
Manifest Sharing with Session Types

Stephanie Balzer and Frank Pfenning

June 2017

CMU-CS-17-106R

(updated version of CMU-CS-17-106, March 2017)

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

A version of this work appears in the Proceedings of the 22nd ACM SIGPLAN International Conference on
Functional Programming (ICFP) 2017.

This material is based upon work supported by a Mozilla Research grant and partially sponsored by NSF Grant
CNS-1423168: ”Blameworthy Programs: Accountability via Deviance and Causal Determination”. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of Mozilla Research or NSF.

Keywords: Linear logic, Curry-Howard isomorphism, session types, message-passing concurrency, sharing

Abstract

Session-typed languages building on the Curry-Howard isomorphism between linear logic and session-typed com-
munication guarantee session fidelity and deadlock freedom. Unfortunately, these strong guarantees exclude many
naturally occurring programming patterns pertaining to shared resources. In this paper, we introduce sharing into
a session-typed language where types are stratified into linear and shared layers with modal operators connecting
the layers. The resulting language retains session fidelity but not the absence of deadlocks, which can arise from
contention for shared processes. We illustrate our language on various examples, such as the dining philosophers
problem, and provide a translation of the untyped asynchronous π-calculus into our language.

i

ii

Contents

1 Introduction 1

2 Background 2

3 Manifest Sharing 4

3.1 A Programming Perspective . 4

3.2 A Logic Perspective . 5

3.3 Equi-Synchronizing Session Types . 9

4 More Examples 11

4.1 Dining Philosophers . 11

4.2 Atomicity . 12

4.3 Nondeterminism . 13

5 Semantics 14

5.1 Configuration Typing . 14

5.2 Preservation and Progress . 15

5.3 Asynchronous Dynamics . 17

6 Encoding the Untyped π-calculus into SILLS 17

7 Implementation 19

8 Related Work 21

9 Discussion and Future Work 22

A Abstract Syntax 23

B Statics 23

B.1 Signature Checking . 23

B.2 Process Typing . 24

B.3 Configuration Typing . 25

C Operational Semantics 26

D Preservation and Progress 30

D.1 Definitions, Lemmas, and Corollaries . 30

D.1.1 Definitions . 30

D.1.2 Lemmas and Corollaries . 30

D.2 Preservation . 41

D.3 Progress . 53

iii

E Examples 57

E.1 “Imperative” Queue . 57

E.2 Cycles and Deadlocks . 58

E.3 Cycles and Blocking . 58

E.4 Linear Forwarding . 58

iv

1 Introduction

Session types [30, 31, 32] prescribe the communication protocols that arise in concurrent programming. Session
types and session type libraries have found their ways into various practical programming languages [19, 34, 35, 46,
55] to express such protocols and ensure their adherence at compile-time. Recently, message-passing concurrency
has been put onto a firm logical foundation by exhibiting a Curry-Howard isomorphism between linear logic and
session-typed communication [9, 10, 59, 64]. Programming languages [27, 60] based on this isomorphism not only
guarantee session fidelity (preservation) but also a form of global progress, since the process graph forms a tree and
is acyclic by construction.

Unfortunately, these strong guarantees preclude programming scenarios that naturally demand sharing, such as
shared databases or output devices, or implementations that make use of sharing for performance considerations.
The shared channels available through the exponential modality in linear logic have a copying semantics [9, 64] and
therefore do not provide the correct tools in such applications. In this paper, shared channels and shared processes
always refer to mutable resources.

In this paper, we contribute a session-typed programming language for message-passing concurrency that seamlessly
integrates linear and shared processes. The language allows multiple aliases to a shared process to exist, but makes
sure that any state-altering communication with such a process only happens once exclusive access to the process
has been obtained. At this point, the process becomes linear and can become shared again once it is released,
resulting in renunciation of exclusive access. The resulting language retains session fidelity but not the absence of
deadlocks, which can arise from contention for shared processes.

A key novelty of our work is to go beyond supporting acquire-release as a mere language primitive, but to enrich the
type system so that a session type prescribes at which points in the protocol acquisition and release must happen.
We generalize the idea of type stratification introduced in [51], based on Benton’s LNL 1994 and Reed’s adjoint
logic 2009, and stratify session types into a linear and shared layer and support two modalities going back and
forth between them. We then interpret the modal operator shifting down from the shared to the linear layer as a
release and the operator shifting up from the linear to the shared layer as an acquire. As a result, we obtain a type
system where any form of synchronization, including the acquisition and release of a shared process, is manifest in
the session type.

Now that types prescribe the acquisition and release points of shared processes, it is only a small step to making
sure that the assumptions by a client attempting to acquire a shared process are actually met. When there is
contention for a shared process and one client obtains access at type A and then releases the shared process again,
the release must happen at the same type A. This is necessary since the acquire/release cycle is invisible to all
other clients. To capture this constraint statically we introduce the notion of an equi-synchronizing session type. A
session type is equi-synchronizing if it satisfies the invariant that any release restores the session to the same type
at which a preceding acquire occurred.

We illustrate our language on various examples, such as producer-consumer queues and dining philosophers, and also
demonstrate how nondeterministic choice can be emulated in the resulting language thanks to shared processes.
Moreover, we provide an encoding of the untyped asynchronous π-calculus into our language, suggesting that
manifest sharing can reclaim the computational power of the untyped π-calculus for session-typed, message-passing
concurrency. We plan to confirm this hypothesis as part of future work.

An interesting question is what the meta-theoretic consequences of the introduction of sharing are. The correspon-
dence between linear logic and session-typed communication [9, 10, 59, 64] established for purely linear session-typed
languages seems no longer to hold in its original form. Under this interpretation proofs correspond to processes
and cut reduction to communication. With the introduction of sharing, on the other hand, shared channels upon
which a process depends may not always be available. Such a computation state corresponds to an incomplete
proof. Overall, computation is then an interleaving of proof construction (acquiring a resource), proof reduction
(communication), and proof deconstruction (releasing a resource). The fact that computation may deadlock is
always a failure of proof construction, never communication.

The principal contributions of this paper are:

• the introduction of sharing into session-typed, message-passing, concurrent programming such that sharing is
manifest in the type structure via adjoint modalities;

1

• its elaboration in the programming language SILLS, resulting in type system, synchronous operational semantics,
and proofs of session fidelity (preservation) and a modified form of progress that characterizes possible deadlocks;

• the notion of an equi-synchronizing session type to guarantee session fidelity without the need for run-time type
checking when acquiring a process;

• an illustration of the concepts on various examples, including an encoding of the untyped asynchronous π-calculus
into our language;

• an extension of the formal system to accommodate an asynchronous dynamics, using a novel transformation
derived from logic;

• a prototype implementation of manifest sharing in Concurrent C0.

The main part of this paper is structured as follows: Section 2 provides a brief introduction to linear session types.
Section 3 introduces manifest sharing. Section 4 illustrates manifest sharing on various examples. Section 5 details
the semantics of SILLS, including preservation and progress. Section 6 gives the encoding of the untyped asyn-
chronous π-calculus into SILLS. Section 7 provides a brief overview of our implementation. Section 8 summarizes
the related work, and Section 9 concludes the main part of this paper with a discussion and some remarks about
future work. The appendix gives the complete statics and dynamics of SILLS, proofs of preservation and progress
as well as of supporting lemmas and corollaries, and further examples.

2 Background

In this section, we provide a short introduction to linear session-typed message-passing concurrency based on the
functional language SILL [27, 51, 60] built on the Curry-Howard isomorphism between intuitionistic linear logic
and session-typed concurrency. SILL incorporates processes into a functional core via a linear contextual monad
that isolates session-typed concurrency. In this introduction we focus on the linear process layer of SILL, which we
extend with manifest sharing in Section 3.

Linear logic [25] is a substructural logic that restricts the structural rules of weakening and contraction to propo-
sitions of the form !A, where ! is a so-called exponential modality. As a result, purely linear propositions (that
is, propositions without an exponential modality) can be viewed as resources that must be used exactly once in a
proof. We adopt the intuitionistic version of linear logic, which yields the following sequent [14]

A1, . . . , An ` A

where A1, . . . , An are linear antecedents and A is the succedent.

Under the Curry-Howard isomorphism for intuitionistic linear logic, propositions are related to session types, proofs
to processes, and cut reduction in proofs to communication. Appealing to this correspondence, we assign a process
term P to the above judgment and label each hypothesis as well as the conclusion with a channel :

x1 : A1, . . . , xn : An ` P :: (x : A)

The resulting judgment states that process P provides a service of session type A along channel x, using the services
of session types A1, . . . , An provided along channels x1, . . . , xn . The assignment of a channel to the conclusion is
convenient because, unlike functions, processes do not evaluate to a value but continue to communicate along their
providing channel once they have been created. For the judgment to be well-formed, all the channel names have to
be distinct. In particular, the channel name to the right of the turnstile cannot appear to its left. This intuitionistic
interpretation of linear logic avoids the need for explicit dualization [30, 31, 64] of a session type. Whether a session
type is used or provided is determined by its positioning to the left or right, respectively, of the turnstile.

The balance between providing and using a session is established by the two fundamental rules of the sequent
calculus that are independent of all logical connectives: cut and identity. Cut states that if P provides service A
along channel x, then Q can use the service along the same channel at the same type. Identity states that, if we
are a client of a service A we can always directly provide A.

∆ ` Px :: (x : A) ∆′, x : A ` Qx :: (z : C)

∆,∆′ ` x← Px ; Qx :: (z : C)
(T-Cut)

y : A ` fwd x y :: (x : A)
(T-Id)

2

Operationally, the process x← Px ; Qx creates a globally fresh channel c, spawns a new process [c/x]Px providing
along c, and continues as [c/x]Qx. Conversely, the process fwd c d terminates after directly identifying channels c
and d. Here, we have adopted the convention to use x, y, and z for channel variables and c and d for channels.
Channels are created at run-time and substituted for channel variables in process terms.

The Curry-Howard correspondence gives each connective of linear logic an interpretation as a session type. This
session type prescribes the kind of message that must be sent or received along a channel of this type and at
which type the session continues after the exchange. Table 1 provides an overview of the session types arising from
linear logic and their operational meaning. We generalize internal A ⊕ B and external choice A N B to n-ary
labeled choices ⊕{l : A} and N{l : A}, respectively, where we use the overline-notation to denote a sequence, as is
usual. We require external and internal choice to comprise at least one label. Otherwise, there would exist a linear
channel without observable interaction along it, which is computationally uninteresting and would also complicate
our proofs. Because we adopt the intuitionistic version of linear logic, session types are expressed from the point
of view of the provider. Table 1 provides the point of view of the provider in the first line of each connective and
the one of the client in the second line. For each connective, its session type before the exchange (Session type

current) and after the exchange (Session type continuation) is given. Likewise, the implementing process term
is indicated before the exchange (Process term current) and after the exchange (Process term continuation).
Table 1 shows that the process terms of a provider and a client for a connective come in matching pairs. Both
participants’ view of the session changes consistently. The process typing rules for the connectives shown in Table 1
can be found in Figure 3. We defer the discussion of the process typing judgment to Section 3.2.

Session type Process term
current continuation current continuation Description

c : ⊕{l : A} c : Ah c.lh ;P P provider sends label lh along c

case c of l⇒ Q Qh client receives label lh along c

c : N{l : A} c : Ah case c of l⇒ P Ph provider receives label lh along c
c.lh ;Q Q client sends label lh along c

c : A⊗B c : B send c d ;P P provider sends channel d : A along c
y ← recv c ;Qy [d/y]Qy client receives channel d : A along c

c : A(B c : B y ← recv c ;Py [d/y]Py provider receives channel d : A along c
send c d ;Q Q client sends channel d : A along c

c : 1 - close c - provider sends “end” along c
wait c ;Q Q provider receives “end” along c

Table 1: Overview of linear session types together with their operational meaning.

As an illustration, we consider a protocol on how to interact with a provider of a queue data structure that contains
elements of some variable type A1. The protocol is defined by the session type below; we will see variations of it
throughout this paper.

queue A = N{enq : A(queue A,
deq : ⊕{none : 1, some : A⊗ queue A}}

The session type prescribes that a process providing a service of type queue A, gives a client the choice to either
enqueue (enq) or dequeue (deq) an element of type A. Upon receipt of the label enq, the providing process expects
to receive a channel of type A to be enqueued and recurs. Upon receipt of the label deq, the providing process
either indicates that the queue is empty (none), in which case it terminates, or that there is a channel stored in
the queue (some), in which case it dequeues this channel, sends it to the client, and recurs. We adopt an equi-
recursive [15] interpretation for recursive session types, which requires recursive session types to be contractive [23].
This interpretation guarantees that there are no messages associated with the unfolding of a recursive type.

Figure 1 shows two process definitions empty and elem implementing the session type queue A. In SILL, we declare
the type of a defined process X with X : {A← A1, . . . , An}, indicating that the process provides a service of type

1Polymorphism is orthogonal to the investigation of this paper, so we adopt it for the examples without formal treatment, which
can be found in the literature [26, 49].

3

A, using channels of type A1, . . . , An. The definition of the process is then given by x ← X ← y1, . . . , yn = P
where P is a process term satisfying y1 : A1, . . . , yn : An ` P :: (x : A). A new process X providing along x is
spawned with an expression of the form x ← X ← y1, . . . , yn ; Qx, where Qx is the continuation binding x. The
channels y1, . . . , yn are passed to X and hence no longer available to Qx.

elem : {queue A← A, queue A}
q ← elem ← x, t =

case q of
| enq→ y ← recv q ; % x : A, t : quA, y : A ` q : quA

t.enq ; send t y ; % x : A, t : quA ` q : quA
q ← elem ← x, t

| deq→ q.some ; % x : A, t : quA ` q : A⊗ quA
send q x ; % t : quA ` q : quA
fwd q t

empty : {queue A}
q ← empty =

case q of
| enq→ x← recv q ; % x : A ` q : quA

e← empty ; % x : A, e : quA ` q : quA
q ← elem ← x, e

| deq→ q.none ; % ` q : 1
close q

Figure 1: Processes implementing linear session type queue A.

The queue in Figure 1 is implemented as a sequence of elem processes, ending in an empty process. The recursive
process elem provides a queue along channel q and uses a channel x : A (the element in front of the queue) as
well as a channel t : queue A (the tail of the queue). If it receives an enq label and then a channel y, it simply
enqueues y in the tail t. If it receives a deq label it responds with some, followed by the channel x it holds, and then
forwards all future communication along q to the tail t. The implementation is highly parallel; in particular, many
enqueueing operations can be in flight at the same time. Process empty , on the other hand, builds a singleton queue
from an element received to be enqueued and returns none and terminates when asked to dequeue. Perhaps the
most unusual aspect of writing session-typed programs is that the type of a channel changes during interactions, as
already indicated in Table 1. To make this explicit we annotate the code in Figure 1 with the types of all channels
at the various points in a process definition. We abbreviate queueA to quA in those annotations.

3 Manifest Sharing

In this section, we extend the linear process language of the previous section with the capability to share a process
among several clients. The shared channels introduced previously [9, 64] via the exponential modality in linear
logic have a copying semantics and therefore do not allow sharing of mutable resources as pursued in this paper.
We first approach the support of shared processes programmatically, by introducing acquire-release as a primitive
to our language. We then derive those primitives as modalities from logic in a stratified system of session types.
Lastly, we develop the notion of an equi-synchronizing session type.

3.1 A Programming Perspective

In the intuitionistic linear setting of Section 2, processes form a tree at run-time, guaranteeing that a client of
a process is the only client of that process. With the introduction of shared processes this invariant no longer
holds because there may exist multiple clients that refer to the process by a shared channel. To uphold session
fidelity, communication along a shared channel must only be possible once exclusive access to the process providing
along that channel has been obtained. To this end, we impose an acquire-release discipline on shared processes,
where an acquire yields exclusive access to a shared process, if the process is available, and a release relinquishes
exclusive access. As a result, processes can alternate between linear and shared, where a successful acquire of a
shared process turns the process into a linear one, and conversely, a release of a linear process turns the process
into a shared one. This view of a process undergoing phases requires an identification of a process with a thread
of control, which is extremely natural in intuitionistic linear logic since we can identify a process with the channel
along which it provides a service.

We illustrate the programmatic working of the acquire-release primitives on a schematic producer-consumer scenario
in Figure 2. For now, we assume for both processes that the shared channel q is provided by a shared process of
session type queue A that stores shared elements x of type A. In program code, we typeset shared channels as well

4

as shared session types in red and bold font to make them distinguishable from linear channels and session types,
which we typeset in black and regular font. Moreover, we assume that the session type queue A recurs rather than
terminates upon dequeueing, if the queue is empty, which is more appropriate for a producer-consumer context. In
Section 3.2 we clarify how to change the type specification to accommodate these assumptions.

Processes produce and consume in Figure 2 attempt to communicate with the queue by issuing corresponding
acquire and release statements. Process produce, for example, issues the statement q′ ← acquire q, which, if
successful, yields the queue’s linear channel q′ along which the process can enqueue the element. Before the process
recurs, it releases the now linear queue process providing along q′ by issuing q ← release q′. This yields the queue’s
shared channel q and gives turn to another producer or consumer.

produce : {1← A,queue A}
c← produce ← x,q =
q′ ← acquire q ;
q′.enq ;
send q′ x ;
q← release q′ ;
c← produce ← x, q

consume : {1← queue A}
c← consume ← q =
q′ ← acquire q ;
q′.deq ;
case q′ of
| some→ x← recv q′ ;

q← release q′ ;
c← consume ← q

| none→ q← release q′ ;
c← consume ← q

Figure 2: Acquire-release primitives illustrated on producer-consumer, programmatically. Shared channels are
typeset in red and bold font, linear channels in black and regular font. See Section 3.2 for definition of shared
session type queue A.

3.2 A Logic Perspective

Like send and receipt of a message, acquire and release denote synchronization points in the communication between
processes. If we were to introduce acquire and release as operational primitives only, session types would no longer
accurately prescribe the protocols of communication. To restore the descriptive power of session types, we enrich
the type system so that the type of a process dictates at which points in the communication acquire and release
must happen.

The key idea in pursuit of this goal is to generalize the notion of type stratification introduced in Pfenning and
Griffith [51], based on Benton’s LNL 1994 and Reed’s adjoint logic 2009, and to stratify session types into a linear
and shared layer. We then connect these layers with modalities that go back and forth between them. In Pfenning
and Griffith [51] the modes are U, F, and L for unrestricted, affine, and linear session types, respectively. In
this paper, we focus on the interplay between the modes S and L, pertaining to shared and linear session types,
respectively. An integration with the remaining modes U and F is straightforward.

The stratification arises from a difference in structural properties that exist for session types at a mode — or
propositions at a mode, when viewed through the lens of the Curry-Howard correspondence. For example, shared
propositions can be weakened, contracted, and exchanged, whereas linear propositions can only be exchanged.
The difference in structural properties entails a hierarchy between modes such that a mode with fewer structural
properties is at the bottom. The hierarchy for the modes S and L is:

S > L

The independence principle for modes states that proofs of a proposition of a stronger mode (with more structural
properties) may not depend on hypotheses of a strictly weaker mode (with fewer structural properties). This is
because a client of a stronger proposition may, for example, reuse the proposition, which would implicitly reuse the
weaker proposition on which it depends. More technically, on the logical side, cut elimination would fail without
this restriction. As a result, we get separate2 hypothetical judgments for shared and linear processes which, by

2We could have chosen an combined judgment with a combined context and corresponding projections onto each mode, as employed
in [51] for a richer structure of modes. For this paper, we have chosen separate judgments and contexts for clarity of presentation.

5

definition, obey the independence principle:

Γ `Σ P :: (xS : AS)

Γ; ∆ `Σ P :: (xL : AL)

The subscripts denote the respective mode of a channel or session type, and the contexts Γ and ∆ consist of
hypotheses on the typing of shared and linear channels, respectively. The judgments depend on a signature Σ that
is populated with all process definitions prior to type-checking, allowing for recursive process definitions.

Given the two layers, we can now define the modality ↓SLAS, which shifts a shared proposition (session type) to a
linear one, and the modality ↑SLAL, which shifts a linear proposition (session type) to a shared one. The resulting
strata restricted to session types (propositions) at the modes S and L are:3

AS , ↑SLAL

AL,BL , AL ⊗ BL | 1 | ⊕{l : AL} | ∃x:AS. BL | AL (BL | Πx:AS. BL | N{l : AL} | ↓SLAS

We review the new connectives and their operational meaning in Table 2. Together with Table 1, this table
defines the connectives supported in SILLS. Besides the new connectives to accommodate acquire-release, which we
discuss in more detail below, we introduce the connectives Πx:AS. BL and ∃x:AS. BL to support shared channel input
and output, respectively. These connectives of mixed mode are based on the dependent connectives introduced
in [13, 66]. Even though at the present stage our language does not make use of the potentially dependent nature of
these connectives, we keep the quantifier notation to avoid possible confusion with closely related connectives with
a different semantics (e.g., ⊃ and ∧ in [27, 60]). The process typing rules for the connectives of SILLS, excluding
the acquire-release connectives, which we discuss below, can be found in Figure 3. A complete listing of all the
process typing rules can be found in Figure 17 and Figure 18 in the appendix.

Session type Process term
current continuation current continuation Description

cL : ∃x:AS. BL cL : BL send cL dS ;P P provider sends channel dS : AS along cL
yS ← recv cL ;QyS [dS/yS]QyS client receives channel dS : AS along cL

cL : Πx:AS. BL cL : BL yS ← recv cL ;PyS [dS/yS]PyS provider receives channel dS : AS along cL
send cL dS ;Q Q client sends channel dS : AS along cL

cL : ↓SLAS cS : AS cS ← detach cL ;PxS [cS/xS]PxS provider sends “detach cS” along cL
xS ← release cL ;QxS [cS/xS]QxS client receives “detach cS” along cL

cS : ↑SLAL cL : AL cL ← acquire cS ;QxL [cL/xL]QxL client sends “acquire cL” along cS
xL ← accept cS ;PxL [cL/xL]PxL provider receives “acquire cL” along cS

Table 2: Overview of shared session types together with their operational meaning. See Table 1 for linear connec-
tives.

We are now in a position to define the typing of the acquire-release discipline outlined in the previous section. In
particular, we must determine what the types of the channels should be to which acquire and release are applied.
Observing that an acquire transforms a shared channel into a linear one, the natural choice is to type the shared
channel of an acquire with the modality ↑SLAL. Analogously, the linear channel of a release should be typed with the
modality ↓SLAS as it transforms a linear channel into a shared one. Because we adopt an intuitionistic formulation,
which avoids the need for explicit dualization of a session type, we get both a left and right rule for each primitive.
The notions of acquire and release are naturally formulated from the point of view of a client, so we use those terms
in the left rules. For the right rules, we use the terms accept and detach with the meaning that an accept accepts
an acquire and a detach initiates a release. We review each pair of rules in turn, along with their operational
semantics:

The typing of the pair acquire-accept is defined by the following rules:

Γ, xS : ↑SLAL; ∆, xL : AL `Σ QxL :: (zL : CL)

Γ, xS : ↑SLAL; ∆ `Σ xL ← acquire xS ;QxL :: (zL : CL)
(T-↑SLL)

Γ; · `Σ PxL :: (xL : AL)

Γ `Σ xL ← accept xS ;PxL :: (xS : ↑SLAL)
(T-↑SLR)

3Shared counterparts of all the linear connectives can be defined at the shared level as well, but for the purposes of this paper we
will keep the shared layer as simple as possible.

6

Γ; yL : AL `Σ fwd xL yL :: (xL : AL)
(T-IdL)

Â ≤ AS

Γ, yS : Â `Σ fwd xS yS :: (xS : AS)

(T-IdS)

Γ = wS : B̂ B̂ ≤ BS ∆ = yL : BL (x ′L : AL ← XL ← yL
′ : BL,wS

′ : BS = P
x ′
L
,yL

′,wS
′) ∈ Σ Γ,Γ′; ∆′, xL : AL `Σ QxL :: (zL : CL)

Γ,Γ′; ∆,∆′ `Σ xL ← XL ← yL, wS ; QxL :: (zL : CL)

(T-SpawnLL)

Γ = yS : B̂ B̂ ≤ B (x ′S : AS ← XS ← yS
′ : B = P

x ′
S
,yS

′) ∈ Σ Γ,Γ′, xS : AS; ∆ `Σ QxS :: (zL : CL)

Γ,Γ′; ∆ `Σ xS ← XS ← yS ; QxS :: (zL : CL)

(T-SpawnLS)

Γ = yS : B̂ B̂ ≤ B (x ′S : AS ← XS ← yS
′ : B = P

x ′
S
,yS

′) ∈ Σ Γ,Γ′, xS : AS `Σ QxS :: (zS : CS)

Γ,Γ′ `Σ xS ← XS ← yS ; QxS :: (zS : CS)

(T-SpawnSS)

Γ; ∆ `Σ Q :: (zL : CL)

Γ; ∆, xL : 1 `Σ waitxL ;Q :: (zL : CL)
(T-1L)

Γ; · `Σ closexL :: (xL : 1)
(T-1R)

Γ; ∆, xL : BL, yL : AL `Σ QyL :: (zL : CL)

Γ; ∆, xL : AL ⊗BL `Σ yL ← recv xL ;QyL :: (zL : CL)
(T-⊗L)

Γ; ∆ `Σ P :: (xL : BL)

Γ; ∆, yL : AL `Σ sendxL yL ;P :: (xL : AL ⊗BL)
(T-⊗R)

Γ, yS : AS; ∆, xL : BL `Σ QyS :: (zL : CL)

Γ; ∆, xL : (∃x:AS. BL) `Σ yS ← recv xL ;QyS :: (zL : CL)
(T-∃L)

Â ≤ AS Γ, yS : Â; ∆ `Σ P :: (xL : BL)

Γ, yS : Â; ∆ `Σ sendxL yS ;P :: (xL : (∃x:AS. BL))

(T-∃R)

Γ; ∆, xL : BL `Σ Q :: (zL : CL)

Γ; ∆, xL : AL (BL, yL : AL `Σ sendxL yL ;Q :: (zL : CL)

(T-(L)

Γ; ∆, yL : AL `Σ PyL :: (xL : BL)

Γ; ∆ `Σ yL ← recv xL ;PyL :: (xL : AL (BL)

(T-(R)

Â ≤ AS Γ, yS : Â; ∆, xL : BL `Σ Q :: (zL : CL)

Γ, yS : Â; ∆, xL : (Πx:AS. BL) `Σ sendxL yS ;Q :: (zL : CL)

(T-ΠL)
Γ, yS : AS; ∆ `Σ PyS :: (xL : BL)

Γ; ∆ `Σ yS ← recv xL ;PyS :: (xL : (Πx:AS. BL))
(T-ΠR)

(∀i) Γ; ∆, xL : ALi `Σ Qi :: (zL : CL)

Γ; ∆, xL : ⊕{l : AL} `Σ case xL of l⇒ Q :: (zL : CL)

(T-⊕L)

Γ; ∆ `Σ P :: (xL : AL h)

Γ; ∆ `Σ xL.lh ;P :: (xL : ⊕{l : AL})
(T-⊕R)

Γ; ∆, xL : AL h `Σ Q :: (zL : CL)

Γ; ∆, xL : N{l : AL} `Σ xL.lh ;Q :: (zL : CL)

(T-NL)

(∀i) Γ; ∆ `Σ Pi :: (xL : ALi)

Γ; ∆ `Σ case xL of l⇒ P :: (xL : N{l : AL})
(T-NR)

Figure 3: Remaining process typing rules not shown inline. For the meaning of Â and B̂ see Section 3.3.

