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Abstract
Multicore processors are becoming increasingly prevalent, blurring the lines be-

tween traditional parallel programs, which use cooperative threading to reduce ex-
ecution time, and interactive programs which use competitive threading to increase
responsiveness. Many applications, from games to database systems, can benefit
from a combination of the cooperative and competitive threading models. Unfortu-
nately, languages and tools such as cost models designed for cooperatively threaded
programs do not extend easily to features of competitive programs, such as thread
priorities.

In this thesis, we develop a model that extends the cooperative paradigm to ac-
count for features of competitively threaded programs. The contributions of this
model span several levels of abstraction. First, we include a cost model that extends
existing models of cooperative threading in order to allow programmers to reason
about the parallel running time and the responsiveness of interactive parallel appli-
cations. Second, we propose a language that neatly combines abstractions for both
forms of threading, and enables reasoning about efficiency and responsiveness at the
level of the source code. Third, we develop a scheduling algorithm that efficiently
handles threads with both responsiveness and throughput requirements. Finally, we
implement the language as part of a compiler for Standard ML, and evaluate it on a
benchmark suite including a number of realistic interactive parallel applications.



vi



Acknowledgments
My graduate school career and this thesis would certainly not be what they are if

it weren’t for my advisor, Umut Acar, who took an excited first-year student with a
crazy idea and helped him navigate through initial rejections, several course changes
and eventually to a successful thesis project. Thanks so much for all your time and
energy over the years!

Throughout grad school, I also had the privilege of working closely with Bob
Harper and Guy Blelloch, whose expertise was also enormously helpful in shaping
my research and my career. Thank you both for your help and advice. Finally, thank
you to the remaining members of my thesis committee, Mor Harchol-Balter, John
Reppy, and Vijay Saraswat, for their invaluable input on this document.

The research that makes up this thesis has benefited greatly from many interac-
tions I’ve had with, among others I’m probably forgetting, Frank Pfenning, Kristy
Gardner, Ziv Scully, Danny Zhu, Noam Brown, Ram Raghunathan, Sam Westrick,
and Tom Murphy VII.

One of my first lessons at CMU was that, in grad school, one learns at least as
much from one’s peers as from professors. For that reason, I must also thank all of
the Principles of Programming students, from whom I’ve learned so much.

Some of the most formative experiences I’ve had in developing my love of pro-
gramming languages and parallelism have come from being able to share this love
with others. Thank you to Bob Harper for everything that I learned TAing 15-
814, and to Umut Acar and Danny Sleator for introducing me to parallel algorithms
through TAing 15-210. Teaching 15-150 in the summer of 2018 was an exhilarating
and incredibly rewarding experience I’ll never forget. Thanks to Frank Pfenning for
convincing me to do it, and to Jacob Neumann and the rest of the TAs for making it
run so smoothly. Finally, thanks to all of the students in these classes for everything
I learned from you.

The grad school experience would have been much less enjoyable (though pos-
sibly slightly shorter) without all of the great friends I made along the way. Thanks
to everyone who was there through five SCS Musicals, six SIGBOVIKs (SIGs-
BOVIK?), and numerous ThursDz gatherings, lunches, and Avalon games.

Last but not least, a number of very important people helped support me through
this whole process. Hannah, I can’t say how grateful I am for you putting up with all
of the late nights and stress, and for the kind words and deeds throughout. All of it
has meant so much. And, of course, innumerable thanks to my family for everything
they’ve done to get me to this point. I quite literally couldn’t have done it without
all of you.



viii



Contents

1 Introduction 1
1.1 Thread Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Related Work 11
2.1 Cooperative Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Cooperative languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Cost Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Toward Competitive Multithreading . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Competitive Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Scheduling for Responsiveness . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Modal and placed type systems . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Information flow control . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A DAG Model for Responsive Parallelism 27
3.1 The DAG Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Response time and well-formedness . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Bounding response time of prompt schedules . . . . . . . . . . . . . . . . . . . 35
3.4 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Bounding Response Time . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 A Language for Responsive Parallel Programs 43
4.1 The PriML language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 A Core Calculus for Prioritized Threads . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Static Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Elaboration of PriML to λ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 A Cost Model for Responsive Parallelism 79
5.1 Cost Semantics for λ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Response Time Bound for Operational Semantics . . . . . . . . . . . . . . . . . 87

ix



6 Scheduling Algorithm for Prioritized Threads 101
6.1 PPD Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Notation, Terminology and Data Structures . . . . . . . . . . . . . . . . . . . . 102
6.3 The Scheduling Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Intuitions for Cost Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Implementation 111
7.1 Back end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Threading library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 I/O Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Front end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Case Studies 127
8.1 Motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Real-time, human v. computer game . . . . . . . . . . . . . . . . . . . . . . . . 131

9 Evaluation 139
9.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2 Application benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.1 Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.2 Photo viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3 Orthogonal benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.3.1 Measuring Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3.2 Evaluating Speedups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.3.3 Measuring Promptness . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.3.4 Measuring Impact of the Front End . . . . . . . . . . . . . . . . . . . . 148

9.4 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.5 Comparison to Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.5.1 Comparison to Cilk and Go . . . . . . . . . . . . . . . . . . . . . . . . 151
9.5.2 Interaction with Dedicated Threads . . . . . . . . . . . . . . . . . . . . 152

10 Conclusion 157
10.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 161

x



List of Figures

1.1 An interactive parallel program in Parallel ML. . . . . . . . . . . . . . . . . . . 3
1.2 An interactive parallel program in C. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Two reduction strategies for the lambda calculus. . . . . . . . . . . . . . . . . . 12
2.2 The DAG corresponding to the simple Fibonacci program. . . . . . . . . . . . . 17

3.1 DAGs representing polling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The DAG corresponding to the simple Fibonacci program. . . . . . . . . . . . . 31
3.3 The DAG corresponding to the interactive Fibonacci program. . . . . . . . . . . 32
3.4 An example DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 An analogy for thinking about weak edges. . . . . . . . . . . . . . . . . . . . . 34

4.1 Code for multithreaded quicksort, which is priority polymorphic. . . . . . . . . . 46
4.2 Querying background threads with polling. . . . . . . . . . . . . . . . . . . . . 47
4.3 Choosing the first thread to complete with polling and cancellation. . . . . . . . . 48
4.4 Two implementations of the event loop, one of which displays a priority inversion. 49
4.5 An ill-typed attempt at chaining threads together. . . . . . . . . . . . . . . . . . 50
4.6 Syntax of λ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Expression typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Command typing rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.9 Constraint entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.10 Dynamic semantics for expressions. . . . . . . . . . . . . . . . . . . . . . . . . 59
4.11 Congruence rules for thread pools. . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.12 Typing rules for thread pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.13 Dynamic rules for commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.14 Dynamic rules for thread pools. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.15 Parallel step judgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.16 Rules for the polled judgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.17 Static semantics for actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.18 Formal syntax of PriML for elaboration. . . . . . . . . . . . . . . . . . . . . . . 72
4.19 Elaboration of expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.20 Elaboration of instructions and commands. . . . . . . . . . . . . . . . . . . . . . 74
4.21 Elaboration of declarations and programs. . . . . . . . . . . . . . . . . . . . . . 74

5.1 Cost semantics for expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



5.2 Cost semantics for commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Cost semantics for thread pools . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 The thread bank interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 The mailbox interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Scheduler loop pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Scheduler auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 The priority interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 The scheduler interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 Signatures for the threading library. . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 The BAG signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5 The thread implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6 The implementation of spawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7 The implementation of poll. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8 The implementation of sync. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.9 Optimized sync implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.10 User-level blocking I/O from non-blocking I/O. . . . . . . . . . . . . . . . . . . 125

8.1 Pseudocode for the main planning loop. . . . . . . . . . . . . . . . . . . . . . . 130
8.2 The motion planner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.3 Total time to reach the goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.4 The human v. computer game. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.5 The main loop of the game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1 Response time results for the photo viewer. . . . . . . . . . . . . . . . . . . . . 142
9.2 Normalized execution times for the low-priority computation. . . . . . . . . . . . 144
9.3 Response times for three-priority benchmarks. . . . . . . . . . . . . . . . . . . . 146
9.4 Speedup on computation-only benchmarks. . . . . . . . . . . . . . . . . . . . . 147
9.5 Speedup curves for Fibonacci-terminal on PriML and Parallel ML. . . . . . . . . 149
9.6 Self-speedup curves for Fibonacci-terminal on PPD and Go. . . . . . . . . . . . 152

xii



List of Tables

7.1 Translation to Standard ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.1 Mean response time (ms) for the web server. . . . . . . . . . . . . . . . . . . . . 141
9.2 Execution and response times for three-priority benchmarks. . . . . . . . . . . . 145
9.3 Parallel speedup of computation-only benchmarks. . . . . . . . . . . . . . . . . 146
9.4 Speedup and response time of two-priority, winner-take-all benchmarks. . . . . . 148
9.5 Comparison to Cilk and Go (Fibonacci-terminal benchmark). . . . . . . . . . . . 151
9.6 Fibonacci-terminal with PPD and a dedicated processor. . . . . . . . . . . . . . 154
9.7 Fibonacci-terminal with PPD and two “dedicated-worker” approaches. . . . . . . 154

xiii



xiv



Chapter 1

Introduction

Admit me Chorus to this history;
Who prologue-like your humble patience pray,
Gently to hear, kindly to judge, our play.

Henry V (Prologue.33–35)

The increasing proliferation of multicore processors has led to renewed interest in writing
parallel programs that can improve throughput by dividing up a computation among multiple
processors. This idea of exploiting parallelism to improve throughput, which is commonly called
cooperative threading, is hardly new; it has been the subject of a large body of work in both
academia and industry over the last several decades. The research arising from this problem
has led to numerous parallel languages such as Id [92], Sisal [46], Multilisp [60], Cilk [23],
NESL [14] and X10 [35], as well as parallel extensions to languages ranging from Java [68, 78]
to Haskell [32, 93] and ML [50, 99].

A common feature of all of the above languages and systems is that they allow the program-
mer to express at a high level where in the program opportunities for parallelism exist without
specifying in detail how the parallel computations should be mapped onto physical processors.
These details are left to the runtime system. In particular, many of these languages encourage
a style known as fine-grained parallelism in which the programmer expresses all or most of the
opportunities for parallelism, and the system decides dynamically how much of that parallelism
may be feasibly or profitably exploited given the available processors. As a result of this style,
fine-grained parallel programs may spawn millions of threads.

In addition to alleviating programmer burden, this high-level style of expressing parallelism
enables reasoning about the amount of parallelism available in a program or algorithm, and
therefore the speedups that could be achieved by running it in parallel, at an abstract level using
cost models (e.g., [15, 16, 113]). Furthermore, because the programmer has not specified how
the work of a program is to be scheduled on processors, the runtime system is free to schedule
the program in a way that maximizes throughput. Many languages and systems do so using
low-overhead, non-preemptive techniques such as work stealing [26, 60].

Despite all the advances that cooperative threading has brought, it suffers from a substan-
tial limitation: until now, most of the work on cooperative languages and systems has focused
on purely computational workloads. This is largely a reflection of the domains in which par-
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allel computing has typically been possible and/or necessary: large batch computations, such
as data processing or scientific applications, running on remote clusters. Over the last several
years, however, multicore has increasingly entered the mainstream, with multicore chips be-
coming the norm in consumer desktops, laptops, tablets, phones and even smart watches. As
hardware evolves, so does the scope of parallel applications, as consumer applications can now
be programmed to make use of multiple processors. This represents a significant opportunity to
increase the performance of software, but also presents a substantial challenge: consumer appli-
cations are generally interactive and not purely computational, making them incompatible with
the traditional techniques of cooperative threading.

Interactive programs have leveraged multithreading for decades, but for very different pur-
poses from cooperative threading. They frequently use threads to hide latency (if one thread is
performing a blocking operation like accepting user input or retrieving data from disk, another
thread may be scheduled in its place to perform useful work) or to more naturally structure appli-
cations that consist of many simultaneous processes (such as a GUI that listens for many events
while also performing work). We will refer to such uses of threads as competitive, in contrast
to cooperative threading. Because the goal of these uses of threads is generally not to increase
throughput, competitively threaded systems may be implemented by time sharing on a single
processor. In this case, threads may be assigned different priorities so that threads performing
essential user interaction can be scheduled more frequently to improve the responsiveness of the
program. It is in this sense that the threads are competing for the computational resources rather
than cooperating to perform a single large task. Although it is useful for interactive applica-
tions, competitive threading is generally not equipped to handle the scale of threads generated by
fine-grained parallel applications, nor does it enable the same kind of cost models.

Many applications perform user interaction as well as substantial parallelizable computation.
These applications could benefit significantly from a combination of the throughput improve-
ments and models that come from the cooperative threading model with the responsiveness that
comes from the competitive threading model. A particularly common paradigm is an application
in which many computational threads run in the background alongside one or more foreground
interaction threads. Some examples of this paradigm are:
• A database system must respond quickly to queries in the foreground while performing

heavily computational tasks such as indexing or compressing in the background. The
background computation may be highly parallelizable.

• A computer game takes input from the user through the mouse and keyboard (and possibly
from remote players over the network). To maintain a high-quality user experience, the
game must react quickly to user input. At the same time, it is computing the strategy for
an AI player in the background using a large, parallelizable, search algorithm.

• A robot path planner can be designed using a hierarchical structure, as suggested by [73],
with a slow planning algorithm running in the background to compute an overarching
long term plan (e.g., which hallways to use to move between two rooms in a building)
and a faster planning algorithm running responsively in the foreground to compute a more
immediate plan (e.g., navigating around obstacles and people in a room or hallway). Both
planning algorithms may be parallel.

To demonstrate the extent to which existing systems for cooperative and competitive thread-

2



1 fun fib n =
2 if n <= 1 then 1
3 else
4 let val (a, b) = fork (fn () => fib (n - 1),
5 fn () => fib (n - 2))
6 in
7 (a + b)
8 end
9

10 fun quest n =
11 if n <= 0 then []
12 else
13 let val _ = print "What is your name?"
14 val nm = inputLine ()
15 val _ = print "What is your quest?"
16 val qu = inputLine ()
17 in
18 (nm, qu)::(quest (n - 1))
19 end
20

21 fork (fn () => fib 42, fn () => quest 100)

Figure 1.1: An interactive parallel program in Parallel ML.

ing are not designed to handle such a combination of the two models, consider the simple exam-
ple of a program that computes the 42nd Fibonacci number while also interacting with the user in
a loop. This example is contrived, but the structure is an abstraction of the paradigm above, with
one interaction thread and many background computation threads. We could write this program
in a language like Parallel ML (using the construct fork to execute two functions in parallel),
as shown in Figure 1.1.

Because Parallel ML has no way of distinguishing the hundreds of millions (approximately
ϕ42 ≈ 600, 000, 000) of Fibonacci threads from the single interaction thread, the interaction
is likely to be starved and the program may become unresponsive. Furthermore, the calls
to inputLine () will block waiting for user input. Because Parallel ML threads run on
top of one system-level thread per processor, an entire processor will be blocked waiting for the
I/O to complete.

We would hardly fare better writing the application in a purely competitive system such as
C using POSIX threads (pthreads). C code for the program is in Figure 1.2. If run with a
small (less than approximately 20) argument to fib, this code remains quite responsive because
of the operating system’s preemptive thread scheduling. If we desired, we could even set the
main thread to a higher priority than the Fibonacci threads to ensure the responsiveness of the
interactive loop. Unfortunately, as written (with the argument 42), this program will not even
run. Because of the overhead associated with pthreads, the large number of threads spawned by

3



1 struct Fibargs { int n; int *ret; };
2

3 void *fib (void *arg) {
4 struct Fibargs *args = (struct Fibargs *)arg;
5 if (args->n <= 1) {
6 *(args->ret) = 1;
7 return NULL;
8 }
9 int a, b;

10 pthread_t t;
11 struct Fibargs aargs, bargs;
12 aargs.n = args->n - 1;
13 aargs.ret = &a;
14 bargs.n = args->n - 2;
15 bargs.ret = &b;
16 pthread_create(&t, NULL, fib, (void *)&aargs);
17 fib (&bargs);
18 pthread_join(t, NULL);
19 *(args->ret) = a + b;
20 return NULL;
21 }
22

23 void quest (int n) {
24 if (n <= 0) return;
25 char nm[64], qu[64];
26 printf("What is your name?\n");
27 fgets(nm, 64, stdin);
28 printf("What is your quest?\n");
29 fgets(qu, 64, stdin);
30 quest(n - 1);
31 }
32

33 int main () {
34 pthread_t t;
35 struct Fibargs args;
36 int res;
37 args.n = 42;
38 args.ret = &res;
39 pthread_create(&t, NULL, fib, (void *)&args);
40 quest(1);
41 pthread_join(t, NULL);
42 return 0;
43 }

Figure 1.2: An interactive parallel program in C.
4



the fib function quickly overwhelms the system’s resources.
In some ways, both of the above examples are strawmen. We do not expect Parallel ML or

pthreads to be able to handle these programs as this was not the sort of application either sys-
tem was designed to execute, but that is precisely the point. In an effort to make these systems
work for our purposes, we could investigate the code for the Parallel ML scheduler to better
understand which threads it executes when and tune the program to this understanding (e.g., the
scheduler will always execute the first thunk locally, so by switching the arguments to par, we
could improve responsiveness). We could also simply use a foreign function call to spawn an ad-
ditional pthread to handle interaction alongside the Parallel ML program. Conversely, we could
improve the C program by spawning a fixed number of threads and manually dividing the work
of the Fibonacci computation among them. In all of these cases, however, we would be creating
unnecessary work. Breaking or circumventing the abstraction barrier of a cooperative scheduler
defeats the purpose of working at the high level of abstraction that cooperative languages sup-
port, and manually parallelizing a C program duplicates work done automatically by cooperative
languages. It would be better to have a language that natively supports this type of program.

Just as the languages described above and their runtime thread schedulers do not have the
facilities to allow threads with responsiveness requirements, traditional cost models used for rea-
soning about parallel programs, do not permit reasoning about responsiveness. These models
traditionally represent programs as dependency graphs which represent both the amount of work
to be done and the amount of parallelism available. These two measures allow for tight bounds
on the amount of time required to schedule the program on several processors. However, at least
three important properties of these models prevent them from being directly applied to interac-
tive programs. First, the analyses on these models are inherently global: they can reason about
the total running time (or, inversely, throughput) of the program, but not the completion time
of individual threads, which is important for discussing responsiveness. Second, although these
results do not assume particular scheduling algorithms for determining when to run threads, they
do assume particular scheduling principles such as the greedy scheduling principle which simply
requires running as many available threads as possible. Thus far, all such scheduling principles
(except those in our prior work) treat threads uniformly and have no notion of prioritizing inter-
active threads. Third, the traditional cost models assume that a program spends all of its time
performing computational work, while interactive programs can also exhibit latency, time when
a thread is unable to do work but need not be assigned to a processor. Latency is evident in
operations such as I/O and system calls.

Many systems for cooperative threading have, over the years, realized the benefits of adding
support for competitive features. The origins of the idea of combining cooperative and com-
petitive threading go back at least as far as Manticore [51], which aimed to unite a number of
multithreading paradigms and scheduling policies into a single system. A number of systems,
such as Manticore, Concurrent Cilk [123], Go [56] and Sisal [46], have implemented strategies
for scheduling threads that may block for a variety of reasons, including I/O and system calls. In
addition, some schedulers for languages with fine-grained threads such as those of Parallel ML
(e.g., [69, 100, 120, 121]) have investigated assigning priorities to threads.

As far as we are aware, however, none of the systems above have formally bounded the
running times of their schedulers using models such as the work-span model described above. In
contrast, a major contribution of this thesis is using formal models to bound the cost of programs,
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much as the traditional work on cooperative threading does. This goal is summarized in the thesis
statement.

Thesis Statement
It is possible to extend existing language and cost models for cooperatively threaded parallelism
in a natural way to account for competitive threading constructs, and to design and implement
scheduling algorithms that account for both throughput and responsiveness.

To demonstrate this statement, we develop a parallel language, and associated cost models,
equipped with:
• A small but powerful set of threading primitives that are useful for both cooperative and

competitive paradigms.
• Facilities for assigning priorities to threads in order to improve the responsiveness of cer-

tain (e.g., interactive) components.
• A type system to prevent priority inversions, in which a low-priority thread waits on a

high-priority thread, which could harm responsiveness.
• A notion of fairness, which keeps high-priority interactive threads responsive without

starving low-priority computation threads.
• The ability to hide the latency of a user-level thread that performs I/O or a blocking system

call by switching to another thread that can do useful work.
Most of this thesis addresses the many issues associated with extending cooperative threading

systems to handle thread priorities, and so we further introduce these issues in the following
section.

1.1 Thread Priorities
Most competitive threading systems, such as pthreads, provide facilities for assigning priorities to
threads, so that threads with essential responsiveness requirements (such as real-time deadlines)
receive enough processor time. Such a feature could solve the problem with our interactive
Fibonacci example by allowing us to assign a higher priority to the interaction thread to ensure
that it runs. Unfortunately, most existing approaches to thread priorities have shortcomings in at
least two areas: modularity issues and priority inversions [97]. These issues pose difficulties in
writing standard competitive code with priorities, but become especially challenging when we
attempt to add priorities to cooperative threading.

Most prior thread priority implementations allow priorities to be selected from among inte-
gers in a fixed range. For our Fibonacci example, two priorities (0 and 1) would suffice. Con-
sider instead an email client that performs three tasks simultaneously: compressing old emails
in the background, running an event loop (to perform user interaction) in the foreground and
asynchronously sending an email. If we wish for the sending of the email to happen at an in-
termediate priority higher than the compression but lower than the event loop, we would need
a third priority. Furthermore, if using an intermediate priority for sending emails were a design
decision made in the middle of development, a programmer might need to globally reorganize
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the code base to switch the event loop from priority 1 to priority 2. This reorganization may not
even always be possible, for example, if the event loop used code from a closed-source library
that hardcoded it to run at priority 1. This example shows how the use of a fixed set of priori-
ties hinders modular software development, a cornerstone of the high-level languages in which
cooperatively threaded programming is generally done.

The problems in the above example could be slightly alleviated by simply offering a larger set
of priorities, as many practical systems do. For example, implementations of the pthreads API
may support schedulers with as many as 100 priorities. This surfeit of priorities poses its own
set of problems, because priorities cease to have intuitive meanings. If there are 100 priorities,
should an event loop be 80 or 90 or 91? A survey by Hauser et al. [65] suggests that programmers
had trouble assigning meaning to even the 7 priorities used in the Mesa system. These issues are
only compounded by the lack of modularity: all of the programmers working on different parts
of a system need to agree on what priorities to use for what operations, because these decisions
have global repercussions across the system.

Several authors have argued that a partially ordered, as opposed to totally ordered, set of
priorities is more modular and intuitive (e.g., [9, 47]), but such a priority model is rarely sup-
ported in practice (see Section 2.3.1 for one partial exception). The language model we develop
in this thesis supports such a model by allowing threads to be annotated with priorities from a
programmer-defined partial order. Programmers define a set of priorities for a given program,
and specify only those ordering constraints between priorities that are meaningful in the program.
This allows thread priorities to closely match the intuitively desired behavior of the threads. For
example, a programmer could specify the total ordering on the three priorities of the email client
(even if the event loop priority is defined in a library, since priorities are abstract symbols in the
program and not fixed integers). If a new module added to the email client needs to run at a new
priority higher than that of the compression thread, the programmer can, in two lines of code,
define the new priority and specify the additional ordering constraint without deciding how the
new priority relates to every priority already in the program.

Most implementations of thread priorities can also suffer from priority inversions, in which
a high-priority thread is delayed waiting for a low-priority thread to execute. Priority inversions
can be extremely costly in practice. For example, Mars Pathfinder, a spacecraft that landed on
Mars on July 4, 1997, suffered from a priority inversion in its software that caused the on-board
computer to crash and restart. It took over two weeks to diagnose and patch the problem from
Earth. In the context of cooperative threading, where we desire a formal accounting of cost, pri-
ority inversions pose a challenge: in the presence of priority inversions, it is impossible to prove
that a program will remain responsive. In this thesis, we equip our responsive parallel language
with a type system to prevent priority inversions that would violate the bounds guaranteed by our
cost models.

1.2 Contributions

The contributions of this thesis fall into four main categories, following the thesis statement:
language models, cost models, a scheduling algorithm and a runtime implementation.
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Language models. We present a language PriML for writing fine-grained parallel programs
that perform responsive interaction. Programmers express parallelism by spawning and synchro-
nizing lightweight threads. The language tracks priorities through the execution of a program
using a monadic separation between expressions, which evaluate independently of priority, and
commands which operate at a certain priority. This separation allows the type system of PriML
to rule out thread synchronizations that would cause a priority inversion. This work builds on
our PLDI 2017 paper [87], which considers only two priorities. Most of the work in this chapter
can be found in our ICFP 2018 paper [88].

Cost models. We extend traditional dependency graph-based cost models for cooperative par-
allel programs to account for I/O operations that incur latency, and for threads of differing prior-
ities. We use these cost models to give bounds on both the parallel execution time of the whole
program and the response time of individual threads. These bounds reflect the ability of a sched-
uler to hide the latency of I/O-blocked threads, as well as the fact that the response time of high
priority threads should not depend on the amount of computation at lower priorities, assuming
the absence of priority inversions.

We then give a language-based cost semantics that allows the bounds above to be applied to
PriML programs. We show that the type system of PriML ensures the invariants required for the
response time bounds to hold. This work builds on our SPAA 2016 paper [86] on cost models
for blocking I/O and latency hiding, as well as our PLDI 2017 two-priority paper and our ICFP
2018 multi-priority paper.

Scheduling algorithm. We give an algorithm based on randomized work stealing for schedul-
ing threads according to their priorities and for hiding the latency of blocking operations. Al-
though a formal analysis of the algorithm’s running time is out of the scope of this thesis, we
explain some intuitions for why we believe the algorithm is efficient.

Implementation. We have implemented the above as an extension to Parallel ML. The imple-
mentation consists of three parts:
• A runtime system that implements the scheduling algorithm described above.
• A threading library for Parallel ML that implements the threading and priority features of
PriML, and contains an I/O library with operations that support latency hiding.

• A compiler from PriML to Parallel ML that implements the type system to prevent priority
inversions at runtime.

We present a thorough evaluation of the implementation for both expressiveness and effi-
ciency. The evaluation includes a suite of parallel interactive benchmarks, ranging from small
synthetic examples to an implementation of the hierarchical path planner described earlier, con-
sisting of over 1,000 lines of ML code.

1.3 Outline
The remainder of the thesis proceeds as follows:
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• In Chapter 2, we summarize in more detail the prior work that forms the basis of this thesis,
including prior work on cooperative threading. We also describe other work related to the
goals of combining cooperative and competitive threading.

• Chapter 3 contains the graph-based cost model for responsive parallelism and results
bounding the throughput and response time of responsive parallel programs at the level
of cost graphs.

• Chapter 4 begins with an overview of the PriML language before presenting a core calculus
λ4 that captures the essence of responsive parallelism and is used to show various safety
properties of the type system.

• Chapter 5 describes a cost semantics that analyzes λ4 programs to produce models of the
form presented in Chapter 3. We show that the responsiveness and throughput bounds
given earlier for cost graphs apply to well-typed (and therefore priority inversion-free)
programs.

• Chapter 6 presents over the prioritized scheduling algorithm.
• Chapter 7 describes the implementation of the runtime scheduler, the threading library and

the PriML compiler.
• Chapter 8 provides detail on the hierarchical motion planning case study, with a description

of its implementation and empirical evaluations.
• Chapter 9 gives a more thorough empirical evaluation of the runtime scheduler using a

suite of small and medium-sized benchmarks.
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Chapter 2

Background and Related Work

Sir, a whole history.
Hamlet (III.2.324)

The prior work on which this thesis builds, and the work which solves related problems, falls
into several categories. We begin with a discussion of prior work on cooperative multithreading,
including language models for cooperative parallelism as well as the cost models on which we
build in this thesis. We then discuss other work that has combined elements of cooperative and
competitive threading, followed by a discussion of research in other areas that is related to the
techniques used in this thesis, including work on competitive threading.

2.1 Cooperative Multithreading

Throughout this thesis, we use the terms cooperative threading or cooperative multithreading to
refer to a setting in which multiple threads are used to increase the throughput of a computation.
As the name suggests, the threads cooperate to complete the computation; since all threads are
working toward the same goal, it is not necessary or beneficial for them to compete for resources.
In Subsection 2.1.1, we discuss the programming paradigms developed for cooperative threading,
and the many languages and systems in which these paradigms have been implemented.

The remainder of the section further details two benefits of cooperative threading, both to
justify our focus on cooperative systems and to introduce two major lines of work on which this
thesis builds: cost models, and scheduling algorithms. In Subsection 2.1.2, we describe at a
high level the cost models that enable reasoning about the running time of cooperatively parallel
programs when run on multicore computers. These cost models form the basis of much of the
work of this thesis. In Subsection 2.1.3, we describe some of the scheduling techniques that
have arisen in cooperative threading systems, and the analyses that have been used to show their
efficiency.
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M 7→M ′

M N 7→M ′ N

N 7→ N ′

(λx.M) N 7→ (λx.M) N ′

(a) Left-to-right evaluation.

M 7→0,1 M ′ N 7→0,1 N ′

M N 7→M ′ N ′

(b) Parallel evaluation.

Figure 2.1: Two reduction strategies for the lambda calculus.

2.1.1 Cooperative languages
The languages, libraries and systems we discuss in this section are united by two key features.
First, the primary purpose of the threading or parallelism constructs they introduce is improving
throughput, rather than structuring code or reducing latency. This implies that the systems must,
at least in principle, be able to run on multiple processors or machines. Otherwise, it would
be impossible to make use of the benefits of parallelism. Second, the languages don’t require
programmers to explicitly manage threads, though they may allow or require programmers to
give hints as to where parallelism should be introduced.

Within this section, we divide languages into categories roughly based on the sorts of paral-
lelism constructs they introduce. In the process of discussing these languages, we introduce the
parallelism constructs which will be important in the language developed in this thesis.

Implicit Parallelism

By way of introduction, we begin, somewhat counterintuitively, with a class of languages which,
by our definition, are parallel, but don’t explicitly introduce any threading constructs at all! In
particular, most purely functional languages can naturally be considered parallel: since evalu-
ation doesn’t have side effects, the order in which subexpressions are evaluated is immaterial,
and in fact subexpressions may safely be evaluated in parallel. The prototypical example is the
untyped lambda calculus, which admits a number of possible reduction strategies. Figure 2.1
shows two sets of reduction rules for applications, which result in different reduction strategies.
In (a), the left subexpression is reduced completely before the right subexpression is evaluated.
This “left-to-right” strategy is often shown in the literature, but it is equally possible to use a
“right-to-left” strategy, or the parallel strategy shown in (b). In this rule, the 0, 1 superscripts
indicate that either or both subexpressions may take a step in a single step of the complete ex-
pression. This allows parallel evaluation (though does not require it; we could define the rule
more precisely to require parallel evaluation when possible, but do not do so here for the sake of
brevity).

This property of naturally facilitating parallel evaluation was noted by Burton and Sleep
[26] as a benefit of functional languages: while they may not be as fast as their imperative
counterparts, their evaluation can easily be sped up through parallel evaluation. Parallelism
achieved through parallel evaluation of subexpressions rather than explicit programmer effort
is often called implicit parallelism. Implicit parallelism is exemplified in practice by Id [7],
or Irvine Dataflow, a language that dates back to 1975. Its user manual states that “for most
subexpressions that have multiple sub-expressions, all sub-expressions are evaluated, and they
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are evaluated in parallel.” [92] (Id also introduces non-functional features for which evaluation
order is important, but we will not discuss these here.) The ideas of Id were carried on into
the 1990s by its spiritual successor, pH (for parallel Haskell, though this is not to be confused
with other parallel dialects of Haskell which is discussed later). The pH language combines Id’s
parallel-by-default execution with Haskell syntax.

Sisal [46], first specified in 1983, is somewhat more explicit in the way parallelism is spec-
ified, in that parallelism is introduced by specific language constructs (e.g., for loops, streams).
While the syntax of Sisal appears imperative, all variables are single-assignment and must be
fully defined before use. These restrictions ensure that programs are deterministic and that the
compiler can easily determine data dependencies in order to compile the program into a dataflow
graph that can be executed in parallel.

Implicit parallelism is attractive in many ways: it requires no additional programmer effort
beyond writing a functional program, and it exposes a great deal of parallelism. However, this
style also has notable drawbacks. First, it is very difficult to know or control what is evaluated
when. This is not a problem if one stays within a functional language (or the functional subset
of a language), but in practice many applications use state or other side effects. Side effects
become essential, in particular, when we consider interactive applications. Second, the amount
of parallelism generated is enormous and impossible to control (without adding more features
to the language, which defeats to some extent the idea of implicit parallelism). As we will soon
see, large numbers of parallel threads can overwhelm a scheduler and much work has been done
on controlling the amount of parallelism generated by a program.

Data Parallelism

Another early parallel programming paradigm was data parallelism, in which an operation is ap-
plied in parallel to all elements of a collection. This paradigm mapped nicely to parallel hardware
of the time (and is reflected today in GPU programming, which we will not discuss in detail). The
data parallel (or “collection-oriented”) paradigm dates back as early as the 1960s with APL [70]
and continued with languages like C*, CM-Lisp and Paralation Lisp. A wide range of applica-
tions can make effective use of data parallelism, but for more general purposes, data parallelism
exposes a trade-off. Some languages, such as C*, disallowed nested collections. This restriction
matched the hardware, which could not efficiently support nesting, but restricts expressiveness.
For example, one might naturally wish to parallelize a recursive algorithm such as Quicksort by
simply making the two (independent) recursive calls in parallel, but such an approach is naturally
nested. Other languages, such as CM-Lisp and Paralation Lisp, supported nested collections, but
could not implement them efficiently in parallel [14]. To remedy this situation, Blelloch and
Sabot [13] developed the technique of flattening nested parallel collections into flat collections
that could be efficiently operated on in parallel by contemporary hardware.

NESL [14, 18] was designed in the mid-1990s with nested data parallelism in mind. The core
data type of NESL is the sequence. Sequences can contain elements of any type, including other
sequences (hence nested parallelism), and support a large number of primitive operations which
can be performed in parallel. For example, one can encode the parallel recursive Quicksort
example in NESL by building three sequences consisting of elements less than, equal to, and
greater than the chosen pivot, nesting the “less than” and “greater than” sequences in another
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sequence, and applying Quicksort recursively to this nested sequence.
Later work addressed remaining flaws in data parallel languages. First, work on Nepal ex-

tended the ideas of flattening to support richer types than were allowed in NESL, such as alge-
braic data types [30, 31]. This project continued as Data Parallel Haskell [32], which was made
available as an extension of GHC. Separate work developed the technique of data-only flatten-
ing, which is more suitable to modern multiprocessors, and implemented it in the Manticore
system [11].

Task Parallelism

Data parallelism is useful for applications whose parallelism is derived from applying operations
uniformly to collections of data. In many applications, however, some or all of the parallelism is
derived from performing different operations in parallel. For example, many of the applications
which interest us in this thesis perform a large computation (which may or may not fit the data
parallel paradigm) in parallel with one or more threads performing interaction with the user. This
form of parallelism is permitted by a paradigm known variously as task or control parallelism,
which is the main focus of this thesis.

Many abstractions for task parallelism have been studied in prior languages and systems. We
derive the threading mechanism of this thesis from the abstraction of futures. A future is a way of
deferring a computation: the expression future e, for example, immediately returns a handle
to a future which will eventually compute the value of e. In this way, futures are closely related
to lazy evaluation. The primary difference is that, if there are available processors, a future will
evaluate in parallel with continued evaluation of the program (as in implicit parallelism, if the
program is purely functional, it doesn’t matter when evaluation is performed). The first parallel
implementation of futures was in Multilisp [60], a parallel dialect of Scheme. Multilisp inherits
from Scheme the ability to perform operations on shared mutable state. The inclusion of state
was a conscious decision in the design of Multilisp, and motivated the use of explicit, rather than
implicit, parallelism to aid reasoning about when evaluation occurs.

In Multilisp, and many early implementations of futures, the use of future values is implicit.
If a program, for example, binds future e to a variable x and later uses x in a way that requires
a concrete value, e.g., integer addition, program evaluation blocks at the use site until the future
has completed evaluation. A use of a future value which only requires partial information, for
example a pattern match which only needs to know which pattern matches the value, only needs a
future to be partially evaluated. This allows futures to be used effectively for a form of pipelining
in which a parallel thread continues evaluating the future, producing intermediate values which
are consumed asynchronously by the client of the future [17, 60]. To make the types of ex-
pressions, and the cost of evaluating them, easier to reason about, later languages introduced an
explicit touch or force operation which blocks evaluation until the value of a future is available.
Futures have become a popular and widely-used abstraction for parallel programming. They are
supported by a number of modern languages including .NET [27], Scala, Java and C++, and are
in use at companies such as Twitter [116] and Facebook [55]

Futures are quite general and powerful, but this power comes at a cost: the general depen-
dency graphs they can induce defeat many of the optimizations on which efficient schedulers
for task parallelism rely [1]. One way of taming the power of futures is an abstraction known
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as async-finish or spawn-sync. This type of parallelism is exemplified by Cilk-5 [54], another
influential parallel language (the original Cilk release [23] used a different model in which con-
tinuations of threads had to be specified explicitly). In async-finish style, threads are spawned
like futures, but must be joined with their parent thread by an explicit finish or sync operation that
waits for the completion of all threads spawned in a certain scope. In Cilk, the sync operation
syncs on all threads spawned by the current Cilk procedure (analogous to a C function). X10 [35]
explicitly denotes the scope of threads using finish {} blocks. All threads spawned within
the scope of a finish must complete before evaluation proceeds out of the block. Async-
finish parallelism results in a more regular structure of dependencies but still provides substantial
power.

More structured still is fork-join or nested parallelism which enforces a strict nesting of sub-
computations. A fork operation, e.g., fork(e1, e2), runs e1 and e2 in parallel and waits
until both complete before returning both values and proceedings. Each of the subcomputations
may themselves fork nested parallel computations, but parallel threads may not escape the scope
of their parent thread. Fork-join parallelism is strictly less expressive than futures and async-
finish, in that both of these styles can be used to encode fork-join in a straightforward way, but
is still useful for many applications (including most of the applications explored in this thesis),
and generates a form of highly structured parallelism that results in efficient scheduling.

The styles above are not mutually exclusive: many modern parallel languages and libraries
provide facilities for multiple of them, allowing programmers to use a more structured construct
like fork-join most of the time for efficiency and fall back to a more expressive construct, such
as futures, when this is necessary or convenient for the application. Habanero Java, a parallel
language based on X10 which exists in both a stand-alone form [28] and as a Java library [68],
includes the async-finish style of X10, as well as futures, loop-based parallelism and several
other constructs. Other flexible task-parallel libraries have been developed for Java [78], as well
as .NET [79] and Standard ML [112]. The Parallel ML language of the Manticore system [49, 50]
supports task parallelism as well as other, more competitive, parallelism features. We discuss the
Manticore project later in this chapter.

Throughout the above, and in the introduction, we have alluded to both cost analyses for
cooperatively threaded languages and schedulers for these languages. As outlined in the thesis
statement, a substantial part of the contribution of this thesis focuses on extending existing cost
models and scheduling algorithms to account for competitive threading constructs. We there-
fore introduce existing approaches to cost analyses and scheduling extensively in Sections 2.1.2
and 2.1.3, respectively. We begin each section by briefly expanding on why each topic is an
important component of cooperative parallelism, and then describe existing approaches.

2.1.2 Cost Models
Cost models serve two major purposes. First, they allow one to statically reason about the re-
source usage (time, space or other resources) of programs. Second, they serve as evaluation
metrics for an implementation. For example, in the previous section, we discussed various fea-
tures that hindered or allowed efficient scheduling algorithms. However, without prior knowl-
edge of how the scheduling algorithm can or should perform, there is little we can say about
whether a scheduling algorithm is efficient. We can implement it and see that it performs better
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than or comparably to another implementation, but without the theoretical knowledge that a cost
model provides, we have no way of knowing if both implementations suffer from asymptotic
performance issues. Thus, before we discuss the scheduling algorithms that allow for efficient
execution of cooperatively threaded programs, we discuss the cost models that allow us to reason
about whether an execution is efficient.

Traditionally, cost models for parallel programs are based around the concept of a directed
acyclic graph (DAG) showing the dependencies in a program. From this DAG, we can derive cost
metrics that predict the performance of the program. We discuss these models and the results that
use them to predict performance, and then describe techniques for analyzing a source program
in a parallel language to produce an appropriate dependency DAG.

DAG-based Models

The idea of representing a parallel program as a directed graph goes back decades (e.g., [21, 22,
58]). In DAG models of parallel programs, each vertex represents a unit of sequential computa-
tion. The units themselves are not important, but we generally make the simplifying assumption
that all vertices take the same amount of time to execute (a vertex may, for example, correspond
to a single processor cycle). An edge between two vertices u1 and u2 indicates that the operation
corresponding to u1 must occur before the operation corresponding to u2. If two vertices u3

and u4 don’t have a path between them, they may execute in parallel.
For example, consider the pseudocode below which calculates the 3rd Fibonacci number in

parallel:

1 fib(n):
2 if n <= 1:
3 return 1
4 else:
5 (a, b) := fork (fib (n - 2), fib (n - 1))
6 return a + b
7

8 main():
9 return fib(3)

The DAG for this code is shown in Figure 2.2. As will be our practice in drawing DAGs in this
document, we relax the requirement that each drawn vertex consist of a single unit of work. To
make it tractable to present the figures, we collapse long sequential chains of vertices into single
vertices shown in the figure. Each vertex is labeled with the function call or operation to which
it corresponds.

Two cost metrics of a parallel program may easily be read off of the corresponding DAG.
The work, which we notate W (it is also sometimes written T1 in the literature), is the total
number of vertices in the DAG. This corresponds to the number of time units it would take to
execute the program on one processor. The span, which we notate S (it is sometimes known
as the depth, d, and also sometimes written T∞), is the length of the longest path in the DAG.
Since it corresponds to the critical path of the computation, it is the number of time units that an
unbounded number of processors would take to run the program.
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fib 3 fib 1

fib 2
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fib 0 0+1=1

1+1=2

Figure 2.2: The DAG corresponding to the simple Fibonacci program.

A schedule is an assignment of vertices to processors at each time step. In a valid schedule, a
vertex may only be assigned to a processor if all of its ancestors in the DAG have been assigned
at earlier steps. Such a vertex is called ready. A schedule corresponds to a strategy for executing
a parallel program on a certain number of processors, notated P . The length of the schedule
corresponds to the execution time of the program using this strategy on P processors. The
problem of finding the shortest schedule for a given DAG and given P is known as the offline
scheduling problem.

Finding a precise solution to the offline scheduling problem is known to be NP-complete [117],
but several simple strategies can yield constant-factor approximations of the shortest schedule.
Brent [25] showed that a “level-by-level” strategy of scheduling all of the vertices at a distance n
from the root in batches of size P , followed by all the vertices at distance n+1, and so on, results
in a schedule of length W

P
+S P−1

P
. This is a two-approximation of the optimal schedule since W

P

and S are each independently lower bounds on the length of a valid schedule. This result was
extended in later work by Eager et al. [42] to all greedy schedules. A greedy schedule executes
as many vertices as possible at each time step bounded by P and the number of ready vertices.

