′ (in arbitrary order) we do the following. Consider each walk f associated with
part i (in arbitrary order). We first examine whether internal nodes of f intersect V (T ′) and apply
f ← clip(f, {f0}, V (T ′)) if this is the case.

Let t be the largest step such that ft ∈ p′i (e.g., t = 0 in the warm-up scenario). We replace the
prefix/suffix of p′i between f0 and ft with f[0,t]. Note that this does not change the endpoints of
p′i. We finally update T ′ ← T ′ ∪ f . This maintains the invariant that all vertices added to p′i are
in V (T ′) since V (f[0,t]) ⊆ V (f) ⊆ V (T ′).

We argue this maintains connectivity of T ′. We discuss a few possibilities. If internal nodes of f
intersected V (T ′) the connectivity of T ′ ∪ f is clear. If it did not intersect T ′ then we have the
same possibilities as in the warm-up: either f|f | ∈ T , or the endpoint could belong to a sacrificed
part (as in the warm-up). In all of these cases f is connected to T ′ and the connectivity of T ′ is
maintained.

After the process is finished for all i ∈ U ′, we argue that ({p′i}i∈U ′ , T ′) is a relaxed disjointness
gadget. The connectivity of T ′ is satisfied as previously argued. We have that si, ti ∈ V (T ′)
since the two walks associated with i contain si and ti as endpoints (this property is maintained
after potential clipping) and get added to T ′.

Finally, we argue that V (T ′) ∩ V (p′i) for i ∈ U ′ can be covered by at most three sub-paths of p′i
of length at mostD. By construction, p′i = f i[0,t]◦(pi)[a,b]◦qi[t′,0] (a, b, t, t′ depend on i but we will
drop this for notational simplicity) where f i, qi are the two walks associated with part i (possibly
empty), qi[t′,0] represents the walk in reverse order (qit′ , q

i
t′−1, . . . , q

i
0) and ◦ concatenates walks

with matching endpoints. The construction stipulates that T ′ = T ∪
⋃
j∈U\U ′ E(pj) ∪

⋃
j∈J fj

where {fj}j∈J is a collection of walks associated with parts in U ′ (i.e., useful parts).

By construction, V (f i[0,t]) ⊆ V (T ′). Since f i is a shortest path in G and the diameter of G is at
most D we have that |f i| ≤ D, hence |f i[0,t]| ≤ D. In other words, the intersection V (f i[0,t]) ∩
V (T ′) = V (f i[0,t]) can be covered by a sub-path of length at most D. The same holds for qi.

The intersection of V (T ′) ∩ V ((pi)[a,b]) = V (T) ∩ V ((pi)[a,b]) for i ∈ U ′: this follows from
T ′ = T ∪

⋃
j∈U\U ′ E(pj)∪

⋃
j∈J fj , the original part-paths being vertex-disjoint, and {fj}j∈J are

(clipped versions of) walks that do not intersect (pi)[a,b] of any useful part i (they do not intersect
non-associated useful parts and the restriction to [a, b] avoids associated walks). By Property 3,
the intersection of V (T) ∩ V (pi) can be covered by one sub-path of length at most D. Thereby,
restricting to (pi)[a,b], we conclude that V (T ′) ∩ V ((pi)[a,b]) can be covered by one sub-path of
length at most D.

In conclusion, remembering that p′i = f i[0,t]◦(pi)[a,b]◦qi[t′,0], we conclude that V (p′i)∩V (T ′) can be

131

covered by at most three sub-paths of length at mostD (one for each factor in the concatenation).
This concludes the proof.

We now complete the proof of Lemma 6.4.12.

Proof. Let {pi}ki=1 be minimal part-paths with endpoints {(si, ti)}ki=1. Using Lemma 6.4.11, we
find a crown (T∗, A∗, U∗) of {pi}i∈A∗ with |U∗| ≥ 1

280
k. Furthermore, Lemma 6.4.13 guarantees

the existence of a relaxed disjoint gadget (P, T) with endpoints {(si, ti)}i∈U satisfying |U | ≥
1
5
|U∗| = 1

1400
k.

6.4.4 Finalizing the disjointness gadget

In this section we use the developed tools to extend every moving cut to a disjointness gadget.

Lemma 6.4.14. If a set of k connectable pairs S in G admit a moving cut with capacity
Õ(k) and distance β ≥ 9D, then G contains an Ω̃(β)-disjointness gadget.

Proof. Let S = {(si, ti)}ki=1 be a set of connectable pairs, admitting an (α, β)-moving which we
denote by `. We can assume WLOG that the capacity is at most k/30001 due to Fact 6.6.1 which
allows us to scale-down both the capacity and distance of ` by poly log n factors (note that this
lemma is insensitive to such factors).

By Lemma 6.4.12, there exists a relaxed disjointness gadget (P, T) with respect to some subset
of these pairs, S ⊆ {(si, ti)}ki=1, of size |S| ≥ 1

1400
k. We will further focus on the subset S ′ ⊆ S

of pairs (si, ti) whose path pi : si ti in P is made up entirely of edges e with `-length
precisely one (smallest possible). The capacity of ` is at most

∑
e(`e − 1) < k/30000 < |S|/2.

Consequently, since the paths pi are disjoint and each edge e with `e > 1 contributes at least one
to
∑

e(`e − 1), the set S ′ \ S contains at most k/30000 pairs, and so |S ′| ≥ |S| − k/30000 ≥
k/3000. Note that the distance and capacity (upper bound) of ` when move from S to its subset
S ′.

Now, consider a source-sink pair (si, ti) ∈ S ′, connected by path pi ∈ P . By the definition of
a relaxed disjointness gadget, the intersection of pi with T is covered by a set Φi of at most 3
sub-paths of pi, of hop-length at most D. Note that, by definition of relaxed disjointness gadget,
sub-paths in Φi always cover endpoints {si, ti}. By our choice of S ′, the sub-paths in Φi, which
have hop-length at most D, also have `-length at most D (since each of their edges’ `-length is
precisely one). Now, consider the set Ψi of (one or two) sub-paths of pi obtained by removing
the sub-paths Φi from pi. For each such sub-path p ∈ Ψi, denote by s(p) and t(p) the first and
last node of p. Then, since ` has distance β for S, we have in particular that∑

p∈Ψi

d`(s(p), t(p)) +
∑
p∈Φi

|p| ≥ d`(si, ti) ≥ β.

Now, since |p| ≤ D for each p ∈ Φi, and therefore
∑

p∈Φi
|p| ≤ 3D, and since Ψi contains

no more than two sub-paths of pi, there must be some sub-path p′i ∈ Ψi of pi, with endpoints

132

s′i := s(p′i) and t′i := t(p′i) for which

d`(s(p
′
i), t(p

′
i)) ≥ (β − 3D)/2. (6.1)

By our choice of S ′, all edges in pi : si ti for (si, ti) ∈ S ′ have `-length of one. Consequently,
by Equation (6.1), all such paths p′i have hop-length at least |p′i| = `(p′i) ≥ (β − 3D)/2 ≥
3, since β ≥ 9D. We now show that this implies that (P ′, T) induces a (strict) disjointness
gadget for the endpoints of these sub-paths P ′ := {p′i}i. Indeed, the subgraph H := T ∪⋃
i:(si,ti)∈S′(pi \ p

′
i) is connected, and only intersects the paths p′i (of length |p′i| ≥ 3) at their first

and last vertices. Consequently, for T ′ a spanning tree of H , the pair (P ′, T ′) is a disjointness
gadget with endpoints S ′.

Denote by S ′ = {(s(p′i), t(p′i))}i∈I′ where I ′ is a set of indices. Here we note that we have
shown, via construction, that dist`(s(p

′
iii), t(p

′
iii)) ≥ (β − 3D)/2 = Ω(β) for all i ∈ I ′. However,

the moving cut requires a lower bound on dist`(s(p
′
iii), t(p

′
jjj)) for all i, j ∈ I ′, which might not

be true in general. We invoke a structural lemma [69, Lemma 2.5]: given k source-sink pairs
{(si, ti)}ki=1 in a (general) metric space with dist(si, ti) ≥ β, one can find a subset I ⊆ [k] of
size |I| ≥ k/9 such that dist(si, tj) ≥ β/O(log k) for all i, j ∈ I . Applying this result, we
find a subset Ĩ ⊆ I ′ of size |Ĩ| ≥ |I ′|/10 ≥ k/30000 where dist`(s(p

′
i), t(p

′
i)) ≥ Ω̃(β) for all

i, j ∈ Ĩ . Therefore, ` has capacity at most k/30001 < |Ĩ| and distance at most Ω̃(β) with respect
to {(si, ti)}i∈Ĩ . Hence ({p′i}i∈Ĩ , T ′, `) is a Ω̃(β)-disjointness gadget.

Armed with Lemma 6.4.14, we may finally prove Theorem 6.3.4, restated below.

Theorem 6.3.4. For any graph G,

WCSUBNETWORK(G) +D = Θ̃(MOVINGCUT(G)).

Proof. If MOVINGCUT(G) < 9D, then trivially WCSUBNETWORK(G) ≤ MOVINGCUT(G) <
9D. Therefore, since MOVINGCUT(G) ≥ D always (a length assignment of one to all edges
yields a moving cut of capacity 0 and distance D for any pair of maximally-distant nodes), we
have that

WCSUBNETWORK(G) +D = Θ(D) = Θ(MOVINGCUT(G)).

If, conversely, MOVINGCUT(G) ≥ 9D, then by Lemma 6.4.14, there exists an Ω̃(MOVINGCUT(G))-
disjointness gadget, and therefore WCSUBNETWORK(G) = Ω̃(MOVINGCUT(G)) ≥ Ω̃(D). On
the other hand, since we trivially have that WCSUBNETWORK(G) ≤ MOVINGCUT(G), we find
that

WCSUBNETWORK(G) +D = Θ̃(WCSUBNETWORK(G)) = Θ̃(MOVINGCUT(G)).

6.5 Chapter Appendix: Further Related Work

Probably the most well-studied optimization problem in the distributed message-passing litera-
ture, and the one that best illustrates the search for universal optimality, is the MST problem. We

133

discuss some of the literature on this problem here in more detail.

The MST problem was first studied in a distributed setting in the seminal work of Gallager,
Humblet, and Spira [45], who gave an O(n log n)-time MST algorithm. This was later improved
by Awerbuch [12] toO(n) time, which is existentially optimal, due Ω(n)-diameter graphs. Garay
et al. [46], advocating for more refined analysis, moved closer to the universal lower bound of
Ω(D), giving an Õ(D+n0.613)-time algorithm. This was later improved to Õ(D+

√
n) [96], with

example networks proving this bound is also existentially optimal given by Peleg and Rubinovich
[122]. These networks were then used to prove lower bounds for approximate MST by Elkin
[35], and many other problems by Das Sarma et al. [27]. The existentially-optimal Õ(D +

√
n)

upper bound was obtained by numerous algorithms over the years [34, 37, 118], including using
the shortcuts framework in [49].

Restricted topologies. The above works have motivated much work on studying other graph
parameters which allow for improved running time for this problem. One example is restricting
the diameter even further. For example, for graphs of diameter 1 (i.e., the congested clique
model), a sequence of works [53, 77, 107] culminated in anO(1)-time algorithm [86]. For higher
diameter, Lotker et al. [108] gave an O(log n) algorithm for diameter-2 graphs, and Ω̃(3

√
n) and

Ω̃(4
√
n) lower bounds for graphs of diameter 3 and 4, with algorithms matching these bounds

recently given by [90] using the shortcuts framework of [49]. Indeed, the shortcuts framework
has been the driving force behind numerous improved results for restricted graph families [49,
52, 56, 65, 66, 67, 68, 90]. For most of these results, the worst-case shortcut quality a graph
in the graph family serves as an upper bound for these algorithms’ running time. Our lower
bounds imply that these algorithms are existentially optimal (for their respective graph families).
Moreover, they hint that refined bounds can be obtained by one uniform algorithm, without
having to design tailor-made algorithms for graph families of interest.

Message Complexity. Another measure of message-passing algorithms is their message com-
plexity, i.e., the number of messages they send during their execution. Awerbuch et al. [13]
showed that any MST algorithm (under some conditions) in m-edge graphs must send Ω(m)
messages—matched by many algorithms. Whether existentially-optimal time and message com-
plexities are achievable simultaneously was open, until a recent breakthrough of Pandurangan
et al. [118], who gave a randomized algorithm achieving just that. This was then shown to be
achievable deterministically, by Elkin [37], and then shown to be achievable within the shortcuts
framework, in [67]. This leaves open the possibility of algorithms which have both universally-
optimal time complexity, and optimal message complexity.

Universal Optimality. The notion of universal optimality (or instance-optimality, as it is called
in some fields) is a well-studied notion, and algorithms achieving this desired property are known
in many computational models; these include aggregation algorithms for database systems [40],
shared memory distributed algorithms [33], geometric algorithms [4], and distribution testing
and learning algorithms [136, 137]. Indeed, the entire field of online algorithms and compet-
itive analysis precisely concerns itself with notions of instance optimality. For other models,
instance-optimal algorithms were long sought after, but remain elusive. For example, one of the
oldest open questions in computer science is the dynamic optimality conjecture of Sleator and

134

Tarjan [134], which states that splay trees are instance-optimal binary search trees. Closer to
our problem, the closest result to a non-trivial instance-optimal message-passing algorithm is the
k-broadcast algorithm of Ghaffari [48], which is optimal among routing-based algorithm, and
unfortunately requires additional preprocessing time (or alternatively, knowledge of the topol-
ogy). The challenge in achieving universally-optimal message-passing algorithms seems to be
a lack of strong universal lower bounds to compare algorithms’ running time to. We present a
family of universal lower bounds for numerous problems, which are plausibly tight, thus making
a step towards achieving universally-optimal message-passing algorithms.

6.6 Chapter Appendix: Deferred Proofs of Section 6.2

In this section we present proof of lemmas deferred from Section 6.2, restated for ease of ref-
erence. We first state and prove two auxiliary lemmas: first one being a simple scaling of the
capacity and distance of moving cuts, the other about using moving cuts for simulations.

Fact 6.6.1. A moving cut with capacity γ and distance β into a moving cut with capacity γ/c
and distance β/(1 + c), for any c ≥ 1.

Proof. Fix a moving cut ` of capacity γ and distance β between S = {(si, ti)}ki=1.

Consider a new moving cut ˆ̀
e := 1+b `e−1

c
c. This assignment ˆ̀has capacity at most

∑
e

ˆ̀
e−1 ≤∑

e
`e−1
c

< γ
c
. So ˆ̀

e indeed has capacity γ/c.

We analyze the distance β̂ of ˆ̀. Consider a source si and sink tj in S. For any path p : si tj
of hop-length |p| ≥ 1

1+c
· β, clearly we have that this path’s ˆ̀-length is at least ˆ̀(p) ≥

∑
e∈p 1 =

|p| ≥ β
1+c

. For any path of hop-length |p| ≤ β
1+c

, we have that this path’s ˆ̀-length is at least

ˆ̀(p) =
∑
e∈p

ˆ̀
e =

∑
e∈p

1 +

⌊
`e − 1

c

⌋
≥
∑
e∈p

`e − 1

c
≥ `(p)− |p|

c
≥
β − 1

1+c
· β

c
=

1

1 + c
· β,

where the last inequality relied on |p| ≤ 1
1+c
· β and on ` having distance β. As this argument

holds for any source si and sink tj , the distance of ˆ̀ is at least distˆ̀({si}ki=1, {tj}kj=1) ≥ β
1+c

. We
conclude that ˆ̀has indeed capacity γ/c and distance β/(1 + c) for S.

The following lemma allows us to transform an efficient distributed algorithm into an efficient
communication complexity solution. The proof follows the arguments (implicitly) contained in
[27, 69].

Lemma 6.6.2. Let A be a distributed computation of f : {0, 1}k × {0, 1}k → {0, 1}k
between {si}ki=1 and {ti}ki=1 with running time at most T . If there exists a moving cut ` be-
tween {si}ki=1 and {ti}ki=1 of capacity γ and distance at least 2T then there is an O(γ log n)-

135

communication complexity protocol C for f . The error probability of the protocol is the same
as the distributed algorithm’s error probability.

Proof. We use a simulation argument to convertA into an efficient protocol C, using the moving
cut ` as a guide. Naturally, both Alice and Bob know G, ` and A, but not each others’ private
inputs {xi}i∈[k] and {yi}i∈[k].