An acquire is applied to the shared channel xS along which the shared process offers and yields a linear channel xL,
when successful. The shared channel xS is still available to the continuation QxL . By accepting an acquire request
by a client along its shared channel xS, a shared process transitions to a linear process, now offering along a linear
channel xL. Since the independence principle forbids a shared process to depend on linear channels, the now linear
process starts out with an empty linear context.

Operationally, we capture the dynamics of SILLS by multiset rewriting rules [12]. A multiset rewriting rule is
generally of the form S1, . . . , Sn −→ T1, . . . , Tm and denotes a transition from S1, . . . , Sn to T1, . . . , Tm where
each Si and Tj is a formula capturing some aspect of the current state of the computation. In our setting, we
use the rules to capture a transition in the configuration of processes that arise from a program. As we discuss in
Section 5.1, we use the predicates proc(cm , P) and unavail(aS) to define the states of a configuration. The former
denotes a process with process term P that provides along channel cm at mode m, the latter acts as a placeholder for
a shared process providing along channel aS that is currently not available. Multiset rewriting rules are local in that

7

(D-IdL) proc(aL, fwd aL bL) −→ aL = bL, aS = bS
(D-IdS) proc(aS, fwd aS bS) −→ unavail(aS), aS = bS
(D-SpawnLL) proc(aL, xL ← XL ← cL, cS ; QxL) −→ proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′

L
,yL,yS

), unavail(bS)

for x ′L : AL ← XL ← yL : BL, yS : BS = Px ′
L
,yL,yS

∈ Σ and b fresh

(D-SpawnLS) proc(aL, xS ← XS ← cS ; QxS) −→ proc(aL, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S
,yS

)

for x ′S : AS ← XS ← yS : BS = Px ′
S
,yS
∈ Σ and b fresh

(D-SpawnSS) proc(aS, xS ← XS ← cS ; QxS) −→ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S
,yS

)

for x ′S : AS ← XS ← yS : BS = Px ′
S
,yS
∈ Σ and b fresh

(D-1) proc(cL, wait aL ; Q), proc(aL, close aL) −→ proc(cL, Q)
(D-⊗/∃) proc(cL, y ← recv aL ; Qy), proc(aL, send aL b ; P) −→ proc(cL, [b/y] Qy), proc(aL, P)
(D-(/Π) proc(cL, send aL b ; Q), proc(aL, y ← recv aL ; Py) −→ proc(cL, Q), proc(aL, [b/y]Py)

(D-⊕) proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P) −→ proc(cL, Qh), proc(aL, P)

(D-N) proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P) −→ proc(cL, Q), proc(aL, Ph)

Figure 4: Remaining multiset rewriting rules not shown inline.

they only mention the parts of a configuration they rewrite. The synchronous dynamics of the pair acquire-accept
is given by the following rule:

proc(cL, xL ← acquire aS ; QxL), proc(aS, xL ← accept aS ; PxL)
−→ proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), unavail(aS)

(D-↑SL)

The above rule exploits the invariant that a process’s providing channel a can come at one of two modes, a linear
one, aL, and a shared one, aS. While the process is linear, it provides along aL and along aS, while the process is
shared. When a process shifts between modes, it switches between the two modes of its offering channel. This
channel at the appropriate mode is substituted for the variables occurring within process terms. Since variables
are subject to α-conversion, the typing rules (T-↑SLL) and (T-↑SLR) bind a fresh variable xL, for which the already
existing channel a at mode L will be substituted at run-time.

Figure 4 gives the dynamics of the remaining connectives in SILLS. A complete listing of all the multiset rewriting
rules can be found in Figure 20 in the appendix. The side condition b fresh indicates allocation of a globally fresh
channel and the equality a = b expresses that b is substituted for a in the entire configuration. Multiset rewriting
rules are unordered, but for ease of reading, we write them such that a providing process appears to the right of
its client.

The typing of the pair release-detach is defined by the following rules:

Γ, xS : AS; ∆ `Σ QxS :: (zL : CL)

Γ; ∆, xL : ↓SLAS `Σ xS ← release xL ;QxS :: (zL : CL)
(T-↓SLL)

Γ `Σ PxS :: (xS : AS)

Γ; · `Σ xS ← detach xL ;PxS :: (xL : ↓SLAS)
(T-↓SLR)

The rules are essentially inverse to the typing rules of acquire-release; we point out that rule (T-↓SLR) requires
the linear context to be empty, to satisfy the independence principle. Operationally, the rules have the following
semantics:

proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), unavail(aS)
−→ proc(cL, [aS/xS] QxS), proc(aS, [aS/xS] PxS)

(D-↓SL)

This time the rules shift the process from S to L, by switching the offering channel from aL to aS and by substituting
the channel aS for the fresh variable xS.

Let’s now return to the producer-consumer example and work out what the type specifications have to be. The
processes produce and consume in Figure 2 have been devised under the assumption that the channel q is a shared
channel to a shared queue and that the shared queue process recurs rather than terminates upon dequeueing, if
the queue is empty. For this to be the case, we change the session type queue from Section 2 as follows:

queue AS = ↑SLN{enq : Πx:AS. ↓SLqueue AS,
deq : ⊕{none : ↓SLqueue AS, some : ∃x:AS. ↓SLqueue AS}}

8

With this change, the code in Figure 2 is type-correct as it is written. The new definition of session type queue AS

uses the previously introduced dependent linear session types Πx:AS. BL and ∃x:AS. BL for shared channel input
and output, respectively, and prescribes the following synchronization pattern: When a process of type queue AS

is spawned, it starts out as a shared process that first must be acquired. Any of the defined sequences of inputs
and outputs then are executed while the process is linear. After such an exchange, the process recurs at type
↓SLqueue AS. Since queue AS is defined as ↑SLN{. . . }, the type ↓SL queue AS amounts to the type ↓SL↑

S

LN{. . . }. This
means that in its recursion, the process will first need to be released to become a shared process of type queue AS.
Looking at the implementations of processes produce and consume in Figure 2, we can see that they comply with
the acquire-release pattern dictated by the above session type. For example, after process produce has sent the
channel x along channel q′, the channel q′ is of type ↓SLqueue AS, which is why process produce releases that channel
before it recurs.

Having changed the specification of session type queue AS, we must correspondingly change the implementations
of processes empty and elem shown in Figure 1; the result is given in Figure 5. The code predominantly contains
the matching pairs accept and detach as well as acquire and release, respectively. For example, the first statement
in process empty accepts an acquire request from a client. Similarly, the statement q ← detach q′ initiates a release
by a client.

empty : {queue AS}
q← empty =
q′ ← accept q ;
case q′ of
| enq→ x← recv q′ ;

e← empty ;
q← detach q′ ;
q← elem ← x, e

| deq→ q′.none ;
q← detach q′ ;
q← empty

elem : {queue AS ← AS,queue AS}
q← elem ← x, t =
q′ ← accept q ;
case q′ of
| enq→ y← recv q′ ;

t′ ← acquire t ;
t′.enq ; send t′ y ;
t← release t′ ;
q← detach q′ ;
q← elem ← x, t

| deq→ q′.some ;
send q′ x ;
q← detach q′ ;
fwd q t

Figure 5: Implementation of a shared queue. See Figure 1 for linear version.

Session type queue AS pinpoints a typical pattern of shared process programming where a shared recursive session
type YS = ↑SLAL recurs at type ↓SLYS. The benefits of this pattern are two-fold: on the one hand, it guarantees
that the session type YS allows for perpetual acquire-release cycles and, on the other hand, it makes sure that all
acquired processes are released at recursion point because linearity forbids any linear channels to be left behind.

Comparing this shared version of session type queue with its linear version in Section 2, we note that the indepen-
dence principle requires the shared queue’s elements to be shared, whereas a linear queue can either store linear
or shared elements. The two versions also differ in the handling of a dequeuing request in case of an empty queue.
Because there is only a single client in case of a linear queue, termination is a feasible choice. In case of a shared
queue, however, recursion is preferable, to prevent other clients to block when attempting to acquire the terminated
queue.

3.3 Equi-Synchronizing Session Types

So far we have achieved that a client communicates with a shared process in mutual exclusion from other clients
and that the acquire and release points of a shared process manifest in its session type. There remains a last threat
to session fidelity that we need to address: erroneous assumptions by a client on a shared process’ type. These can
come about, for example, in the following scenario: two clients Q1 and Q2 are trying to acquire access to the same
shared channel cS at type ↑SLAL. Let’s assume that Q1 succeeds and then later releases cL to a different type ↑SLBL.
Once Q2 finally obtains access to cS, it will disagree with the provider on the type of the channel cL: the provider

9

will think that cL : BL, while Q2 will think that cL : AL, thereby violating session fidelity.

To guarantee preservation without resorting to run-time checks, we introduce the notion of an equi-synchronizing
session type. A session type is equi-synchronizing if it imposes the invariant on a process to be released to the same
type at which the process was previously acquired. No constraint is imposed on channels that were never acquired.
For example, our shared queue AS from Section 3.2

queue AS = ↑SLN{enq : Πx:AS. ↓SLqueue AS,
deq : ⊕{none : ↓SLqueue AS, some : ∃x:AS. ↓SLqueue AS}}

is equi-synchronizing because, in each branch, it releases a channel back to type queue AS, which is the type at
which the channel must have been acquired.

We formally define the notion of an equi-synchronizing session type in Figure 6, giving a coinductive definition.
The definition is based on the judgment

`Σ (A, D̂) esync

where D̂ represents a constraint on the type to which a channel of type A must be released. If D̂ = >, then there
is no constraint on a future release, if D̂ = DS, then any release must take place to type DS. There is a third
possibility, D̂ = ⊥, which means that A may never be released. This constraint is only necessary for the proof of
session fidelity, as further explained in Section 5.2. We say that the type A equi-synchronizes to D̂ or that D̂ is
A’s equi-synchronizing constraint.

Underlying the coinductive definition of an equi-synchronizing session type is the notion of a continuation type.
To check that a type A equi-synchronizes to the type ↑SLDL, the rules in Figure 6 transitively step through A’s
continuation (starting from (A,>)) until the first acquisition point ↑SLBL is encountered. At this point, the type
↑SLBL is set to be the equi-synchronizing constraint, and the rules transitively step through each continuation of BL

until the first release point ↓SLCS is encountered. The session type is equi-synchronizing, if CS = ↑SLDL at each such
release point.

(∀i) `Σ (ALi , D̂) esync

`Σ (⊕{l : AL}, D̂) esync

(T-Esync⊕)
(∀i) `Σ (ALi , D̂) esync

`Σ (N{l : AL}, D̂) esync

(T-EsyncN)

`Σ (BL, D̂) esync

`Σ (AL ⊗BL, D̂) esync

(T-Esync⊗)
`Σ (BL, D̂) esync

`Σ (AL (BL, D̂) esync

(T-Esync()

`Σ (BL, D̂) esync

`Σ (∃x:AS. BL, D̂) esync

(T-Esync∃)
`Σ (BL, D̂) esync

`Σ (Πx:AS. BL, D̂) esync

(T-EsyncΠ)

`Σ (1, D̂) esync

(T-Esync1)

`Σ (AL, ↑SLAL) esync

`Σ (↑SLAL,>) esync

(T-Esync↑S
L
)

`Σ (DS,>) esync

`Σ (↓SLDS, DS) esync

(T-Esync↓S
L
-1)

`Σ (DS,>) esync

`Σ (↓SLDS,>) esync

(T-Esync↓S
L
-2)

Figure 6: Equi-synchronizing session type, coinductively defined.

Let’s exercise the rules in Figure 6 on our shared queue AS. We start with `Σ (queue AS, >) esync. Since session
types are interpreted equi-recursively and are contractive [23], we can “silently” replace queue AS with its definition,
which means we have to check

`Σ (↑SLN{enq : . . . deq : . . .}, >) esync

According to rule (T-Esync↑SL), we set the equi-synchronizing constraint to queue AS, requiring us to check for the
continuation that

`Σ (N{enq : . . . deq : . . .}, queue AS) esync

10

According to rule (T-EsyncN), we are required to check for each continuation that

`Σ (Πx:AS. ↓SLqueue AS, queue AS) esync

`Σ (⊕{none : ↓SLqueue AS, some : ∃x:AS. ↓SLqueue AS}, queue AS) esync

Let’s consider the first branch. According to rule (T-EsyncΠ) we must check that

`Σ (↓SLqueue AS, queue AS) esync

which, according to rule (T-Esync↓SL-1), amounts to the check

`Σ (queue AS, >) esync

This is the check we started out with, allowing us to succeed on this branch since our rules are interpreted
coinductively. Because the same holds true for all branches, unfolding type definitions where necessary, we conclude
that the session type queue AS is equi-synchronizing.

Not all branches must actually release. For example, the variant

queue AS = ↑SLN{enq : Πx:AS. ↓SLqueue AS,
deq : ⊕{none : 1, some : ∃x:AS. ↓SLqueue AS}}

of the shared queue above is equi-synchronizing even though the queue terminates upon dequeuing in case of an
empty queue. In that case, the queue can effectively no longer be acquired.

As we will show in more detail in Section 5.2, the equi-synchronizing invariants are at the core of the preservation
proof, requiring us to show that each process maintains its equi-synchronizing constraint along all possible transi-
tions. The three possible constraints D̂, namely >, ↑SLAL, and ⊥, are related by the following partial order, for any
AL:

> ≥ ↑SLAL ≥ ⊥

This relationship becomes relevant for substitutions, where we allow substituting a channel of a smaller type for
variables or channels of a bigger type at the client side (see Section 5.2).

When checking the signature Σ, recursive session type definitions are checked to be both contractive and equi-
synchronizing and process definitions are checked to provide an equi-synchronizing session type. The check is
initiated with > as a constraint to convey that any initial release is unconstrained. A purely linear session type AL

with neither acquire nor release points will thus satisfy the constraint `Σ (AL,>) esync and also the even stronger
condition `Σ (AL,⊥) esync.

4 More Examples

In this section, we illustrate manifest sharing on further examples. Section E in the appendix provides additional
examples, including an “imperative” style of a queue implementation that maintains a reference to the back of the
queue.

4.1 Dining Philosophers

The dining philosophers problem [20] is a prime example designed to illustrate the issues of enforcing mutual
exclusion in the presences of circular dependencies among processes. It’s precisely because of circularity that the
dining philosophers problem cannot be modelled in the purely linear language presented in Section 2. With sharing
at our disposal, we are now able to model the dining philosophers problem. The result is given in Figure 7.

The implementation defines the mutually dependent session types lfork and sfork and the session type phil, repre-
senting a fork and a philosopher, respectively. In support of the spirit of the example, the former allow perpetual
acquire-release cycles and are implemented by process fork proc. Session type phil, on the other hand, denotes a

11

lfork = ↓SL sfork
sfork = ↑SL lfork
phil = 1

fork proc : {sfork}
c← fork proc =
c′ ← accept c ;
c← detach c′ ;
c← fork proc

thinking : {phil← sfork, sfork}
c← thinking ← left, right =

(* thinking *)
left ′ ← acquire left ;
right ′ ← acquire right ;
c← eating ← left ′, right ′

eating : {phil← lfork, lfork}
c← eating ← left ′, right ′ =

(* eating *)
right← release right ′ ;
left← release left ′ ;
c← thinking ← left, right

Figure 7: Dining philosophers.

trivial linear session, which is implemented by the processes thinking and eating . As the names suggest, process
thinking represents a philosopher that is thinking, whereas process eating represents a philosopher that is eating.
A thinking philosopher has shared channel references to the forks on their left and right. Once the philosopher is
done thinking, they attempt to acquire their left and right fork and transition to eating, if successful. An eating
philosopher, on the other hand, has linear channel references to the forks on their left and right, which they release
once they are done eating and before transitioning to thinking. We can set up a table of 4 philosophers using the
following lines of code:

f0← fork proc ; f1← fork proc ; f2← fork proc ; f3← fork proc ;
p0 ← thinking ← f0, f1 ; p1 ← thinking ← f1, f2 ; p2 ← thinking ← f2, f3 ; p3 ← thinking ← f3, f0 ;

The above setup faithfully matches the circular table and can lead to a deadlock, as pointed out by Dijkstra, if
every philosopher picks up the fork on their left and then blocks, waiting for the fork on their right. We can
avoid this deadlock by following Dijkstra’s originally proposed solution to impose a partial order on the forks and
acquiring the forks in ascending order. This can be achieved by reversing the order of the arguments in the last
line to p3 ← thinking ← f0 , f3 .

4.2 Atomicity

Another benefit of making the acquire and release points of a process manifest in the type structure is that atomic
sections [22] become explicit. Since the statements between an up- and a downshift are executed while the process
is linear, they are guaranteed to be executed without interference.

We illustrate atomicity on the example of printing to standard out from a concurrent program. To make sure that
the print statements will be issued to standard out in the order that they appear in a given thread, we represent the
standard output stream by a shared process that obeys the mutually recursive session types s stdout and l stdout
in Figure 8. The protocol defined by those session types requires a client to acquire standard out before being able
to print to it and then to release it upon completion. The processes p and v implement the session types s stdout
and l stdout, respectively. We have chosen their names in reminiscence of Dijkstra’s semaphore operations P and
V.

s stdout = ↑SLN{enter : l stdout}
l stdout = N{print : string ⊃ l stdout,

leave : ↓SLs stdout}

p : {s stdout}
c← p =
c′ ← accept c ;
case c′ of
| enter→ c′ ← v

v : {l stdout}
c′ ← v =

case c′ of
| print→ x← recv c′ ;

print x ;
c′ ← v

| leave→ c← detach c′ ;
c← p

Figure 8: Atomic standard output. The connective ⊃ denotes value input, an orthogonal concept introduced
in [27, 60].

The lines of code below demonstrate how a client interacts with atomic standard out for printing, assuming the
channel out of type s stdout to be available as a system service:

12

out ′ ← acquire out ; out ′.enter ;
out ′.print ; send out ′ ”Hello ” ; out ′.print ; send out ′ ”shared ” ; out ′.print ; send out ′ ”world !” ;
out ′.leave ; out← release out ′ ;

In session type l stdout, we take the liberty to use the connective ⊃, a connective introduced in [27, 60] to support
value input. The type “string ⊃ l stdout” describes as session that receives a value of type string and then continues
as a session of type l stdout. Toninho et al. [60] show how to safely integrate a functional layer with a process layer
by means of a linear contextual monad. Those results are orthogonal to sharing and generalize to our language.
The statement print in process v , lastly, abstracts the actual print primitive on a given platform. To prevent races
on this primitive, processes p and v are internal, and the only way for users to interact with standard out is via
the system service out .

4.3 Nondeterminism

Acquire-release introduces nondeterminism into our language because it is unknown which client among several
clients that acquire a shared process will succeed. We use this property to implement binary nondeterministic
choice in our language.

Figure 9 gives the definition of session type coin and its implementing, mutually recursive processes coin head and
coin tail . Session type coin indicates which side of the coin is currently facing up. In the implementation each
interaction flips the coin to its opposite side.

coin = ↑SL ⊕ {head : ↓SLcoin, tail : ↓SLcoin}} coin head : {coin}
c← coin head =
c′ ← accept c ;
c′.head ;
c← detach c′ ;
c← coin tail

coin tail : {coin}
c← coin tail =
c′ ← accept c ;
c′.tail ;
c← detach c′ ;
c← coin head

Figure 9: Session type coin with implementing processes coin head and coin tail .

Figure 10 shows the process nd choice which nondeterministically sends yes or no and then terminates. Process
nd choice achieves nondeterminism by reading a coin that it shares with process coin flipper . Since both processes
try to acquire the coin concurrently and the coin switches sides when read, the value read by nd choice depends
on the order in which the coin is acquired. For a client of this service, see Figure 11 where it is used to model
nondeterminism inherent in the (untyped) asynchronous π-calculus.

nd choice : {⊕{yes : 1, no : 1}}
d← nd choice =

c← coin head ;
f ← coin flipper ← c ;
c′ ← acquire c ;
case c′ of
| head→ c← release c′ ; d .yes ; wait f ; close d
| tail→ c← release c′ ; d .no ; wait f ; close d

coin flipper : {1← coin}
d← coin flipper ← c =
c′ ← acquire c ;
case c′ of
| head→ c← release c′ ; close d
| tail→ c← release c′ ; close d

Figure 10: Binary nondeterministic choice.

13

5 Semantics

In this section, we complete the discussion of the semantics of SILLS, by giving the configuration typing rules as well
as elaborating on preservation and progress. A complete listing of SILLS’s abstract syntax, statics, and dynamics
as well as proofs of preservation and progress can be found in the appendix. In the last subsection, we sketch an
asynchronous dynamics for SILLS, which relies on a novel transformation derived from logic.

5.1 Configuration Typing

At run-time, a SILLS program evolves into a number of linear and shared processes as well as placeholders for for-
merly shared processes that are currently linear. To type the resulting configuration Ω, we divide the configuration
into a linear part Θ and a shared part Λ, subject to the following well-formedness conditions:

Ω , · | Λ; Θ (∀a.proc(aL,) ∈ Θ =⇒ unavail(aS) ∈ Λ)

Λ , · | proc(aS, PaS
), Λ′ | unavail(aS), Λ′ (proc(aS,), unavail(aS) not in Λ′)

Θ , · | proc(aL, PaL
), Θ′ (proc(aL,) not in Θ′)

The side conditions make sure that no other process (or placeholder) exists yet in the configuration that provides
along the same channel and that for every linear process there exists a placeholder at the shared mode of the
channel. The division is justified by the hierarchy between modes S and L, making sure that shared processes
cannot depend on linear processes. We use the following typing judgment to type a configuration:

Γ �Σ Λ; Θ :: Γ; ∆

The judgment expresses that the configuration Λ; Θ is well-formed and provides the shared channels in Γ and the
linear channels in ∆. To permit cyclic dependencies along shared channels, a configuration is type-checked relative
to all shared channels, which is the reason why Γ appears to the left of the turnstile. The typing of a configuration
is defined by the following rule:

Γ �Σ Λ :: Γ Γ �Σ Θ :: ∆

Γ �Σ Λ; Θ :: Γ; ∆
(T-Ω)

The rule relies on the judgment Γ �Σ Θ :: ∆ for typing Θ and the judgment Γ �Σ Λ :: Γ for typing Λ. The judgment
Γ �Σ Θ :: ∆ expresses that the configuration Θ provides the linear channels in ∆, using the shared channels in Γ.
The typing of Θ is defined by the following two rules:

Γ �Σ (·) :: (·)
(T-Θ1)

(aS : B̂) ∈ Γ `Σ (AL, B̂) esync Γ; ∆′ `Σ PaL :: (aL : AL) Γ �Σ Θ : ∆,∆′

Γ �Σ proc(aL, PaL), Θ :: (∆, aL : AL)
(T-Θ2)

Rule (T-Θ2) is of particular interest as it imposes an order on linear configurations. By requiring that all the
linear channels ∆′ used by proc(aL, PaL

) are provided by the remaining configuration Θ, the rule “flattens” the
linear process tree such that for any process the providers of the channels used by the process are to the right of
the process in the configuration. We maintain this order only for typing purposes, at run-time any permutations
of a well-typed configuration are permissible. The rule also enforces that a linear configuration only provides the
channels that are not used internally to the configuration. For example, the channels ∆′ consumed by proc(aL, PaL

)
are no longer provided as part of the resulting configuration proc(aL, PaL

), Θ. An initial configuration Λ; Θ would
be typed as Γ �Σ Λ; Θ :: (Γ; cL : 1), where the process providing along channel cL is the main program thread and
Λ may provide some pre-defined shared system services such as out in Section 4.2. The premises (aS : B̂) ∈ Γ and
`Σ (AL, B̂) esync of rule (T-Θ2) constrain the type to which proc(aL, PaL

) must be released.

Unlike the typing rules for Θ, the typing rules for Λ do not impose any order on the shared processes. Any attempt
would be futile anyway because the reference structure along shared channels may not adhere to any pattern and
could, for example, be cyclic. We use the judgment Γ �Σ Λ :: Γ′ to type such configurations, expressing that Λ

14

offers the shared channels in Γ′, using the shared channels in Γ. The typing rules for Λ are:

Γ �Σ (·) :: (·)
(T-Λ1)

`Σ (↑SLAL,>) esync Γ `Σ PaS :: (aS : ↑SLAL)

Γ �Σ proc(aS, PaS) :: (aS : ↑SLAL)
(T-Λ2)

Γ �Σ unavail(aS) :: (aS : Â)

(T-Λ3)

Γ �Σ Λ :: Γ′ Γ �Σ Λ′ :: Γ′′

Γ �Σ Λ,Λ′ :: Γ′,Γ′′
(T-Λ4)

Rule (T-Λ4) permits breaking up a configuration Λ into its subparts at any point. Rule (T-Λ2) carries again an
equi-synchronizing invariant as a premise, indicating that the type to which proc(aS, PaS

) must be released is not
yet significant.

Unlike process expressions encountered during type checking, which have occurrences of variables only, the premises
Γ; ∆′ `Σ PaL :: (aL : AL) and Γ `Σ PaS :: (aS : ↑SLAL) in rules (T-Θ2) and (T-Λ2), respectively, have occurrences
of both variables and channels. The occurrence of channels is a result of substituting channels for variables
during execution. As detailed in Section B.2 in the appendix, those process expressions satisfy slightly weaker
well-formedness conditions than the ones to be met during type-checking (see Section 2).

5.2 Preservation and Progress

In this section, we state preservation and progress for SILLS and review the key issues that had to be adressed to
prove preservation and progress. The proofs of preservation and progress can be found in Section D.

The challenges that arise from extending the linear system discussed in Section 2 with manifest sharing are twofold.
For preservation, we need to make sure that clients will encounter shared processes at the type they would like to
acquire them. For progress, we need to account for the possibility of deadlock due to cyclic dependencies along
shared channels or for termination of a process providing a shared service, while ruling out other forms of failure
of progress.

To address the first challenge, we have introduced the notion of an equi-synchronizing session type in Section 3.3,
which statically imposes the invariant that each shared channel is released to the same session type at which is
was acquired (if at all). The preservation proof shows that this invariant is maintained for each channel along any
possible transition, as captured in the corresponding premises of rules (T-Θ2) and (T-Λ2). Key are the three forms
of type constraints D̂ with `Σ (A, D̂) esync where A is the current type of a linear process providing along aL:

1. D̂ = >, indicating that there is no constraint on a future release of aL because aL has never been shared. D̂ = >
holds initially, when a linear process is spawned, and continues to hold until the process is released for the first
time to become shared. Processes which remain linear throughout their lifetime will never be subject to an
equi-synchronization constraint.

2. D̂ = DS, indicating that if there is a future release of aL to a shared channel aS, then aS must have type DS.
Preservation holds since we have statically checked that `Σ (A, D̂) esync and this property is maintained along
all continuations of A.

3. D̂ = ⊥, expressing that aS must never be released, which means that any client attempting to acquire aS will
be blocked forever. The need for ⊥ is subtle. Imagine we forward between two linear channels fwd aL bL. The
forward has to identify not only aL and bL, but also the underlying shared channels aS and bS, because releasing
one now amounts to releasing the other:

proc(aL, fwd aL bL) −→ aL = bL, aS = bS (D-IdL)

While the types of aL and bL must be at the same A, it is possible that the constraints on the releases of aL and
bL are ` (A,DS) esync and ` (A,D′S) esync for DS 6= D′S. This can come about because aL and bL may have
different histories. Preservation still holds in this case because there cannot be a down shift in any continuation
of A (shown by coinduction on the definition of esync), so neither aL nor bL could ever be released. Formally,
this is conveniently expressed as `Σ (A,⊥) esync.