Language-based Models

The DAG scheduling results above are only useful if we have a dependency graph for a program.
A separate line of work focuses on producing such a graph, and therefore the relevant cost met-
rics and offline scheduling bounds, for a source program written in a parallel language. These
approaches build on the ideas of language-based cost semantics [103, 105], static techniques for
determining or approximating the resource usage of a program.

Blelloch and Greiner [16] developed a cost semantics for NESL which abstractly evaluates
a program to produce not just a value but also a cost DAG of the form described above. This
approach, while designed for the data-parallel constructs of NESL, can be adapted in a straight-
forward way to fork-join parallelism (e.g., [113]) and futures [112, 114].

2.1.3 Scheduling
The results of Brent and Eager et al. described above (which we refer to as “Brent bounds”
or “Brent-type theorems”) give us an intuition that it should be possible to execute a parallel
program efficiently on multiple processors, but do not actually give an algorithm for doing so in
an online situation where the DAG unfolds dynamically at runtime. Blelloch et al. [19] present
several online scheduling algorithms that provably meet the Brent bound (in terms of number
of time steps) in certain cases, but which are based on maintaining global task queues. Global
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queues lead to simple algorithms that can be shown to be efficient in theory (the main difficulty
is working on tasks in an appropriate order so as to control the number of tasks in the queue at
a time and thereby control space usage), but result in a great deal of overhead when considering
actual execution time, due to contention and the cost of distributing fine-grained tasks to all P
processors.

Work stealing [26, 60, 75] arose in early parallel languages as a distributed alternative to
global task queues. In work stealing, each processor maintains a queue of tasks locally. A pro-
cessor works on tasks from its own queue and pushes newly generated tasks onto its own queue.
When a processor finds its queue empty, it becomes a “thief” and “steals” a task from another
processor’s queue. Blumofe and Leiserson [22] showed that a randomized work stealing sched-
uler, in which thieves randomly select their victims from the remaining processors, can execute a
“fully strict” parallel computation (a computation with the neatly nested structure of, e.g., a fork-
join program) with work W and span S in expected time O(W

P
+ S). The fully strict restriction

enforces a certain kind of well-structured nesting on DAGs. Fork-join computations, for exam-
ple, are fully strict. Later work [6] extended this analysis to general DAGs and multiprogrammed
environments, in which the operating system might assign the work stealing scheduler only some
of the available processors at any given point in time. The key insight in these analyses is that
steals should be rare, so that processors spend most of their time doing useful work. Most of the
overhead of scheduling can be associated with steals, so sequential work (which makes up the
bulk of the time) can be fast.

Several lines of research (e.g., [2, 106, 124] have extended or adapted work stealing to im-
prove performance in certain contexts. Still other work uses somewhat different approaches to
control the potential explosion of parallelism and the performance degradation that comes from
prematurely parallelizing. For example, in Workcrews [118], processors request help from other
processors; if there are no other processors available to help, the requesting processor is able to
continue performing fast sequential work.

2.2 Toward Competitive Multithreading
In the previous section, we described how existing work on competitive threading allows pro-
grammers to write parallel programs using high-level abstractions, reason about their time and
space usage using elegant cost models, and run them efficiently using provable scheduling algo-
rithms. However, all of this research assumes a fairly limited computation model. In particular,
none of this work is designed for situations in which threads might block or have resource re-
quirements other than throughput (or total completion time, as bounded by Brent’s Theorem).
The goal of this thesis is to extend the abstractions and models discussed in the previous sec-
tion to handle these sorts of competitive features. In this section, we discuss prior research that
also works toward achieving this goal, and compare and contrast these prior approaches with the
approach taken in this thesis.

Latency-incurring Operations. Many programs perform operations, such as I/O, that incur
latency, i.e., a period of time in which the calling thread is unable to run but is not performing
useful computational work. Competitive threading systems usually perform latency hiding in
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such cases by scheduling another thread that is able to run in place of the thread that is blocked on
I/O. Two obstacles prevent cooperatively threaded systems, as described in the previous section,
from gracefully performing latency hiding: first, work stealing algorithms are generally not set up
to do so. Without special attention, if a thread in a work stealing scheduler performs a blocking
I/O operation, the entire processor on which that thread was running will be blocked until the
operation completes. Second, the DAG-based cost models of Section 2.1.2 have no way of
expressing an operation that takes time but is not computational work.

In prior work [86], we addressed both of these issues. That work extended the DAG model
with a notion of latency which counts toward the span, but not the work. It also gives a latency-
hiding work stealing algorithm that provably executes in time O(W

P
+ SU(1 + lgU)), where U

is the maximum number of simultaneous latency-incurring operations.
Concurrent Cilk [123] uses a work stealing scheduler that distinguishes between tasks, which

are the units of work stealing, and lightweight threads. Lightweight threads have their own work
stealing state and can easily be switched on and off of processors, but still result in less overhead
than system threads. When a task executes a blocking operation, it is automatically promoted to
a lightweight thread. The Concurrent Cilk work does not model or prove bounds on execution
time.

BATCHER [3] uses a lighter-weight approach to work stealing and gives proven runtime
bounds, but for a particular type of latency-incurring operation: batched concurrent accesses
to a shared data structure. The system performs operations on the data structure in batches to
avoid synchronization, but this causes data structure operations to block until the next batch of
operations is performed. In BATCHER, threads that block on data structure operations are moved
to a separate deque to allow other work to proceed.

Inter-thread communication. A number of systems blur the line between cooperative and
competitive threading by providing lightweight abstractions that can be used for expressing fine-
grained parallelism, but which also allow inter-thread communication, a feature not accounted
for in traditional cooperative threading. Concurrent ML (CML) [100, 102], originally designed
as a library for Standard ML but adapted into other settings, exposes abstractions of threads and
channels over which threads communicate through message passing. For almost two decades,
CML had only been implemented for uniprocessors, making it not usable for the main purpose of
cooperative parallelism, that is, increasing throughput. Multicore implementations of CML were
developed in 2009 [101] allowing CML to be used for more traditional cooperative threading
workloads, but the implementations yielded only modest parallel speedup on eight processors
over the sequential performance.

The Manticore project [49, 50] has developed a heterogeneous parallel language that com-
bines several threading paradigms, including NESL-style data parallelism, several task-parallel
constructs and CML-inspired explicit concurrent threads. Manticore uses a flexible hierarchical
scheduling framework [51] that allows for a range of scheduling policies, including different
scheduling policies at different levels of the hierarchy. This, for example, allows an application
to use different scheduling policies for different types of threads, which is key to supporting
interaction. Our goals in this thesis diverge somewhat from Manticore’s in that we wish to sup-
port a broad range of applications using a homogeneous set of threading primitives, as opposed
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to the large heterogeneous set used in Manticore. We note, however, that Manticore compiles
to a lower-level set of primitives consisting essentially of cancellable futures [52], quite similar
to the primitives provided by our language PriML. This similarity gives us confidence that our
primitives are powerful enough to support a wide range of applications, and allows us to build
on ideas developed for compiling and scheduling in Manticore.

Priorities. When some threads in a fine-grained parallel program need to be responsive, e.g.,
because they are performing user interaction, it is important for the scheduler to have some
notion of priority. The threads with responsiveness requirements should be given higher priority
by the scheduler in order to maintain the user experience. Priorities are a substantial departure
from typical cooperative threading because in a very real sense, threads are now distinct and are
competing for the resource of the processor. Still, we believe it is possible to add thread priorities
to a language and its runtime scheduler while still maintaining the other features of a cooperative
language: provable cost bounds, low scheduling overhead and high-level abstractions.

Our recent work [87] extends traditional cooperative scheduling to maximize responsiveness
of interactive threads, but considers only two priorities and has no notion of fairness. That paper
extends the traditional DAG-based cost model with a way of highlighting high-priority threads
with responsiveness requirements, and proposes a scheduling principle analogous to the greedy
scheduling principle for ensuring both high throughput and responsiveness. We explore this
prompt scheduling principle in more detail in Chapter 3. The prior work also does not address the
online problem of efficiently determining what threads to schedule to maintain responsiveness.

We are aware of no other cooperative languages that provide priorities for the purposes of
supporting responsive interaction. Several lines of work, however, have added priorities to a
work stealing scheduler for the purpose of improving throughput [69, 120, 121]. Applications
for these extensions include search problems where branches may be explored in parallel and
some branches appear more promising than others based on some heuristic. Adding the more
promising branches to the task queue with a higher priority will cause those branches to be
explored first, possibly saving work overall by eliminating the need to explore the remaining
branches.

The problem of handling computational threads and interactive threads in the same system
arises in Concurrent ML. CML does not introduce priorities explicitly, but treats computational
and interactive threads separately in the scheduler, implicitly assigning them different priorities.
If a thread blocked on communication in the last round of scheduling, it is deemed interactive
and scheduled with higher priority in the next round [100]. This heuristic prioritizes threads
that frequently perform interaction without requiring explicit annotations, but it can only distin-
guish between two classes of threads (computational and interactive), and can’t classify threads
perfectly.

Distributed and PGAS languages. Partitioned Global Address Space (PGAS) languages such
as X10, Chapel [33] and Titanium [122] allow inter-thread communication through direct writes
to memory but partition memory into segments (e.g., places in X10, locales in Chapel and re-
gions in Titanium) and distinguish between local and non-local memory access. This makes such
languages quite suitable for execution in distributed environments where non-local memory ac-
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cess can be substantially more expensive than local memory access. On the other hand, making
this distinction requires a slightly lower-level view of parallelism since the programmer must be
aware of how work is divided and where each computation will be running, in order to access
memory accordingly. Other than this awareness of locality, the three PGAS languages mentioned
above still have high-level parallelism models—X10 and Chapel have task and data parallelism
similar to other languages mentioned earlier, and Titanium has data parallelism.

Other Contemporary Languages. Many modern languages have facilities for lightweight
threads, to various ends. In most cases, the implementation is uniprocessor and so, even if
scheduling is cooperative, the purpose of the threading constructs is more like that of competitive
threading: to improve responsiveness, allow for asynchrony or structure a program more logi-
cally. For example, OCaml 4.06 [81, Chapter 31] (the latest version as of this writing) has two
implementations of its threads library, one using lightweight virtual threads (which are scheduled
in user space) and one using system threads. In both implementations, scheduling is achieved by
time-sharing on one processor.

Python 3.2 [98, Chapter 17.4] added support for futures, with two implementations. One
implementation uses a pool of lightweight threads. As with OCaml threads, this implementa-
tion is subject to the “global interpreter lock” which prevents multiple threads from concurrently
executing Python code. Python also supplies an implementation based on processes. This imple-
mentation does allow for usable parallelism, but only very coarse-grained parallelism: the high
overhead of spawning and maintaining processes makes it impossible to use such a mechanism
for the fine-grained parallelism of most of the examples we consider in this thesis.

Go [56] supports lightweight concurrent threads called goroutines. Unlike either of the lan-
guages described above, Go has a multiprocessor runtime with a work stealing scheduler [84] that
allows Go code using goroutines to leverage parallel hardware to improve throughput. Gorou-
tines do not return values and so must communicate using shared global state, but can otherwise
be used for either cooperative-style parallelism or shared-memory concurrency.

2.3 Other Related Work
Up to this point, we have been discussing work based on the ideas of cooperative threading.
Of course, there is a great deal of related work in other areas as well. In the remainder of this
chapter, we briefly describe the most important areas of related work and provide pointers to
other sources of information about this work. This exposition serves to relate this thesis to work
in other fields, show where this research sits in a broad context, and briefly explain why solutions
used in other fields fall short in achieving the goals of this thesis.

2.3.1 Competitive Threading
Competitive threading, the alternative to cooperative threading, has a wide range of use cases.
Common uses are to reduce latency, handle interactive events asynchronously or for programs
that are more logically structured as the composition of communicating processes. Because the
goal of competitive threading is generally not to improve throughput, competitively threaded
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systems may run on a single processor or multiple processors. Hauser et al. [65] have an excel-
lent, though now somewhat outdated, survey of uses of threads in real-world interactive systems.
They identify several thread-use paradigms in addition to the ones we mention above, and detail
their relative prevalence in code.

One paradigm noted by Hauser et al. is exploiting parallelism, though at the time of that sur-
vey, competitive systems were only just beginning to run on multiprocessors. By 2000, another
survey [48] showed that several classes of competitively threaded programs, like web browsers
and image editing tools, were able to make moderately effective use of multithreading to im-
prove response time. Still, the amounts of thread-level parallelism (TLP, i.e., the number of
processors the program could make effective use of) were generally between 1 and 2. Some pro-
grams displayed higher (close to 2) TLP for short interactive episodes, but the average TLP for
most benchmarks was lower. Ten years later, a followup study [12] showed some improvement,
especially among video authoring tools, which were able to achieve TLP as high as 9.0 on some
platforms. Most benchmarks, however, still had TLP close to 2.

We see little intuitive reason why competitively threaded programs should not be able to
take advantage of multicore machines. As we identified in the introduction, applications from
games to database systems to image authoring tools can execute parallel algorithms. The end
goal of this work begun in thesis is to improve the state of the art to the point where interactive
applications can make use of thread-level parallelism to improve their throughput on multicore
hardware.

Priorities

Most modern competitive threading systems provide some facilities for specifying the priorities
of threads. The POSIX threads (pthreads) API exposes scheduling policies which may allow as
many as 99 distinct priorities. As with most most implementations of thread priorities, priorities
are represented by an integer and few guidelines are given for what priority to choose for what
tasks.

The Hauser et al. study gives some insights into how programmers use priorities under these
conditions. The threading model explored in the study exposed 7 priorities numbered 1 through 7,
with 4 being the default. In both systems observed in the study (Cedar and GVX), one of the
priorities went unused. The meanings to which programmers assigned priorities differed sub-
stantially between the two systems. Cedar threads were observed to use priorities 1 through 4
fairly evenly, while most GVX threads were assigned priority 3. Cedar uses level 7 for interrupt
handling while GVX uses 5. As both use level 6 for the scheduler, this distinction seems likely
to result in substantially different behavior between the two systems.

The experiences with Cedar and GVX highlight the expressiveness and modularity problems
inherent in representing priorities as integers in a fixed set, which have also been observed by
other authors (e.g., [9, 97]). An alternative is to represent priorities as a partial order, allowing
programmers to specify all and only the ordering constraints between priorities that make sense
in the context of the program. Fidge [47] explores this possibility from a theoretical standpoint
by extending the process algebra CSP, which provides operators for concurrency and choice,
with a notion of asymmetry that prioritizes one operand over the other. Ideally, this would
allow programmers to avoid the extreme requirement enforced by most thread APIs that priority

22



orderings be fully specified. The occam language, whose concurrency model is based on CSP,
allows a form of asymmetry but, according to Fidge, goes too far to the opposite extreme, leaving
many priorities unspecified and ambiguous and giving the programmer no way to resolve this
ambiguity. In this thesis, we present a partially ordered model for thread priorities which allows
the programmer to specify any desired thread orderings, but to leave others unspecified if desired.

Priority Inversion

Priority inversion is a significant issue in threading systems. The classic example (e.g., [76])
involves three threads: a thread at low priority acquires a lock, a thread at high priority blocks
attempting to acquire the same lock, and a thread at medium priority prevents the low-priority
thread from running. The medium-priority thread is therefore preventing the high-priority thread
from acquiring the lock and running, contrary to the intention expressed in the priorities. While
this is a frequently-cited example of a priority inversion, the actual problem is substantially more
general (e.g., [9]) and can occur with just two threads and two priorities. We consider any case
in which a higher-priority thread is waiting on a lower-priority thread to be a priority inversion.

Runtime techniques such as priority inheritance, in which a low-priority thread which holds
a resource inherits the priority of a higher-priority thread that is waiting on the resource, can dy-
namically avoid priority inversion (e.g., [76, 108]). Babaoğlu et al. [9] describe other techniques
for preventing priority inversions in some settings, and also give a formal account of priority
inversions in a (partially ordered) priority system. In this thesis, we take a static approach to
preventing priority inversion because we are interested not only in preventing priority inversions
at runtime but also in enabling static reasoning about the responsiveness of a program. Such
reasoning can be hindered if, for example, a long-running background thread can be promoted to
high priority at runtime.

2.3.2 Scheduling for Responsiveness

In the Systems Community

There is a great deal of research in operating systems on scheduling threads for responsiveness,
including based on priorities. This includes far too much material to be summarized here, so we
refer the reader to a comprehensive text by Silberschatz et al. [110]. One issue in particular is
determining the proper metric for evaluating the responsiveness of a system. Mean response time
is one commonly used measurement, but for many applications it is also important to minimize
variance. These same concerns come up in the theory community (see below). The main differ-
ence between the domain considered in this thesis and the domain of schedulers in the systems
community is that our schedulers must contend with the very large numbers of threads spawned
by fine-grained applications, while competitive schedulers typically work with far fewer threads,
enabling higher-overhead scheduling techniques.

In practice, a system will have to support many different types of workloads with different and
competing resource requirements, just as the scheduler we describe in this thesis has to contend
with computational (throughput-bound) threads and interactive (responsiveness-bound) threads.
In operating systems, responsive applications come in at least three classes, depending on the

23



strength of their requirements: hard real-time, soft real-time and best effort. Even within each
class, applications and threads may have different priorities. Production schedulers designed to
handle different types of workloads under these conditions still struggle to give proper preference
to interactive workloads without starving computational workloads. For example, a study of the
Unix System V Release 4 (SVR4 UNIX) scheduler ran a text editor, a video player and a batch
computation simultaneously while varying the scheduling class to which each was assigned [91].
They found that granting real-time status to the continuously running video player could starve
both interactive applications (represented by the text editor) and compute-bound programs, while
assigning all programs to the time-sharing class (as expected) results in poor performance for the
text editor and video player.

Lottery scheduling [119] attempts to fairly schedule threads by randomly selecting threads
to run based on the distribution of abstract resources called “tickets”. This is similar to our
implementation of fairness, but operates at the level of individual jobs instead of priorities. Their
approach also allows tickets to be transferred, e.g., to implement priority inversion. Weighted fair
queueing [39] achieves a similar aim of fairly scheduling users with different weights reflecting
their priority (though initially in the setting of network gateways rather than process schedulers)
but in a deterministic fashion similar to round robin.

Goyal et al. [57] propose a framework for hierarchical scheduling in which, for example, real-
time processes can get a fraction p of CPU time and best-effort processes can get a fraction 1−p.
A fair scheduler makes scheduling decisions at the internal nodes of the hierarchy (e.g., deciding
whether to work on a real-time or a best-effort process). One suitable scheduler proposed for
this purpose is Start-Time Fair Queueing, a variant of fair queueing which schedules process
based on a virtual time computed from their actual start time and weight. Within each class
(at the leaves of the hierarchy), scheduling decisions can be made using any suitable scheduler.
The scheduling principle we discuss in Section 3.4 can be seen as a hierarchy with one non-leaf
level consisting of a node for each priority. A randomized algorithm decides which priorities to
schedule, whereas scheduling within each priority is done by work stealing.

Borrowed Virtual Time (BVT) [41] is a scheduling algorithm also based on virtual time,
but which allows latency-sensitive threads to “warp” back to earlier virtual times, causing these
threads to be temporarily scheduled more quickly in order to meet latency deadlines. The goal
of BVT is to efficiently handle both computational and interactive threads without starvation or
loss of responsiveness. Still, BVT (like all of the schedulers discussed above) is designed for a
much smaller number of computational threads than the scheduler proposed in this thesis.

In the Theory Community. The field of queueing theory is also largely concerned with schedul-
ing to maximize responsiveness. Queueing theory generally considers a model in which jobs
arrive through some external process, and are queued until they can be operated on by a server.
A job’s response time is the time between its arrival and its completion. A system may have mul-
tiple servers, in which case the system may achieve parallelism by serving many jobs at once,
but historically the field has mostly considered jobs to be themselves sequential. For a primer on
queueing theory, we refer the reader to Harchol-Balter’s book [62]. In the rest of this section, we
consider theoretical analyses of queueing systems that allow jobs themselves to be parallel. In
these analyses, jobs still arrive through an external process, in contrast to the parallel computing
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setting where they arrive intrinsically through spawn operations in the running code.
A substantial body of work abstracts parallelizable jobs into speedup curves, that is, func-

tions s(k) indicating the parallel speedup a job achieves on k processors over its sequential exe-
cution. Various algorithms have been analyzed for jobs with speedup curves of the form s(k) =
kα [67], jobs with arbitrary (but uniform) speedup curves [10], and jobs with multiple phases of
parallelism [43, 59]. The models studied do not have the same cost metrics of work and span
that we use to evaluate parallel schedulers. Rather, most of these results compare a proposed
scheduling technique to a theoretically optimal technique and show that the proposed technique
approximates the optimal schedule to some factor (sometimes assuming a specified level of “re-
source augmentation”, that is, a factor by which the proposed scheduler is allowed to run faster
than the optimal scheduler).

Saifullah et al. [104] present a technique for scheduling parallelizable jobs with real-time
deadlines, where each job is represented by a general DAG. The technique decomposes the DAG
into a set of sequential tasks to which it assigns intermediate deadlines. This allows the authors to
leverage existing scheduling techniques and results to schedule the resulting tasks. The limitation
is that this decomposition requires knowing the structure of the DAG when beginning to schedule
the job.

Finally, other lines of work are non-clairvoyant in that they can schedule arbitrary paralleliz-
able jobs for which the DAG is not known ahead of time. In this space, various techniques have
been developed to optimize for average response time [5, 66], maximum response time [4] and
number of jobs missing real-time deadlines [82].

2.3.3 Modal and placed type systems
In Section 4.2.1, we present a modal type system that restricts the use of threads in order to
prevent priority inversions. A number of type systems have been based on various modal logics,
many of them deriving from the judgmental formulation of Pfenning and Davies [96]. While
we did not strictly base our type system on a particular logic, many of our ideas and notations
are inspired by S4 modal logic and prior type systems based on modal logics. Moody [83] used
a type system based on S4 modal logic to model distributed computation, allowing programs
to refer to results obtained elsewhere (corresponding in the logical interpretation to allowing
proofs to refer to “remote hypotheses”). It is not made clear, however, what role the asymmetry
of S4 plays in the logic or the computational interpretation. Later type systems for distributed
computation [72, 90] used an explicit worlds formulation of S5, in which the “possible worlds”
of the modal logic are made explicit in typing judgment. Worlds are interpreted as nodes in the
distributed system, and an expression that is well-typed at a world is a computation that may be
run on that node. Both type systems also include a “hybrid” connective A at w, expressing the
truth of a propositionA at a world w. They interpret proofs of such a proposition as encapsulated
computations that may be sent to w to be run. Our type system uses a form of both of these
features; priorities are explicit, and the types τ cmd[ρ] and τ thread[ρ] assign priorities to
computations. Unlike prior work, we give an interpretation to the asymmetry of the accessibility
relations of S4 modal logic, as a partial order of thread priorities.

A different but related line of work concerns type systems for staged computation, based on
linear temporal logic (LTL) (e.g., [38, 45]). In these systems, the “next” modality of LTL is
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interpreted as a type of computations that may occur at the next stage of computation. In prior
work [87], we adapted these ideas to a type system for prioritized computation, but that system
only considers two priorities: background and foreground. In principle, a priority type system
based on LTL could be generalized to more than two priorities, but (because of the “linear” nature
of LTL), such systems would be limited to totally ordered priorities.

Place-based systems (e.g., [34, 35, 61, 71, 107, 122]), like the modal type systems for dis-
tributed computation, also interpret computation as located at a particular “place” and use a type
system to enforce locality of resource access. These systems tend to be designed more for prac-
tical concerns rather than correspondence with a logic.

2.3.4 Information flow control
In this work, we track inter-thread communication (through synchronization) and require that
high-priority threads do not wait for low priority threads. A similar problem occurs in the area of
information flow control for concurrent programs (e.g., [24, 111]), in which systems must ensure
that communication cannot cause data to pass from high-security threads to low-security threads.
Type systems for ensuring these properties are generally finer-grained than ours, since they are
concerned with the security of individual memory locations and not just overall properties of
threads. Muller and Chong [85], however, use a place-based language (see above) derived from
X10 to increase the granularity of this tracking by effectively reducing inter-thread communica-
tion to message passing and ensuring that this communication is secure. This approach is similar
to the one we take in this thesis in the sense that both analyses only need to consider interactions
between threads at explicit synchronization points.
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Chapter 3

A DAG Model for Responsive Parallelism

These trees shall be my books,
and in their barks my thoughts I’ll character

As You Like It (III.2.5–6)

In the previous chapter, we outlined an approach to representing parallel programs as directed
acyclic graphs (DAGs) and analyzing the cost of executing a DAG in parallel using Brent’s
Theorem and its variants. In this chapter, we extend the conventional DAG model with the
ability to assign priorities to threads and to represent operations that incur latency. These two
features allow us to use DAGs to represent a large class of parallel interactive programs, such as
the interactive Fibonacci program of the introduction. As with the traditional DAG models, we
are able to use these DAGs to reason about the total computation time of an interactive program,
but in addition, interactive programs have another important cost property that we would like to
bound: response time.

The main results of this chapter are three Brent-style bounds guaranteeing the computation
and response times of parallel interactive programs under various conditions. We begin in Sec-
tion 3.1 by defining the DAG model for responsive parallel programs. In Section 3.2, we for-
mally define response time and extend the standard notions of work and span appropriately to
reason about response time. Sections 3.3 and 3.4 present the Brent-type results for bounding
the response time of programs. While the greedy scheduling policy of the previous chapter is
sufficient to bound computation time, it does not suffice for any guarantees on response time.
We therefore introduce two new scheduling policies, prompt scheduling (Section 3.3) and fairly
prompt scheduling (Section 3.4), which are sufficient to prove responsiveness.

3.1 The DAG Model
In DAG models of parallel programs, vertices represent units of sequential computation and
edges represent sequential dependences. Without loss of generality, it is typically assumed that
each vertex represents a computation taking a single unit of time (perhaps a single processor
clock cycle). These are the units in which we will measure execution time and response time.

The DAG model we develop in this thesis features threads in addition to vertices and edges.
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A thread is a collection of vertices and their associated edges. The vertices in a thread happen
in sequence, allowing us to use a more compact notation to describe the vertices and edges of a
thread. We begin by defining this notation, and then proceed to discuss the remaining edges of a
DAG, which are those that go between threads. Finally, we put these definitions of threads and
edges together into the formal definition of a DAG.

Vertices and Threads. The core feature of the DAG model we develop in this thesis is a thread.
A thread is a sequence of vertices ~u = u1 ·δ1 u2 ·δ2 u3 ·δ3 . . . ·δn−1 un, written [] when n = 0. In
this notation, the vertices u1, . . . , un represent program instructions or operations, each of which
takes one unit of time. The operations must occur in the sequence indicated. The delays δi are
integers greater than or equal to 1 which indicate how long ui+1 must wait to run after ui. In the
common case, δi = 1 and ui+1 may run immediately after ui (i.e., one time unit later). On the
other hand, suppose ui+1 requires some external process to occur before it can run, in addition
to depending on ui. This might be the case, for example, if it is waiting for a user input, or for
a system call to return. In such a case, δi > 1 and ui+1 may only run δi time units after ui runs.
When δ = 1, we generally omit the delay subscript.

Threads are assigned priorities ρ drawn from a set R equipped with a partial order � (where
appropriate, we also use the symbol ≺ to refer to the natural corresponding strict order). All of
the operations of the thread run at the priority assigned to that thread. We define Priog(u) as the
priority of the thread to which u belongs in a DAG g.

DAGs as execution records. 1 Because latencies are recorded in the DAG, it may seem that, in
order to construct a DAG, we must know in advance how long each latency-incurring operation
will take. However, there is no paradox here as a DAG is an a posteriori record of a particular
execution. Thus, we are simply recording how long the latency actually was in that execution.

Even in traditional DAG models of programs without latencies, there is much information
about the execution of a program that is not captured in the DAG but which can determine execu-
tion time. For example, differences in inputs or nondeterminism could lead to different branches
of conditionals being taken at runtime, with possibly very different costs. A DAG represents the
operations that are executed, and their dependency structure, for a particular execution, factoring
out any such difference in inputs or nondeterminism. Differences in latencies (e.g., whether, in a
particular execution, the user takes 3s or 4s to respond to a question) simply add another form of
nondeterminism which must be factored out when constructing a DAG (we will see another form
shortly, in the timing of when threads complete). Thus, any program corresponds to a family of
DAGs, one for each way in which the program could execute. When we say that there is a delay
of δ between two vertices u1 and u2, we are implicitly referring to a family of DAGs, one DAG
for each plausible value of δ (if there are two delays δ1, δ2 > 1, then there is a DAG for each
pair of values, and so on). In Chapter 5, we describe how to analyze programs to produce DAGs
corresponding to all possible executions.

1This set of paragraphs is a slight digression that addresses a common confusion about latencies in DAGs, and
may be skipped without loss of continuity.
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Figure 3.1: DAGs representing polling.

Edges. In DAG models, edges between vertices correspond to sequential dependencies be-
tween operations. We have already seen one type of dependency: between an operation and the
following operation in the same thread. We refer to the edge corresponding to such a dependency
as a continuation edge. Thus, a thread in a DAG corresponds to a series of vertices connected
by continuation edges. The delays between operations are indicated by the edge weights on the
corresponding edges. An edge with a weight of 1, corresponding to no delay, is called a light
edge. Edges with weights greater than 1 are heavy. When describing a single continuation edge
from u to u′ with weight δ, we notate it (u, u′, δ).

A parallel program consists of many threads, and threads have edges between them indicating
inter-thread dependencies. We restrict attention to three types of inter-thread edges:
• Spawn edges connect a vertex which spawns a thread to the first vertex of the new thread.
• Join edges connect the last vertex of a thread to an operation that waits for it to finish.
• Weak edges, like join edges, connect the last vertex of a thread to another operation, but

indicate a different sort of dependency. Weak edges will be described in more detail below.
In particular, all inter-thread edges start at the last vertex of a thread or end at the first vertex of
a thread. The results of this chapter would likely extend to DAGs with edges originating and/or
terminating in the middle of threads, but such edges are not necessary for the development in the
remainder of this thesis. We assume all inter-thread edges are light edges (i.e., an inter-thread
edge from u1 to u2 has weight 1 and u2 may run the time step after u1 if its other dependences, if
any, are met). Furthermore, if a vertex has a heavy in-edge, we assume it has no other in-edges.

A weak edge from u1 to u2 indicates that vertex u2 was executed after u1 in the particular
execution to which this DAG corresponds, but that u2 need not execute after u1 in all executions
of this program. Such a situation can occur in a program execution where the operation cor-
responding to vertex u2 “polls” the thread whose last vertex is u1 to see if it completed. This
program will correspond to two (sets of) DAGs: in one, u1 has completed when u2 executes,
and so the poll operation “succeeds”. If we represented this fact using a join edge, which, like
edges in traditional DAGs, indicates a necessary data dependency, then our timing bounds would
have to account for schedules in which u2 waits a potentially long or unbounded time for u1 to
complete. This is not the desired behavior, however: we should not have to account for such
schedules because we know they don’t reflect this execution (we discuss admissible schedules,
which respect weak edges, below). We instead use a weak edge, shown as a dotted line in Fig-
ure 3.1a. A poll operation could also lead to another execution—and therefore corresponds to
another set of DAGs—in which the thread had not completed when it was polled and the poll
failed, in which case there is no dependency edge (Figure 3.1b).

If there is a path from u to u′ (using any combination of thread, spawn and join edges), we say
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that u is an ancestor of u′ (and u′ is a descendant of u), and write u w u′. We define shorthands
for a graph with the (proper) ancestors and descendants of a vertex u removed:

9 u , g \ {u′ 6= u | u′ w u}
8 u , g \ {u′ 6= u | u w u′}

If there is no path between u and u′ (i.e., u 6w u′ and u′ 6w u), the two computations may run in
parallel.

It is sometimes necessary to distinguish between weak and strong paths and ancestors. A
path is weak if it contains a weak edge. If all paths from u to u′, where u w u′, are weak, we
say that u is a weak ancestor of u′ and write u ww u′. Otherwise, u is a strong ancestor of u′ and
we write u ws u′. When it is not important whether a vertex is a weak or strong ancestor, we
continue to simply use the term “ancestor” and the un-superscripted notation.

Formal definition of a DAG. We now combine the above definitions into the formal definition
of a DAG. A DAG is a collection of threads, each identified by a thread symbol or thread name,
for which we use the metavariables a, b and variants. Formally, we model DAGs as quadruples
g = (T , Es, Ej, Ew), in which T is a mapping from thread names to a triple consisting of that
thread’s priority, its sequence of operations, and the delay, if any, before it is ready. We write
an element of the mapping as a ↪−→

ρ
(δ, ~u). This represents a thread a operating at priority ρ

consisting of the operations in ~u. If δ = 0, then the thread is ready to run. If δ > 0, the first
operation of ~u is delayed and must wait δ more time units before it can run. The next three
components of a DAG are the set Es of spawn edges, the set Ej of join edges and the set Ew of
weak edges. We write spawn edges as (u, a), indicating that a vertex u spawned a thread a. This
may be considered an edge from vertex u to the first vertex of a. We write join and weak edges
as (a, u) to indicate that vertex u joined with or polled thread a. This may be considered an edge
from the last vertex of a to vertex u.

Example. Finally, we conclude this section with an example that illustrates the features of
the DAG model. We begin with a non-interactive example, and then extend it with interac-
tive features. Consider the following code, which computes the 3rd Fibonacci number using
a standard parallel, recursive algorithm. All threads involved are at priority low. The syntax
is that of PriML, which we describe in the next chapter, but the ideas of the DAG model are
language-independent. At each call to fib n, a new thread is spawned to run fib (n - 1)
while fib (n - 2) is computed in the current thread. When both results are available, the
two threads join to sum the two results.

1 fun fib (n: int) =
2 if n <= 1 then
3 cmd[low] {ret n}
4 else
5 cmd[low]
6 {
7 t <- spawn[low] { do(fib (n - 1)) };
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fib 3 fib 1

fib 2

fib 1

fib 0 0+1=1

1+1=2(a, low)

(b, low)

(c, low)

Figure 3.2: The DAG corresponding to the simple Fibonacci program.

8 a <- do(fib (n - 2));
9 b <- sync t;

10 ret (a + b)
11 }
12 main {do (fib 3)}

The DAG corresponding to this code is shown in Figure 3.2. As before, we collapse long
sequential chains of vertices into single vertices shown in the figure. Vertices that are part of the
same thread are outlined in gray boxes. Each thread is labeled with its name and priority. Edges
to the beginning of a thread, such as the edge from fib 3 to fib 2, are spawn edges, edges
from the end of a thread (e.g., fib 1 to 0+1=1) are join edges, and edges within a thread are
continuation edges.

We now compose the Fibonacci program above with an interactive thread that asks the user
two questions and returns the answers to the top level. In the DAG corresponding to this program
(Figure 3.3), the interactive thread at priority high is shown in a darker box to indicate the higher
priority. The heavy edges after the input operations are drawn as thick lines, and annotated with
the latencies δ1 and δ2. The remaining edges are light; the implicit edge weight of 1 is omitted
from the figure.

1 fun quest () =
2 let val _ = output "What is your name?"
3 val name = input ()
4 val _ = output "What is your quest?"
5 val quest = input ()
6 in
7 cmd[high] { ret (name, quest) }
8 end
9

10 main
11 {
12 quest_t <- spawn[high] { do (quest ()) };
13 do (fib 3);
14 sync quest_t
15 }
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δ1 δ2

Figure 3.3: The DAG corresponding to the interactive Fibonacci program.

3.2 Response time and well-formedness

This section defines most of the remaining concepts necessary to discuss the response time of
threads in a schedule of a DAG. We begin by formally defining terms related to schedules and
response time, and then extend the standard notions of work and span into cost metrics that allow
us, in the following sections, to prove bounds on response time.

A schedule of a DAG simulates the execution of a parallel program on a given number of
processors. In determining the schedule, we assume that the entire DAG is given in advance;
thus, the results in the remainder of this chapter are offline scheduling results (see Chapter 2 for
a discussion of the distinction between the offline and online problems). In Chapter 5, we apply
this result to executions of the λ4 dynamic semantics as well.

A schedule determines which processors execute which vertices of the DAG during which
time steps. A vertex is enabled once all of its parents in the DAG have executed. An enabled
vertex may still not be able to be executed, because it may have incurred a delay. A vertex
whose parents have all executed and whose delay, if any, has elapsed, is called ready and may
be executed. Because we assume that a vertex with a heavy in-edge has no other edges, vertices
with in-edges fall into two categories. If a vertex has one or more light in-edges and no heavy
in-edges, it is ready as soon as it is enabled. If a vertex has a heavy in-edge of weight δ, it is
ready δ − 1 steps after it is enabled.

We formally define a schedule below.
Definition 1. A schedule is a mapping from time steps (indexed by integers starting at 0) to a set
of pairs (p, u) indicating that processor p executes vertex u at this step. A schedule must obey
certain rules:
• Each processor may execute at most one vertex per time step.
• A vertex may be executed only if it is ready.
One may think of a schedule as a form of pebbling: if P processors are available, at each

time step, place up to P pebbles on ready vertices until all vertices have been pebbled.

Response time and DAG Cost Metrics. Our goal is to show a bound on the response time of
threads in schedules. In a given schedule, the response time of a thread a, written T (a), is defined
as the number of steps from when the first vertex of a is ready (exclusive) to when the last vertex
of a is executed (inclusive). Many, though not all, programs start and end with a single thread
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(call it a). In terms of the DAG, this means that the DAG has a unique source (the first vertex
of a) and a unique sink (the last vertex of a). All fork-join programs, for example, obey this
property. For such programs, then the total execution time of the program is the same as T (a).

Intuitively, if our definitions of priority are set up correctly, the response time of a thread
running at priority ρ should depend only on the amount of work at priorities not less than ρ: any
other dependence would represent a priority inversion. Because the set of priorities “not less
than ρ” will be important in several places, we define a special notation for it:

6≺ ρ , {ρ′ ∈ R | ρ′ 6≺ ρ}

The priority work WR′(g) of a graph g is defined as the number of vertices in the graph at
priorities contained in the set R′.

WR′(g) , |{u ∈ g | Priog(u) ∈ R′}|

Furthermore, a thread’s response time should depend only on the amount of work available in
the system while it is running (i.e., not vertices completed before the thread is ready or spawned
after it completes). The competitor work, 9↓a, of thread a is the subgraph formed by the vertices
that may be executed in a valid schedule while a is active. More precisely, if

g = (a ↪−→
ρ

(δ, s · . . . · t) ] T , Es, Ej, Ew)

then
9↓a , g \ ({u 6= s | u w s} ∪ {u 6= t | t w u}) =9 s∩ 8 t

In this notation, the underlying graph, g, is left implicit because it will generally be clear from
context.

Combining these two notations, we can say that the response time of a thread a at priority ρ
should depend on W 6≺ρ(9↓a).

For example, in the DAG shown in Figure 3.4, the competitor work of b includes vertices
a2, a3, a4, c1, d1 and d2, because all of these vertices may be scheduled in parallel with b1 or
b2. However, the response time of b will only be affected by c1, d1 and d2 because thread a is
at lower priority. The competitor work of b does not include, for example, a1, c3 or e1 because
these vertices must be scheduled strictly before or after the vertices of b.

It may seem counterintuitive that, in the above example, the response time of thread b depends
on the work of d and vice versa. However, this must be the case: there exists a schedule in which
all of thread d is completed between b1 and b2, and there exists a schedule in which all of thread b
is completed between d1 and d2. A worst-case analysis must allow for both of these schedules.

Just as Brent’s Theorem relates computation time to both the work and the span of a parallel
computation, we will need a notion corresponding to the span, which will capture the property
that the response time T (a) cannot be less than the time required to execute the critical path of a
thread. The a-span Sa(g) of a graph g 3 a ↪−→

ρ
(δ, s · . . . · t) is the length of the longest strong

path in 9 s ending at t. We are interested in paths ending at t because these paths must be fully
executed before thread a completes, but we do not count ancestors of s because such vertices will
have already been executed before a begins and are therefore not counted in T (a). If a program
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Figure 3.4: An example DAG.

leave house

bus comes

get on bus

light turns green

arrive at campus

Figure 3.5: An analogy for thinking about weak edges.

starts and ends with a single thread a, then Sa(g) reduces to the standard notion of the span of
the graph, i.e., the longest path.

In Figure 3.4, the c-span corresponds to the path b1, b2, c2, c3, e1, e2, c4. The path does
not include a1 because this is an ancestor of c1 and must therefore be scheduled strictly before
thread c.

The theorems later in this chapter place a bound on the response time of a thread involving
the above quantities, under certain conditions. We now describe in detail the two most important
conditions required for the bounds to hold: admissibility of the schedule and well-formedness of
the DAG.

Admissibility. The scheduling results of the remainder of the chapter only concern admissible
schedules.
Definition 2. A schedule of a DAG with a weak edge (u, u′) is inadmissible if, at any step, u
has not executed and u′ has no incoming strong edge. Schedules in which such a situation never
arises are admissible.

Admissibility is important because, in keeping with the intuition behind weak edges, it en-
sures that we consider only executions in which u′ does not wait for u to complete.

To understand weak edges and admissibility, suppose I am an impatient graduate student who
does not like waiting for buses. Figure 3.5 shows a DAG corresponding to part of my morning
routine, which I might use to calculate how long it will take to arrive on campus from when I
leave the house2. If all edges in the DAG were strong, the critical path of my morning routine
would include both waiting for the bus to come and waiting for the traffic light to turn green.
Both events would factor into the maximum amount of time I would have to schedule. However,
if I don’t have to be on campus today, I might simply decide that if I leave the house and the
bus isn’t there, I will give up and not go to campus that day. This condition is indicated with a

2This DAG incorrectly assumes that the bus won’t leave without me.
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weak edge from “bus comes” to “get on bus”. If I wish to calculate the maximum (or average,
etc.) time my morning routine will take on days I go to campus, I need not consider the time
I might have to spend waiting for the bus, because if I have to wait for the bus, the morning is
inadmissible and not counted toward “days I go to campus”.

Well-formed DAGs To prove a bound on response time that depends only on work at low prior-
ity, we need to place an additional restriction on DAGs. Consider a DAG with two threads, a ↪−→

ρa

(δa, u1 · . . . · u · . . . · un) and b ↪−→
ρb

(δb, ~ub), where ρb ≺ ρa. Suppose there is a join edge (b, u)

from b to a. Then thread b is counted toward the a-span of the DAG (put another way, thread a
will need to wait for b to complete), so the response time of a depends on the length of thread b.
It is not possible to construct a schedule of such a DAG in which the response time of thread a
depends only on lower-priority work, and so we rule out such DAGs in our theorems.
Definition 3. A DAG g = (T , Es, Ej, Ew) is well-formed if for all threads

a ↪−→
ρ

(δ, u1 ·δ1 . . . ·δn−1 un) ∈ T

if u ws un and u 6w u1 then ρ � Priog(u).
That is, no strong ancestor of un that isn’t also an ancestor of u1 may have a priority less than

that of a. In more intuitive phrasing, this means that no thread depends on lower-priority work
along its critical path. Threads may depend on lower-priority work through weak edges, but this
will not cause any lack of responsiveness in admissible schedules because admissibility requires
that weak edges do not delay the computation (i.e., do not end up being on the critical path).