We introduce some proof-specific notation. For node v ∈ V , we denote the shortest `-distance
from v to any node in {si}i by dv := dist`({si}i∈[k], v). Moreover, we denote by L<t := {v ∈
V | dv < t} the nodes within distance t of some node in {si}i, and similarly we let L>t :=
{v ∈ V | dv > t}. We label the message-sending rounds of A with {1, 2, . . . , T}, and define a
timestep t ∈ {0, 1, . . . , T} to be the moments of “inactivity” (during which the message history
of each node is constant) after round t. So, timestep 0 is the moments before any message is
sent; timestep t > 0 is the moments between round t and t+ 1; timestep T is the moments after
A completed.

The simulation proceeds as follows. At timestep t ∈ {0, 1, . . . , T} Alice will simulate all nodes
in L<2T−t and Bob will simulate all nodes in L>t. By simulating a node v, we mean that the
player knows all messages received by v up to that timestep and the private input of v. (Note
that only {si}i and {ti}i have private inputs.) Such a simulation at timestep t = T would imply
in particular then Alice and Bob will know the answer f(x, y), since A completed by timestep
t = T , and so all nodes know the answer, including {si}i∈[k] ⊆ L<2T−T and {ti}i∈[k] ⊆ L>T
(by the moving cut’s distance). We now construct a communication complexity protocol C by
sequentially extending a valid simulation at timestep t − 1 to one at timestep t ≤ T (i.e., we
simulate the exchange of round-t messages of A). We make this argument only for Alice, while
Bob’s side follows analogously. Initially, Alice can simulate L<2T−0 without any messages from
Bob, since no nodes have received any messages and she knows the private inputs {xi}i∈[k] of
{si}i∈[k] ⊆ L<2T−0 and {ti}i∈[k] ∩ L<2T−0 = ∅ (again, by the moving cut’s distance); vice versa
for Bob.

Next, let v be a node simulated by Alice in timestep t ∈ (0, T]. Since v ∈ L<2T−t ⊆ L<2T−(t−1),
Alice simulated v in timestep t− 1, and thus at timestep t, Alice knows the messages sent to v in
rounds 1, 2, . . . , t− 1. So, all she needs to learn to simulate v at timestep t are the messages sent
to v at round t in A. If such a message comes from a neighbor w simulated by Alice in the prior
timestep, w ∈ L<2T−(t−1), then Alice has all the information needed to construct the message
herself. Conversely, if w 6∈ L<2T−(t−1), then we argue that w was simulated by Bob in timestep
t − 1. This is because w 6∈ L<2T−(t−1) implies dw ≥ 2T − t + 1 ≥ T + 1 > t > t − 1 (due to
t ≤ T), i.e., w ∈ L>t−1. When this is the case, we say the edge {v, w} is active. For each active
edge of round t, Bob sends Alice the O(log n)-bit message sent viaA from w to v, by serializing
it overO(log n) one-bit communication complexity rounds and we append those rounds to C. So,
denoting by Ct be the set of messages that Bob needs to send to Alice to transition from timestep
t− 1 to timestep t (in some pre-determined order), then C is the concatenation of C1, C1, . . . , CT .
By construction, after receiving the messages of Ct, Alice can simulate timestep t of A. Finally,
it is guaranteed that Alice learns the answer by timestep t = T when A completes.

It remains to prove that the communication complexity protocol C uses only O(γ log n) bits. For

136

each edge e = {v, w} ∈ E, Bob sends at most O(log n) bits in C for every timestep e is active.
By definition, this edge is active when v ∈ L<2T−t and w 6∈ L<2T−(t−1). Equivalently, {v, w} is
active when dv < 2T − t and dw ≥ 2T − t + 1, or, 2T + 1 − dw ≤ t < 2T − dv. Therefore, e
is active during 2T − dv − (2T + 1 − dw) = dw − dv − 1 rounds. We have that dw ≤ dv + `e
since d(·) are distances with respect to `. Therefore, an edge is active at most dw − dv − 1 ≤
`e − 1 rounds. Adding over all edges e ∈ E we have that the total round-complexity of C is
O(log n) ·

∑
e∈E(`e − 1) = O(γ log n). We note that this accounts only for the information sent

from Bob to Alice. The analysis for the messages sent from Alice to Bob is completely analogous
and requires the same amount of rounds. Interlacing these rounds increases the communication
complexity by a multiplicative factor of 2, leading to a final O(γ log n)-round communication
complexity protocol C for f , as claimed.

Note that the simulation argument even applies to distributed algorithms with shared randomness
between the nodes.

We now show that Lemma 6.6.2 implies a lower bound on distributed disjointness computation
in the face of a moving cut.

Lemma 6.2.3. If G contains a moving cut for k pairs S = {(si, ti)}ki=1 with distance at least
β and capacity strictly less than k, then distributed computation of disj between {si}i∈[k]

and {ti}i∈[k] takes Ω̃(β) time. This lower bound holds even for bounded-error randomized
algorithms that know G and S.

Proof. Let C > 0 be a sufficiently large constant. Suppose there is a T -time distributed com-
putation A for disj with T ≤ β

2(1+C logn)
. We can transform the moving cut to have capacity

k
C logn

and dilation β
1+C logn

via Fact 6.6.1. Applying the simulation Lemma 6.6.2 we construct
a O(k)/C-communication complexity solution for disj. However, disj is known to have com-
munication complexity Ω(k), even for constant-probability error protocols [128], leading to a
contradiction for a sufficiently large constant C. Thus we have that T ≥ Ω(β/ log n) and we are
done.

Here we explain why [69] implies that moving cuts for pairs of nodes provide a characterization
(up to polylog factors) for the time to solve multiple unicasts for these pairs.

Lemma 6.2.4. ([69]) For any set of pair S, we have that

MOVINGCUT(S) = Θ̃(COMMUNICATING(S)) = Θ̃(ROUTING(S)).

Proof. In the terminology of [69], each edge has some capacity ce denoting the number of bits
transmittable across an edge in one round (in our case ce = O(log n)). Moreover, each of the k
pairs (si, ti) has some demand di, corresponding to a message size of di bits to send from si to
ti. In our setting, di = 1 for all pairs in the set S.

The authors show in [69, Lemma 1.7] that the existence of a moving cut with capacity strictly
less than k and distance β for S implies COMMUNICATING(S) ≥ β. On the other hand, by [69,

137

Lemma 2.3], if such a moving cut does not exist, then ROUTING(S) = Õ(β). Combining these
bounds together, we obtain the following chain of inequalities, implying the lemma.

MOVINGCUT(S) ≤ COMMUNICATING(S) ≤ ROUTING(S) = Õ(MOVINGCUT(S)).

6.7 Chapter Appendix: Deferred Proofs of Section 6.3

In this section we provide the proofs of lemmas deferred from Section 6.3, restated below for
ease of reference.

6.7.1 β-disjointness gadgets as lower bounds certificates

Here we prove that β-disjoint gadgets are indeed witnesses of a lower bound on the time to solve
subgraph spanning connectivity.

Lemma 6.3.3. The time to solve spanning connected subgraph verification algorithm in a
graph G by any algorithm (even one which knows G) is at least

Tconn(G) = Ω̃(WCSUBNETWORK(G) +D).

Proof. Let (P, T, `) be a β-disjointness gadget. Let the endpoints of the paths pi ∈ P be
{(si, ti)}ki=1. We denote the edges of pi by E(pi), and their strictly internal edges (i.e., edges
not incident to si or ti) by E◦(pi) .

Suppose we want to perform distributed computation of the disjointness function between {si}i
and {ti}i. For each i ∈ [k], si and ti know a private bit xi and yi, respectively. We define a
subgraph H which is spanning and connected if and only if disj(x, y) = 1. For a set F ⊆ E let
G/F denote G with edges F contracted. Let H1 be some spanning tree of G/(T ∪

⋃
i∈[k] E(pi)),

which must exist since G is connected. Let H2 = T ∪
⋃
i∈[k]E

◦(pi). We construct H3: for every
path pi, the edge of pi incident to si (resp., ti) belongs to H3 iff xi = 0 (resp., yi = 0). Finally,
let H := H1 ∪H2 ∪H3. Each node can precompute H1 and H2 without extra information (they
know G and {pi}i), and each node can use its private info to compute which of its incident edges
is in H3.

It is easy to check thatH is connected if and only if disj(x, y) = 1 (i.e., xi ·yi = 0 for all i ∈ [k]).
Thus, a T -round algorithm for spanning subgraph connectivity immediately yields a T -round
distributed computation of disj between {si}ki=1 and {ti}ki=1. By Lemma 6.2.3, combining this
algorithm and the moving cut of the β-disjointness gadget implies T = Ω(β).

6.7.2 Relating shortcuts for pairs and for parts

In this section we show an equivalence (up to polylog factors) between shortcuts for connectable
pairs of nodes and for parts.

138

Lemma 6.3.5. For any graph G,

SHORTCUTQUALITY(G) = Θ̃(SHORTCUTQUALITY2(G)).

The non-trivial part of the above lemma is the following upper bound on Q(G).

Lemma 6.7.1. For any graph G,

SHORTCUTQUALITY(G) = Õ(SHORTCUTQUALITY2(G)).

Proof. Let S1, S2, . . . , Sk be a partitioning of V into subsets of nodes inducing connected sub-
graph G[Si]. We show that shortcuts for this partition can be obtained by combining any (pair-
wise) shortcuts for some polylogarithmic number of pairs of vertices in C, implying the lemma.

For our proof, we make use of heavy-light tree decompositions [133], which decompose a tree
on n nodes into sub-paths, with each root-to-leaf path in the tree intersecting O(log n) of these
sub-paths. For each i ∈ [k], we consider some heavy-light decomposition of Ti. Note that since
the parts are disjoint, these trees are disjoint, and consequently, so are the obtained sub-pats of
the decomposition. Letting q := SHORTCUTQUALITY2(G), we first show that the partition with
parts V (p) for all sub-paths p of some tree decomposition of some Ti admits shortcuts of quality
O(q · log n).

Indeed, shortcuts of quality O(q · log n) for parts P whose parts are disjoint paths, as above, can
be defined recursively, as follows. For a path p ∈ P , we denote by s(p),m(p) and t(p) the first,
median, and last node on this path p. We note that using sub-paths of these p, we find that the
pairs {(s(p),m(p)), (m(p), t(p)) | p ∈ P} are connectable. Thus, these pairs admit shortcuts of
quality q. We use these shortcuts (and more edges which we will choose shortly) as the shortcuts
for parts V (p). We then consider recursively the two sub-paths of all such paths p, one starting
at s(p) and ending at m(p), and the other starting at m(p) and ending at t(p), noting that these
sub-paths for all paths p ∈ P are also connectable. We recursively compute shortcuts for all such
sub-paths and add the shortcuts for each sub-path of p to the shortcuts for each part V (p). We
show that the union of shortcuts for all sub-paths at each of the O(log n) levels of recursion are
shortcuts for the parts P above. First, as these shortcuts for P are the union ofO(log n) shortcuts
for pairs of quality q, then the congestion of these shortcuts is trivially O(q · log n). In order to
bound dilation, we prove by induction that for each node v in one of these sub-paths of length
|p| ≤ 2k, the shortcuts of the sub-paths of p constructed this way contain a path of length at most
q · k from v to s(p), and likewise to t(p). Indeed, consider the subpath p′ containing v and m(p),
which has length at most |p|/2 ≤ 2k−1. Then, since m(p) is either s(p′) or t(p′), there exits a
path of length at most q · (k−1) from v to t(p). Concatenating this path with the shortcut path of
length (at most) q from m(p) to s(p), and likewise to t(p), yields the desired result. Therefore,
any two nodes in a path p can be connected by a walk of length at most q · 2 log2 n contained
in the shortcuts of its recursively-defined sub-paths. Thus O(q · log n) upper bounds the dilation
of these shortcuts for p. We conclude that any partition P whose parts are disjoint paths admits
shortcuts of quality O(q · log n).

So far, we have shown that the partition given by parts induced by the sub-paths of tree decompo-

139

sitions of spanning trees Ti of parts Si admit shortcuts of quality O(q · log n). We now show that
the union of these sub-paths’ shortcuts, where each part has as shortcuts the union of the short-
cuts of its’ tree decomposition’s sub-paths, are shortcuts of quality O(q · log2 n) for the partition
S1, S2, . . . , Sk. First, the congestion of these shortcuts isO(q · log2 n), since each edge belongs to
at most O(q · log n) = O(q · log2 n) sub-paths’ shortcuts, and therefore it belongs to the shortcuts
of at most O(q · log2 n) distinct parts. Second, since any two nodes u, v in Si have that their
Ti-path consists of at most O(log n) sub-paths, using the shortcuts for these O(log n) sub-paths
induce a path of length O(q · log n) · O(log n) = O(q · log2 n) between u and v. Thus, each
partition S1, S2, . . . , Sk admits O(q · log2 n) = Õ(q) = Õ(SHORTCUTQUALITY2(G))-quality
shortcuts, as claimed.

The following simple lemma yields the complementary “opposite” inequality.

Lemma 6.7.2. For any graph G,

SHORTCUTQUALITY2(G) ≤ SHORTCUTQUALITY(G).

Proof. Let S ∈ C be a set of connectable pairs, and let P be a set of disjoint paths connect-
ing these pairs. Now, we consider these paths (or more precisely, their vertices) as parts of
a partition with one more part for the remaining nodes, V \

⋃
p∈P v(p). Then, by definition of

SHORTCUTQUALITY(G), there exist shortcuts for these parts of quality at most SHORTCUTQUALITY(G).
Consequently, these shortcuts contain each edge at most SHORTCUTQUALITY(G) times. More-
over, for each i, these shortcuts contain a path of length at most SHORTCUTQUALITY(G) con-
necting each pair of nodes (si, ti), as these nodes are in a common part. Put otherwise, the best
shortcuts for the parts defined above imply the existence of shortcuts of quality no worse than
SHORTCUTQUALITY(G) for S.

Lemma 6.3.5 follows directly from lemmas 6.7.1 and 6.7.2. We note, however, that the claim
is existential and does not yield a constructive and distributed method to convert between the
quantities. The following result addresses this shortcoming.

Before proving the claim, we establish some technical algorithmic terminology. In distributed
optimization it is often infeasible for each node to know the entire input, output or intermediary
data. Therefore, data is represented in a distributed way, which we here define. We now dis-
ambiguate the specific way a data is distributedly stored. For a node function f : VG → X we
say that f is “distributedly known” by the nodes if v knows f(v). Similarly, a edge function
f : EG → X is distributedly known if each v ∈ VG knows f(e) for each edge e incident to
v. A set of parts P = (S1, . . . , Sk) is distributedly known if each node v knows the part ID it
belongs to (or ⊥ if none). A set of pairs S = {(si, ti)}ki=1 is distributedly known if for each
pair (si, ti) both si and ti know the pair (si, ti) (i.e., both nodes). Finally, a shortcut (H1, . . . , Hk

is distributedly known if each node v knows, for each incident edge e the set of part IDs that
contain e.

Lemma 6.7.3. Suppose that, in a graph G, one is given a black-box oracle takes as input
a set of connectable pairs S (the input is distributed among the nodes) and (distributedly)

140

output shortcuts of S with quality SHORTCUTQUALITY2(G) in at most T rounds. Then there
is a randomized distributed algorithm that takes a set of parts P = (P1, . . . , Pk) as input
and constructs a shortcut of quality Õ(SHORTCUTQUALITY2(G)) in Õ(T) rounds with high
probability.

Proof. We introduce some helpful notation. Consider a function f : EG → {→,←,⊥}. We
denote by G(f) the directed graph (VG, E

′) where the edge e ∈ EG is either not in E ′ if f(e) =
⊥, and is otherwise directed one way or the other (the specific meaning of→ and← is arbitrary).

We prove a sequence of intermediary results.

Subclaim 1: Suppose that f : EG → {→,←,⊥} is such that G(f) is precisely a union of
(maximal) vertex-disjoint directed paths P1 ∪ P2 . . . ∪ Pq. We argue there is a distributed Õ(T)-
round algorithm that takes the distributed knowledge of f as input and (distributedly) learns for
each node v (i) the unique path ID of the maximal path Pi 3 v it is contained in, the size of the
path |Pi| and the first node on the path (ii) the depth (distance of v from the start of the Pi), (iii) a
shortcut with respect to (P1, P2, . . . , Pq) of quality SHORTCUTQUALITY2(G). Moreover, given
a distributed function g : VG → [nO(1)], each node can also learn (iv) the sum

∑
u∈R(v) g(u)

where R(v) is the set of nodes u reachable from v via the directed edges of G(f) (i.e., they are
on the same path PI , but “below” v).