The introduction of ⊥ requires us to generalize all the typing rules where a process uses a shared channel. For

15

example, we change rule (T-↑SLL) as follows:

B̂ ≤ ↑SLAL Γ, xS : B̂; ∆, xL : AL `Σ QxL :: (zL : CL)

Γ, xS : B̂; ∆ `Σ xL ← acquirexS ;QxL :: (zL : CL)

(T-↑SLL)

In contrast to the rule introduced in Section 3.2 the above rule accounts for the possibility of a shared process to
be of type ⊥. In this case, a client can freely choose the type of the process to be acquired because it will never
succeed in acquiring that process. As can be seen in Figure 3, the rules (T-IdS), (T-SpawnLL), (T-SpawnLS),
(T-SpawnSS), (T-∃R), and (T-ΠL) require analogous treatment.

We can finally state the preservation theorem. It expresses that the types of the providing linear channels are
maintained along transitions and that new shared channels may be allocated.

Theorem 1 (Preservation). If Γ �Σ Λ; Θ :: Γ; ∆ and Λ; Θ −→ Λ′; Θ′, then Γ′ �Σ Λ′; Θ′ :: Γ′; ∆, for some Λ′, Θ′,
and Γ′.

Proof. Preservation is proved by induction on the dynamics, constructing a derivation of a well-formed and well-
typed configuration Γ′ �Σ Λ′′; Θ′′ :: Γ′; ∆, where Λ′′ and Θ′′ are permutations of Λ′ and Θ′, respectively, and using
a variety of substitution lemmas and inversion. Note that the linear context ∆ remains the same: freshly spawned
linear channels have both a provider and client and are therefore not part of the interface. The set of shared
channels however can grow.

Our progress theorem is based on the notion of a poised process introduced in [51]. A proc(a, Pa) is poised if it is
communicating along its providing channel. The poised forms of processes in SILLS are:

Receiving Sending

proc(aL, y ← recv aL ; Py) proc(aL, send aL b ; P)
proc(aL, close aL)

proc(aL, case aL of l ⇒ P) proc(aL, aL.lh ; P)
proc(aS, xL ← accept aS ; PxL) proc(aL, xS ← detach aL ; PxS)

A linear configuration Θ is poised if all proc(aL, PaL
) ∈ Θ are poised and a shared configuration Λ is poised if all

proc(aS, PaS
) ∈ Λ are poised.

To account for the possibility of deadlock, we introduce the notion of a blocked process. We say that a process
is blocked along aS if it has the form proc(cL, xL ← acquire aS ; QxL). We then state the progress theorem such as
to express that being blocked is the only way the whole configuration may be stuck [28]. Case (2-c) captures the
scenario where a blocked process cannot proceed because the shared channel is unavailable. Case (2-a), on the
other hand, captures a successful acquire.

Theorem 2 (Progress). If Γ �Σ Λ; Θ :: Γ; ∆, then either

1. Λ −→ Λ′, for some Λ′, or
2. Λ is poised and

(a) Λ; Θ −→ Λ′; Θ′, for some Λ′ and Θ′, or
(b) Θ is poised, or
(c) some process in Θ is blocked along aS and unavail(aS) ∈ Λ.

Proof. Progress is proved by induction on the typing of the configurations Λ and Θ.

At the top level, we have ∆ = (c0 : 1), which means that if Θ is poised then it and all subcomputations must
be finished, trying to close c0. If it cannot transition, then the remaining possibility is that some process in Θ
is blocked along a shared channel. A blocked process may wait indefinitely in case of a deadlock, or because the
underlying shared process has terminated, or may never be released. Dining philosophers (Figure 7), for instance,
is an example leading to a classic deadlock due to a cyclic dependency along the shared forks. Section E.2 gives
another example.

16

5.3 Asynchronous Dynamics

The synchronous operational semantics we have provided for SILLS is simple, but not realistic in many applications.
Fortunately, we can easily model asynchronous output in the existing language in a logically meaningful way. In
order to explain this, we reintroduce the general form of cut (spawn) which is not tied to process definitions, and
remind the reader of the identity (forward) rule. For simplicity, we restrict the presentation to the linear case; the
shown technique directly generalizes to the shared case.

∆ ` Px :: (x : A) ∆′, x : A ` Qx :: (z : C)

∆,∆′ `Σ x← Px ; Qx :: (z : C)
(T-Cut)

y : A `Σ fwd x y :: (x : A)
(T-Id)

To asynchronously send a channel y along x we spawn a new process which carries the message y, immediately
followed by forwarding.

send x y ; P ' x′ ← (send x y ; fwd x′ x) ; [x′/x]P

Intuitively, the spawned process (send x y ; fwd x′ x) represents the message y sent along x with fresh continuation
channel x′ [18]. The continuation channel is necessary so that multiple messages sent along the same channel are
guaranteed to arrive in the correct order. It is easy to see that, if the synchronous form on the left is well-typed,
then so is the asynchronous form on the right. Logically, we can obtain the proof of the left from the proof of the
right by a commuting conversion and reduction of cut with identity.

Operationally, the single synchronous reduction

proc(c, send a b ; P), proc(a, y ← recv a ; Qy)
−→ proc(c, P), proc(a, [b/y]Qy)

is now decomposed into several steps, where P can proceed with its continuation before b is received.

proc(c, x ′ ← (send a b ; fwd x ′ a) ; [x ′/a]P), proc(a, y ← recv a ; Qy)
−→ proc(c, [a ′/a]P), proc(a ′, send a b ; fwd a ′ a), proc(a, y ← recv a ; Qy) (spawn, a′ fresh)
−→ proc(c, [a ′/a]P), proc(a ′, fwd a ′ a), proc(a, [b/y]Qy) (receive)
−→ proc(c, [a ′/a]P), proc(a ′, [a ′/a][b/y]Qy) (forward)

Since a′ is chosen globally fresh and a is linear, the result is an α-variant of the synchronous outcome. This
technique can be applied to all send operations of the semantics. Effectively, this allows a program written in the
synchronous style to be executed fully asynchronously.

The caveat is that we would not want to translate acquire in this manner even though the logical semantics dictates
it must be a send operation [51]. The reason is that a process would no longer block when trying to acquire a shared
channel. Instead it would continue until the corresponding linear channel is actually used to receive a message,
which is not the intended meaning. In the implementation (see Section 7) all sends are asynchronous, using a more
efficient message buffer instead of explicit continuation channels, except for acquire which blocks until the shared
channel becomes available.

Alternatively, we could directly provide an asynchronous semantics for all the operations and use an additional
acknowledgment step (a “double shift” [51]) to ensure that acquiring a shared resource is synchronous. For this
paper, we have chosen the former route because it simplifies the operational semantics and therefore our theorems:
without loss of expressiveness, we do not have to explicitly deal with messages or message queues.

6 Encoding the Untyped π-calculus into SILLS

When we view Howard’s original isomorphism between typed λ-calculus and intuitionistic natural deduction [33] as
a type assignment system for untyped λ-terms, we lose much of the computational power of the untyped λ-calculus.
For example, normalization for natural deduction implies termination of computation on well-typed λ-terms, while
arbitrary λ-terms may not have a normal form. However, there is a simple way we can embed all untyped λ-terms
if we add recursive types. In linear instances of the Curry-Howard correspondence, just adding recursion appears

17

insufficient to recover the computational power of the asynchronous π-calculus [64], and so far there has been no
logically motivated and fully satisfactory way to do so.4

In this section, we give an encoding of the asynchronous, untyped π-calculus into SILLS, suggesting that shared
channels can recover the computational power of the untyped π-calculus. We plan to confirm this hypothesis as
part of future work (see Section 9). The key points to address in the encoding are that (i) π-calculus channels may
connect arbitrarily many processes, (ii) messages sent along a π-calculus channel may arrive in arbitrary order,
and (iii) π-calculus channels are untyped. Furthermore, since the π-calculus permits deadlock, it is important here
that SILLS also admits deadlock.

The basic idea of our encoding is to translate π-calculus processes to linear SILLS processes of type 1, and π-calculus
channels to shared SILLS processes of a universal shared type US. The latter are unordered buffers and obey the
following protocol:

US = ↑SL N{ins : Πx:US. ↓SL US,
del : ⊕{none : ↓SL US,

some : ∃x:US. ↓SL US}}

Type US provides the choice to either send (ins) or receive (del) a channel. In the latter case, it communicates
whether the buffer is empty (none) or not empty (some) and delivers a channel in the buffer, if the buffer is non-
empty. Figure 11 shows the processes empty and elem that implement session type US. To guarantee that the
resulting buffer is unordered, process elem nondeterministically inserts the received channel at an arbitrary point
in the buffer, using nd choice defined in Figure 10. It is also possible and slightly more complicated to postpone
the nondeterministic choice to the deletion operation.

empty : {US}
c← empty =
c′ ← accept c ;
case c′ of
| ins→ x← recv c′ ;

e← empty ;
c← detach c′ ; c← elem ← x, e

| del→ c′.none ;
c← detach c′ ; c← empty

elem : {US ← US, US}
c← elem ← x,d =
c′ ← accept c ;
case c′ of
| ins→ y← recv c′ ;

ndc ← nd choice ;
case ndc of
| yes→ e← elem ← x,d ;

wait ndc ;
c← detach c′ ; c← elem ← y, e

| no→ d′ ← acquire d ;
d′.ins ; send d′ y ;
d← release d′ ;
wait ndc ;
c← detach c′ ; c← elem ← x,d

| del→ c′.some ;
send c′ x ;
c← detach c′ ; fwd c d

Figure 11: Processes empty and elem implement session type US, representing a π-calculus channel. To guarantee
that the resulting buffer is unordered, process elem nondeterministically inserts the received channel at an arbitrary
point in the buffer, using process nd choice defined in Figure 10.

The linear SILLS processes representing π-calculus processes now simply amount to “producers” and “consumers”
of shared channels of type US. Any number of such processes can communicate along a π-calculus channel by
acquiring the shared SILLS channel of universal type.

We are now ready to give the encoding of processes. We first review the syntax of the asynchronous monadic
π-calculus [43, 54], defining the set Pπ of π-calculus process terms. We follow the presentation in [4]:

P , 0 | x 〈y〉 | x (y).P | νx P | P1 | P2 | !P

4Other recent work in this direction in the setting of classical linear logic and differential interaction nets by Atkey et al. [2] and
Mazza [41], respectively, use quite different techniques from ours.

18

0 denotes an inactive process. x 〈y〉 represents an asynchronous send of y along channel x. x (y).P represents the
receiving of a channel along channel x, after which the process continues with executing P with the received channel
bound to y in P . The action prefix x (y) acts as a guard, making sure that P can only become active once the
input has occurred. νx P introduces a new channel x that is bound in P . P1 | P2 denotes parallel composition of
P1 and P2 and !P replication of P .

Our translation shown in Figure 12 yields for each π-calculus process term Pπ a corresponding linear process JPπKa
in SILLS, satisfying the typing judgment

Γ; · `Σ JPπKa :: (aL : 1)

where Γ consists of declarations xS : US for every shared channel in the overall process configuration. We use type
1 since all communication goes though π-calculus channels, which are mapped to shared channels in Γ. This is also
the reason why there are no linear channels in the context. Of course, as shared channels are acquired when send
or receive operations are modeled, we communicate with the buffer along a linear channel until it is released again.

J0Ka = close a

Jc〈b〉Ka = p ← snd c ;
send p b ;
wait p ;
close a

Jc(x).PKa = p ← poll rcv ← c ;
b← recv p ;
wait p ;
a← [b/x] JPKa

Jνx PKa = e← empty ;
a← [e/x] JPKa

JP1 | P2Ka = b← JP1Kb ;
c← JP2Kc ;
wait b ;
wait c ;
close a

J!PKa = Reca
!P where

Reca
!P = b← JPKb ;

c← Recc
!P ;

wait b ;
wait c ;
close a

snd : {(Πx:US.1)← US}
d← snd ← c =

x← recv d ;
c′ ← acquire c ;
c′.ins ;
send c′ x ;
c← release c′ ;
close d

poll rcv : {(∃x:US.1)← US}
d← poll rcv ← c =
c′ ← acquire c ;
c′.del ;
case c′ of
| none→ c← release c′ ;

d← poll rcv ← c
| some→ x← recv c′ ;

c← release c′ ;
send d x ;
close d

empty : {US} is defined in Figure 11

Figure 12: Translation of untyped asynchronous π-calculus processes into SILLS and auxiliary processes snd and
poll recv .

Because of the different semantic basis (asynchronous π-calculus on one hand and multiset rewriting on the other),
and the question what precisely is observable about a computation, the precise nature of the correspondence
between traces in the source and target is difficult to formulate and prove and left to future work (see Section 9 for
further remarks).

7 Implementation

We briefly describe our implementation of manifest sharing in the context of a type-safe C-like imperative language
with session types called Concurrent C0 [67], which is an extension of C0 [1, 50] designed for and used in an
introductory imperative programming course [52]. Because session-typed programming follows a monadic style,

19

this imperative implementation is semantically adequate for exploring the expressive power and programming style
of manifest sharing. Besides an occasional illustrative use of imperative language features (e.g., loops in place
of recursion, or mutable arrays instead of sequences), the only significant difference is the lack of parametric
polymorphism in Concurrent C0. Examples have therefore been modified to use either base types, such as int, or
ad hoc polymorphism in the form of void*, which engenders tagging of values with their dynamic type to ensure
type safety. The implementation uses asynchronous message passing, as described in Section 5.3. Moreover, the
downshift modality ↓SL has no explicit syntax but implicitly precedes every upshift ↑SL. This is adequate since, just
as in this paper, the only constructor of shared mode is an upshift, so there is no other possible continuation.

The compiler translates C0 source to C. Each logical thread of control is implemented as an operating system
thread, as provided by the pthread library. Message passing is implemented via shared memory. Each channel
is therefore a data structure in shared memory that can progress through linear and shared phases. Figure 13
provides a schematic overview of this data structure. While linear, access is shared between a provider and a client.
The channel contains a current direction of communication and a message queue implemented as a ring buffer
whose size is calculated from the session type. Access to the buffer for send and receive operations is protected by
a mutex and associated condition variable. In the shared phase, there will be zero or one provider and an arbitrary
number of clients. The channel therefore contains a flag that indicates whether the channel is currently available
to be acquired. This flag is turned off when the channel is acquired by one of the clients and remains off until the
client has been detached and the provider is ready to accept another client. Access to this flag is protected by a
separate mutex and condition variable. The operating system scheduler will then nondeterministically select one
of the clients.

dir: TO_CLIENT/TO_PROVIDER

mutex m
cond_var c
avail:	BUSY	/	AVAIL
mutex s
cond_var a

channel
message	queue

front back

…
cL

provider	thread
…

cL

client	thread

control	access	to
message	queue

control	access	to
avail

channel
…

channel
…
nullforwarding	pointer

linear	phase
shared	phase

…
cS

client	thread
…

cS

client	thread

linear linear sharedshared

…

Figure 13: Schematic overview of channel data structure internal to the Concurrent C0 compiler.

As might be expected from the theory, the most difficult aspect of the implementation is forwarding. For forwarding
between two linear channels, fwd c d, we send a message FWD c along d, or FWD d along c, depending on the current
direction of communication. Then the thread executing the forward terminates. When the FWD e message arrives
(where e is either c or d, depending on the direction), the recipient changes its internal reference to the shared
channel to e, effectively now continuing communication along e. For more details and some failed alternatives,
see [67].

Unfortunately, this strategy fails for forwarding between two shared channels, fwd c d, because there is no effective
way to notify all clients of c to now communicate along d via a message. Instead, before terminating, the provider
installs a forwarding pointer from c to d and marks the availability of c. Attempts to acquire c will follow the
forwarding pointer to d. A potential client may have to follow a whole chain of such forwarding pointers. However,
each client has to do so at most once.

Returning to a linear forward: when we execute fwd c d for linear channels c and d that where once shared, the
semantics requires that we also forward between the underlying shared channels. For example, if the client replaces
references to c by references to d and d is eventually released, then subsequent attempts to acquire c should obtain

20

access to d. In order to account for this scenario, we also install the forwarding pointer from c to d upon a linear
forward if the channel has ever been a shared channel with possibly multiple waiting clients.

The current implementation of Concurrent C0 does not deallocate channels that were shared at any point during the
program execution. We conjecture that manifest sharing admits an effective reference counting garbage collector
by transforming the typing derivation to make implicit applications of weakening and contraction explicit. This is
one of the immediately planned items of future work.

8 Related Work

Our work is situated in the family of works on session types [23, 30, 31, 32] among which it extends work based
on the Curry-Howard isomorphism between linear logic and session-typed communication [9, 10, 59, 60, 64] with
manifest sharing. We have already summarized that work in Section 2 and have pointed out that the shared
channels available through the exponential modality in linear logic have a copying semantics and therefore cannot
accommodate the examples presented in this paper. Perhaps most closely related is work by Atkey et al. [2], which
proceeds by conflating dual pairs of types in classical linear logic, whereas in this paper we maintain the original
interpretation of propositions as session types, but provide an alternative operational semantics for a shared layer
of channels separated from the linear types by a pair of adjoint modalities.

From the point of view of protocol expression, our work is related to the line of research that uses typestate [58]
for protocol checking [6, 16, 21, 42] or program verification [47], in a sequential, object-oriented context. Whereas
first approaches [16] support a rather restricted set of aliasing patterns to facilitate modular protocol checking,
subsequent approaches lift some of the imposed restrictions, notably by combining aliasing information with type-
state [6, 45] or rely-guarantee-based reasoning [42]. Most closely related to our work is Fähndrich’s and DeLine’s
work 2002 on adoption and focus for protocol checking in an object-oriented language. In the resulting language,
linear and non-linear objects coexist such that every non-linear object (adoptee) has a linear adopter. Aliases are
permitted to adoptees, as long as access goes through the adopter and mutating access happens in a temporary
scope, called focus. While an aliased object is in focus, access to the object via another alias is disabled by capa-
bility tracking. From this aspect, a focus scope bears ressemblance to a critical section arising between acquire and
release points in our system, even though adoption and focus are employed in a purely sequential setting. Whilst
capabilities are treated as resources, the underlying type system is not linear, but the required semantics is achieved
by threading the capabilities through program execution.

From the point of view of allowing controlled aliasing in a concurrent setting, our work is related to permission-
based logics [7, 29, 40, 56] and concurrent separation logic [8, 37, 48, 61, 62]. Permission-based logics maintain a
distinction between read and write access to a shared memory location, allowing read access even if only a fractional
permission [7] is held, whereas write access requires the entire permission. From a session type perspective, this
distinction is less relevant because any communication, input (write) and output (read) alike, amounts to a change
in protocol state and thus must be protected sufficiently. Separation logic shares with linear logic the separating
conjunction to reason about resource consumption, but uses a Hoare-style reasoning approach that is extrinsic to
the type system, whereas resource-awareness is intrinsic to our type system via the Curry-Howard correspondence.
Moroever, both permission-based logics and concurrent separation logic target shared-memory concurrency, whereas
our work is situated in the realm of message-passing concurrency, offering a different level of abstraction.

Linear types have also found various applications in systems programming. For example, Walker and Watkins [65]
combine linear types with regions [24], and Smith et al. [57] relax the operational “use-once” semantics of linear
types [63] to exploit pointer aliasing for destructive operations. Similar observations have been made by Castegren
and Wrigstad [11] in the context of implementing lock-free algorithms. Our work differs from these approaches in
that it is based on a richer semantics of linearity derived from the Curry-Howard isomorphism between linear logic
and session-typed communication. Moreover, our work employs a message-passing approach to concurrency rather
than a shared-memory-based approach. From this perspective, our work has closer ties with the Rust systems
programming language [44], which supports message-passing concurrency in an affine setting. Shared data in Rust
is normally immutable, but Rust also supports various abstractions (e.g., mutexes) that support the safe mutation
of shared data. We have found that the programming patterns arising in SILLS readily translate into Rust code
with mutexes.

21

9 Discussion and Future Work

We have presented an extension of logic-based session-typed message-passing concurrency by permitting shared
resources encapsulated in processes. This allows the elegant expression of examples, such as queues with multiple
producers and multiple consumers, dining philosophers, shared databases, shared input and output devices, or
nondeterministic choice. In fact, all of the asynchronous π-calculus can now be embedded in a statically typed
framework satisfying session fidelity by modeling π-calculus channels as shared processes maintaining a nondeter-
ministic message buffer. We were able to maintain the view of linear propositions as session types, sequent proofs
as processes, and linear proof reduction as communication. To accomodate shared processes, we had to gener-
alize the usual Curry-Howard correspondence and allow interleaved proof construction (acquire), proof reduction
(communication), and proof deconstruction (release). Proof construction may fail, which manifests operationally
as deadlock. Key insights are the decomposition of the exponential modality !A into ↓SL↑

S

LAL, inspired by adjoint
logic, and the insistence on equi-synchronizing types, which guarantee that a shared process is always released to
the same type at which it was acquired. The former makes sharing manifest in the type; the latter guarantees
session fidelity without runtime checking of types.

On the theory side, we plan to consider how to overlay a likely very different type system or static analysis in order
to recover absence of deadlocks. Some recent promising work in this direction [38, 39] in a different context may be
adaptable to our situation. We are also interested in relaxing the restriction on equi-synchronization. A first avenue
to pursue is to extend our definitions to support subtyping, along the lines of Gay and Hole [23]. Another possibility
is to complement the static approach with run-time type-checking to maintain session fidelity [36], particularly in
a distributed setting. On the implementation side, we would like to develop the proof-theoretic foundation of a
reference counting implementation so that resources associated with shared processes that are no longer accessible
can be released.

Finally, the embedding of the asynchronous π-calculus into SILLS raises the interesting question of how precise the
modeling is. While we can easily relate computation traces, other traditional notions of concurrency theory such as
bisimulation do not immediately apply since our semantics is given as a multiset rewriting system. We conjecture
that a slightly modified interpretation with late application of nondeterministic choice describes a bisimulation,
according to the definitions mapped out by Deng et al. [17].

22

A Abstract Syntax

Table 3 defines the abstract syntax of SILLS. As is usual, we use the overline-notation to denote a sequence. For
example, ⊕{l : AL} stands for ⊕{l1 : AL 1, . . . , ln : ALn}. By convention, lines without a left-hand side are separated
by | from their preceding line.

Sort Abstract Form Remarks

Metavariables , xm , ym , zm variable (or channel)
am , bm , cm , dm channel
l label

Modes m , S | L with S > L

Constraint Â, B̂, Ĉ, D̂ , > no yet detached
⊥ can no longer be acquired
↑SLAL constraint on which type must be released to

Session types Am , Bm , Cm , Dm , ⊕{l : AL} internal choice, at least one label

N{l : AL} external choice, at least one label
AL ⊗BL linear channel output
AL (BL linear channel input
∃x:AS. BL shared channel output
Πx:AS. BL shared channel input
1L termination
↓SLAS downshift
↑SLAL upshift
Ym type variable

Definition Xm ,Ym , xm : Am ← Xm ← y : B = Pxm ,y process definition
Ym = Am recursive session type definition

Process P,Q , xL.lh ;P label output

case xL of l⇒ P label input
sendxL ym ;P channel output
ym ← recv xL ;Pym channel input
closexL terminate process
waitxL ;Q wait for process to terminate
fwd xm ym forward x to y
xm ← Xm ← y ;Qxm spawn
xS ← detachxL ;PxS detach (i.e., shift for ↓SLR)
xS ← releasexL ;QxS release (i.e., shift for ↓SLL)
xL ← acquirexS ;QxL acquire (i.e., shift for ↑SLL)
xL ← acceptxS ;PxL accept (i.e., shift for ↑SLR)

Table 3: Abstract syntax.

B Statics

B.1 Signature Checking

A well-formed signature Σ consists of a finite set of process definitions and recursive session type definitions. A
process definition xm : Am ← Xm ← y : B = Pxm ,y associates a name X with a process term P and indicates the
name and type of the process’ providing channel and the names and types of its argument channels. A recursive
session type definition Ym = Am associates a name Y with a type term A:

Σ , ·
| xm : Am ← Xm ← y : B = Pxm ,y , Σ′ (Xm not in Σ′)
| Ym = Am , Σ′ (Ym not in Σ′)

We assume that the signature Σ is populated prior to type-checking. Each process definition xm : Am ← Xm ←

23

y : B = Pxm ,y gives rise to a corresponding persistent predicate !def(xm : Am ← Xm ← y : B = Pxm ,y) with variables
xm and y bound by P that are subject to α-variance to guarantee freshness. We use the subscript notation to
separate the linear yL from the shared yS part of the arguments y.

The rules for type-checking the signature are given in Figure 14, Figure 15, and Figure 16. For recursive session
types, we adopt the equi-recursive [15] interpretation developed by Gay and Hole 2005, requiring recursive session
types to be contractive. This requirement is stipulated in rule (T-Σ3) and defined by the rules shown in Figure 15.
Moreover, we require session types to be equi-synchronizing, a property we introduce in this paper (see Section 3.3)
to guarantee that a process is released to the same type at which it was acquired. The property of equi-synchronizing
establishes session fidelity without the need for run-time checks at acquisition points.

`Σ (·) sig
(T-Σ1)

yS : BS; yL : BL `Σ Pxm ,y :: (xm : Am) `Σ (Am ,>) esync `Σ Σ′ sig

`Σ (xm : Am ← Xm ← yL : BL, yS : BS = Pxm ,y), Σ′ sig

(T-Σ2)

`Σ Am contr `Σ (Am ,>) esync `Σ Σ′ sig

`Σ Ym = Am , Σ′ sig
(T-Σ3)

Figure 14: Signature checking.

`Σ ⊕{l : AL} contr

(T-Contr⊕)

`Σ N{l : AL} contr

(T-ContrN)

`Σ AL ⊗BL contr
(T-Contr⊗)

`Σ AL (BL contr
(T-Contr()

`Σ ∃x:AS. BL contr
(T-Contr∃)

`Σ Πx:AS. BL contr
(T-ContrΠ)

`Σ 1 contr
(T-Contr1)

`Σ ↓rmAr contr
(T-Contr↓rm)

`Σ ↑rmAm contr
(T-Contr↑rm)

Figure 15: Contractive recursive session type.

B.2 Process Typing

To type process terms, we use the judgments:

Γ `Σ P :: (xS : AS)

Γ; ∆ `Σ P :: (xL : AL)

The judgments rely on the signature Σ and on the contexts Γ and ∆ to type shared and linear channels, respectively.
The judgment indicates that the process P provides a service of session type Am along channel xm , given the typing
of services provided by processes along the channels in ∆ (and Γ). Since channels are substituted for variables at
run-time, we allow the metavariables xm , ym , zm to stand for both variables and channels.

The context Γ is a structural context that consists of a finite set of assumptions of the form xS i : AS i , associating
with each shared variable or channel a session type. A well-formed structural context is defined as follows:

Γ , · | Γ′, xS : Â (xS not in Γ′)

The side-condition makes sure that the variable or channel name is unique within the context. When concatenating
a context Γ with a context Γ′, variables or channels xS : Â that are shared between Γ and Γ′ are contracted,
i.e., reduced to one occurrence.