3.3 Bounding response time of prompt schedules
Bounding the length of a schedule generally requires restricting attention to schedules that obey
some scheduling principle (for an example of why this is necessary, the schedule that never
executes any vertices is valid according to our definition but not useful for proving any bounds).
Possibly the best-known of these is the greedy scheduling principle. A greedy schedule is one
in which as many vertices as possible are executed in each time step, bounded by P and the
number of ready vertices. Greedy schedules obey provable bounds on computation time [42], but
greediness is insufficient to place bounds on response time. To provide such bounds, a schedule
must take into account the thread priorities. Our prior work [87] develops the idea of a prompt
schedule, which is a greedy schedule that prioritizes vertices according to their priority, with high
priorities preferred over low. This prior work only considered languages with two priorities, so
more care is required to apply the bounds to an arbitrary partial order. At each step, we assign at
most P vertices to processors and then execute all of the assigned vertices in parallel. To begin,
assign any ready vertex such that no unassigned ready vertex has a higher priority,3 and continue
until P vertices are assigned or no ready vertices remain. According to this definition, a prompt
schedule is necessarily greedy.

3Simply saying “pick a vertex of the highest available priority” would be correct in a totally ordered setting, but
might be ambiguous in our partially ordered setting.
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Theorem 1 bounds the response time of a thread based on quantities which depend only on
the work and span of high-priority threads.
Theorem 1. Let g 3 a ↪−→

ρ
(δ, ~u) be a well-formed DAG. For any admissible prompt schedule

on P processors,

T (a) ≤ W6≺ρ( 9↓a)

P
+ Sa(9↓a)

Proof intuition. This proof and several others in this chapter use a “bucket-and-token” analogy,
which is fairly common in proofs of this form (e.g., [6]), to account for the actions of processors
at each time step. We visualize a processor at a time step by a token that each processor spends
at each time step. We divide processor-timesteps, and therefore tokens, into two categories or
“buckets”, depending on whether or not the processor is busy with high-priority work at that
time step. We can bound the number of tokens in each category individually, and then add the
quantities together to find the total number of tokens spent. Because P tokens are spent per time
step, this in turn gives the number of time steps.

Proof. Let s and t be the first and last vertices of a, respectively. Consider the portion of the
schedule from the step in which s becomes ready (exclusive) to the step in which t is executed
(inclusive). For each processor at each step, place a token in one of two buckets. If the processor
is working on a vertex of a priority not less than ρ, place a token in the “high” bucket; otherwise,
place a token in the “low” bucket. Because P tokens are placed per step, we have T (a) =
1
P

(Bl+Bh), whereBl andBh are the number of tokens in the low and high buckets, respectively,
after t is executed.

Each token in Bh corresponds to work done at priority not less than ρ, and thus Bh ≤ W 6≺ρ(9↓
a), so

T (a) ≤ W 6≺ρ(g)

P
+
Bl

P

We now need only bound Bl by P · Sa( 9↓a).
Let step 0 be the first step after s is ready, and let Exec(j) be the set of vertices that have been

executed at the start of step j. Consider a step j in which a token is added to Bl. For any strong
path ending at t consisting of vertices of g \ Exec(j), the path starts at a vertex that is enabled
at the beginning of step j. If the vertex is not ready, its delay decreases by one in step j. If the
vertex is ready, then by the definition of well-formedness, it must have priority greater than ρ
and is therefore executed in step j by the prompt principle. In either case, the length of the path
decreases by 1 and so Sa(g \Exec(j + 1)) = Sa(g \Exec(j))− 1. If Sa(g \Exec(j)) = 1 (i.e., t
has no incoming strong edges), then t must be ready, otherwise this schedule is inadmissible.
Therefore, the maximum number of steps in which Bl increases is Sa(g \Exec(0)), and so Bl ≤
P · Sa(g \ Exec(0)). Because 9 s ⊃ g \ Exec(0), any path excluding vertices in Exec(0) is
contained in 9 s, and Sa(g \ Exec(0)) ≤ Sa( 9 s), so Bl ≤ P · Sa(9 s) = P · Sa( 9↓a).

For programs that start and end with a single “main” thread, the above theorem not only
bounds response time, but computation time as well. Let a be the main thread, which is always
at the bottommost priority. The response time of the main thread is equal to the computation
time of the entire program. Because prompt schedules are greedy, we expect to be able to bound
this time by W

P
+S, whereW is the total number of operations in the program and S is the length

36



of the longest path in the DAG [42]. Indeed, the priority work and a−span reduce to the overall
work and span, respectively, so the bound given by Theorem 1 coincides with the expected bound
on computation time.

3.4 Fairness
The prompt scheduling principle of the previous section, and the accompanying results, assume
that higher-priority threads should always be scheduled preferentially over lower-priority ones.
This is not always the desired behavior. In applications where higher-priority (e.g., interactive)
threads constitute a large fraction of the work, prompt scheduling could cause lower-priority
computation to be starved. Such applications benefit from a schedule that observes some notion
of fairness, devoting a certain fraction of processor cycles to lower-priority work.

To avoid starvation, we introduce a fair scheduling principle that takes a parameter we call
the fairness criterion. A fairness criterion C is a discrete probability distribution over priorities:
a mapping from priorities to real numbers in the range [0, 1], summing to 1. When threads of all
priorities are present in the system, the scheduler should devote, on average, the fraction C(ρ)
of processor cycles to threads at priority ρ. When a particular priority is unavailable (i.e., has no
threads available in the system), it “donates” its cycles to the highest available priority. This pol-
icy is flexible enough to encode many application-specific scheduling policies. For example, if>
is the highest priority, we can encode a form of prompt scheduling in which as many processors
as possible are devoted to the highest-priority work available, followed by the next-highest, and
so on. The fairness criterion for such a policy would be C(>) = 1 and C(ρ) = 0 for all ρ 6= >.

A fairly prompt schedule, parametrized by a fairness criterion C, is a schedule that adheres to
the principle described intuitively above. At each time step, processors are assigned to priorities
probabilistically according to the distribution C. Processors attempt to execute a ready vertex at
their assigned priority. Processors that are unable to execute a vertex at their assigned priority
default to the “prompt” policy and execute the highest-priority ready vertex.

The use of probability in the definitions of fairness and fairly prompt schedules merits fur-
ther discussion. Formal definitions of fairness, for example in the model checking community
(e.g., [53]), are often stated as properties of infinite executions (e.g., that every process executes
infinitely many times over an infinite interval). The notion of fairness described here diverges
from such definitions in two important ways. First, the number of processes and (in general) the
lengths of schedules are finite. Second, our notion of fairness places requirements on the relative
frequency at which threads execute, as opposed to simply requiring that they execute eventually.
Consider the following fairness criterion over a set of priorities R = {H,M,L}.

C(ρ) =


0.5 ρ = H
0.3 ρ = M
0.2 ρ = L

For a program that runs for 12 time steps on 2 processors, it is impossible to exactly meet such a
fairness criterion because 0.2 × 24 is not an integral number of processor-steps. Given a finite,
discrete number of processors and time steps, we could guarantee that the fairness criterion is met
to within some approximation, but we instead choose to introduce probabilistic reasoning and to
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guarantee that the fairness criterion is met exactly in expectation. As the number of processors
or time steps approaches∞, the distribution of work should converge to the fairness criterion.

In the pebbling analogy, executing a program using a fairly prompt schedule may be seen as
pebbling a graph by drawing up to P pebbles at a time at random from an infinite bag of pebbles.
Each pebble is colored, and each color is associated with a priority. The colored pebbles in the
bag are distributed according to the fairness criterion C. When pebbles are drawn at a time step,
we attempt to place each one on a vertex of the appropriate priority. Any pebbles that are left are
placed on the highest-priority vertices, then the next-highest, and so on.

3.4.1 Bounding Response Time
We now bound the response time of threads in fairly prompt schedules by extending the results
for prompt schedules in the previous section. We need not develop new cost metrics because,
intuitively, fairness doesn’t cause high-priority threads to depend on any work they otherwise
wouldn’t. Fairness only “inflates” the response time bounds to account for the fraction of cycles
devoted to lower-priority work according to the fairness criterion. The priority work and a-
span are defined as before. We also introduce a convenient shorthand for summing the fairness
criterion over a set of priorities:

C(R′) ,
∑

ρ∈R′ C(ρ)

Theorem 2 bounds the expected response time (because fairly prompt schedules are defined
probabilistically, the response time can only be bounded in expectation) of a thread based on
quantities which depend only on the fairness criterion and the work and span of high-priority
vertices. Before stating the theorem, we first consider intuitively what the bound should be in
several special cases. The theorem will give a general bound that specializes correctly in each of
these cases.

1. Prompt scheduling. As stated above, a prompt schedule may be defined as a fairly prompt
schedule for the fairness criterion Cp where Cp(>) = 1 and Cp(ρ) = 0 if ρ 6= >. So, for
any schedule using Cp, the bound should match that of Theorem 1:

E[T (a)] ≤ W6≺ρ(9↓a)

P
+ Sa(9↓a)

(We express the bound as an expectation for consistency although this bound is actually
exact because the fairness criterion is degenerate.)

2. A thread of priority ρ. Suppose the DAG has a thread a of priority ρ. Consider the
processor cycles which are intended to be devoted to priorities not less than ρ. These
cycles, in expectation, make up a fraction C( 6≺ ρ). For each of these processor cycles,
the schedule is greedy with respect to ready work at priority not less than ρ: by the fairly
prompt principle, if such work exists, it will be executed on this cycle. (If a cycle is
intended for priority ρ and no work at ρ is ready on this cycle, but a vertex of priority ρ′

greater than ρ is ready, then the cycle will be donated to that vertex rather than being used
on lower-priority work.) So, we would expect the response time bound to match that of
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Theorem 1, inflated to account for the fact that only 1
C(6≺ρ)

of cycles are being spent on this
work in expectation.

E[T (a)] ≤ 1

C(6≺ ρ)

(
W 6≺ρ(9↓a)

P
+ Sa(9↓a)

)
3. A bottom-heavy fairness criterion. Consider a fairness criterion Cb where Cb(⊥) = 1

and Cb(ρ) = 0 for ρ 6= ⊥. Since such a schedule is, in some sense, the opposite of
prompt, one might expect it to not be useful. However, some of our experimental results
have shown that, when high-priority interactive work is very rare, it can be beneficial to
assign very few cycles to it and devote most cycles to computation. The criterion Cb is the
extreme limit of this idea. If Cb is plugged in to the bound of the previous case, the bound
diverges for any ρ 6= ⊥. In this case, a more useful analysis is to simply observe that we
are always being greedy with respect to the work available at any priority. This would give
us the bound

E[T (a)] ≤ WR(9↓a)

P
+ Sa( 9↓a)

Cases 2 and 3 above can be viewed as two extremes along a spectrum. In both cases, some
setR′ of priorities is under consideration, along with the cycles devoted to priorities inR′ and the
competitor work at priorities inR′. In case 2, we letR′ =6≺ ρ, thus focusing on a smaller fraction
of cycles but also a smaller amount of competitor work. In case 3, we let R′ = R, focusing on all
of the cycles but a larger amount of competitor work. The general bound interpolates between
the two, allowing R′ to be 6≺ ρ′ for any ⊥ � ρ′ � ρ. Case 2 is obtained by letting ρ′ = ρ and
case 3 is obtained by letting ρ′ = ⊥. Case 1 is obtained by letting ρ′ = ρ and C = Cp.
Theorem 2. Let g 3 a ↪−→

ρ
(δ, ~u) be a well-formed DAG. For any fairly prompt schedule on P

processors and any ρ′ � ρ,

E[T (a)] ≤ 1

C( 6≺ ρ′)

(
W 6≺ρ′( 9↓a)

P
+ Sa(9↓a)

)
Proof. Let s and t be the first and last vertices of a, respectively. Consider the portion of the
schedule from the step in which s becomes ready (exclusive) to the step in which t is executed
(inclusive). At each step, let PC be the number of processors attempting to work on vertices of
priorities in 6≺ ρ′. For each processor at each step, place a token in one of three buckets. If the
processor is attempting to work at a priority not less than ρ′, but is unable to, place a token in the
“low” bucket. If it attempting to work at a priority not less than ρ′ and succeeds, place a token
in the “high” bucket. If it is attempting to work at a priority less than ρ′, place a token in the
“fair” bucket Bf . Because P tokens are placed per step, we have T (a) = 1

P
(Bl + Bh + Bf ),

where Bl, Bh and Bf are the number of tokens in the low, high and fair buckets, respectively,
after t is executed.

Let c = C(6≺ ρ′). By fairness, we have E[Bl +Bh] = c(Bl +Bh +Bf ). Thus,

E[T (a)] =
1

Pc
(Bl +Bh)
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Each token in Bh corresponds to work done at priority not less than ρ′, and thus Bh ≤ W 6≺ρ′(9↓a),
so

T (a) ≤ 1

c

(
W 6≺ρ′(g)

P
+
Bl

P

)
We now need only bound Bl by P ·Sa( 9↓a). The proof of this bound is identical to the analogous
portion of the proof of Theorem 1.

Theorem 2 adapts the bound of Theorem 1 to fairly prompt schedules. Both theorems are
primarily concerned with the responsiveness of high-priority threads, since Theorem 1 was for-
mulated in a setting where starvation is possible and no guarantees can be made about the per-
formance of low-priority threads. Theorem 2 bounds how much high-priority threads can be
penalized by fairness, but not how much low-priority threads can benefit from fairness. Since
the entire point of introducing fairness was to guarantee decent performance for lower-priority
threads, we give such a bound as well.

The intuition behind this result is that, from the perspective of a thread (or collection of
threads) at one priority ρ, a fairly prompt schedule on P processors appears the same as a greedy
schedule on P · C(ρ) processors. In this way, the result is very much like the offline schedul-
ing bound of Arora et al. [6], which concerns multiprogrammed environments in which only a
fraction of the total processors may be available to a parallel computation at any given step. Our
bound must include the thread’s competitor work at priority ρ, but otherwise the bound and proof
are quite similar to those of Arora et al.
Theorem 3. Let g be a well-formed DAG. Let a ↪−→

ρ
(δ, s · . . . · t) ∈ g be such that for all u ∈ g

where u w t and u 6w s, it is the case that Priou(g) = ρ, and that all edges incident on u are
strong and light.

For any fairly prompt schedule on P processors and any ρ′ � ρ,

E[T (a)] ≤ 1

P · C(ρ)

(
W{ρ}(9↓a) + Sa(9↓a) · (P − 1)

)
Proof. Consider the portion of the schedule from the step in which s becomes ready (exclusive)
to the step in which t is executed (inclusive). At each step, collect a token from each processor
assigned to priority ρ at that step. If the processor successfully works on a vertex of priority ρ
at that step, place a token in the “work” bucket; otherwise, place a token in the “idle” bucket.
Suppose the number of tokens collected at a step i is Pi. Since E[Pi] = P · C(ρ), for any T , we
have

E[
T∑
i=1

Pi] = TP · C(ρ)

Thus,

E[T (a)] =
1

P · C(ρ)
(Bw +Bl)

where Bw and Bl are the numbers of tokens in the work and idle buckets, respectively, at the end
of the computation. Each token in Bw corresponds to work done at priority ρ, and thus Bw =
W{ρ}( 9↓a), so

E[T (a)] ≤ 1

P · C(ρ)

(
W{ρ}(9↓a) + +Bl

)
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We now need only bound Bl by Sa(9↓a) · (P − 1).
Let step 0 be the step after s is ready, and let Exec(j) be the set of vertices that have been

executed at the start of step j. Consider a step j in which a token is added to Bl. For any strong
path ending at t consisting of vertices of g \ Exec(j), the path starts at a vertex of priority ρ that
is ready at the beginning of step j (it must be ready since, by assumption, all edges are light).
By the fair principle, this vertex must be executed in step j, so the length of the path decreases
by 1 and so Sa(g \ Exec(j + 1)) = Sa(g \ Exec(j)) − 1. Therefore, the maximum number of
steps in which Bl increases is Sa(g \ Exec(0)), and so Bl ≤ Sa(g \ Exec(0)) · (P − 1) since
at most P − 1 processors can be idle while thread a is active. Because 9 s ⊃ g \ Exec(0),
any path excluding vertices in Exec(0) is contained in 9 s, and Sa(g \ Exec(0)) ≤ Sa( 9 s), so
Bl ≤ Sa(9 s) = P · Sa(9↓a) · (P − 1).
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Chapter 4

A Language for Responsive Parallel
Programs

They have been at a great feast
of languages, and stolen the scraps.

Love’s Labour’s Lost (V.1.38–39)

This chapter introduces PriML, a language for writing responsive parallel programs, which
includes a high-level thread model inspired by cooperative languages, facilities for specifying the
priorities of threads using partially ordered priorities, and a type system for preventing priority
inversions. In Section 4.1, we present the language at a high level. This section is not intended
to be an exhaustive or formal language definition, but rather to highlight the main ideas of the
language and how it accomplishes the goals of this thesis. The presentation is therefore high-
level and sometimes informal. The rest of this chapter formalizes these ideas by presenting a
core calculus λ4 (Section 4.2) that captures the essence of PriML, and showing how programs
written in a sizable, formally defined subset of PriML may be elaborated into programs in the
calculus (Section 4.3). The remainder of the thesis expands on the ideas of this chapter to place
performance bounds on λ4 programs (Chapter 5) and describes how they may be realized in
practice (Chapters 6 and7).

4.1 The PriML language

This section presents an overview of an ML-like language for multithreaded programming with
priorities. As a running example, we consider an email client which interacts with a user while
performing other necessary tasks in the background. The PriML language is built on top of
Standard ML, and incorporates most of the features of SML, in addition to facilities for creating
and manipulating threads, and for defining priorities. The language also has a type system that
extends SML’s type system to ensure the proper use of priorities. We will not describe the
existing SML language in detail in this thesis.
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Priorities. PriML enables the programmer to define priorities as needed and specify the rela-
tionships between them. For example, in designing an email client, we may wish to alert the user
to certain situations (such as an incoming email) and we also wish to compress old emails in the
background when the system is idle. To express this in PriML, we define two priorities alert
and background and order them accordingly as follows.

priority alert
priority background
order background < alert

The ordering constraint specifies that background is lower priority than alert. Programmers
are free to specify as many, or as few, ordering constraints between priorities as desired. PriML
therefore provides support for a set of partially ordered priorities. Partially ordered priorities
suffice to capture the intuitive notion of priorities, and to give the programmer flexibility to
express any desired priority behavior, but without the burden of having to reason about a total
order over all priorities. Consider two priorities p and q. If they are ordered, e.g., p < q, then
the system is instructed to run threads with priority q over threads with priority p1. If no ordering
is specified (i.e., p and q are incomparable in the partial order), then the system is free to choose
arbitrarily between a thread with priority p and another with priority q.

The structure of a program. To ensure responsive use of priorities, PriML provides a modal
type system that tracks priorities. To support the tracking of priorities, the syntax and type system
of PriML distinguish between commands and expressions.

Commands provide the constructs for spawning and synchronizing threads. Because com-
mands may interact with other threads, the priority at which a command runs is significant and
must be specified (we will later introduce a way to introduce commands that are polymorphic in
the priority at which they run). Commands return values, and are considered to have the type of
the value they return. For example, the command ret e evaluates e to a value and returns the
value. Thus,

ret (20 * 2 + 2)

is a command of type int.
Expressions consist of an ML-style functional language, with some extensions. Expressions

cannot directly execute commands or interact with threads, and can thus be evaluated without
regard to priority. Expressions can, however, pass around encapsulated commands. The syntax

cmd[p] { m }

encapsulates the command m, running at priority p (where m is a command of type ’a). The
expression above is of type ’a cmd[p]. The encapsulated command is suspended and does
not run immediately (because it may spawn or interact with other threads, which expressions are

1As the syntax implies, the above ordering gives p a strictly lower priority than q. Thus, it would be more
precise to say that the programmer annotations define a strict order on priorities. However, for the purposes of type
checking, it will be more useful to consider the partial order <=, where p <= q if p and q are syntactically equal
or if p < q can be derived from the transitive closure of the programmer annotations. Because the partial order
can be easily derived from the strict order and vice versa, we use the term “partial order” for consistency with prior
literature on priorities.
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not permitted to do), but it may be executed by the command do e, which evaluates e to an
encapsulated command and then executes it. As an example, the code

do
{
let val m = cmd[p] { ret (20 * 2 + 2) }

val _ = do_a_lot_of_stuff ()
in
m

end
}

will execute the command ret (20 * 2 + 2), thus returning 42, but only after evaluat-
ing do_a_lot_of_stuff ().

Commands may be sequenced using the notation { x <- m1; m2}, which runs m1, binds
its return value to x and then runs m2. If the return value of m1 is not needed, the short-
hand { m1; m2} is available. A full PriML program consists of a sequence of declarations,
followed by a single command which is run as the “main” thread of the program.

Threads. Commands may spawn new threads which execute asynchronously with the rest of
the program. Threads are annotated with the priorities at which they run. For example, in re-
sponse to a request from the user, the mail client can spawn a thread to sort emails for background
compression, and spawn another thread to alert the user about an incoming email.

spawn[background] { ret (sort ...) };
spawn[alert] { ret (display ‘‘Incoming mail!’’) }

The spawn command takes a command to run in the new thread and returns a handle to the
spawned thread. Thread handles to threads at priority p returning values of type t are first-class
values of type t thread[p]. In the above code, the returned thread handle is ignored, but
it can also be bound to a variable and used later to synchronize with the thread (wait for it to
complete).

spawn[background] { ret (sort ...) };
alert_thread <- spawn[alert] { ret (display ‘‘New mail received’’) };
sync alert_thread

Priority polymorphism. Previously, we have seen that commands must be annotated with the
priority at which they run. This can be quite restrictive in practice because it is often the case that
code is reused in many places throughout a program, possibly at different priorities. For example,
several parts of our email client might wish to use a library function sort for sorting (e.g., the
background thread sorts emails by date to decide which ones to compress and a higher-priority
thread sorts emails by subject when the user clicks a column header.) To support computations
that can operate at multiple priorities, the type system supports priority polymorphism through a
polymorphic type of the form forall p: C. t, where p is a newly bound priority variable,
and C is a set of constraints of the form p1 <= p2 (where p1 and p2 are priority constants or
variables, one of which will in general be p), which bounds the allowable instantiations of p.

45



1 fun[p] qsort (compare: ’a * ’a -> bool) (s: ’a seq) : ’a seq cmd[p] =
2 if Seq.isEmpty s then
3 cmd[p] {ret Seq.empty}
4 else
5 let val pivot = Seq.sub(s, (Seq.length s) / 2)
6 val (s_l, s_e, s_g) = Seq.partition (compare pivot) s
7 in
8 cmd[p]
9 {

10 quicksort_l <- spawn[p] {do ([p]qsort compare s_l)};
11 quicksort_g <- spawn[p] {do ([p]qsort compare s_g)};
12 ss_l <- sync quicksort_l;
13 ss_g <- sync quicksort_g;
14 ret (Seq.append [ss_l, s_e, ss_g])
15 }
16 end

Figure 4.1: Code for multithreaded quicksort, which is priority polymorphic.

Example: priority-polymorphic multithreaded quicksort. We can implement a parallel sort-
ing routine, using a parallel version of the Quicksort algorithm. Quicksort is easily parallelized,
and so the library code spawns threads to perform recursive calls in parallel. The use of threads,
however, means that the code must involve priorities and cannot be purely an expression. Be-
cause sorting is a basic function and may be used at many priorities, we would want the code
for qsort to be polymorphic over priorities. This is possible in PriML by defining qsort to
operate at a priority defined by an unrestricted priority variable.

Figure 4.1 illustrates the code for a multithreaded implementation of Quicksort in PriML.
The code operates over sequences, an abstract data type of parallel ordered collections, and uses
a module called Seq which implements some basic operations on sequences. In addition to a
comparison function on the elements of the sequence that will be sorted and the sequence to
sort, qsort takes as an argument a priority p, to which the body of the function may refer
(e.g., to spawn threads at that priority)2. The implementation of qsort follows a standard
implementation of the algorithm but is structured according to the type system of PriML. This
can be seen in the return type of the function, which is an encapsulated command at priority p.

The function starts by checking if the sequence is empty. If so, it returns a command that
returns an empty sequence. If the sequence is not empty, it partitions the sequence into sub-
sequences consisting of elements less than, equal to and greater than, a pivot, chosen to be
the middle element of the sequence. It then returns a command that sorts the sub-sequences
in parallel, and concatenates the sorted sequences to produce the result. To perform the two
recursive calls in parallel, the function spawns two threads, specifying that the threads operate

2Note that, unlike type-level parametric polymorphism in languages such as ML, which can be left implicit and
inferred during type checking, priority parameters in PriML must be specified in the function declaration.
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1 priority loop_p
2 priority sort_p
3 order sort_p < loop_p
4

5 fun loop (emails: email list) (bgt: email list thread[sort_p])
6 : unit cmd[loop_p] =
7 cmd[loop_p]
8 {
9 r <- poll bgt;

10 x <- ret (case r of
11 SOME l => display_ordered l
12 | NONE => ());
13 (* Handle events... *)
14 do (loop emails bgt)
15 }
16

17 fun startloop (emails: email list) : unit cmd[loop_p] =
18 cmd[loop_p]
19 {
20 t <- spawn[sort_p] {do ([sort_p]qsort date emails)};
21 do (loop emails t)
22 }

Figure 4.2: Querying background threads with polling.

at priority p.

Polling. The sync command blocks on a thread until it is complete. Sometimes, we would
rather check if a thread is complete in a non-blocking fashion. For this purpose, PriML also
supports polling of threads. The command poll e, where e : ’a thread[p], evaluates e
to a thread handle and returns a value of type ’a option. If the thread has completed and
returned a value v, the command returns SOME v. Otherwise, it returns NONE3

Polling is useful for checking the status of a background computation without blocking a
foreground thread. For example, the email client might spawn a background sorting thread from
a high-priority event loop and check its status at each iteration of the loop in order to display the
sorted emails when complete. Code for this example is shown in Figure 4.2.

Cancellation. By default, a thread runs to completion even if it is never synchronized on or
polled. This is necessary to preserve the semantics of a program because, in general, threads

3We do not specify that polling must return completely up-to-date results, because this may be difficult or costly
to implement in practice on very large systems, depending on memory models and implementation details. Our
implementation, however, makes thread results available for polling very quickly.
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1 {
2 t1 <- spawn[p] {do ([sort_p]qsort date emails)};
3 t2 <- spawn[p] {do ([sort_p]mergesort date emails)};
4 do (let fun choose () =
5 cmd[p]
6 {
7 v1 <- poll t1;
8 v2 <- poll t2;
9 do (case (v1, v2) of

10 (SOME l, _) => cmd[p] { cancel t2; ret l }
11 | (_, SOME l) => cmd[p] { cancel t1; ret l }
12 | (NONE, NONE) => choose ())
13 }
14 in
15 choose ()
16 end)
17 }

Figure 4.3: Choosing the first thread to complete with polling and cancellation.

may have side effects. We provide a cancel command to explicitly stop execution of running
threads. Cancelling a thread indicates to the runtime that the thread is no longer needed and can
be discarded. The runtime may delay cancellation of the thread until it is safe and/or convenient.
Programmers should therefore not depend on cancellation happening immediately.

Combined with polling, cancellation allows us to spawn two threads, perhaps performing the
same computation by different methods, use the answer of the first thread to complete, and can-
cel the other to avoid unnecessary computation. This is similar to Manticore’s nondeterministic
choice [49] or CML’s select, though it is not the most efficient implementation of such a con-
struct because of the busy-waiting. Code for this example is shown in Figure 4.3. This example
shows that, even in the absence of mutable state, the presence of polling makes PriML programs
nondeterministic. Cancellation also leads to nondeterminism in the presence of any side effects,
because there is no guarantee of which side effects will occur before a thread is cancelled.

Priority Inversions. The purpose of the modal type system is to prevent priority inversions,
that is, situations in which a thread synchronizes with a thread of a lower priority. As we saw in
Chapter 3, such inversions prevent us from showing reasonable bounds on the response times of
high-priority threads, and so we ruled them out by considering only well-formed DAGs without
priority inversions. The requirements placed on programs by the type system are analogous, and
indeed we show in Section 5.2 that well-typed programs give rise to well-formed cost DAGs in
a formal sense. An example of a priority inversion appears in Figure 4.4a. This code shows
a portion of the main event loop of the email client, which processes and responds to input
from the user. The event loop runs at a high priority. If the user sorts the emails by date, the
loop spawns a new thread, which calls the priority-polymorphic sorting function. The code
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1 priority loop_p
2 priority sort_p
3 order sort_p < loop_p
4

5 fun loop emails : unit cmd[loop_p]
6 =
7 case next_event () of
8 SORT_BY_DATE =>
9 cmd[loop_p]

10 {
11 t <- spawn[sort_p]
12 {do ([sort_p]qsort
13 date emails)};
14 l <- sync t;
15 ret (display_ordered l)
16 }
17 | ...

(a) Ill-typed event loop code

1 priority loop_p
2 priority sort_p
3 order sort_p < loop_p
4

5 fun loop emails : unit cmd[loop_p]
6 =
7 case next_event () of
8 SORT_BY_DATE =>
9 cmd[loop_p]

10 {
11 spawn[sort_p]
12 { l <- do ([sort_p]qsort
13 date emails);
14 ret (display_ordered l)
15 }
16 }
17 | ...

(b) Well-typed event loop code

Figure 4.4: Two implementations of the event loop, one of which displays a priority inversion.

instantiates this function at a lower priority sort_p, reflecting the programmer’s intention that
the sorting, which might take a significant fraction of a second for a large number of emails,
should not delay the handling of new events. Because syncing with that thread immediately
afterward (line 14) causes the remainder of the event loop (high-priority) to wait on the sorting
thread (lower priority), this code is correctly rejected by the type system. The programmer
could instead write the code as shown in Figure 4.4b, which displays the sorted list in the new
thread, allowing the event loop to continue processing events. This code does not have a priority
inversion and is accepted by the type system.

Although the priority inversion of Figure 4.4a could easily be noticed by a programmer, the
type system also rules out more subtle priority inversions. Consider the ill-typed code in Fig-
ure 4.5, which shows another way in which a programmer might choose to implement the event
loop. In this implementation, the event loop spawns two threads. The first (at priority sort_p)
sorts the emails, and the second (at priority display_p) calls a priority-polymorphic func-
tion [p]disp, which takes a sorting thread at priority p, waits for it to complete, and displays
the result. This type of “chaining” is a common idiom in programming with futures, but this at-
tempt has gone awry because the thread at priority display_p is waiting on the lower-priority
sorting thread. Because of priority polymorphism, it may not be immediately clear where exactly
the priority inversion occurs, and yet this code will still be correctly rejected by the type system.
The type error is on line 10. This sync operation is passed a thread of priority p, and there is
no guarantee that p is higher-priority than display_p (and, in fact, the instantiation on line 20
would violate this constraint). We may correct the type error in the disp function by adding this
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1 priority loop_p
2 priority display_p
3 priority sort_p
4 order sort_p < loop_p
5 order sort_p < display_p
6

7 fun[p] disp (t : email seq thread[p]) : unit cmd[display_p] =
8 cmd[display_p]
9 {

10 l <- sync t;
11 ret (display_ordered l)
12 }
13

14 fun loop emails : unit cmd[loop_p] =
15 case next_event () of
16 SORT_BY_DATE =>
17 cmd[loop_p]
18 {
19 t <- spawn[sort_p] { do ([sort_p]qsort date emails) };
20 spawn[display_p] { do ([sort_p]disp t) }
21 }
22 | ...

Figure 4.5: An ill-typed attempt at chaining threads together.

constraint to the signature:

fun[p : display_p <= p] disp (t: email seq thread[p])
: unit cmd[display_p] =

With this change, the instantiation on line 20 would become ill-typed, as it should because
this way of structuring the code inherently has a priority inversion. The event loop code should
be written as in Figure 4.4b to avoid a priority inversion. However, the revised disp function
could still be called on a higher-priority thread (e.g., one that checks for new mail).

Note that the programmer could also fix the type error in both versions of the code by spawn-
ing the sorting thread at loop_p. This change, however, betrays the programmer’s intention
(clearly stated in the priority annotations) that the sorting should be lower priority. The purpose
of the type system, as with all such programming language mechanisms, is not to relieve pro-
grammers entirely of the burden of thinking about the desired behavior of their code, but rather
to ensure that the code adheres to this behavior if it is properly specified.

Fairness. PriML allows programmers to specify fairness criteria, as described in Section 3.4,
by assigning integers to priorities indicating how processor resources should be allocated in
situations where work at all priorities is available. After declaring a priority p, the fairness value
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can be indicated using a new form of declaration:

fairness p 100

The scaling on the numbers is arbitrary and is normalized at compile time. The relative
amount of processor time given to each priority is determined by the ratio of the fairness values.
The fairness criterion is orthogonal to the ordering on the priorities. For example, if it is very
important to us that the sorting thread not be starved by the interaction loop, we might assign it
most of the processor time while still indicating that the interaction loop is higher priority:

1 priority loop_p
2 priority display_p
3 priority sort_p
4 order sort_p < loop_p
5 order sort_p < display_p
6 fairness sort_p 50
7 fairness display_p 30
8 fairness loop_p 20

If a fairness value is not given for a particular priority, it defaults to zero. Work at that priority
will still be done if work at higher priorities is unavailable. For example, the fairness declarations

fairness display_p 30
fairness loop_p 20

indicate that sorting should be done during any time in which display and interaction loop events
are unavailable. If no fairness criterion is specified, the default is a “winner-take-all” strategy in
which the highest-priority work available is always run.

4.2 A Core Calculus for Prioritized Threads
In this section, we define a core calculus λ4 which captures the key ideas of the PriML lan-
guage. Figure 4.6 presents the abstract syntax of λ4 . In addition to the unit type, a type
of natural numbers, functions, product types and sum types, λ4 has three special types. The
type τ thread[ρ] is used for a handle to an asynchronous thread running at priority ρ and re-
turning a value of type τ . The type τ cmd[ρ] is used for an encapsulated command. The calculus
also has a type ∀π : C.τ of priority-polymorphic expressions. These types are annotated with
a constraint C which restricts the instantiation of the bound priority variable. For example, the
abstraction Λπ : π � ρ.e can only be instantiated with priorities ρ′ for which ρ′ � ρ.

A priority ρ can be either a priority constant, written ρ, or a priority variable π. Priority
constants are drawn from a pre-defined set, in much the same way that numerals n are drawn
from the set of natural numbers. The set of priority constants (and the partial order over them)
will be determined statically and is a parameter to the static and dynamic semantics. This is a
key difference between the calculus λ4 and PriML, in which the program can define new priority
constants. We discuss in Section 4.3 how the priority definitions of PriML may be hoisted out of
the program to produce λ4 programs.

51



Types τ ::= unit Unit
| nat Natural number
| τ → τ Function
| τ × τ Product
| τ + τ Sum
| τ thread[ρ] Thread
| τ cmd[ρ] Encapsulated command
| ∀π : C.τ Priority polymorphism

Priorities ρ ::= ρ Priority constant
| π Priority variable

Constraints C ::= ρ � ρ Less-or-equal
| C ∧ C Conjunction

Values v ::= x Variable
| 〈〉 Unit
| n Numeral
| λx.e Function abstraction
| 〈v, v〉 Tuple value
| l · v Left-tagged value
| r · v Right-tagged value
| tid[a] Thread handle
| cmd[ρ] {m} Encapsulated command
| Λπ : C.e Priority abstraction

Expressions e ::= v Value
| let x = e in e Let binding
| ifz v {e;x.e} Zero test
| v v Application
| (v, v) Pair creation
| fst v Left projection
| snd v Right projection
| inl v Left injection
| inr v Right injection
| case v {x.e; y.e} Case analysis
| output v (Natural number) output
| inputd (Natural number) input
| v[ρ] Priority application
| fixx:τ is e Fixed point

Commands m ::= x← e;m Monadic bind
| spawn[ρ; τ ] {m} Thread spawn
| sync e Thread join
| poll e Poll
| ret e Return

Figure 4.6: Syntax of λ4
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As in PriML, the syntax is separated into expressions, which do not involve priorities, and
commands, which do. For simplicity, the expression language is in “2/3-cps” form: we distin-
guish between expressions and values, and expressions take only values as arguments when this
would not interfere with evaluation order. An expression with unevaluated subexpressions such
as (e1, e2) can be expressed using let bindings as let x = e1 in let y = e2 in (x, y). Values
consist of the unit value 〈〉, numerals n, anonymous functions λx.e, pairs of values, left- and
right-injection of values, thread identifiers, encapsulated commands cmd[ρ] {m} and priority-
level abstractions Λπ : C.e.

Expressions include values, let binding, the if-zero conditional ifz e {e1;x.e2} and function
application. There are also additional expression forms for pair introduction and left- and right-
injection. These are (v1, v2), inl v and inr v, respectively. One may think of these forms as
the source-level instructions to allocate the pair or tag, and the corresponding value forms as the
actual runtime representation of the pair or tagged value. Making this distinction in the syntax
allows us to account for the cost of performing the allocation. Finally, expressions include the
case construct case e {x.e1; y.e2}, output, input, priority instantiation e[ρ] and fixed points. The
expression output v models an output operation providing information to the user. The expres-
sion inputd models receiving information from the user. The exact form of the output and input
(e.g., console interaction, network interaction, arbitrary system calls) are left abstract. We only
provide output and input operations for natural numbers, since these are the only nontrivial base
type in λ4 . Adding more base types, and extending the output and input constructs, would be
straightforward. Input statements are annotated with unique identifiers d. These identifiers will
be used in the cost semantics to associate each input operation with the latency it may incur.
They may safely be ignored for now.

Commands are combined using the binding construct x ← e;m, which evaluates e to an
encapsulated command, which it executes, binding its return value to x, before continuing with
command m. There are also commands to spawn, synchronize with, and poll, other threads.
We do not include cancellation in λ4 because it is essentially orthogonal to thread priorities,
the type system, and runtime cost, which are the three important features of the calculus4. The
spawn command spawn[ρ; τ ] {m} is parametrized by both a priority ρ and the type τ of the
return value of m for convenience in defining the dynamic semantics.

4.2.1 Static Semantics

The type system of λ4 carefully tracks the priorities of threads as they wait for each other and
enforces that a program is free of priority inversions. This static guarantee ensures that we can
derive cost guarantees from well-typed programs.

As with the syntax, the static semantics are separated into the expression layer and the com-
mand layer. Because expressions do not depend on priorities, the static semantics for expressions
is fairly standard. The main unusual feature is that the typing judgment is parametrized by a sig-
nature Σ containing the types and priorities of running threads. A signature has entries of the

4 It is quite counterintuitive that cancellation would be orthogonal to the cost semantics, because a main goal of
cancellation is to reduce unnecessary work. However, in PriML, cancellation is not guaranteed to occur, and so in
the worst-case cost analysis we perform later in the thesis, it is effectively a no-op.
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VAR

Γ, x : τ `RΣ x : τ

UNITI

Γ `RΣ 〈〉 : unit

TID

Γ `RΣ,a∼τ@ρ′ tid[a] : τ thread[ρ′]

NATI

Γ `RΣ n : nat

NATE
Γ `RΣ v : nat Γ `RΣ e1 : τ Γ, x :nat `RΣ e2 : τ

Γ `RΣ ifz v {e1;x.e2} : τ

→I
Γ, x : τ1 `RΣ e : τ2

Γ `RΣ λx.e : τ1 → τ2

→E
Γ `RΣ v1 : τ1 → τ2 Γ `RΣ v2 : τ1

Γ `RΣ v1 v2 : τ2

×I1

Γ `RΣ v1 : τ1 Γ `RΣ v2 : τ2

Γ `RΣ (v1, v2) : τ1 × τ2

×I2

Γ `RΣ v1 : τ1 Γ `RΣ v2 : τ2

Γ `RΣ 〈v1, v2〉 : τ1 × τ2

×E1

Γ `RΣ v : τ1 × τ2

Γ `RΣ fst v : τ1

×E2

Γ `RΣ v : τ1 × τ2

Γ `RΣ snd v : τ2

+I1

Γ `RΣ v : τ1

Γ `RΣ inl v : τ1 + τ2

+I2

Γ `RΣ v : τ2

Γ `RΣ inr v : τ1 + τ2

+I3

Γ `RΣ v : τ1

Γ `RΣ l · v : τ1 + τ2

+I4

Γ `RΣ v : τ2

Γ `RΣ r · v : τ1 + τ2

+E
Γ `RΣ v : τ1 + τ2 Γ, x : τ1 `RΣ e1 : τ ′ Γ, y : τ2 `RΣ e2 : τ ′

Γ `RΣ case v {x.e1; y.e2} : τ ′

OUTPUT
Γ `RΣ v : nat

Γ `RΣ output v : unit

INPUT

Γ `RΣ inputd : nat

CMDI
Γ `RΣ m∼: τ @ ρ

Γ `RΣ cmd[ρ] {m} : τ cmd[ρ]

∀I
Γ, π prio, C `RΣ e : τ

Γ `RΣ Λπ : C.e : ∀π : C.τ

∀E
Γ `RΣ v : ∀π : C.τ Γ `R [ρ′/π]C

Γ `RΣ v[ρ′] : [ρ′/π]τ

FIX
Γ, x : τ `RΣ e : τ

Γ `RΣ fixx:τ is e : τ

LET
Γ `RΣ e1 : τ1 Γ, x : τ1 `RΣ e2 : τ2

Γ `RΣ let x = e1 in e2 : τ2

Figure 4.7: Expression typing rules.
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BIND
Γ `RΣ e : τ cmd[ρ] Γ, x : τ `RΣ m∼: τ ′ @ ρ

Γ `RΣ x← e;m∼: τ ′ @ ρ

SPAWN
Γ `RΣ m∼: τ @ ρ′

Γ `RΣ spawn[ρ′; τ ] {m} ∼: τ thread[ρ′] @ ρ

SYNC
Γ `RΣ e : τ thread[ρ′] Γ `R ρ � ρ′

Γ `RΣ sync e∼: τ @ ρ

POLL
Γ `RΣ e : τ thread[ρ′]

Γ `RΣ poll e∼: τ + unit @ ρ

RET
Γ `RΣ e : τ

Γ `RΣ ret e∼: τ @ ρ

Figure 4.8: Command typing rules.

HYP

Γ, ρ1 � ρ2 `R ρ1 � ρ2

ASSUME
(ρ1, ρ2) ∈ R
Γ `R ρ1 � ρ2

REFL

Γ `R ρ � ρ

TRANS
Γ `R ρ1 � ρ2

Γ `R ρ2 � ρ3

Γ `R ρ1 � ρ3

CONJ
Γ `R C1

Γ `R C2

Γ `R C1 ∧ C2

Figure 4.9: Constraint entailment
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form a∼τ@ρ indicating that thread a is running at priority ρ and will return a value of type τ .
The signature is needed to check the types of thread handles.

The expression typing judgment is Γ `RΣ e : τ , indicating that under signature Σ, a partial or-
derR of priority constants and context Γ, expression e has type τ . As usual, the variable context Γ
maps variables to their types. The rules for this judgment are shown in Figure 4.7. The variable
rule VAR, the rule for fixed points and the introduction and elimination rules for unit, natural
numbers, functions, products and sums, are straightforward. The rule for thread handles tid[a]
looks up the thread a in the signature. The rule for encapsulated commands cmd[ρ] {m} requires
that the commandm be well-typed and runnable at priority ρ, using the typing judgment for com-
mands, which is defined below. Rule ∀I extends the context with both the priority variable π and
the constraint C. Rule ∀E handles priority instantiation. When instantiating the variable π with
priority ρ′, the rule requires that the constraints hold with ρ′ substituted for π (the constraint
entailment judgment Γ `R C is discussed below). The rule also performs the corresponding
substitution in the return type.