Proof of subclaim 1: The algorithm starts with initially singleton clusters and then grows the
clusters for O(log n) steps. In the first step, each node is its own cluster. In each subsequent
step we assume we have maintained the above data (i)–(iv) for each node v with respect to the
cluster (i.e., subpath) that v is in. We show how to merge neighboring clusters while maintaining
the validity of this data. First, each cluster flips an independent random heads/tails coin (the
entire cluster flips a common coin without communication via shared randomness). Intuitively,
tails will merge into heads and only if “heads subpath” has a directed edge towards the “tails
subpath”. The merging is fairly simple. For each head subpath A (i.e., a cluster that flipped
heads) and each tail subpath B where there is a directed “connecting” edge of G(f) from A to
B, we do the following. We pass the unique path ID of the head subpath via the connecting edge
into the tail subpath B and disseminate it throughout the nodes of B via the computed shortcut
in Õ(T) rounds. Similarly, we can disseminate the sizes |A|, |B| and the starting node of the
path A to correctly all values stipulated by (i). For (ii), We add the value of |A| to the depths of
each node in the B via the shortcut of B. For (iii), we add the shortcut between the start of A to
the start of B (note that pairs of connecting clusters do this operating in parallel, but all of these
paths are connectable, hence the operation is valid; we argue in the next paragraph the quality
suffices). Finally, for (iv), we simply calculate the sum of g’s in B via the shortcut, propagate
this sum σ to A and add σ to the sum of g’s in each node of A.

Clearly, each pair of neighboring subpaths (i.e., neighboring clusters) will merge with probability
at least 1/4 in each step. Furthermore, on each maximal path Pi each cluster will have at least
one other neighboring cluster unless the entire path is a single cluster. Therefore, after O(log n)
merging steps the entire path is a single cluster with high probability via standard arguments.
Finally, we argue about the shortcut quality of the clusters. First, since the shortcut is constructed
by O(log n) calls to the pairwise oracle, the congestion is clearly Õ(SHORTCUTQUALITY2(G)).

141

We argue the same dilation bound by consider an arbitrary node v and arguing that after imerging
steps it can reach the start of its own cluster in i · SHORTCUTQUALITY2(G) hops: in each
merging step the subpath v belongs to either is not merged (we do not do anything), it is a head
subpath being merged (we do not do anything), or it is a tail subpath B being merged with
subpath A. The the last case we can move v to the start of B in i · SHORTCUTQUALITY2(G)
hops, and then to the start of A in another SHORTCUTQUALITY2(G), for a cumulative (i +
1)SHORTCUTQUALITY2(G) hops, proving the shortcut dilation claim since i = O(log n). This
completes the proof of subclaim 1.

Before we proceed, we remind the reader about the “heavy-light decomposition” of a tree.
Consider a (rooted) tree with at most n nodes. Define the “subtree size” of a node v as the
number of nodes that are in the subtree of v. For each node v we label the edge connecting v
to its child node of larger subtree size as “light”, and the remaining edges as “heavy”. It is easy
to show that each root-leaf path contains O(log n) heavy edges and that the light edges form a
collection of vertex-disjoint paths. This fact is known as the heavy-light tree decomposition.

Subclaim 2: Suppose that f : EG → {→,←,⊥} is such that G(f) is precisely a union of
(maximal) vertex-disjoint rooted trees P1 ∪ P2 . . . ∪ Pq. We argue there is a distributed Õ(T)-
round algorithm that takes the distributed knowledge of f as input and (distributedly) learns for
each node v that is in the (maximal) tree Pi (i) the unique tree ID of Pi, the root of Pi, and the
parent of its root in G(f) if any, (ii) the subtree size with respect to Pi, (iii) the (distributed)
heavy-light edge labelling of Pi, (iv) the number of heavy edges on the path between the root of
Pi and v.

Proof of subclaim 2: We first note that, given vertex-disjoint clusters (the clusters are subtrees of
Pi) where values (i)–(iv) are maintained, one can easily construct shortcuts on each cluster (and
perform partwise aggregation on it). First, we construct shortcut via subclaim 1 on all light paths
of all clusters combined: we ignore all non-light edges and note that light edges can be parti-
tioned into vertex-disjoint paths, hence the preconditions of subclaim 1 are valid. Then the heavy
edges of each cluster are added to this shortcut of that cluster. Since every root-leaf path has at
most Õ(1) heavy edges and the set of all light paths have Õ(SHORTCUTQUALITY2(G))-quality
shortcuts, this shortcut can clearly be argued to have Õ(SHORTCUTQUALITY2(G)) quality with
respect to the set of all clusters.

Furthermore, given a (distributed) node function g : VG → [nO(1)] and a set of vertex-disjoint
clusters (i.e., the clusters are subtrees of Pi), for each node u we can calculate the sum of the
values g(v) for all nodes v in the subtree of u with respect to the cluster u is in. First, using
subclaim 1, we partition all clusters into vertex-disjoint light paths and calculate for each node v
the sum of all values g from nodes reachable from v in its light path. Then, for O(log n) step we
calculate the sum of g’s on the entire path and forward this sum to the parent path, which then
disseminates this value via the shortcut of subclaim 1 to all of its nodes, increasing subtree sum.
AfterO(log n) step, all light paths have the correct value since any root-to-leaf path in the cluster
has O(log n) heavy edges.

Finally, we prove the subclaim in a similar manner to subclaim 1. The algorithm starts with ini-
tially singleton clusters and then grows the clusters forO(log n) steps. In the first step, each node
is its own cluster. In each subsequent step we assume we have maintained the above data (i)–(iv)

142

for each node v with respect to the cluster (i.e., subtree) that v is in. We show how to merge
neighboring clusters while maintaining the validity of this data. First, each cluster flips an inde-
pendent random heads/tails coin (the entire cluster flips a common coin without communication
via shared randomness). Intuitively, tails will merge into heads and only if “heads subtree” has a
directed edge towards the “tails subtree”. The merging is fairly simple. Consider a head subtree
with its incident tail subtrees (possibly multiple ones). We can easily update the values (i) by
construct a shortcut for each cluster via the above remark and disseminating the appropriate data,
like in Subclaim 1. To compute (ii), we pass from the (root of the) tail subtrees the sizes of these
trees to the root’s parent node in the head subtree. Suppose that each node v in the head subtree
receives a cumulative sum of values g(v) ≥ 0 via this process. We set up g†(v)← g(v) + 1 and
calculate for each node u the sum of g†’s in the cluster’s subtree of u via the above remark. This
value is exactly the updated subtree size of a node u with respect to its updated cluster. The value
(iii) can be directly calculated from the subtree sizes we computed in (ii). And finally, (iv) can
be computed in an analogous way as (ii). This completes the proof of the subclaim.

Completing the proof of Section 6.7.2. Fix a (distributed) vertex partition P = (P1, . . . , Pk).
The algorithm starts with initially singleton clusters and then grows the clusters for O(log n)
steps. In the first step, each node is its own cluster. Each cluster is a subset of some part
Pi and in the end the the cluster will be equal to the entire Pi. In each step, there is some
partition into clusters, and for that step we maintain a distributed function f : EG → {→,←,⊥}
such that G(f) can be partitioned into maximal rooted spanning trees that correspond (in a one-
to-one fashion) with the spanning trees of clusters (in other words, each cluster has a unique
spanning tree in G(f) and each maximal spanning tree in G(f) determines a cluster). First,
each cluster flips an independent random heads/tails coin (the entire cluster flips a common coin
without communication via shared randomness). Intuitively, tails will merge into heads and only
if “heads cluster” has a directed edge towards the “tails cluster”. The only issue we encounter
is that the “orientation” of the head cluster spanning tree might not match the orientation of the
tail cluster spanning tree. To this end, we need to “fix” each tail cluster B in the following way.
Suppose that the head cluster A has a directed edge from some node in A to a node b in B. We
need to reverse the orientation of edges on the root (of B)-to-b path. However, this can be easily
done via subclaim 2 (note that the tail components in isolation satisfy subclaim 2 and hence we
can invoke the subclaim upon them). After that we add the directed edge between A and B to
f and we are done, the merged components are correctly oriented and satisfy the stipulations
of subclaim 2. After O(log n) rounds of merging the procedure completes and clusters exactly
correspond to P1, P2, . . . , Pk with high probability. At this moment we use subclaim 2 to build a
shortcut on {P1, . . . , Pk} and we are done.

6.8 Chapter Appendix: Deferred proofs of Section 6.4

We start by proving the simple crown-merging lemma, whereby disjoint crowns can be merged
to form a single crown on the union of the crowns’ parts.

143

Lemma 6.4.3. (Crown merging) Let {(Ti, Ai, Ui)}i∈I be a set of disjoint crowns of vertex-
disjoint paths {pi}ki=1. Then there exists a single crown (T∗, A∗, U∗) of {pi}i∈A∗ such that
A∗ =

⊔
i∈I Ai.

Proof. Consider the shortest path connecting two vertices on part-paths belonging to different
crowns. More precisely, let V (Ai) :=

⋃
x∈Ai V (px). Then we consider mini,j∈I;i 6=j distG(V (Ai),

V (Aj)). Let q be this shortest path and suppose its endpoints are u ∈ V (px) and v ∈ V (py),
with x ∈ Ai and y ∈ Aj . By the minimality of q we know that the internal vertices of q do not
belong to any crown, where we say that a vertex u belongs to a crown (T,A, U) if u ∈ V (pi) and
i ∈ A. We now merge the crowns (Ti, Ai, Ui) and (Tj, Aj, Uj) into a single crown (T∗, A∗, U∗).
We remove crowns i and j from the list of crowns I , add ∗ to the list, and recurse until there
is only one crown in the list. The following construction ensures that A∗ = Ai t Aj and that
the new crown ∗ is disjoint from all other crowns in the list I . The final crown (T∗, A∗, U∗) will
clearly have the property that A∗ =

⊔
i∈I Ai and will be defined with respect to {pi}i∈A∗ .

To help with properly defining the merge, we define auxiliary sets (T ′i , A
′
i, U

′
i) ← (Ti, Ai, Ui)

and (T ′j , A
′
j, U

′
j) ← (Tj, Aj, Uj). If the endpoint of q, belonging to crown i, is in a useful part x

(i.e., q ∈ px and x ∈ Ui), then we declare the part x that q intersects sacrificial and add px to T ′i .
More precisely, if x ∈ Ui then we define U ′i ← Ui \ {x} and T ′i ← Ti ∪ E(px). Note that T ′i
is still connected since V (T ′i) intersects V (px). We analogously do the same for crown j: if the
endpoint of q belonging to crown j is in a useful part, we declare that part sacrificial and add its
path to T ′j .

Define the crown (T∗, A∗, U∗) ← (T ′1 ∪ T ′2 ∪ E(q), A1 ∪ A2, U
′
1 ∪ U ′2), add it to the set of

remove (Ti, Ai, Ui) and (Tj, Aj, Uj). We check it is a proper crown. T∗ is connected since T ′1
and T ′2 are connected and q is a path connecting them. Property 1: |U∗| ≥ |Ui| + |Uj| − 2 ≥
1
4
|Ai| + 2 + 1

4
|Aj| + 2 − 2 = 1

4
|A∗| + 2. Properties 2 and 3 are satisfied because they were

satisfied in (T ′i , A
′
i, U

′
i) and (T ′j , A

′
j, U

′
j) and (by minimality of q) no internal nodes of q intersect

a part-path belonging to a crown.

144

Chapter 7

Near-Optimal Distributed
Known-Topology Shortcut Construction

This chapter was done in collaboration with Bernhard Haeupler and Mohsen Ghaffari. The
chapter’s contents are unpublished at the time of writing.

7.1 Introduction

The low-congestion shortcut framework has been shown to be an indispensable tool in distributed
optimization. Shortcuts of good quality can be used to provide efficient distributed primitives
which can, in turn, be used to design fast algorithms for various distributed optimization prob-
lems. While the technique was originally conceived for designing efficient algorithms for special
graph classes, subsequent work has shown that shortcuts offer deep insights into the complexity
of distributed computing.

It was shown that for a graph G if QG is the best quality shortcut in G, any correct distributed
algorithm for problems such as the MST, SSSP, or min-cut requires Ω̃(QG) rounds of CONGEST
to complete on G. In other words, the shortcut quality is a universal lower bound for many dis-
tributed optimization problems. Moreover, this lower bound holds even in the known-topology
setting (making the lower bound stronger). In this setting nodes know the graph G upfront, but
not the input to the problem (e.g., for the MST problem they know G, but not the edge costs).
The known-topology setting is well-motivated even on the algorithmic side: there is a practical
need to solve multiple distributed optimization instances on the same network, hence potentially
amortizing the preprocessing overhead required to learn the graph topology before the input is
given.

In this chapter we prove the converse to the above universal lower bound in the known-topology
setting: if QG is the optimal shortcut quality of a graph G, then one can solve the MST (and
other distributed optimization problems) in Õ(QG) known-topology CONGEST rounds. By
prior work, the question can be reduced to the following one.

145

Problem 7.1.1 (Pairwise shortcut construction). Let QG > 0 and let {(si, ti)}ki=1 be k pairs
of nodes in a graph G where each node belongs to at most one pair. A (pairwise) shortcut
of quality QG is a set of paths {p1, . . . , pk} where pi has endpoints si and ti such that the
dilation + congestion ≤ QG. The dilation is the maximum number of hops of any path pi,
and the congestion is the maximum number of paths any edge e is in. Furthermore, the pairs
are distributed: a node v only knows the one or zero pairs that contain v.

One can see the pairwise shortcuts are a relaxation of the (standard) low-congestion shortcuts
(Definition 1.2.3). Comparing the definitions between pairwise and (partwise) low-congestion
shortcuts, the latter corresponds to shortcuts with parts Pi being set to (si, ti). We note that
low-congestion shortcuts require the parts to be connected, a requirement which we drop here.

For the sake of simplicity, we can assume QG is given as input; the reader should think of QG as
the smallest value for which any instance of pairwise shortcut construction has a feasible solution.
Using the terminology of Chapter 6, this value is exactlyQG = SHORTCUTQUALITY2({(si, ti)}ki=1).
We solve the problem of pairwise shortcut construction and immediately prove the existence of
universally-optimal distributed algorithms in the distributed known-topology setting for the MST
problem (for other problems the result follows analogously).

Given {(si, ti)}ki=1, we consider all possible sets of paths {pi}ki=1 (that connect those endpoints)
and evaluate all possible values of dilation+congestion. The smallest achievable value is called
the offline optimum. However, we note the important fact that the pairs {(si, ti)}ki=1 are given
in a distributed manner: generally, no single node is privy to the entire set of pairs. This raises
the need to choose the paths (nearly) “obliviously” to the set of other pairs in the graph: ideally,
each pair (si, ti) would choose some path pi solely based on si and ti; this is in contrast to the
centralized select performed by the offline optimum. However, we require that these obliviously
chosen paths have dilation + congestion within a polylogarithmic factor of the offline optimum.
This problem has been defined in prior work as “dilation + congestion oblivious routing”.

The main technical contribution of this chapter is to prove that every graph has an dilation +
congestion oblivious routing. Known oblivious routing strategies [126] only take the congestion
into account: such structures are highly interesting when one is only interested in preserving
the congestion close to the optimal, allowing the dilation to change arbitrarily. However, our
distributed computing application requires us to control for both parameters. In fact, the con-
struction of such congestion + dilation oblivious routings is an interesting open problem that
spurred interest in the special case of particular graphs like mesh graphs and geometric net-
works [20, 21]. Interestingly, congestion + dilation oblivious routings for general graphs with
polylogarithmic approximation ratios were believed to be impossible due to an impossibility re-
sult of Räcke [125, pg. 59]. We side-step this barrier by using a slightly more general definition
of oblivious routing that is still usable in the distributed setting. One of the relaxations we make
is to “decouple” the congestion + dilation objective in the following way: suppose that there
exists a set of (secret, or witness) paths {p1, . . . , pk} connecting the endpoints {(si, ti)}ki=1 such
that each path has at most Q hops (i.e., dilation is at most Q) and the congestion is OPT. Our
oblivious routing is given an input parameter Q and is obliviously given the pairs; its objective is
to find paths of dilation at most Õ(Q) while approximating OPT (up to polylogarithmic factors).