24

(∀i) `Σ (ALi , D̂) esync

`Σ (⊕{l : AL}, D̂) esync

(T-Esync⊕)
(∀i) `Σ (ALi , D̂) esync

`Σ (N{l : AL}, D̂) esync

(T-EsyncN)

`Σ (BL, D̂) esync

`Σ (AL ⊗BL, D̂) esync

(T-Esync⊗)
`Σ (BL, D̂) esync

`Σ (AL (BL, D̂) esync

(T-Esync()

`Σ (BL, D̂) esync

`Σ (∃x:AS. BL, D̂) esync

(T-Esync∃)
`Σ (BL, D̂) esync

`Σ (Πx:AS. BL, D̂) esync

(T-EsyncΠ)

`Σ (1, D̂) esync

(T-Esync1)

`Σ (AL, ↑SLAL) esync

`Σ (↑SLAL,>) esync

(T-Esync↑S
L
)

`Σ (DS,>) esync

`Σ (↓SLDS, DS) esync

(T-Esync↓S
L
-1)

`Σ (DS,>) esync

`Σ (↓SLDS,>) esync

(T-Esync↓S
L
-2)

Figure 16: Equi-synchronizing session type, coinductively defined.

The context ∆, on the other hand, is a linear context that consists of a finite set of assumptions of the form
xL i : Âi , associating with each linear variable or channel a session type. A well-formed linear context is defined as
follows:

∆ , · | ∆′, xL : AL (xL not in ∆′)

Again, the side-condition makes sure that the variable or channel name is unique within the context. We define the
projections dom(Γ) and dom(∆) to project onto the variable or channel names in Γ and ∆, respectively, yielding
the empty set in case the context is empty.

The well-formedness of a process typing judgment imposes slightly different invariants on variables and channels.
For a linear process typing judgment to be well-formed, the following condition must hold:

Γ; ∆ `Σ P :: (xL : AL) (xL not in ∆)

The same condition holds only for shared variables, but not shared channels, in case of a shared process typing
judgment:

Γ `Σ P :: (xS : AS) (xS not in Γ, if xS is a variable)

Since the same shared channel can be substituted for different shared variables, giving rise to the possibility of
cycles among shared channels (see Section E.2), the offering channel of a shared process can already occur in its
shared context. We point out that no ambiguity arises in that case between the provision and use of a shared
channel because SILLS introduces separate constructs for each direction. For example, aS in xL ← accept aS ;PxL

denotes the offering channel whereas it denotes a used channel in xL ← acquire aS ;QxL .

The typing rules for process terms are given in Figure 17 and Figure 18. Due to the difference in invariants shared
variables and channels have to obey, a context of the form Γ, xS : Â conveys the information that xS is fresh, if x is
a variable.

B.3 Configuration Typing

Figure 19 gives the typing rules for a SILLS configuration Ω. A configuration Ω is divided into a a linear part Θ
and a shared part Λ, subject to the following well-formedness conditions:

Ω , · | Λ; Θ (∀a.proc(aL,) ∈ Θ =⇒ unavail(aS) ∈ Λ)

Λ , · | proc(aS, PaS
), Λ′ | unavail(aS), Λ′ (proc(aS,), unavail(aS) not in Λ′)

Θ , · | proc(aL, PaL
), Θ′ (proc(aL,) not in Θ′)

25

Γ; yL : AL `Σ fwd xL yL :: (xL : AL)
(T-IdL)

Â ≤ AS

Γ, yS : Â `Σ fwd xS yS :: (xS : AS)

(T-IdS)

Γ = wS : B̂ B̂ ≤ BS ∆ = yL : BL

(x ′L : AL ← XL ← yL
′ : BL,wS

′ : BS = Px ′
L
,yL

′,wS
′) ∈ Σ Γ,Γ′; ∆′, xL : AL `Σ QxL :: (zL : CL)

Γ,Γ′; ∆,∆′ `Σ xL ← XL ← yL, wS ; QxL :: (zL : CL)
(T-SpawnLL)

Γ = yS : B̂ B̂ ≤ B (x ′S : AS ← XS ← yS
′ : B = Px ′

S
,yS

′) ∈ Σ Γ,Γ′, xS : AS; ∆ `Σ QxS :: (zL : CL)

Γ,Γ′; ∆ `Σ xS ← XS ← yS ; QxS :: (zL : CL)
(T-SpawnLS)

Γ = yS : B̂ B̂ ≤ B (x ′S : AS ← XS ← yS
′ : B = Px ′

S
,yS

′) ∈ Σ Γ,Γ′, xS : AS `Σ QxS :: (zS : CS)

Γ,Γ′ `Σ xS ← XS ← yS ; QxS :: (zS : CS)
(T-SpawnSS)

Figure 17: Process typing for identity and spawn (cut).

We provide further explanations on the configuration typing in Section 5.1, but point out that Rule (T-Ω) permits
cyclic dependencies along shared channels by type-checking a configuration relative to all shared channels.

C Operational Semantics

Figure 20 gives the operational semantics of SILLS using multiset rewriting rules [12]. The semantics is synchronous,
Section 5.3 sketches how to transform this synchronous semantics into an asynchronous one using cut and identity.

A multiset rewriting rule is of the form

S1, . . . , Sn −→ T1, . . . , Tm

indicating that the state consisting of S1, . . . , Sn transitions to the one consisting of T1, . . . , Tm . The ′ −→′
denotes the state transition, substates are separated by ′, ′. The rule only mentions the part of the state that it
rewrites.

We use the following predicates to denote states:

• proc(am , Pm), for a process providing along channel am and executing the process term Pm ;
• unavail(aS), as a placeholder for a shared process providing along channel aS that is currently not available;
• !def(xm : Am ← Xm ← y : B = Pxm ,y), for each (xm : Am ← Xm ← y : B = Pxm ,y) ∈ Σ.

Even though multiset rewriting rules are unordered, we write the rules such that a providing process appears to
the right of its client, for ease of reading.

We use the side-condition (b fresh) in
S −→ T (b fresh)

to allocate a globally fresh channel. The freshly allocated channel may occur in T but not yet in S.

Lastly, we use the equation a = b in
S −→ T, a = b

for the global substitution of b for a in the entire post-configuration. The channels a and b may occur in S.

26

B̂ ≤ ↑SLAL Γ, xS : B̂; ∆, xL : AL `Σ QxL :: (zL : CL)

Γ, xS : B̂; ∆ `Σ xL ← acquirexS ;QxL :: (zL : CL)

(T-↑SLL)
Γ; · `Σ PxL :: (xL : AL)

Γ `Σ xL ← acceptxS ;PxL :: (xS : ↑SLAL)
(T-↑SLR)

Γ, xS : AS; ∆ `Σ QxS :: (zL : CL)

Γ; ∆, xL : ↓SLAS `Σ xS ← releasexL ;QxS :: (zL : CL)
(T-↓SLL)

Γ `Σ PxS :: (xS : AS)

Γ; · `Σ xS ← detachxL ;PxS :: (xL : ↓SLAS)
(T-↓SLR)

Γ; ∆ `Σ Q :: (zL : CL)

Γ; ∆, xL : 1 `Σ waitxL ;Q :: (zL : CL)
(T-1L)

Γ; · `Σ closexL :: (xL : 1)
(T-1R)

Γ; ∆, xL : BL, yL : AL `Σ QyL :: (zL : CL)

Γ; ∆, xL : AL ⊗BL `Σ yL ← recv xL ;QyL :: (zL : CL)
(T-⊗L)

Γ; ∆ `Σ P :: (xL : BL)

Γ; ∆, yL : AL `Σ sendxL yL ;P :: (xL : AL ⊗BL)
(T-⊗R)

Γ, yS : AS; ∆, xL : BL `Σ QyS :: (zL : CL)

Γ; ∆, xL : (∃x:AS. BL) `Σ yS ← recv xL ;QyS :: (zL : CL)
(T-∃L)

Â ≤ AS Γ, yS : Â; ∆ `Σ P :: (xL : BL)

Γ, yS : Â; ∆ `Σ sendxL yS ;P :: (xL : (∃x:AS. BL))

(T-∃R)

Γ; ∆, xL : BL `Σ Q :: (zL : CL)

Γ; ∆, xL : AL (BL, yL : AL `Σ sendxL yL ;Q :: (zL : CL)
(T-(L)

Γ; ∆, yL : AL `Σ PyL :: (xL : BL)

Γ; ∆ `Σ yL ← recv xL ;PyL :: (xL : AL (BL)
(T-(R)

Â ≤ AS Γ, yS : Â; ∆, xL : BL `Σ Q :: (zL : CL)

Γ, yS : Â; ∆, xL : (Πx:AS. BL) `Σ sendxL yS ;Q :: (zL : CL)

(T-ΠL)
Γ, yS : AS; ∆ `Σ PyS :: (xL : BL)

Γ; ∆ `Σ yS ← recv xL ;PyS :: (xL : (Πx:AS. BL))
(T-ΠR)

(∀i) Γ; ∆, xL : ALi `Σ Qi :: (zL : CL)

Γ; ∆, xL : ⊕{l : AL} `Σ case xL of l⇒ Q :: (zL : CL)

(T-⊕L)
Γ; ∆ `Σ P :: (xL : AL h)

Γ; ∆ `Σ xL.lh ;P :: (xL : ⊕{l : AL})
(T-⊕R)

Γ; ∆, xL : AL h `Σ Q :: (zL : CL)

Γ; ∆, xL : N{l : AL} `Σ xL.lh ;Q :: (zL : CL)

(T-NL)
(∀i) Γ; ∆ `Σ Pi :: (xL : ALi)

Γ; ∆ `Σ case xL of l⇒ P :: (xL : N{l : AL})
(T-NR)

Figure 18: Process typing for shifts and propositional rules.

27

Γ �Σ (·) :: (·)
(T-Θ1)

(aS : B̂) ∈ Γ `Σ (AL, B̂) esync Γ; ∆′ `Σ PaL :: (aL : AL) Γ �Σ Θ : ∆,∆′

Γ �Σ proc(aL, PaL), Θ :: (∆, aL : AL)
(T-Θ2)

Γ �Σ (·) :: (·)
(T-Λ1)

`Σ (↑SLAL,>) esync Γ `Σ PaS :: (aS : ↑SLAL)

Γ �Σ proc(aS, PaS) :: (aS : ↑SLAL)
(T-Λ2)

Γ �Σ unavail(aS) :: (aS : Â)

(T-Λ3)

Γ �Σ Λ :: Γ′ Γ �Σ Λ′ :: Γ′′

Γ �Σ Λ,Λ′ :: Γ′,Γ′′
(T-Λ4)

Γ �Σ Λ :: Γ Γ �Σ Θ :: ∆

Γ �Σ Λ; Θ :: Γ; ∆
(T-Ω)

Figure 19: Configuration typing.

28

proc(aL, fwd aL bL) (D-IdL)

−→ aL = bL, aS = bS

proc(aS, fwd aS bS) (D-IdS)

−→ unavail(aS), aS = bS

proc(aL, xL ← XL ← cL, cS ; QxL), !def(x ′L : AL ← XL ← yL : BL, yS : BS = Px ′
L
,yL,yS

) (D-SpawnLL)

−→ proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′
L
,yL,yS

), unavail(bS) (b fresh)

proc(aL, xS ← XS ← cS ; QxS), !def(x ′S : AS ← XS ← yS : BS = Px ′
S
,yS

) (D-SpawnLS)

−→ proc(aL, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S
,yS

) (b fresh)

proc(aS, xS ← XS ← cS ; QxS), !def(x ′S : AS ← XS ← yS : BS = Px ′
S
,yS

) (D-SpawnSS)

−→ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S
,yS

) (b fresh)

proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), unavail(aS) (D-↓SL − release/detach)

−→ proc(cL, [aS/xS] QxS), proc(aS, [aS/xS] PxS)

proc(cL, xL ← acquire aS ; QxL), proc(aS, xL ← accept aS ; PxL) (D-↑SL − acquire/accept)

−→ proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), unavail(aS)

proc(cL, wait aL ; Q), proc(aL, close aL) (D-1)

−→ proc(cL, Q)

proc(cL, y ← recv aL ; Qy), proc(aL, send aL b ; P) (D-⊗/∃)
−→ proc(cL, [b/y] Qy), proc(aL, P)

proc(cL, send aL b ; Q), proc(aL, y ← recv aL ; Py) (D-(/Π)

−→ proc(cL, Q), proc(aL, [b/y]Py)

proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P) (D-⊕)

−→ proc(cL, Qh), proc(aL, P)

proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P) (D-N)

−→ proc(cL, Q), proc(aL, Ph)

Figure 20: Multiset rewriting system defining synchronous operational dynamics.

29

D Preservation and Progress

D.1 Definitions, Lemmas, and Corollaries

D.1.1 Definitions

Definition 1 (Configuration Substitution). Substitution in configurations is defined as follows:

[bL/aL] (·) , (·)
[bL/aL] (proc(cL, Q), Θ) , proc(cL, [bL/aL] Q), [bL/aL] Θ (where aL 6= cL)

[bS/aS] (·) , (·)
[bS/aS] (proc(cL, Q), Θ) , proc(cL, [bS/aS] Q), [bS/aS] Θ

[bS/aS] (·) , (·)
[bS/aS] (proc(cS, Q), Λ) , proc(cS, [bS/aS] Q), [bS/aS] Λ (where aS 6= cS)

[bS/aS] (unavail(cS), Λ) , unavail(cS), [bS/aS] Λ

For a well-typed configuration Γ �Σ proc(cL, [bL/aL] Q), [bL/aL] Θ :: ∆ where aL occurs in Q, it follows by induction on
the configuration typing that [bL/aL] Θ = Θ. In order for aL to be used in Q it must be offered by the sub-configuration
Θ and hence cannot be used by any process in Θ. Both side-conditions are easily met in all cases Definition 1 is
used.

Definition 2 (Concretization). A concretization is a partial order on structural contexts Γ and is inductively
defined by the following rules, relying on the partial order ⊥ ≤ ↑SLCL ≤ >, for any CL:

Γ C (·)
(T-C 1)

Â ≤ B̂ Γ′ C Γ

Γ′, xS : Â C Γ, xS : B̂

(T-C 2)

Definition 3 (Poised Process and Configuration). A proc(a, Pa) is poised if it is communicating along its providing
channel. The poised processes in SILLS are:

Receiving Sending

proc(aL, y ← recv aL ; Py) proc(aL, send aL b ; P)
proc(aL, close aL)

proc(aL, case aL of l ⇒ P) proc(aL, aL.lh ; P)
proc(aS, xL ← accept aS ; PxL) proc(aL, xS ← detach aL ; PxS)

A configuration Θ is poised if and only if all proc(aL, PaL
) ∈ Θ are poised. A configuration Λ is poised if and only

if all proc(aS, PaS
) ∈ Λ are poised.

Definition 4 (Blocked Process). A process is blocked along aS if it has the form proc(cL, xL ← acquire aS ; QxL).

D.1.2 Lemmas and Corollaries

Lemma 1 (Process Term Substitution). Given the partial order ⊥ ≤ ↑SLCL ≤ >, for any CL, the following substi-
tutions are type-preserving and thus admissible:

1. If Γ; ∆ `Σ P :: (xL : AL), then, for any fresh yL : AL, Γ; ∆ `Σ [yL/xL]P :: (yL : AL).

30

2. If Γ; ∆, yL : BL `Σ P :: (xL : AL), then, for any fresh zL : BL, Γ; ∆, zL : BL `Σ [zL/yL]P :: (xL : AL).
3. If Γ, yS : B̂; ∆ `Σ P :: (xL : AL), then, for any fresh zS : Ĉ such that Ĉ ≤ B̂, Γ, zS : Ĉ; ∆ `Σ [zS/yS]P :: (xL : AL).
4. If Γ, yS : Ĉ, y′S : Ĉ; ∆ `Σ P :: (xL : AL), then Γ, yS : Ĉ; ∆ `Σ [yS/y

′
S]P :: (xL : AL).

5. If Γ `Σ P :: (xS : AS), then, for any fresh yS : AS, Γ, yS : AS `Σ [yS/xS]P :: (yS : AS).
6. If Γ, xS : AS, x

′
S : AS `Σ P :: (x′S : AS), then Γ, xS : AS `Σ [xS/x

′
S]P :: (xS : AS).

7. If Γ, yS : B̂ `Σ P :: (xS : AS), then, for any fresh zS : Ĉ such that Ĉ ≤ B̂, Γ, zS : Ĉ `Σ [zS/yS]P :: (xS : AS).
8. If Γ, yS : Ĉ, y′S : Ĉ `Σ P :: (xS : AS), then Γ, yS : Ĉ `Σ [yS/y

′
S]P :: (xS : AS).

Proof. We prove each case in turn:

Lemma 1-1: By α-equivalence.

Lemma 1-2: By α-equivalence.

Lemma 1-3 and 1-7: By simultaneous induction on Γ, yS : B̂; ∆ `Σ P :: (xL : AL) and Γ, yS : B̂ `Σ P :: (xS : AS):

• Γ, yS : B̂; yL : AL `Σ fwd xL yL :: (xL : AL) (this case)

Γ, zS : Ĉ; yL : AL `Σ fwd xL yL :: (xL : AL) (since yS does not occur in the process term)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
• Γ, yS : B̂ `Σ fwd xS yS :: (xS : BS) and B̂ ≤ BS (this case)

Γ, zS : Ĉ `Σ fwd xS zS :: (xS : BS) (by (T-IdS) and since Ĉ ≤ BS by transitivity of ≤)

for some fresh zS : Ĉ such that Ĉ ≤ B̂

• Γ, x′S : Â, yS : B̂ `Σ fwd xS x
′
S :: (xS : AS) and Â ≤ AS (this case)

Γ, x′S : Â, zS : Ĉ `Σ fwd xS x
′
S :: (xS : AS) (since yS does not occur in the process term)

for some fresh zS : Ĉ such that Ĉ ≤ B̂

• Γ,Γ′, yS : B̂; ∆,∆′ `Σ x′L ← XL ← yL, wS, yS ; Qx′
L

:: (xL : AL) (this case)

(x ′′L : A′L ← XL ← yL
′ : BL,wS

′ : BS, y
′
S : BS = Px ′

L,yL
′,wS

′,y′S
) ∈ Σ (this case)

B̂ ≤ BS and Γ = wS : B̂ and ∆ = yL : BL (this case)

Γ,Γ′, yS : B̂; ∆′, x′L : A′L `Σ Qx′
L

:: (xL : AL) (this case)

Γ,Γ′, zS : Ĉ; ∆′, x′L : A′L `Σ [zS/yS]Qx′
L

:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ,Γ′, zS : Ĉ; ∆,∆′ `Σ x′L ← XL ← yL, wS, zS ; [zS/yS]Qx′

L
:: (xL : AL) (by (T-SpawnLL))

• Γ,Γ′, yS : B̂; ∆,∆′ `Σ x′L ← XL ← yL, wS ; Qx′
L

:: (xL : AL) (this case)

where yS /∈ wS

(x ′′L : A′L ← XL ← yL
′ : BL,wS

′ : BS : BS = Px ′
L,yL

′,wS
′) ∈ Σ (this case)

B̂ ≤ BS and Γ = wS : B̂ and ∆ = yL : BL (this case)

Γ,Γ′, yS : B̂; ∆′, x′L : A′L `Σ Qx′
L

:: (xL : AL) (this case)

Γ,Γ′, zS : Ĉ; ∆′, x′L : A′L `Σ [zS/yS]Qx′
L

:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ,Γ′, zS : Ĉ; ∆,∆′ `Σ x′L ← XL ← yL, wS ; [zS/yS]Qx′

L
:: (xL : AL) (by (T-SpawnLL))

• Γ,Γ′, yS : B̂; ∆ `Σ x′S ← XS ← wS, yS ; Qx′
S

:: (xL : AL) (this case)

(x ′′S : AS ← XS ← wS
′ : BS, y

′
S : BS = Px ′

S,wS
′,y′S

) ∈ Σ (this case)

B̂ ≤ BS and Γ = wS : B̂ (this case)

Γ,Γ′, yS : B̂, x′S : AS; ∆ `Σ Qx′
S

:: (xL : AL) (this case)

Γ,Γ′, zS : Ĉ, x′S : AS; ∆ `Σ [zS/yS]Qx′
S

:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ,Γ′, zS : Ĉ; ∆ `Σ x′S ← XS ← wS, zS ; [zS/yS]Qx′

S
:: (xL : AL) (by (T-SpawnLS))

31

• Γ,Γ′, yS : B̂; ∆ `Σ x′S ← XS ← wS ; Qx′
S

:: (xL : AL) (this case)

where yS /∈ wS

(x ′′S : AS ← XS ← wS
′ : BS = Px ′

S,wS
′) ∈ Σ (this case)

B̂ ≤ BS and Γ = wS : B̂ (this case)

Γ,Γ′, yS : B̂, x′S : AS; ∆ `Σ Qx′
S

:: (xL : AL) (this case)

Γ,Γ′, zS : Ĉ, x′S : AS; ∆ `Σ [zS/yS]Qx′
S

:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ,Γ′, zS : Ĉ; ∆ `Σ x′S ← XS ← wS ; [zS/yS]Qx′

S
:: (xL : AL) (by (T-SpawnLS))

• Γ,Γ′, yS : B̂ `Σ x′S ← XS ← wS, yS ; Qx′
S

:: (xS : AS) (this case)

(x ′′S : A′S ← XS ← wS
′ : BS, y

′
S : BS = Px ′

S,wS
′,y′S

) ∈ Σ (this case)

B̂ ≤ BS and Γ = wS : B̂ (this case)

Γ,Γ′, yS : B̂, x′S : A′S `Σ Qx′
S

:: (xS : AS) (this case)

Γ,Γ′, zS : Ĉ, x′S : A′S `Σ [zS/yS]Qx′
S

:: (xS : AS) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ,Γ′, zS : Ĉ `Σ x′S ← XS ← wS, zS ; [zS/yS]Qx′

S
:: (xS : AS) (by (T-SpawnSS))

• Γ,Γ′, yS : B̂ `Σ x′S ← XS ← wS ; Qx′
S

:: (xS : AS) (this case)

where yS /∈ wS

(x ′′S : A′S ← XS ← wS
′ : BS = Px ′

S,wS
′) ∈ Σ (this case)

B̂ ≤ BS and Γ = wS : B̂ (this case)

Γ,Γ′, yS : B̂, x′S : A′S `Σ Qx′
S

:: (xS : AS) (this case)

Γ,Γ′, zS : Ĉ, x′S : A′S `Σ [zS/yS]Qx′
S

:: (xS : AS) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ,Γ′, zS : Ĉ `Σ x′S ← XS ← wS ; [zS/yS]Qx′

S
:: (xS : AS) (by (T-SpawnSS))

• Γ, yS : B̂; ∆ `Σ x′L ← acquire yS ;Qx ′
L

:: (xL : AL) (this case)

B̂ ≤ ↑SLCL (this case)

Γ, yS : B̂; ∆, x′L : CL `Σ Qx ′
L

:: (xL : AL) (this case)

Γ, zS : Ĉ; ∆, x′L : CL `Σ [zS/yS]Qx ′
L

:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Ĉ ≤ ↑SLCL (by transitivity of ≤)

Γ, zS : Ĉ; ∆ `Σ x′L ← acquire zS ; [zS/yS]Qx ′
L

:: (xL : AL) (by (T-↑SLL))

• Γ, yS : B̂, y′S : D̂; ∆ `Σ x′L ← acquire y′S ;Qx ′
L

:: (xL : AL) (this case)

D̂ ≤ ↑SLCL (this case)

Γ, yS : B̂, y′S : D̂; ∆, x′L : CL `Σ Qx ′
L

:: (xL : AL) (this case)

Γ, zS : Ĉ, y′S : D̂; ∆, x′L : CL `Σ [zS/yS]Qx ′
L

:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ, y′S : D̂; ∆ `Σ x′L ← acquire y′S ; [zS/yS]Qx ′

L
:: (xL : AL) (by (T-↑SLL))

• Γ, yS : B̂ `Σ xL ← acceptxS ;PxL :: (xS : ↑SLAL) (this case)

Γ, yS : B̂; · `Σ PxL :: (xL : AL) (this case)

Γ, zS : Ĉ; · `Σ [zS/yS]PxL :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ `Σ xL ← acceptxS ; [zS/yS]PxL :: (xS : ↑SLAL) (by (T-↑SLR))

• Γ, yS : B̂; ∆, x′L : ↓SLAS `Σ x′S ← releasex′L ;QxS′ :: (xL : AL) (this case)

32

Γ, yS : B̂, x′S : AS; ∆ `Σ QxS′ :: (xL : AL) (this case)

Γ, zS : Ĉ, x′S : AS; ∆ `Σ [zS/yS]QxS′ :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, x′L : ↓SLAS `Σ x′S ← releasex′L ; [zS/yS]QxS′ :: (xL : AL) (by (T-↓SLL))

• Γ, yS : B̂; · `Σ xS ← detachxL ;PxS :: (xL : ↓SLAS) (this case)

Γ, yS : B̂ `Σ PxS :: (xS : AS) (this case)

Γ, zS : Ĉ `Σ [zS/yS]PxS :: (xS : AS) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; · `Σ xS ← detachxL ; [zS/yS]PxS :: (xL : ↓SLAS) (by (T-↓SLR))

• Γ, yS : B̂; ∆, yL : 1 `Σ wait yL ;Q :: (xL : AL) (this case)

Γ, yS : B̂; ∆ `Σ Q :: (xL : AL) (this case)

Γ, zS : Ĉ; ∆ `Σ [zS/yS]Q :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, yL : 1 `Σ wait yL ; [zS/yS]Q :: (xL : AL) (by (T-1L))

• Γ, yS : B̂; · `Σ closexL :: (xL : 1) (this case)

Γ, zS : Ĉ; · `Σ closexL :: (xL : 1) (since yS does not occur in the process term)

for some fresh zS : Ĉ such that Ĉ ≤ B̂

• Γ, yS : B̂; ∆, x′L : BL ⊗ CL `Σ yL ← recv x′L ;QyL
:: (xL : AL) (this case)

Γ, yS : B̂; ∆, x′L : CL, yL : BL `Σ QyL
:: (xL : AL) (this case)

Γ, zS : Ĉ; ∆, x′L : CL, yL : BL `Σ [zS/yS]QyL
:: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, x′L : BL ⊗ CL `Σ yL ← recv x′L ; [zS/yS]QyL

:: (xL : AL) (by (T-⊗L))

• Γ, yS : B̂; ∆, yL : AL `Σ sendxL yL ;P :: (xL : AL ⊗BL) (this case)

Γ, yS : B̂; ∆ `Σ P :: (xL : BL) (this case)

Γ, zS : Ĉ; ∆ `Σ [zS/yS]P :: (xL : BL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, yL : AL `Σ sendxL yL ; [zS/yS]P :: (xL : AL ⊗BL) (by (T-⊗R))

• Γ, yS : B̂; ∆, x′L : (∃x:AS. BL) `Σ y′S ← recv x′L ;QyS
′ :: (xL : AL) (this case)

Γ, yS : B̂, y′S : AS; ∆, x′L : BL `Σ QyS
′ :: (xL : AL) (this case)

Γ, zS : Ĉ, y′S : AS; ∆, x′L : BL `Σ [zS/yS]QyS
′ :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, x′L : (∃x:AS. BL) `Σ y′S ← recv x′L ; [zS/yS]QyS

′ :: (xL : AL) (by (T-∃L))

• Γ, yS : B̂; ∆ `Σ sendxL yS ;P :: (xL : (∃x:BS. AL)) (this case)