The command typing judgment is Γ `RΣ m ∼: τ @ ρ and includes both the return type τ
and the priority ρ at which m is runnable. The rules are shown in Figure 4.8. The rule for
bind requires that e return a command of the current priority and return type τ , and then ex-
tends the context with a variable x of type τ in order to type the remaining command. The rule
for spawn[ρ′; τ ] {m} requires that m be runnable at priority ρ′ and return a value of type τ . The
spawn command returns a thread handle of type τ thread[ρ′], and may do so at any priority.
The sync e command requires that e have the type of a thread handle of type τ , and returns a
value of type τ . The rule also checks the priority annotation on the thread’s type and requires that
this priority be at least the current priority. This is the condition that rules out sync commands
that would cause priority inversions. The rule for poll e is similar but without this require-
ment, since polling threads of arbitrary priority is permitted. Finally, if e has type τ , then the
command ret e returns a value of type τ , at any priority.

The constraint checking judgment is defined in Figure 4.9. We can conclude that a constraint
holds if it appears directly in the context (rule HYP) or the partial order (rule ASSUME) or if it
can be concluded from reflexivity or transitivity (rules REFL and TRANS, respectively). Finally,
the conjunction C1 ∧ C2 requires that both conjuncts hold.

We use several forms of substitution in both the static and dynamic semantics. All use the
standard definition of capture-avoiding substitution. We can substitute expressions for variables
in expressions ([e2/x]e1) or in commands ([e/x]m), and we can substitute priorities for priority
variables in expressions ([ρ/π]e), commands ([ρ/π]m), constraints ([ρ/π]C), contexts ([ρ/π]Γ),
types ([ρ/π]τ ) and priorities ([ρ′/π]ρ). For each of these substitutions, we prove the principle
that substitution preserves typing. These substitution principles are collected in Lemma 1.
Lemma 1 (Substitution).

1. If Γ, x : τ `RΣ e1 : τ ′ and Γ `RΣ e2 : τ , then Γ `RΣ [e2/x]e1 : τ ′.
2. If Γ, x : τ `RΣ m∼: τ ′ @ ρ and Γ `RΣ e : τ , then Γ `RΣ [e/x]m∼: τ ′ @ ρ.
3. If Γ, π prio `RΣ e : τ , then [ρ/π]Γ `RΣ [ρ/π]e : [ρ/π]τ .
4. If Γ, π prio `RΣ m∼: τ @ ρ, then [ρ′/π]Γ `RΣ [ρ′/π]m∼: [ρ′/π]τ @ [ρ′/π]ρ.
5. If Γ, π prio `R C, then [ρ/π]Γ `R [ρ/π]C.
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Proof. 1. By induction on the derivation of Γ, x : τ `RΣ e1 : τ ′. All cases are straightforward.
2. By induction on the derivation of Γ, x : τ `RΣ m∼: τ ′ @ ρ. All cases are straightforward.
3. By induction on the derivation of Γ, π prio `RΣ e : τ . Consider one representative case.

Case
∀E
Γ `RΣ v : ∀π′ : C.τ Γ `R [ρ′/π′]C

Γ `RΣ v[ρ′] : [ρ′/π′]τ

(1) [ρ/π]Γ `RΣ [ρ/π]v : [ρ/π](∀π′ : C.τ) (induction)
(2) [ρ/π](∀π′ : C.τ) = ∀π′ : [ρ/π]C.[ρ/π]τ (definition)
(3) [ρ/π]Γ `R [ρ/π][ρ′/π′]C (induction)
(4) [ρ/π][ρ′/π′]C = [([ρ/π])ρ′/π′]([ρ/π]C)
(5) [ρ/π]Γ `RΣ [ρ/π]v[[ρ/π]ρ′] : [([ρ/π]ρ′)/π′][ρ/π]τ (∀E)
(6) [([ρ/π]ρ′)/π′][ρ/π]τ = [ρ/π][ρ′/π′]τ

4. By induction on the derivation of Γ, π prio `RΣ m∼: τ @ ρ.

Case
BIND
Γ `RΣ e : τ cmd[ρ] Γ, x : τ `RΣ m∼: τ ′ @ ρ

Γ `RΣ x← e;m∼: τ ′ @ ρ

(1) [ρ′/π]Γ `RΣ [ρ′/π]e : [ρ′/π](τ cmd[ρ]) (induction)
(2) [ρ′/π]Γ, x :[ρ′/π]τ `RΣ [ρ′/π]m∼: [ρ′/π]τ ′ @ [ρ′/π]ρ (induction)
(3) [ρ′/π]Γ `RΣ x← [ρ′/π]e; [ρ′/π]m∼: [ρ′/π]τ ′ @ [ρ′/π]ρ (BIND)

Case
SPAWN

Γ `RΣ m∼: τ @ ρ′′

Γ `RΣ spawn[ρ′′; τ ] {m} ∼: τ thread[ρ′′] @ ρ

(1) [ρ′/π]Γ `RΣ [ρ′/π]m∼: [ρ′/π]τ @ [ρ′/π]ρ′′ (induction)
(2) [ρ′/π]Γ `RΣ spawn[[ρ′/π]ρ′′; [ρ′/π]τ ] {[ρ′/π]m}∼:

[ρ′/π]τ thread[[ρ′/π]ρ′′] @ [ρ′/π]ρ (SPAWN)

Case
SYNC
Γ `RΣ e : τ thread[ρ′′] Γ `R ρ � ρ′′

Γ `RΣ sync e∼: τ @ ρ

(1) [ρ′/π]Γ `RΣ [ρ′/π]e : [ρ′/π]thread[[ρ′/π]ρ′′] (induction)
(2) [ρ′/π]Γ `R [ρ′/π]ρ � [ρ′/π]ρ′′ (induction)
(3) [ρ′/π]Γ `RΣ sync ([ρ′/π]e)∼: [ρ′/π]τ @ [ρ′/π]ρ (SYNC)

Case
POLL

Γ `RΣ e : τ thread[ρ′′]

Γ `RΣ poll e∼: τ + unit @ ρ

(1) [ρ′/π]Γ `RΣ [ρ′/π]e : [ρ′/π]thread[[ρ′/π]ρ′′] (induction)
(2) [ρ′/π]Γ `RΣ poll ([ρ′/π]e)∼: [ρ′/π]τ @ [ρ′/π]ρ (POLL)
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Case
RET

Γ `RΣ e : τ

Γ `RΣ ret e∼: τ @ ρ

(1) [ρ′/π]Γ `RΣ [ρ′/π]e : [ρ′/π]τ (induction)
(2) [ρ′/π]Γ `RΣ ret [ρ′/π]e∼: [ρ′/π]τ @ [ρ′/π]ρ (RET)

5. By induction on the derivation of Γ, π prio `R C. We consider the non-trivial cases.
Case

TRANS
Γ `R ρ1 � ρ2 Γ `R ρ2 � ρ3

Γ `R ρ1 � ρ3

(1) [ρ/π]Γ `R [ρ/π]ρ1 � [ρ/π]ρ2 (induction)
(2) [ρ/π]Γ `R [ρ/π]ρ2 � [ρ/π]ρ3 (induction)
(3) [ρ/π]Γ `R [ρ/π]ρ1 � [ρ/π]ρ3 (TRANS)

Case
CONJ
Γ `R C1 Γ `R C2

Γ `R C1 ∧ C2

(1) [ρ/π]Γ `R [ρ/π]C1 (induction)
(2) [ρ/π]Γ `R [ρ/π]C2 (induction)
(3) [ρ/π]Γ `R [ρ/π]C1 ∧ [ρ/π]C2 (CONJ)

4.2.2 Dynamic Semantics
We define a transition semantics for λ4 . Because the operational behavior (as distinct from
run-time or responsiveness, which is the focus of Chapter 5) of expressions does not depend on
the priority at which they run or what other threads are running, their semantics can be defined
without regard to other running threads. The semantics for commands is more complex, because
it must include other threads. We will also define a syntax and dynamic semantics for thread
pools, which are collections of all of the currently running threads.

The dynamic semantics for expressions, shown in Figure 4.10, consists of two judgments.
The judgment e valΣ states that e is irreducible and refers only to thread names in the signa-
ture Σ.

The transition relation for expressions, e →∆
Σ (δ, e′), indicates that expression e steps to e′

after a delay δ. This delay will typically be zero, but input instructions may result in non-zero
delays. The delay assignment ∆ maps input identifiers d to a set of possible delays δ [87]. It
is included in the dynamic semantics to factor out the nondeterminism inherent in the latency
incurred by input operations, since this nondeterminism is neither under the control of the pro-
grammer nor the scheduler. For example, suppose d represents a user input to which the user
may take between one second and five minutes to respond. Then, we would evaluate the cost
semantics using a ∆ such that ∆(d) = [1s, 5m].
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〈〉 valΣ tid[a] valΣ,a∼τ@ρ n valΣ λx.e valΣ

v1 valΣ v2 valΣ

〈v1, v2〉 valΣ

v valΣ

l · v valΣ

v valΣ

r · v valΣ cmd[ρ] {m} valΣ Λρ : C.e valΣ

D-LET-STEP
e1 →∆

Σ (δ, e′1)

let x = e1 in e2 →∆
Σ (δ,let x = e′1 in e2)

D-LET
v valΣ

let x = v in e→∆
Σ (0, [v/x]e)

D-IFZ-Z

ifz 0 {e1;x.e2} →∆
Σ (0, e1)

D-IFZ-NZ

ifz n+ 1 {e1;x.e2} →∆
Σ (0, [n/x]e2)

D-APP
v valΣ

(λx.e) v →∆
Σ (0, [v/x]e)

D-PAIR
v1 valΣ v2 valΣ

(v1, v2)→∆
Σ (0, 〈v1, v2〉)

D-FST
v1 valΣ v2 valΣ

fst 〈v1, v2〉 →∆
Σ (0, v1)

D-SND
v1 valΣ v2 valΣ

snd 〈v1, v2〉 →∆
Σ (0, v2)

D-INL
v valΣ

inl v →∆
Σ (0,l · v)

D-INR
v valΣ

inr v →∆
Σ (0,r · v)

D-CASE-L
v valΣ

case l · v {x.e1; y.e2} →∆
Σ (0, [v/x]e1)

D-CASE-R
v valΣ

case r · v {x.e1; y.e2} →∆
Σ (0, [v/y]e2)

D-OUTPUT

output n→∆
Σ (0, 〈〉)

D-INPUT
δ ∈ ∆(d)

inputd →∆
Σ (δ − 1,in)

D-IN
n ∈ N

in→∆
Σ (0, n)

D-PRAPP

(Λπ : C.e)[ρ′]→∆
Σ (0, [ρ′/π]e)

D-FIX

fixx:τ is e→∆
Σ (0, [fixx:τ is e/x]e)

Figure 4.10: Dynamic semantics for expressions.
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νΣ{µ1}]µ2 ≡ νΣ{µ1 ]µ2} νΣ{νΣ′{µ}} ≡ νΣ,Σ′{µ} ν · {µ} ≡ µ

Figure 4.11: Congruence rules for thread pools.

EMPTY

`RΣ ∅ : ·

ONETHREAD
· `RΣ m∼: τ @ ρ

`RΣ a ↪−→
ρ

(δ,m) : a∼τ@ρ

CONCAT
`RΣ,Σ2

µ1 : Σ1 `RΣ,Σ1
µ2 : Σ2

`RΣ µ1 ]µ2 : Σ1,Σ2

EXTEND
`RΣ µ : Σ′,Σ′′

`RΣ νΣ′{µ} : Σ′′

Figure 4.12: Typing rules for thread pools

The signature Σ does not change during expression evaluation and is used solely to deter-
mine whether thread IDs are well-formed values. Because of the structure of 2/3-cps form, the
only expressions which require evaluation of subexpressions are let bindings. In the expres-
sion let x = e1 in e2, subexpression e1 is evaluated to a value and then substituted into e2.
The ifz construct conditions on the value of the numeral n. If n = 0, it steps to e1. If not, it
steps to e2, substituting n−1 for x. The case construct conditions on whether e is a left or right
injection, and steps to e1 (resp. e2), substituting the injected value for x (resp. y). Function appli-
cations and priority instantiations simply perform the appropriate substitution. Pair creation and
injection evaluate to the equivalent value forms. One may think of these transitions (D-PAIR,
D-INL and D-INR) as performing the allocation of the value on the heap, though we do not
explicitly model heap allocation. Input operations are split into two steps. The rule D-INPUT

nondeterministically picks a possible delay δ from ∆ for the input. After δ − 1 additional steps,
the instruction steps to the auxiliary expression in. By rule D-IN, this in instruction nondeter-
ministically picks an integer for the input (representing the nondeterminism of user input) and
steps to it.

Evaluation of commands may interact with other running threads (e.g., by spawning new
threads or synchronizing with existing ones), and so in order to define the dynamic semantics
of commands, we must develop a way of talking about collections of running threads. We use
thread pools to refer to some or all of the currently running threads. Much of the notation for
thread pools is inspired by Harper [63]. Formally, a thread pool µ is a mapping of thread symbols
to threads: a ↪−→

ρ
(δ,m) indicates a thread a at priority ρ running m. The thread may be ready to

run immediately (if δ = 0) or may be waiting on input for δ more steps. The concatenation of two
thread pools is written µ1 ]µ2. Thread pools can also introduce new thread names: the thread
pool νΣ{µ} allows the thread pool µ to use thread names bound in the signature Σ. Thread pools
are not ordered; we identify thread pools up to commutativity and associativity of ]5. We also
introduce the additional congruence rules of Figure 4.11, which allow for thread name bindings
to freely change scope within a thread pool.

Figure 4.12 gives the typing rules for thread pools. The typing judgment `RΣ µ : Σ′ indicates

5Because threads cannot refer to threads that (transitively) spawned them, we could order the thread pool, which
would allow us to prove that deadlock is not possible in λ4 . This is outside the scope of this thesis.
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D-BIND1
e→∆

Σ (δ, e′)

x← e;m
ε7−→
Σ

∆
(δ, ·, x← e′;m, ∅)

D-BIND2
m1

α7−→
Σ

∆
(δ,Σ′,m′1, µ

′)

x← cmd[ρ] {m1};m2
α7−→
Σ

∆
(δ,Σ′, x← cmd[ρ] {m′1};m2, µ

′)

D-BIND3
e valΣ

x← cmd[ρ] {ret e};m ε7−→
Σ

∆
(0, ·, [e/x]m, ∅)

D-SPAWN
b fresh

spawn[ρ; τ ] {m} ε7−→
Σ

∆
(0, b∼τ@ρ,ret tid[b], b ↪−→

ρ
(0,m))

D-SYNC1
e→∆

Σ (δ, e′)

sync e
ε7−→
Σ

∆
(δ, ·,sync e′, ∅)

D-SYNC2
v valΣ

sync (tid[b])
v/b7−−→
Σ

∆

(0, ·,ret v, ∅)
D-POLL1

e→∆
Σ (δ, e′)

poll e
ε7−→
Σ

∆
(δ, ·,poll e′, ∅)

D-POLL2A
v valΣ

poll (tid[b])
v?b7−−→
Σ

∆

(0, ·,ret inl v, ∅)
D-POLL2B

poll (tid[b])
6?b7−→
Σ

∆

(0, ·,ret inr 〈〉, ∅)

D-RET
e→∆

Σ (δ, e′)

ret e
ε7−→
Σ

∆
(δ, ·,ret e′, ∅)

Figure 4.13: Dynamic rules for commands.

that all threads of µ are well-typed assuming an ambient environment that includes the threads
mentioned in Σ, and that Σ′ includes the threads introduced in µ, minus any bound in a νΣ′′{µ′′}
form. The rules are straightforward: the empty thread pool ∅ is always well-typed and introduces
no threads, individual threads are well-typed if their commands are, and concatenations are well-
typed if their components are. In a concatenation µ1 ]µ2, if µ1 introduces the threads Σ1 and µ2

introduces the threads Σ2, then µ1 may refer to threads in Σ2 and vice versa. If a thread pool µ
is well-typed and introduces the threads in Σ′,Σ′′, then νΣ′{µ} introduces the threads in Σ′′

(subtracting off the threads explicitly introduced by the binding).

With the notation for thread pools, we can now define the dynamics of commands. The tran-
sition judgment m α7−→

Σ

∆
(δ,Σ′,m′, µ′), indicates that under signature Σ and delay assignment ∆,

command m steps to m′ after delay δ. The transition relation carries a label α, indicating the
“action” taken by this step. At this point, actions can be the silent action ε, the sync action v / b,

61



indicating that the transition receives a value v by synchronizing on thread b, the successful poll
action v ? b indicating that the transition polls b and receives value v, or the unsuccessful poll
action 6 ?b indicating that the transition polls thread b and learns it has not completed. This step
may also spawn new threads, and so the judgment includes extensions to the thread pool (µ′) and
the signature (Σ′). Both extensions may be empty.

The rules for the transition judgment are shown in Figure 4.13. The rules for the bind
construct x ← e;m2 evaluate e to an encapsulated command cmd[ρ] {m1}, then evaluate
this command to a return value ret v before substituting v for x in m2. The spawn com-
mand spawn[ρ; τ ] {m} does not evaluate m, but simply spawns a fresh thread b to execute it,
and returns a thread handle tid[b]. The sync command sync e evaluates e to a thread han-
dle tid[b], and then takes a step to ret v labeled with the action v / b. Note that, because the
thread b is not available to the rule, the return value v is “guessed”. It will be the job of the thread
pool semantics to connect this thread to the thread b and provide the appropriate return value.
There are two rules for polling a thread handle. Rule D-POLL2A behaves analogously to the rule
for sync and allows a thread to receive the returned value of the polled thread. The returned value
is left-injected, since polling returns an option type τ + unit. Rule D-POLL2B silently steps
to r · 〈〉. Finally, ret e evaluates e to a value.

We define an additional transition judgment for thread pools, which nondeterministically

allows a thread to step. The judgment µ
a/α
==⇒

Σ

∆

µ′ is again annotated with an action. In this
judgment, because it is not clear what thread is taking the step, the action is labeled with the
thread a. Actions now also include the “return” action v., indicating that the thread returns the
value v. Rule DT-SYNC matches this with a corresponding sync or poll action and perform
the synchronization. If a thread in µ1 wishes to sync with b and a thread b in µ2 wishes to
return its value, then the thread pool µ1 ]µ2 can step silently, performing the synchronization.
Without loss of generality, µ1 can come first because thread pools are identified up to ordering.
Rule DT-POLLA is similar, but matches return actions with successful poll actions. This rule
also results in a special action ? indicating that this step performed a poll (regardless of whether it
was successful). Steps involving polls will be treated separately when we introduce parallelism.
Rule DT-POLLB allows thread a to take a step with an unsuccessful poll as long as the polled
thread is not returning a value. The last two rules allow threads to step when concatenated with
other threads and under bindings.

We will show as part of the type safety theorem that any thread pool may be, through the
congruence rules, placed in a normal form νΣ{a1 ↪−→

ρ1
(δ1,m1)] . . .] an ↪−→

ρn
(δn,mn)} and that

stepping one of these threads does not affect the rest of the thread pool other than by spawning
new threads. This property, that transitions of separate threads do not impact each other, is
key to parallel functional programs and allows us to cleanly talk about taking multiple steps of

separate threads in parallel. Parallelism is expressed by the judgment µ A
=⇒
P

∆

µ′, which allows
all of the threads in the set A to step silently in parallel. The only rule for this judgment is DT-
PAR, which nondeterministically steps any number of threads that can take silent transitions.
Following this, the rule takes zero or more poll steps. This forces poll operations to eagerly
“commit” to whether they will succeed or fail based on whether their target threads have currently
completed. This “early commitment” will be important in the next chapter for producing usable
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DT-THREAD

m
α7−→
Σ

∆
(δ,Σ′,m′, µ′)

a ↪−→
ρ

(0,m)
a/α

=====⇒
a∼τ@ρ,Σ

∆

νΣ′{a ↪−→
ρ

(δ,m′)]µ′}

DT-RET
v valΣ

a ↪−→
ρ

(0,ret v)
a/v.

=====⇒
a∼τ@ρ,Σ

∆

a ↪−→
ρ

(0,ret v)

DT-SYNC

Σ = Σ′, a∼τa@ρa, b∼τb@ρb µ1
a/v/b
===⇒

Σ

∆

µ′1 µ2
b/v.
==⇒

Σ

∆

µ2

µ1 ]µ2
a/ε
=⇒

Σ

∆

µ′1 ]µ2

DT-POLLA

Σ = Σ′, a∼τa@ρa, b∼τb@ρb µ1
a/v?b
===⇒

Σ

∆

µ′1 µ2
b/v.
==⇒

Σ

∆

µ2

µ1 ]µ2
a/?
=⇒

Σ

∆

µ′1 ]µ2

DT-POLLB

Σ = Σ′, a∼τa@ρa, b∼τb@ρb µ1
a/6?b
==⇒

Σ

∆

µ′1 µ2
b/α
=⇒

Σ

∆

µ′2 α 6= v.

µ1 ]µ2
a/?
=⇒

Σ

∆

µ′1 ]µ2

DT-CONCAT

µ1
a/α
==⇒

Σ

∆

µ′1

µ1 ]µ2
a/α
==⇒

Σ

∆

µ′1 ]µ2

DT-EXTEND

µ
b/α

=====⇒
Σ,a∼τ@ρ

∆

µ′

νa∼τ@ρ{µ} b/α
=⇒

Σ

∆

νa∼τ@ρ{µ′}

Figure 4.14: Dynamic rules for thread pools.
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DT-PAR
µ ≡ νΣ{µ0 ] a1 ↪−→

ρ1
(0,m1)] . . . an ↪−→

ρn
(0,mn)}

(∀1 ≤ i ≤ n)µ
ai/ε
==⇒
·

∆

νΣ,Σ′i{µ0 ] a1 ↪−→
ρ1

(0,m1)] . . .] ai ↪−→
ρi

(δi,m
′
i)]µ′i . . .] an ↪−→

ρn
(0,mn)}

νΣ,Σ′1, . . . ,Σ
′
n{µ0 ] a1 ↪−→

ρ1
(δ1,m

′
1)]µ′1 ] . . . an ↪−→

ρn
(δn,m

′
n)]µ′n}

b1/?
==⇒
·

∆

µ1
b2/?
==⇒
·

∆

. . .
bk/?
==⇒
·

∆

µk

µk polled

µ
{a1,...,an}
=====⇒

P

∆

Decr(µn)

Decr(a ↪−→
ρ

(0,m)) , a ↪−→
ρ

(0,m)

Decr(a ↪−→
ρ

(δ + 1,m)) , a ↪−→
ρ

(δ,m)

Decr(µ1 ]µ2) , Decr(µ1)]Decr(µ2)

Decr(νΣ{µ}) , νΣ{Decr(µ)}

Figure 4.15: Parallel step judgment.

x polled 〈〉 polled
n ∈ N
n polled λx.e polled 〈v1, v2〉 polled

l · v polled r · v polled
m polled

cmd[ρ] {m} polled Λπ : C.e polled

let x = e1 in e2 polled ifz v {e1;x.e2} polled v1 v2 polled 〈v1, v2〉 polled

fst v polled snd v polled inl v polled inr v polled case v {x.e1; y.e2} polled

output v polled inputd polled v[ρ] polled fixx:τ is e polled

e polled

x← e;m polled spawn[ρ; τ ] {m} polled sync e polled

e polled

poll e polled ret e polled

m polled

a ↪−→
ρ

(δ,m) polled

µ1 polled µ2 polled

µ1 ]µ2 polled

µ polled

νΣ{µ} polled

Figure 4.16: Rules for the polled judgment.
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`RΣ ε action

· `RΣ,b∼τ@ρ v : τ

`RΣ,b∼τ@ρ v / b action

· `RΣ,b∼τ@ρ v : τ

`RΣ,b∼τ@ρ v . action

· `RΣ,b∼τ@ρ v : τ

`RΣ,b∼τ@ρ v ? b action `RΣ,b∼τ@ρ 6 ?b action `RΣ ? action

Figure 4.17: Static semantics for actions.

cost DAGs from programs. The thread pool takes poll steps until all poll operations have
committed, which is captured in the polled judgment, defined on expressions, commands and
thread pools in Figure 4.16. The judgment simply requires that the thread pool not contain
expressions of the form poll tid[b]. Finally, any delays on threads are decremented using the
auxiliary form Decr(·). We do not impose any sort of scheduling algorithm in the semantics,
nor even a maximum number of threads. When discussing cost bounds, we will quantify over
executions which choose threads in certain ways.

We prove a version of the standard progress theorem for each syntactic class. Progress for
expressions is standard: a well-typed expression is either a value or can take a step. The progress
statement for commands is similar, because commands can step (with a sync action) even if they
are waiting for other threads. The statement for thread pools is somewhat counter-intuitive. One
might expect it to state that if a thread pool is well-typed, then either all threads are complete
or the thread pool can take a step. This statement is true but too weak to be useful; because
of the non-determinism in our semantics, such a theorem would allow for one thread to enter a
“stuck” state as long as any other thread is still able to make progress (for example, if it is in an
infinite loop). Instead, we state that, in a well-typed thread pool, every thread is either complete,
is delayed, or is active, that is, able to take a step.

The progress theorems for commands and thread pools also state that, if the command or
thread pool can take a step, the action performed by that step is well-typed. The typing rules for
actions are shown in Figure 4.17 and require that the value returned or received match the type
of the thread.
Theorem 4 (Progress). 1. If · `RΣ e : τ , then either e valΣ or e→∆

Σ (δ, e′).

2. If · `RΣ m ∼: τ @ ρ, then either m = ret e where e valΣ or m α7−→
Σ

∆
(δ,Σ′,m′, µ) where

`RΣ α action.
3. If `RΣ µ : Σ′ and

Σ′,Σ′′ = a1∼τ1@ρ1, . . . , an∼τn@ρn

then
µ ≡ νΣ′′{a1 ↪−→

ρ1
(δ1,m1)] . . .] an ↪−→

ρn
(δn,mn)}

and for all i ∈ [1, n], if δn > 0, then µ
ai/α
==⇒
Σ,Σ′

∆

µ′ and `RΣ,Σ′ α action.

Proof. 1. By induction on the derivation of · `RΣ e : τ . Consider two representative cases.
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Case
LET
Γ `RΣ e1 : τ1 Γ, x : τ1 `RΣ e2 : τ2

Γ `RΣ let x = e1 in e2 : τ2

(1) e1 valΣ or e1 →∆
Σ (δ, e′1) (induction)

Subcase: e1 valΣ

(a) let x = e1 in e2 →∆
Σ (0, [e1/x]e2) (D-LET)

Subcase: e1 →∆
Σ (δ, e′1)

(a) let x = e1 in e2 →∆
Σ (δ,let x = e′1 in e2) (D-LET-STEP)

Case
NATE
Γ `RΣ v : nat Γ `RΣ e1 : τ Γ, x :nat `RΣ e2 : τ

Γ `RΣ ifz v {e1;x.e2} : τ

(1) v = n (canonical forms)

Subcase: n = 0
(a) e→∆

Σ e1 (D-IFZ-Z)

Subcase: n > 0
(a) e→∆

Σ [n− 1/x]e2 (D-IFZ-NZ)

2. By induction on the derivation of · `RΣ m∼: τ @ ρ.
Case

BIND
Γ `RΣ e : τ cmd[ρ] Γ, x : τ `RΣ m∼: τ ′ @ ρ

Γ `RΣ x← e;m∼: τ ′ @ ρ

(1) e valΣ or e→∆
Σ (δ, e′) (induction)

Subcase: e→∆
Σ (δ, e′)

(a) x← e;m
ε7−→
Σ

∆
(δ, ·, x← e′;m, ∅) (D-BIND1)

Subcase: e valΣ

(a) e = cmd[ρ] {m1} (canonical forms)

(b) m1 = ret v or m1
α7−→
Σ

∆
(δ,Σ′,m′1, µ

′) (induction)

Subcase: m1 = ret v

(a) x← e;m
ε7−→
Σ

∆
(0, ·, [v/x]m, ∅) (D-BIND3)

Subcase: m1
α7−→
Σ

∆
(δ,Σ′,m′1, µ

′)

(a) x← e;m
ε7−→
Σ

∆
(δ,Σ′, x← cmd[ρ] {m′1};m,µ′) (D-BIND2)
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Case
SPAWN

Γ `RΣ m∼: τ @ ρ′

Γ `RΣ spawn[ρ′; τ ] {m} ∼: τ thread[ρ′] @ ρ

(1) spawn[ρ′; τ ] {m} ε7−→
Σ

∆
(0, b∼τ@ρ′,ret tid[b], b ↪−→

ρ′
(0,m)) (D-SPAWN)

Case
SYNC
Γ `RΣ e : τ thread[ρ′] Γ `R ρ � ρ′

Γ `RΣ sync e∼: τ @ ρ

(1) e valΣ or e→∆
Σ (δ, e′) (induction)

Subcase: e valΣ

(a) e = tid[b] (canonical forms)

(b) sync e
v/b7−−→
Σ

∆

(0, ·,ret v, ∅) (D-SYNC2)

Subcase: e→∆
Σ (δ, e′)

(a) sync e
ε7−→
Σ

∆
(δ, ·,sync e′, ∅) (D-SYNC1)

Case
POLL

Γ `RΣ e : τ thread[ρ′]

Γ `RΣ poll e∼: τ + unit @ ρ

(1) e valΣ or e→∆
Σ (δ, e′) (induction)

Subcase: e valΣ

(a) e = tid[b] (canonical forms)

(b) poll e
6?b7−→
Σ

∆

(0, ·,ret inr 〈〉, ∅) (D-POLL2B)

Subcase: e→∆
Σ (δ, e′)

(a) poll e
ε7−→
Σ

∆
(δ, ·,poll e′, ∅) (D-POLL1)

Case
RET

Γ `RΣ e : τ

Γ `RΣ ret e∼: τ @ ρ
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(1) e valΣ or e→∆
Σ (δ, e′) (induction)

Subcase: e valΣ

(a) Conclusion holds by assumption

Subcase: e→∆
Σ (δ, e′)

(a) ret e
ε7−→
Σ

∆
(δ, ·,ret e′, ∅) (D-RET)

3. By induction on the derivation of `RΣ µ : Σ′. We consider the interesting cases.
Case

CONCAT
`RΣ,Σ2

µ1 : Σ1 `RΣ,Σ1
µ2 : Σ2

`RΣ µ1 ]µ2 : Σ1,Σ2

(1) µ1 ≡ νΣ′1{a1 ↪−→
ρ1

(δ1,m1)] . . .] an ↪−→
ρn

(δn,mn)} (induction)

(2) µ2 ≡ νΣ′2{an+1 ↪−−→
ρn+1

(δn+1,mn+1)] . . .] ak ↪−→
ρk

(δk,mk)} (induction)

(3) Σ1,Σ
′
1 = a1∼τ1@ρ1, . . . , an∼τn@ρn (induction)

(4) Σ2,Σ
′
2 = an+1∼τn+1@ρn+1, . . . , ak∼τk@ρk (induction)

(5) ∀i ∈ [1, n].δi = 0⇒ µ1
ai/αi

====⇒
Σ,Σ2,Σ1

∆

µ′1 (induction)

(6) ∀i ∈ [n+ 1, k].δi = 0⇒ µ2
ai/αi

====⇒
Σ,Σ1,Σ2

∆

µ′2 (induction)

(7) µ1 ]µ2 ≡ νΣ′1,Σ
′
2{a1 ↪−→

ρ1
(δ1,m1)] . . .] ak ↪−→

ρk
(δk,mk)} (congruence rules)

(8) Σ1,Σ
′
1,Σ2,Σ

′
2 = a1∼τ1@ρ1, . . . , ak∼τk@ρk

(9) ∀i ∈ [1, k].δi = 0⇒ µ
ai/αi

====⇒
Σ,Σ2,Σ1

∆

µ′ (D-CONCAT)

Case
EXTEND
`RΣ µ : Σ′,Σ′′

`RΣ νΣ′{µ} : Σ′′

(1) µ ≡ νΣ′′′{a1 ↪−→
ρ1

(δ1,m1)] . . .] an ↪−→
ρn

(δn,mn)}
where Σ′,Σ′′,Σ′′ = a1∼τ1@ρ1, . . . , an∼τn@ρn (induction)

(2) ∀i ∈ [1, n].δi = 0⇒ µ
α

====⇒
Σ,Σ′,Σ′′

∆
µ′′ (induction)

(3) νΣ′{µ} ≡ νΣ′,Σ′′′{a1 ↪−→
ρ1

(δ1,m1)] . . .] an ↪−→
ρn

(δn,mn)} (congruence rules)

(4) ∀i ∈ [1, n].δi = 0⇒ νΣ′{µ} α
====⇒
Σ,Σ′,Σ′′

∆
νΣ′{µ′′} (D-EXTEND)

The preservation theorem is also split into components for expressions, commands and thread
pools. The theorem for commands requires that any new threads spawned (µ′) meet the extension
of the signature (Σ′).
Theorem 5 (Preservation). 1. If · `RΣ e : τ and e→∆

Σ (δ, e′), then · `RΣ e′ : τ .
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2. If · `RΣ m∼: τ @ ρ and m α7−→
Σ

∆
(δ,Σ′,m′, µ′) and `RΣ α action then · `RΣ,Σ′ m′ ∼: τ @ ρ and

`RΣ µ′ : Σ′.

3. If `RΣ µ : Σ′ and µ α
=⇒
Σ

∆
µ′ then `RΣ µ′ : Σ′

4. If `R· µ : Σ and µ A
=⇒
P

∆

µ′ then `R· µ′ : Σ.

Proof. 1. By induction on the derivation of e→∆
Σ (δ, e′).

2. By induction on the derivation of m α7−→
Σ

∆
(δ,Σ′,m′, µ′).

Case
D-BIND1

e→∆
Σ (δ, e′)

x← e;m
ε7−→
Σ

∆
(δ, ·, x← e′;m, ∅)

(1) · `RΣ e : τ ′ cmd[ρ] (inversion on BIND)
(2) x : τ ′ `RΣ m∼: τ @ ρ (inversion on BIND)
(3) · `RΣ e′ ∼: τ ′ cmd[ρ′]@ (induction)
(4) · `RΣ x← e′;m∼: τ @ ρ (BIND)

Case
D-BIND2

m1
α7−→
Σ

∆
(δ,Σ′,m′1, µ

′)

x← cmd[ρ] {m1};m2
α7−→
Σ

∆
(δ,Σ′, x← cmd[ρ] {m′1};m2, µ

′)

(1) · `RΣ m1 ∼: τ ′ @ ρ (inversion on BIND)
(2) x : τ ′ `RΣ m2 ∼: τ @ ρ (inversion on BIND)
(3) · `RΣ,Σ′ m′1 ∼: τ ′ @ ρ (induction)
(4) `RΣ µ′ : Σ′ (induction)
(5) x : τ ′ `RΣ,Σ′ m2 ∼: τ @ ρ (weakening)
(6) · `RΣ,Σ′ x← cmd[ρ] {m′1};m2 ∼: τ @ ρ (BIND)

Case
D-BIND3

e valΣ

x← cmd[ρ] {ret e};m ε7−→
Σ

∆
(0, ·, [e/x]m, ∅)

(1) · `RΣ e : τ ′ (inversion on BIND)
(2) x : τ ′ `RΣ m∼: τ @ ρ (inversion on BIND)
(3) · `RΣ [e/x]m∼: τ ′ @ ρ (Lemma 1)

Case
D-SPAWN

b fresh

spawn[ρ′; τ ′] {m} ε7−→
Σ

∆
(0, b∼τ ′@ρ′,ret tid[b], b ↪−→

ρ′
(0,m))
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(1) · `RΣ,b∼τ ′@ρ′ ret tid[b]∼: τ ′ thread[ρ′] @ ρ (TID, RET)
(2) · `RΣ m∼: τ ′ @ ρ′ (inversion on SPAWN)
(3) `RΣ b ↪−→

ρ
(0,m) : b∼τ ′@ρ′ (ONETHREAD)

Case
D-SYNC1

e→∆
Σ (δ, e′)

sync e
ε7−→
Σ

∆
(δ, ·,sync e′, ∅)

(1) · `RΣ e : τ thread[ρ′] and · `R ρ � ρ′ (inversion on SYNC)
(2) · `RΣ e′ : τ thread[ρ′] (induction)
(3) · `RΣ sync e′ ∼: τ @ ρ (SYNC)

Case
D-SYNC2

v valΣ

sync (tid[b])
v/b7−−→
Σ

∆

(0, ·,ret v, ∅)

(1) · `RΣ tid[b] : τ thread[ρ′] and Γ `R ρ � ρ′ (inversion on SYNC)
(2) b∼τ@ρ′ ∈ Σ (inversion on TID)
(3) · `RΣ v : τ (inversion on action typing rules)
(4) · `RΣ ret v ∼: τ @ ρ (RET)

Case
D-POLL1

e→∆
Σ (δ, e′)

sync e
ε7−→
Σ

∆
(δ, ·,poll e′, ∅)

(1) · `RΣ e : τ thread[ρ′] (inversion on POLL)
(2) · `RΣ e′ : τ thread[ρ′] (induction)
(3) · `RΣ poll e′ ∼: τ + unit @ ρ (POLL)

Case
D-POLL2A

v valΣ

poll (tid[b])
v?b7−−→
Σ

∆

(0, ·,ret inl v, ∅)

(1) · `RΣ tid[b] : τ thread[ρ′] (inversion on POLL)
(2) b∼τ@ρ′ ∈ Σ (inversion on TID)
(3) · `RΣ v : τ (inversion on action typing rules)
(4) · `RΣ ret inl v ∼: τ + unit @ ρ (+I1, RET)

Case
D-POLL2B

v valΣ

poll (tid[b])
6?b7−→
Σ

∆

(0, ·,ret inr 〈〉, ∅)

(1) · `RΣ ret inr 〈〉 ∼: τ + unit @ ρ (UNITI, +I2, RET)
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Case
D-RET

e→∆
Σ (δ, e′)

ret e
ε7−→
Σ

∆
(δ, ·,ret e′, ∅)

(1) · `RΣ e : τ (inversion on RET)
(2) · `RΣ e′ : τ (induction)
(3) · `RΣ ret e′ ∼: τ @ ρ (RET)

3. By induction on the derivation of µ
a/α
==⇒

Σ

∆

µ′. The non-trivial rule is the one for threads:

DT-THREAD

m
α7−→
Σ

ρ
(δ,Σ′′,m′, µ′)

a ↪−→
ρ

(0,m)
a/α

=====⇒
a∼τ@ρ,Σ

∆

νΣ′′{a ↪−→
ρ

(δ,m′)]µ′}

(1) · `RΣ m∼: τ @ ρ (inversion on ONETHREAD)
(2) · `RΣ,Σ′′ m′ ∼: τ @ ρ (induction)
(3) `RΣ µ′ : Σ′′ (induction)
(4) `RΣ,Σ′′ a ↪−→

ρ
(δ,m′)]µ′ : Σ′,Σ′′ (Weakening, ONETHREAD, CONCAT)

(5) `RΣ νΣ′′{a ↪−→
ρ

(δ,m′)]µ′} : Σ′ (EXTEND)

4. There is one case, DT-PAR. Note that the parallel transition can be accomplished by

repeated single transitions of the form µ
a/α
==⇒
·

∆

µ′, followed by a decrement. By induction,
all of the transitions preserve typing. By inspection of the typing rules, typing is preserved
by the decrement operation.

4.3 Elaboration of PriML to λ4

In this section, we define an elaboration from PriML to λ4 . This can be seen as giving a formal
semantics to PriML programs by placing them in correspondence with λ4 programs. We begin
by formally defining the syntax of PriML, in Figure 4.18. We use the metavariables ê and m̂ (and
variants) to refer to PriML expressions and commands, respectively, in order to distinguish them
from their λ4 counterparts. We also add syntactic classes for instructions i, priority annotations c,
declarations d, toplevel declarations o and programs P . Expressions are more or less the same
as in λ4 , with the difference that let bindings introduce zero or more declarations into the scope
of an expression (the notation ~d stands for a list of declarations). The command layer of PriML
is split into two syntactic classes: commands and instructions, where a command is a sequence
of instructions, each binding its return value. Instructions now include do(e), which runs an
encapsulated command (expressible in λ4 as x ← e;ret x). Declarations d, which may be
included in let bindings, introduce expressions, functions (which bind one or more variables,
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Expressions ê ::= x | 〈〉 | n | ifz ê {ê;x.ê} | λx.ê | ê ê | (ê, ê) | fst ê | snd ê
| inl ê | inr ê | case ê {x.ê; y.ê} | output ê | inputd
| cmd[ρ] {m̂} | ê[ρ] | let ~d in ê end

Instructions i ::= do(ê) | spawn[ρ; τ ] {m̂} | sync ê | ret ê
Commands m̂ ::= x← i; m̂ | i
Prio. Annotations c ::= π : C
Declarations d ::= val x = ê | fun f(~x +) = ê | fun[~c +] f(~x +) = ê
Toplevel Decls . o ::= d | priority ρ | order ρ ≺ ρ
Programs P ::= main {m̂} | o P

Figure 4.18: Formal syntax of PriML for elaboration.

indicated by the notation ~x +), or priority-polymorphic functions (which bind one or more priority
variables and one or more expression variables). All of these declarations can appear at the top
level, as can priority and order declarations. These are the separate class of toplevel declarations.
Finally, a program is zero or more toplevel declarations followed by a command to run as the
“main” thread.

For simplicity of the formal definition of elaboration, a number of features of PriML are omit-
ted from the formalism. For example, we include natural numbers and unit as the only base types,
while PriML has integers, booleans, strings, etc. We also omit many useful features of a language
such as algebraic datatypes, mutually recursive functions and exceptions. These are present in
our implementation (although we have not implemented mutually recursive priority-polymorphic
functions). The elaboration of these features is standard (e.g., [64]). Because fairness declara-
tions do not affect the static or dynamic semantics of λ4 , they would simply be erased during
elaboration and so we also omit these.

The main work of elaboration is converting to 2/3-cps and hoisting priority and order decla-
rations out of the code so that they may be presented as a pre-defined partially-ordered set, as
required by the λ4 semantics. The overall goal of elaboration then is to convert a PriML pro-
gram P into a λ4 command m together with a partial order R of priorities. This proceeds in a
number of mutually recursive stages, with one elaboration judgment for each syntactic class of
PriML.

Each judgment, except the one for programs, is annotated with the type of the λ4 expression
or command that is produced by elaboration. In this sense, elaboration is typed. We do not ex-
plicitly define a static semantics for PriML. Instead, the static semantics is given by elaboration
itself. If a PriML program elaborates to a λ4 command, that command is well-typed at a dis-
tinguished priority bot (abstractly notated ⊥) with the type given in the elaboration judgment
(Theorem 6). If the elaboration rules do not allow a valid elaboration to be derived for a PriML
program, then we will reject that program as ill-typed.