146

The optimal input parameter Q can subsequently be binary searched. Due to this decoupling, we
call our structure the“hop-bounded oblivious routing”.

To construct the new oblivious routing structure we introduce and construct a new version of
Hierarchical Separated Trees (HST). Classic HST applications typically embed some weighted
graph G into a distribution of trees while keeping the expected cost between two nodes within
a logarithmic factor of the original weight. We propose a novel HST that embeds only (1 − p)-
fraction of the nodes in a graph into a tree (instead of all nodes). However, this relaxation
allows us to control the maximum number of hops in a path between any two embedded nodes
in each tree to be Õ(p−1). Furthermore, we can still recover a similar distance guarantee to
the regular HST: for every two nodes neighboring nodes u, v the expected value of the weight
between u, v in the tree taken over all trees where u, v are embedded (and ignoring the rest) is
Õ(p−1) times larger than the weight of the edge between u and v. We believe that both the new
HST construction and the hop-bounded oblivious routing will be of independent interest to the
approximation algorithms community.

This chapter is organized as follows. In Section 7.1.1 we give an overview of the results and
technical contributions of this chapter. In Section 7.2 we introduce the notation used in the
chapter. In Section 7.3 we describe a decomposition lemma used to construct our HSTs. In
Section 7.4 we define and construct our novel HSTs. In Section 7.5 we define and construct hop-
bounded oblivious routings. In Section 7.6 we describe a useful distributed subroutine that we
can be used to recover a (pairwise) shortcut of good quality from a set of paths containing both
the shortcut and adversarially inserted paths. Finally, in Section 7.7 we distributedly construct
pairwise shortcuts using the hop-bounded oblivious routing and the subroutine of Section 7.6.

7.1.1 Overview of results

We contribute a distributed known-topology approximate scheme for pairwise shortcut construc-
tion. More precisely, we prove the following theorem.

Theorem 7.1.2 (Pairwise shortcut construction). Let P = {(si, ti)}ki=1 be k pairs of nodes
in G that admit a shortcut of quality = congestion + dilation ≤ OPT. There is a random-
ized distributed known-topology CONGEST algorithm that constructs shortcuts of quality
Õ(OPT) in Õ(OPT + D) rounds with high probability. A node v initially distributedly
knows P and at termination will distributedly know the computed shortcut.

As a direct corollary of the above theorem, we get the following corollary as our main result.

Corollary 7.1.3. There exists a universally optimal distributed known-topology CONGEST
algorithm for the MST problem.

Proof. We reuse the notation of Chapter 6: let SHORTCUTQUALITY2(G, {(si, ti)}ki=1) be the op-
timal shortcut quality of a set of k paths with endpoints {(si, ti)}ki=1. Let SHORTCUTQUALITY2(G)
be the minimum SHORTCUTQUALITY2(G,S) over all connectable set of pairs S. SHORTCUTQUALITY(G)

147

is defined analogously for standard shortcut quality. Let Q = SHORTCUTQUALITY2(G) and
note that Q ≥ D, where D is the diameter of G. Therefore, we can construct pairwise shortcuts
with respect to any set of pairs in Õ(Q) via Theorem 7.7.2.

By Theorem 6.3.1, we get that any correct distributed algorithm solving the MST problem re-
quires Ω̃(Q) rounds. We now argue we can solve the MST problem in Õ(Q) rounds. By
Fact 1.2.2, it is sufficient to solve some part-wise aggregation instance in Õ(Q) rounds. Fix
such an instance P = (P1, . . . , Pk). We use Section 6.7.2 to reduce the question of constructing
shortcuts on P to Õ(1) calls to the pairwise shortcut construction. The pairwise shortcuts can be
constructed in Õ(Q) via Theorem 7.7.2, giving us a Õ(Q)-quality shortcut on P in Õ(Q) rounds.

Finally, applying Fact 1.2.5, we distributedly solve the partwise aggregation problem on P in
Õ(Q) rounds. Since Θ̃(Q) is both an upper bound and a lower bound for the problem, we prove
the existence of universally optimal algorithms in the distributed known-topology setting.

7.2 Definitions and notations

General. We denote by [k] = {1, 2, . . . , k} for some non-negative integer k and A t B denotes
the disjoint union of A andB. We often use the Iverson bracket notation I[condition] which eval-
uates to 1 when the condition is true and 0 otherwise. We assume that all graphs are undirected
and we typically assume the existence of a graph G = (V,EG) with n := |V |. The (unweighted)
diameter (also called hop-diameter) of G is denoted by DG, or usually just D.

Weighted Graphs. Let G = (V,EG) be a weighted graph and let w = (w0, w1, . . . , w`) be a
path (or more generally, a walk) in G. We denote the number of hops in w with |w| := ` and the
sum of weights of the edges in the walk with distG(w) or just dist(w) if there are no ambiguities.
We denote by dist

(k)
G (u, v) := min{distG(w) | walks w between u, v with |w| ≤ k}.

Routing via a tree. Given a tree T = (V,ET) of G = (V,EG), we define the T -route between
u, v ∈ V in the following way. Note that T might not be a subgraph of G, i.e., generally
ET 6⊆ EG. If u and v are connected with a tree edge we let Tuv be the path corresponding to that
edge. For other u, v consider the unique tree path (u = w0, w1, . . . , w` = v) connecting u and v
and concatenate all paths Twi,wi+1

. This results in a path between u and v in G, which we denote
by Tuv. Note that if G is weighted, we can access the weight of this path by distG(Tuv).

Flow. A flow f is a non-negative vector indexed over the edges of the underlying graph G, i.e.,
f ∈ REG

≥0 . When talking about flows we also consider paths p to be vectors p ∈ REG
≥ where

pe = I[p goes through e]. Given a flow f , we call fe the maximum congestion on edge e and we
call max(f) the (maximum) congestion of f .

Demands. Let d ∈ ZV×V≥0 be called a demand vector. We define the total demand |d| of d as∑
s,t∈V×V d(s, t) and we say that (s, t) is a demand pair if ds,t > 0. The multiset of demand

pairs of d is the multiset where the pair (s, t) occurs d(s, t) times.

Set of paths. Let H = {p1, p2, . . . , pk} be a set of paths in a graph G. We define dilation(H) =
maxp∈H |p| to be the maximum length of any path, congestion(H, e) = (

∑
p∈H p)e to be the con-

gestion over an edge e, and congestion(H) = maxe∈Eg congestion(H, e) to be the (maximum)

148

congestion over all edges.

7.3 Decomposition Lemma

In this section, we prove a useful graph decomposition lemma that can handle multidimensional
weights on edges. Notably, the Lemma will furnish dealing with congestion + dilation con-
straints (or hop-bounded constraints) by reserving one dimension for hops and another dimension
for edge costs.

For clarity, (only) in this section we will denote vector quantities in bold (like w ∈ Rt). We
focus on multi-dimensional weights, w : EG → Rt, which is simply the concatenation of t one-
dimensional weights, wi : EG → R for all i ∈ [t]. As with single-dimensional weights, the w
weight of a path p is simply the sum of weights of its edges, w(p) ,

∑
e∈pw(e). We use � to

denote the partial order among vectors given by element-wise domination. That is, for any two
t-dimensional vectors a = (a1, a2, . . . , at) ∈ Rt and b = (b1, b2, . . . , bt) ∈ Rt, we use a � b as
shorthand for ai ≤ bi ∀i ∈ [t]. Slightly abusing this notation, we use distw(u, v) � b to denote
the existence of a path p : u v such that w(p) � b. Furthermore, given a vertex partition
V = P1 t P2 . . . Pq and a path p we say that “p is preserved” if there exists i ∈ [q] that contains
all vertices of p.

Lemma 7.3.1. Let G = (V,E) be an undirected graph with n := |V | and w be a collection
of t edge weights. For any b ∈ Rt

>0 and 0 ≤ γ ≤ 1 there exists a (poly-time computable)
distribution over partitions P1 t P2 t . . . t Pq = V and subsets of the parts Ci ⊆ Pi for
i = 1, . . . , q, where

1. For each i and u, v ∈ Pi, we have that distw(u, v) � b · O(t log n) (with probability
1).

2. For each i, u ∈ Ci, v 6∈ Pi, we have that distw(u, v) 6� b · γ (with probability 1).

3. For each v ∈ V , we have that Pr[v 6∈
⋃
i∈[q] Ci] ≤ γ.

4. For each path p of weight w, we have that Pr[p is not preserved in P1 t . . . t Pq] ≤
1
t

∑t
i=1 wi/bi.

To prove Lemma 7.3.1 we rely on padded decompositions [61], a structural result for metric
spaces. We first introduce some section-specific notation. Given a metric space (V, dist), we
define Bdist(x, ρ) , {y ∈ V | dist(x, y) ≤ ρ} denote the ball of radius ρ ≥ 0 around x ∈ V .
Next, for U ⊆ V and a partition P as above, we denote by U ⊆ P the event that there exists a
part Vi ∈ P containing U in its entirety; i.e., U ⊆ Vi.

Definition 7.3.2 (Padded Decompositions). Let (V, dist : V × V → R) be a metric space.
We say that a distribution P over partitions P = P1 t P2 t . . . t Pq = V is (β,∆)-padded
if the following holds:

149

1. For each i ∈ [q] we have that maxu∈Pi,v∈Pi dist(u, v) ≤ ∆.

2. For some constant δ > 0, we have that for every v ∈ V and every 0 ≤ r ≤ δ ·∆

Pr
P∼P

[Bdist(v, r) 6⊆ P] ≤ rβ

∆
.

In words, each part of the partition has diameter at most ∆ and the probability of any point v
in the metric being at distance at most r from a node in a different part is at most rβ

∆
. Such

decompositions were presented, for example, by [61].

Lemma 7.3.3 ([61]). Any metric (V, dist : V ×V → R) on n points admits a (β,∆)-padded
decomposition, for any ∆ > 0 and some β = O(log n). Such a decomposition can be
computed in polynomial time.

We are now ready to prove the main result of this section.

Proof of Lemma 7.3.1. We define a metric space (V, dist′ : V × V → R) as the metric space
induced by the (metric completion) of the following graph metric on G. The dist′-length of an
edge e ∈ EG is defined as

∑t
j=1

wj(e)

bj
; since dist′ is a metric completion, it is clearly a metric

space.

Setting ∆ , O(t log n) and using Lemma 7.3.3 we find a (distribution over) (O(log n),∆)-
padded decompositions P = P1 t P2 t . . . t Pq using dist′ as the underlying metric. Fix
u, v ∈ V . Since every Pi has diameter at most ∆, there exists a path p = (e1, e2, . . . , e`) between
u and v whose dist′-length is at most O(t log n). For all j′ ∈ [t],

O(t log n) = ∆ ≥
∑̀
i=1

t∑
j=1

wj(ei)

bj
≥ 1

bj′

∑̀
i=1

wj′(ei).

In other words, for all j′ ∈ [t] the wj′-cost of p is bj · O(t log n), implying that distw(u, v) �
b ·O(t log n).

Next, we construct Ci ⊆ Pi by removing from Pi all vertices v ∈ Pi where Bdist′(v, γt) 6⊆ Pi.
We first note that Pr[v 6∈

⋃q
i=1 Ci] ≤

γ·t·O(logn)
O(t logn)

≤ γ, i.e., we can drive the probability of this
event down to γ by choosing a sufficiently large O-notation constant in the definition of ∆. In
other words, Pr[v 6∈

⋃q
i=1Ci] ≤ γ for each vertex v ∈ V , as stipulated.

For u ∈ Ci and v 6∈ Pi we argue that distw(u, v) 6� γb. Since, by definition of Ci, we have that
Bdist′(u, γt) ⊆ Pi, we conclude that dist′(u, v) > γt. Assuming the opposite, distw(u, v) � γ ·b
implies dist′(u, v) ≤ γt, leading to a contradiction.

Finally, consider a path of weight w starting at a node u and let d :=
∑t

j=1 wi/bi. We know
that Pr[Bdist′(u, d) ⊆ P] ≤ dO(logn)

∆
≤ d/t (by choosing a sufficiently large O-notation constant

in the definition of ∆). Since Bdist′(u, d) ⊆ P implies that the path is preserved in P , the final
property follows and we are done.

150

7.4 Hop-Bounded HSTs

In this section, we introduce and construct our novel tree embeddings (or HSTs). The following
definition formalizes the encapsulating structure which will be used as our HST.

Definition 7.4.1 (Labeled Tree embedding). A tree embedding of a graph G = (V,EG) is a
(rooted) tree T = (V,ET) on the same set of vertices asG where each tree edge {u, v} ∈ ET
is associated with a path in G between u and v. A labeled tree embedding consists of a pairs
(T, U) where T is a tree embedding on G and U ⊆ V is a subset of (so-called) good nodes.

We note the following rephrasing of the decomposition lemma, using the terminology of hop-
bounded paths.

Corollary 7.4.2 (Rephrasing of Lemma 7.3.1). Let G = (V,EG) be an undirected graph
with n := |V | and weights w : EG → R≥0. For any Q ≥ 0, b ≥ 0, γ ≤ 1, there exists a
distribution over partitions P1 t P2 t . . . t Pq = V and subsets of the parts Ci ⊆ Pi for
i = 1, . . . , q, where

1. For each i and u, v ∈ Pi, we have that dist(Q)
w (u, v) ≤ b (with probability 1).

2. For each i, u ∈ Ci, v 6∈ Pi, we have that dist
(Q γ

O(logn)
)

w (u, v) ≥ b · γ
O(logn)

(with
probability 1).

3. For each v ∈ V , we have that Pr[v 6∈
⋃
i∈[q] Ci] ≤ γ.

4. For each path p of at most h hops and distance (sum of weights) at most `, we have
that Pr[p is not preserved in P1 t . . . t Pq] ≤ (h/Q+ `/b) ·O(log n).

7.4.1 Hop-bounded HST construction

In this section, we construct the HSTs with the properties required to build hop-bounded oblivi-
ous routings.

Lemma 7.4.3. Let q ≥ 1, 0 < p < 1. Given a weighted graph G = (V,EG) of hop-
diameter O(p−1q log n) with polynomially bounded weights there exists a polynomial-time
sampling of a distribution over labeled tree embeddings (T, U) of G where for all pairs
of nodes u, v we have that |Tuv| ≤ O(p−1q log2 n) (always), E [I[u, v ∈ U] · dist(Tuv)] ≤
O(log2 n) · d(q)

G (u, v), and the probability that Pr[v ∈ U] ≥ 1− p.

Proof. Let Q := O(p−1q log n) (for a sufficiently large hidden O-constant).

We describe a recursive tree embedding construction procedure that takes a set of nodes P ⊆ V
of (weak) diameter ∆ and returns an embedding (T, U). We maintain the invariant that for all
u, v ∈ P we have that dist

(Q)
G (u, v) ≤ ∆. The construction is initially invoked with P = V and

with diameter ∆ = maxu,v dist
(Q)
G (u, v) ≤ poly(n).

151

We use the decomposition of Corollary 7.4.2 with hop-diameter Q, distance-diameter ∆/2 and
γ := O(q logn)

Q
(for a sufficiently large hidden O-constant) to obtain {(Ci, Pi)}ki=1 where for each

i, j ∈ [k], j 6= i we have that:

max
u,v∈Pi

dist
(Q)
G (u, v) ≤ ∆/2 (7.1)

dist
(q)
G (Ci, Pj) ≥ dist

(Q γ
O(logn)

)

G (Ci, Pj) ≥ ∆
γ

O(log n)
≥ ∆

q

Q
(7.2)

Pr[v 6∈
⋃
i

Ci] ≤
O(q log n)

Q
=

p

O(log n)
. (7.3)

We recursively construct k tree embeddings (T1, U1), . . . , (Tk, Uk) by calling the same procedure
with parameters ∆′ ← ∆/2 on sets P1, . . . , Pk. The tree embedding T is constructed by con-
necting the roots of T2, . . . , Tk to the root of T1 via a tree edge. Specifically, let r be the root of
T1 and r′ be the root of Ti. The tree edge {r, r′} (i) corresponds to the shortest Q-hop-bounded
path in G between r and r′, (ii) we label the tree edge with a “hop-label” Q and a “distance-
label” ∆. Since |Trr′ | ≤ Q and distG(Trr′) ≤ ∆, this will maintain the following invariant:
for each u, v ∈ V let h be the sum of hop-labels and d be the sum of distance labels on the
unique path between u and v in the tree. Then |Tuv| ≤ h and distG(Tuv) ≤ d. Finally, we let
U := (U1 ∪ . . . ∪ Uk) ∩ (C1 ∪ . . . ∪ Ck) and return (T, U). The procedure is stopped when the
set of nodes P is a singleton.