Γ, yS : B̂; ∆ `Σ P :: (xL : AL) and B̂ ≤ BS (this case)

Γ, zS : Ĉ; ∆ `Σ [zS/yS]P :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Ĉ ≤ BS (by transitivity of ≤)

Γ, zS : Ĉ; ∆ `Σ sendxL zS ; [zS/yS]P :: (xL : (∃x:BS. AL)) (by (T-∃R))

• Γ, yS : B̂, y′S : Â; ∆ `Σ sendxL y
′
S ;P :: (xL : (∃x:AS. BL)) (this case)

Γ, yS : B̂, y′S : Â; ∆ `Σ P :: (xL : BL) and Â ≤ AS (this case)

Γ, zS : Ĉ, y′S : Â; ∆ `Σ [zS/yS]P :: (xL : BL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂

33

Γ, zS : Ĉ, y′S : Â; ∆ `Σ sendxL y
′
S ; [zS/yS]P :: (xL : (∃x:AS. BL)) (by (T-∃R))

• Γ, yS : B̂; ∆, x′L : AL (BL, yL : AL `Σ sendx′L yL ;Q :: (xL : AL) (this case)

Γ, yS : B̂; ∆, x′L : BL `Σ Q :: (xL : AL) (this case)

Γ, zS : Ĉ; ∆, x′L : BL `Σ [zS/yS]Q :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, x′L : AL (BL, yL : AL `Σ sendx′L yL ; [zS/yS]Q :: (xL : AL) (by (T-(L))

• Γ, yS : B̂; ∆ `Σ yL ← recv xL ;PyL
:: (xL : AL (BL) (this case)

Γ, yS : B̂; ∆, yL : AL `Σ PyL
:: (xL : BL) (this case)

Γ, zS : Ĉ; ∆, yL : AL `Σ [zS/yS]PyL
:: (xL : BL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆ `Σ yL ← recv xL ; [zS/yS]PyL

:: (xL : AL (BL) (by (T-(R))

• Γ, yS : B̂; ∆, x′L : (Πx:BS. CL) `Σ sendx′L yS ;Q :: (xL : AL) (this case)

Γ, yS : B̂; ∆, x′L : CL `Σ Q :: (xL : AL) and B̂ ≤ BS (this case)

Γ, zS : Ĉ; ∆, x′L : CL `Σ [zS/yS]Q :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Ĉ ≤ BS (by transitivity of ≤)

Γ, zS : Ĉ; ∆, x′L : (Πx:BS. CL) `Σ sendx′L zS ; [zS/yS]Q :: (xL : AL) (by (T-ΠL))

• Γ, yS : B̂, y′S : Â; ∆, x′L : (Πx:AS. BL) `Σ sendx′L y
′
S ;Q :: (xL : AL) (this case)

Γ, yS : B̂, y′S : Â; ∆, x′L : BL `Σ Q :: (xL : AL) and Â ≤ AS (this case)

Γ, zS : Ĉ, y′S : Â; ∆, x′L : BL `Σ [zS/yS]Q :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ, y′S : Â; ∆, x′L : (Πx:AS. BL) `Σ sendx′L y

′
S ; [zS/yS]Q :: (xL : AL) (by (T-ΠL))

• Γ, yS : B̂; ∆ `Σ y′S ← recv xL ;PyS
:: (xL : (Πx:AS. BL)) (this case)

Γ, yS : B̂, y′S : AS; ∆ `Σ PyS
:: (xL : BL) (this case)

Γ, zS : Ĉ, y′S : AS; ∆ `Σ [zS/yS]PyS
:: (xL : BL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆ `Σ y′S ← recv xL ; [zS/yS]PyS

:: (xL : (Πx:AS. BL)) (by (T-ΠR))

• Γ, yS : B̂; ∆, x′L : ⊕{l : BL} `Σ case x′L of l⇒ Q :: (xL : AL) (this case)

(∀i) Γ, yS : B̂; ∆, x′L : BLi
`Σ Qi :: (xL : AL) (this case)

(∀i) Γ, zS : Ĉ; ∆, x′L : BLi `Σ [zS/yS]Qi :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, x′L : ⊕{l : BL} `Σ case x′L of l⇒ [zS/yS]Q :: (xL : AL) (by (T-⊕L))

• Γ, yS : B̂; ∆ `Σ xL.lh ;P :: (xL : ⊕{l : AL}) (this case)

Γ, yS : B̂; ∆ `Σ P :: (xL : AL h) (this case)

Γ, zS : Ĉ; ∆ `Σ [zS/yS]P :: (xL : AL h) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆ `Σ xL.lh ; [zS/yS]P :: (xL : ⊕{l : AL}) (by (T-⊕R))

• Γ, yS : B̂; ∆, x′L : N{l : BL} `Σ x′L.lh ;Q :: (xL : AL) (this case)

Γ, yS : B̂; ∆, x′L : BL h `Σ Q :: (xL : AL) (this case)

Γ, zS : Ĉ; ∆, x′L : BL h `Σ [zS/yS]Q :: (xL : AL) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆, x′L : N{l : BL} `Σ x′L.lh ; [zS/yS]Q :: (xL : AL) (by (T-NL))

34

• Γ, yS : B̂; ∆ `Σ case xL of l⇒ P :: (xL : N{l : AL}) (this case)

(∀i) Γ, yS : B̂; ∆ `Σ Pi :: (xL : ALi
) (this case)

(∀i) Γ, zS : Ĉ; ∆ `Σ [zS/yS]Pi :: (xL : ALi
) (by I.H.)

for some fresh zS : Ĉ such that Ĉ ≤ B̂
Γ, zS : Ĉ; ∆ `Σ case xL of l⇒ [zS/yS]P :: (xL : N{l : AL}) ((T-NR))

Lemma 1-4: By contraction.

Lemma 1-5: By α-equivalence.

Lemma 1-6: By contraction.

Lemma 1-8: By contraction.

Lemma 2 (Configuration Substitution). Writing Q〈a〉 for a process term Q with an occurrence of a channel a
and given the partial order ⊥ ≤ ↑SLCL ≤ >, for any CL, the following substitutions are type-preserving and thus
admissible:

1. If Γ �Σ proc(cL, Q〈aL〉), Θ :: ∆ and Γ �Σ Θ :: (∆,∆1, aL : AL), then, for any Θ′ such that Γ �Σ Θ′ :: (∆,∆1, bL :
AL), Γ �Σ proc(cL, [bL/aL] Q〈aL〉), Θ′ :: ∆.

2. If Γ, aS : Â, bS : B̂ �Σ Θ :: ∆ and B̂ ≤ Â, then Γ, aS : Â, bS : B̂ �Σ [bS/aS] Θ :: ∆.
3. If Γ, aS : Â, bS : B̂ �Σ Λ :: Γ1 and proc(aS,) /∈ Λ and unavail(aS) /∈ Λ and B̂ ≤ Â, then Γ, aS : Â, bS : B̂ �Σ

[bS/aS] Λ :: Γ1.

Proof. We prove each case in turn:

1. By induction on Γ �Σ proc(cL, Q〈aL〉), Θ :: ∆:

• Γ �Σ proc(cL, Q〈aL〉), Θ :: ∆ and Γ �Σ Θ :: (∆,∆1, aL : AL) (this case)

(cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (this case)
Γ; ∆1, aL : AL `Σ Q〈aL〉 :: (cL : CL) (this case)
Γ; ∆1, bL : AL `Σ [bL/aL]Q〈aL〉 :: (cL : CL) (by Lemma 1-2)
Γ �Σ proc(cL, [bL/aL] Q〈aL〉), Θ′ :: ∆ (by (T-Ω2))

for some Θ′ such that Γ �Σ Θ′ :: (∆,∆1, bL : AL)

2. By induction on Γ, aS : Â, bS : B̂ �Σ Θ :: ∆:

• Γ, aS : Â, bS : B̂ �Σ (·) :: (·) and B̂ ≤ Â (this case)

Γ, aS : Â, bS : B̂ �Σ (·) :: (·) (by Definition 1)

• Γ, bS : B̂, cS : Ĉ �Σ proc(aL, PaL
), Θ :: (∆, aL : AL) and Ĉ ≤ B̂ (this case)

(aS : B̂) ∈ Γ and `Σ (AL, B̂) esync (this case)

Γ, bS : B̂, cS : Ĉ; ∆′ `Σ PaL :: (aL : AL) (this case)

Γ, bS : B̂, cS : Ĉ �Σ Θ : ∆,∆′ (this case)

Γ, bS : B̂, cS : Ĉ �Σ [cS/bS] Θ : ∆,∆′ (by I.H.)

Γ, c′S : Ĉ, cS : Ĉ; ∆′ `Σ [c′S/bS]PaL :: (aL : AL) (by Lemma 1-3)

for some fresh c′S : Ĉ

Γ, bS : B̂, cS : Ĉ; ∆′ `Σ [cS/c
′
S] ([c′S/bS]PaL) :: (aL : AL) (by Lemma 1-4 and weakening)

Γ, bS : B̂, cS : Ĉ �Σ proc(aL, [cS/bS] PaL
), [cS/bS] Θ :: (∆, aL : AL) (by (T-Θ2))

3. By induction on Γ, aS : Â, bS : B̂ �Σ Λ :: Γ1:

• Γ, aS : Â, bS : B̂ �Σ (·) :: (·) and proc(aS,) /∈ (·) and unavail(aS) /∈ (·) and B̂ ≤ Â (this case)

Γ, aS : Â, bS : B̂ �Σ (·) :: (·) (by Definition 1)

• Γ, aS : Â, bS : B̂ �Σ proc(cS, PcS) :: (cS : ↑SLCL) and B̂ ≤ Â and aS 6= cS (this case)
`Σ (↑SLCL,>) esync (this case)

35

Γ, aS : Â, bS : B̂ `Σ PaS :: (cS : ↑SLCL) (this case)

Γ, b′S : B̂, bS : B̂ `Σ [b′S/aS]PaS :: (cS : ↑SLCL) (by Lemma 1-7)

for some fresh b′S : B̂

Γ, aS : Â, bS : B̂ `Σ [bS/b
′
S] ([b′S/aS]PaS) :: (cS : ↑SLCL) (by Lemma 1-8 and weakening)

Γ, aS : Â, bS : B̂ `Σ proc(cS, [bS/aS] PaS
) :: (cS : ↑SLCL) (by (T-Λ2))

• Γ, aS : Â, bS : B̂ �Σ unavail(cS) :: (cS : Ĉ) and B̂ ≤ Â and aS 6= cS (this case)

Γ, aS : Â, bS : B̂ �Σ unavail(cS) :: (cS : Ĉ) (by Definition 1)

• Γ, aS : Â, bS : B̂ �Σ Λ1,Λ2 :: Γ1,Γ2, bS : B̂ and proc(aS,) /∈ Λ1,Λ2 and unavail(aS) /∈ Λ1,Λ2 (this case)
for some Λ1, Λ2, Γ1, and Γ2

B̂ ≤ Â (this case)

Γ, aS : Â, bS : B̂ �Σ Λ1 :: Γ1, bS : B̂ (this case)

Γ, aS : Â, bS : B̂ �Σ Λ2 :: Γ2 (this case)

Γ, aS : Â, bS : B̂ �Σ [bS/aS] Λ1 :: Γ1, bS : B̂ (by I.H.)

Γ, aS : Â, bS : B̂ �Σ [bS/aS] Λ2 :: Γ2 (by I.H.)

Γ, aS : Â, bS : B̂ �Σ [bS/aS] (Λ1,Λ2) :: Γ1,Γ2, bS : B̂ ((T-Λ4))

Lemma 3 (Update of Γ). Given the partial order ⊥ ≤ ↑SLCL ≤ >, for any CL, the following substitutions are
type-preserving and thus admissible:

1. If Γ, aS : Â �Σ Θ :: ∆, then, for any CL such that `Σ (CL, Â) esync and for any B̂ such that B̂ ≤ Â and
`Σ (CL, B̂) esync, Γ, aS : B̂ �Σ Θ :: ∆.

2. If Γ, aS : Â �Σ Λ :: Γ1 with proc(aS, P) /∈ Λ and unavail(aS) /∈ Λ, then, for any CL such that `Σ (CL, Â) esync and
for any B̂ such that B̂ ≤ Â and `Σ (CL, B̂) esync, Γ, aS : B̂ �Σ Λ :: Γ1.

Proof. We prove each case in turn:

1. By induction on Γ, aS : Â �Σ Θ :: ∆:

• Γ, aS : Â �Σ (·) :: (·) (this case)

Γ, aS : B̂ �Σ (·) :: (·) (since aS does not occur in the configuration)

for some CL such that `Σ (CL, Â) esync and for any B̂ such that B̂ ≤ Â
• Γ, aS : Â �Σ proc(cL, PcL), Θ :: (∆, cL : DL) (this case)

(cS : D̂) ∈ Γ and `Σ (DL, D̂) esync (this case)

Γ, aS : Â; ∆′ `Σ PcL :: (cL : DL) (this case)

Γ, aS : Â �Σ Θ : ∆,∆′ (this case)

Γ, aS : B̂ �Σ Θ : ∆,∆′ (by I.H.)

for some CL such that `Σ (CL, Â) esync and for any B̂ such that B̂ ≤ Â
Γ, a′S : B̂; ∆′ `Σ [a′S/aS]PcL :: (cL : DL) (by Lemma 1-3)

for some fresh a′S : B̂

Γ, aS : B̂; ∆′ `Σ [aS/a
′
S] ([a′S/aS]PcL) :: (cL : DL) (by Lemma 1-4 and weakening)

Γ, aS : B̂ �Σ proc(cL, PcL), Θ :: (∆, cL : DL) (by (T-Θ2))

2. By induction on Γ, aS : Â �Σ Λ :: Γ1:

• Γ, aS : Â �Σ (·) :: (·) and proc(aS,) /∈ (·) and unavail(aS) /∈ (·) (this case)

Γ, aS : B̂ �Σ (·) :: (·) (since aS does not occur in the configuration)

for some CL such that `Σ (CL, Â) esync and for any B̂ such that B̂ ≤ Â
• Γ, aS : Â �Σ proc(cS, PcS) :: (cS : ↑SLDL) and aS 6= cS (this case)
`Σ (↑SLDL,>) esync (this case)

Γ, aS : Â `Σ PaS :: (cS : ↑SLDL) (this case)

Γ, b′S : B̂ `Σ [b′S/aS]PaS :: (cS : ↑SLDL) (by Lemma 1-7)

for some fresh b′S : B̂ and CL such that `Σ (CL, Â) esync and B̂ ≤ Â
Γ, aS : B̂ `Σ [aS/b

′
S] ([b′S/aS]PaS) :: (cS : ↑SLDL) (by Lemma 1-8 and weakening)

Γ, aS : B̂ `Σ proc(cS, PaS
) :: (cS : ↑SLDL) (by (T-Λ2))

36

• Γ, aS : Â �Σ unavail(cS) :: (cS : Ĉ) and aS 6= cS (this case)

Γ, aS : B̂ �Σ unavail(cS) :: (cS : Ĉ) (since aS does not occur in the configuration)

• Γ, aS : Â �Σ Λ1,Λ2 :: Γ1,Γ2 and proc(aS,) /∈ Λ1,Λ2 and unavail(aS) /∈ Λ1,Λ2 (this case)
for some Λ1, Λ2, Γ1, and Γ2

Γ, aS : Â �Σ Λ1 :: Γ1 (this case)

Γ, aS : Â �Σ Λ2 :: Γ2 (this case)

Γ, aS : B̂ �Σ Λ1 :: Γ1 (by I.H.)

for some CL such that `Σ (CL, Â) esync and for any B̂ such that B̂ ≤ Â
Γ, aS : B̂ �Σ Λ2 :: Γ2 (by I.H.)

Γ, aS : B̂ �Σ Λ1,Λ2 :: Γ1,Γ2 ((T-Λ4))

Lemma 4 (Equi-Synchronizing and ⊥). If `Σ (CL, ↑SLAL) esync and `Σ (CL, ↑SLBL) esync, for any CL, ↑SLAL, ↑SLBL

such that AL 6= BL, then `Σ (CL,⊥) esync.

Proof. For the presentation of the proof, we switch to a set-based formulation of esync to allow for a more natural
formulation of the coinductive proof. The assertion `Σ (D, D̂) esync then is expressed as (D, D̂) ∈ esync. Given
the monotone generating function F arising from the rules defined in Figure 16, we obtain that esync ⊆ F(esync),
since esync is F-consistent.

Next, we define the set esync′ as
esync′ , esync ∪ esync⊥

where esync⊥ is defined as:

esync⊥ , {(CL,⊥) | ∃AL, BL . (CL, ↑SLAL) ∈ esync ∧ (CL, ↑SLBL) ∈ esync ∧ AL 6= BL}

To prove Lemma 4 it suffices to show that esync′ is F-consistent, i.e., that esync′ ⊆ F(esync′). Thus, we have to
show the following two cases:

(i) esync ⊆ F(esync′) and
(ii) esync⊥ ⊆ F(esync′)

We first show (i) and then (ii):

(i) esync ⊆ esync′ (by definition of esync′)
F(esync) ⊆ F(esync′) (by monotonicity of F)
esync ⊆ F(esync) (since esync is F-consistent)
esync ⊆ F(esync′) (by transitivity of ⊆)

(ii) We consider each syntactic form of CL in turn:

• (⊕{l : C ′L},⊥) ∈ esync⊥ (this case)

(⊕{l : C ′L}, ↑
S

LAL) ∈ esync and (⊕{l : C ′L}, ↑
S

LBL) ∈ esync (this case)
for some AL and BL such that AL 6= BL

(∀i) (C ′Li
, ↑SLAL) ∈ esync and (∀i) (C ′Li

, ↑SLBL) ∈ esync (by inversion on (T-Esync⊕))
(∀i) (C ′Li

,⊥) ∈ esync⊥ (by definition of esync⊥)
(∀i) (C ′Li

,⊥) ∈ esync′ (since esync⊥ ⊆ esync′)

(⊕{l : C ′L},⊥) ∈ F(esync′) (by (T-Esync⊕))

• (N{l : C ′L},⊥) ∈ esync⊥ (this case)

(N{l : C ′L}, ↑
S

LAL) ∈ esync and (N{l : C ′L}, ↑
S

LBL) ∈ esync (this case)
for some AL and BL such that AL 6= BL

(∀i) (C ′Li
, ↑SLAL) ∈ esync and (∀i) (C ′Li

, ↑SLBL) ∈ esync (by inversion on (T-EsyncN))
(∀i) (C ′Li

,⊥) ∈ esync⊥ (by definition of esync⊥)
(∀i) (C ′Li

,⊥) ∈ esync′ (since esync⊥ ⊆ esync′)

(N{l : C ′L},⊥) ∈ F(esync′) (by (T-EsyncN))

37

• (C ′L ⊗ C ′′L ,⊥) ∈ esync⊥ (this case)
(C ′L ⊗ C ′′L , ↑

S

LAL) ∈ esync and (C ′L ⊗ C ′′L , ↑
S

LBL) ∈ esync (this case)
for some AL and BL such that AL 6= BL

(C ′′L , ↑
S

LAL) ∈ esync and (C ′′L , ↑
S

LBL) ∈ esync (by inversion on (T-Esync⊗))
(C ′′L ,⊥) ∈ esync⊥ (by definition of esync⊥)
(C ′′L ,⊥) ∈ esync′ (since esync⊥ ⊆ esync′)
(C ′L ⊗ C ′′L ,⊥) ∈ F(esync′) (by (T-Esync⊗))

• (C ′L (C ′′L ,⊥) ∈ esync⊥ (this case)
(C ′L (C ′′L , ↑

S

LAL) ∈ esync and (C ′L (C ′′L , ↑
S

LBL) ∈ esync (this case)
for some AL and BL such that AL 6= BL

(C ′′L , ↑
S

LAL) ∈ esync and (C ′′L , ↑
S

LBL) ∈ esync (by inversion on (T-Esync())
(C ′′L ,⊥) ∈ esync⊥ (by definition of esync⊥)
(C ′′L ,⊥) ∈ esync′ (since esync⊥ ⊆ esync′)
(C ′L (C ′′L ,⊥) ∈ F(esync′) (by (T-Esync())

• (∃x:CS. C
′
L,⊥) ∈ esync⊥ (this case)

(∃x:CS. C
′
L, ↑

S

LAL) ∈ esync and (∃x:CS. C
′
L, ↑

S

LBL) ∈ esync (this case)
for some AL and BL such that AL 6= BL

(C ′L, ↑
S

LAL) ∈ esync and (C ′L, ↑
S

LBL) ∈ esync (by inversion on (T-Esync∃))
(C ′L,⊥) ∈ esync⊥ (by definition of esync⊥)
(C ′L,⊥) ∈ esync′ (since esync⊥ ⊆ esync′)
(∃x:CS. C

′
L,⊥) ∈ F(esync′) (by (T-Esync∃))

• (Πx:CS. C
′
L,⊥) ∈ esync⊥ (this case)

(Πx:CS. C
′
L, ↑

S

LAL) ∈ esync and (Πx:CS. C
′
L, ↑

S

LBL) ∈ esync (this case)
for some AL and BL such that AL 6= BL

(C ′L, ↑
S

LAL) ∈ esync and (C ′L, ↑
S

LBL) ∈ esync (by inversion on (T-Esync∃))
(C ′L,⊥) ∈ esync⊥ (by definition of esync⊥)
(C ′L,⊥) ∈ esync′ (since esync⊥ ⊆ esync′)
(Πx:CS. C

′
L,⊥) ∈ F(esync′) (by (T-Esync∃))

• (1,⊥) ∈ esync⊥ (this case)
Nothing to show.

• (↓SLCS,⊥) ∈ esync⊥ (this case)
(↓SLCS, ↑SLAL) ∈ esync and (↓SLCS, ↑SLBL) ∈ esync (this case)

for some AL and BL such that AL 6= BL

Contradiction. (since AL = BL or AL = BL = > according to (T-Esync↓SL-1) or (T-Esync↓SL-2), resp.)

Corollary 1 (Balance between Λ and Θ). If the configuration Λ; Θ is well-formed, then, for any proc(aS,) in Λ,
there does not exist a proc(aL,) in Θ.

Proof. By well-formedness of Λ; Θ (see Section B.3) it follows that unavail(aS) /∈ Λ and that ∀a.proc(aL,) ∈ Θ =⇒
unavail(aS) ∈ Λ. Then, by the contrapositive, it follows that proc(aL,) /∈ Θ.

Lemma 5 (Permutation of Θ). Writing Q〈aL〉 for a process term Q with an occurrence of a linear channel aL, the
following permutation is admissible:

If Γ �Σ Θ1, proc(cL, Q〈aL〉), Θ2, proc(aL, PaL
), Θ3 :: ∆, then Γ �Σ Θ1, proc(cL, Q〈aL〉), proc(aL, PaL

),Θ2, Θ3 :: ∆.

Proof. In the given typing derivation, proc(aL, PaL
) provides aL : AL for some AL to Θ1, proc(cL, Q〈aL〉), Θ2. Well-

formedness of a configuration (see Section B.3) guarantees that aL is unique within a configuration, and hence there
can be no other process in Θ2 that provides a service along aL. Moreover, channel aL cannot be consumed by Θ2

38

because channels are linear and aL occurs in proc(cL, Q〈aL〉). Any channels used by proc(aL, PaL
) will continue to

be available if we move the process to the left.

Lemma 6 (Truncate Θ). If Γ �Σ Θ1, proc(aL, PaL
), Θ2 :: ∆, then there exists an AL and ∆′ such that Γ �Σ

proc(aL, PaL
), Θ2 :: (∆′, aL : AL).

Proof. By induction on Γ �Σ Θ :: ∆:

• Γ �Σ (·) :: (·) (this case)
Holds vacuously.

• Γ �Σ proc(cL, PcL),Θ :: ∆ (this case)
Γ; ∆2 `Σ PcL :: (c : CL) (this case)

for some ∆2, ∆1, and CL such that ∆ = (∆1, c : CL)
Γ �Σ Θ :: ∆1,∆2 (this case)

(a) Θ1 = (·) and proc(aL, PaL
), Θ2 = proc(cL, PcL),Θ (this subcase)

Γ �Σ proc(cL, PcL),Θ :: (∆1, c : CL)
(b) Θ1 = proc(cL, PcL),Θ

′
1 and proc(aL, PaL

), Θ2 = proc(aL, PaL
),Θ2 (this subcase)

for some Θ′1 such that Θ = Θ′1, proc(aL, PaL
), Θ2

Γ �Σ proc(aL, PaL
),Θ2 :: (∆3, aL : AL) (by I.H.)

for some ∆3 and AL

Lemma 7 (Linear Process Terms are Stable under Concretization). If Γ1,Γ2; ∆ `Σ P :: (aL : AL) and Γ′2 C Γ2,
then Γ1,Γ

′
2; ∆ `Σ P :: (aL : AL).

Proof. By induction on Γ′2 C Γ2:

• Γ′2 C (·) (this case)
Γ1; ∆ `Σ P :: (aL : AL) (by assumption)
Γ1,Γ

′
2; ∆ `Σ P :: (aL : AL) (by weakening)

• Γ′3, xS : Â C Γ3, xS : B̂ and Γ′3 C Γ3 and Â ≤ B̂ (this case)

where Γ2 = Γ3, xS : B̂

Γ1,Γ3, xS : B̂; ∆ `Σ P :: (aL : AL) (by assumption)

Γ1,Γ
′
3, xS : B̂; ∆ `Σ P :: (aL : AL) (by I.H.)

Γ1,Γ
′
3, x
′
S : Â; ∆ `Σ [x′S/xS]P :: (aL : AL) (by Lemma 1-3)

where x′S fresh

Γ1,Γ
′
3, xS : Â; ∆ `Σ [xS/x

′
S] ([x′S/xS]P) :: (aL : AL) (by Lemma 1-4 and weakening)

Lemma 8 (Invariant Sub-Configuration in Θ). If Γ �Σ Θ1, Θ2 :: ∆ and Γ �Σ Θ2 :: ∆′, then, for any Γ′ and Θ′2
such that Γ′ �Σ Θ′2 :: ∆′ and Γ′ C Γ, Γ′ �Σ Θ1, Θ′2 :: ∆.

Proof. By induction on Γ �Σ Θ :: ∆:

• Γ �Σ (·) :: (·) (this case)
Holds vacuously.

• Γ �Σ proc(cL, PcL),Θ :: ∆ (this case)

Γ; ∆2 `Σ PcL :: (c : CL) and (cS : B̂) ∈ Γ and `Σ (CL, B̂) esync (this case)

for some ∆2, ∆1, CL, and B̂ such that ∆ = (∆1, c : CL)
Γ �Σ Θ :: ∆1,∆2 (this case)

39

(a) Θ1 = (·) and Θ2 = proc(cL, PcL),Θ and Γ �Σ proc(cL, PcL),Θ :: ∆ (this subcase)
Γ′ C Γ (by assumption)
Γ′ �Σ Θ′2 :: ∆ (by assumption)

(b) Θ1 = proc(cL, PcL),Θ
′
1 and Γ �Σ Θ2 :: ∆′ (this subcase)

for some Θ′1 such that Θ = Θ′1,Θ2

Γ′ �Σ Θ2 :: ∆′ (by assumption)
Γ′ C Γ (by assumption)
Γ′ �Σ Θ′1,Θ

′
2 :: ∆1,∆2 (by I.H.)