The elaboration judgments are:
• Γ `R ê;e e : τ converts a PriML expression to a λ4 expression.
• Γ `R i ;i m ∼: τ @ ρ converts a PriML instruction to a λ4 command. These will be
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Γ `R 〈〉;e 〈〉 : unit Γ `R n;e n : nat

Γ `R ê;e e : nat Γ `R ê1 ;e e1 : τ Γ, y :nat `R ê2 ;e e2 : τ x fresh

Γ `R ifz ê {ê1; y.ê2};e let x = e in ifz x {e1; y.e2} : τ

Γ, x : τ1 `R ê;e e : τ2

Γ `R λx.ê;e λx.e : τ1 → τ2

Γ `R ê1 ;e e1 : τ1 → τ2 Γ `R ê2 ;e e2 : τ1 x, y fresh

Γ `R ê1 ê2 ;e let x = e1 in let y = e2 in x y : τ2

Γ `R ê1 ;e e1 : τ1 Γ `R ê2 ;e e2 : τ2 x, y fresh

Γ `R (ê1, ê2) ;e let x = e1 in let y = e2 in (x, y) : τ1 × τ2

Γ `R ê;e e : τ1 × τ2 x fresh

Γ `R fst ê;e let x = e in fst x : τ1

Γ `R ê;e e : τ1 × τ2 x fresh

Γ `R snd ê;e let x = e in snd x : τ2

Γ `R ê;e e : τ1 x fresh

Γ `R inl ê;e let x = e in inl x : τ1 + τ2

Γ `R ê;e e : τ2 x fresh

Γ `R inr ê;e let x = e in inr x : τ1 + τ2

Γ `R ê;e e : τ1 + τ2 Γ, y : τ1 `R ê1 ;e e1 : τ ′ Γ, z : τ2 `R ê2 ;e e2 : τ ′ x fresh

Γ `R case ê {y.ê1; z.ê2};e let x = e in case x {y.e1; z.e2} : τ ′

Γ `R ê;e e : nat x fresh

Γ `R output ê;e let x = e in output x : unit Γ `R inputd ;e inputd : nat

Γ `R m̂;m m∼: τ @ ρ

Γ `R cmd[ρ] {m̂};e cmd[ρ] {m} : τ cmd[ρ]

Γ `R ê;e e : ∀π : C.τ Γ ` [ρ′/π]C x fresh

Γ `R ê[ρ′] ;e let x = e in x[ρ′] : [ρ′/π]τ

Γ `R ê;e e : τ

Γ `R let in ê end ;e e : τ

Γ `R d;d (x, e′) : τ ′ Γ, x : τ ′ `R let ~d in ê end ;e e : τ

Γ `R let d ~d in ê end ;e let x = e′ in e : τ

Figure 4.19: Elaboration of expressions.
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Γ `R ê;e e : τ cmd[ρ] x fresh

Γ `R do(ê) ;i x← e;ret x∼: τ @ ρ

Γ `R m̂;m m∼: τ @ ρ′

Γ `R spawn[ρ′; τ ] {m̂};i spawn[ρ′; τ ] {m} ∼: τ thread[ρ′] @ ρ

Γ `R ê;e e : τ thread[ρ′] Γ `R ρ � ρ′

Γ `R sync ê;i sync e∼: τ @ ρ

Γ `R ê;e e : τ thread[ρ′]

Γ `R poll ê;i poll e∼: τ + unit @ ρ

Γ `R ê;e e : τ

Γ `R ret ê;i ret e∼: τ @ ρ

Γ `R i;i m∼: τ @ ρ Γ, x : τ `R m̂′ ;m m′ ∼: τ ′ @ ρ

Γ `R x← i; m̂′ ;m x← cmd[ρ] {m};m′ ∼: τ ′ @ ρ

Γ `R i;i m∼: τ @ ρ

Γ `R i;m m∼: τ @ ρ

Figure 4.20: Elaboration of instructions and commands.

Γ `R ê;e e : τ

Γ `R val x = ê;d (x, e) : τ

τf = τ1 → . . .→ τn → τ Γ, f : τf , x1 : τ1, . . . , xn : τn `R ê;e e : τ

Γ `R fun f(x1 . . . xn) = ê;d (f,fix f :τf is λx1. . . . λxn.e) : τf

τf = ∀π1 : C1. . . .∀πn : Cn.τ1 → . . .→ τm → τ
Γ, f : τf , π1 prio, C1, . . . , πn prio, Cn, x1 : τ1, . . . , xm : τm `R ê;e e : τ

ebody = Λπ1 : C1. . . .Λπn : Cn.λx1. . . . λxm.e

Γ `R fun[π1 : C1 . . . πn : Cn] f(x1 . . . xm) = ê;d (f,fix f :τf is ebody) : τf

R ∪ {ρ}; Γ ` P ;P m;R′

R; Γ ` priority ρ P ;P m;R′ ∪ {ρ}

ρ1, ρ2 ∈ R ρ2 6� ρ1 (R ∪ {(ρ1, ρ2)}); Γ ` P ;P m;R′

R; Γ ` order ρ1 ≺ ρ2 P ;P m;R′ ∪ {(ρ1, ρ2)}

Γ `R d;d (x, e) : τ R; Γ, x : τ ` P ;P m;R′

R; Γ ` d P ;P x← cmd[⊥] {ret e};m;R′
Γ `R m̂;m m∼: τ @⊥

R; Γ ` main {m̂};P m; ∅

Figure 4.21: Elaboration of declarations and programs.
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sequenced together using the bind operator of λ4 .
• Γ `R m̂;m m∼: τ @ ρ converts a PriML command to a λ4 command.
• Γ `R d ;d (x, e) : τ converts a PriML declaration to the variable it binds together with

the λ4 expression bound to it.
• R; Γ ` P ;P m;R′ converts a PriML program to a λ4 command, together with a partially

ordered set of priorities. The existing partial order R is extended by R′.
All of the judgments except the final one are parametrized by the ambient partial order R of

priorities. The final judgment collects priority orderings declared in the program to produce the
partial order. Recall from Section 4.1 that programmer-defined orderings induce a strict order,
from which we construct the natural partial order.

The elaboration rules for expressions are defined in Figure 4.19. The most interesting feature
of these rules is that they bind subexpressions using let bindings in order to convert expressions
to 2/3-cps form. Otherwise, the rules closely follow the typing rules. The rules for let bindings
unroll the sequence of declarations, elaborating one at a time into λ4 let bindings. For each
declaration in sequence, the declaration is elaborated into a pair (x, e′). The body of the let
binding (together with the elaboration of the remaining bindings) is bound as a let.

The elaboration rules for instructions and commands are defined in Figure 4.20. The elabo-
ration rule for do instructions evaluates the expression, checks that it has the type of an encap-
sulated command, and elaborates it to a command that uses the bind operation of λ4 to bind the
command’s return value to a fresh variable. Other instructions elaborate to the corresponding
command (with any sub-components recursively elaborated). This uniformly produces a com-
mand for each instruction, which can be sequenced together using binding in the first command
elaboration rule. The second command elaboration rule simply elaborates the final instruction
into a command. The m1;m2 form of sequencing we used in Section 4.1, which does not bind
the return value of m1, can easily be desugared to x ← m1;m2, where x does not appear free
in m2. To keep the formalism simple, this syntactic sugar is not included in the rules.

The elaboration rules for declarations and programs appear in Figure 4.21. The rule for val
declarations simply elaborates the expression and returns a pair of the bound variable and elab-
orated expression. Function declarations (both expression-level and priority-level) are recursive,
and so elaborating them involves finding a fixed point. The elaboration of priority-monomorphic
fun declarations elaborates the body in a context that includes all of the arguments, as well as
the function itself. This is then placed inside n nested λ-abstractions to bind the required argu-
ments. Finally, this expression is nested inside a fixed-point operator to introduce the recursive
binding of the function name. Something similar occurs for priority-polymorphic fun declara-
tions. The body is nested inside m λ-abstractions to introduce the expression variables, followed
by n priority-level abstractions to introduce the priority variables. Finally, this whole expression
is wrapped in a fixed-point operator.

The last elaboration judgment covers both toplevel declarations and programs, and produces
a command corresponding to the entire PriML program. The first three rules for this judgment
elaborate each form of toplevel declaration followed by the remainder of the program, and the
final rule evaluates the “main” command that terminates the program. Priority and order declara-
tions are erased from the program; their elaboration is simply the elaboration of the remainder of
the program. However, the priorities and ordering relations introduced by these declarations are
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collected into the partial order that is returned at the end of elaboration. Each time a new order-
ing constraint ρ1 ≺ ρ2 is introduced, we check that ρ2 6� ρ1. This premise checks that the new
constraint will not induce a cycle in the priority relation. Ordinary declarations (val and fun)
at the top level are elaborated using the declaration elaboration rules. The elaborated expression
is wrapped in a command and then introduced using binding. Finally, the main command is
elaborated at priority ⊥ and returned.

Theorem 6 shows that elaboration is type-correct in that elaboration will produce a well-typed
λ4 program. The theorem has a conjunct for each elaboration judgment.
Theorem 6 (Correctness of elaboration). 1. If Γ `R ê;e e : τ , then Γ `R· e : τ .

2. If Γ `R i;i m∼: τ @ ρ, then Γ `R· m∼: τ @ ρ.
3. If Γ `R m̂;m m∼: τ @ ρ, then Γ `R· m∼: τ @ ρ.
4. If Γ `R d;d (x, e) : τ , then Γ `R· e : τ .
5. If R; Γ ` P ;P m;R′, then Γ `R∪R′· m∼: τ @⊥.

Proof. 1. By induction on the derivation of Γ `R ê ;e e : τ . Other than introducing let
bindings, elaboration closely follows the typing rules, and so the cases are straightforward.
We show two representative examples.

Case
Γ `R ê;e e : nat

Γ `R ê1 ;e e1 : τ Γ, y :nat `R ê2 ;e e2 : τ x fresh

Γ `R ifz ê {ê1; y.ê2};e let x = e in ifz x {e1; y.e2} : τ

(1) Γ `R· e : nat (induction)
(2) Γ `R· e1 : τ (induction)
(3) Γ, y :nat `R· e2 : τ (induction)
(4) Γ, x :nat `R· ifz x {e1; y.e2} : τ (NATE)
(5) Γ `R· let x = e in ifz x {e1; y.e2} : τ (LET)

Case
Γ `R d;d (x, e′) : τ ′ Γ, x : τ ′ `R let ~d in ê end ;e e : τ

Γ `R let d ~d in ê end ;e let x = e′ in e : τ

(1) Γ `R· e′ : τ ′ (induction)
(2) Γ, x : τ ′ `R· e : τ (induction)
(3) Γ `R· let x = e′ in e : τ (LET)

2. By induction on the derivation of Γ `R i;i m∼: τ @ ρ.
Case

Γ `R ê;e e : τ cmd[ρ] x fresh

Γ `R do(ê) ;i x← e;ret x∼: τ @ ρ

(1) Γ `R· e : τ cmd[ρ] (induction)
(2) Γ `R· x← e;ret x∼: τ @ ρ (VAR, RET, BIND)

Case
Γ `R m̂;m m∼: τ @ ρ′

Γ `R spawn[ρ′; τ ] {m̂};i spawn[ρ′; τ ] {m} ∼: τ thread[ρ′] @ ρ
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(1) Γ `R· m∼: τ @ ρ′ (induction)
(2) Γ `R· spawn[ρ′; τ ] {m} ∼: τ thread[ρ′] @ ρ (SPAWN)

Case
Γ `R ê;e e : τ thread[ρ′] Γ `R ρ � ρ′

Γ `R sync ê;i sync e∼: τ @ ρ

(1) Γ `R· e : τ thread[ρ′] (induction)
(2) Γ `R· sync e∼: τ @ ρ (SYNC)

Case
Γ `R ê;e e : τ thread[ρ′]

Γ `R poll ê;i poll e∼: τ + unit @ ρ

(1) Γ `R· e : τ thread[ρ′] (induction)
(2) Γ `R· poll e∼: τ + unit @ ρ (POLL)

Case
Γ `R ê;e e : τ

Γ `R ret ê;i ret e∼: τ @ ρ

(1) Γ `R· e : τ (induction)
(2) Γ `R· ret e∼: τ @ ρ (RET)

3. By induction on the derivation of Γ `R m̂;m m∼: τ @ ρ.
Case

Γ `R i;i m∼: τ @ ρ Γ, x : τ `R m̂′ ;m m′ ∼: τ ′ @ ρ

Γ `R x← i; m̂′ ;m x← cmd[ρ] {m};m′ ∼: τ ′ @ ρ

(1) Γ `R· m∼: τ @ ρ (induction)
(2) Γ, x : τ `R· m′ ∼: τ ′ @ ρ (induction)
(3) Γ `R· x← cmd[ρ] {m};m′ ∼: τ ′ @ ρ (CMDI, BIND)

Case
Γ `R i;i m∼: τ @ ρ

Γ `R i;m m∼: τ @ ρ

This case follows directly from the induction hypothesis.
4. By induction on the derivation of Γ `R d;d (x, e) : τ

Case
Γ `R ê;e e : τ

Γ `R val x = ê;d (x, e) : τ

This case follows directly from the induction hypothesis.
Case

τf = τ1 → . . .→ τn → τ Γ, f : τf , x1 : τ1, . . . , xn : τn `R ê;e e : τ

Γ `R fun f(x1 . . . xn) = ê;d (f,fix f :τf is λx1. . . . λxn.e) : τf

(1) Γ, f : τf , x1 : τ1, . . . , xn : τn `R· e : τ (induction)
(2) Γ, f : τf `R· λx1. . . . λxn.e : τf (→I)
(3) Γ `R· fix f :τf is λx1. . . . λxn.e : τf (FIX)
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Case

τf = ∀π1 : C1. . . .∀πn : Cn.τ1 → . . .→ τm → τ
Γ, f : τf , π1 prio, C1, . . . , πn prio, Cn, x1 : τ1, . . . , xm : τm `R ê;e e : τ

ebody = Λπ1 : C1. . . .Λπn : Cn.λx1. . . . λxm.e

Γ `R fun[π1 : C1 . . . πn : Cn] f(x1 . . . xm) = ê;d (f,fix f :τf is ebody) : τf

(1) Γ, f : τf , π1 prio, C1, . . . , πn prio, Cn, x1 : τ1, . . . , xm : τm `R· e : τ
(induction)

(2) Γ, f : τf , π1 prio, C1, . . . , πn prio, Cn `R· λx1. . . . λxm.e : τ1 → . . .→ τm → τ
(→I)

(3) Γ, f : τf `R· Λπ1 : C1. . . .Λπn : Cn.λx1. . . . λxm.e : τf (∀I)
(4) Γ `R· fix f :τf is Λπ1 : C1. . . .Λπn : Cn.λx1. . . . λxm.e : τf (FIX)

5. By induction on the derivation of R; Γ ` P ;P m;R′.
Case

R ∪ {ρ}; Γ ` P ;P m;R′

R; Γ ` priority ρ P ;P m;R′ ∪ {ρ}

This case follows directly from the induction hypothesis because (R ∪ {ρ}) ∪ R′ =
R ∪ (R′ ∪ {ρ}).

Case
ρ1, ρ2 ∈ R ρ2 6� ρ1 (R ∪ {(ρ1, ρ2)}); Γ ` P ;P m;R′

R; Γ ` order ρ1 ≺ ρ2 P ;P m;R′ ∪ {(ρ1, ρ2)}

This case follows directly from the induction hypothesis because (R ∪ {(ρ1, ρ2)}) ∪
R′ = R ∪ (R′ ∪ {(ρ1, ρ2)}).

Case
Γ `R d;d (x, e) : τ ′ R; Γ, x : τ ′ ` P ;P m;R′

R; Γ ` d P ;P x← cmd[⊥] {ret e};m;R′

(1) Γ `R· e : τ ′ (induction)
(2) Γ, x : τ ′ `R∪R′· m∼: τ @⊥ (induction)
(3) Γ `R∪R′· e : τ ′ (weakening)
(4) Γ `R∪R′· x← cmd[⊥] {ret e};m∼: τ @⊥ (RET, CMDI, BIND)

Case
Γ `R m̂;m m∼: τ @⊥

R; Γ ` main {m̂};P m; ∅
This case follows directly from the induction hypothesis.

The main result is the correctness of the elaboration of an entire PriML program in an empty
context with only the priority ⊥ initially defined. This is a simple application of the last part of
Theorem 6.
Corollary 1. If {⊥}; · ` P ;P m;R, then · `R∪{⊥}· m∼: τ @⊥.
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Chapter 5

A Cost Model for Responsive Parallelism

BENVOLIO. What sadness lengthens Romeo’s hours?
ROMEO. Not having that, which, having, makes them short.

Romeo and Juliet (I.1.168–69)

In this chapter, we develop a cost model for PriML, which can be used, together with the
results of Chapter 3, to predict the throughput and responsiveness of programs. In Section 5.1,
we present a cost semantics that evaluates a program, producing a value and a DAG of the form
described in Chapter 3, and show that a well-typed PriML program produces a well-formed
DAG, allowing the results we have shown about cost DAGs to be applied. In Section 5.2, we
validate the cost semantics using a technique inspired by the provably-efficient implementations
of Blelloch and Greiner [16]: we establish a correspondence between the cost semantics and the
transition system of Section 4.2.2 and show that the evaluation of programs under the transition
system is properly predicted by the cost semantics.

5.1 Cost Semantics for λ4

This section introduces the cost semantics. Unlike the operational semantics of Section 4.2.2, this
is an evaluation semantics that does not fully specify the order in which threads are evaluated.
Figures 5.1-5.3 show the cost semantics for λ4 using three judgments.

The judgment for expressions is e ⇓∆ v; ~u, indicating that expression e evaluates to value v
and produces thread ~u. As in the operational semantics, we use a delay assignment ∆ to map
input identifiers to sets of possible delays. The rule C-INPUT then leads to a family of DAGs. For
each element δ ∈ ∆(d), the family contains a DAG where the edge corresponding to this input
operation has weight δ. The two-level syntax of λ4 ensures that expressions cannot produce
spawn or join edges in the cost graph, and so the rules for the expression judgment are otherwise
quite straightforward: subexpressions are evaluated to produce sequences of operations, which
are then composed sequentially.

The judgment σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g indicates that m evaluates to ret v and produces

the graph g. Because threads in our cost graphs are named and annotated with priorities, the
current thread’s name and priority are included in the judgment. The judgment also includes the
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C-VAL

v ⇓∆ v; []

C-LET
e1 ⇓∆ v1; ~u1 [v1/x]e2 ⇓∆ v; ~u2 u fresh

let x = e1 in e2 ⇓∆ v; ~u1 · u · ~u2

C-IFZ-NZ
[n/x]e2 ⇓∆ v; ~u u fresh

ifz n+ 1 {e1;x.e2} ⇓∆ v;u · ~u

C-IFZ-Z
e1 ⇓∆ v; ~u u fresh

ifz 0 {e1;x.e2} ⇓∆ v;u · ~u

C-APP
[v/x]e ⇓∆ v′; ~u u fresh

(λx.e) v ⇓∆ v′;u · ~u

C-PAIR
u fresh

(v1, v2) ⇓∆ 〈v1, v2〉;u

C-FST
u fresh

fst 〈v1, v2〉 ⇓∆ v1;u

C-SND
u fresh

snd 〈v1, v2〉 ⇓∆ v2;u

C-INL
u fresh

inl v ⇓∆ l · v;u

C-INR
u fresh

inr v ⇓∆ r · v;u

C-CASE-L
[v/x]e1 ⇓∆ v′; ~u u fresh

case l · v {x.e1; y.e2} ⇓∆ v′;u · ~u

C-CASE-R
[v/y]e2 ⇓∆ v′; ~u u fresh

case l · v {x.e1; y.e2} ⇓∆ v′;u · ~u

C-OUTPUT
u fresh

output v ⇓∆ 〈〉;u

C-INPUT
u1, u2 fresh n ∈ N δ ∈ ∆(d)

inputd ⇓∆ n;u1 ·δ u2

C-IN
u fresh

in ⇓∆ n;u

C-PRAPP
[ρ/π]e ⇓∆ v; ~u u fresh

(Λπ : C.e) ρ ⇓∆ v;u · ~u

C-FIX
[v/x]e ⇓∆ v′; ~u u fresh

fixx:τ is e ⇓∆ v′;u · ~u

Figure 5.1: Cost semantics for expressions.
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C-BIND
e ⇓∆ cmd[ρ] {m1}; ~u1

σ; Σ;m1 ⇓(a,ρ)
∆ σ1; Σ1; v; g1 u fresh σ1; Σ1; [v/x]m2 ⇓(a,ρ)

∆ σ2; Σ2; v′; g2

σ; Σ;x← e;m2 ⇓(a,ρ)
∆ σ2; Σ2; v′; [~u1]⊕a g1 ⊕a [u]⊕a g2

C-SPAWN

b fresh σ; Σ;m ⇓(b,ρ′)
∆ σ′; Σ,Σ′; v; (T , Es, Ej, Ew) u fresh

σ; Σ;spawn[ρ′; τ ] {m}
⇓(a,ρ)

∆ σ′, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;tid[b]; (a ↪−→
ρ

(0, u) ] T , Es ∪ {(u, b)}, Ej, Ew)

C-SYNC
e ⇓∆ tid[b]; ~u u fresh

σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;sync e

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′,Σ′; v; (a ↪−→

ρ
(0, ~u · u), ∅, {(b, u)}, ∅)

C-POLL-SOME
e ⇓∆ tid[b]; ~u u fresh

σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;poll e

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′,Σ′;l · v; (a ↪−→

ρ
(0, ~u · u), ∅, ∅, {(b, u)})

C-POLL-NONE
e ⇓∆ tid[b]; ~u u fresh

σ; Σ, b∼τ@ρ′;poll e ⇓(a,ρ)
∆ σ; Σ, b∼τ@ρ′;r · 〈〉; (a ↪−→

ρ
(0, ~u · u), ∅, ∅, ∅)

C-RET
e ⇓∆ v; ~u

σ; Σ;ret e ⇓(a,ρ)
∆ σ; Σ; v; (a ↪−→

ρ
(0, ~u), ∅, ∅, ∅)

Figure 5.2: Cost semantics for commands

CT-THREAD

σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g

σ, a ↪→ (v,Σ′); Σ; a ↪−→
ρ

(δ,m) ⇓∆ σ′; g �aδ

CT-EXTEND
σ; Σ,Σ′;µ ⇓∆ σ′; g

σ; Σ; νΣ′{µ} ⇓∆ σ′; g

CT-CONCAT
σ; Σ;µ ⇓∆ σ1; (T , Es, Ej, Ew) σ; Σ;µ′ ⇓∆ σ2; (T ′, E ′s, E ′j, E ′w)

σ; Σ;µ]µ′ ⇓∆ σ1, σ2; (T ] T ′, Es ∪ E ′s, Ej ∪ E ′j, Ew ∪ E ′w)

Figure 5.3: Cost semantics for thread pools
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ambient thread signature before (Σ) and after (Σ′) evaluation of the command. In addition, it
includes a thread record σ (and σ′). The thread record maps a thread name a to a pair (va,Σa)
of the value to which thread a evaluates, and a signature containing threads that are (transitively)
spawned by a. The thread record is used by the rules C-SYNC and C-POLL-SOME to capture
the value of the target thread b, which must be returned by the sync operation (or a successful
poll operation). The rules also capture the signature of threads transitively spawned by b, which
they add to the signature, indicating that future operations in thread a now “know about” these
threads. In showing the consistency of the cost semantics later in the chapter, we will use the
judgment `RΣ σ to indicate that the values in σ are well-typed. The following rules apply to the
judgment:

`RΣ ·
· `RΣ,a∼τ@ρ,Σ′ v : τ `RΣ,a∼τ@ρ σ

`RΣ,a∼τ@ρ σ, a ↪→ (v,Σ′)

The other rules are more straightforward. Rule C-BIND composes the graphs generated by the
subexpressions using the sequential composition operation defined as follows:

(a ↪−→
ρ

(0, ~u) ] T , Es, Ej, Ew)⊕a (a ↪−→
ρ

(0, ~u′) ] T ′, E ′s, E ′j, E ′w)

,
(a ↪−→

ρ
(0, ~u · ~u′) ] T ] T ′, Es ∪ E ′s, Ej ∪ E ′j, Ew ∪ E ′w)

We use the notation [~u] to indicate a graph consisting of a single thread. The name and priority
of the thread will generally be evident from context, e.g., because [~u] is immediately sequentially
composed with another graph at thread a, so

[~u]⊕a (a ↪−→
ρ

(0, ~u′) ] T , Es, Ej, Ew) , (a ↪−→
ρ

(0, ~u · ~u′) ] T , Es, Ej, Ew)

Rule C-SPAWN evaluates the newly spawned thread to produce its cost graph, and then adds it
to the graph along with a single vertex u which performs the spawn and the appropriate spawn
edge. In contrast to C-SYNC and C-POLL-SOME, rule C-POLL-NONE does not add an edge
from b: since the poll failed, there is no dependence relationship between thread b and vertex u.

Finally, the judgment σ; Σ;µ ⇓∆ σ′; g evaluates the thread pool µ to a graph g. The judgment
includes the ambient thread record σ and signature Σ so that when evaluating one thread, we have
access to the records of the other active threads. A thread pool with a single thread a ↪−→

ρ
(δ,m)

evaluates to the same graph as the command m, but the graph may be “delayed” if the thread is
not ready. The delay operator g �aδ indicates that the thread a of a graph g should be delayed by δ.

(a ↪−→
ρ

(δ′, ~u) ] T , Es, Ej, Ew) �aδ, (a ↪−→
ρ

(δ + δ′, ~u) ] T , Es, Ej, Ew)

Rule CT-CONCAT evaluates both parts of the thread pool and composes the graphs.
Lemma 2 shows that the evaluation judgment on expressions preserves typing. The equivalent

property for commands will be shown as part of Lemma 6.
Lemma 2. If · `RΣ e : τ and e ⇓∆ v; ~u, then · `RΣ v : τ .

Proof. By induction on the derivation of e ⇓∆ v; ~u.
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One more technical result we will need in Section 5.2 is that entries in the thread record for
threads that don’t appear in a command or thread pool are unnecessary for the purposes of the
cost semantics.
Lemma 3. 1. If · `RΣ m ∼: τ @ ρ and σ, c ↪→ (vc,Σc); Σ;m ⇓(a,ρ)

∆ σ′, c ↪→ (vc,Σc); Σ′; v; g

and c 6∈ dom(Σ), then σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g.

2. If `RΣ µ : Σ′ and σ, c ↪→ (vc,Σc); Σ;µ ⇓∆ σ′, c ↪→ (vc,Σc); g and c 6∈ dom(Σ),
then σ; Σ;µ ⇓∆ σ′; g.

Proof. 1. By induction on the derivation of σ, c ↪→ (v′, ρ′); Σ;m ⇓(a,ρ)
∆ σ′, c ↪→ (v′, ρ′); Σ′; v; g.

The interesting cases are C-SYNC and C-POLL-SOME. We show the case for C-SYNC.

C-SYNC
e ⇓∆ tid[b]; ~u u fresh

σ, b ↪→ (v,Σ′), c ↪→ (v′,Σ′′); Σ, b∼τ@ρ′;sync e

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′), c ↪→ (v′,Σ′′); Σ, b∼τ@ρ′,Σ′; v; (a ↪−→

ρ
(0, ~u · u), ∅, {(b, u)}, ∅)

(1) c 6= b (c 6∈ dom(Σ, b∼τ@ρ′))
(2) σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;sync e

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′,Σ′; v; (a ↪−→

ρ
(0, ~u · u), ∅, {(b, u)}, ∅) (C-SYNC)

2. By induction on the derivation of σ, b ↪→ (v′, ρ′); Σ;µ ⇓∆ σ′, b ↪→ (v′, ρ′); g. All cases
follow from induction.

We now show that well-typed programs produce well-formed cost graphs. In fact, the type
system guarantees an even stronger property which will also be more convenient to prove. In-
tuitively, a DAG is strongly well-formed if 1) all join edges go from higher-priority threads to
lower-priority threads and 2) if a path from u to u′ starts with a spawn edge and ends with a join
edge, there exists another path from u to u′ that doesn’t go through the spawn edge. In terms of
programs, the second condition means that thread a can’t sync on thread b if it doesn’t “know
about” thread b. Because λ4 is purely functional, a can only know about b by being descended
from the thread that spawned b.
Definition 4. A DAG g = (T , Es, Ej, Ew) is strongly well-formed if for all (a, u) ∈ Ej , we have
that

1. a ↪−→
ρa

(δa, ~u), b ↪−→
ρb

(δb, ~u1 · u · ~u2) ∈ T ,

2. ρb � ρa and
3. If (u′, a) ∈ Es, then there exists a path from u′ to u where the first edge is a continuation

edge.
Lemma 4. If g is strongly well-formed, then g is well-formed.

Proof. Let a ↪−→
ρ

(δa, u1 · . . . · un) ∈ T and let u w un. We need to show that either u w u1

or u ww un or ρ � Priog(u). Since the graph is finite and acyclic, we can proceed by well-
founded induction on w. If u = un, the result is clear. Otherwise, assume that for all u′ such
that u A u′ w un, we have u′ w u1 or u′ ww un or ρ � Priog(u

′). If u′ w u1 for any such u′,

83



then u w u1, and if u′ ww un for all such u′, then u ww un, so there must be at least one
such u′ such that ρ � Priog(u

′). Let E be the set of outgoing edges of u which lead to u′ such
that u′ w un and ρ � Priog(u

′). If any edge in E is a continuation or join edge, then we have
ρ � Priog(u

′) � Priog(u). If all are weak edges, then u ww un. This means that there must be a
spawn edge (u, b) ∈ E, where u′ is the first vertex of thread b. If there exists a corresponding join
edge (b, u′′) in the path, then by assumption there exists a path from u to u′′ where the first edge is
a continuation edge, but this is a contradiction because there were assumed to be no continuation
edges in E. If no corresponding join edge (b, u′′) is in the path, then un must be in b, so u′ = u1

and u w u1, also a contradiction.

We maintain the invariant that if b ∈ dom(Σ) when an operation corresponding to vertex u
in thread a is typed, then the vertex that spawned b must be an ancestor of u. We say that a graph
for which this invariant holds is compatible with Σ at a.
Definition 5. We say that a graph g = (T , Es, Ej, Ew) is compatible with a signature Σ at a if

1. a ↪−→
ρa

(0, ~ua · ta) ∈ T

2. for all b ∈ dom(Σ), if (u, b) ∈ Es, then u w ta.
We say that a graph g is compatible with a thread record σ if for all b ↪→ (v,Σ′) ∈ σ, it is the

case that g is compatible with Σ′ at b.
We show some facts about compatibility that will be useful later:

Lemma 5. 1. If g is compatible with a signature Σ at a, then g ⊕a ~u is compatible with Σ
at a and ~u⊕a g is compatible with Σ at a.

2. If g is compatible with σ, then g⊕a ~u is compatible with σ and ~u⊕a g is compatible with σ.
3. If g1 and g2 are compatible with Σ at a, then g1 ⊕a g2 is compatible with Σ at a.
4. If g1 and g2 are compatible with σ, then g1 ⊕a g2 is compatible with σ.
5. If g is strongly well-formed, then g ⊕a ~u is strongly well-formed and ~u ⊕a g is strongly

well-formed.

Proof. 1. Part (1) of compatibility is immediate from the definitions, as is part (2) for ~u⊕a g.
To show part (2) on g ⊕a ~u, let b ∈ dom(Σ), suppose (u, b) ∈ Es. By definition, u w ta,
where ta is the last vertex of a in g. We have ta w t′a where t′a is the last vertex of a in ~u,
completing the proof.

2. Composing at a doesn’t change the structure of any other thread, so compatibility with σ
is preserved.

3. Let g1 = (T1, Es, Ej, Ew) and g2 = (T2, E
′
s, E

′
j, E

′
w), where t1 is the last vertex of a

in g1 and t2 is the last vertex of a in g2. Part (1) of compatibility is immediate from the
definitions. For part (2), let b ∈ dom(Σ) and suppose (u, b) ∈ Es. Then u w t1 w t2. Now
suppose (u, b) ∈ E ′s. Then u w t2 immediately.

4. Composing at a doesn’t change the structure of any other thread, so compatibility with σ
is preserved.

5. No join edges are added in either case, so strong well-formedness is preserved by compo-
sition.

84



Compatibility gives the final piece needed to show that a graph is strongly well-formed: if a
vertex u syncs on a thread b, then b must be in the signature Σ used to type the sync operation u,
and if the graph generated up to this point is compatible with Σ, the vertex that spawned b is an
ancestor of u. At first glance, the phrase “the graph generated up to this point” seems terribly
non-compositional. This would be worrisome, as we wish to be able to prove a large graph
well-formed by breaking it into subgraphs and showing the result by induction. To do so, we
strengthen the induction hypothesis by positing the existence of a graph g′ which is well-formed
and compatible with the current signature and thread record. This graph represents “the graph
generated up to this point” and will be filled in appropriately when we compose subgraphs.
Lemma 6. If · `RΣ m ∼: τ @ ρ and `RΣ σ and σ; Σ;m ⇓(a,ρ)

∆ σ′; Σ′; v; g and there exists some g′

such that:
1. g′ is strongly well-formed
2. g′ is compatible with Σ at a and
3. g′ is compatible with σ

then
1. g = (a ↪−→

ρ
(0, ~u) ] T , Es, Ej, Ew)

2. Σ′ extends Σ

3. g′ ⊕a g is strongly well-formed
4. g′ ⊕a g is compatible with Σ′ at a.
5. g′ ⊕a g is compatible with σ′.
6. · `RΣ′ v : τ .

Proof. By induction on the derivation of σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g.

Case
C-BIND

e ⇓∆ cmd[ρ] {m1}; ~u1

σ; Σ;m1 ⇓(a,ρ)
∆ σ1; Σ1; v; g1 u fresh σ1; Σ1; [v/x]m2 ⇓(a,ρ)

∆ σ2; Σ2; v′; g2

σ; Σ;x← e;m2 ⇓(a,ρ)
∆ σ2; Σ2; v′; [~u1]⊕a g1 ⊕a [u]⊕a g2

This case follows from the inductive hypothesis applied to the second subderivation if we
can show that the conditions of the lemma hold for g′ ⊕a [~u1] ⊕a g1 ⊕a [u]. These in turn
hold from Lemma 5 and the inductive hypothesis applied to the first subderivation if we
can show that the conditions of the lemma hold for g′⊕a [~u1]. This follows from Lemma 5
and the assumptions.

Case

C-SPAWN

b fresh σ; Σ;m ⇓(b,ρ)
∆ σ, σ′; Σ,Σ′; v; (T , Es, Ej, Ew) u fresh

σ; Σ;spawn[ρ′; τ ] {m}
⇓(a,ρ)

∆ σ, σ′, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;tid[b]; (a ↪−→
ρ

(0, u) ] T , Es ∪ {(u, b)}, Ej, Ew)

Then g = (a ↪−→
ρ

(0, u)]T , Es∪{(u, b)}, Ej, Ew). By induction, Σ,Σ′ extends Σ and g′⊕a
(T , Es, Ej, Ew) is strongly well-formed and compatible with Σ,Σ′ at b and is compatible
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with σ, σ′ and · `RΣ,Σ′ v : τ . All of these properties hold for g′ ⊕a g as well, because
this adds no join edges, nor does it change the structure of thread b. Because g′ ⊕a g is
compatible with Σ,Σ′ at b and is compatible with σ, σ′, we have that g′ ⊕a g is compatible
with σ, σ′, b ↪→ (v,Σ′). It remains to show that g′ ⊕a g is compatible with Σ, b∼τ@ρ at a.
This is the case because g′ ⊕a g is compatible with Σ at a and (u, b) ∈ Es ∪ {(u, b)}.

Case
C-SYNC

e ⇓∆ tid[b]; ~u u fresh

σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;sync e

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′,Σ′; v; (a ↪−→

ρ
(0, ~u · u), ∅, {(b, u)}, ∅)

Then g = (a ↪−→
ρ

(0, ~u·[u]), ∅, {(b, u)}, ∅). It is clear that Σ, b∼τ@ρ′,Σ′ extends Σ, b∼τ@ρ′.

The only join edge added to form g′⊕a g is (b, u). By inversion on the typing rule, we must
have ρ � ρ′. Because g′ is compatible with Σ, b∼τ@ρ′ at a, if (u′, b) ∈ g′ then u′ w u, so
g′⊕a g is strongly well-formed. In addition, it remains compatible with σ, b ↪→ (v,Σ′). By
inversion on `RΣ,b∼τ@ρ′ σ, b ↪→ (v,Σ′), we must have · `RΣ,b∼τ@ρ′,Σ′ v : τ . It remains to show
that g′⊕ag is compatible with Σ, b∼τ@ρ′,Σ′ at a and in particular that for all c ∈ dom(Σ′),
if (u′′, c) ∈ g′ ⊕a g, then u′′ w u. Because g′ is compatible with σ, b ↪→ (v,Σ′), we have
that g′ is compatible with Σ′ at b, so u′′ is an ancestor of the last vertex of b in g′ and is
therefore an ancestor of u in g′ ⊕a g.

Case
C-POLL-SOME

u fresh

σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;poll tid[b]

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′,Σ′;l · v; (a ↪−→

ρ
(0, u), ∅, ∅, {(b, u)})

Then g = (a ↪−→
ρ

(0, u), ∅, ∅, {(b, u)}). It is clear that Σ, b∼τ@ρ′,Σ′ extends Σ, b∼τ@ρ′.

No join edges are added to form g′ ⊕a g, so g′ ⊕a g is strongly well-formed. In addi-
tion g′ ⊕a g remains compatible with σ, b ↪→ (v,Σ′). By inversion on `RΣ,b∼τ@ρ′ σ, b ↪→
(v,Σ′), we must have · `RΣ,b∼τ@ρ′,Σ′ v : τ . It remains to show that g′ ⊕a g is compatible
with Σ, b∼τ@ρ′,Σ′ at a and in particular that for all c ∈ dom(Σ′), if (u′′, c) ∈ g′ ⊕a g,
then u′′ w u. Because g′ is compatible with σ, b ↪→ (v,Σ′), we have that g′ is compatible
with Σ′ at b, so u′′ is an ancestor of the last vertex of b in g′ and is therefore an ancestor
of u in g′ ⊕a g.

Case
C-POLL-NONE

u fresh

σ; Σ, b∼τ@ρ′;poll tid[b] ⇓(a,ρ)
∆ σ; Σ, b∼τ@ρ′;r · 〈〉; (a ↪−→

ρ
(0, u), ∅, ∅, ∅)

By rules UNITI and +I2, we have · `RΣ,b∼τ@ρ′ v : τ + unit. The other conditions follow
from Lemma 5.
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Case
C-RET

e ⇓∆ v; ~u

σ; Σ;ret e ⇓(a,ρ)
∆ σ; Σ; v; (a ↪−→

ρ
(0, ~u), ∅, ∅, ∅)

By Lemma 2, we have · `RΣ v : τ . The other conditions follow from Lemma 5.

In order to show that a full graph generated by a well-typed program is strongly well-formed,
we simply observe that “the graph generated up to this point” is empty, and trivially satisfies the
requirements of the lemma.
Corollary 2. If · `R· m∼: τ @ ρ and ·; ·;m ⇓(a,ρ)

∆ σ; Σ; v; g, then g is well-formed.

Proof. Because ∅ is strongly well-formed and compatible with ·, Lemma 6 shows that g is
strongly well-formed, and is thus well-formed by Lemma 4.

5.2 Response Time Bound for Operational Semantics
Thus far in this chapter, we have developed a DAG-based cost model for λ4 programs and
showed an offline scheduling bound which holds for DAGs derived from well-typed λ4 pro-
grams. Although the DAGs are built upon our intuitions of how λ4 programs execute, they
are still abstract artifacts which must, in order to be valuable, be shown to correspond to more
concrete, runtime notions.

Our goal in this section is to show that an execution of a λ4 program using the dynamic
semantics corresponds to a valid schedule of the DAG generated from that program. Because
well-formed DAGs admit the cost bound of Theorem 2, we may then directly appeal to that
theorem for cost bounds on programs. The argument proceeds as follows:

1. Lemmas 7 and 8 show that a thread of a DAG is ready (i.e., its first unexecuted vertex is
ready) if and only if the corresponding thread in the program may take a step.

2. Lemmas 9 and 10 are used to show that the schedule corresponding to a λ4 execution is
admissible.

3. Lemma 11 shows that stepping some set of threads in the dynamic semantics corresponds
to executing the first vertex of those threads in a schedule of the DAG.

4. Lemma 12 combines the above results to establish a correspondence between an execution
of a λ4 program and a schedule of a cost graph that can be produced by the program.

5. Finally, we use Theorem 2 to bound the length of the schedule and therefore the length of
the execution in the dynamic semantics.

The correspondence between ready DAG threads and active thread pool threads requires
intermediate results about expressions and commands. Part (1) of Lemma 7 states that an ex-
pression produces an empty thread if and only if it is a value. Part (2) states that a command a)
takes a silent step if and only if it produces a graph with an enabled first vertex, b) returns a value
if and only if it produces an empty graph and c) takes a sync step if and only if it produces a
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graph with an incoming join edge. Note that part (2) does not require that the delay on the thread
be 0, as commands of delayed threads are still capable of stepping in the transition semantics,
but are simply prohibited from doing so because of the delay. Parts (3) and (4) extend part (2) to
thread pools, and require that thread delays be 0 in order for the thread to take a step. Part (4) in
particular states that if the first vertex of a thread is ready in a graph, the corresponding thread
in the thread pool can take a silent step. The key observation in proving part (4) from part (2) is
that if a vertex u has an incoming join edge (b, u) but thread b is empty, then thread b must be
returning a value and u can perform the sync, taking a silent step with rule D-SYNC.

Recall from Section 4.2.2 that thread pools step until all poll operations have “committed”
to whether they will be successful or unsuccessful. Lemma 7, and several other results in this
section, require preconditions involving the polled judgment, defined earlier, that captures this
property that a command or thread pool has fully committed.
Lemma 7. 1. If · `RΣ e : τ and e ⇓∆ v; ~u, then e →∆

Σ (δ, e′) for some e′, δ if and only if ~u is
nonempty.

2. If m polled and · `RΣ m ∼: τ @ ρ and σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g, then g = (a ↪−→

ρ
(δ, ~u) ]

T , Es, Ej, Ew), and g has no spawn edges to threads in Σ and has no join or weak edges
to active threads other than a, and one of the following is true:

(a) There exists m′ such that m ε7−→
Σ

∆
(δ′,Σ,m′, µ) and ~u = u ·δ′ ~u′.

(b) There exists v such that v valΣ and m = ret v and ~u = [].

(c) There exist v and m′ such that m v/b7−−→
Σ

∆

(δ′,Σ,m′, µ) and ~u = u ·δ′ ~u′ and there exists

an edge (b, u) ∈ g, which is the only in-edge of u.
3. If µ polled and `RΣ µ : Σ′, a∼τ@ρ and σ; Σ;µ ⇓∆ σ′; g where g = (T , Es, Ej, Ew)

and µ
a/α
==⇒

Σ

∆

µ′, then g has no spawn, join or weak edges to threads not in T and

(a) If α = ε, then a ↪−→
ρ

(0, u ·δ ~u) ∈ T and u is ready in g.

(b) If α = v., then a ↪−→
ρ

(0, []) ∈ T .

(c) If α = v / b, then a ↪−→
ρ

(0, u ·δ ~u) ∈ T and there exists an edge (b, u) ∈ g, which is

the only in-edge of u.
4. If `R· µ : Σ and σ; Σ;µ ⇓∆ σ′; g and the first vertex of a is ready in g, then there exists µ′

such that µ
a/ε
=⇒
·

∆

µ′.