We now analyze the above procedure. Fix some nodes u, v ∈ V . Clearly, there can be only
O(log n) levels of recursion since the weights of G are polynomially bounded, and the diameter
∆ drops by a factor of 2 in each level. Since each tree-edge corresponds to a path of at most
Q hops we have that |Tuv| ≤ O(Q log n) = O(p−1q log2 n). Note that this directly implies
distG(Tuv) ≥ dist

(|Tuv |)
G since Tuv corresponds to a valid path in G between u and v.

Furthermore, each node u ∈ V is in a unique recursive call on each level of the recursion (since
the sets P among different recursions on the same level are disjoint). In each recursive call with
v ∈ P and decomposition {(Ci, Pi)}ki=1, the probability Pr[v 6∈

⋃k
i=1Ci] ≤

O(q logn)
Q

and there
are O(log n) levels, hence we conclude via a union bound the probability that there exists a level
i at which v is not in any

⋃k
i=1Ci is at most O(γ log n) ≤ p. Hence Pr[v ∈ U] ≥ 1− p.

Next, let duv (or just d) be the heaviest distance-label on the tree path between u and v. Note
that distance-labels are decreasing exponentially (or faster) on any root-leaf path. Therefore,
distG(Tuv) ≤ O(duv). Let ∆ be the (hop-bounded) diameter of G and let ∆i = ∆/2i be the
(hop-bounded) diameter of the parameter P at any recursive call at level i (level i = 1 is the root
level, up to i = O(log n) for the lowest, leaf, level of the recursion). This edge of distance-label
duv was created via a recursive call on some level i parameters P ⊆ V and duv = 2∆i (hence the
invariant dist

(Q)
G (u, v) ≤ 2∆i = duv ≤ distG(Tuv)). The recursive call yields {(Ci, Pi)}ki=1 with

the decomposition P = P1 t . . . t Pk where u ∈ Pi and v ∈ Pj , i 6= j.

By definition of dist
(q)
G (u, v) < ∞, there exists a path p in G between u and v of at most q hops

and weight ` := dist
(q)
G (u, v). When u, v ∈ U , we know since u ∈ Ci ⊆ Pi and v 6∈ Pi that

` ≥ dist
(q)
G (u, v) ≥ ∆i

q
Q

. In other words, q∆i

Q
= O(`).

152

We give an upper bound on the expectation of duv (jointly with both u, v being good).

E[duv · I[u, v ∈ U]] ≤
O(logn)∑
i=1

Pr[p not preserved at level i] ·∆i · I[u, v ∈ U]

≤
O(logn)∑
i=1

O(log n)

(
q

Q
+

`

∆i

)
∆iI[u, v ∈ U]

≤ O(log n)I[u, v ∈ U]

O(logn)∑
i=1

(
q∆i

Q
+ `

)

≤ O(log n)

O(logn)∑
i=1

O(`)

= O(log2 n) · ` = O(log2 n) · dist
(q)
G (u, v).

This completes the proof by noting that distG(Tuv) = O(duv).

7.5 Hop-bounded oblivious routings

In this section, we define and construct novel hop-bounded oblivious routings, as well as give a
result that showcases the usage of these structures.

Let T be a distribution over labeled tree embeddings (Tj, Uj) of G = (V,EG). In other words,
we can represent T as {(λ1, T1, U1), (λ1, T2, U2), . . .}where (Tj, Uj) are labeled tree embeddings
and λi ≥ 0,

∑
i λi = 1 are normalized weights. If the vector λ = (λi)i is not immediately clear,

we sometimes write T (λ). We define a good-only routing on a pair (si, ti) (with respect to T)
as the following flow fi: for each j ∈ [|T |] we add a path of value λi to the flow along (Tj)si,ti
if both si ∈ Uj and ti ∈ Uj (and otherwise nothing is added). Similarly, good-only routing
on a demand d ∈ ZV×V≥0 (of total demand k := |d|) is a sequence of flows (fi)

k
i=1 obtained by

collecting the good-only routings of each demand pair (where the pair (s, t) is repeated d(s, t)
times).

We distinguish a specific demand called D1 which has a demand pair of value 1 for each edge
EG. In other words, D1(s, t) =

∑
{u,v}∈EG,u<v I[u = s and v = t].

We now formally define hop-bounded oblivious routings (or HBORs) as a distribution over la-
beled tree embeddings T that satisfies three properties. First, any path routed along the tree must
have a small hop-length. Second, the total congestion induced by routing the D1 demand using
good-only routings must be small. And third, for each path in G of length at most Q, all of the
nodes on the path are good nodes in at least 1/2-fraction of (Tj, Uj) (w.r.t. weights).

Definition 7.5.1. A (Q, h,w)-hop-bounded oblivious routing (HBOR) of G = (V,EG) is a
distribution over labeled tree embeddings T = {(λ1, T1, U1), (λ2, T2, U2), . . .} where (1) for
each tree Tj and any two nodes u, v ∈ V we have that |Tuv| ≤ Qh, (2) let (f1, . . . , f|EG|)

153

be the good-only routing of the D1 demand, then max(
∑k

i=1 fi) ≤ w, (3) for each path
p = (v0, v1, . . . , v`) inG of length at mostQwe have that Pr(T,U)∼T [∀i ∈ [`], vi ∈ U] ≥ 1/2.

We note in the following that the hop-diameter condition is technical and can be removed via a
suitable “forest embedding” generalization of tree embeddings, which would somewhat compli-
cate notation.

Lemma 7.5.2. Given Q ≥ 1 and graph G of (unweighted) diameter, O(Q log n) there exists
a (Q,O(log2 n), O(log2 n))-HBOR.

Proof. We write an LP to minimize the (maximum) congestion induced by routing the D1 de-
mand while satisfying other HBOR properties. Let (T1, U1), (T2, U2), . . . the (finite) set of pos-
sible labeled tree embeddings of G. We denote by Λ the set of vectors λ = (λi)i such that
T (λ) = {(λj, Tj, Uj)}j is a probability distribution that satisfies properties (1) and (3) of the
HBOR definition. The optimization is performed over the set Λ ⊆ {λ | λ ≥ 0,

∑
j λj = 1}.

min
α,λ

. α

such that
∀e ∈ EG E(T,U)∼T (λ) [load(D1, e, T, U)] ≤ α

λ ∈ Λ

The load(D1, {u, v}, T, U) := fe where f is the good-only routing ofD1 with respect to {(1, T, U)}.
In other words, load(D1, {u, v}, T, U) represents the congestion of the good-only routing in-
duced by routing theD1 demand over the edge e by routing only over the tree embedding (T, U).

Dualizing this, we get the following:

max
β,`

. β

such that

∀λ ∈ Λ E(T,U)∼T (λ)

[∑
e∈EG

`e · load(D1, e, T, U)

]
≥ β

` ≥ 0,
∑
e∈EG

`e = 1

In other words, it is sufficient to show for every distribution (`e)e∈EG there exists a λ ∈ Λ
(distribution satisfying (1) and (3)) over tree embeddings (T, U) with small expected β.

We apply Lemma 7.4.3 with q = 1 and p = 1/(2(Q + 1)) on G with weights (lengths) `.
Specifically, We construct tree embedding distribution T = {(λi, Ti, Ui)}i (where λi are the
probabilities) where (i) for all edges e = {u, v} ∈ EG we have that E[I[u, v ∈ U]distG(Tuv)] ≤
O(log2 n)dist

(1)
G (u, v) ≤ O(log2 n)`e, (ii) for all u, v ∈ V we have that |Tuv| ≤ O(Q log2 n), (iii)

for all v ∈ V we have that Pr[v ∈ U] ≥ 1− 1
2(Q+1)

.

154

Note that property (1) is immediately satisfied by property (ii), and property (3) follows from
(iii) via a union bound: each node is good with probability at least 1 − 1

2(Q+1)
so nodes on any

path of length Q are preserved with probability at least 1/2.

Property (2): we have that

E(T,U)∼T (λ)[load(D1, e, T, U)] =
∑

(s,t)∈D1

E(T,U)∼T (λ)[load({(s, t)}, e, T, U)].

Furthermore, E(T,U)∼T (λ)[load({s, t}, e, T, U)] ≤ O(log2 n) · `{s,t} since the load is 0 if s 6∈ U
or t 6∈ U and otherwise it holds by property (i). Therefore, E(T,U)∼T (λ)[load(D1, e, T, U)] =∑

(s,t)∈D1
O(log2 n) · `{s,t} ≤ O(log2 n)

∑
(s,t)∈D1

`{s,t} = O(log2 n).

The following lemma demonstrates how to use HBORs. Notably, the structure can approximate
the congestion of the optimal set of paths while controlling for the dilation. However, the useful
paths are “hidden” within a larger set of paths. The user of HBORs is required to be able to
identify the useful paths and discard the rest.

Lemma 7.5.3. Let H∗ = {p∗1, . . . , p∗k} be paths in G (such that |H∗| ≤ poly(n)) with end-
points {(si, ti)}ki=1 (respectively). Let T (λ) be a (Q, h,w)-HBOR with Q ≥ dilation(H∗)
and w � log n. Suppose that for each i ∈ [|H∗|] we independently sample a tree embedding
(T (i), U(i)) (proportionally to the weights λ) and set pi := T (i)si,ti . Then there exists a set
H ′ ⊆ {p1, . . . , pk} with E[|H ′|] ≥ |H∗|/4, congestion(H ′) ≤ Õ(congestion(H∗) · w), and
with dilation(H ′) ≤ Qh.

Proof. Let H = {p1, . . . , pk} be the paths selected via the HBOR and call H∗ = {p∗i }ki=1 the
“witness paths”. Property (1) of HBOR ensures that the hop-bound is sufficiently small, i.e.,
|pi| ≤ Qh, hence the dilation property holds for every subset of H .

We construct a subset H ′ ⊆ H with the required properties. We write p∗i ⊆ U(i) when all nodes
on p∗i are in U(i). For each (pair) i ∈ [k] we define the (random) variable Ri := I[p∗i ⊆ U(i)]
and the set H ′ = {pi | Ri = 1} ⊆ H . We have that E[Ri] ≥ 1/2 because Q ≥ dilation(H∗) via
property (3) of HBOR.

We now argue that H ′ has small congestion. As a reminder, we consider paths as vectors in REG
≥0 .

First, we define a (random) flow F ∈ REG
≥0 as F :=

∑k
i=1 Ri · pi. By definition,

∑
p∈H′ p = F ; F

contains exactly |H ′| many paths. The expectation E[F] can, also by definition, be expressed in
the following way: For each i ∈ [k] and each (λj, Tj, Uj) from the HBOR, if all nodes of p∗i are
in Uj , then we add λi · (Tj)si,ti to F (i.e., a path between si and ti in T with weight λi). Second,
we define f ∈ REG

≥0 as

f :=
k∑
i=1

E(T,U)∼T

I[p∗i ⊆ U] ·
∑

{u,v}=e∗∈p∗i

Tuv

and we show that f ≥ E[F] (coordinate-wise). In other words, f is a flow constructed as follows:
For each i ∈ [k] and each (λj, Tj, Uj) from the HBOR, if all nodes in p∗i are in Uj , we iterate

155

over each edge e∗ in p∗i and add to f a path between the endpoints of e∗ induced by the tree Tj
with weight λi (i.e., λi(Tj)uv where u, v iterate over endpoints of each edge in p∗i). It is clear that
since E[F] is (the sum of) tree route(s) between si and ti, and f is the (sum of) sum of routes of
edges on a path between si and ti, that f ≥ E[F].

We note, by construction, that each path added to f is a good-only routing over its corresponding
tree. Furthermore, each edge e in G appears in at most congestion(H∗) many different witness
paths p∗i , hence we conclude that f is the flow obtained by (fractionally) good-only routing a
demand that is (coordinate-wise) smaller than the congestion(H∗) ·D1 demand. Therefore, from
the property (2) of HBOR, we conclude that max(E[F]) ≤ max(f) ≤ congestion(H∗) · w.

Finally, we fix and edge e ∈ EG and note that the congestion on e of H ′ is Fe, hence its expec-
tation is at most congestion(H∗) · w. Since each (si, ti) pair independently samples a path, the
congestion of H ′ over e can be seen as a sum of independent {0, 1} variables, hence we conclude
it isO(congestion(H∗)·w) via a standard Chernoff bound argument with high probability. Using
a union bound over all edges EG we conclude that congestion(H ′) = O(congestion(H∗) · w)
with high probability.

We now argue about |H ′|. We have that |H ′| =
∑k

i=1Ri, hence E[|H ′|] ≥ k/2. However, since
k ≤ poly(n) we conclude that in events where the above properties hold with high probability
we have E[|H ′|] ≥ (1/2− 1/n)|H∗| ≥ |H∗|/4.

7.6 Routing with Noise

In this section, we propose a useful subroutine that can identify in a distributed manner a useful
set of paths (i.e., of small congestion+dilation) from a larger set of possibly uncontrolled dilation
or congestion. This routine demonstrates how to use HBORs in a distributed setting.

Let H = {p1, p2, . . . , pk} be a set of paths in G. A classic routing result states we can simulta-
neously send packets via the paths H in O(dilation(H) + congestion(H)) rounds (in this model
each edge can forward one packet per round) [100].

We now consider an extension of the result where we have a set of paths M that can be routed
efficiently due to dilation(M) + congestion(M) ≤ Q. Consider an adversary that blows up the
congestion and dilation by inserting at most α|M | new paths. We show one can still recover a
distributed algorithm that routes a good fraction of the original paths in at most Õ(Q/α) rounds.

Lemma 7.6.1. Given a set of k paths {p1, . . . , pk} inG, suppose there exists a (secret) subset
of indices M ⊆ [k] of size |M | ≥ αk such that congestion({pi}i∈M) + dilation({pi}i∈M) ≤
Q. There exists a (randomized) distributed CONGEST algorithm that will successfully com-
plete the routing of at least |M |/2 paths in M in O(Qα−1 log n) rounds with high probabil-
ity. Every node needs to know Q, α, and to be able to compute the next hop of any packet it
received; however, they do not need to know M .

Proof. The issue is dealing with the congestion: We can simply augment packets with a counter

156

denoting the number of times it has been forwarded and drop any packet that continues its prop-
agation after it has been forwarded Q times. This will enforce the dilation constraint.

We group the rounds into κ log n blocks called “super rounds” (κ > 0 is a sufficiently large
constant). Furthermore, we set c := 2Q/α and delay the start of the propagation of each pi by
an independent and uniformly random number of super rounds in [c]. In each super round we do
the following: each edge (locally) considers the amount of packets going over it. If this number
is at most κ log n, we send all of those packets through the edge in κ log n rounds. If this is not
the case, we deactivate the edge (hence deactivating all packets wanting to pass through the edge
in this super round or a future one).

We now analyze the above algorithm. Each packet, after its initial delay, in each super round
either gets deactivated or forwarded. Hence after c + Q super rounds, all packets are either
delivered to their destination or deactivated. Hence we stop the procedure after O(Q ·α−1) super
rounds or O(Qα−1 log n) rounds.

Suppose that an edge e got deactivated in some round. Let t = tm + tb be the total number
of packets that want to go through the edge during or after deactivation, where tm of them are
in the set M and tb (for “bad”) are not from M . Using random delays, we know that in each
super round the number of messages waiting on e is at most x := 2t/c + O(log n) with high
probability. If x > κ log n, then t > 1/2 · (κ−O(1)) · (c log n) = κ′Qα−1 log n ≥ κ′′Qα−1 (for
some sufficiently large κ′, κ′′ > 0) with high probability. By assumption we have that tm ≤ Q,
therefore tb ≥ t−Q ≥ κ′′Qα−1 ≥ 2Qα−1. In other words, we deactivate at most Q paths in M
and at least 2Qα−1 paths not in M .

Consider the potential function φ = 2|A ∩M | − α|A \M | where A is the set of active (non-
deactivated) paths. In the beginning φstart ≥ 2|M | −αk ≥ |M |. On each deactivation the change
in φi+1 − φi = −2tm + αtb ≥ −2Q + α2Qα−1 = 0, hence φ is never decreasing. Since in the
end we have φend ≥ φ0 ≥ |M |, we have that |A ∩M | ≥ 1

2
M . In other words, |M |/2 messages

got delivered.