Γ′; ∆2 `Σ PcL :: (c : CL) (by Lemma 7)
Γ′ �Σ proc(cL, PcL),Θ

′
1,Θ

′
2 :: ∆ (by (T-Θ2))

Lemma 9 (Existence of Process for Offered Linear Channel). If Γ �Σ Θ :: ∆, then, for all aL ∈ dom(∆), there
exists exactly one proc(aL, PaL

), for some P , in Θ.

Proof. We prove Lemma 9 by induction Γ �Σ Θ :: ∆:

• Γ �Σ (·) :: (·) (this case)
Holds vacuously.

• Γ �Σ proc(aL, PaL
), Θ :: (∆, aL : AL) (this case)

Γ; ∆′ `Σ PaL :: (aL : AL) (this case)
for some ∆′

Γ �Σ Θ :: (∆,∆′) (this case)
For all bL ∈ dom(∆,∆′), there exists exactly one proc(bL, QbL), for some Q, in Θ. (by I.H.)

There exists exactly one proc(aL, PaL
) in proc(aL, PaL

), Θ that offers along aL.
(by well-formedness of configuration)

Lemma 10 (Existence of Provider). Writing Q〈am〉 for a process term Q with an occurrence of a channel am , the
following hold:

1. If Γ �Σ Λ; proc(cL, Q〈aS〉), Θ1 :: Γ; ∆, then either there exists a proc(aS, PaS
) in Λ, for some P , or there exists

an unavail(aS) in Λ.
2. If Γ �Σ Λ; proc(cL, Q〈aL〉), Θ1 :: Γ; ∆, then there exists exactly one proc(aL, PaL

), for some P , in Θ1.

Proof. We prove each case in turn:

1. Γ �Σ Λ; proc(cL, Q〈aS〉), Θ1 :: Γ; ∆ (by assumption)

Γ �Σ Λ :: Γ and Γ �Σ proc(cL, Q〈aS〉), Θ1 :: ∆ (by inversion on (T-Ω))

(aS : Â) ∈ Γ (by the meaning of the configuration and process typing judgment)

for some Â

Γ �Σ Λ1 :: (aS : Â) and Γ �Σ Λ2 :: Γ2 (by inversion on (T-Λ4))

for some Λ1, Λ2, and Γ1 such that Γ = Γ2, aS : Â

Either Λ1 = unavail(aS) or Λ1 = proc(aS, PaS
) (by inversion on (T-Λ2) and (T-Λ2))

for some P
2. Γ �Σ Λ; proc(cL, Q〈aL〉), Θ1 :: Γ; ∆ (by assumption)

Γ �Σ proc(cL, Q〈aL〉), Θ1 :: ∆ (by inversion on (T-Ω))

Γ; ∆′, aL : AL `Σ Q :: (cL : CL) and Γ �Σ Θ1 :: ∆1,∆
′, aL : AL

for some ∆′, ∆1, AL, and CL such that ∆ = ∆1, cL : CL

(by inversion on (T-Θ2) and meaning of process typing judgment)

There exists exactly one proc(aL, PaL
), for some P , in Θ1 (by Lemma 9)

40

D.2 Preservation

The preservation theorem expresses that the types of the providing linear channels are maintained along transitions
and that new shared channels may be allocated and the types of existing shared channels concretized.

Theorem 3 (Preservation). If Γ �Σ Λ; Θ :: Γ; ∆ and Λ; Θ −→ Λ′; Θ′, then Γ′ �Σ Λ′; Θ′ :: Γ′; ∆, for some Λ′, Θ′,
and Γ′ such that Γ′ C Γ.

Proof. We prove preservation by induction on the dynamics, constructing a derivation of a well-formed and well-
typed configuration Γ′ �Σ Λ′′; Θ′′ :: Γ′; ∆, where Λ′′ and Θ′′ are permutations of Λ′ and Θ′, respectively:

Case:

proc(aL, fwd aL bL) (D-IdL)

−→ aL = bL, aS = bS

Γ �Σ unavail(aS), unavail(bS), Λ1; Θ1, proc(aL, fwd aL bL), Θ2, proc(bL, P), Θ3 :: Γ; ∆
for some Λ1, Θ1, Θ2, Θ3, and proc(bL, P) (by assumption and Lemma 10-2)

Γ �Σ unavail(aS), unavail(bS), Λ1; Θ1, proc(aL, fwd aL bL), Θ2, proc(bL, P), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ unavail(aS), unavail(bS), Λ1; Θ1, proc(aL, fwd aL bL), proc(bL, P), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

unavail(aS), unavail(bS), Λ1; Θ1, proc(aL, fwd aL bL), proc(bL, P), Θ2, Θ3 (this case)
−→ unavail(aS), unavail(bS), [bS/aS] Λ1; [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3)

Γ �Σ unavail(aS), unavail(bS), Λ1 :: Γ (by inversion on (T-Ω))

Γ �Σ unavail(aS) :: Γ1 and Γ �Σ unavail(bS) :: Γ2 and Γ �Σ Λ1 :: Γ3 (by inversion on (T-Λ4))
for some Γ1, Γ2, and Γ3 such that Γ = Γ1,Γ2,Γ3

Γ1 = aS : Â and Γ2 = bS : B̂ (by inversion on (T-Λ3))

for some Â and B̂

Γ �Σ Θ1, proc(aL, fwd aL bL), proc(bL, P), Θ2, Θ3 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(aL, fwd aL bL), proc(bL, P), Θ2, Θ3 :: (∆1, aL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ fwd aL bL :: (aL : CL) and `Σ (CL, Â) esync (by inversion on (T-Θ2))

for some ∆′1 and since (aS : Â) ∈ Γ

∆′1 = bL : CL (by inversion on (T-IdL))

Γ �Σ proc(bL, P), Θ2, Θ3 :: (∆1, bL : CL) (by inversion on (T-Θ2))

Γ; ∆′′1 `Σ P :: (bL : CL) and `Σ (CL, B̂) esync (by inversion on (T-Θ2))

for some ∆′′1 and since (bS : B̂) ∈ Γ

Γ �Σ Θ2, Θ3 :: (∆1,∆
′′
1) (by inversion on (T-Θ2))

Since aS = Â and bS = B̂ there are 9 combinations of 2 out of ⊥, >, and ↑SLAL / ↑SLBL, for some AL and BL. We
consider each case, collating several cases that have the same proof:

Subcases: Â ≥ B̂
aS : ⊥ and bS : ⊥
aS : ↑SLAL and bS : ⊥
aS : ↑SLAL and bS : ↑SLBL and AL = BL

aS : > and bS : ⊥
aS : > and bS : ↑SLBL

aS : > and bS : >

Γ �Σ [bS/aS] (Θ2,Θ3) :: (∆1,∆
′′
1) (by Lemma 2-2)

Γ �Σ proc(bL, P), [bS/aS] (Θ2,Θ3) :: (∆1, bL : CL) (by (T-Θ2))

Γ �Σ [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3) :: ∆ (by Lemma 8 and Lemma 2-1 and 2-2)

41

Γ �Σ [bS/aS] Λ1 :: Γ3 (by Lemma 2-3 since proc(aS,) /∈ Λ1 and unavail(aS) /∈ Λ1)

Γ �Σ unavail(aS), unavail(bS), [bS/aS] Λ1 :: Γ (by (T-Λ4))

Γ �Σ unavail(aS), unavail(bS), [bS/aS] Λ1; [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3) :: Γ; ∆
(by (T-Ω) and well-formedness maintained)

Subcase: aS : ↑SLAL and bS : ↑SLBL and AL 6= BL

`Σ (CL,⊥) esync (by Lemma 4)

Γ′ �Σ Θ2,Θ3 :: (∆1,∆
′′
1) (by Lemma 3-1 since `Σ (CL, ↑SLBL) esync, `Σ (CL,⊥) esync, and ⊥ ≤ ↑SLBL)

where Γ′ = [bS : ⊥/bS : ↑SLBL] Γ

Γ′ C Γ (by Definition 2 since C is reflexive)

Γ′ �Σ Λ1 :: Γ3

(by Lemma 3-2 since `Σ (CL, ↑SLBL) esync, `Σ (CL,⊥) esync, ⊥ ≤ ↑SLBL, proc(bS,) /∈ Λ1, and unavail(bS) /∈ Λ1)

Γ′ �Σ [bS/aS] (Θ2,Θ3) :: (∆1,∆
′′
1) (by Lemma 2-2)

[b′S : ⊥/bS : ↑SLBL] Γ; ∆′′1 `Σ [b′S/bS] P :: (bL : CL) (by Lemma 1-3)
where b′S fresh

Γ′; ∆′′1 `Σ [bS/b
′
S] [b′S/bS] P :: (bL : CL) (by Lemma 1-4 and weakening)

Γ′ �Σ proc(bL, P), [bS/aS] (Θ2,Θ3) :: (∆1, bL : CL) (by (T-Θ2))

Γ′ �Σ [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3) :: ∆
(by Lemma 8, since Γ′ C Γ, and Lemma 2-1 and 2-2)

Γ′ �Σ [bS/aS] Λ1 :: Γ3 (by Lemma 2-3 since proc(aS,) /∈ Λ1 and unavail(aS) /∈ Λ1)

Γ′ �Σ unavail(aS), unavail(bS), [bS/aS] Λ1 :: Γ′ (by (T-Λ4))

Γ′ �Σ unavail(aS), unavail(bS), [bS/aS] Λ1; [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3) :: Γ′; ∆
(by (T-Ω) and well-formedness maintained)

Subcases: Â ≤ B̂
aS : ⊥ and bS : ↑SLBL

aS : ⊥ and bS : >
aS : ↑SLAL and bS : >

Γ′ �Σ Θ2,Θ3 :: (∆1,∆
′′
1) (by Lemma 3-1 since `Σ (CL, B̂) esync, `Σ (CL, Â) esync, and Â ≤ B̂)

where Γ′ = [bS : Â/bS : B̂] Γ

Γ′ C Γ (by Definition 2 since C is reflexive)

Γ′ �Σ Λ1 :: Γ3

(by Lemma 3-2 since `Σ (CL, B̂) esync, `Σ (CL, Â) esync, Â ≤ B̂, proc(bS,) /∈ Λ1, and unavail(bS) /∈ Λ1)

Γ′ �Σ [bS/aS] (Θ2,Θ3) :: (∆1,∆
′′
1) (by Lemma 2-2)

[b′S : Â/bS : B̂] Γ; ∆′′1 `Σ [b′S/bS] P :: (bL : CL) (by Lemma 1-3)
where b′S fresh

Γ′; ∆′′1 `Σ [bS/b
′
S] [b′S/bS] P :: (bL : CL) (by Lemma 1-4 and weakening)

Γ′ �Σ proc(bL, P), [bS/aS] (Θ2,Θ3) :: (∆1, bL : CL) (by (T-Θ2))

Γ′ �Σ [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3) :: ∆ (by Lemma 8, since Γ′ C Γ, and Lemma 2-1 and 2-2)

Γ′ �Σ [bS/aS] Λ1 :: Γ3 (by Lemma 2-3 since proc(aS,) /∈ Λ1 and unavail(aS) /∈ Λ1)

Γ′ �Σ unavail(aS), unavail(bS), [bS/aS] Λ1 :: Γ′ (by (T-Λ4))

Γ′ �Σ unavail(aS), unavail(bS), [bS/aS] Λ1; [bS/aS, bL/aL]Θ1, proc(bL, P), [bS/aS] (Θ2,Θ3) :: Γ′; ∆
(by (T-Ω) and well-formedness maintained)

Case:

proc(aS, fwd aS bS) (D-IdS)

−→ unavail(aS), aS = bS

42

Γ �Σ proc(aS, fwd aS bS), Λ1; Θ :: Γ; ∆ (by assumption)
for some Λ1

Γ �Σ proc(aS, fwd aS bS), Λ1; Θ :: Γ; ∆ is well-formed (by I.H.)

proc(aS, fwd aS bS), Λ1; Θ (this case)
−→ unavail(aS), [bS/aS] Λ1; [bS/aS] Θ

Γ �Σ proc(aS, fwd aS bS), Λ1 :: Γ (by inversion on (T-Ω))

Γ �Σ proc(aS, fwd aS bS) :: Γ1 and Γ �Σ Λ1 :: Γ2 (by inversion on (T-Λ4))
for some Γ1 and Γ2 such that Γ = Γ1,Γ2

Γ1 = aS : ↑SLAL and Γ `Σ fwd aS bS :: (aS : ↑SLAL) and `Σ (↑SLAL,>) esync (by inversion on (T-Λ2))
for some AL

(bS : B̂) ∈ Γ and B̂ ≤ ↑SLAL (by inversion on (T-IdS))

for some B̂

Subcase: bS : ⊥

Γ �Σ [bS/aS] Λ1 :: Γ2 (by Lemma 2-3 since ⊥ ≤ ↑SLAL and proc(aS,) /∈ Λ1 and unavail(aS) /∈ Λ1)

Γ �Σ unavail(aS) :: (aS : ↑SLAL) (by (T-Λ3))

Γ �Σ unavail(aS), [bS/aS] Λ1 :: Γ (by (T-Λ4))

Γ �Σ Θ :: ∆ (by inversion on (T-Ω))

Γ �Σ [bS/aS] Θ :: ∆ (by Lemma 2-2 since ⊥ ≤ ↑SLAL)

Γ �Σ unavail(aS), [bS/aS] Λ1; [bS/aS] Θ :: Γ; ∆ (by (T-Ω) and well-formedness maintained)

Subcase: bS : ↑SLAL

Γ �Σ [bS/aS] Λ1 :: Γ2 (by Lemma 2-3 since ↑SLAL ≤ ↑SLAL and proc(aS,) /∈ Λ1 and unavail(aS) /∈ Λ1)

Γ �Σ unavail(aS) :: (aS : ↑SLAL) (by (T-Λ3))

Γ �Σ unavail(aS), [bS/aS] Λ1 :: Γ (by (T-Λ4))

Γ �Σ Θ :: ∆ (by inversion on (T-Ω))

Γ �Σ [bS/aS] Θ :: ∆ (by Lemma 2-2 since ↑SLAL ≤ ↑SLAL)

Γ �Σ unavail(aS), [bS/aS] Λ1; [bS/aS] Θ :: Γ; ∆ (by (T-Ω) and well-formedness maintained)

Case:

proc(aL, xL ← XL ← cL, cS ; QxL), !def(x ′L : AL ← XL ← yL : BL, yS : BS = Px ′
L,yL,yS

) (D-SpawnLL)

−→ proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′
L,yL,yS

), unavail(bS) (b fresh)

Γ �Σ Λ; Θ1, proc(aL, xL ← XL ← cL, cS ; QxL), Θ2 :: Γ; ∆ (by assumption)
for some Θ1 and Θ2, and where !def(x ′L : AL ← XL ← yL : BL, yS : BS = Px ′

L,yL,yS
)

Γ �Σ Λ; Θ1, proc(aL, xL ← XL ← cL, cS ; QxL), Θ2 :: Γ; ∆ is well-formed (by I.H.)

Λ; Θ1, proc(aL, xL ← XL ← cL, cS ; QxL), Θ2 (this case)
−→ unavail(bS), Λ; Θ1, proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′

L,yL,yS
), Θ2

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(aL, xL ← XL ← cL, cS ; QxL), Θ2 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(aL, xL ← XL ← cL, cS ; QxL), Θ2 :: (∆1, aL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ xL ← XL ← cL, cS ; QxL
:: (aL : CL) (by inversion on (T-Θ2))

for some ∆′1

(aS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

43

for some D̂

(x ′L : AL ← XL ← yL : BL, yS : BS = Px ′
L,yL,yS

) ∈ Σ

(by inversion on (T-SpawnLL) and since !def(x ′L : AL ← XL ← yL : BL, yS : BS = Px ′
L,yL,yS

))

Γ; ∆2, xL : AL `Σ QxL
:: (aL : CL) (by inversion on (T-SpawnLL))

where ∆2 = ∆′1 − cL : BL and cS : B̂ ⊆ Γ for some B̂ such that B̂ ≤ BS

Γ �Σ Θ2 :: ∆1,∆
′
1 (by inversion on (T-Θ2))

`Σ (AL,>) esync (by inversion on (T-Σ2))

yS : BS; yL : BL `Σ Px ′
L,yL,yS

:: (x ′L : AL) (by inversion on (T-Σ2))

yS : BS; cL : BL `Σ [bL/x ′L , cL/yL]Px ′
L,yL,yS

:: (bL : AL) (by Lemma 1-1 and 1-2)

c′S : B̂; cL : BL `Σ [c′S/yS, bL/x ′L , cL/yL]Px ′
L,yL,yS

:: (bL : AL) (by Lemma 1-3)

where c′S fresh

Γ; cL : BL `Σ [cS/c′S, c
′
S/yS, bL/x ′L , cL/yL]Px ′

L,yL,yS
:: (bL : AL) (by Lemma 1-4 and weakening and since cS : B̂ ⊆ Γ)

Γ′ �Σ proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′
L,yL,yS

), Θ2 :: (∆1,∆2, bL : AL) (by (T-Θ2) and weakening)

where Γ′ = Γ, bS : >
Γ′ C Γ (by Definition 2 since C is reflexive)

Γ′; ∆2, bL : AL `Σ [bL/xL]QxL
:: (aL : CL) (by Lemma 1-2 and weakening)

Γ′ �Σ proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′
L,yL,yS

), Θ2 :: (∆1, aL : CL) (by (T-Θ2))

Γ′ �Σ Θ1, proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′
L,yL,yS

), Θ2 :: ∆ (by Lemma 8, since Γ′ C Γ)

Γ′ �Σ unavail(bS) :: (bS : >) (by (T-Λ3))

Γ′ �Σ unavail(bS), Λ :: Γ′ (by (T-Λ4) and weakening)

Γ′ �Σ unavail(bS), Λ; Θ1, proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , cL/yL, cS/yS]Px ′
L,yL,yS

), Θ2 :: Γ′; ∆

(by (T-Ω) and well-formedness maintained)

Case:

proc(aL, xS ← XS ← cS ; QxS), !def(x ′S : AS ← XS ← yS : BS = Px ′
S,yS

) (D-SpawnLS)

−→ proc(aL, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

) (b fresh)

Γ �Σ Λ; Θ1, proc(aL, xS ← XS ← cS ; QxS), Θ2 :: Γ; ∆ (by assumption)
for some Θ1 and Θ2 and where !def(x ′S : AS ← XS ← y : Bi = Px ′

S,yS
)

Γ �Σ Λ; Θ1, proc(aL, xS ← XS ← cS ; QxS), Θ2 :: Γ; ∆ is well-formed (by I.H.)

Λ; Θ1, proc(aL, xS ← XS ← cS ; QxS), Θ2

−→ proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

), Λ; Θ1, proc(aL, [bS/xS]QxS), Θ2 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(aL, xS ← XS ← cS ; QxS), Θ2 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(aL, xS ← XS ← cS ; QxS), Θ2 :: (∆1, aL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ xS ← XS ← cS ; QxS
:: (aL : CL) (by inversion on (T-Θ2))

for some ∆′1

(aS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some D̂

(x ′S : AS ← XS ← yS : BS = Px ′
S,yS

) ∈ Σ

(by inversion on (T-SpawnLS) and since !def(x ′S : AS ← XS ← yS : BS = Px ′
S,yS

))

Γ, xS : AS; ∆′1 `Σ QxS
:: (aL : CL) and cS : B̂ ⊆ Γ for some B̂ such that B̂ ≤ BS (by inversion on (T-SpawnLS))

Γ �Σ Θ2 :: ∆1,∆
′
1 (by inversion on (T-Θ2))

44

`Σ (AS,>) esync (by inversion on (T-Σ2))

yS : BS `Σ Px ′
S,yS

:: (x ′S : AS) (by inversion on (T-Σ2))

c′S : B̂, bS : AS `Σ [bS/x ′S , c
′
S/yS]Px ′

S,yS
:: (bS : AS) (by Lemma 1-5 and 1-7)

where c′S fresh

Γ, bS : AS `Σ [cS/c′S] ([bS/x ′S , c
′
S/yS]Px ′

S,yS
) :: (bS : AS) (by Lemma 1-8 and weakening and since cS : B̂ ⊆ Γ)

Γ, bS : AS; ∆′1 `Σ [bS/xS]QxS
:: (aL : CL) (by Lemma 1-3)

Γ′ �Σ proc(aL, [bS/xS]QxS), Θ2 :: (∆1, aL : CL) (by (T-Θ2) and weakening)
where Γ′ = Γ, bS : AS

Γ′ C Γ (by Definition 2 since C is reflexive)

Γ′ �Σ Θ1, proc(aL, [bS/xS]QxS), Θ2 :: ∆ (by Lemma 8, since Γ′ C Γ)

Γ′ �Σ proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

) :: (bS : AS) (by (T-Λ2))

Γ′ �Σ proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

), Λ :: Γ′ (by (T-Λ4) and weakening)

Γ′ �Σ proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

), Λ; Θ1, proc(aL, [bS/xS]QxS), Θ2 :: Γ′; ∆

(by (T-Ω) and well-formedness maintained)

Case:

proc(aS, xS ← XS ← cS ; QxS), !def(x ′S : AS ← XS ← yS : BS = Px ′
S,yS

) (D-SpawnSS)

−→ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

) (b fresh)

Γ �Σ proc(aS, xS ← XS ← cS ; QxS), Λ1; Θ :: Γ; ∆ (by assumption)
for some Λ1 and where !def(x ′S : AS ← XS ← yS : BS = Px ′

S,yS
)

Γ �Σ proc(aS, xS ← XS ← cS ; QxS), Λ1; Θ :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ proc(aS, xS ← XS ← cS ; QxS), Λ1; Θ :: Γ; ∆
−→ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′

S,yS
), Λ1; Θ (this case)

Γ �Σ proc(aS, xS ← XS ← cS ; QxS), Λ1 :: Γ (by inversion on (T-Ω))

Γ �Σ Θ :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(aS, xS ← XS ← cS ; QxS) :: Γ1 and Γ �Σ Λ1 :: Γ2 (by inversion on (T-Λ4))
for some Γ1 and Γ2 such that Γ = Γ1,Γ2

Γ1 = aS : ↑SLCL and Γ `Σ xS ← XS ← cS ; QxS
:: (aS : ↑SLCL) and `Σ (↑SLCL,>) esync (by inversion on (T-Λ2))

for some CL

(x ′S : AS ← XS ← yS : BS = Px ′
S,yS

) ∈ Σ

(by inversion on (T-SpawnSS) and since !def(x ′S : AS ← XS ← yS : BS = Px ′
S,yS

))

Γ, xS : AS `Σ QxS
:: (aS : ↑SLCL) and cS : B̂ ⊆ Γ for some B̂ such that B̂ ≤ BS (by inversion on (T-SpawnSS))

`Σ (AS,>) esync (by inversion on (T-Σ2))

yS : BS `Σ Px ′
S,yS

:: (x ′S : AS) (by inversion on (T-Σ2))

c′S : B̂, bS : AS `Σ [bS/x ′S , c
′
S/yS]Px ′

S,yS
:: (bS : AS) (by Lemma 1-5 and 1-7)

where c′S fresh

Γ, bS : AS `Σ [cS/c′S] ([bS/x ′S , c
′
S/yS]Px ′

S,yS
) :: (bS : AS) (by Lemma 1-8 and weakening and since cS : B̂ ⊆ Γ)

Γ, bS : AS `Σ [bS/xS]QxS
:: (aS : ↑SLCL) (by Lemma 1-7)

Γ′ �Σ proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

) :: (bS : AS) (by (T-Λ2))

where Γ′ = Γ, bS : AS

Γ′ C Γ (by Definition 2 since C is reflexive)

Γ′ �Σ proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

), Λ1 :: (Γ2, bS : AS) (by (T-Λ4) and weakening)

Γ′ �Σ proc(aS, [bS/xS]QxS) :: (aS : ↑SLCL) (by (T-Λ2))

45

Γ′ �Σ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

), Λ1 :: Γ′ (by (T-Λ4))

Γ′ �Σ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , cS/yS]Px ′
S,yS

), Λ1; Θ :: Γ′; ∆

(by (T-Ω) and weakening and well-formedness maintained)

Case:

proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), unavail(aS) (D-↓SL − release/detach)

−→ proc(cL, [aS/xS] QxS), proc(aS, [aS/xS] PxS)

Γ �Σ unavail(aS), Λ1; Θ1, proc(cL, xS ← release aL ; QxS), Θ2, proc(aL, xS ← detach aL ; PxS),Θ3 :: Γ, ∆
for some Λ1, Θ1, Θ2, and Θ3 (by assumption)

Γ �Σ unavail(aS), Λ1; Θ1, proc(cL, xS ← release aL ; QxS), Θ2, proc(aL, xS ← detach aL ; PxS),Θ3 :: Γ, ∆ is well-formed
(by I.H.)

Γ �Σ unavail(aS), Λ1; Θ1, proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), Θ2,Θ3 :: Γ, ∆
(by Lemma 5)

unavail(aS), Λ1; Θ1, proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), Θ2,Θ3

−→ proc(aS, [aS/xS] PxS), Λ1; Θ1, proc(cL, [aS/xS] QxS), Θ2,Θ3 (this case)

Γ �Σ unavail(aS), Λ1 :: Γ (by inversion on (T-Ω))

Γ �Σ unavail(aS) :: Γ1 and Γ �Σ Λ1 :: Γ2 (by inversion on (T-Λ4))
for some Γ1 and Γ1 such that Γ = Γ1,Γ2

Γ1 = aS : B̂ (by inversion on (T-Λ3))

for some B̂

Γ �Σ Θ1, proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), Θ2,Θ3 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, xS ← release aL ; QxS), proc(aL, xS ← detach aL ; PxS), Θ2,Θ3 :: (∆1, cL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ xS ← release aL ;QxS :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

∆′1 = ∆2, aL : ↓SLAS and Γ, xS : AS; ∆2 `Σ QxS :: (cL : CL) (by inversion on (T-↓SLL))
for some ∆2 and AS

Γ �Σ proc(aL, xS ← detach aL ; PxS), Θ2,Θ3 :: (∆1,∆2, aL : ↓SLAS) (by inversion on (T-Θ2))

Γ; ∆′′1 `Σ xS ← detach aL ;PxS :: (aL : ↓SLAS) and `Σ (↓SLAS, B̂) esync

for some ∆′′1 (by inversion on (T-Θ2) and since (aS : B̂) ∈ Γ)

∆′′1 = · and Γ `Σ PxS :: (xS : AS) (by inversion on (T-↓SLR))

Γ �Σ Θ2,Θ3 :: (∆1,∆2) (by inversion on (T-Θ2))

Either B̂ = ↑SLBL, for some BL, or B̂ = >
(because `Σ (↓SLAS,⊥) esync is impossible according to the rules in Figure 16)

Subcase: B̂ = ↑SLBL, for some BL

Then, `Σ (↓SLAS, ↑SLBL) esync. Consequently, the type AS of the continuation PxS must be ↑SLBL.