Proof. 1. By Theorem 4, either e →∆
Σ e′ or e valΣ. It remains to show that e valΣ if and

only if ~u = []. Both directions are clear by inspection of the cost semantics.
2. By Theorem 4 and inspection of the dynamic semantics, the three cases given are exhaus-

tive. If m = ret v, then apply C-VAL and C-RET. Otherwise, proceed by induction on
the derivation of m α7−→

Σ

∆
(δ,Σ′,m′, µ′). There are no cases for rules D-POLL2A and D-

POLL2B because of the assumption m polled.
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Case
D-BIND1

e→∆
Σ (δ, e′)

x← e;m
ε7−→
Σ

∆
(δ, ·, x← e′;m, ∅)

(1) e ⇓∆ v′; ~u′, ~u′ nonempty (inversion on C-BIND,part 1)
(2) g = (a ↪−→

ρ
(0, ~u′ · ~u′′) ] T , Es, Ej, Ew) (inversion on C-BIND)

Case
D-BIND2

m1
α7−→
Σ

∆
(δ,Σ′,m′1, µ

′)

x← cmd[ρ] {m1};m2
α7−→
Σ

∆
(δ,Σ′, x← cmd[ρ] {m′1};m2, µ

′)

(1) σ; Σ;m1 ⇓(a,ρ)
∆ σ′; Σ′′; v; g1 (inversion on cost semantics)

(2) g1, α meet condition 2(a) or 2(c) of the lemma (induction)
(3) g, α meet condition 2(a) or 2(c) of the lemma (C-BIND)

Case
D-BIND3

e valΣ

x← cmd[ρ] {ret e};m ε7−→
Σ

∆
(0, ·, [e/x]m, ∅)

(1) g = (a ↪−→
ρ

(0, u · ~u) ] T , Es, Ej, Ew) (inversion on C-BIND)

Case
D-SPAWN

b fresh

spawn[ρ; τ ] {m} ε7−→
Σ

∆
(0, b∼τ@ρ,ret tid[b], b ↪−→

ρ
(0,m))

(1) g = (a ↪−→
ρ

(0, u) ] T , Es ∪ {(u, b)}, Ej, Ew) (inversion on C-SPAWN)

(2) b 6∈ Σ, so no spawn edges to threads in Σ are added (b fresh)

Case
D-SYNC1

e→∆
Σ (δ, e′)

sync e
ε7−→
Σ

∆
(δ, ·,sync e′, ∅)

(1) e ⇓∆ v′; ~u′, ~u′ nonempty (inversion on C-SYNC,part 1)
(2) g = (a ↪−→

ρ
(0, ~u′ · ~u′′) ] T , Es, Ej, Ew) (inversion on C-SYNC)

Case
D-SYNC2

v valΣ

sync (tid[b])
v/b7−−→
Σ

ρ

(0, ·,ret v, ∅)
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(1) g = (a ↪−→
ρ

(0, ~u′ · u), ∅, {(b, u)}, ∅) (inversion on C-SYNC)

(2) v ⇓∆ v; ~u′ (inversion on C-SYNC)
(3) ~u′ = [] (part 1)

Case
D-POLL1

e→∆
Σ (δ, e′)

poll e
ε7−→
Σ

∆
(δ, ·,poll e′, ∅)

(1) e ⇓∆ v′; ~u′, ~u′ nonempty (inversion on C-POLL, part 1)
(2) g = (a ↪−→

ρ
(0, ~u′ · u), ∅, ∅, Ew) (inversion on C-POLL-SOME, C-POLL-NONE)

Case
D-RET

e→∆
Σ (δ, e′)

ret e
ε7−→
Σ

∆
(δ, ·,ret e′, ∅)

(1) e ⇓∆ v; ~u′, ~u′ nonempty (inversion on C-RET, part 1)
(2) (a ↪−→

ρ
(0, ~u′), ∅, ∅, ∅) (inversion on C-RET)

3. By induction on the derivation of µ
a/α
==⇒

Σ

∆

µ′.

Case
DT-THREAD

m
α7−→
Σ

∆
(δ,Σ′,m′, µ′)

a ↪−→
ρ

(0,m)
a/α

=====⇒
a∼τ@ρ,Σ

∆

νΣ′{a ↪−→
ρ

(δ,m′)]µ′}

(1) σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g (inversion on CT-THREAD)

(2) g = (a ↪−→
ρ

(0, ~u) ] T , Es, Ej, Ew) (part 2)

(3) condition (a) or (c) holds on g (part 2)

Case
DT-RET

v vala∼τ@ρ,Σ

a ↪−→
ρ

(δ,ret v)
a/v.

=====⇒
a∼τ@ρ,Σ

∆

a ↪−→
ρ

(δ,ret v)

(1) σ; Σ;ret v ⇓(a,ρ)
∆ σ′; Σ′; v; g (inversion on CT-RET)

(2) g = (a ↪−→
ρ

(0, []), ∅, ∅, ∅) (part 2)

Case
DT-SYNC

Σ = Σ′, a∼τa@ρa, b∼τb@ρb µ1
a/v/b
===⇒

Σ

∆

µ′1 µ2
b/v.
==⇒

Σ

∆

µ2

µ1 ]µ2
a/ε
=⇒

Σ

∆

µ′1 ]µ2
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(1) σ, σ2; Σ;µ1 ⇓∆ σ1; (a ↪−→
ρa

(0, u ·δ ~ua) ] T , Es, Ej, Ew)

(inversion on CT-CONCAT, induction)
(2) σ, σ1; Σ;µ2 ⇓∆ σ2; (b ↪−→

ρb
(δ, []) ] T ′, E ′s, E ′j, E ′w)

(inversion on CT-CONCAT, induction)
(3) g = (a ↪−→

ρa
(0, u ·δ ~ua) ] b ↪−→

ρb
(δ, []) ] T ] T ′, Es ∪ E ′s, Ej ∪ E ′j, Ew ∪ E ′w)

(CT-CONCAT)
(4) no edges in E ′s, E

′
j, E

′
w target u (induction)

(5) u is ready in g (b is empty, so we may ignore the edge (b, u))

Case
DT-CONCAT

µ1
a/α
==⇒

Σ

∆

µ′1

µ1 ]µ2
a/α
==⇒

Σ

∆

µ′1 ]µ2

(1) σ, σ2; Σ;µ1 ⇓∆ σ1; g1, g1 = (a ↪−→
ρa

(0, ~u) ] T , Es, Ej, Ew) (induction)

(2) σ, σ1; Σ;µ2 ⇓∆ σ2; (T ′, E ′s, E ′j, E ′w) (induction)
(3) g = (a ↪−→

ρa
(0, ~u) ] T ] T ′, Es ∪ E ′s, Ej ∪ E ′j, Ew ∪ E ′w) (CT-CONCAT)

Subcase: α = ε
(a) ~u = u ·δ ~u′, u is ready in g1 (induction)
(b) no edges in E ′s, E

′
j, E

′
w target u (induction)

(c) u is ready in g

Subcase: α = v.
(a) ~u = [] (induction)

Subcase: α = v / b
(a) ~u = u ·δ ~u′,∃(b, u) the only in-edge of u in g1 (induction)
(b) no edges in E ′s, E

′
j, E

′
w target u (induction)

(c) (b, u) is the only in-edge of u in g

Case
DT-EXTEND

µ
b/α

=====⇒
Σ,a∼τ@ρ

∆

µ′

νa∼τ@ρ{µ} b/α
=⇒

Σ

∆

νa∼τ@ρ{µ′}

(1) σ; Σ, a∼τ@ρ;µ ⇓∆ σ′; g (inversion on CT-EXTEND)
(2) g meets the conditions of the lemma (induction)
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4.

(1) µ ≡ νΣ′{a ↪−→
ρ

(0,m)]µ0},where dom(µ0) ∪ {a} = dom(Σ′)

(Theorem 4)

(2) µ
a/α

==⇒
Σ,Σ′

∆

µ′ and `RΣ,Σ′ α action (Theorem 4)

(3) α 6= v . (part 3 would imply a has no vertices in g, a contradiction)

Subcase: α = ε
(a) Conclusion holds trivially

Subcase: α = v / b
(a) (b, u) ∈ g, where u is the first vertex of a and this is the lone in-edge of u

(part 3)
(b) b∼τb@ρb ∈ Σ,Σ′

(inversion on the static semantics for actions)
(c) b ↪−→

ρb
(0,mb) ∈ µ0 (assumption)

(d) b is empty in g (u is ready in g)
(e) mb = ret v (part 2)

(f) ∃µ′′.µ a/ε
==⇒
Σ,Σ′

∆

µ′′ (DT-RET, DT-SYNC)

Parts (3) and (4) of Lemma 7 state that a thread can take a silent step if and only if its first
vertex is ready in the corresponding graph. However, this result still considers only sequential
execution: if threads a and b are both ready in the graph, it says nothing about whether a and b
can step in parallel. Lemma 8 extends the result to parallel steps. It states that a set a1, . . . , an of
threads that are ready in g may all step simultaneously, and that any set of threads that can take
a parallel step must be ready in g.
Lemma 8. Let R = {a | a ↪−→

ρ
(0, u ·δ ~u) ∈ g, u is ready in g}. If µ polled and `RΣ µ : Σµ and

σ; Σ;µ ⇓∆ σ′; g, then

1. For any subset {a1, . . . , an} of R, we have µ
{a1,...,an}
=====⇒

P

∆

µ′.

2. If µ
{a1,...,an}
=====⇒

P

∆

µ′, then {a1, . . . , an} ⊂ R.

Proof. 1.

(1) µ ≡ νΣ′{a1 ↪−→
ρ1

(0,m1)] . . .] am ↪−→
ρm

(0,mm)} (Theorem 4)

(2) ∀ ai ∈ R.µ
ai/ε
==⇒

Σ

∆

µ′i (Lemma 7)

(3) ∀ai.µ′i ≡ νΣ′′{a1 ↪−→
ρ1

(0,m1)] . . .] ai ↪−→
ρi

(0,m′i)]µ′′i ] . . .] am ↪−→
ρm

(0,mm)}
(inspection of transition rules)

(4) µ
{a1,...,an}
=====⇒

P

∆

µ′ (DT-PAR)
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2. Let i ∈ [1, n]. By inversion on rule DT-PAR, µ
ai/ε
==⇒
·

∆

µ′i. By Lemma 7, ai ∈ R.

Recall from Chapter 3 that a schedule is admissible if it never leaves a weak edge without a
corresponding strong edge. Lemmas 9 and 10 will be used to show that the schedule correspond-
ing to an execution of a λ4 program is admissible. Intuitively, this is true because a weak edge
targeting a ready vertex would correspond to an uncommitted poll operation, which is ruled
out in the dynamics.

More formally, we define a graph g = (T , Es, Ej, Ew) to be admissible if for all u ∈ g, there
is a weak edge (u1, u) ∈ Ew only if there is a strong edge (u2, u) ∈ g. A schedule is admissible
if, at every step, the graph consisting of the unexecuted vertices is admissible. We show that
if µ polled, then the graph corresponding to µ is admissible.
Lemma 9. If σ; Σ;m ⇓(a,ρ)

∆ σ′; Σ′; v; g and g = (a ↪−→
ρ

(δ, ~u) ] T , Es, Ej, Ew) then every vertex

of g has a strong incoming edge except possibly the first vertex of ~u.

Proof. By induction on the derivation of σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g.

Remark 1. Because of Lemma 9, if σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g, then g is admissible if and only if

the first vertex of thread a doesn’t have a weak incoming edge.
Lemma 10. 1. If e polled and e ⇓∆ v; ~u, then v polled or ~u 6= [].

2. If m polled and σ; Σ;m ⇓(a,ρ)
∆ σ′; Σ′; v; g, then g is admissible.

3. If µ polled and σ; Σ;µ ⇓∆ σ′; g, then g is admissible.

Proof. 1. By induction on the derivation of e ⇓∆ v; ~u.
2. By induction on the derivation of σ; Σ;m ⇓(a,ρ)

∆ σ′; Σ′; v; g. By the above Remark, all but
two cases are trivial.

Case
C-BIND

e ⇓∆ cmd[ρ] {m1}; ~u1 σ; Σ;m1 ⇓(a,ρ)
∆ σ1; Σ1; v; g1

u fresh σ1; Σ1; [v/x]m2 ⇓(a,ρ)
∆ σ2; Σ2; v′; g2

σ; Σ;x← e;m2 ⇓(a,ρ)
∆ σ2; Σ2; v′; [~u1]⊕a g1 ⊕a [u]⊕a g2

(1) e polled (inversion)
(2) cmd[ρ] {m1} polled or ~u1 6= [] (part 1)

Subcase: cmd[ρ] {m1} polled
(a) m1 polled (inversion)
(b) g1 admissible (induction)
(c) all vertices of g2 have a strong incoming edge (Lemma 9)
(d) [~u1]⊕a g1 ⊕a [u]⊕a g2 admissible (Remark)

Subcase: ~u1 6= []
(a) [~u1]⊕a g1 ⊕a [u]⊕a g2 admissible (Remark)
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Case
C-POLL-SOME

e ⇓∆ tid[b]; ~u u fresh

σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′;poll e

⇓(a,ρ)
∆ σ, b ↪→ (v,Σ′); Σ, b∼τ@ρ′,Σ′;l · v; (a ↪−→

ρ
(0, ~u · u), ∅, ∅, {(b, u)})

(1) e polled (inversion)
(2) ~u 6= [] (part 1, since tid[b] polled is not derivable)
(3) (a ↪−→

ρ
(0, ~u · u), ∅, ∅, {(b, u)}) admissible (Remark)

3. By induction on the derivation of σ; Σ;µ ⇓∆ σ′; g

We now move on to showing that a parallel transition corresponds to a step of a schedule. At
a more precise level, Lemma 11 shows that if a thread pool µ′ produces a graph g′ and µ steps
to µ′, then µ produces a graph isomorphic to g sequentially post-composed with one vertex for
each thread that was stepped. Stating this formally requires us to define a new graph composition
operator ⊕a which composes a thread with a graph g by adding outgoing edges from the thread
to all sources of g, with the edge to a being a continuation edge and all other edges being spawn
edges (as opposed to ⊕a which adds an edge only to thread a).

[~u]⊕a(a ↪−→
ρ

(δ, ~u′) ] a1 ↪−→
ρ1

(δ1, ~u1) · · · ] an ↪−→
ρn

(δn, ~un), Es, Ej, Ew)

, (a ↪−→
ρ

(0, ~u ·δ ~u′) ] a1 ↪−→
ρ1

(δ1, ~u1) · · · ] an ↪−→
ρn

(δn, ~un), Es ∪ {(u, a1), . . . , (u, an)}, Ej, Ew)

Lemma 11. 1. If e′ ⇓∆ v; ~u and e→∆
Σ (δ, e′), then e ⇓∆ v;u ·δ+1 ~u.

2. If σ; Σ; a ↪−→
ρ

(δ,m′) ] µ′ ⇓∆ σ′′; g and m polled and m α7−→
Σ

∆
(δ,Σ′,m′, µ′), then

σ; Σ;m ⇓(a,ρ)
∆ σ′′; Σ′′; v; g0

where g0 is isomorphic to [u]⊕ag.

3. If σ; Σ; a ↪−→
ρ

(δ,m′) ] µ′ ⇓∆ σ′′; g and m α7−→
Σ

∆
(δ,Σ′,m′, µ′) where α =6 ?b or α = v ? b,

then
σ; Σ;m ⇓(a,ρ)

∆ σ′′; Σ′′; v; g0

where g0 is isomorphic to g.

4. If σ; Σ;µ′ ⇓∆ σ′; g and µ α
=⇒
Σ

∆
µ′ where α = ? or α =6 ?b or α = v ? b, then

σ; Σ;µ′ ⇓∆ σ′; g0

where g0 is isomorphic to g.

5. If σ; Σ;µ′ ⇓∆ σ′; g′ and µ polled and µ
{a1/ε,...,an/ε}
========⇒

P

∆

µ′, then g′ can be decomposed into

g0] g1] · · ·] gn, µ ≡ νΣ{µ]µ1 ] . . .]µn}, and σ; Σ;µ ⇓∆ σ′; g, where g is isomorphic
to g0 ] ([u1]⊕a1g1) ] · · · ] ([un]⊕angn).
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Proof. 1. By induction on the derivation of e→∆
Σ (δ, e′). We present the interesting cases.

Case
D-LET-STEP

e1 →∆
Σ (δ, e′1)

let x = e1 in e2 →∆
Σ (δ,let x = e′1 in e2)

(1) e′1 ⇓∆ v1; ~u1 (inversion on C-LET)
(2) [v1/x]e2 ⇓∆ v; ~u2, ~u = ~u1 · u · ~u2 (inversion on C-LET)
(3) e1 ⇓∆ v1;u′ ·δ+1 ~u1 (induction)
(4) let x = e1 in e2 ⇓∆ v;u′ ·δ+1 ~u1 · u · ~u2 (C-LET)

Case
D-INPUT

δ ∈ ∆(d)

inputd →∆
Σ (δ − 1,in)

(1) ~u = u′, v = n for some n ∈ N (inversion on C-IN)
(2) inputd ⇓∆ n;u ·δ u′ (C-INPUT)

2. By induction on the derivation of m α7−→
Σ

∆
(Σ′,m′, µ′,).

Case
D-BIND1

e→∆
Σ (δ, e′)

x← e;m
ε7−→
Σ

∆
(δ, ·, x← e′;m, ∅)

(1) e′ ⇓∆ cmd[ρ′] {m1}; ~u1 (inversion on C-BIND)
(2) σ; Σ;m1 ⇓(a,ρ)

∆ σ1; Σ1; v1; g1 (inversion on C-BIND)
(3) σ1; Σ1; [v1/x]m ⇓(a,ρ)

∆ σ′′; Σ′′; v; g2 (inversion on C-BIND)
(4) σ; Σ; a ↪−→

ρ
(δ, x← e′;m) ⇓∆ σ′′; [~u1] �aδ ⊕ag1 ⊕a [u]⊕a g2

(inversion on CT-CONCAT, CT-THREAD, C-BIND)
(5) e ⇓∆ cmd[ρ′] {m1};u′ ·δ+1 ~u1 (part 1)
(6) σ; Σ;x← e;m ⇓(a,ρ)

∆ σ′′; Σ′′; v; [u′ ·δ+1 ~u1]⊕a g1 ⊕a [u]⊕a g2 (C-BIND)
(7) σ; Σ; a ↪−→

ρ
(δ, x← e;m) ⇓∆ σ′′; [u′]⊕ag (CT-CONCAT)

Case
D-BIND2

m1
α7−→
Σ

∆
(δ,Σ′,m′1, µ

′)

x← cmd[ρ] {m1};m2
α7−→
Σ

∆
(δ,Σ′, x← cmd[ρ] {m′1};m2, µ

′)
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(1) σ; Σ;m′1 ⇓
(a,ρ)
∆ σ1; Σ1; v1; g1 (inversion on C-BIND)

(2) σ1; Σ1; [v1/x]m ⇓(a,ρ)
∆ σ′′; Σ′′; v; g2 (inversion on C-BIND)

(3) σ, a ↪→ (v1,Σ1); Σ; a ↪−→
ρ

(δ, x← cmd[ρ] {m′1};m2) ⇓∆ σ′′; (g1 ⊕a [u]⊕a g2) �aδ

(inversion on CT-CONCAT, CT-THREAD, C-BIND)
(4) σ, a ↪→ (v1,Σ1); Σ;µ′ ⇓∆ σ3; g3 (inversion on CT-CONCAT)
(5) σ; Σ;µ′ ⇓∆ σ3; g3 (inversion on DT-THREAD, Theorem 5, Lemma 3)
(6) σ; a ↪−→

ρ
(δ,m′1)]µ′;σ1, σ3 ⇓∆ g1 ] g3; (CT-CONCAT)

(7) σ; Σ;m1 ⇓(a,ρ)
∆ σ1, σ3; Σ1,Σ3; v1; [u′]⊕a(g1 ] g3) (induction)

(8) σ; Σ;x← cmd[ρ] {m1};m2 ⇓(a,ρ)
∆ σ′′, σ3; Σ′′,Σ3; v; [u′]⊕a((g1 ⊕a [u]⊕a g2) �aδ ]g3)

(C-VAL, C-BIND)
(9) σ, a ↪→ (v1,Σ1); Σ; a ↪−→

ρ
(δ, x← cmd[ρ] {m1};m2) ⇓∆ σ′′, σ3; [u′]⊕ag

(CT-CONCAT)

Case
D-BIND3

e valΣ

x← cmd[ρ] {ret e};m ε7−→
Σ

∆
(0, ·, [e/x]m, ∅)

(1) σ; Σ; [e/x]m ⇓(a,ρ)
∆ σ′; Σ′; v; g (inversion on CT-THREAD)

(2) σ; Σ;cmd[ρ] {ret e} ← x;m ⇓(a,ρ)
∆ σ′; Σ′; v; [u]⊕ag (C-VAL, C-RET, C-BIND)

Case
D-SPAWN

b fresh

spawn[ρ; τ ] {m} ε7−→
Σ

∆
(0, b∼τ@ρ,ret tid[b], b ↪−→

ρ
(0,m))

(1) σ; Σ;m ⇓(b,ρ)
∆ σ′′; Σ,Σ′′; v′; g (inversion on CT-CONCAT, CT-THREAD, C-RET)

(2) σ; Σ;spawn[ρ; τ ] {m} ⇓∆ σ′′, b ↪→ (v′,Σ′′); [u]⊕ag (C-SPAWN)

Case
D-SYNC1

e→∆
Σ (δ, e′)

sync e
ε7−→
Σ

∆
(δ, ·,sync e′, ∅)

(1) g = (a ↪−→
ρ

(0, ~u · u), ∅, {(b, u)}, ∅), e′ ⇓∆ tid[b]; ~u (inversion on C-SYNC)

(2) e ⇓∆ tid[b];u′ ·δ+1 ~u (part 1)
(3) σ, b ↪→ (v,Σb); Σ;sync e

⇓(a,ρ)
∆ σ′′, b ↪→ (v,Σb); Σ′′; v; (a ↪−→

ρ
(0, u′ ·δ+1 ~u · u), ∅, {(b, u)}, ∅) (C-SYNC)

Case
D-SYNC2

v valΣ

sync (tid[b])
v/b7−−→
Σ

ρ

(0, ·,ret v, ∅)
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(1) g = ∅ (inversion on C-RET)
(2) σ, b ↪→ (v,Σb); Σ;sync (tid[b]) ⇓(a,ρ)

∆ σ′′; Σ′′; v; (a ↪−→
ρ

(0, u), ∅, {(b, u)}, ∅)
(C-SYNC)

Case
D-POLL1

e→∆
Σ (δ, e′)

poll e
ε7−→
Σ

∆
(δ, ·,poll e′, ∅)

(1) g = (a ↪−→
ρ

(0, ~u · u), ∅, ∅, Ew), e′ ⇓∆ tid[b]; ~u

(inversion on C-POLL-SOME, C-POLL-NONE)
(2) e ⇓∆ tid[b];u′ ·δ+1 ~u (part 1)
(3) σ, b ↪→ (vb,Σb); Σ;poll e

⇓(a,ρ)
∆ σ′′, b ↪→ (vb,Σb); Σ′′; v; (a ↪−→

ρ
(0, u′ ·δ+1 ~u · u), ∅, ∅, Ew)

(C-POLL-SOME, C-POLL-NONE)

Case
D-RET

e→∆
Σ (δ, e′)

ret e
ε7−→
Σ

∆
(δ, ·,ret e′, ∅)

(1) g = (a ↪−→
ρ

(0, ~u), ∅, ∅, ∅), e′ ⇓∆ v; ~u (inversion on the cost semantics)

(2) e ⇓∆ v;u ·δ+1 ~u (part 1)
(3) σ; Σ;ret e ⇓(a,ρ)

∆ σ′′; Σ′′; v; (a ↪−→
ρ

(0, u ·δ+1 ~u), ∅, ∅, ∅) (C-RET)

3. Case
D-POLL2A

v valΣ

poll (tid[b])
v?b7−−→
Σ

∆

(0, ·,ret inl v, ∅)

(1) g = [u] (inversion on C-RET, C-INL)
(2) σ, b ↪→ (v,Σb); Σ;poll (tid[b]) ⇓(a,ρ)

∆ σ′′; Σ′′;l · v; (a ↪−→
ρ

(0, u), ∅, ∅, {(b, u)})
(C-POLL-SOME)

Case
D-POLL2B

v valΣ

poll (tid[b])
6?b7−→
Σ

∆

(0, ·,ret inr 〈〉, ∅)

(1) g = [u] (inversion on C-RET, C-INR, C-VAL)
(2) σ, b ↪→ (v,Σb); Σ;poll (tid[b]) ⇓(a,ρ)

∆ σ′′; Σ′′;r · 〈〉; (a ↪−→
ρ

(0, u), ∅, ∅, ∅)
(C-POLL-NONE)

4. By induction on the derivation of σ′; Σ′;µ′ ⇓∆ σ′′; g.
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5.

(1) σ; Σ; νΣ{µ0 ] a1 ↪−→
ρ1

(δ1,m
′
1)]µ′1 ] . . . an ↪−→

ρn
(δn,m

′
n)]µ′n} ⇓∆ σ′; g′0

(part 4)
(2) g′0 with delays decreased is isomorphic to g′ (part 4)
(3) g′ = g0 ] g′1 ] · · · ] g′n,∀i.∃σi,Σi.σi; Σi; ai ↪−→

ρi
(δi,m

′
i)]µ′i ⇓∆ σ′i; g

′
i

(inversion on the cost semantics)

(4) ai ↪−→
ρi

(0,mi)
αi7−→
Σ

∆
(δi,Σ

′
i,m

′
i, µ
′
i) (inspection of transition rules)

(5) σi; Σi;mi ⇓(ai,ρi)
∆ σ′i; Σ′i; v; gi, gi is isomorphic to [ui]⊕ag′i (part 2)

(6) σ; Σ;µ ⇓∆ σ′; g, g is isomorphic to
g0 ] ([u1]⊕a1 g1) ] · · · ] ([un]⊕angn) (C-CONCAT)

We can now repeatedly apply the above results to show a step-by-step correspondence be-
tween certain executions of λ4 programs and schedules of the corresponding DAG. To be more
precise, we show that, for any execution of a program, there exists a cost graph g corresponding
to the program, and a schedule of g that corresponds to the execution. If the threads at each par-
allel transition are chosen in a “fairly prompt” manner by stepping as many threads as possible
and prioritizing high-priority threads, then the corresponding schedule is fairly prompt. We do
not specify in this formalism how to pick the threads of a parallel transition, but we discuss an
appropriate scheduling algorithm in Chapter 6.
Lemma 12. Suppose `R· µ : Σ and µ polled and µ=⇒

P

∆∗µ′ where ·; ·;µ′ ⇓∆ ·; ∅ and thread a
is active for T transitions and at each transition, threads are chosen in a fairly prompt manner.
Then ·; ·;µ ⇓∆ ·; g and there exists a fairly prompt and admissible schedule of g in which T (a) =
T .

Proof. By induction on the derivation of µ=⇒
P

∆∗µ′. If µ = µ′, then the result is clear. Suppose

µ
{a1,...,an}
=====⇒

P

∆

µ′′=⇒
P

∆∗µ′, and a is active for T transitions of the latter execution. By . By induc-

tion, ·; ·;µ′′ ⇓∆ ·; g′′ and there exists a fairly prompt and admissible schedule of g′′ where T (a) =
T . By Lemma 11, ·; ·;µ ⇓∆ ·; g, where g is isomorphic to g0 ] ([u1]⊕ g1) ] · · · ] ([un]⊕ gn).

By Lemma 8, vertices u1, . . . , un are ready in g, so the schedule that executes u1, . . . , un in
step 1 and then follows the schedule of g′′ is a valid schedule of g. Because (also by Lemma 8), all
threads that are ready in g are available to be executed and (by inspection of the cost semantics)
thread priorities are preserved between g and µ, the schedule is also a prompt schedule of g. We
must also show that this schedule is admissible. By construction of DT-PAR, we have µ′′ polled,
so by Lemma 10, g′′ is admissible. Because the remainder of the schedule is admissible, the
entire schedule is thus admissible.

Finally, if a ∈ dom(µ), then by Lemma 8, a is ready in g and the resulting schedule has
T (a) = T + 1. Otherwise, the resulting schedule has T (a) = T .

Finally, we conclude by applying Theorem 2 to bound the response time of fairly prompt
schedules, and therefore of the corresponding executions of the operational semantics.
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Theorem 7. If · `R· m∼:τ@ρ and a ↪−→
ρ

(0,m)=⇒
P

∆∗µ′, where ·; ·;µ′ ⇓∆ ·; ∅ and thread a is active

for T transitions and at each transition, threads are chosen in a fairly prompt manner, then there
exists a graph g such that ·; ·;m ⇓(a,ρ)

∆ σ; Σ; v; g and for any ρ′ � ρ,

E[T ] ≤ 1

C(6≺ ρ′)

(
W 6≺ρ′( 9↓a)

P
+ Sa(9↓a)

)
Proof. By Lemma 12, there exists such a g and a fairly prompt schedule of g where T (a) = T .
By Lemma 6, g is well-formed. Thus, the result follows from Theorem 2.
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Chapter 6

Scheduling Algorithm for Prioritized
Threads

If it were done when ’tis done, then ’twere well
it were done quickly.

Macbeth (I.7.1–2)

In Chapter 5, we showed that a fairly prompt schedule of a PriML program obeys reasonable
bounds on response time. However, this result omitted any discussion of how to choose threads
to execute in a fairly prompt manner. In this sense, the result of that chapter could be considered
an “offline bound”: the bound it gives applies to schedules computed offline, prior to or separate
from the execution of the program.

Brent’s Theorem [25] and similar results for classical parallel programs are also offline
bounds. For these non-interactive programs, randomized work stealing is an online scheduling
algorithm that has been shown to approximate the bound given by Brent’s Theorem and perform
well in practice [6, 22]. Inspired by these results, we build an algorithm called Prioritized Private
Deques (PPD) based on randomized work stealing to schedule threads in PriML programs. For-
mally proving that the algorithm asymptotically approximates the bounds of Chapter 5 is outside
the scope of the thesis, but we will explain the motivation behind the algorithm’s design and the
intuition for why it is a reasonable approximation of fairly prompt scheduling. In Chapter 9, we
give a quantitative evaluation of an implementation of this scheduling algorithm in the context
of the PriML runtime.

6.1 PPD Algorithm Overview
The PPD algorithm differs from typical approaches to parallel scheduling in that it must handle
threads of different priorities according to the fairness criterion described in Section 3.4. To
this end, scheduling proceeds in rounds. At the beginning of each round, each processor picks
a primary priority by sampling the probability distribution indicated by the fairness criterion.
Essentially, the processor runs a standard work stealing scheduler on threads of the primary
priority until a specified interval called the scheduling quantum has passed. At this point, the
processor begins a new round by choosing a new primary priority.
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To meet the promptness requirement, when a processor’s primary priority is unavailable, it
temporarily defaults to working on the highest-priority threads available at that processor. In
this case, we say the processor is “donating” cycles to another priority. We use the term current
priority to refer to the priority at which a processor is currently working, which may differ from
the primary priority if it is donating cycles.

Once a priority is chosen, the PPD algorithm behaves more or less like a standard work steal-
ing algorithm working on threads of that priority. We have some flexibility in the particular work
stealing scheduler we use for this purpose. We use the sender-initiated private deques variant
of work stealing [2]. In this algorithm, each processor executes threads which are stored in a
processor-local set. Unlike in more traditional work stealing algorithms (e.g., [6, 22]), proces-
sors do not directly access other processors’ queues; instead, load balancing is performed by
message passing between threads. The algorithm is sender-initiated in that processors periodi-
cally attempt to send (or “deal”) extra threads to processors which are idle.

Our use of sender-initiated private deques is motivated by the unique concerns of our algo-
rithm. First, private deques allow us flexibility in choosing performant implementations of the
processor-local sets of ready threads, because the data structure need not be concurrent. Sec-
ond, we expect sender-initiated schedulers to distribute high-priority work more effectively than
their receiver-initiated counterparts. Specifically, if high-priority work is being spawned on one
processor, a sender-initiated algorithm immediately begins distributing that work to others.

We now give a high-level overview of the PPD algorithm. All of the elements will be de-
scribed in more detail in the following sections. Each processor maintains a set of ready threads
called a thread bank. In keeping with the private deques model, thread banks are accessible only
to the processor that owns them. Threads are shared between processors by message passing,
using an abstraction we call mailboxes.

The core of the algorithm is a scheduling loop. Each iteration of the loop performs some
housekeeping operations and then attempts to find a thread to execute. The housekeeping opera-
tions are:

1. Choose a new primary priority and start a new round if it is time to do so.

2. Add back to the thread bank any threads previously suspended on I/O operations which
have resumed since the last iteration.

3. If it is time to do so, perform a “deal attempt”: pick a random processor and attempt to
deal it a thread at the current priority.

After performing these tasks, the processor attempts to execute a thread, first by looking in the
processor’s own thread bank at the primary priority, then at the highest available priority. In both
cases, a processor considers both threads already in its thread bank and threads that may have
been dealt to it by other processors.

6.2 Notation, Terminology and Data Structures

This section describes in more detail how we represent the state, parameters and data structures
mentioned in the overview.
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1 type bank
2 insert : bank * thread -> unit
3 removeMin : bank -> thread
4 split : bank -> thread_set

Figure 6.1: The thread bank interface.

Parameters. The scheduling algorithm takes a number of parameters:
• P , the number of processors
• R, the number of priorities.
• roundQuantum, the length of a round (in arbitrary units)
• dealInterval, the interval between deal attempts (in the same units)
• fc, the fairness criterion, represented as a probability distribution over priorities.

Threads. The units of work handled by the scheduler are threads. Each thread has an associ-
ated priority, which is accessible with the function priority. Threads may be executed with
the function execute, which runs the thread until it terminates, spawns, or suspends. Execut-
ing a thread returns a set of zero, one, or two threads which have become enabled (zero if the
thread terminates or suspends waiting for an unavailable resource, one if it can be rescheduled
immediately, and two if it spawns a new thread).

Processor-local state. All of the state in the algorithm, with the exception of the mailboxes
used for inter-processor communication, is processor-local. Each processor has access to a glob-
ally synchronized timer accessible via the function now, which returns the current time. The
local variable nextRound is used to record the time at which the processor should switch to
a new primary priority. The local variable nextDeal records the time at which the processor
should next attempt to deal threads to another processor. The variable primaryPriority
records the primary priority of the current round, and currentPriority records the prior-
ity at which the processor is actually working. Each processor maintains a set ioThreads of
I/O-blocked threads which have resumed since the last iteration of the scheduling loop. One
could imagine that this set is populated asynchronously with the execution of the scheduler by
callbacks which are called by the system when I/O events occur. We discuss our actual imple-
mentation of I/O in Chapter 7. Finally, each processor maintains R local thread banks, where R
is the number of priorities. Each bank stores threads of a particular priority.

Thread banks. Thread banks store a set of threads and permit insertion, removal, and splitting.
An interface is shown in Figure 6.1. When new threads are spawned, they are inserted into the
appropriate bank. Threads are removed from the bank to be executed locally. When a processor
decides to deal work to another processor, it splits its bank to acquire a set of threads to send.

Threads in a bank are ordered according to a heuristic we call fork potential, inspired by
a related concept used by Acar et al. [2]. We write f(v) ∈ R+ for the fork potential of a
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1 type mailbox
2 tryClaim : mailbox -> bool
3 send : mailbox * thread_set -> unit
4 open : mailbox -> unit
5 close : mailbox -> thread_set

Figure 6.2: The mailbox interface.

thread v. The core requirement for fork potential is that, if a thread v depends upon another
thread u, then f(u) > f(v). Fork potential is a good approximation of a thread’s “size” in that
a thread with high fork potential is more likely to spawn additional work. This suggests that
threads with high fork potential are good candidates to be dealt to other processors during load
balancing. Thus the function removeMin—which is used by a processor to select a thread
to execute locally—removes the thread from the bank with the minimum fork potential. The
function split removes a set of threads from the bank comprising approximately half of the
total fork potential of the bank, to be dealt to another processor.

Mailboxes. All communication between processors in the algorithm is performed through
mailboxes. The algorithm uses P · R mailboxes, one for each processor at each priority. A
mailbox for a priority ρ at a processor p is used for two purposes: first, for p to indicate to other
processors whether it is accepting work at priority ρ (i.e., it does not already have work at that
priority), and second, for other processors to send it work. To avoid races, a remote processor
must claim a mailbox before placing work in it.

A mailbox can be in one of four states:
• A mailbox is CLOSED if the processor is not accepting work at that priority.
• A mailbox is OPEN if the processor is accepting work at that priority and another processor

is not yet attempting to send it work at that priority.
• A mailbox is CLAIMED if a remote processor has claimed the mailbox, expressing an

intention to place work in it.
• A mailbox is FULL if a remote processor has placed work in it.
The mailbox functions, shown in the interface in Figure 6.2, transition mailboxes between

the above states. An OPEN mailbox may be CLAIMED using the function tryClaim. If mul-
tiple processors attempt to claim a mailbox simultaneously, at most one may succeed. Once a
processor has CLAIMED a mailbox, it may call send to place a set of threads in the mailbox,
transitioning it to FULL. A processor may transition its mailbox from CLOSED to OPEN, indi-
cating it is accepting work in that mailbox, by calling the function open. Closing a mailbox
(with close) requires more care, since the mailbox may be OPEN, CLAIMED or FULL. An
OPEN mailbox is simply closed atomically, causing subsequent claim attempts to fail. This call
returns an empty thread set. Closing a FULL mailbox returns the contents of the mailbox, and
transitions the mailbox to CLOSED so no future claims are possible. If the mailbox is CLAIMED,
the calling processor blocks until the processor that claimed the mailbox sends work, at which
point the work is returned and the mailbox is closed. Attempting to close a CLOSED mailbox has
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no effect.

6.3 The Scheduling Loop
Pseudocode for the scheduling loop of a single processor is shown in Figure 6.3. This code calls
several auxiliary functions defined in Figure 6.4. On each iteration of the loop, the processor
performs the following.

1. If it is time to switch to the next round, draw a new primary priority and set the next switch
time (lines 21-23).

2. Insert into the appropriate thread banks any newly resumed I/O-blocked threads. Close the
mailboxes for the priorities of these threads since work is now available (lines 24-27).

3. Perform a deal attempt if it is time to do so (lines 28-30). Deal attempts are described in
more detail below.

4. Attempt to get work at the primary priority (line 31).

5. If the previous step was unsuccessful, determine the highest locally available priority and
get work at it (lines 32-33).

6. If a thread is found, execute it and handle any new threads it enables (lines 34-39).
Several of these steps require additional explanation.

Handling resumed I/O-blocked threads. In this step, the scheduler simply iterates over the
set of newly resumed I/O threads and adds them to the appropriate thread banks. This is quite
a different strategy from our prior work on I/O in work stealing scheduling [86], in which we
created new deques on steals in order to maintain deque ordering invariants when I/O-blocked
threads resumed. This policy was necessary to ensure the efficiency of that algorithm, in which
threads were always pushed and popped from the bottoms of deques. This is unnecessary in
PPD, where the deque ordering is maintained explicitly. This is discussed further in Section 6.4.

As in the prior work, handling resumed I/O threads requires work that is non-constant in the
size of ioThreads, but this work can be amortized over the work of the threads themselves.
Our prior work used parallel for loops to reduce the span of adding I/O threads back to the deque.
We don’t consider this parallelization strategy here since the practical impact should be minimal,
but it should be possible to parallelize the addition of I/O threads in this algorithm as well.

Deal attempts. To perform a deal attempt, a processor p picks another processor q at random
and checks if q is idle at p’s current priority by attempting to claim the appropriate mailbox
(which will fail if the mailbox is CLOSED). If p succeeds in claiming the mailbox, it splits the
thread bank at the current priority and sends the resulting thread set to processor q by writing
them into the mailbox.

Getting Work. When a processor attempts to get work at a particular priority, function getWork
first checks if it has been dealt work at this priority by closing the appropriate mailbox and adding
any returned threads to the thread bank. The function then returns the “bottom” thread from the
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1 // Parameters
2 int P // number of processors
3 int R // number of priorities
4 time roundQuantum
5 time dealInterval
6 fairness_criterion fc
7

8 // Global (shared) state
9 mailbox mailboxes[P, R]

10

11 scheduleLoop(p): // p = identifier of processor
12 // Processor-local state
13 bank banks[R]
14 time nextRound
15 time nextDeal
16 priority primaryPriority
17 priority currentPriority
18 thread_set ioThreads
19

20 repeat:
21 if now() > nextRound:
22 nextRound := now() + roundQuantum
23 primaryPriority := randomFrom(fc)
24 for t in ioThreads:
25 insert(banks[priority(t)], t)
26 closeMailbox(p, banks, priority(t))
27 ioThreads := {}
28 if now() > nextDeal:
29 nextDeal := now() + dealInterval
30 dealAttempt(p, banks, currentPriority)
31 t := getWork(p, banks, primaryPriority)
32 if t = NULL:
33 t := getWork(p, banks, findHighestPrio(banks))
34 if t != NULL:
35 currentPriority := priority(t)
36 enabled := execute(t)
37 for t’ in enabled:
38 insert(banks[priority(t’)], t’)
39 closeMailbox(p, banks, priority(t’))

Figure 6.3: Scheduler loop pseudocode
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1 dealAttempt(p, banks, prio):
2 q := randomFrom([1,P]\{p})
3 m := mailboxes[q, prio]
4 if tryClaim(m):
5 send(m, split(banks[prio]))
6

7 getWork(p, banks, prio):
8 closeMailbox(p, banks, prio)
9 t := removeMin(banks[prio])

10 if t = NULL:
11 open(mailboxes[p, prio])
12 return t
13

14 closeMailbox(p, banks, prio):
15 threads := close(mailboxes[p, prio])
16 for t in threads:
17 insert(banks[prio], t)

Figure 6.4: Scheduler auxiliary functions

bank. If the bank is empty, it reopens the mailbox to indicate that the processor is still accepting
work at that priority.

Finding the highest available priority. When the thread bank of a processor’s primary priority
is empty, it attempts to find other work to execute while waiting for a deal to arrive. To find other
work, it calls the function findHighestPrio which returns the highest priority at which the
corresponding bank is not empty (if all banks are empty, then it returns any priority arbitrarily).
This helps the scheduler be prompt by executing high priority work not only during rounds
dedicated to that priority, but also when other work is currently unavailable. Note that this
is entirely a local notion: the function findHighestPrio does not search for the highest
available priority across all processors, but rather only looks for the highest available priority
amongst the banks stored locally at the current processor.

A naı̈ve implementation of findHighestPrio could simply inspect every bank, begin-
ning with the highest priority used in the program. We describe a more optimized implementation
in Section 7.1.

6.4 Intuitions for Cost Bound
An analysis of the PPD algorithm to show that it approximates the bounds for fairly prompt
schedules given in Chapter 5 is outside the scope of this thesis. However, the design of the
algorithm was motivated by the desire to have scheduling remain as fair and prompt as possible.
In addition, many of our design choices were inspired by prior implementations and analyses of
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randomized work stealing. This gives us reason to believe that the algorithm described in this
chapter constructs a good approximation of a fairly prompt schedule. In this section, we explain
these intuitions at an informal level.

Fairness and work stealing. The use of work stealing is partially motivated by a classic result
by Arora et al. [6], which shows that a randomized work stealing scheduler running in a multipro-
grammed environment receiving an average of PA processors executes in time O

(
W
PA

+ S P
PA

)
.