7.7 Distributed and Oblivious Shortcut Construction

In this section, we present how to construct pairwise shortcuts using HBORs and the “routing
with noise” subroutine of Section 7.6.

In distributed optimization, it is often infeasible for each node to know the entire input or out-
put (e.g., transmitting Θ(n) to the same node might take a prohibitively long amount of time).
Therefore, the input/output is often represented in a distributed way, which we here define. We
say that a distributed algorithm distributedly knows a set of pairs P = {(si, ti)}ki=1 where
si, ti ∈ V if every node v knows all pairs that contain v. In other words, v knows all pairs
{(s, t) ∈ P | s = v or t = v}. Furthermore, an algorithm distributedly knows a set of paths
H = {pi}ki=1 if for each edge {u, v} = e ∈ EG both u and v know all (indices of) all paths that
contain e.

The following lemma stipulates that one can use HBORs to identify a shortcut for a constant

157

fraction of pairs, even if a good-quality shortcut exists only for a subset of the pairs (albeit this
subset can be at most a constant fraction of all pairs).

Lemma 7.7.1. Let P = {(si, ti)}ki=1 be k pairs of nodes in G such that there exists a (secret)
subset P ∗ = {(si, ti)}i∈I ⊆ P of pairs with |P ∗| ≥ Ω(k) (for any arbitrary constant) such
that pairs P ∗ admit a shortcut of quality = congestion + dilation ≤ OPT. There is a
randomized distributed known-topology CONGEST algorithm that constructs shortcuts of
quality Õ(OPT) for some subset of pairs P ′ ⊆ P of size |P ′| ≥ |P ∗|/2 in Õ(OPT + DG)
rounds with high probability. The nodes must initially know OPT, |P ∗|, and distributedly
know P (but not P ∗ nor its secret shortcut). Upon termination, the nodes distributedly know
P ′ and the shortcut paths for P ′.

Proof. We first prove the claim assuming the hop-diameter DG = O(OPT log n) (note that
computing a 2-approx to DG can easily be done in O(DG) rounds by building a BFS tree and
computing its diameter).

For concreteness, we will assume |P ∗| ≥ k/100, but the analysis holds accordingly for other
constants. Since we are in the known-topology setting, all nodes can agree on a tree embedding
distribution T which is an (OPT, O(log2 n), O(log2 n))-HBOR of G using Lemma 7.5.2. For
each pair (si, ti) the node si chooses a path pi via the procedure described in Lemma 7.5.3 and
(using the same claim, but only for the secret subset of pairs P ∗) there exists a (secret) subset
of paths Hs ⊆ {p1, . . . , pk} with E[|Hs|] ≥ 1

4
|P ∗| ≥ 1

400
k, congestion(Hs) = O(OPT log2 n),

and dilation(Hs) ≤ O(OPT log2 n). Furthermore, since |Hs| ∈ [0, k] and E[|Hs|] ≥ k/400 we
conclude by Markov that

Pr[|Hs| ≥ k

800
] ≤ k/400− k/800

k − k/800
=

1/800

1− 1/800
= Ω(1).

We call such events “lucky”. In case of a lucky event, applying Lemma 7.6.1 on {p1, . . . , pk}with
a secret subset Hs with |H∗| ≥ k/800, we have that there is a distributed CONGEST Õ(OPT)-
round algorithm that can successfully route |Hs|/2 ≥ k/1600 packets via a subset of the paths
{p1, . . . , pk} in Õ(OPT) rounds with high probability. We note that we augment the packets
sent from si to ti with the random seeds used to choose the path pi in order for intermediate
nodes to be able to compute the next step. Those pairs (si, ti) for which si successfully delivers
a packet to ti are called “successful” (at this point only ti know whether a pair was successful).
However, reversing the routing procedure both pair nodes can be made aware whether the pair
was successful.

Note that the set of paths corresponding to successful pairs have both congestion and dilation
Õ(OPT) (since otherwise delivering them in Õ(OPT) rounds would be impossible). Hence
we can add the successful pairs to P ′, paths of successful pairs to the computed shortcut, and
delete those pairs from consideration. In case of a lucky event, we delete k/1600 pairs from
consideration with high probability. The procedure above is repeated (on the pairs that were never
successful) until the number of pairs that were ever successful (i.e., |P ′|) is at least |P ∗|/2. Since
an iteration is lucky with constant probability, repeating O(log n) times yields the |P ′| ≥ |P ∗|/2
and will blow up the congestion by at most a negligible O(log n) = Õ(1) factor. Note that the

158

procedure could not be repeated until |P ′| ≥ |P ∗| due to the requirement of Lemma 7.6.1 that
the secret subset Hs be large relative to H; in further iterations, the constants slightly change,
but they remain constants until |P ′| ≤ (1 − Ω(1))|P ∗| (we leave the details out for simplicity
of exposition). Finally, we note that the algorithm does not know whether an event was lucky,
but can calculate the total number of successful pairs in O(DG) rounds and repeat the process
until |P ′| ≤ |P ∗|/2, which will work as argued. This completes the proof in the case of DG =
O(OPT log n).

Finally, we assume general G = (V,EG) (with larger hop-diameters). By known results of (e.g.,
[112]), there exists a partition a (randomized) partition of V into Z1 t Z2 t . . . t Zq such that
(1) the hop-diameter of Zi is O(OPT log n) for all i (this holds when Zi is taken in isolation
from the rest of the graph, i.e., it is a “strong” diameter), and (2) for each path p in G of at most
OPT hops (i.e., |p| ≤ OPT) we have that Pr[p is preserved in Z1t . . .tZq] ≥ 1/2 (“preserved”
as in the terminology of Lemma 7.3.1). Since we are in the known-topology setting all nodes
can agree on the partition without distributed communication (note: this decomposition could
be distributedly computed in Õ(OPT) rounds using the random shifts technique introduced in
[112] for PRAM and adapted in, e.g., [67] to the CONGEST model).

Let I be is the (secret) set of pair indices such that those indices are in P ∗, i.e., such that P ∗ =
{(si, ti)}i∈I ⊆ P . Let H∗ = {p∗i }i∈I be the (secret) shortcut of congestion + dilation ≤ OPT
with endpoints P ∗. For each partition j ∈ [q], we define Uj to be the number of parts i ∈ [k]
such that both endpoints si and tj are in Zj . Similarly, for each partition j ∈ [q], we define Rj to
be the number of parts i ∈ [k] such that both i ∈ I and the entire path p∗i is contained in Zj .

By the partition properties, we have that E[
∑q

j=1 Rj] ≥ |P ∗|/2. Call a partition Zj “happy” if
Rj ≥ Uj/1000. We have that:

|P ∗|/2 ≤ E[
∑
j

Rj]

= E[
∑
j

RjI[j happy] +
∑
j

RjI[j not happy]]

≤ E[
∑
j

RjI[j happy]] +
∑
j

Uj/1000

≤ E[
∑
j

RjI[j happy]] + k/1000.

Therefore, we have that E
[∑

j RjI[j happy]
]
≥ |P ∗|/2 − k/1000 ≥ |P ∗|/4 ≥ k/400 (since

k/1000 ≤ |P ∗|/4), hence its value is at least |P ∗|/8 with constant probability (by Markov, the
random variable is bounded above by k). Call this event “lucky”, i.e., when

∑
j RjI[j happy] ≥

|P ∗|/8.

We now describe the algorithm. We apply this claim on each partition Zj that has hop-diameter
at most O(OPT log n), and the claim is already proven in this case. Note that the algorithm
can compute Uj by aggregating the values within each partition Zj withing DZj = Õ(OPT)
rounds, but it cannot compute Rj due to H∗ being secret. Therefore, in the recursive call, we
set the (necessary input parameter) |P ∗| to be Uj/1000 (this is a quantity that the nodes must

159

know during initialization); it is clear that nodes know all other inputs that are required. Every
happy partition will, with high probability, find shortcuts for at least Uj/2000 ≥ Rj/2000 pairs
(since Rj ≤ Uj by definition). Therefore, (conditioning on a lucky even), we find shortcuts for∑

j
Rj

2000
I[j is happy] ≥ 1

2000
· |P

∗|
4
≥ |P ∗|

8000
many pairs. Repeating the procedure O(log n) many

times on pairs for which have not found shortcut (in a similar manner as in the bounded-diameter
case), we get the final results.

Finally, we show one can use HBORs to construct near-optimal-quality pairwise shortcuts.

Theorem 7.7.2 (Pairwise shortcut construction). Let P = {(si, ti)}ki=1 be k pairs of nodes
in G that admit a shortcut of quality = congestion + dilation ≤ OPT. There is a random-
ized distributed known-topology CONGEST algorithm that constructs shortcuts of quality
Õ(OPT) in Õ(OPT + D) rounds with high probability. A node v initially distributedly
knows P and at termination will distributedly know the computed shortcut.

Proof. We can assume we know the value of OPT up to a factor of 2 by guessing the smallest
power-of-2 larger Q than OPT and verifying if the procedure succeeded. Checking whether a
shortcut has quality q can be easily done in Õ(q) CONGEST rounds with high probability by
subsampling the pairs (si, ti) with probability logn

q
(non-sampled pairs are ignored) and checking

whether each edge in G has congestion O(log n), which will be the case with high probability
(note: this verification step can be avoided, but we keep it for simplicity of exposition).

We apply Lemma 7.7.1 on G with P ∗ = P and with our guess Q for OPT. The algorithm
constructs shortcut paths for k/2 pairs. We remove those pairs and iterate the procedureO(log n)
times, after which all pairs will have a shortcut with high probability.

160

Chapter 8

Conclusion and Open Questions

8.1 Summary

In this thesis, we explore efficient distributed algorithms for network optimization. Our primary
objective is to challenge the notion in distributed optimization that one should not look beyond
Θ̃(
√
n)-round algorithms simply because there exists a pathological worst-case topology where

a lower bound of Ω̃(
√
n) applies. We argue that a significantly more helpful answer can be given:

many topologies of interest do not share the properties of pathological graphs and should not be
bound by their worst-case barriers. We believe that our understanding of distributed algorithmics
beyond worst-case topologies has worthwhile theoretical and potentially practical benefits. Our
pursuit leads to the resolution of several long-standing open problems in theoretical computer
science. Furthermore, since performing a practical network optimization on a worst-case topol-
ogy would be prohibitively expensive on large networks, improving our understanding might
lead to future real-world practical improvements in network design and network optimization.

Our contribution can be summarized in two key topics. First, we develop a toolbox that can be
utilized to design clean and efficient algorithms for many distributed optimization problems that
provably outperform traditional Õ(

√
n)-round solutions. The core of this toolbox is the tree-

restricted shortcut framework that provides a distributed algorithm that can be executed without
modification on various topologies (i.e., uniform algorithms) and yields ultra-fast runtimes on
many networks of interest.

Second, we develop a theory that explains how a network topology influences distributed opti-
mization runtimes. We prove that the shortcut quality parameter (or several equivalent quantities)
presents an efficiency barrier on many distributed tasks. This proves the first non-trivial univer-
sal lower bound for distributed optimization, a result that combines various new information-
theoretic and combinatorial techniques. Furthermore, we show that in the known-topology set-
ting, it is possible to solve distributed optimization problems in shortcut quality time. This
immediately proves the existence of a distributed algorithm that is as fast as possible on a given
topology, i.e., so-called universally optimal algorithms. This resolves an open problem of Garay,
Kutten and Peleg from an influential FOCS’93 paper [46]. The result builds on top of novel

161

graph-theoretic structures that include a congestion + dilation oblivious routing with polylog-
arithmic approximation ratio, resolving an open problem by Räcke [125] about the existence of
such oblivious routing structures.

8.2 Open Problems and Future Work

8.2.1 The shortcut framework

The tree-restricted shortcut framework matured to a well-rounded algorithmic technique that can
provide efficient distributed algorithms for a large variety of graph classes (culminating even in
the excluded-minor class of graphs) and for many network optimization problems. However, the
set of problems one can apply the framework on has not yet reached a satisfactory level: this set
currently includes the (exact) MST, no(1)-approximate SSSP, and (1 + ε)-approximate min-cut
(see Section 2.1.3 for a survey). One would ideally add other techniques to the list more such
techniques. The most straightforward way to improve on these techniques would be to reduce
some new optimization problems to multiple applications of the partwise aggregation oracle.

Open Problem 8.2.1. Extend the (tree-restricted) shortcut framework to other problems in
distributed computing. These might include the exact SSSP, s− t maximum flow, exact min-
cut, etc.

Furthermore, we note that the shortcut framework is highly tied to the CONGEST model of com-
munication: e.g., nodes can send different messages to different neighbors, which is accounted
for by controlling the number of different parts that can communicate over each edge. On the
other hand, a model such as broadcast CONGEST, where a node broadcasts the same O(log n)-
bit message to each one of its neighbors would benefit more from a node-centered congestion
definition where we control the number of different parts that are allowed to communicate via
each node. Other models warrant similar investigation.

Open Problem 8.2.2. Develop an appropriate shortcut construction that gives efficient dis-
tributed algorithms for problems in the broadcast CONGEST or multi-hop radio network
models.

Furthermore, other measures of complexity might require combinatorial structures different from
shortcuts. Low-congestion shortcuts are mostly tied to the question of minimizing the running
time and, via the results of [67], also the message complexity of distributed tasks. One the other
hand, minimizing the energy consumption might require different constructions.

Open Problem 8.2.3. Develop an appropriate shortcut construction that gives distributed
algorithms that control alternative complexity measures such as the energy consumption in
addition to the round complexity.

162

8.2.2 Coding gaps for completion-time

The material mostly contained in Chapter 5 studies completion-time coding gaps; i.e., the ratio
for a given multiple-unicast instance, of the fastest routing protocol’s completion time to the
fastest coding protocol’s completion time. It provides a strong characterization of these gaps in
the worst case, showing they can be polylogarithmic in the problem parameters, but no greater.
The chapter raises a few exciting questions and research directions.

Probably the most natural question is to close our upper and lower bounds. We show that the
network coding gap is polylogarithmic, but what polylog? A particular question is can we replace
the term that (logarithmically) depends on the demand aspect ratio, namely O

(
log

∑
i di

mini di

)
, with

a O(log k)?

Open Problem 8.2.4. Determine the correct bound on the completion-time network coding
gap.

Implications for other fields. Recall that the multiple-unicast conjecture of Harvey et al.
[75], Li and Li [103] asserts that the throughput coding gap is one for multiple unicasts. In
addition to being considered “arguably the most important open problem in the field of network
coding” [3], this conjecture has also been connected to other seemingly unrelated areas of theo-
retical computer science. For example, a positive resolution of this conjecture has been shown
to imply (1) an answer to a long-standing open question in external memory algorithm complex-
ity [3, 41], (2) improved lower bounds for computation in the cell-probe model [3], and (3) (very
recently) an Ω(n log n) circuit size lower bound for multiplication of n-bit integers [5] (matching
an even more recent breakthrough algorithmic result for this fundamental problem [74]). This
conjecture has therefore found applications in proving (conditional) lower bounds. As discussed
in Section 5.1 and Section 5.1.4, the conjectured non-existence of throughput coding gaps for
multiple unicast has been used to prove (conditional) lower bounds in many seemingly-unrelated
problems. It would be interesting to see whether our upper and lower bounds on the coding gap
for multiple-unicast completion times can be used to prove unconditional lower bounds for other
models of computation. Perhaps the most exciting direction would be to investigate whether
completion-time coding gaps imply new results in circuit complexity for depth-bounded circuits.

Open Problem 8.2.5. Explore the possibility of the completion-time coding gap results im-
plying unconditional lower bounds in other models (such as depth-bounded circuit complex-
ity).

8.2.3 Universal optimality

We demonstrate the existence of universally optimal algorithms in the distributed known-topology
setting. The most pressing open question is whether a similar result holds in the general setting
(when the topology is not known).

163

Open Problem 8.2.6. Show the existence of universally optimal algorithms in the distributed
CONGEST setting.

This thesis makes great strides towards this problem. Many of the techniques used to prove the
known-topology setting can be reused for the fully distributed result. Specifically, the following
open problem would imply Open Problem 8.2.6.

Open Problem 8.2.7. Design a distributed algorithm that constructs a (Q, Õ(1), Õ(1))-
hop-bounded oblivious routing in Õ(Q) rounds.