AS = ↑SLBL (by `Σ (↓SLAS, B̂) esync)

`Σ (↑SLBL,>) esync (by inversion on (T-Esync↓SL-1) since `Σ (↓SL↑
S

LBL, ↑SLBL) esync)

Γ, a′S : ↑SLBL `Σ [a′S/xS]PxS
:: (a′S : ↑SLBL) (by Lemma 1-5)

where a′S fresh

Γ `Σ [aS/a
′
S] ([a′S/xS]PxS

) :: (aS : ↑SLBL) (by Lemma 1-6 since (aS : ↑SLBL) ∈ Γ)

Γ �Σ proc(aS, [aS/xS] PxS) :: (aS : ↑SLBL) (by (T-Λ2))

Γ �Σ proc(aS, [aS/xS] PxS), Λ1 :: Γ (by (T-Λ4) and since proc(aS,) /∈ Λ1 by well-formedness of Λ)

46

Γ, a′′S : ↑SLBL; ∆2 `Σ [a′′S /xS]QxS :: (cL : CL) (by Lemma 1-7)
where a′′S fresh

Γ; ∆2 `Σ [aS/a
′′
S] ([a′′S /xS]QxS) :: (cL : CL) (by Lemma 1-8 since (aS : ↑SLBL) ∈ Γ)

Γ �Σ proc(cL, [aS/xS] QxS), Θ2,Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, [aS/xS] QxS), Θ2,Θ3 :: ∆ (by Lemma 8)

Γ �Σ proc(aS, [aS/xS] PxS), Λ1; Θ1, proc(cL, [aS/xS] QxS), Θ2,Θ3 :: Γ; ∆
(by (T-Ω) and well-formedness maintained)

Subcase: B̂ = >
Then, `Σ (↓SLAS,>) esync. Consequently, Γ must be updated as follows: [aS : AS/aS : >] Γ.

`Σ (↓SLAS, AS) esync (by coinduction on rules in Figure 16, rule (T-Esync↓SL-1) in particular)

Γ′ �Σ Θ2,Θ3 :: (∆1,∆2) and Γ′ �Σ Λ1 :: Γ2

where Γ′ = [aS : AS/aS : >] Γ (by Lemma 3-1 and 3-2 since `Σ (↓SLAS,>) esync and `Σ (↓SLAS, AS) esync)
(and AS ≤ > and proc(aS,) /∈ Λ1 and unavail(aS) /∈ Λ1 by well-formedness of Λ)

Γ′ C Γ (by Definition 2 since C is reflexive)

[a′S : AS/aS : >] Γ `Σ [a′S/aS]PxS :: (xS : AS) (by Lemma 1-7)
where a′S fresh

Γ′ `Σ [aS/a
′
S] ([a′S/aS]PxS) :: (xS : AS) (by Lemma 1-8 and weakening)

Γ′, a′′S : AS `Σ [a′′S /xS]PxS :: (a′′S : AS) (by Lemma 1-5)
where a′′S fresh

Γ′ `Σ [aS/a
′′
S] ([a′′S /xS]PxS) :: (aS : AS) (by Lemma 1-6 since (aS : AS) ∈ Γ′)

`Σ (AS,>) esync (by inversion on (T-Esync↓SL-2) since `Σ (↓SLAS,>) esync)

Γ′ �Σ proc(aS, [aS/xS] PxS) :: (aS : AS) (by (T-Λ2))

Γ′ �Σ proc(aS, [aS/xS] PxS), Λ1 :: Γ′ (by (T-Λ4) and since proc(aS,) /∈ Λ1 by well-formedness of Λ)

[a′′′S : AS/aS : >] Γ, xS : AS `Σ [a′′′S /aS]QxS :: (cL : CL) (by Lemma 1-7)
where a′′′S fresh

Γ′, xS : AS `Σ [aS/a
′′′
S] ([a′′′S /aS]QxS) :: (cL : CL) (by Lemma 1-8 and weakening)

Γ′; ∆2 `Σ [aS/xS]QxS :: (cL : CL) (by Lemma 1-8)

Γ′ �Σ proc(cL, [aS/xS] QxS), Θ2,Θ3 :: (∆1, cL : CL) (by (T-Θ2) and weakening)

Γ′ �Σ Θ1, proc(cL, [aS/xS] QxS), Θ2,Θ3 :: ∆ (by Lemma 8, since Γ′ C Γ)

Γ′ �Σ proc(aS, [aS/xS] PxS), Λ1; Θ1, proc(cL, [aS/xS] QxS), Θ2,Θ3 :: Γ′; ∆
(by (T-Ω) and well-formedness maintained)

Case:

proc(cL, xL ← acquire aS ; QxL), proc(aS, xL ← accept aS ; PxL) (D-↑SL − acquire/accept)

−→ proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), unavail(aS)

Γ �Σ proc(aS, xL ← accept aS ; PxL), Λ1; Θ1, proc(cL, xL ← acquire aS ; QxL), Θ2 :: Γ; ∆ (by assumption)
for some Λ1, Θ1, and Θ2

Γ �Σ proc(aS, xL ← accept aS ; PxL), Λ1; Θ1, proc(cL, xL ← acquire aS ; QxL), Θ2 :: Γ; ∆ is well-formed (by I.H.)

proc(aS, xL ← accept aS ; PxL), Λ1; Θ1, proc(cL, xL ← acquire aS ; QxL), Θ2 (this case)
−→ unavail(aS), Λ1; Θ1, proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), Θ2

Γ �Σ proc(aS, xL ← accept aS ; PxL), Λ1 :: Γ (by inversion on (T-Ω))

Γ �Σ proc(aS, xL ← accept aS ; PxL) :: Γ1 and Γ �Σ Λ1 :: Γ2 (by inversion on (T-Λ4))
for some Γ1 and Γ2 such that Γ = Γ1,Γ2

Γ1 = aS : ↑SLAL and Γ `Σ xL ← accept aS; PxL :: (aS : ↑SLAL) and `Σ (↑SLAL,>) esync (by inversion on (T-Λ2))

47

for some AL

Γ; · `Σ PxL :: (xL : AL) (by inversion on (T-↑SLR))

Γ �Σ unavail(aS) :: (aS : ↑SLAL) (by (T-Λ3))

Γ �Σ unavail(aS), Λ1 :: Γ (by (T-Λ4) and since unavail(aS) /∈ Λ1 by well-formedness of Λ)

Γ �Σ Θ1, proc(cL, xL ← acquire aS ; QxL), Θ2 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, xL ← acquire aS ; QxL), Θ2 :: (∆1, cL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ xL ← acquire aS ;QxL :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ �Σ Θ2 :: (∆1,∆
′
1) (by inversion on (T-Θ2))

Γ; ∆′1, xL : AL `Σ QxL :: (cL : CL) (by inversion on (T-↑SLL) and since (aS : ↑SLAL) ∈ Γ)

`Σ (AL, ↑SLAL) esync (by inversion on (T-Esync↑SL) since `Σ (↑SLAL,>) esync)

Γ; · `Σ [aL/xL]PxL :: (aL : AL) (by Lemma 1-1 and Corollary 1)

Γ �Σ proc(aL, [aL/xL] PxL), Θ2 :: (∆1,∆
′
1, aL : AL) (by (T-Θ2) and Corollary 1)

Γ; ∆′1, aL : AL `Σ [aL/xL]QxL :: (cL : CL) (by Lemma 1-2 and Corollary 1)

Γ �Σ proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), Θ2 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), Θ2 :: ∆ (by Lemma 8)

Γ �Σ unavail(aS), Λ1; Θ1, proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), Θ2 :: Γ; ∆
(by (T-Ω) and well-formedness is maintained)

Case:

proc(cL, wait aL ; Q), proc(aL, close aL) (D-1)

−→ proc(cL, Q)

Γ �Σ Λ; Θ1, proc(cL, wait aL ; Q), Θ2, proc(aL, close aL), Θ3 :: Γ; ∆ (by assumption)
for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, wait aL ; Q), Θ2, proc(aL, close aL), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ Λ; Θ1, proc(cL, wait aL ; Q), proc(aL, close aL), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, wait aL ; Q), proc(aL, close aL), Θ2, Θ3

−→ Λ; Θ1, proc(cL, Q), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, wait aL ; Q), proc(aL, close aL), Θ2, Θ3 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, wait aL ; Q), proc(aL, close aL), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ wait aL ;Q :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ; ∆2 `Σ Q :: (cL : CL) (by inversion on (T-1L))
for some ∆2 such that ∆′1 = ∆2, aL : 1

Γ �Σ proc(aL, close aL), Θ2, Θ3 :: (∆1,∆2, aL : 1) (by inversion on (T-Θ2))

Γ; ∆3 `Σ close aL :: (aL : 1) and (aS : B̂) ∈ Γ and `Σ (1, B̂) esync (by inversion on (T-Θ2))

for some ∆3 and B̂

∆3 = (·) (by inversion on (T-1R))

Γ �Σ Θ2, Θ3 :: (∆1,∆2) (by inversion on (T-Θ2))

Γ �Σ proc(cL, Q), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, Q), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, Q), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

48

Case:

proc(cL, yL ← recv aL ; QyL
), proc(aL, send aL bL ; P) (D-⊗)

−→ proc(cL, [bL/yL] QyL
), proc(aL, P)

Γ �Σ Λ; Θ1, proc(cL, yL ← recv aL ; QyL
), Θ2, proc(aL, send aL bL ; P), Θ3 :: Γ; ∆ (by assumption)

for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, yL ← recv aL ; QyL
), Θ2, proc(aL, send aL bL ; P), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ Λ; Θ1, proc(cL, yL ← recv aL ; QyL
), proc(aL, send aL bL ; P), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, yL ← recv aL ; QyL
), proc(aL, send aL bL ; P), Θ2, Θ3

−→ Λ; Θ1, proc(cL, [bL/yL] QyL
), proc(aL, P), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, yL ← recv aL ; QyL
), proc(aL, send aL bL ; P), Θ2, Θ3 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, yL ← recv aL ; QyL
), proc(aL, send aL bL ; P), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)

for some ∆1 and CL

Γ; ∆′1 `Σ yL ← recv aL ;QyL
:: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ; ∆2, aL : BL, yL : AL `Σ QyL
:: (cL : CL) (by inversion on (T-⊗L))

for some ∆2, AL, and BL such that ∆′1 = ∆2, aL : AL ⊗BL

Γ �Σ proc(aL, send aL bL ; P), Θ2, Θ3 :: (∆1,∆2, aL : AL ⊗BL) (by inversion on (T-Θ2))

Γ; ∆3 `Σ send aL bL ;P :: (aL : AL ⊗BL) and (aS : Â) ∈ Γ and `Σ (AL ⊗BL, Â) esync (by inversion on (T-Θ2))

for some ∆3 and Â

Γ; ∆4 `Σ P :: (aL : BL) (by inversion on (T-⊗R))
for some ∆4 such that ∆3 = ∆4, bL : AL

Γ �Σ Θ2, Θ3 :: (∆1,∆2,∆4, bL : AL) (by inversion on (T-Θ2))

`Σ (BL, Â) esync (by inversion on (T-Esync⊗))

Γ �Σ proc(aL, P), Θ2, Θ3 :: (∆1,∆2, bL : AL, aL : BL) (by (T-Θ2))

Γ; ∆2, aL : BL, bL : AL `Σ [bL/yL]QyL
:: (cL : CL) (by Lemma 1-2)

Γ �Σ proc(cL, [bL/yL] QyL
), proc(aL, P), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, [bL/yL] QyL
), proc(aL, P), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, [bL/yL] QyL
), proc(aL, P), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

Case:

proc(cL, yS ← recv aL ; QyS
), proc(aL, send aL bS ; P) (D-∃)

−→ proc(cL, [bS/yS] QyS
), proc(aL, P)

Γ �Σ Λ; Θ1, proc(cL, yS ← recv aL ; QyS
), Θ2, proc(aL, send aL bS ; P), Θ3 :: Γ; ∆ (by assumption)

for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, yS ← recv aL ; QyS
), Θ2, proc(aL, send aL bS ; P), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ Λ; Θ1, proc(cL, yS ← recv aL ; QyS
), proc(aL, send aL bS ; P), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, yS ← recv aL ; QyS
), proc(aL, send aL bS ; P), Θ2, Θ3

−→ Λ; Θ1, proc(cL, [bS/yS] QyS
), proc(aL, P), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, yS ← recv aL ; QyS
), proc(aL, send aL bS ; P), Θ2, Θ3 :: ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, yS ← recv aL ; QyS
), proc(aL, send aL bS ; P), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)

49

for some ∆1 and CL

Γ; ∆′1 `Σ yS ← recv aL ;QyS
:: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ, yS : AS; ∆2, aL : BL `Σ QyS
:: (cL : CL) (by inversion on (T-∃L))

for some ∆2, AS, and BL such that ∆′1 = ∆2, aL : ∃x:AS. BL

Γ �Σ proc(aL, send aL bS ; P), Θ2, Θ3 :: (∆1,∆2, aL : ∃x:AS. BL) (by inversion on (T-Θ2))

Γ; ∆3 `Σ send aL bS ;P :: (aL : ∃x:AS. BL) and (aS : Â) ∈ Γ and `Σ (∃x:AS. BL, Â) esync (by inversion on (T-Θ2))

for some ∆3 and Â

Γ; ∆3 `Σ P :: (aL : BL) and (bS : B̂) ∈ Γ and B̂ ≤ AS (by inversion on (T-∃R))

for some B̂

Γ �Σ Θ2, Θ3 :: (∆1,∆2,∆3) (by inversion on (T-Θ2))

`Σ (BL, Â) esync (by inversion on (T-Esync∃))

Γ �Σ proc(aL, P), Θ2, Θ3 :: (∆1,∆2, aL : BL) (by (T-Θ2))

Γ, b′S : B̂; ∆2, aL : BL `Σ [b′S/yS]QyS
:: (cL : CL) (by Lemma 1-3)

where b′S fresh

Γ; ∆2, aL : BL `Σ [bS/b
′
S] ([b′S/yS]QyS

) :: (cL : CL) (by Lemma 1-4 since (bS : B̂) ∈ Γ)

Γ �Σ proc(cL, [bS/yS] QyS
), proc(aL, P), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, [bS/yS] QyS
), proc(aL, P), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, [bS/yS] QyS
), proc(aL, P), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

Case:

proc(cL, send aL bL ; Q), proc(aL, yL ← recv aL ; PyL
) (D-()

−→ proc(cL, Q), proc(aL, [bL/yL]PyL
)

Γ �Σ Λ; Θ1, proc(cL, send aL bL ; Q), Θ2, proc(aL, yL ← recv aL ; PyL
), Θ3 :: Γ; ∆ (by assumption)

for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, send aL bL ; Q), Θ2, proc(aL, yL ← recv aL ; PyL
), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ Λ; Θ1, proc(cL, send aL bL ; Q), proc(aL, yL ← recv aL ; PyL
), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, send aL bL ; Q), proc(aL, yL ← recv aL ; PyL
), Θ2, Θ3

−→ Λ; Θ1, proc(cL, Q), proc(aL, [bL/yL]PyL
), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, send aL bL ; Q), proc(aL, yL ← recv aL ; PyL
), Θ2, Θ3 :: Γ; ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, send aL bL ; Q), proc(aL, yL ← recv aL ; PyL
), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)

for some ∆1 and CL

Γ; ∆′1 `Σ send aL bL ;Q :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ; ∆2, aL : BL `Σ Q :: (cL : CL) (by inversion on (T-(L))
for some ∆2, AL, and BL such that ∆′1 = ∆2, aL : AL (BL, bL : AL

Γ �Σ proc(aL, yL ← recv aL ; PyL
), Θ2, Θ3 :: (∆1,∆2, aL : AL (BL, bL : AL) (by inversion on (T-Θ2))

Γ; ∆3 `Σ yL ← recv aL ;PyL
:: (aL : AL (BL) and (aS : Â) ∈ Γ and `Σ (AL (BL, Â) esync (by inversion on (T-Θ2))

for some ∆3 and Â

Γ; ∆3, yL : AL `Σ PyL
:: (aL : BL) (by inversion on (T-(R))

Γ �Σ Θ2, Θ3 :: (∆1,∆2,∆3, bL : AL) (by inversion on (T-Θ2))

Γ; ∆3, bL : AL `Σ [bL/yL]PyL
:: (aL : BL) (by Lemma 1-2)

`Σ (BL, Â) esync (by inversion on (T-Esync())

50

Γ �Σ proc(aL, [bL/yL]PyL
), Θ2, Θ3 :: (∆1,∆2, aL : BL) (by (T-Θ2))

Γ �Σ proc(cL, Q), proc(aL, [bL/yL]PyL
), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, Q), proc(aL, [bL/yL]PyL
), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, Q), proc(aL, [bL/yL]PyL
), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

Case:

proc(cL, send aL bS ; Q), proc(aL, yS ← recv aL ; PyS
) (D-Π)

−→ proc(cL, Q), proc(aL, [bS/yS]PyS
)

Γ �Σ Λ; Θ1, proc(cL, send aL bS ; Q), Θ2, proc(aL, yS ← recv aL ; PyS
), Θ3 :: Γ; ∆ (by assumption)

for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, send aL bS ; Q), Θ2, proc(aL, yS ← recv aL ; PyS
), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ Λ; Θ1, proc(cL, send aL bS ; Q), proc(aL, yS ← recv aL ; PyS
), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, send aL bS ; Q), proc(aL, yS ← recv aL ; PyS
), Θ2, Θ3

−→ Λ; Θ1, proc(cL, Q), proc(aL, [bS/yS]PyS
), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, send aL bS ; Q), proc(aL, yS ← recv aL ; PyS
), Θ2, Θ3 :: Γ; ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, send aL bS ; Q), proc(aL, yS ← recv aL ; PyS
), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)

for some ∆1 and CL

Γ; ∆′1 `Σ send aL bS ;Q :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ; ∆2, aL : BL `Σ Q :: (cL : CL) and (bS : B̂) ∈ Γ and B̂ ≤ AS (by inversion on (T-ΠL))

for some ∆2, B̂, AS, and BL such that ∆′1 = ∆2, aL : Πx:AS. BL

Γ �Σ proc(aL, yS ← recv aL ; PyS
), Θ2, Θ3 :: (∆1,∆2, aL : Πx:AS. BL) (by inversion on (T-Θ2))

Γ; ∆3 `Σ yS ← recv aL ;PyS
:: (aL : Πx:AS. BL) and (aS : Â) ∈ Γ and `Σ (Πx:AS. BL, Â) esync (by inversion on (T-Θ2))

for some ∆3 and Â

Γ, yS : AS; ∆3 `Σ PyS
:: (aL : BL) (by inversion on (T-ΠR))

Γ �Σ Θ2, Θ3 :: (∆1,∆2,∆3) (by inversion on (T-Θ2))

Γ, b′S : B̂; ∆3 `Σ [b′S/yS]PyS
:: (aL : BL) (by Lemma 1-3)

where b′S fresh

Γ; ∆3 `Σ [bS/b
′
S] ([b′S/yS]PyS

) :: (aL : BL) (by Lemma 1-4 since (bS : B̂) ∈ Γ)

`Σ (BL, Â) esync (by inversion on (T-EsyncΠ))

Γ �Σ proc(aL, [bS/yS]PyS
), Θ2, Θ3 :: (∆1,∆2, aL : BL) (by (T-Θ2))

Γ �Σ proc(cL, Q), proc(aL, [bS/yS]PyS
), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, Q), proc(aL, [bS/yS]PyS
), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, Q), proc(aL, [bS/yS]PyS
), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

Case:

proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P) (D-⊕)

−→ proc(cL, Qh), proc(aL, P)

Γ �Σ Λ; Θ1, proc(cL, case aL of l ⇒ Q), Θ2, proc(aL, aL.lh ; P), Θ3 :: Γ; ∆ (by assumption)
for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, case aL of l ⇒ Q), Θ2, proc(aL, aL.lh ; P), Θ3 :: Γ; ∆ is well-formed (by I.H.)

51

Γ �Σ Λ; Θ1, proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P), Θ2, Θ3

−→ Λ; Θ1, proc(cL, Qh), proc(aL, P), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P), Θ2, Θ3 :: Γ; ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, case aL of l ⇒ Q), proc(aL, aL.lh ; P), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ case aL of l⇒ Q :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

(∀i) Γ; ∆2, aL : ALi
`Σ Qi :: (cL : CL) (by inversion on (T-⊕L))

for some ∆2 and AL such that ∆′1 = ∆2, aL : ⊕{l : AL}
Γ �Σ proc(aL, aL.lh ; P), Θ2, Θ3 :: (∆1,∆2, aL : ⊕{l : AL}) (by inversion on (T-Θ2))

Γ; ∆3 `Σ aL.lh ;P :: (aL : ⊕{l : AL}) and (aS : Â) ∈ Γ and `Σ (⊕{l : AL}, Â) esync (by inversion on (T-Θ2))

for some ∆3 and Â

Γ; ∆3 `Σ P :: (aL : AL h) (by inversion on (T-⊕R))

Γ �Σ Θ2, Θ3 :: (∆1,∆2,∆3) (by inversion on (T-Θ2))

(∀i) `Σ (ALi
, Â) esync (by inversion on (T-Esync⊕))

Γ �Σ proc(aL, P), Θ2, Θ3 :: (∆1,∆2, aL : AL h) (by (T-Θ2))

Γ �Σ proc(cL, Qh), proc(aL, P), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, Qh), proc(aL, P), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, Qh), proc(aL, P), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

Case:

proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P) (D-N)

−→ proc(cL, Q), proc(aL, Ph)

Γ �Σ Λ; Θ1, proc(cL, aL.lh ; Q), Θ2, proc(aL, case aL of l ⇒ P), Θ3 :: Γ; ∆ (by assumption)
for some Θ1, Θ2, and Θ3

Γ �Σ Λ; Θ1, proc(cL, aL.lh ; Q), Θ2, proc(aL, case aL of l ⇒ P), Θ3 :: Γ; ∆ is well-formed (by I.H.)

Γ �Σ Λ; Θ1, proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P), Θ2, Θ3 :: Γ; ∆ (by Lemma 5)

Λ; Θ1, proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P), Θ2, Θ3

−→ Λ; Θ1, proc(cL, Q), proc(aL, Ph), Θ2, Θ3 (this case)

Γ �Σ Λ :: Γ (by inversion on (T-Ω))

Γ �Σ Θ1, proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P), Θ2, Θ3 :: Γ; ∆ (by inversion on (T-Ω))

Γ �Σ proc(cL, aL.lh ; Q), proc(aL, case aL of l ⇒ P), Θ2, Θ3 :: (∆1, cL : CL) (by Lemma 6)
for some ∆1 and CL

Γ; ∆′1 `Σ aL.lh ;Q :: (cL : CL) and (cS : D̂) ∈ Γ and `Σ (CL, D̂) esync (by inversion on (T-Θ2))

for some ∆′1 and D̂

Γ; ∆2, aL : AL h `Σ Q :: (cL : CL) (by inversion on (T-NL))

for some ∆2 and AL such that ∆′1 = ∆2, aL : N{l : AL}
Γ �Σ proc(aL, case aL of l ⇒ P), Θ2, Θ3 :: (∆1,∆2, aL : N{l : AL}) (by inversion on (T-Θ2))

Γ; ∆3 `Σ case aL of l⇒ P :: (aL : N{l : AL}) and (aS : Â) ∈ Γ and `Σ (N{l : AL}, Â) esync

for some ∆3 and Â (by inversion on (T-Θ2))

(∀i)Γ; ∆3 `Σ Pi :: (aL : ALi
) (by inversion on (T-NR))

Γ �Σ Θ2, Θ3 :: (∆1,∆2,∆3) (by inversion on (T-Θ2))

52

(∀i) `Σ (ALi , Â) esync (by inversion on (T-EsyncN))

Γ �Σ proc(aL, Ph), Θ2, Θ3 :: (∆1,∆2, aL : AL h) (by (T-Θ2))

Γ �Σ proc(cL, Q), proc(aL, Ph), Θ2, Θ3 :: (∆1, cL : CL) (by (T-Θ2))

Γ �Σ Θ1, proc(cL, Q), proc(aL, Ph), Θ2, Θ3 :: ∆ (by Lemma 8)

Γ �Σ Λ; Θ1, proc(cL, Q), proc(aL, Ph), Θ2, Θ3 :: Γ; ∆ (by (T-Ω) and well-formedness is maintained)

D.3 Progress

The progress theorem relies on the notions of a poised and blocked process (see Definition 3 and Definition 4) and
expresses that being blocked is the only way the whole configuration may be stuck [28]. Case (2-c) captures the
scenario where a blocked process cannot proceed because the shared channel is unavailable. A successful acquire,
on the other hand, is represented as part of case (2-a).

Theorem 4 (Progress). If Γ �Σ Λ; Θ :: Γ; ∆, then either

1. Λ −→ Λ′, for some Λ′, or
2. Λ is poised and

(a) Λ; Θ −→ Λ′; Θ′, for some Λ′ and Θ′, or
(b) Θ is poised, or
(c) some process in Θ is blocked along aS and unavail(aS) ∈ Λ.

Proof.

Γ �Σ Λ; Θ :: Γ; ∆ (by assumption)

Γ �Σ Λ :: Γ and Γ �Σ Θ :: ∆ (by inversion on (T-Ω))

We first show that either Λ −→ Λ′, for some Λ′, or that Λ is poised. We proceed by induction on Γ �Σ Λ :: Γ1,
where Γ1 ⊆ Γ:

Case: Γ �Σ (·) :: (·)

(·) is poised (by Definition 3)

Case: Γ �Σ proc(aS, PaS
) :: (aS : ↑SLAL), for some aS, PaS , and AL

We proceed by case analysis on Γ `Σ PaS :: (aS : ↑SLAL):

Subcase: Γ `Σ fwd aS bS :: (aS : ↑SLAL), for some (bS : Â) ∈ Γ such that Â ≤ ↑SLAL

proc(aS, fwd aS bS), Λ1 −→ unavail(aS), [bS/aS] Λ1 (by D-IdS)

Subcase: Γ `Σ xS ← XS ← yS ; QxS
:: (aS : ↑SLAL)

proc(aS, xS ← XS ← b ; QxS), Λ1 −→ proc(aS, [bS/xS]QxS), proc(bS, [bS/x ′S , b/y]Px ′
S,y

), Λ1

where b fresh (by D-SpawnSS)

Subcase: Γ `Σ xL ← accept aS ;PxL :: (aS : ↑SLAL)

proc(aS, xL ← accept aS ; PxL), Λ1 is poised (by Definition 3)

Case: Γ �Σ unavail(aS) :: (aS : Â), for some aS and Â

53

unavail(aS) is poised (by Definition 3)

Case: Γ �Σ Λ1,Λ2 :: Γ1,Γ2, for some Λ1, Λ2, Γ1, and Γ2, such that Γ = Γ1,Γ2

Either Λ1 −→ Λ′1, for some Λ′1, or Λ1 is poised, or Λ2 −→ Λ′2, for some Λ′2, or Λ2 is poised. (by I.H.)

Subcase: Λ1 −→ Λ′1, for some Λ′1 and Λ2 is poised

Λ1,Λ2 −→ Λ′1,Λ2

Subcase: Λ1 −→ Λ′1, for some Λ′1 and Λ2 −→ Λ′2, for some Λ′2

Λ1,Λ2 −→ Λ′1,Λ
′
2

Subcase: Λ1 is poised and Λ2 −→ Λ′2, for some Λ′2

Λ1,Λ2 −→ Λ1,Λ
′
2

Subcase: Λ1 is poised and Λ2 is poised

Λ1,Λ2 is poised

Having proved that either Λ −→ Λ′, for some Λ′, or that Λ is poised, we assume that Λ is poised and proceed by
induction on Γ �Σ Θ :: ∆:

Case: Γ �Σ (·) :: (·)

(·) is poised (by Definition 3)

Case: Γ �Σ proc(aL, PaL
), Θ1 :: (∆1, aL : AL), for some aL, PaS , Θ1, ∆1, and AL

Γ; ∆′1 `Σ PaL :: (aL : AL) and Γ �Σ Θ1 :: ∆1,∆
′
1 (by inversion on (T-Θ2))

for some ∆′1

Either Λ; Θ1 −→ Λ′; Θ′1, for some Λ′ and Θ′, or Θ1 is poised or some process in Θ1 is blocked along aS

and unavail(aS) ∈ Λ. (by I.H.)