This result suggests that a work stealing scheduler receiving a fraction C(ρ) of cycles on each
of P processors can behave as if it were running on a dedicated machine with P · C(ρ) proces-
sors. To a first level of approximation, the PPD algorithm behaves like a work stealing scheduler
at its primary priority for the fraction of cycles allotted to that priority. Thus, we might expect
the response time of threads at priority ρ under this approximation of the scheduler to be

Wρ( 9↓a)

P · C(ρ)
+ Sa(9↓a)

P

P · C(ρ)
=

1

C(ρ)

(
Wρ(9↓a)

P
+ Sa(9↓a)

)
which begins to look suggestively like the bounds of Chapter 5, and in particular looks a great
deal like that of Theorem 3, which considers only the affects of fairness and not the donation of
unused cycles.

There are a number of obstacles to applying the analysis of Arora et al. to our setting. First
and most problematic, our scheduler is not that of Arora et al.’s randomized work stealing: we
are using a private deques scheduler instead. The private deques algorithm has been thoroughly
analyzed using a somewhat different technique from Arora et al.’s analysis [2], resulting in a dif-
ferent but comparable bound1 It seems likely that the private deques analysis could be extended
to our algorithm using techniques similar to Arora et al.’s for multiprogrammed environments.

Promptness. The above intuitions only account for fairness in suggesting that the algorithm
should behave greedily at a particular priority for the fraction of the time indicated by the fairness
criterion. These intuitions do not account for the fact that cycles at which the primary priority is
unavailable are donated to the highest available priority. The purpose of these “donations” is to
ensure that the scheduler is also prompt. This donation policy closely follows the requirement of
the fairly prompt scheduling principle that, as stated in Section 3.4, “When a particular priority
is unavailable (i.e., has no threads available in the system), it ‘donates’ its cycles to the high-
est available priority.” Because of this correspondence, we expect that the scheduler meets the
“promptness” requirement of fairly prompt scheduling. Donations are, on the other hand, likely
to increase the execution time by a factor of R, since finding the highest available priority, in
the worst case, requires a linear scan. Our implementation (7.1) avoids this linear scan in most
cases, and causes the algorithm to empirically perform well even on contrived benchmarks with
large numbers of priorities, but it is not yet clear if this is an asymptotic improvement in general.

1Acar et al.’s bound for private deques work stealing is
(
1 + 1

δ−1

)
·
(
W
P + S +O(δF )

)
, where δ is related to

the interval between deal attempts and F is the branching depth.
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Work stealing invariants. Applying existing analyses of work stealing to the PPD algorithm,
of course, requires that our algorithm maintains the same invariants assumed by these analyses.
One such important invariant is the so-called deque invariant that tasks are ordered in the work-
stealing deques from top to bottom in order of increasing depth. This ensures that shallower,
larger tasks are stolen first, amortizing the cost of steals over a large piece of work. Standard
work stealing algorithms maintain this property by construction because processors push and
pop from the bottom of their deque.

In responsive prioritized programs, two processes can break the deque invariant: first, threads
that are suspended on I/O can resume at arbitrary points in the program, and in particular could
resume after the thread bank has been emptied and repopulated with work stolen from another
processor. Without tracking additional information, the scheduler would have no idea of the
relative depths of the newly resumed thread and the threads in the bank. In prior work [86], we
maintain the deque invariant in this situation by creating a new deque on steals when tasks are
suspended. The deque invariant applies individually to each deque, but the additional deques
drive up the execution time because steals take longer on average.

The second situation in which the deque invariant could break is when a thread at priority ρ1

spawns work at a priority ρ2. The new thread must be placed in the thread bank at priority ρ2 but,
as in the situation above, there may already be unrelated work in the thread bank.

The PPD algorithm handles both situations by explicitly ordering the thread bank. This strat-
egy is enabled by the use of private deques: because the thread bank data structure does not
need to be concurrent, we have much more flexibility in how we maintain the data structure.
By explicitly ordering the thread banks, we avoid the need for multiple deques per processor
at the cost of making out-of-order insertions logarithmically more expensive (we are effectively
maintaining a priority queue, so either insertion or removal must be non-constant). In our imple-
mentation, discussed in Chapter 7, in-order insertion, which is a much more frequent operation,
is constant time. The asymptotic overhead for out-of-order insertion (and split) will show up in
any formal analysis of the algorithm, but we expect these operations to be rare and may be able to
amortize them over other operations (e.g., steals, which existing analyses of work stealing show
to be rare).
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Chapter 7

Implementation

I like thy counsel; well hast thou advised:
And that thou mayst perceive how well I like it,
The execution of it shall make known.

The Two Gentlemen of Verona (I.3.35–37)

We have implemented the ideas of this thesis in three major pieces: the front end, the thread-
ing library and the back end. The front end is a type checker and elaborator for the PriML lan-
guage which implements the type system described in Chapter 4. The front end generates code
in Standard ML, with thread and priority operations replaced by calls to the threading library,
an SML library in which we have implemented the threading operations of PriML. The library
is built on top of a parallel extension of the MLton Standard ML compiler developed by Daniel
Spoonhower [112], which is being maintained and updated in ongoing work [99]. The updated
version of Spoonhower’s framework, known as mlton-parmem, provides basic facilities for
running MLton threads on multiple processors, and allows user-defined threading libraries and
schedulers (Spoonhower also defined his own threading primitives and schedulers, upon which
we draw in developing our library and back end). The core of our back end is an implementa-
tion of the PPD algorithm of Chapter 6, which schedules the threads generated by our threading
library.

In the remainder of this chapter, we discuss each piece of the implementation in more detail.

7.1 Back end

The back end consists of an SML implementation of the PPD scheduling algorithm as a scheduler
for mlton-parmem. The main scheduler code consists of approximately 600 lines of ML code.
The thread bank implementation is approximately an additional 75 lines. The remainder of this
section describes the implementation details of the scheduler, as well as various optimizations
we implemented for better practical performance.

The implementation follows much the same structure as the description in Chapter 6: the
main body of the code consists of the scheduling loop and its auxiliary functions, and the thread
bank and mailbox data structures are factored out as separate modules. The remainder of this
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section describes the implementation of these data structures, as well as lower-level details of the
scheduler implementation not covered in the high-level algorithm specification, and optimiza-
tions present in our implementation.

Threads. Threads in our scheduler are lightweight wrappers around MLton’s user-level thread
objects, which are abstract representations of paused computations. As an additional optimiza-
tion to avoid the small overhead of creating a user-level thread, threads in our system are allowed
to simply be a thunk representing the work to be done by that thread. If the work is being per-
formed locally, the existing MLton thread can simply execute the thunk. PPD threads that are
stolen or interrupted (see “Interrupts” below) are automatically converted to MLton threads.

In addition to the underlying work of the thread, stored as either a MLton thread or a thunk,
PPD threads are also tagged with their fork depth, an integer representing the thread’s depth in
the DAG (this is closely related to the fork potential, but easier to manipulate) and a cancellable
data structure, discussed in more detail below.

Thread banks. The implementation of thread banks is not considered a contribution of this
thesis, and so we describe it only briefly here. One key observation about the use of thread banks
guides the design of a practical implementation: by far the most common way the scheduler
uses the thread bank is to pop a thread from the local thread bank, and soon after push a thread
of the same priority. In this use case, the pushed thread is guaranteed to have a deeper fork
depth than all of the elements in the thread bank at its priority (because it descended from the
previously popped thread). This observation leads us to support a pushMin operation which is
intended to be much faster than the more general insert, which may have to insert out-of-order.
Resumptions and cross-priority spawns (which require out-of-order insertion) and deal attempts
(which require a split of the thread bank) are much rarer. Given these observations, an efficient
implementation of thread banks should heavily optimize for the performance of pushMin and
removeMin, even at the cost of making insert and split fairly expensive.

Thread banks for PriML implementations must also support a tryRemove operation which
was not discussed in the algorithm description, but is necessary to support cancellation as well as
a fast-path optimization used in our threading library. This operation takes a handle to a thread in
the thread bank (handles are returned by insertion operations). If the thread is still in the thread
bank, the operation removes the thread and returns true, indicating success. If the thread has been
popped from the thread bank, the operation leaves the thread bank unaltered and returns false.

Our implementation uses a doubly-linked list (DLL) sorted by fork potential, and so pushMin
and removeMin are simply a single append and remove, respectively, on the underlying DLL.
To implement the tryRemove operation, we tag DLL nodes with boolean flags indicating
whether the element has been removed from the list into which it was originally inserted. Handles
are implemented simply as pointers to DLL nodes. On a call to tryRemove, the implementa-
tion checks the flag to see if the element is still part of the list, and if so, removes it.

Mailboxes. Here we describe in more detail how we implement mailboxes. The implementa-
tion is straightforward and largely follows from the original description of private deques [2].
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A mailbox is represented by a flag and a contents cell. The contents cell is either NULL,
or a pointer to a set of threads. The flag indicates the status of the mailbox with one of three
different states: CLOSED, OPEN, or CLAIMED, corresponding approximately to the states of
the same names as described for the mailbox interface in Chapter 6. The fourth state, FULL, is
distinguished from CLAIMED by a non-NULL value in the contents cell.

The open function simply edits the flag, and similarly the send function simply edits the
contents cell. The tryClaim function uses an atomic compare-and-swap on the flag and returns
true if the compare-and-swap succeeded. Finally, close reads reads the flag to determine what
it should do:
• if CLAIMED, it spins on the contents cell until a non-NULL pointer is found. It then closes

the mailbox with a plain write to the flag.
• if OPEN, it uses a compare-and-swap on the flag to attempt to close it. A plain write in

this case is not correct, because it could overwrite a successful transition of the flag to
CLAIMED. If the compare-and-swap does not succeed, then it executes the approach for
when the flag is CLAIMED.

I/O Queues. As in our prior work [86], our implementation does not rely on callbacks to
implement I/O. Instead, the I/O queue contains elements of type

(unit -> bool) * thread * priority

The function component of the tuple is a predicate that returns true if the I/O event has occurred
and the thread is ready to resume. Each time the I/O queue is processed, a loop checks each
element (f, t, r) to see if it is ready by calling f (). If this call returns true, the thread is
added back to the thread bank of the appropriate priority.

Cancellables. The PriML runtime supports cancellation of threads using a system derived from
cancellables in Manticore [51] (which is also similar to try trees in JCilk [37])1. The purpose of a
cancellable is to explicitly record ancestor-descendant relationships among threads so that when
one thread is cancelled, indicating that its results will no longer be needed, all of its descendants
can be easily found and transitively cancelled. In our implementation, a cancellable is a record
of four items:

1. A cancelled flag indicating whether the corresponding thread has already been cancelled
(running threads periodically check this flag and stop working if the thread has been can-
celled).

2. A reference to a cancellation function of type unit -> unit, which is called in order
to cancel the thread. The function should remove the corresponding thread from a thread
bank if it is in one. The cancellation function is used to cancel only one thread, and not its
descendants.

3. A list of children which is traversed to transitively cancel the descendants of the thread.

1The Manticore literature used the spelling cancelable. We use the alternate spelling for consistency with the
rest of the text in this thesis.
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1 signature PRIORITY =
2 sig
3 type t
4

5 val top : t
6 val bot : t
7

8 val new : unit -> t
9 val new_lessthan : t -> t -> unit

10

11 val init : unit -> unit
12 val check : unit -> unit
13

14 (* Comparison operators *)
15 val ple : t * t -> bool
16 val plt : t * t -> bool
17 val pe : t * t -> bool
18

19 (* Fairness criterion operations *)
20 val installDist : (t -> int) -> unit
21 val chooseFromDist : real -> t
22

23 (* Convert to and from indices in the total order *)
24 val toInt : t -> int
25 val fromInt : int -> t
26 end

Figure 7.1: The priority interface.

4. A mutex to protect concurrent operations on cancellables.
When a thread is spawned, it is given a new cancellable that is marked as a descendant of the

cancellable of the parent thread. Every time a thread is pushed to or popped from a thread bank,
its cancellation function is updated accordingly.

Priorities. Because priorities are so central to PPD, priorities are built into the implementation
of the back end (the remainder of the threading library, described in the next section, is built on
top of the back end and can largely be separated from it). Priorities adhere to the interface shown
in Figure 7.1, which is implemented in the back end by a structure Priority : PRIORITY.
In addition to an abstract type of priorities, the interface provides functions for creating new pri-
orities and ordering constraints. In the scheduler, priorities are represented using a total ordering
consistent with the programmer-defined constraints. This allows for efficient and well-defined
implementations of operations such as cycling through priorities and finding the highest available
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priority. Internally, priorities are represented using their index in the total order. These indices
can be converted to and from the abstract priority representation using the toInt and fromInt
functions.

Before running prioritized code, a program should declare all necessary priorities using new (),
followed by a call to init (). The latter initializes a Boolean matrix which will be used to
track the ordering relation (the ordering relation is stored this way to make checking ordering
constraints a constant-time operation). After the priorities are initialized, the program may de-
fine ordering constraints such as p < q using new_lessthan (p, q). Finally, the program
must call check () to finalize and check the ordering relation. This operation first performs a
topological sort to compute the total ordering used internally to identify priorities, and then uses
Warshall’s transitive closure algorithm to populate the above matrix with the least partial order
consistent with the defined constraints. In the process, it raises an error if the ordering relation is
found to be cyclic.

Finally, the priority interface provides functions for installing and using fairness criteria.
The function installDist allows programs to install a fairness criterion to be used by the
scheduler. The fairness criterion is specified as a function from priorities p to integers specifying
the relative value of C(p). These values are automatically normalized to 1. When the scheduler
wishes to draw a priority at random according to the probability distribution indicated by the
fairness criterion, it calls chooseFromDist with a pseudorandom real number between 0
and 1.

State. Though the algorithm description differentiates between global state (which consists
only of the parameters to the algorithm and the mailboxes) and processor-local state, all of the
mutable state in the SML implementation is global. This state is implemented as a collection
of arrays of length P , the number of processors (the arrays of thread banks and mailboxes have
length P · R, since each processor needs one for each priority; these arrays are initialized at
priority initialization when R is known). In addition to the processor-local state mentioned in
the algorithm, the implementation also maintains the fork depth of the thread on which each
processor is working, as well as its cancellable. This state is necessary to create new thread
structures when a thread is spawned, because the new thread must be given a fork depth one
deeper than the current depth and a cancellable that is a descendant of the current cancellable.

The scheduler interface. The high-level description of the algorithm assumes that a thread
runs for a short amount of time and produces zero, one or two child threads. Reality is, of
course, more complicated. Running threads need a way to interact with the runtime to create
new threads and place them in the thread banks. The scheduler exposes a low-level interface
which can be used for this purpose by threading libraries such as the one we describe in the next
section. User-level code should generally not need these functions. The SML signature for this
interface is given in Figure 7.2.

To spawn new work, a threading library would call newThread with the work to be done by
the new thread, represented either as a thunk or a runnable MLton thread. This operation wraps
the work in a thread data structure by incrementing the fork depth and allocating a new can-
cellable for the thread. The library would then call push to push the thread onto the appropriate

115



1 signature SCHEDULER =
2 sig
3 type thread
4 type hand
5 datatype work = Empty
6 | Thunk of unit -> unit
7 | Thread of MLton.Thread.Runnable.t
8

9 val newThread : work -> thread
10 val cancellable : thread -> Cancellable.t
11

12 val push : Priority.t * thread -> hand
13 val tryRemove : Priority.t * hand -> bool
14

15 val suspend : (Priority.t * thread -> unit) -> unit
16 val suspendIO : (unit -> bool) -> unit
17

18 val returnToSched : unit -> void
19 end

Figure 7.2: The scheduler interface.

thread bank. This function and tryRemove are fairly thin wrappers around the corresponding
thread bank operations but also update the cancellation functions of the threads’ cancellables.

The function call suspend f blocks the calling thread and calls f on the current thread’s
priority and continuation (where the continuation is represented as a thread). This operation is
used, for example, to implement sync, which would call suspend with a function f that adds
the thread to a list of continuations waiting on the target thread. Another use of suspend is to
implement I/O operations. Simply calling a system function would block the system-level thread
running the scheduling algorithm, preventing that processor from running other code. Instead,
we call suspend with a function that adds the current thread to the I/O queue. Because this
special use of suspend is so common, the interface also provides a wrapper suspendIO for
this purpose. The caller must supply suspendIO with a predicate that returns true when the
I/O-blocked thread is ready to resume (e.g., when user input is available).

Interrupts. The scheduling algorithm of Chapter 6 assumes that the user code returns to the
scheduler frequently. As in all private deques algorithms, this is necessary to ensure that deals
occur [2], but is especially important in our multi-priority setting so that priority switches happen
on time and long-running low-priority computations are not allowed to delay the execution of a
computation at a higher priority.

Most well-written parallel code is fairly fine-grained, i.e., sequential computations do not
run for long without spawning or synchronizing. However, to ensure proper load balancing and
responsiveness even in the presence of long-running sequential computations, we use periodic
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interrupts delivered by interval timers to return control to the scheduler. When a thread is in-
terrupted to return to the scheduler, the scheduler pushes the continuation of the running thread
onto the thread bank so that it may be continued at a later time (possibly immediately if a priority
switch does not occur). We determined experimentally that these interrupts should be at a finer
granularity than the round-switch quantum. Specifically, our implementation performs interrupts
at 1ms intervals and switches rounds at 5ms intervals.

Finding the highest priority. To implement findHighestPrio (as described in Chapter 6)
efficiently, we use a heuristic which avoids unnecessary linear scans through the priorities.

Each processor maintains its highest currently available priority in a global variable, the top-
priority cell. The function findHighestPrio first checks the bank of the top priority to see
if it has work before inspecting every one of its thread banks. Processors update their own top-
priority cell when they insert work at higher priorities, and atomically update other processors’
cells on deals.

Requests. Sender-initiated algorithms such as ours perform well in situations where work on
a small number of processors must be distributed. This is useful for distributing high-priority
computations, which may be generated at one processor and need to be balanced onto the oth-
ers. Sender-initiated algorithms are less useful when most processors have work and so most
randomly targeted deal attempts will fail. We improve our implementation’s performance in this
case by adding an element of receiver-initiated algorithms in the form of requests. Each pro-
cessor has a request cell. Processors which are idle at a particular priority may request work at
that priority by writing their processor ID and the requested priority into a random processor’s
request cell. When a busy processor deals work, it will first check its request cell. If a request is
present, it will attempt to deal work to the requesting processor instead of targeting randomly.

7.2 Threading library
The primitives exposed by the scheduler interface in Figure 7.2 are general enough to encode
many interesting threading constructs. We have used these primitives to encode a threading li-
brary that matches the thread operations of PriML. The signature for our library is shown in
Figure 7.3. The THREAD signature provides the operations for creating and handling threads.
The BASIC signature provides a minimal interface with the scheduler itself, allowing user pro-
grams to indicate that all priorities have been declared (with finalizePriorities) and get
the current priority (an operation that is not available in PriML since priorities are not first class,
but which is occasionally useful in writing code using the library).

The thread operations spawn, sync, poll and cancel perform essentially the same func-
tions as their PriML counterparts. Because the library is used in bare, unextended SML, the
spawn construct takes a thunk for the new thread to execute. In addition, SML’s type system is
not powerful enough to encode the priority constraints on sync that the type system of PriML
does, and so in programs using the threading library, priority checking is done dynamically rather
than statically. A call to sync on a thread of priority lower than the current priority will raise an
IncompatiblePriorities exception. A call to sync on a thread that has been cancelled
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1 signature THREAD =
2 sig
3 exception IncompatiblePriorities
4 exception Thread
5

6 type ’a t
7

8 val spawn : (unit -> ’a) -> Priority.t -> ’a t
9 val sync : ’a t -> ’a

10 val poll : ’a t -> ’a option
11 val cancel : ’a t -> unit
12 end
13

14 signature BASIC =
15 sig
16 val finalizePriorities : unit -> unit
17 val currentPrio : unit -> Priority.t
18 end

Figure 7.3: Signatures for the threading library.

raises a Thread exception. A call to poll on a thread that has been cancelled simply returns
NONE.

We now discuss in detail the implementation of threads. This implementation is partially
based on Spoonhower’s implementation of futures [112]. As in Spoonhower’s original imple-
mentation, the core of the thread representation is a reference cell to store the result (initially set
to Waiting and overwritten when the thread finishes), and a mechanism for tracking and wak-
ing reading threads (which we call readers to avoid confusion) that are waiting on this thread to
complete. The former uses a data type ’a result for a thread with a return value of type ’a.
In our implementation, results also store the fork depth:

1 datatype ’a result =
2 Waiting
3 | Finished of ’a * int (* result, depth *)
4 | Raised of exn * int

For tracking readers, we use a collection data structure called a Bag, whose signature is given
in Figure 7.4. The Bag implementation, by Sam Westrick, performs appropriate synchronization
on the insert operation, and between insert and dump. When a bag is dumped, a list
of previously inserted elements is returned. Subsequent insertions (or concurrent insertions not
included in the dump) will fail, as will subsequent attempts to dump the bag.

The implementation of the thread type is shown in Figure 7.5. In addition to the result
reference and the bag, a thread contains its priority, a handle to its thread in the deque, the
thread’s cancellable object and the thunk representing the work the thread is to perform.
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1 signature BAG =
2 sig
3 type ’a t
4

5 val new : unit -> ’a t
6 val insert : ’a t * ’a -> bool
7 val isDumped : ’a t -> bool
8 val dump : ’a t -> ’a list option
9 end

Figure 7.4: The BAG signature.

1 type ’a t =
2 {
3 result : ’a result ref,
4 prio : Priority.t,
5 bag : (Priority.t * thread) Bag.t,
6 hand : hand,
7 cancel : Cancellable.t,
8 thunk : unit -> ’a
9 }

10

Figure 7.5: The thread implementation.
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1 fun writeResult fr f =
2 let val r = f ()
3 val d = getDepth (processorNumber ())
4 in
5 fr := Finished (r, d)
6 end
7 handle e => fr := Raised (e, getDepth (processorNumber ()))
8

9 fun run (r, fr, bag) f () =
10 let fun wake (r’, t) =
11 ((if Priority.pe (r, r’) then push else insert) (r’, t);
12 ())
13 in
14 writeResult fr f;
15 (case Bag.dump bag of
16 NONE => raise Thread
17 | SOME l => List.app (ignore o insert) l);
18 returnToSched ()
19 end
20

21 fun spawn f r’ =
22 let
23 val p = processorNumber ()
24 val r = curPrio p
25 val fr = ref Waiting
26 val bag = Bag.new ()
27 val thread = newThread (Thunk (run (r’, fr, bag) f))
28 val hand = (if Priority.pe (r, r’) then push else insert)
29 (r’, thread)
30 val c = cancellable thread
31 in
32 {result = fr, prio = r, bag = bag, hand = hand,
33 cancel = c, thunk = f}
34 end
35

Figure 7.6: The implementation of spawn.
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1 fun poll ({result, bag, ...} : ’a t) =
2 if not (Bag.isDumped bag) then NONE
3 else case !result of
4 Finished (x, _) => SOME x
5 | Raised (e, _) => raise e
6 | Waiting => raise Thread
7

Figure 7.7: The implementation of poll.

The code to spawn a thread is straightforward and is shown in Figure 7.6. The code initializes
the result cell to Waiting, and creates a new bag and new thread. The thread is initially a thunk
that runs the function f inside a wrapper run that writes the result (or exception raised), together
with the appropriate fork depth, into the result cell, dumps the bag, inserts any waiting threads
into the deque, and returns control to the scheduler. This thread is then inserted into the deque.
Note that, both in inserting readers and in inserting the new thread, we may use the faster push
operations if the thread to be inserted is at the current priority.

The implementation of poll (Figure 7.7) is quite simple. If the bag has not been dumped
yet, the thread is still active and poll returns NONE. Otherwise, the result should be available
and the appropriate value is returned. (It is an invariant that if the bag has been dumped, the
result should not be Waiting, so this should never raise Thread.)

We discuss two implementations of sync. The first implementation is the straightforward
one which returns the result if the target thread has completed and blocks if not. We then discuss
a version that eliminates the overhead of returning to the scheduler in the case when the target
thread has not been stolen, similar to the fast clone of Cilk [54].

The standard implementation (Figure 7.8) first checks if the thread has been cancelled, and
then checks whether this sync will cause a priority inversion. If both checks pass, the implemen-
tation then checks whether the bag has already been dumped. If so, the result can be returned
immediately. Otherwise, the calling thread suspends after adding itself to the bag (if the bag
is dumped in the meantime, the thread simply adds itself back to the deque). The thread will
resume at line 21 when the target thread has completed. Before returning the result, we set the
current depth of the processor to the appropriate fork depth of the continuation (one level deeper
than the target thread or the calling thread, whichever is deeper).

If the target thread has not been stolen, we can perform a “fast-path” optimization by perform-
ing the work of the target thread locally rather than suspending and returning to the scheduler.
The optimized implementation is shown in Figure 7.9. In this version, before suspending, we
attempt to remove the target thread from the deque using its handle. If the removal succeeds,
we know that the thread has not been stolen (and will not be), and it is safe to simply execute
the thunk locally. We must still write the result and wake any readers, but can then immediately
return the value. If removal fails, the thread has been stolen and we must fall back to the slow
path, which is the same as in the previous version. Since steals are rare in most applications, we
expect that the fast version will run most of the time.
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1 fun sync {result, prio, bag, cancel, ...} =
2 let val c = if Cancellable.isCancelled cancel then
3 raise Thread
4 else
5 ()
6 val p = processorNumber ()
7 val r = curPrio p
8 val _ = if Priority.ple (r, prio) then ()
9 else

10 raise IncompatiblePriorities
11 fun f rt =
12 if Bag.insert (bag, rt) then
13 (* Successfully waiting on the thread *)
14 ()
15 else
16 (* Bag was just dumped, so we can directly add the thread *)
17 ignore (push rt)
18 val d = getDepth p
19 val _ = if Bag.isDumped bag then ()
20 else suspend f
21 in
22 case !result of
23 Finished (x, d’) => (setDepth (p, Int.max (d, d’) + 1);
24 x)
25 | Raised (e, d’) => (setDepth (p, Int.max (d, d’) + 1);
26 raise e)
27 | Waiting => raise Thread
28 end
29

Figure 7.8: The implementation of sync.
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1 fun sync {result, prio, bag, hand, cancel, thunk} =
2 let val c = if Cancellable.isCancelled cancel then
3 raise Thread
4 else
5 ()
6 val p = processorNumber ()
7 val r = curPrio p
8 val _ = if P.ple (r, prio) then ()
9 else

10 raise IncompatiblePriorities
11 val _ = if tryRemove (prio, hand) then
12 (* execute the thunk locally *)
13 (writeResult result thunk;
14 (case Bag.dump bag of
15 NONE => raise Thread
16 | SOME l => List.app wake l))
17 else
18 (* have to block on it *)
19 let fun f rt =
20 if Bag.insert (bag, rt) then
21 (* Successfully waiting on the thread *)
22 ()
23 else
24 (* Bag was just dumped, so we can
25 * directly add the thread *)
26 ignore (push rt)
27 in
28 if Bag.isDumped bag then ()
29 else suspend f
30 end
31 val d = getDepth p
32 in
33 case !result of
34 Finished (x, d’) => (setDepth (p, Int.max (d, d’) + 1);
35 x)
36 | Raised (e, d’) => (setDepth (p, Int.max (d, d’) + 1);
37 raise e)
38 | Waiting => raise Thread
39 end
40

Figure 7.9: Optimized sync implementation.
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7.2.1 I/O Library

Our ML threads library includes a library with blocking I/O functions that can be called without
blocking the system-level scheduler thread. This library includes functions for console input,
network operations, and a simple graphics library based on X11. Many of the functions simply
call into equivalent functions in the SML Basis or third-party libraries. Most of the graphics
functions, for example, are essentially non-blocking to begin with.

Other functions, such as accept, which blocks on a network socket until a connection is
available and then accepts the incoming connection, require some intervention to prevent the
entire scheduler thread from blocking. For these functions, we use an equivalent non-blocking
version (for example, the SML Basis library also provides acceptNB which returns NONE if
no connection is available). If the non-blocking call returns SOME v, then we immediately
return v. Otherwise, we call suspendIO on the calling thread. Recall that suspendIO takes
a predicate f to associate with the I/O-blocked thread which is used to check whether the I/O
event is ready; for this purpose, we again use the non-blocking version of the I/O function.

Many of the functions in our I/O library are implemented with a wrapper B_of_NB which
converts a non-blocking SML library function into a function which will suspend the calling
user-level thread. The code for this function, shown in Figure 7.10, accepts the non-blocking I/O
function as its argument f and builds a function f’ to be passed to suspendIO. In addition to
calling f and returning true if and only if the I/O is available, f’ memoizes the result to avoid
losing data and/or unnecessary calls. The recursive internal function bnb_rec then suspends
the thread as long as f’ returns false, before returning the memoized value (bnb_rec should
call itself recursively at most once, assuming the thread is not prematurely woken up by the
scheduler).

7.3 Front end

Our compiler modifies the parser and elaborator of ML5/pgh [89], which also extends Stan-
dard ML with modal constructs, although for a quite different purpose. Elaboration converts
the PriML abstract syntax tree to a typed intermediate language, and type checks the code in
the process. For the PriML extensions, elaboration proceeds broadly along the lines of the rules
defined in Section 4.3. At the same time, the elaborator collects the priority and ordering decla-
rations into a set of priorities and a set of ordering constraints (raising a type error if inconsistent
ordering declarations ever cause a cycle in the ordering relation). It also collects the fairness
declarations into a mapping from priorities to their fairness value.

For our purposes, the elaboration pass is used only for type checking. We generate the fi-
nal ML code from the original AST (which is closer to the surface syntax of ML), so as not
to produce highly obfuscated code. Before generating the code, the compiler passes over the
AST, converting PriML features into calls to our threading library. Priority names and variables
are converted into ordinary SML variables of type Priority.t. Priority-polymorphic func-
tions become ordinary functions, with extra arguments for the priorities, and their instantiations
become function applications. Commands and instructions become SML expressions, with a
sequence of bound instructions becoming a let binding. Encapsulated commands become thunks
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1 fun B_of_NB (f: ’a -> ’b option) (v: ’a) : ’b =
2 let val (r: ’b option ref) = ref NONE
3 fun f’ () = (* memoized version of f *)
4 (case !r of
5 NONE => (r := f v;
6 case !r of
7 NONE => false
8 | SOME _ => true)
9 | SOME _ => true)

10 fun bnb_rec () =
11 if f’ () then
12 (* Ready to resume, return value *)
13 case !r of
14 NONE => raise OS.SysErr ("Impossible", NONE)
15 | SOME c => c
16 else
17 (* Not ready, suspend until ready *)
18 (suspendIO f’;
19 bnb_rec ())
20 in
21 bnb_rec ()
22 end
23

Figure 7.10: User-level blocking I/O from non-blocking I/O.
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PriML Translation

cmd[ρ] {m} fn () => translate(m)
do(e) translate(e) ()

spawn[ρ; τ ] {m} Thread.spawn
(fn () => translate(m))

sync e Thread.sync (translate(e))
poll e Thread.poll (translate(e))
cancel e Thread.cancel (translate(e))
ret e translate(e)

x← i;m
let val x = translate(i) in
translate(m)

end
t cmd[ρ] unit -> translate(t)
tthread[ρ] translate(t) Thread.t
∀π : C.t Priority.t -> translate(t)

fun[π1 : C1 . . . πn : Cn] f(x1 . . . xm) = e
fun p1 ... pn x1 ... xm =
translate(e)

Table 7.1: Translation to Standard ML

(so as to preserve the semantics that they are delayed). The translations are summarized in Ta-
ble 7.1.

The AST generated by the above process is then prefaced by a series of declarations which
call Priority.new and Priority.new_lessthan to register all of the priorities and
ordering constraints with the runtime, and bind the priority names to the generated priorities. If
the programmer has written fairness declarations, the compiler also prefaces the program with a
call to Priority.installDist using a function that searches for the given priority in the
list of priorities for which the programmer gave fairness values. Because priorities are not totally
ordered, we can’t do substantially better than a linear scan through the list of fairness values,
which must be performed whenever the fairness criterion is queried (this occurs each time a
processor changes its primary priority). This linear scan is another part of the implementation,
in addition to finding the highest priority at a given time, that introduces behavior linear in the
number of priorities. Though this is not a substantial bottleneck in any of our benchmarks, it
would be a prime target for future optimizations. The compiler finally generates Standard ML
code from the AST, and passes it to mlton-parmem for compilation to an executable.
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Chapter 8

Case Studies

This way, my lord; for this way lies the game.
Henry VI, Part III (IV.5.14)

8.1 Motion planning
The first benchmark we consider is a motion planner for a robot, which uses two planning algo-
rithms, organized in a hierarchical fashion [73]. A thread at low priority runs a parallel version
of the A* search algorithm to compute a coarse-grained plan consisting of a series of landmarks
leading toward the goal. At medium priority, several instances of the Rapidly-exploring Random
Trees (RRT) algorithm compute detailed paths to the nearest several landmarks. A high priority
interaction loop polls the planning threads to update its understanding of the optimal path, and
spawns new planning threads as the robot moves toward the goal. We test our planner in the
context of a simulated environment using a map from a standard set of 2-dimensional motion
planning benchmarks taken from video games [115]. The simulated robot has nonzero length
and is able to turn and move forward and backward, giving it three degrees of freedom (x- and
y-coordinates and rotation angle). We can also add obstacles that are not part of the map and
which are invisible to the long-term (A*) planner. These obstacles will be found by the short-
term planner when the robot nears the obstacles. The RRT algorithm will then find a way around
the obstacle to the nearest reachable landmark.

Long-term A* Planner. The long-term planner uses a parallel variant of the A* search al-
gorithm called PWSA* [40]. We modify PWSA* slightly to take advantage of our threading
library, and describe our modified version here. The purpose of PWSA* and A* is to find the
shortest path in a graph from a start vertex s to a goal vertex t. Like A*, PWSA* requires an
admissible heuristic function h(v) which (under-)estimates the distance from a vertex v to t. The
algorithm maintains two values f and g for each vertex, where g(v) is the shortest path found so
far from s to v and f(v) = g(v) + h(v). The A* algorithm proceeds by maintaining a priority
queue of vertices and iteratively exploring the unexplored vertex with the lowest f value. When
exploring a vertex, A* adds its unexplored neighbors to the queue (if not already in the queue)
and “relaxes” each neighbor by recomputing its g and f values. For an admissible heuristic (that
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is, one which conservatively estimates the distance to the goal), A* is guaranteed to terminate
with an optimal path, but is naturally sequential.

The idea behind PWSA* is to trade some amount of optimality for parallelism. Our version
of the algorithm achieves parallelism by having busy processors split their priority queues in
half when the queue reaches a specified threshold size (200 in our implementation). The algo-
rithm spawns a new thread to execute PWSA* on half of the priority queue. This new thread
is then migrated to an idle processor by the scheduler. Each busy processor proceeds as in A*
by attempting to explore the vertex in its queue with the lowest f value. However, because the
vertex may have already been explored by another processor, the processor attempts to “claim”
the vertex by performing an atomic compare-and-swap against a designated cell for that vertex.
The first processor to claim the vertex explores it. Each vertex also has a global mutable cell to
store its g value. When relaxing a vertex v, processors perform a “priority update” on this cell,
an operation which stores the lowest g value seen so far.

Parallelism introduces the possibility of a sub-optimal solution because, unlike in the sequen-
tial setting, it is not guaranteed that a vertex is explored only when it has the globally minimum f
value. Because the amount of sub-optimality increases with the number of queue splits, proces-
sors only split their queue and spawn a new thread when the total number of PWSA* threads in
the system is less than the number of processors.

Short-term RRT Planner. The Rapidly-exploring Random Trees (RRT) algorithm [77] finds
paths in continuous domains by building up trees rooted at the start vertex that explore the space.
The algorithm operates in rounds in which it chooses a point x in the space. With some fixed
probability p, it chooses x to be the goal and with probability 1 − p, it chooses a random point
in the space. The algorithm then attempts to expand the tree in the direction of x by adding an
edge from the existing tree vertex v that is nearest to x. If extending an edge from v some fixed
distance in the direction of x (using appropriate generalizations of “distance” and “direction” for
the space, which may be high-dimensional) would not result in a collision, the edge is added to
the tree and the process repeats.

We attempted to, as in PWSA*, trade optimality (paths in RRT are not guaranteed to be
optimal to begin with) for parallelism by choosing multiple random points at each round and
extending the tree in several directions simultaneously. This approach, however, induces a syn-
chronization point after each round and so does not result in a very practical parallel algorithm.
As such, we chose to use sequential RRT and parallelize by running several instances of RRT
simultaneously.

Main Loop. The main event loop of the planner is responsible for keeping track of the plan-
ning threads, interfacing with the simulation to move the “robot” and replanning if it senses an
obstacle. The loop runs at high priority. At a high level, the planner keeps track of the “current”
long-term and short-term plans. There is continuously a collection of low-priority threads run-
ning PWSA* to generate a new long-term plan from the current position to the end goal. At the
same time, there is a collection of N medium-priority threads (where N is a parameter to the
algorithm) running RRT to generate new short-term plans from the current position to various
points along the long-term plan. Because the long-term plan may collide with obstacles that are
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not on the map, each RRT thread uses as its goal a different point along the long-term plan. For
example, if the route to the first point on the long-term plan is blocked, the thread computing an
RRT plan to that point will fail, but the thread computing an RRT plan to the next point might
succeed. The main loop continuously polls the planning threads, keeping the best long and short
term plans, and spawning new planning threads as the plans complete.

We now discuss the operation of the loop, pseudocode for which appears in Figure 8.1, in
more detail. Throughout the simulation, the main loop keeps track of several pieces of data:
• The current long-term plan (long_plan)
• The current short-term plan (short_plan)
• The thread currently computing a long-term plan (long_plan_thread)
• A list of threads currently computing short-term plans (short_plan_threads)

Each iteration of the loop performs the following sequence of operations:
1. Get the current position of the robot. If we have reached the goal, terminate (lines 2-4).

2. Poll the PWSA* thread. If it has generated a new long-term plan, replace the current plan.
Because the PWSA* thread is performing a large computation at low priority, the robot’s
position may have changed substantially since the planning began and we must attempt
to reconcile the new long-term plan with the current short-term plan. If the current short-
term goal is still a point along the long-term plan, the operation succeeds and removes any
prefix of the long-term plan that has been completed. Otherwise, we must throw out our
current short-term plan and compute a new one that is compatible with the long-term plan.
(Lines 6-14.)

3. If we are nearing the first point on the long-term plan, remove it from the plan (lines 16-19).

4. Poll the RRT threads. If any have completed, remove them from the list and update
the current short-term plan to the best available plan (the function better_plan, not
shown, uses a combination of which plan is shorter and which plan gets closer to the goal).
(Lines 21-25.)

5. If all RRT threads have completed, spawn new ones to compute paths to each of the first N
points on the long-term plan (lines 27-29.)

6. If we are nearing the first point on the short-term plan, remove it from the plan (lines 31-
34).

7. Move the robot toward the first point on the short-term plan, unless doing so would cause
a collision or we do not currently have a short term plan, in which case stop (lines 36-41).

The planner currently runs in a simulator that tracks the current position of the robot within
the map, moves it and stops it in real time as directed by the planner’s event loop, and detects
collisions. The planning loop also registers its current short-term and long-term plans with the
simulation so that the simulation can display a visualization in real time showing the current
position of the robot, and its short- and long-term plans. An example of this visualization is
shown in Figure 8.2, with the current long-term plan in blue and the current short-term plan in
red. Black areas are out of bounds, and green areas are trees (also considered to be obstacles
to the planners). The current location of the robot is shown as a small black line (centered in
the orange circle, which was added to the figure for visibility). The simulation allows the user
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1 repeat:
2 pos := get_robot_position ()
3 if distance (pos, goal) < threshold:
4 break
5

6 new_long_plan := false
7 case poll long_plan_thread:
8 | SOME plan =>
9 long_plan := plan

10 long_plan_thread := spawn[lp_prio] (new_long_plan (pos, goal))
11 if not (reconcile_plan long_plan (last_point short_plan)):
12 short_plan := NULL
13 reconcile_plan long_plan pos
14 | NONE => skip
15

16 case long_plan:
17 h::t => if distance (pos, h) < threshold:
18 long_plan := t
19 | _ => skip
20

21 for t in short_plan_threads:
22 case poll t:
23 | SOME plan => short_plan := better_plan short_plan plan
24 remove (short_plan_threads, t)
25 | NONE => skip
26

27 if short_plan_threads = []:
28 short_plan_threads = { spawn[sp_prio] (new_short_plan (pos, p))
29 | p in first(long_plan, N) }
30

31 case short_plan:
32 | h::t => if distance (pos, h) < threshold:
33 short_plan := t
34 | _ => skip
35

36 case short_plan:
37 | h::t => if would_collide pos h:
38 robot_stop ()
39 else:
40 robot_move_toward h
41 | _ => robot_stop ()
42

Figure 8.1: Pseudocode for the main planning loop.
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to click to introduce new obstacles which are visible to the robot when it is performing its short
term plans, but which are not taken into account by the long-term planner.

Performance evaluation The main purpose of this case study is to show a substantial appli-
cation for which our threading and priority model is suitable, and give some evidence that our
techniques can scale to examples of this size. We make no claims that we have developed a
highly competitive or performant motion planner, or that the motion planner is a particularly
suitable benchmark for testing the performance of our scheduler. Chapter 9 is devoted to a more
substantial performance evaluation. Still, it is worthwhile to show some performance results to
evaluate the suitability of our techniques for the case study.

The simulation code runs in the same thread as the main loop. In keeping with the ratio
suggested by Knepper et al. [73], we ran the motion planning simulation with a fairness criterion
that assigns four times as many cycles to the short-term planner as to the long-term planner. The
interaction loop was given the same number of cycles as the short-term-planner. The number N
of short term planning threads was set to be equal to the number of processors.

We ran the motion planner in parallel, using between 1 and 70 processors. Because the
algorithm uses a substantial amount of randomization, experiments on the planner are necessarily
fairly noisy. We ran the planner 9 times for each number of processors, and discarded runs where
the robot became stuck and failed to reach the goal within 5 minutes. Each data point presented
represents an average over the remaining runs.

Figure 8.3 shows the total time the simulated robot takes to reach the goal for each number
of processors, measured from when the simulation is initialized and the initial PWSA* computa-
tion is started until the robot is within the threshold distance of the goal. The total time decreases
sharply up to eight processors, but then begins to substantially increase starting at approximately
16 processors. We suspect that this pattern is the result of two competing factors. The initial
decrease is most likely due to the increase in planning throughput enabled by parallelism. After
this, however, the benefits of parallelism decrease and the tradeoff between optimality and paral-
lelism take over. The robot appears to be traveling longer distances, canceling out the decrease
in planning time.

The results indicate that it might be possible to improve the parallel performance of the
planner by using parallelism to a greater extent to generate better plans rather than to simply
speed up planning. For example, if more than eight processors are available, we could run
multiple instances of PWSA* concurrently (each using up to between four and eight processors)
and choose the best plan.

8.2 Real-time, human v. computer game
The other extended case study we consider in this chapter is a game in which a human player,
interacting with the terminal, competes against a collection of computer-controlled players. The
game is real-time (as opposed to turn-based; this gaming terminology should not be confused
with real-time software), and so the software must react quickly to user actions in order to main-
tain the user experience. At the same time, five AI-controlled players simultaneously plan their
strategy using a tree search algorithm, which itself is parallelizable. Because the game proceeds
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Figure 8.2: The motion planner.
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Figure 8.3: Total time to reach the goal.

in real time, with players taking actions as quickly as they can (or as quickly as the user interface
will allow), the AI players benefit by being able to compute their strategy as quickly as possible.