164

Bibliography

[1] Ittai Abraham and Cyril Gavoille. Object location using path separators. In Proceedings
of the 25th ACM Symposium on Principles of Distributed Computing (PODC), pages 188–
197. ACM, 2006. 4.1, 4.1.2

[2] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops,
robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM
Journal on Computing (SICOMP), 48(3):1120–1145, 2019. 5.2.3

[3] Micah Adler, Nicholas JA Harvey, Kamal Jain, Robert Kleinberg, and April Rasala
Lehman. On the capacity of information networks. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 241–250. Society for Indus-
trial and Applied Mathematics, 2006. 5.1, 5.1.4, 5.5, 5.6, 2, 8.2.2

[4] Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geometric al-
gorithms. Journal of the ACM (JACM), 64(1):1–38, 2017. 6.5

[5] Peyman Afshani, Casper Benjamin Freksen, Lior Kamma, and Kasper Green Larsen.
Lower bounds for multiplication via network coding. In Proceedings of the 46th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), pages 10:1–
10:12, 2019. 5.1, 5.1.4, 8.2.2

[6] Amit Agarwal and Moses Charikar. On the advantage of network coding for improving
network throughput. In Information Theory Workshop, pages 247–249, 2004. 5.1.4

[7] Rudolf Ahlswede, Ning Cai, S-YR Li, and Raymond W Yeung. Network information
flow. IEEE Transactions on Information Theory, 46(4):1204–1216, 2000. 5.1, 5.1.4

[8] Ali Al-Bashabsheh and Abbas Yongaçoglu. On the k-pairs problem. In Proceedings of
the IEEE International Symposium on Information Theory (ISIT), pages 1828–1832, 2008.
5.1, 5.1.4

[9] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009. 5.1.3, 5.2, 5.2.3, 5.4

[10] Friedhelm Meyer auf der Heide and Berthold Vöcking. Shortest-path routing in arbitrary
networks. Journal of Algorithms, 31(1):105–131, 1999. 5.1

[11] Yonatan Aumann and Yuval Rabani. An o (log k) approximate min-cut max-flow theorem
and approximation algorithm. SIAM Journal on Computing (SICOMP), 27(1):291–301,
1998. 5.1, 5.1.4

[12] Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,

165

counting, leader election, and related problems. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 230–240, 1987. 1.1.1, 6.5

[13] Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. Journal of the ACM (JACM), 37
(2):238–256, 1990. 6.5

[14] Dimitris Bertsimas and David Gamarnik. Asymptotically optimal algorithms for job shop
scheduling and packet routing. Journal of Algorithms, 33(2):296–318, 1999. 5.1, 5.1.4

[15] Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. Lexicographic products and the
power of non-linear network coding. In Proceedings of the 52nd Symposium on Founda-
tions of Computer Science (FOCS), pages 609–618, 2011. 5.1.3

[16] Hans L Bodlaender. Nc-algorithms for graphs with small treewidth. In International Work-
shop on Graph-Theoretic Concepts in Computer Science, pages 1–10. Springer, 1988. 4.3

[17] Hans L Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. SIAM Journal on Computing (SICOMP), 27(6):1725–1746, 1998. 3.4

[18] Mark Braverman, Sumegha Garg, and Ariel Schvartzman. Coding in undirected graphs is
either very helpful or not helpful at all. In Proceedings of the 8th Innovations in Theoreti-
cal Computer Science Conference (ITCS), pages 18:1–18:18, 2017. 5.1.3, 5.3, 5.3.4, 5.4,
5.5, 5.6

[19] Costas Busch, Malik Magdon-Ismail, Marios Mavronicolas, and Paul Spirakis. Direct
routing: Algorithms and complexity. In Proceedings of the 12th Conference on Com-
putability in Europe (CiE), pages 134–145, 2004. 5.1

[20] Costas Busch, Malik Magdon-Ismail, and Jing Xi. Oblivious routing on geometric net-
works. In Proceedings of the 17th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 316–324, 2005. 3, 7.1

[21] Costas Busch, Malik Magdon-Ismail, and Jing Xi. Optimal oblivious path selection on
the mesh. IEEE Transactions on Computers, 57(5):660–671, 2008. 3, 7.1

[22] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. In Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 183–192, 2005. 5.1.4

[23] Chandra Chekuri, Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair.
Embedding k-outerplanar graphs into l1. SIAM Journal on Discrete Mathematics, 20(1):
119–136, 2006. 5.1.4

[24] Chandra Chekuri, F Bruce Shepherd, and Christophe Weibel. Flow-cut gaps for integer
and fractional multiflows. Journal of Combinatorial Theory, Series B, 103(2):248–273,
2013. 5.1.4

[25] Chandra Chekuri, Sudeep Kamath, Sreeram Kannan, and Pramod Viswanath. Delay-
constrained unicast and the triangle-cast problem. In 2015 IEEE International Symposium
on Information Theory (ISIT), pages 804–808. IEEE, 2015. 5.1, 5.1.4, 5.6

[26] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukr-
ishnan. One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB

166

Endowment, 8(12):1804–1815, 2015. 1, 6.1

[27] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing (SICOMP), 41(5):1235–1265,
2012. (document), 1, 1.1.1, 1.1.2, 1.2.2, 2.1.1, 2.1.3, 5.1, 5.1.3, 5.1.3, 5.2, 5.1.3, 6.1, 6.1.1,
6.1.1, 6.1.1, 4, 6.1.1, 6.2, 6.2.1, 6.2.1, 6.3.1, 6.3.1, 6.3.4, 6.5, 6.6

[28] Supratim Deb, Muriel Médard, and Clifford Choute. Algebraic gossip: A network coding
approach to optimal multiple rumor mongering. IEEE/ACM Transactions on Networking
(TON), 14(SI):2486–2507, 2006. 5.1, 5.1.4

[29] Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M Thi-
likos. Subexponential parameterized algorithms on bounded-genus graphs and h-minor-
free graphs. Journal of the ACM (JACM), 52(6):866–893, 2005. 4.1.2

[30] Erik D Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorith-
mic graph minor theory: Decomposition, approximation, and coloring. In Proceedings of
the 46th Symposium on Foundations of Computer Science (FOCS), pages 637–646. IEEE,
2005. 4.1.2

[31] Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P Sanders, Bruce Reed, Paul Sey-
mour, and Dirk Vertigan. Excluding any graph as a minor allows a low tree-width 2-
coloring. Journal of Combinatorial Theory, Series B, 91(1):25–41, 2004. 4.1.2

[32] Vida Dujmović, Pat Morin, and David R Wood. Layered separators in minor-closed graph
classes with applications. Journal of Combinatorial Theory, Series B, 2017. 4.4.1

[33] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzantine
environment i: crash failures. In Theoretical Aspects of Reasoning about Knowledge,
pages 149–169, 1986. 6.5

[34] Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree.
Journal of Computer and System Sciences, 72(8):1282–1308, 2006. 6.1, 6.2, 6.5

[35] Michael Elkin. An unconditional lower bound on the time-approximation trade-off for the
distributed minimum spanning tree problem. SIAM Journal on Computing (SICOMP), 36
(2):433–456, 2006. (document), 5.1.3, 5.1.3, 5.2, 5.1.3, 6.3.1, 6.5

[36] Michael Elkin. Distributed exact shortest paths in sublinear time. In Proceedings of the
49th Annual ACM Symposium on Theory of Computing (STOC), pages 757–770, 2017. 1,
6.1

[37] Michael Elkin. A simple deterministic distributed mst algorithm, with near-optimal time
and message complexities. 2017. 1, 6.1, 6.5

[38] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000. 4.4.1

[39] David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 599–
608. Society for Industrial and Applied Mathematics, 2003. 3.6.5, 4.6.1

[40] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for mid-

167

dleware. Journal of computer and system sciences, 66(4):614–656, 2003. 6.5

[41] Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi.
Lower bounds for external memory integer sorting via network coding. In Proceedings
of the 51st Annual ACM Symposium on Theory of Computing (STOC), page To Appear,
2019. 5.1, 5.1.4, 8.2.2

[42] Paola Flocchini and Flaminia L Luccio. Routing in series parallel networks. Theory of
Computing Systems, 36(2):137–157, 2003. 4.1

[43] Christina Fragouli, Jörg Widmer, and Jean-Yves Le Boudec. Efficient broadcasting using
network coding. IEEE/ACM Transactions on Networking (TON), 16(2):450–463, 2008.
5.1, 5.1.4

[44] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute
their diameter in sublinear time. In Proceedings of the 23rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1150–1162, 2012. 1, 6.1

[45] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages and
Systems, 5(1):66–77, 1983. 1.1.1, 6.2, 6.5

[46] Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing (SICOMP), 27(1):302–
316, 1998. 1.1.2, 6.1, 6.1.1, 6.2, 6.5, 8.1

[47] Mohsen Ghaffari. Near-optimal distributed approximation of minimum-weight connected
dominating set. In Proceedings of the 41nd International Colloquium on Automata, Lan-
guages and Programming (ICALP), pages 483–494, 2014. 6.2

[48] Mohsen Ghaffari. Distributed broadcast revisited: Towards universal optimality. In Pro-
ceedings of the 42nd International Colloquium on Automata, Languages and Program-
ming (ICALP), pages 638–649. Springer, 2015. 1.1.2, 2, 3, 6.5

[49] Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks II:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 202–219, 2016. (document),
1.2.2, 1.2.2, 1.2.5, 1.3, 2.1.1, 2.1.2, 2.1.2, 2.1.3, 2.1.3, 2.1.3, 2.2.2, 2.2.4, 2.2.2, 2.2.3,
2.2.4, 2.3.3, 3.1, 3.2, 3.6.2, 5.2, 6.1, 6.2, 6.5

[50] Mohsen Ghaffari and Bernhard Haeupler. Low-congestion shortcuts for graphs excluding
dense minors. 2020. 2.1.3, 1, 4

[51] Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In Proceed-
ings of the 27th International Symposium on Distributed Computing (DISC), pages 1–15,
2013. 1, 6.2

[52] Mohsen Ghaffari and Jason Li. New Distributed Algorithms in Almost Mixing Time
via Transformations from Parallel Algorithms. In Proceedings of the 32nd International
Symposium on Distributed Computing (DISC), pages 31:1–31:16, 2018. 2.1.3, 6.1, 6.5

[53] Mohsen Ghaffari and Merav Parter. MST in log-star rounds of congested clique. In Pro-
ceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC),

168

pages 19–28, 2016. 6.5

[54] Mohsen Ghaffari and Merav Parter. Near-Optimal Distributed DFS in Planar Graphs.
In Proceedings of the 31st International Symposium on Distributed Computing (DISC),
pages 21:1–21:16, 2017. 6.1

[55] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. In Proceedings of the 34th ACM Sym-
posium on Principles of Distributed Computing (PODC), pages 81–90. ACM, 2015. 1,
6.1, 6.2

[56] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed mst and routing in almost
mixing time. pages 131–140, 2017. 6.1, 6.5

[57] Ashish Goel and Sanjeev Khanna. On the network coding advantage for wireless multicast
in euclidean space. In Proceedings of the 7th international conference on Information
processing in sensor networks, pages 64–69. IEEE Computer Society, 2008. 5.1, 5.1.4

[58] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin,
and Ion Stoica. Graphx: Graph processing in a distributed dataflow framework. In Pro-
ceedings of the 11th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 599–613, 2014. 1, 6.1

[59] Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Com-
binatorica, 23(4):613–632, 2003. 4.1.2

[60] Hermann Gruber. On balanced separators, treewidth, and cycle rank. arXiv preprint
arXiv:1012.1344, 2010. 3.7

[61] Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Proceedings of the 44th Symposium on Foundations of
Computer Science (FOCS), page 534, 2003. 5.2.3, 5.2.3, 5.2.8, 5.2.3, 7.3, 7.3, 7.3.3

[62] Bernhard Haeupler. Simple, fast and deterministic gossip and rumor spreading. Journal
of the ACM (JACM), 62(6):47, 2015. 5.1, 5.1.4

[63] Bernhard Haeupler. Analyzing network coding (gossip) made easy. Journal of the ACM
(JACM), 63(3):26, 2016. 5.1, 5.1.4

[64] Bernhard Haeupler and Jason Li. Faster Distributed Shortest Path Approximations via
Shortcuts. In Proceedings of the 32nd International Symposium on Distributed Computing
(DISC), pages 33:1–33:14, 2018. 1.2.2, 2.1.3, 2.1.3, 6.1, 6.1.1, 6.2

[65] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Low-congestion shortcuts without
embedding. In Proceedings of the 35th ACM Symposium on Principles of Distributed
Computing (PODC), pages 451–460, 2016. 2, 2.1.3, 3.6.2, 6.1, 6.1.1, 6.1.1, 6.5

[66] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. Near-optimal low-congestion short-
cuts on bounded parameter graphs. In Proceedings of the 30th International Symposium
on Distributed Computing (DISC), pages 158–172, 2016. 3, 4.4.1, 4.4.5, 4.5, 6.1, 6.5

[67] Bernhard Haeupler, D Ellis Hershkowitz, and David Wajc. Round-and message-optimal
distributed graph algorithms. In Proceedings of the 37th ACM Symposium on Principles
of Distributed Computing (PODC), pages 119–128, 2018. 2.1.3, 2.1.3, 2.1.4, 2.1.3, 6.1,

169

6.5, 7.7, 8.2.1

[68] Bernhard Haeupler, Jason Li, and Goran Zuzic. Minor excluded network families admit
fast distributed algorithms. In Proceedings of the 37th ACM Symposium on Principles of
Distributed Computing (PODC), pages 465–474. ACM, 2018. 1, 4, 6.1, 6.5

[69] Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion
times of multiple unicasts. arXiv preprint arXiv:1905.02805, 2019. 5, 6.1.1, 6.1.1, 6.2.2,
6.2.2, 6.2.4, 6.4.1, 6.4.4, 6.6, 6.6, 6.2.4, 6.6

[70] Bernhard Haeupler, David Wajc, and Goran Zuzic. Shortcuts are universal lower bounds
for distributed optimization. in submission, 2020. 6

[71] Eran Halperin, Guy Kortsarz, Robert Krauthgamer, Aravind Srinivasan, and Nan Wang.
Integrality ratio for group steiner trees and directed steiner trees. SIAM Journal on Com-
puting (SICOMP), 36(5):1494–1511, 2007. 5.1.4

[72] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asynchronous par-
allel execution in pregel-like graph processing systems. Proceedings of the VLDB Endow-
ment, 8(9):950–961, 2015. 1, 6.1

[73] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ances-
tors. SIAM Journal on Computing (SICOMP), 13(2):338–355, 1984. 4.3

[74] David Harvey and Joris Van Der Hoeven. Polynomial multiplication over finite fields in
time O(n log n). HAL preprint hal-02070816, 2019. 5.1.4, 8.2.2

[75] Nicholas J Harvey, Robert D Kleinberg, and April Rasala Lehman. Comparing network
coding with multicommodity flow for the k-pairs communication problem. Technical
report, MIT, CSAIL, 2004. 5.1, 5.1.4, 8.2.2

[76] Nicholas JA Harvey, Robert Kleinberg, and April Rasala Lehman. On the capacity of in-
formation networks. IEEE/ACM Transactions on Networking (TON), 14(SI):2345–2364,
2006. 5.1, 5.1.4

[77] James W Hegeman, Gopal Pandurangan, Sriram V Pemmaraju, Vivek B Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connec-
tivity and MST. In Proceedings of the 34th ACM Symposium on Principles of Distributed
Computing (PODC), pages 91–100, 2015. 6.5

[78] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. An almost-tight dis-
tributed algorithm for computing single-source shortest paths. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), 2016. 1, 6.1

[79] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Effros, Jun Shi, and
Ben Leong. A random linear network coding approach to multicast. IEEE Transactions
on Information Theory, 52(10):4413–4430, 2006. 5.1.4

[80] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In Proceedings of the 31st ACM Symposium on Principles of Distributed
Computing (PODC), pages 355–364, 2012. 1, 6.1

[81] T Chiang Hu. Multi-commodity network flows. Operations research, 11(3):344–360,
1963. 5.1.2, 5.1.4

170

[82] Chien-Chung Huang, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed ex-
act weighted all-pairs shortest paths in õ (nˆ{5/4}) rounds. In Proceedings of the 58th
Symposium on Foundations of Computer Science (FOCS), pages 168–179. IEEE, 2017. 1,
6.1