The game. The storyline of the game is not important for understanding its relevance as a case
study, but we include it here for completeness. In the game, the user plays as a student defending
a thesis, and the AI players are the thesis committee. The student has two health bars, Knowledge
and Stamina, which allow the user to take certain actions. The committee members also have
two health bars, Patience and Confusion. Confusion will result in the committee members asking
questions, to which the student must respond in a fixed amount of time. Failure to do so decreases
the committee’s Patience. If any committee member’s Patience drops to zero, the student player
loses. The student wins by covering a fixed amount of the talk before the committee runs out of
Patience. A screenshot of the game appears in Figure 8.4.

Monte Carlo Tree Search. As in most game-playing AIs, the AI players work by search-
ing through the game tree, a representation of the possible outcomes of the game in which the
branches are moves that can be taken by each player, the nodes are game states and the leaves
are evaluations of the final outcome of the game: either a score, or simply which player won. In
most games, the game tree is too large to search completely. Monte Carlo Tree Search (MCTS)
has been successfully used recently to develop AI players for games with very large state spaces,
notably Go (e.g., [36, 95]).

In MCTS, the game tree is sampled randomly to find statistically good moves for the AI
player. While playing the game, and simulating possible ways the rest of the game could play
out, the AI tracks, for each explored game state, the number of simulated games played starting
at that state and the number that resulted in wins (“play” and “win” counts). For each simulated
game, MCTS explores the game tree starting at the current game state. The simulated game
begins with a selection phase when MCTS is exploring nodes that have already been explored.
During this phase, MCTS already has information about the probability of winning for each
move it could take on this turn, so it selects which move to take (in the simulated game) using
this information, according to some algorithm. We use the Upper Confidence Bound on Trees
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Figure 8.4: The human v. computer game.
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(UCT) algorithm [74]. Once the search reaches the frontier of where it has already explored, it
expands the stored game tree by adding a new node and initializing its play and win counts to
zero. MCTS then enters the simulation phase in which it plays one or more simulated games at
random (we choose to play one), starting at the new node. Finally, depending on the outcome of
the simulated game, it updates the play and win counts of every stored node along the traversed
path, including the newly added node. The entire process is repeated as many times as desired
before the AI chooses its next actual move.

Several approaches to parallelizing MCTS have been explored in the literature (e.g., [8, 29,
44]). We chose to implement single-run or root parallelism [29], in which multiple separate in-
stances of MCTS run simultaneously and then combine their play and win counts at the end. This
version of MCTS is straightforward to implement and is a natural fit for dynamic parallelism, but
the lack of sharing between MCTS instances might slightly impact the results. Because MCTS
uses information from previous simulations to inform the selection phase, each parallel run of
MCTS has less information than it would if the runs were sequential. As in the PWSA* algorithm
of the previous section, we are trading parallelism for optimality. This seems like an especially
reasonable tradeoff in probabilistic search algorithms which are, by their nature, not optimal.

The main loop. The game consists of one interactive thread, controlling the terminal interac-
tion with the user, and five collections of computation threads, controlling the AI players. Both
human and AI players implement a function move which takes the current game state and player
state, and optionally returns the player’s move as well as the player’s new state. If the player is
not ready to move, move returns NONE. The player state includes any state the player needs to
make its move (e.g., the play and win counts for the AI players, which are preserved between
MCTS runs), and is passed to and returned from move in order to preserve a functional interface.
The AI players’ move function runs 1,000 runs of MCTS as described above and then chooses
the best available move based on the existing play and win information for the accessible game
states. The student player’s move function displays a representation of the game state on the
terminal and polls the keyboard to see if the user has entered a move since the last call.

The main loop of the game is quite simple: it maintains the state of the game, and calls move
for each player at a fixed frame rate, updating the game state accordingly. Because move for an
AI player may take a substantial amount of time, the loop spawns a vector cthreads of threads
(each running at separate, incomparable, priorities), one for each AI player, and polls the threads
at each frame, making the player’s move each time one is available. Pseudocode for the game’s
main loop, which runs at a priority higher than that of the AI threads, is shown in Figure 8.5.

Qualitative performance evaluation. We did not attempt a thorough performance evaluation
of the game, but we did make some qualitative observations during testing. When the game is
run on one processor, the AI players are slow to respond: although their confusion levels get high
enough to ask questions, they take longer to do so. This effect is less noticeable when the game
is run on more processors. It appears that the parallelism among AI players (the fact that each of
the five AI players can plan their strategies independently in parallel) is more beneficial than the
parallelism within each AI player. Parallelizing each MCTS computation may be profitable to a
point, but we did notice that performance began to degrade when each MCTS thread performed
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1 state = initial_state ()
2 aistate = {initialize_ai i | i in committee_mbrs}
3 humstate = initialize_human ()
4 cthreads = {spawn[aiprio_i] (AI.move (state, aistate[i]))
5 | i in committee_mbrs}
6

7 repeat:
8 for each i in committee_mbrs:
9 case cthreads[i]:

10 | SOME (move, aistate’) =>
11 state := update (state, move)
12 aistate[i] := aistate’
13 cthreads[i] = spawn[aiprio_i] (AI.move (state, aistate[i]))
14 | NONE => skip
15 case Human.move (state, humstate) of
16 | SOME (move, humstate’) =>
17 state := update (state, move)
18 humstate := humstate’
19 | NONE => skip
20 sleep(frame_interval)
21

Figure 8.5: The main loop of the game.
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fewer than 100 simulations. It would be interesting to, in future work, run the game on more
processors and attempt a more quantitative evaluation of the benefits of parallelism.
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Chapter 9

Evaluation

And here I stand: judge, my masters.
Henry IV, Part I (II.4.454)

Most of this chapter discusses an empirical evaluation of the runtime of PriML. The purpose
of this evaluation is primarily to determine how well the scheduling framework approximates the
fairly prompt scheduling principle. To this end, we evaluate the scheduler on three main criteria:

1. Fairness: Does the fraction of processor cycles devoted to work at each priority match the
fairness criterion provided to the scheduler?

2. Promptness: When work at other priorities is scarce, does high priority work get handled
quickly and effectively?

3. Greediness: Does load balancing allow threads to effectively utilize the processor cycles
available to them?

A schedule that perfectly meets all of the above criteria is fairly prompt by the definition estab-
lished in Section 3.4, and therefore obeys the cost bounds we have shown.

We evaluate the runtime on two sets of benchmarks: larger “application benchmarks” which
we use to show the power and flexibility of the system, and smaller “orthogonal benchmarks”
which provide for more controlled experiments. Because the goal is to evaluate the performance
of the runtime rather than the speed of the code generated by the compiler, these benchmarks
are written in Parallel ML using calls to our threading library. We justify this choice in Sec-
tion 9.3.4 by evaluating one of our benchmarks written in PriML against the handwritten Parallel
ML version and showing their performance to be comparable.

At the end of this chapter, we present another set of “expressiveness” benchmarks, which
are written in PriML and can be compiled using our prototype compiler. We do not present a
performance evaluation of these benchmarks, but include them in this thesis to show a variety of
uses of the language, as well as the practicality of our compiler front-end.

We begin with a description of our experimental setup.
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9.1 Experimental setup
All experiments were run on a machine with 1TB of main memory and 72 2.4GHz Intel Xeon
processors. Unless otherwise noted, we ran our experiments on 70 processors, reserving two for
the experiment scripts and other background processes. In the version of Parallel MLton we use,
garbage collection is sequential and stops all processors, so for all execution times reported, we
subtract the time spent on GC. We do not subtract GC time from response times.

Evaluation framework For testing many of our interactive benchmarks, we use a driver pro-
gram, written in C, which shares pipes and network connections with the benchmark application.
The driver simulates interactions as specified by an “event trace” consisting of a sequence of
interactive actions, encoded in a domain-specific language. The benchmarks are instrumented
to produce predictable outputs on standard output when the program responds to a particular
interactive action. For example, when the user advances the photo in a slideshow and the photo
viewer displays the photo, it also outputs a log message indicating the newly displayed photo.
When the driver initiates an event, it adds an entry in a buffer with the start time and expected
response. A separate thread in the driver reads the output of the program and checks it against
the buffer entries. When a line of output matches the expected response for an event, the thread
records the time difference and uses it to compute the average response time.

9.2 Application benchmarks

9.2.1 Web server
Our simple web server accepts incoming HTTP connections using one high-priority thread per
processor. The server spawns a medium-priority thread for each new connection, which serves
HTTP requests on that connection. Each request is logged, and a low-priority background com-
putation periodically processes the logs and computes usage statistics 1. In our tests, we gave
accepting threads, serving threads and background threads 4/9, 4/9 and 1/9 of cycles, respec-
tively.

We evaluated the web server using ApacheBench (ab), running on another machine on the
same Local Area Network. We varied two parameters: the number of concurrent connections C
and the number of processors running the server. In each trial, ab opens C connections to the
server and performs 2,000 total HTTP requests. Table 9.1 reports the mean response times, in
milliseconds, for each experiment. ApacheBench computes the mean response time end-to-end:
it records the total time to complete the benchmark, and divides by the number of requests (2,000
in this case).

As expected, for a fixed number of processors, the response time increases as the degree of
concurrency becomes higher, since this puts a great deal more stress on the scheduler and the
server threads. For a fixed value of C, the response time appears to initially decrease as more
processors are added. This indicates that the additional processors are effectively balancing the

1Since, in all of our tests, the logs remain small, we inflate the work of the background process by having it
periodically perform a large Fibonacci computation in addition to tabulating page views.
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Processors
C 1 10 50

1 1.1 1.1 1.3
10 8.2 1.6 1.8
50 333.4 40.0 6.5

Table 9.1: Mean response time (ms) for the web server.

load of the concurrent requests. When the number of processors exceeds C, however, response
time increases slightly, suggesting that when there is not enough interactive work to keep all
processors busy, load balancing adds a small amount of overhead.

9.2.2 Photo viewer
The photo viewer benchmark displays JPEG images from a local folder, and allows the user to
scroll forward and backward, and to jump to images out of order. When a new image is selected,
the next eight images in order are decoded by low-priority threads. The interaction with the
user occurs in a high-priority foreground thread. When the user selects a new image (either by
scrolling or jumping), the foreground thread checks if the image has already been decoded and
either displays the decoded image or decodes it and displays it immediately.

The third-party libraries we use for decoding and rendering images are not thread-safe, and
so we are only able to run the photo viewer on one processor, using threads for latency hiding
rather than parallelism. Still, latency hiding can be quite beneficial in this benchmark, if the
thread waiting for user input properly yields to the background decoding threads, and these
background threads properly yield to each other. Thus, even on one processor, this benchmark
provides a good test of our scheduler’s fairness and promptness. In our tests of the photo viewer,
we directed the driver program to request a series of 10 images, out of 100 total images, each of
which is 4.3MB in size and takes approximately 225ms to load from file and decode. Figure 9.1
shows response times for four interaction rates (1, 2, 5 and 10 requests per second) and three
types of traces: in-order access, random access and a mix of the two. The y-axis is the response
time on a log scale, measured from when the driver requests the image to when the decoded
image is displayed on the screen. For in-order traces where requests are made slowly enough
to use pre-decoded images, average response times are under 20ms. These response times show
that the interaction thread properly donates its spare cycles to decoding, and quickly wakes up
and responds to interaction when necessary. As expected, the benefit of pre-decoding images
decreases when viewing the photos in a random order or scrolling faster than the viewer can
decode.

9.3 Orthogonal benchmarks
To gain a more controlled experimental setting for doing a thorough quantitative evaluation

of the scheduler, we use a set of orthogonal benchmarks, in which computations at different
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Figure 9.1: Response time results for the photo viewer.

priorities do not spawn or synchronize with each other, allowing us to tune them independently.
Each of our orthogonal benchmarks consists of some combination of compute components

and interactive components. Each of the components operates independently of the others, and
they may all be run at any priority. All of the compute components and one of the two interactive
components are themselves parallel. The set of components was chosen to cover both predictable
workloads, where the parallel structure is relatively static, and unpredictable workloads, where
the parallel structure is determined dynamically during computation. For the compute compo-
nents, we also consider both compute-intensive and memory-intensive workloads.

Interactive components:
• Terminal echo. The component repeatedly accepts a line of text on standard input and

echoes it back to the user on standard output. This component is sequential and predictable.
• Network echo. The component listens for network connections in a main, single-threaded

loop. For each connection, the loop spawns a new thread to handle this client. Each
such thread interacts with the client as in terminal echo above, accepting a line of text
over the socket and echoing the text on standard output. This component is parallel and
unpredictable, since the parallel structure depends on the incoming connections.

Compute components:
• Fibonacci. A naturally parallel recursive algorithm computes the 45th Fibonacci num-

ber. While this is not an efficient algorithm for computing Fibonacci numbers, it generates
many parallel tasks quickly with little to no allocation, making it an excellent representa-
tion of a computation-intensive, predictable parallel workload.

• Unbalanced Tree Search (UTS). UTS [94], designed as an adversarial test of load bal-
ancing, explores a tree where, at each node, the number of children is randomly selected
from a geometric distribution. This results in a high degree of imbalance, stressing the
scheduler’s distribution of work. Typically, the number of children of a node is computed
based on a SHA-1 hash of a representation of the parent. We instead use an implementa-
tion of the DOTMIX deterministic parallel random number generator [80], which is based
upon the same principles. The tree we use has depth 11 and average branching factor 4.0.
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Since our random number generation is fairly inexpensive, we add a small sequential Fi-
bonacci computation at each node to increase the work per node. This benchmark is highly
unpredictable and computation-intensive.

• Dense Matrix Multiplication (DMM). This is a parallel, recursive implementation of
Strassen’s algorithm for matrix multiplication, which we use to multiply two 2048× 2048
matrices. This benchmark is still more compute-intensive than memory-intensive, and also
results in a fairly predictable parallel structure, but is less artificial than Fibonacci.

• Breadth-First Search (BFS). This benchmark performs a breadth-first search of a ran-
domly generated graph with 15M nodes and 240M edges. The graph is stored using a
compact, array-based adjacency list representation. This benchmark is memory-intensive,
with a somewhat unpredictable parallel structure based on the graph structure.

• Sample Sort. Our implementation of sample sort is based on that of Blelloch et al. [20],
and is highly optimized to make maximum use of parallel processing and hierarchical
caches. As a benchmark, it is memory-intensive but with a more predictable structure than
BFS. The benchmark sorts a random sequence of length approximately 128M.

9.3.1 Measuring Fairness
To show that our scheduler meets the first of the three criteria, fairness (that is, that it executes
a computation in the expected amount of time given the percentage of cycles devoted to the
computation), we use a set of benchmarks constructed with three priorities. The top priority
runs an interactive component, and the bottom priority runs a compute component. The middle
priority acts as a time sink. It runs a very large, massively parallel computation which is not
expected to finish or idle during the experiment. It will therefore collect any cycles donated by
the top priority, allowing us to view the low-priority computation in isolation. Each benchmark
runs until the low-priority computation completes, and then terminates.

We ran each combination of compute and interaction components with three different fairness
criteria, written in the form “H-M -L”, where H is the percentage of cycles devoted to the high
priority, M to the middle priority and L to the low priority. For this evaluation, we used 0-
0-100, 50-0-50 and 50-25-25. In each run, the driver program interacted with the interactive
component 50 times per second. We also ran each compute component as a serial program,
compiled with standard MLton. We refer to this as the serial baseline and denote its running
time by Ts. The ratio between a parallel execution time and the serial baseline is the speedup and
is generally used as an evaluation of how greedy a scheduler is, that is, how well it distributes
work across processors. To evaluate fairness, how close the scheduler stays to the prescribed
fairness criterion, we use as a baseline the 70-processor execution time for 0-0-100, which we
denote T b70.

Table 9.2 gives the two baselines and the speedup for 0-0-100 (Ts/T b70). For 50-0-50 and 50-
25-25, we show the 70-processor execution time T70 in seconds, the average response time (RT)
of the interaction in milliseconds and the normalized speedup on 70 processors. The normalized
speedup is calculated as Ts/LT70, where L is the fraction of cycles devoted to the computation:
0.5 for 50-0-50 and 0.25 for 50-25-25. This normalization is done because, for an execution
time of T70, the scheduler is expected to spend only LT70 on the low-priority computation. The

143



F
ib

., 
Te

rm
.

F
ib

., 
N

et
.

U
T

S
, T

er
m

.

U
T

S
, N

et
.

D
M

M
, T

er
m

.

D
M

M
, N

et
.

B
F

S
, T

er
m

.

B
F

S
, N

et
.

S
or

t, 
Te

rm
.

S
or

t, 
N

et
.

0 0 100
50 25 25
50 0 50

N
or

m
al

iz
ed

 c
om

pu
te

 ti
m

e

0.0

0.5

1.0

1.5

2.0

2.5

70 procs

Figure 9.2: Normalized execution times for the low-priority computation.

maximum normalized speedup in all cases is 70x on 70 processors.
We can judge how well the scheduler distributes work by looking at the speedup, but the

speedups shown in the table are not very meaningful without a comparison to another scheduler,
which we provide in Section 9.3.2. We judge how well the scheduler respects the fairness crite-
rion by looking at the ratios T b70/LT70 between the normalized execution times and the 0-0-100
baseline. If the scheduler is being perfectly fair, these ratios should be 1.0, i.e., the 50-0-50 exe-
cution time should be 2T b70 and 50-25-25 should be 4T b70. These ratios are shown graphically in
Figure 9.2. For the compute-bound benchmarks (Fibonacci, UTS and DMM), the ratios stay very
close to 1. For the memory-bound benchmarks, the ratios go as high as 2.0. These deviations
from fairness are reasonably tolerable, but may merit further study.

We can also use these benchmarks to judge how responsive the programs are by looking at the
mean response times, reported in Table 9.2 for the 50-0-50 and 50-25-25 criteria. Response times
for 0-0-100 are quite poor: they range as high as 800ms, and in many cases, events are dropped
entirely, as is to be expected when no cycles are devoted to the interaction (though, because of
promptness, idle processors will work on high-priority tasks). Response times are otherwise quite
good, remaining well under 10ms except for the very intensive Sample Sort computation (and the
breadth-first search for 50-25-25). To test how many cycles the interaction needs and how this
varies with interaction rate, we also measured the response times for 10 and 100 interactions per
second, and for fairness criteria 25-25-50 and 5-45-50. The results for 100 terminal interactions
per second, which are representative of the other results, are shown in Figure 9.3. As expected,
mean response times are higher when very few cycles are devoted to interaction, though they
mostly remain under 50ms, showing that for applications where responsiveness is not critical,
few cycles need to be devoted to handle infrequent bursts of interaction.

9.3.2 Evaluating Speedups

As discussed above, the three-priority benchmarks provide a good measure of fairness: how
well the scheduler respects the fairness criterion. To show how effectively the scheduler uses
the cycles devoted to a parallel computation, we compare the parallel speedup of computation-
only benchmarks to the parallel speedup of the same computation on a work-stealing scheduler
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Figure 9.3: Response times for three-priority benchmarks.

32 procs 70 procs
Comp. SWS PPD Rat. SWS PPD Rat.

Fib. 16.7× 14.1× 1.18 33.5× 26.8× 1.25
UTS 13.4× 11.5× 1.16 26.0× 17.8× 1.46
DMM 8.6× 10.2× 0.85 13.7× 17.3× 0.79
BFS 18.7× 12.5× 1.50 36.2× 15.0× 2.41
Sort 29.8× 25.3× 1.18 61.7× 43.3× 1.42

Table 9.3: Parallel speedup of computation-only benchmarks.

which was specially designed to obtain good speedups on purely computational benchmarks.
The scheduler we use for comparison is Spoonhower’s original work stealing implementation
from his Parallel MLton.

These speedups, shown in Table 9.3, need not be normalized since there is only one com-
putation, which is given all of the cycles. Our scheduler is competitive with Spoonhower on
most benchmarks, and even performs substantially faster on DMM. At 70 processors, our per-
formance begins to decline for BFS and Sample Sort. Speedup curves are shown in Figure 9.4.
These curves show the parallel speedup versus number of processors of both schedulers. The
light gray line indicates perfect speedup.

9.3.3 Measuring Promptness
Promptness requires that when work at the primary priority is unavailable, the processor works
on the highest available priority. We show that this is the case using benchmarks with one
high-priority interactive component and one low-priority compute component. We run these
benchmarks with a winner-take-all policy; that is, the fairness criterion assigns all cycles to the
top priority and low-priority computation runs only when high-priority work is unavailable. All
of these experiments use an interaction rate of 50 interactions per second.

Table 9.4 shows the parallel speedups and response times for each benchmark. As above, the
speedups are not normalized because we wish to determine what fraction of cycles are given to
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Figure 9.4: Speedup on computation-only benchmarks.
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1 proc resp. time (ms) 70 proc Spd.
Int. Comp. PLDI ’17 PPD PLDI ’17 PPD Rat.

Term.

Fib. 2.5 2.6 25.9× 29.2× 0.88
UTS 2.6 2.6 15.8× 18.6× 0.85
DMM 2.6 2.5 19.2× 18.9× 1.01
BFS 187.2 2.7 12.6× 16.7× 0.75
Sort 17.1 2.5 35.0× 44.8× 0.78

Net.

Fib. 2.6 2.6 25.4× 27.8× 0.92
UTS 2.6 2.6 16.7× 16.2× 1.03
DMM 2.6 2.6 18.9× 17.4× 1.09
BFS 10.0 2.6 12.0× 14.9× 0.80
Sort 3.5 2.6 34.4× 42.9× 0.80

Table 9.4: Speedup and response time of two-priority, winner-take-all benchmarks.

the computation; ideally almost all execution time will be devoted to the low-priority computa-
tion. The performance of our scheduler in these experiments is comparable to its performance
in Table 9.3, indicating that only those cycles that are necessary to complete the interaction are
devoted to the interaction, as required by promptness.

We also compare the performance of the PPD algorithm on these two-priority benchmarks to
the same benchmarks running with our specialized two-priority scheduler from our PLDI 2017
paper [87]. The PLDI 2017 scheduler maintains two deques per processor, one for each priority.
Upon deal attempts, a processor p picks a target q and sends a high-priority task if p has one and q
does not, or a low-priority task if p has no high-priority tasks and q is idle. Because there is no
notion of fairness, processors always work on high-priority threads when possible. The primary
algorithmic difference, then, between the PLDI ’17 scheduler and PPD on a winner-take-all
benchmark with two priorities is that PPD will send a low-priority task to a processor that has
high-priority tasks while PLDI ’17 will not. Because the two schedulers are similar other than
the added features of PPD (which also has to account for fairness and a more complex priority
order), the comparison between PPD and PLDI ’17 serves to highlight the cost of these added
features: if PPD is competitive with PLDI ’17, then the cost of adding fairness and a complex
priority ordering is manageable. In fact, in all benchmarks, our scheduler essentially matches or
out-performs the specialized scheduler in both response time and speedup. This shows that the
special-purpose data structures and performance optimizations of the PPD algorithm have made
up for the cost of the added complexity.

9.3.4 Measuring Impact of the Front End

As mentioned earlier, the benchmarks used in this section were all written in Parallel ML with
calls to our threading library (the target of the PriML compiler). This decision allows us to effec-
tively measure the performance of the runtime scheduler without introducing any inefficiencies
in the front end. It also allows us to use features of SML, such as its module system, which are
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Figure 9.5: Speedup curves for Fibonacci-terminal on PriML and Parallel ML.

convenient for designing large-scale experiments but are not currently supported by PriML.
Here, we give some evidence that the decision to test benchmarks written directly in Parallel

ML does not substantially change the results. Figure 9.5 shows the normalized speedup of the
Fibonacci-Terminal benchmark with fairness criterion 50-25-25, for both the Parallel ML version
of the benchmark evaluated earlier in this chapter and a version of the benchmark written in
PriML and compiled using the compiler of Chapter 7. The performance characteristics of the
two implementations are effectively identical.

9.4 Expressiveness
We have implemented five sizable programs in PriML. These include the email client of Sec-
tion 4.1, a version of the web server of Section 9.2.1 (the version evaluated above was imple-
mented in ML using the threading library) and a bank example inspired by an example used to
justify partially ordered priorities [9]. We have also adapted the Fibonacci server and streaming
music benchmarks of our PLDI 2017 paper [87]. These originally used only two priorities; we
generalized them with a more complex priority structure, and implemented them in PriML.

Email Client We have implemented the “email client”, portions of which appear in Section 4.1.
The program parses emails stored locally, and is able to sort them by sender, date or subject,
as requested by the user in an event loop at priority loop_p (which currently just takes the
commands at the terminal; we don’t yet have a graphical interface). The user can also issue
commands to send an email (stored as a file) or quit the program.

Bank Simulator Babaoğlu et al. [9] give the example of a banking system that can perform
operations query, credit and debit. To avoid the risk of spurious overdrafts, the system prioritizes
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credit actions over debit actions, but does not restrict the priority of query actions. We implement
such a system, in which a foreground loop (at a fourth priority, higher than all of the others), takes
query, credit and debit commands and spawns threads to perform the corresponding operations
on an array of “accounts” (stored as integer balances).

Fibonacci Server The Fibonacci server runs a foreground loop at the highest priority fgwhich
takes a number n from the user, spawns a new thread to compute the nth Fibonacci number in
parallel, adds the spawned thread to a list, and repeats. The computation is run at one of three
priorities (in order of decreasing priority): smallfib, medfib and largefib, depending on
the size of the computation, so smaller computations will be prioritized. When the user indicates
that entry is complete, the loop terminates, prints a message at priority alert (which is higher
than smallfib but incomparable with fg), and returns the list of threads to the main thread,
which syncs with all of the running threads, waiting for the Fibonacci computations to complete
(these syncs can be done safely since the main thread runs at the lowest priority bot).

Streaming Music We simulate a hastily-monetized music streaming service, with a server
thread that listens (at priority server_p) for network connections from clients, who each re-
quest a music file. For each client, the server spawns a new thread which loads the requested
file and streams the data over the network to the client. The priority of this thread corresponds
to the user’s subscription (the free Standard service or the paid Premium and Deluxe subscrip-
tions). Standard is lower-priority than both Premium and Deluxe. Due to boardroom in-fighting,
it was never decided whether Premium or Deluxe subscribers get a higher level of service, and
so while both are higher than Standard, the Premium and Deluxe priorities are incomparable.
Both are lower than server_p. This benchmark is designed to test how the system handles
multiple threads performing interaction; apart from the asynchronous threads handling requests,
no parallel computation is performed.

Web Server As described in Section 9.2.1, the web server listens for connections in a loop at
priority accept_p and spawns a thread (always at priority serve_p) for each client to respond
to HTTP requests. A background thread (priority stat_p) performs the parallel background
computation. Both accept_p and serve_p are higher-priority than stat_p, but the ordering
between them is unspecified.

9.5 Comparison to Other Approaches
We are aware of no other systems that offer all of the features of PriML (e.g., dynamic fine-
grained parallelism, latency hiding, prioritized work stealing with more than two priorities) and
so it is difficult to perform direct apples-to-apples comparisons with existing systems and ap-
proaches. In this section, we compare the performance of our threading library and runtime
system to several alternate systems and approaches, each of which provides a subset of the fea-
tures of PriML. Because they provide fewer features, these other approaches may somewhat
out-perform our approach on some metrics for the more specialized benchmarks for which they
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Procs PPD Cilk Cilk (rel. to PPD) Go Go (rel. to PPD)

1
Comp. time 14.4 s — — 8.3 s 0.6
Resp. time 2.6 ms — — 4635.9 ms 1779.8

8
Comp. time 2.2 s 9.6 s 4.4 1.3 s 0.6
Resp. time 2.2 ms 2528.1 ms 1170.1 752.0 ms 348.1

32
Comp. time 0.7 s 9.6 s 13.3 0.4 s 0.5
Resp. time 2.1 ms 2783.0 ms 1302.7 — —

70
Comp.time 0.4 s 9.8 s 22.6 0.3 s 0.7
Resp. time 2.0 ms 2834.8 ms 1388.0 — —

Table 9.5: Comparison to Cilk and Go (Fibonacci-terminal benchmark).

were designed. Still, the fact that our system is competitive with these existing approaches shows
that the cost of the additional features provided by PriML is not overly burdensome.

We first (Section 9.5.1) compare PPD to two powerful, frequently used systems for fine-
grained parallelism: Cilk and Go. Go is moderately able to handle blocking interactive work-
loads, but Cilk (like the Spoonhower Work Stealing, or SWS, scheduler of Section 9.3) is not de-
signed for these workloads and cannot maintain responsiveness. Because of this, in Section 9.5.2,
we extend both Cilk and SWS to handle certain kinds of interactive workloads in a simple way,
and compare these results to ours.

9.5.1 Comparison to Cilk and Go

Cilk and Go (both described in Chapter 2) are two widely used systems for parallel computing.
Intel Cilk Plus, which arose out of the Cilk project, has now been incorporated into recent ver-
sions of gcc. For the experiments in this section, we use the version of the Cilk Plus runtime
distributed with gcc 6.4.0. Go is a standalone language with parallel features. The experiments
in this section use Go 1.6.2.

For the comparison to Cilk and Go, we used the Fibonacci-terminal benchmark of Sec-
tion 9.3, which is reasonably representative of the other benchmarks and is a good test of each
runtime’s scheduler (as opposed to the languages’ allocation strategies, libraries, or support for
efficient data structures). In these experiments, the driver program simulated 50 terminal inter-
actions per second. Table 9.5 shows computation and response times for PPD, Cilk and Go.
Because Cilk does not allow lightweight threads to block without blocking the entire worker
thread, we could not run the Cilk code effectively on one processor. Response times for Go are
not shown for more than eight processors because the run times became too short for our driver
program to operate.

Attempting to use Cilk on an interactive workload appears to have defeated its normally
very efficient runtime scheduler. The Fibonacci computation and terminal response times were
consistent across numbers of processors, indicating that Cilk was not effective at load balancing
on this workload. Response times for Cilk were 2-3s, approximately three orders of magnitude
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Figure 9.6: Self-speedup curves for Fibonacci-terminal on PPD and Go.

higher than PPD.
Go performs better than Cilk on this benchmark: its computation times were approximately

half those of PPD across numbers of processors. Because Go’s scheduler has no notion of pri-
ority, its response times were still substantially higher than PPD’s (by a factor of almost 1,800
on one processor and almost 350 on eight processors). The decrease in response times on more
processors is likely because, with larger numbers of processors, the interaction thread will be
scheduled more quickly simply through random chance even though it is not prioritized over the
computation threads.

We can compare the scalability of PPD and Go using the metric of self-speedup. Self-speedup
is the computation time on P processors divided by the computation time of the same runtime
system on 1 processor (as opposed to the “serial” speedup curves we have been showing thus far,
in which the comparison is against a purely serial version of the code on a sequential runtime).
The self-speedups of the Fibonacci-terminal benchmark on PPD and Go are shown in Figure 9.6.
Go initially scales better than PPD, but its scalability begins to drop off after approximately 30
processors, at which point PPD overtakes it in self-speedup.

9.5.2 Interaction with Dedicated Threads
Cilk and SWS, two systems we have explored in this thesis, are quite effective at load-balancing
fine-grained parallel computations, but do not have any facilities for allowing threads to perform
interaction. In particular, if a lightweight thread performs a blocking operation such as terminal
input, the entire worker thread is blocked. The scheduling algorithms used by these systems are
not able to temporarily suspend a lightweight thread and resume it later.

One simple way to extend both systems to allow for interaction is to dedicate one or more
processors (worker threads) to handle high-priority interactive threads. This approach fails to
scale in a number of ways. First, as the number of priorities increases, dedicating even one
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processor to each priority becomes unwieldy and even impossible if the machine has a small
number of processors. Second, this does not allow resources to be assigned dynamically: if there
is little work at high priorities, the dedicated processors will sit idle most of the time, and if
there is a sudden burst of interaction, the small number of dedicated processors might not be
able to keep up. The Fibonacci server example of the previous section is one program which this
approach would not support: much of the CPU time in this benchmark is devoted to computation
at several different priorities. If we devote, for example, 1/4 of the processors to small Fibonacci
computations and then the user requests only large Fibonacci computations, these processors are
wasted.

Despite these shortcomings, the above “dedicated processor” approach might work for bench-
marks such as the two-priority, winner-take-all benchmarks of Section 9.3.3. In these experi-
ments, there is one priority for computation and one priority for interaction, and interaction is
infrequent enough that one processor should suffice.

In this section, we compare PPD to two other systems: a variant of the Spoonhower Work
Stealing (SWS) scheduler designed to dedicate one processor to the interactive component, and
a variant of the Cilk benchmarks in which interaction is handled by a separate, dedicated system
thread.

First, we use a “dedicated processor” variant of the Spoonhower scheduler. In this variant,
each processor maintains separate work stealing deques for low- and high-priority work. All
processors but the last one (the one with the highest processor ID) work from their low-priority
deque and steal work from other processors’ low-priority deques (including that of the last pro-
cessor). Processors place high-priority work in their own high-priority deque but will not work
on it. The last (highest-ID) processor works on tasks in its high-priority deque and, when idle,
steals work from other processors’ high-priority deques.

Table 9.6 shows the response time and 8- and 70-processor speedup for both PPD and the
dedicated processor variant of SWS (“Ded.”). As in the two-priority experiments above, the re-
sponse time of PPD is quite consistent across benchmarks, but the response time of the dedicated
processor scheduler is highly dependent on the benchmark. The speedup of the dedicated proces-
sor scheduler on P processors is, predictably, quite similar to that of SWS on P − 1 processors,
because one processor is always dedicated to interaction. When 70 processors are used, this ef-
fect is negligible because the marginal benefit of using a 70th processor for computation is quite
small. Thus, the dedicated processor strategy, like SWS, outperforms PPD on 70 processors. On
only eight processors, however, PPD matches or out-performs the dedicated processor scheduler.

The second comparison is with a version of the Fibonacci-terminal benchmark written in
Cilk, in which the terminal interaction is handled by a separate pthread spawned by the C code.
This pthread is not under the control of the Cilk scheduler, but rather is handled directly by
the operating system. Table 9.7 shows the computation and response times for the Fibonacci-
terminal benchmark at 50 interactions per second, on both Cilk Plus (using a separate pthread
for interaction) and the dedicated processor variant of SWS. As before, we omit response times
for very short runs. The dedicated processor SWS scheduler is unable to run on one processor,
because this would leave no processors available for computation. The Cilk benchmark with
a dedicated interaction thread can run on one processor because the thread is scheduled by the
operating system, which may interleave it with the Cilk worker thread.

With interaction factored into a separate thread, Cilk is able to demonstrate good speedups
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Resp. time (ms) 8 proc Spd. 70 proc Spd.
Int. Comp. Ded. PPD Ded. PPD Rat Ded. PPD Rat.

Term.

Fib. 0.1 2.5 3.9× 4.9× 0.79 28.1× 28.9× 0.97
UTS 0.1 2.0 3.7× 4.2× 0.89 24.8× 18.1× 1.37
DMM 21.6 2.2 2.5× 3.6× 0.69 12.8× 18.4× 0.69
BFS 10.1 1.9 4.1× 4.4× 0.93 33.6× 16.4× 2.05
Sort 158.9 1.9 7.1× 8.1× 0.88 59.3× 45.0× 1.32

Net.

Fib. 0.1 2.3 4.7× 4.9× 0.97 33.0× 28.5× 1.16
UTS 0.1 2.1 4.1× 4.1× 0.99 28.5× 16.3× 1.74
DMM 6.8 2.3 2.7× 3.5× 0.76 13.1× 17.7× 0.74
BFS 1.2 2.0 4.2× 4.4× 0.96 34.2× 14.6× 2.34
Sort 15.5 1.9 7.5× 8.1× 0.92 60.7× 42.9× 1.41

Table 9.6: Fibonacci-terminal with PPD and a dedicated processor.

P PPD Cilk+pthread (rel. to PPD) Ded. (rel. to PPD)

1
Comp. time 14.4 s 9.4 s 0.7 — —
Resp. time 2.6 ms 2569.2 ms 986.4 — —

8
Comp. time 2.2 s 1.5 s 0.7 2.5 s 1.2
Resp. time 2.2 ms 513.0 ms 237.5 13.7 ms 6.3

32 Comp. time 0.7 s 0.5 s 0.6 0.7 s 1.0

70 Comp. time 0.4 s 0.3 s 0.6 0.4 s 0.8

Table 9.7: Fibonacci-terminal with PPD and two “dedicated-worker” approaches.
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on the Fibonacci computation: the computation time decreases with the number of processors
to a similar extent as PPD. Still, response times are considerably slower on Cilk, even though a
separate thread is dedicated for interaction. This somewhat counterintuitive result could be due
to any number of vagaries having to do with the operating system’s scheduling policy and shows
the importance of having all of the program’s threads under the control of the language’s runtime
system.
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Chapter 10

Conclusion

[Exit, pursued by a bear]
The Winter’s Tale (III.3.64)

In this thesis, we have made a contribution toward unifying the models of cooperative and
competitive threading by extending cooperative language and cost models with the ability to
manipulate and reason about threads that perform interaction or otherwise have responsiveness
requirements. In particular, the concrete contributions of this thesis have been:
• A DAG-based cost model for reasoning about the structure of parallel programs with

latency-incurring operations and priorities, together with appropriate scheduling principles
and formal bounds on throughput and responsiveness of such programs (Chapter 3).

• The PriML language for responsive parallelism, with a type system for preventing priority
inversions (Chapter 4).

• A formalization of the PriML type system in a core calculus λ4 (Chapter 4).
• A cost semantics for reasoning about the throughput and responsiveness of PriML pro-

grams, which is validated against an appropriate transition system (Chapter 5).
• A scheduling algorithm which handles threads of varying priorities (Chapter 6).
• An implementation of the proposed methods as an extension to Spoonhower’s Parallel ML

(Chapter 7). The implementation includes a front end that compiles from PriML to Parallel
ML, a threading library that implements prioritized futures, and a runtime scheduler for
prioritized threads.

• A set of parallel interactive benchmarks which demonstrate the expressiveness and flexi-
bility of our programming model and exercise a responsive parallel scheduler in a variety
of ways (Chapters 8 and 9).

• An evaluation of the proposed methods and their implementation from the points of view
of both expressiveness and performance (Chapter 9).

We believe that these contributions have sufficiently demonstrated the thesis statement of
Section 1. Still, there is much work to be done, both directly toward the contributions of this
thesis, and toward the more general goal of combining cooperative and competitive threading. In
the rest of this chapter, we first give some immediate directions for future research leading out of
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this thesis, and then conclude with a discussion of where this work can lead more broadly.

10.1 Future Directions
First-class priorities. Priorities are not first-class citizens of PriML, though they are in our
threading library (Section 7.2). Priority polymorphism suffices in many situations where first-
class priorities would be useful, but the restriction on priorities is still an inconvenience at times.
For example, the Fibonacci server of Section 9.4 includes a multi-way conditional to spawn a
thread at the appropriate priority:

1 if n < 15 then (* small number *)
2 cmd[fg] {td <- spawn[smallfib] {do ([smallfib]fib n)};
3 do (loop (td::threads))}
4 else if n < 25 then (* medium number *)
5 cmd[fg] {td <- spawn[medfib] {do ([medfib]fib n)};
6 do (loop (td::threads))}
7 else (* large number *)
8 cmd[fg] {td <- spawn[largefib] {do ([largefib]fib n)};
9 do (loop (td::threads))}

This code is manageable for three priorities, but would become unwieldy for many more
priorities. It would be more convenient to be able to have a single spawn statement and program-
matically produce the appropriate priority.

First-class priorities would be even more convenient with the ability to check the priority of
threads and the ordering of priorities at runtime. For example:

1 if p < Thread.priorityOf t then
2 cmd[p] { x <- sync t; ret (SOME x) }
3 else
4 cmd[p] { poll t }

Still, we have not encountered an example in our evaluation which is intractable without first-
class priorities.

For inspiration in this area, we could look to place-based languages and type systems (see
Section 2.3.3), which often allow first-class places.

If priorities can be passed around as first class objects, it’s also natural to ask whether they
can be generated at runtime (currently, all priorities are declared statically). This seems possible,
though the type system would need a static approximation of what priorities exist at what points
in the program as well as their ordering relations. Because such an approximation would neces-
sarily be conservative, it is not inherently clear how much additional expressiveness dynamically-
generated priorities would allow while still enabling static prevention of priority inversions.

Dynamic priorities and fairness. A related feature would be the ability to dynamically adjust
the priority of threads, and/or the fairness criterion. Dynamic priorities would be useful, for
example, to increase the priority of a computation if it has been running for a long time and
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its results are needed. A similar effect could be achieved by adjusting the fairness criterion at
runtime to shift the processor resources given to different computations as the requirements of a
program change.

Dynamic priorities would pose substantial challenges to reasoning about priority inversions
and cost, and would require quite a bit of thought. Dynamic fairness criteria appear more straight-
forward; indeed, our threading library in principle already allows the fairness criterion to be
modified at runtime, though we do not use this ability and haven’t tested it. A somewhat larger
challenge would be extending the cost bounds to allow for a fairness criterion that changes over
time.

Channels, other synchronization. Although the threading model of PriML is quite expres-
sive and general, another possible direction for future work would be to extend the set of syn-
chronization and communication primitives. For example, we could add support for CML-style
communication channels. Because communication on channels is synchronous, we would need
to extend the type system to ensure that a high-priority thread never blocks waiting for a low-
priority thread to send or receive on a channel. One way to achieve this would be to annotate
every channel with a priority ρ and have the type system enforce that only threads of priority
greater than ρ may send on the channel and only threads of priority less than ρ may receive on it.

Analysis of work stealing algorithm Possibly the most direct avenue for future work would
be to analyze the work stealing algorithm of Chapter 6 and hopefully prove that it meets the
bounds given for fairly prompt schedules by Theorem 2. Analyses of algorithms such as this one
require an enormous amount of technical detail, but we suspect it would be possible to leverage
existing proof techniques (e.g., [2]). We describe in Section 6.4 how the design of the algorithm
was guided by intuitions about fairly prompt scheduling, and why we believe that the algorithm
presented should produce a good approximation of a fairly prompt schedule.

Development of benchmark suite One of the contributions of this thesis is a set of responsive
parallel programs on which we have evaluated our implementation. In developing this set of
benchmarks, especially the set of orthogonal benchmarks (Section 9.3), we attempted to provide
good coverage of the design space of both parallel programs and interaction. Still, our job was
made more difficult by the fact that (to the best of our knowledge) no definitive suite of parallel
interactive benchmarks currently exists. It would be worthwhile to extend the set of benchmarks
in this thesis into a larger, standalone benchmark suite that could be used to evaluate and compare
future approaches to responsive parallelism, in the same way that, for example, the Problem
Based Benchmark Suite [109] exists for parallel algorithms.

10.2 Concluding Remarks
As consumer electronic devices continue to scale by increasing the number, rather than the speed,
of processors, it will become increasingly important for software to make meaningful use of
parallelism. The elegance and programmability of cooperative threading models make them an
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attractive choice for using parallelism to improve the throughput of computation, but consumer
software has needs beyond simply throughput. For this reason, we seek a unified parallelism
model that combines the throughput guarantees of cooperative threading and the responsiveness
of competitive threading. In this thesis, we have taken a number of steps from the standpoint
of cooperative threading toward including ideas of preemption, interaction and responsiveness
while maintaining the high levels of abstraction and provable cost bounds that are the hallmarks
of cooperative models. In the future, we will hopefully see research at other points along the
design space that spans cooperative and competitive threading, and even a full unification of the
two models.
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