[83] Jiaqing Huang, Xunrui Yin, Xiaoxi Zhang, Xu Du, and Zongpeng Li. On space infor-
mation flow: Single multicast. In 2013 International Symposium on Network Coding
(NetCod), pages 1–6. IEEE, 2013. 5.1.4

[84] Taisuke Izumi and Roger Wattenhofer. Time lower bounds for distributed distance oracles.
In International Conference on Principles of Distributed Systems (OPODIS), pages 60–
75, 2014. 1, 6.1

[85] Kamal Jain, Vijay V Vazirani, Raymond Yeung, and Gideon Yuval. On the capacity of
multiple unicast sessions in undirected graphs. IEEE/ACM Transactions on Networking
(TON), 14(SI):2805–2809, 2006. 5.1, 5.1.4

[86] Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) rounds of congested clique. In
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2620–2632, 2018. 6.5

[87] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and Jon
Crowcroft. Xors in the air: Practical wireless network coding. In ACM SIGCOMM com-
puter communication review, volume 36, pages 243–254. ACM, 2006. 5.1

[88] Ken-ichi Kawarabayashi and Paul Wollan. A simpler algorithm and shorter proof for
the graph minor decomposition. In Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing (STOC), pages 451–458. ACM, 2011. 4.1, 4.1.2

[89] Maleq Khan and Gopal Pandurangan. A fast distributed approximation algorithm for min-
imum spanning trees. In Proceedings of the 20th International Symposium on Distributed
Computing (DISC), pages 355–369, 2006. 1, 6.1

[90] Naoki Kitamura, Hirotaka Kitagawa, Yota Otachi, and Taisuke Izumi. Low-congestion
shortcut and graph parameters. In Proceedings of the 33rd International Symposium on
Distributed Computing (DISC), pages 25:1–25:17, 2019. 6.1, 6.5

[91] Philip Klein, Serge A Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (STOC), pages 682–690, 1993. 5.1.4

[92] Ronald Koch, Britta Peis, Martin Skutella, and Andreas Wiese. Real-time message rout-
ing and scheduling. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 217–230. Springer, 2009. 5.1

[93] Gerhard Kramer and Serap A Savari. Edge-cut bounds on network coding rates. Journal
of Network and Systems Management, 14(1):49, 2006. 5.1, 5.1.4

[94] Robert Krauthgamer, James R Lee, and Havana Rika. Flow-cut gaps and face covers in
planar graphs. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 525–534, 2019. 5.1.4

[95] Shay Kutten and David Peleg. Fast distributed construction of k-dominating sets and

171

applications. In Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing (PODC), pages 238–251, 1995. 1.1.1, 2.1.1

[96] Shay Kutten and David Peleg. Fast distributed construction of smallk-dominating sets and
applications. Journal of Algorithms, 28(1):40–66, 1998. 6.1, 6.2, 6.5

[97] Michael Langberg and Muriel Médard. On the multiple unicast network coding, conjec-
ture. In 47th Annual Allerton Conference on Communication, Control, and Computing,
pages 222–227, 2009. 5.1, 5.1.4

[98] James R Lee and Anastasios Sidiropoulos. Genus and the geometry of the cut
graph:[extended abstract]. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 193–201, 2010. 5.1.4, 5.2.3

[99] Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing and job-
shop scheduling in O(congestion+ dilation) steps. Combinatorica, 14(2):167–186, 1994.
1.2.2, 5.1, 5.1.4, 5.2, 5.7, 5.7, 6.1.1, 6.2, 6.2.2, 6.2.5

[100] Tom Leighton, Bruce Maggs, and Andrea W Richa. Fast algorithms for finding o (con-
gestion+ dilation) packet routing schedules. Combinatorica, 19(3):375–401, 1999. 5.1,
5.1.4, 7.6

[101] Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and applica-
tions. In Proceedings of the 34th ACM Symposium on Principles of Distributed Computing
(PODC), pages 153–162, 2015. 1, 6.1

[102] Christoph Lenzen and David Peleg. Efficient distributed source detection with limited
bandwidth. In Proceedings of the 32nd ACM Symposium on Principles of Distributed
Computing (PODC), pages 375–382, 2013. 1, 6.1

[103] Zongpeng Li and Baochun Li. Network coding: The case of multiple unicast sessions.
In Proceedings of the 40th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), volume 16, page 8, 2004. 5.1, 5.1.4, 8.2.2

[104] Zongpeng Li and Baochun Li. Network coding in undirected networks. In Conference on
Information Systems and Sciences (CISS), 2004. 5.1.4

[105] Zongpeng Li, Baochun Li, and Lap Chi Lau. A constant bound on throughput improve-
ment of multicast network coding in undirected networks. IEEE Transactions on Infor-
mation Theory, 55(3):1016–1026, 2009. 5.1.4

[106] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215–245, 1995. 5.1, 5.1.4

[107] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in
O(log log n) communication rounds. SIAM Journal on Computing (SICOMP), 35(1):120–
131, 2005. 6.5

[108] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant diameter
graphs. Distributed Computing, 18(6):453–460, 2006. 6.5

[109] László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43
(1):75–86, 2006. 4.1.3, 4.1.7, 4.1.3

172

[110] Shachar Lovett. Linear codes cannot approximate the network capacity within any con-
stant factor. In Electronic Colloquium on Computational Complexity (ECCC), volume 21,
page 141, 2014. 5.1.3

[111] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data, pages 135–146, 2010. 1, 6.1

[112] Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the 25th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 196–203, 2013. 7.7

[113] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pages 565–573, 2014. 1, 6.1

[114] Danupon Nanongkai and Hsin-Hao Su. Almost-tight distributed minimum cut algorithms.
In Proceedings of the 28th International Symposium on Distributed Computing (DISC),
pages 439–453, 2014. 1, 6.1, 6.2

[115] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar borůvka on minimum
spanning tree problem translation of both the 1926 papers, comments, history. Discrete
Mathematics, 233(1):3–36, 2001. 1.2.2, 2.2.4

[116] Haruko Okamura and Paul D Seymour. Multicommodity flows in planar graphs. Journal
of Combinatorial Theory, Series B, 31(1):75–81, 1981. 5.1.4

[117] Rafail Ostrovsky and Yuval Rabani. Universal O(congestion+dilation+ log1+ε n) local
control packet switching algorithms. In Proceedings of the 29th Annual ACM Symposium
on Theory of Computing (STOC), volume 29, pages 644–653, 1997. 5.1, 5.1.4

[118] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time- and message-
optimal distributed algorithm for minimum spanning trees. In Proceedings of the 49th
Annual ACM Symposium on Theory of Computing (STOC), pages 743–756, 2017. 6.1, 6.5

[119] Britta Peis and Andreas Wiese. Universal packet routing with arbitrary bandwidths and
transit times. In Proceedings of the 13th Conference on Integer Programming and Com-
binatorial Optimization (IPCO), pages 362–375, 2011. 5.1, 5.1.4

[120] Britta Peis, Martin Skutella, and Andreas Wiese. Packet routing: Complexity and algo-
rithms. In Proceedings of the 7th Workshop on Approximation and Online Algorithms
(WAOA), pages 217–228, 2009. 5.1

[121] David Peleg. Distributed computing, volume 5. 2000. 1, 1.2.1, 2.2.1, 1

[122] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity
of distributed minimum-weight spanning tree construction. SIAM Journal on Computing
(SICOMP), 30(5):1427–1442, May 2000. (document), 1, 1.1.1, 5.1, 5.1.3, 5.1.3, 5.2,
5.1.3, 6.1, 6.1.1, 6.3.1, 6.5

[123] Serge Plotkin and Éva Tardos. Improved bounds on the max-flow min-cut ratio for multi-
commodity flows. Combinatorica, 15(3):425–434, 1995. 5.1.2

173

[124] Yuval Rabani and Éva Tardos. Distributed packet switching in arbitrary networks. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), vol-
ume 96, pages 366–375, 1996. 5.1, 5.1.4

[125] Harald Räcke. Data Management and Routing in General Networks. PhD thesis, Univer-
sity of Paderborn, 2003. 3, 7.1, 8.1

[126] Harald Räcke. Survey on oblivious routing strategies. In 5th, pages 419–429. Springer,
2009. 3, 7.1

[127] Satish Rao. Small distortion and volume preserving embeddings for planar and euclidean
metrics. In Proceedings of the 15th Symposium on Computational geometry (SoCG),
pages 300–306, 1999. 5.1.4

[128] Alexander A Razborov. On the distributional complexity of disjointness. In Proceedings of
the 17th International Colloquium on Automata, Languages and Programming (ICALP),
pages 249–253. Springer, 1990. 6.2.1, 6.6

[129] Neil Robertson and Paul D Seymour. Graph minors. v. excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41(1):92–114, 1986. 4.1, 4.1.2

[130] Neil Robertson and Paul D Seymour. Graph minors. xvi. excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003. 4.1, 4.1.2

[131] Thomas Rothvoß. A simpler proof for O(Congestion + Dilation) packet routing. In
Proceedings of the 16th Conference on Integer Programming and Combinatorial Opti-
mization (IPCO), pages 336–348, 2013. 5.1, 5.1.4

[132] Christian Scheideler. Universal routing strategies for interconnection networks, volume
1390. Springer, 2006. 5.1, 5.1.4

[133] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983. 6.3.3, 6.7.2

[134] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Jour-
nal of the ACM (JACM), 32(3):652–686, 1985. 6.5

[135] Aravind Srinivasan and Chung-Piaw Teo. A constant-factor approximation algorithm
for packet routing and balancing local vs. global criteria. SIAM Journal on Computing
(SICOMP), 30(6):2051–2068, 2001. 5.1, 5.1.4, 5.2, 5.7, 5.7.1

[136] Gregory Valiant and Paul Valiant. Instance optimal learning of discrete distributions. In
Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC), pages
142–155, 2016. 6.5

[137] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. SIAM Journal on Computing (SICOMP), 46(1):429–455, 2017. 6.5

[138] Chih-Chun Wang and Minghua Chen. Sending perishable information: Coding improves
delay-constrained throughput even for single unicast. IEEE Transactions on Information
Theory, 63(1):252–279, 2016. 5.1, 5.1.4, 5.6

[139] Yunnan Wu, Philip A Chou, and Sun-Yuan Kung. Minimum-energy multicast in mobile
ad hoc networks using network coding. IEEE Transactions on communications, 53(11):

174

1906–1918, 2005. 5.1, 5.1.4

[140] Tang Xiahou, Zongpeng Li, Chuan Wu, and Jiaqing Huang. A geometric perspective
to multiple-unicast network coding. IEEE Transactions on Information Theory, 60(5):
2884–2895, 2014. 5.1, 5.1.4

[141] Xunrui Yin, Zongpeng Li, Yaduo Liu, and Xin Wang. A reduction approach to the
multiple-unicast conjecture in network coding. IEEE Transactions on Information Theory,
64(6):4530–4539, 2018. 5.1, 5.1.4

[142] Leonid Zosin and Samir Khuller. On directed steiner trees. In Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 59–63, 2002. 5.1.4

175

	1 Introduction
	1.1 Overview of the Thesis
	1.1.1 Beyond worst-case networks
	1.1.2 Universal optimality

	1.2 Technical Preliminaries
	1.2.1 The CONGEST model
	1.2.2 Low-congestion shortcut framework

	1.3 Structure of the Thesis

	2 The Tree-Restricted Shortcut Framework
	2.1 Introduction
	2.1.1 Background and motivation
	2.1.2 Our contribution
	2.1.3 Subsequent work: a short survey

	2.2 Tree-Restricted Shortcuts
	2.2.1 Definition
	2.2.2 Shortcuts on genus-bounded and planar graphs
	2.2.3 Deterministic routing on tree-restricted shortcuts
	2.2.4 Main result and applications

	2.3 Constructing Tree Restricted Shortcuts
	2.3.1 Overview of the algorithmic framework
	2.3.2 Warm-up: an O(Dc)-round version of the core subroutine
	2.3.3 A faster O(Dlogn + c)-round version of the core subroutine
	2.3.4 Verification subroutine

	3 Shortcuts for Treewidth-Bounded and Genus-Bounded Graphs
	3.1 Introduction
	3.2 Technical Results
	3.3 Pathwidth Bounded Graphs
	3.4 Treewidth Bounded Graphs
	3.5 Lower Bound for Pathwidth Bounded Graphs
	3.6 Genus-Bounded Graph
	3.6.1 Graph Extension
	3.6.2 Optimal Shortcut for Genus-g Graphs
	3.6.3 Lower Bounds for Genus Bounded Graphs

	3.7 Chapter Appendix: Graphs with Small Separators
	3.8 Chapter Appendix: Deferred Proofs

	4 Shortcuts for Minor-Free Graphs
	4.1 Introduction
	4.1.1 Outline of the Proof
	4.1.2 Literature note
	4.1.3 Preliminaries

	4.2 Shortcuts in Excluded Minor Graphs
	4.2.1 Two Parts of the Proof

	4.3 Shortcuts in Clique Sum Graphs
	4.4 Shortcuts in Almost Embeddable Graphs
	4.4.1 Warm-up: Non-Apex Graphs
	4.4.2 Apex Graphs
	4.4.3 Cell Partitions, -Cell-Assignment and s-Combinatorial Gate
	4.4.4 Graphs with s-Combinatorial Gate Property
	4.4.5 Wrapping Up: From -Cell-Assignment to Good Shortcuts

	4.5 Conclusion and Open Problems
	4.6 Chapter Appendix: Combinatorial Gate in Genus+Vortex graphs
	4.6.1 Planarization of Genus-g Graphs
	4.6.2 Combinatorial Gate in Genus-g graphs
	4.6.3 Finalizing the Proof

	5 Network Coding Gaps for Completion-time of Multiple Unicasts
	5.1 Introduction
	5.1.1 Preliminaries
	5.1.2 Our Contributions
	5.1.3 Techniques
	5.1.4 Related Work

	5.2 Upper Bounding the Coding Gap
	5.2.1 Moving Cuts: Characterizing Makespan
	5.2.2 From Dual Solution to Moving Cut
	5.2.3 From Pairwise to All-Pairs Distances

	5.3 Chapter Appendix: Polylogarithmic Coding Gap Instances
	5.3.1 Gap Instances and Their Parameters
	5.3.2 Graph Product of Two Gap Instances
	5.3.3 Iterating the Graph Product
	5.3.4 Lower Bounding the Coding Gap

	5.4 Coding Gaps for Other Functions of Completion Times
	5.5 Chapter Appendix: Completion Time vs. Throughput
	5.6 Chapter Appendix: Network Coding Model for Completion Time
	5.7 Chapter Appendix: Deferred Proofs of sec:upper-bounds
	5.8 Chapter Appendix: Deferred Proofs of sec:lower-bounds
	5.8.1 Upper Bounding mi,r

	6 Shortcuts are a Universal Lower Bound for Distributed Optimization
	6.1 Introduction
	6.1.1 New Results and Contributions

	6.2 Preliminaries
	6.2.1 Moving cuts
	6.2.2 Relation of moving cuts to communication

	6.3 Our Lower Bound
	6.3.1 Lower bound witnesses
	6.3.2 Disjointness gadgets in any graph
	6.3.3 Relating MovingCut(G) to ShortcutQuality(G)
	6.3.4 Putting it all together

	6.4 Constructing Disjointness Gadgets
	6.4.1 Technical overview
	6.4.2 Constructing crowns
	6.4.3 Converting crowns into relaxed disjointness gadget
	6.4.4 Finalizing the disjointness gadget

	6.5 Chapter Appendix: Further Related Work
	6.6 Chapter Appendix: Deferred Proofs of sec:prelims-reductions
	6.7 Chapter Appendix: Deferred Proofs of sec:lower-bound
	6.7.1 -disjointness gadgets as lower bounds certificates
	6.7.2 Relating shortcuts for pairs and for parts

	6.8 Chapter Appendix: Deferred proofs of sec:constructing-disjointness

	7 Near-Optimal Distributed Known-Topology Shortcut Construction
	7.1 Introduction
	7.1.1 Overview of results

	7.2 Definitions and notations
	7.3 Decomposition Lemma
	7.4 Hop-Bounded HSTs
	7.4.1 Hop-bounded HST construction

	7.5 Hop-bounded oblivious routings
	7.6 Routing with Noise
	7.7 Distributed and Oblivious Shortcut Construction

	8 Conclusion and Open Questions
	8.1 Summary
	8.2 Open Problems and Future Work
	8.2.1 The shortcut framework
	8.2.2 Coding gaps for completion-time
	8.2.3 Universal optimality

	Bibliography