Subcase: Λ; Θ1 −→ Λ′; Θ′1

Λ; proc(aL, PaL
), Θ1 −→ Λ′; proc(aL, PaL

), Θ′1

Subcase: Θ1 is poised

We proceed by case analysis on Γ; ∆′1 `Σ PaL :: (aL : AL):

Subsubcase: Γ; ∆′1 `Σ fwd aL bL :: (aL : AL), for some bL : AL such that ∆′1 = aL : AL

Λ; proc(aL, fwd aL bL), Θ1 −→ [bS/aS] Λ; [bS/aS] Θ1 (by D-IdL)

Subsubcase: Γ; ∆′1 `Σ xL ← XL ← b ; QxL
:: (aL : AL)

Λ; proc(aL, xL ← XL ← b ; QxL), Θ1 −→ unavail(bS),Λ; proc(aL, [bL/xL]QxL), proc(bL, [bL/x ′L , b/y]Px ′
L,y

),Θ1

where b fresh (by D-SpawnLL)

Subsubcase: Γ; ∆′1 `Σ xS ← XS ← b ; QxS
:: (aL : AL)

Λ; proc(aL, xS ← XS ← b ; QxS), Θ1 −→ Λ; proc(aL, [bS/xS]QxS), proc(bS, [bS/x ′S , b/y]Px ′
S,y

),Θ1

where b fresh (by D-SpawnLS)

Subsubcase: Γ; ∆′1 `Σ xL ← acquire cS ;QxL :: (aL : AL), for some (cS : Ĉ) ∈ Γ such that Ĉ ≤ ↑SLBL, for some BL

Either there exists a proc(cS, PcS) in Λ or an unavail(cS) in Λ. (by Lemma 10-1)

Subsubsubcase: There exists a Λ1 such that Λ = proc(cS, PcS),Λ1:

54

proc(cS, PcS) is poised (by Definition 3 since Λ is poised)

proc(cS, PcS) = proc(cS, xL ← accept cS ; P ′xL) (by Definition 3)

proc(cS, xL ← accept cS ; P ′xL),Λ1; proc(aL, xL ← acquire cS ; QxL),Θ1

−→ unavail(cS),Λ1; proc(aL, [cL/xL] QxL), proc(cL, [cL/xL] P ′xL),Θ1 (by D-↑SL − acquire/accept)

Subsubsubcase: There exists a Λ1 such that Λ = unavail(cS),Λ1:

proc(aL, xL ← acquire cS) in Θ is blocked along cS and unavail(cS) ∈ Λ (by Definition 4)

Subsubcase: Γ; ∆2, cL : ↓SLCS `Σ xS ← release cL ;QxS :: (aL : AL), for some CS and ∆2 such that ∆′1 = ∆2, cL : ↓SLCS

There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ
′
2 and (by Lemma 10-2)

there exists a Λ1 and unavail(cS) such that Λ = unavail(cS),Λ1. (by well-formedness of configuration)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, xS ← detach cL ; P ′xS) (by Definition 3 and inversion on process typing)

unavail(cS),Λ1; proc(aL, xS ← release cL ; QxS),Θ2, proc(cL, xS ← detach cL ; P ′xS),Θ
′
2

−→ proc(cS, [cS/xS] P ′xS),Λ1; proc(aL, [cS/xS] QxS),Θ2,Θ
′
2 (by D-↓SL − release/detach)

Subsubcase: Γ; · `Σ xS ← detach aL ;PxS :: (aL : AL)

proc(aL, xS ← detach aL ; PxS),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : 1 `Σ wait cL ;Q :: (aL : AL), for some ∆2 such that ∆′1 = ∆2, cL : 1

There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ
′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, close cL ; P ′xS) (by Definition 3 and inversion on process typing)

Λ; proc(aL, wait cL ; Q), Θ2, proc(cL, close cL),Θ
′
2

−→ Λ; proc(aL, Q), Θ2,Θ
′
2 (by D-1)

Subsubcase: Γ; · `Σ close aL :: (aL : 1)

proc(aL, close aL),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : BL ⊗ CL `Σ yL ← recv cL ;QyL
:: (aL : AL),

for some BL, CL, and ∆2 such that ∆′1 = ∆2, cL : BL ⊗ CL

There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ
′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, send cL bL ; P ′),
for some bL : BL (by Definition 3 and inversion on process typing)

Λ; proc(aL, yL ← recv cL ; QyL
), Θ2, proc(cL, send cL bL ; P ′),Θ′2

−→ Λ; proc(aL, [bL/yL] QyL
), Θ2, proc(cL, P ′),Θ′2 (by D-⊗/∃)

Subsubcase: Γ; ∆2, bL : BL `Σ send aL bL ;P :: (aL : BL ⊗ CL),
for some BL, CL, and ∆2 such that AL = BL ⊗ CL and ∆′1 = ∆2, bL : BL

proc(aL, send aL bL ; P),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : (∃x:BS. CL) `Σ yS ← recv cL ;QyS
:: (aL : AL),

for some BS, CL, and ∆2 such that ∆′1 = ∆2, cL : ∃x:BS. CL

There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ
′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, send cL bS ; P ′),
for some bS : BS (by Definition 3 and inversion on process typing)

Λ; proc(aL, yS ← recv cL ; QyS
), Θ2, proc(cL, send cL bS ; P ′),Θ′2

−→ Λ; proc(aL, [bS/yS] QyS
), Θ2, proc(cL, P ′),Θ′2 (by D-⊗/∃)

Subsubcase: Γ; ∆′1 `Σ send aL bS ;P :: (aL : (∃x:BS. CL)),
for some BS, CL, and (bS : B̂ ∈ Γ) such that AL = ∃x:BS. CL and B̂ ≤ BS

proc(aL, send aL bS ; P),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : BL (CL, bL : BL `Σ send cL bL ;Q :: (aL : AL),
for some BL, CL, and ∆2 such that ∆′1 = ∆2, cL : BL ⊗ CL, bL : BL

55

There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ
′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, yL ← recv cL ; P ′yL
) (by Definition 3 and inversion on process typing)

Λ; proc(aL, send cL bL ; Q), Θ2, proc(cL, yL ← recv cL ; P ′yL
),Θ′2

−→ Λ; proc(aL, Q), Θ2, proc(cL, [bL/yL] P ′yL
),Θ′2 (by D-(/Π)

Subsubcase: Γ; ∆′1 `Σ yL ← recv aL ;PyL
:: (aL : BL (CL),

for some BL, CL such that AL = BL (CL

proc(aL, yL ← recv aL ; PyL
),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : (Πx:BS. CL) `Σ send cL bS ;Q :: (aL : AL),
for some BS, CL, (bS : B̂) ∈ Γ, and ∆2 such that B̂ ≤ BS and ∆′1 = ∆2, cL : (Πx:BS. CL)

There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ
′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, yS ← recv cL ; P ′yS
) (by Definition 3 and inversion on process typing)

Λ; proc(aL, send cL bS ; Q), Θ2, proc(cL, yS ← recv cL ; P ′yS
),Θ′2

−→ Λ; proc(aL, Q), Θ2, proc(cL, [bS/yS] P ′yS
),Θ′2 (by D-(/Π)

Subsubcase: Γ; ∆′1 `Σ yS ← recv aL ;PyS
:: (aL : (Πx:BS. CL)),

for some BS, CL such that AL = Πx:BS. CL

proc(aL, yS ← recv aL ; PyS
),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : ⊕{l : BL} `Σ case cL of l⇒ Q :: (aL : AL),
for some BL and ∆2 such that ∆′1 = ∆2, cL : ⊕{l : BL}
There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ

′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, cL.lh ; P ′) (by Definition 3 and inversion on process typing)

Λ; proc(aL, case cL of l ⇒ Q), Θ2, proc(cL, cL.lh ; P ′),Θ′2
−→ Λ; proc(aL, Qh), Θ2, proc(aL, P ′),Θ′2 (by D-⊕)

Subsubcase: Γ; ∆′1 `Σ aL.lh ;P :: (aL : ⊕{l : BL}),
for some BL such that AL = ⊕{l : BL}
proc(aL, aL.lh ; P),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subsubcase: Γ; ∆2, cL : N{l : BL} `Σ cL.lh ;Q :: (aL : AL),
for some BL and ∆2 such that ∆′1 = ∆2, cL : N{l : BL}
There exist Θ2, Θ′2, and proc(cL, PcL) such that Θ1 = Θ2, proc(cL, PcL),Θ

′
2. (by Lemma 10-2)

proc(cL, PcL) is poised (by Definition 3 since Θ1 is poised)

proc(cL, PcL) = proc(cL, case cL of l ⇒ P ′) (by Definition 3 and inversion on process typing)

Λ; proc(aL, cL.lh ; Q), Θ2, proc(cL, case cL of l ⇒ P ′),Θ′2
−→ Λ; proc(aL, Q), Θ2, proc(cL, P ′h),Θ′2 (by D-N)

Subsubcase: Γ; ∆′1 `Σ case aL of l⇒ P :: (aL : N{l : BL}),
for some BL such that AL = N{l : BL}
proc(aL, case aL of l ⇒ P),Θ1 is poised (by Definition 3 since Θ1 is poised)

Subcase: Some process in Θ1 is blocked along aS and unavail(aS) ∈ Λ

Some process in proc(aL, PaL
), Θ1 is blocked along aS and unavail(aS) ∈ Λ

56

E Examples

E.1 “Imperative” Queue

Linearity prohibits a more “imperative” style of a queue implementation that maintains a reference to the back
of the queue for direct insertion of an element. In this section, we give an implementation of a queue with direct
access to both the front and back of the queue; the result is shown in Figure 21.

list AS = ↑SL N{ins : Πx:AS. ↓SLlist AS

del : ⊕{none : ↓SLlist AS,
some : ∃x:AS. ↓SLlist AS}

queue AS = ↑SLN{enq : Πx:AS. ↓SLqueue AS,
deq : ⊕{none : ↓SLqueue AS,

some : ∃x:AS. ↓SLqueue AS}}

empty : {list AS}
c← empty =
c′ ← accept c ;
case c′ of
| ins→ x← recv c′ ;

e← empty ;
c← detach c′ ;
c← elem ← x, e

| del→ c′.none ;
c← detach c′ ;
c← empty

elem : {list AS ← AS, list AS}
c← elem ← x, next =
c′ ← accept c ;
case c′ of
| ins→ y← recv c′ ;

n← elem ← y, next ;
c← detach c′ ;
c← elem ← x, n

| del→ c′.some ;
send c′ x ;
c← detach c′ ;
fwd c next

head : {queue AS ← list AS, list AS}
c← head ← front, back =
c′ ← accept c ;
case c′ of
| enq→ x← recv c′ ;

back ′ ← acquire back ;
back ′.ins ;
send back ′ x ;
back← release back ′ ;
c← detach c′ ;
c← head ← front, back

| deq→ front ′ ← acquire front ;
front ′.del ;
(case front ′ of
| none→ front← release front ′ ;

c′.none ;
c← detach c′ ;
c← head ← front, back

| some→ x← recv front ′ ;
front← release front ′ ;
c′.some ; send c′ x ;
c← detach c′ ;
c← head ← front, back)

Figure 21: Imperative queue: has access to both the front and the end of the queue.

As is common for imperative queue implementations, the queue consists of a head that maintains a reference to the
front and the back of a linked list that comprises the elements of the queue. The session type queue AS defines the
protocol of the queue, which is the protocol we introduced earlier for the queue in the producer-consumer example.
For convenience, we repeat the protocol definition in Figure 21. Process head implements this protocol. The session
type list AS defines the protocol of the linked list that is used internally by process head to store the elements of the
queue. Session type list AS is implemented by the processes empty and elem. Process empty represents an empty
list, process elem represents a non-empty list. The list thus consists of a sequence of elem processes, ended by an
empty process. An empty queue is created by the following lines of code

e← empty ;
q← head ← e, e ;

These lines illustrate that sharing arises in case of an empty queue between the front and the back channel because
they both point to the same list element. For this reason, process head defines the channels front and back to be
of the shared session type list AS. Sharing also arises in case of a non-empty queue between a list’s next channel

57

and the head’s back channel because both point to the same element in case of the last element in the list. For
this reason, process elem defines the channel next to be of the shared session type list AS. Process head uses the
acquire-release primitives to communicate with the list. It acquires channel back upon receiving an enq request
and channel front upon receiving a deq request and then releases both channels upon successful insertion into or
deletion from the list.

E.2 Cycles and Deadlocks

In the dining philosophers example (Figure 7), the circular dependency among shared channels is created by shared
channel process arguments. Alternatively, the circularity can be introduce by shared channel input and output.
Figure 22 gives an example that leads to a classic deadlock. The cycle is created by process client , which spawns a
new shared process deadlock and then sends a “self-reference” to that very process after acquiring it. The deadlock
occurs once the newly spawned and now linear process attempts to acquire itself.

cycle = {↑SLΠx:cycle.1} client : {1}
c← client =

d← deadlock ;
d′ ← acquire d ;
send d′ d ;
wait d′ ;
close c

deadlock : {cycle}
c← deadlock =
c′ ← accept c ;
self ← recv c′ ;
self ′ ← acquire self ; (* deadlocks here *)
send self ′ self ;
wait self ′ ;
close c′

Figure 22: Processes creating a cycle along channel self , causing a deadlock.

E.3 Cycles and Blocking

Another form of blocking can arise from circularity that is caused by forwarding rather than by a classic deadlock.
Figure 23 shows a variation of the previous example where the offering process terminate forwards itself to itself,
resulting in a configuration in which no process exists anymore along either channel. As a result, the client will
block when attempting to re-acquire the process.

cycle = {↑SLN{input : Πx:cycle. ↓SLcycle,
dealloc : 1}}

client : {1}
c← client =

d← terminate ;
d′ ← acquire d ;
d′.input ; send d′ d ;
d← release d′ ;
d′ ← acquire d ; (* blocks here *)
d′.dealloc ;
wait d′ ;
close c

terminate : {cycle}
c← terminate =
c′ ← accept c ;
case c′ of
| input→ self ← recv c′ ;

c← detach c′ ;
fwd c self

| dealloc→ close c′

Figure 23: Client-side blocking caused by circular forwarding.

E.4 Linear Forwarding

In the linear forwarding case of the preservation proof, the following 9 subcases for the types of aS and bS are
considered, categorized as shown:

B̂ ≤ Â : aS : > and bS : >
aS : > and bS : ↑SLBL

58

aS : > and bS : ⊥
aS : ↑SLAL and bS : ↑SLBL and AL = BL

aS : ↑SLAL and bS : ⊥
aS : ⊥ and bS : ⊥

↑SLAL 6= ↑SLBL : aS : ↑SLAL and bS : ↑SLBL and AL 6= BL

B̂ ≥ Â : aS : ↑SLAL and bS : >
aS : ⊥ and bS : ↑SLBL

aS : ⊥ and bS : ⊥

Next, we will provide examples for some of the cases above. As in Section 4.2, we use the connective ⊃ [27, 60] to
support value input. The type “int ⊃ int ⊃ 1”, for example, describes as session that receives a value of type int
and then continues as a session that expects to receive a value of type int before terminating. As a reminder, the
process predicate with the forwarding term is proc(aL, fwd aL bL).

In the first 3 cases, aS : > guarantees that the channel aS does not yet occur in any process terms in the configuration.
In that case, substitution does actually not have any effect. An example for aS : > and bS : > is:

supertype = int ⊃ int ⊃ 1

subtype = int ⊃ 1

main : {1}
c← main =
s← super ;
send s 6 ; send s 6 ;
wait s ; close c

super : {supertype}
a← super =
x← recv a ;
b← sub ;
fwd a b

sub : {subtype}
b← sub =
x← recv b ;
close b

An example for aS : > and bS : ↑SLBL is:

supertype = int ⊃ int ⊃ 1

subtype = ↑SL(int ⊃ 1)

main : {1}
c← main =
s← super ;
send s 6 ; send s 6 ;
wait s ; close c

super : {supertype}
a← super =
x← recv a ;
b← sub ;
b′ ← acquireb ;
fwd a b′

sub : {subtype}
b← sub =
b′ ← acceptb ;
x← recv b′ ;
close b′

An example for aS : ↑SLAL and bS : ↑SLBL and AL 6= BL is:

supertype = ↑SL(int ⊃ int ⊃ 1)

subtype = ↑SL(int ⊃ 1)

main : {1}
c← main =

s← super ;
s′ ← acquire s ;
send s′ 6 ; send s′ 6 ;
wait s′ ; close c

super : {supertype}
a← super =
a′ ← accepta ;
x← recv a′ ;
b← sub ;
b′ ← acquireb ;
fwd a′ b′

sub : {subtype}
b← sub =
b′ ← acceptb ;
x← recv b′ ;
close b′

An example for aS : > and bS : ⊥ is:

supertype = ↑SL(int ⊃ int ⊃ 1)

subtype = ↑SL(int ⊃ 1)

main : {1}
a← main =

b← super ;
b′ ← acquireb ;
send b′ 6 ; send b′ 6 ;
fwd a b′

super : {supertype}
b← super =
b′ ← acceptb ;
x← recv b′ ;
s← sub ;
s′ ← acquire s ;
fwd b′ s′

sub : {subtype}
c← sub =
c′ ← accept c ;
x← recv c′ ;
close c′

59

Acknowledgements The authors would like to thank Peter Thiemann, Philip Wadler, and other participants for
comments on a preliminary talk on this work at the Dagstuhl Seminar on Theory and Applications of Behavioural
Types, January 29 – February 3, 2017. The authors would also like to thank Bob Harper for discussions on
process calculi and coinduction. This material is based upon work supported by a Mozilla Research grant and
partially sponsored by NSF Grant CNS-1423168: ”Blameworthy Programs: Accountability via Deviance and Causal
Determination”. Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of Mozilla Research or NSF.

60

References

[1] R. Arnold. C0, an imperative programming language for novice computer scientists. Master’s thesis, Depart-
ment of Computer Science, Carnegie Mellon University, Dec. 2010. Available as Technical Report CMU-CS-
10-145.

[2] R. Atkey, S. Lindley, and J. G. Morris. Conflation confers concurrency. In S. L. et al., editor, Wadler Festschrift,
pages 32–55. Springer LNCS 9600, 2016.

[3] S. Balzer and F. Pfenning. Manifest sharing with session types. Technical Report CMU-CS-17-106, Carnegie
Mellon University, March 2017.

[4] R. Beauxis, C. Palamidessi, and F. D. Valencia. On the asynchronous nature of the asynchronous π-calculus.
In Concurrency, Graphs and Models, volume 5065 of Lecture Notes in Computer Science, pages 473–492.
Springer, 2008.

[5] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In 8th International Workshop
on Computer Science Logic (CSL), volume 933 of Lecture Notes in Computer Science, pages 121–135. Springer,
1994. An extended version appeared as Technical Report UCAM-CL-TR-352, University of Cambridge.

[6] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’07), pages
301–320. ACM, 2007.

[7] J. Boyland. Checking interference with fractional permissions. In 10th International Symposium on Static
Analysis (SAS), pages 55–72, 2003.

[8] S. D. Brookes. A semantics for concurrent separation logic. In 15th International Conference on Concurrency
Theory (CONCUR), volume 3170 of Lecture Notes in Computer Science, pages 16–34. Springer, 2004.

[9] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In 21st International Conference
on Concurrency Theory (CONCUR), volume 6269 of Lecture Notes in Computer Science, pages 222–236.
Springer, 2010.

[10] L. Caires, F. Pfenning, and B. Toninho. Linear logic propositions as session types. Mathematical Structures
in Computer Science, 26(3):367–423, 2016.

[11] E. Castegren and T. Wrigstad. Relaxed linear references for lock-free data structures. In 31st European
Conference on Object-Oriented Programming (ECOOP), volume 74 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1–6:32. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2017.

[12] I. Cervesato and A. Scedrov. Relating state-based and process-based concurrency through linear logic. Infor-
mation and Computation, 207(10):1044–1077, 2009.

[13] I. Cervesato, F. Pfenning, D. Walker, and K. Watkins. A concurrent logical framework ii: Examples and
applications. Technical Report CMU-CS-02-102, Computer Science Department, Carnegie Mellon University,
2002. Revised May 2003.

[14] B.-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A judgmental analysis of linear logic. Technical Report
CMU-CS-03-131R, School of Computer Science, Carnegie Mellon University, December 2003.

[15] K. Crary, R. Harper, and S. Puri. What is a recursive module? In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 50–63, 1999.

[16] R. DeLine and M. Fähndrich. Typestates for objects. In 18th European Conference on Object-Oriented
Programming (ECOOP), volume 3086 of Lecture Notes in Computer Science, pages 465–490. Springer, 2004.

[17] Y. Deng, R. J. Simmons, and I. Cervesato. Relating reasoning methodologies in linear logic and process
algebra. Mathematical Structure in Computer Science, 26(5):868–906, Jan. 2016.

61

[18] H. DeYoung, L. Caires, F. Pfenning, and B. Toninho. Cut reduction in linear logic as asynchronous session-
typed communication. In P. Cégielski and A. Durand, editors, Proceedings of the 21st Conference on Computer
Science Logic, CSL 2012, pages 228–242, Fontainebleau, France, Sept. 2012. Leibniz International Proceedings
in Informatics.

[19] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session types for object-oriented
languages. In 20th European Conference on Object-Oriented Programming (ECOOP), volume 4067 of Lecture
Notes in Computer Science, pages 328–352. Springer, 2006.

[20] E. W. Dijkstra. Hierarchical ordering of sequential processes. EWD Manuscript 310, 1971–1973.

[21] M. Fähndrich and R. DeLine. Adoption and focus: Practical linear types for imperative programming. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 13–24.
ACM, 2002.

[22] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 338–349. ACM, 2003.

[23] S. J. Gay and M. Hole. Subtyping for session types in the π-calculus. Acta Informatica, 42(2–3):191–225, 2005.

[24] D. K. Gifford and J. M. Lucassen. Integrating functional and imperative programming. In LISP and Functional
Programming, pages 28–38, 1986.

[25] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[26] D. Griffith. Polarized Substructural Session Types. PhD thesis, University of Illinois at Urbana-Champaign,
2016.

[27] D. Griffith and F. Pfenning. SILL. https://github.com/ISANobody/sill, 2015.

[28] R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, 2013.

[29] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers. Abstract read permissions: Fractional permis-
sions without the fractions. In 14th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 7737 of Lecture Notes in Computer Science, pages 315–334. Springer, 2013.

[30] K. Honda. Types for dyadic interaction. In 4th International Conference on Concurrency Theory (CONCUR),
volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.

[31] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured
communication-based programming. In 7th European Symposium on Programming (ESOP), volume 1381
of Lecture Notes in Computer Science, pages 122–138. Springer, 1998.

[32] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages 273–284. ACM, 2008.

[33] W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An annotated version
appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, 479–490,
Academic Press (1980), 1969.

[34] R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in Java. In 22nd European Confer-
ence on Object-Oriented Programming (ECOOP), volume 5142 of Lecture Notes in Computer Science, pages
516–541. Springer, 2008.

[35] T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. Session types for Rust. In 11th ACM SIGPLAN
Workshop on Generic Programming (WGP), 2015.

[36] L. Jia, H. Gommerstadt, and F. Pfenning. Monitors and blame assignment for higher-order session types. In
43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 582–594,
2016.

62

https://github.com/ISANobody/sill

[37] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris: Monoids and
invariants as an orthogonal basis for concurrent reasoning. In 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 637–650. ACM, 2015.

[38] N. Kobayashi and C. Laneve. Deadlock analysis of unbounded process networks. Information and Computation,
252:48–70, 2017.

[39] J. Lange, N. Ng, B. Toninho, and N. Yoshida. Fencing off go: Liveness and safety for channel-based program-
ming. In 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
748–761. ACM, 2017.

[40] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In 18th European Symposium
on Programming (ESOP), pages 378–393, 2009.

[41] D. Mazza. The true concurrency of differential interaction nets. Mathematical Structures in Computer Science,
pages 1–29, 11 2016.

[42] F. Militão, J. Aldrich, and L. Caires. Rely-guarantee protocols. In 28th European Conference on Object-
Oriented Programming (ECOOP), volume 8586 of Lecture Notes in Computer Science, pages 334–359. Springer,
2014.

[43] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.

[44] MozillaResearch. The Rust programming language. https://doc.rust-lang.org/stable/book, November
2016.

[45] K. Naden, R. Bocchino, J. Aldrich, and K. Bierhoff. A type system for borrowing permissions. In 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 557–570. ACM,
2012.

[46] R. Neykova and N. Yoshida. Multiparty session actors. In 16th International Conference on Coordination
Models and Languages (COORDINATION), volume 8459 of Lecture Notes in Computer Science, pages 131–
146. Springer, 2014.

[47] L. Nistor, J. Aldrich, S. Balzer, and H. Mehnert. Object propositions. In 19th International Symposium on
Formal Methods (FM), volume 8442 of Lecture Notes in Computer Science, pages 497–513. Springer, 2014.

[48] P. W. O’Hearn. Resources, concurrency and local reasoning. In 15th International Conference on Concurrency
Theory (CONCUR), volume 3170 of Lecture Notes in Computer Science, pages 49–67. Springer, 2004.

[49] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations and observational equivalences
for session-based concurrency. Information and Computation, 239:254–302, 2014.

[50] F. Pfenning. C0 language. http://c0.typesafety.net, 2010.

[51] F. Pfenning and D. Griffith. Polarized substructural session types. In 18th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS), volume 9034 of Lecture Notes in
Computer Science, pages 3–22. Springer, 2015.

[52] F. Pfenning, T. J. Cortina, and W. Lovas. Teaching imperative programming with contracts at the freshmen
level. Unpublished note, 2011.

[53] J. Reed. A judgmental deconstruction of modal logic. Unpublished manuscript, January 2009. URL http:

//www.cs.cmu.edu/~jcreed/papers/jdml.pdf.

[54] D. Sangiorgi and D. Walker. The π-Calculus - A Theory of Mobile Processes. Cambridge University Press,
2001.

[55] A. Scalas and N. Yoshida. Lightweight session programming in Scala. In 30th European Conference on Object-
Oriented Programming (ECOOP), volume 56 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 21:1–21:28. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

63

https://doc.rust-lang.org/stable/book
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf

[56] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic frames and separation
logic. In 23rd European Conference on Object-Oriented Programming (ECOOP’09), volume 5653 of Lecture
Notes in Computer Science, pages 148–172. Springer, 2009.

[57] F. Smith, D. Walker, and J. G. Morrisett. Alias types. In 9th European Symposium on Programming (ESOP),
pages 366–381, 2000.

[58] R. E. Strom and S. Yemini. Typestate: A programming language concept for enhancing software reliability.
IEEE Transactions on Software Engineering (TSE), 12(1):157–171, 1986.

[59] B. Toninho. A Logical Foundation for Session-based Concurrent Computation. PhD thesis, Carnegie Mellon
University and New University of Lisbon, 2015.

[60] B. Toninho, L. Caires, and F. Pfenning. Higher-order processes, functions, and sessions: a monadic integration.
In 22nd European Symposium on Programming (ESOP), volume 7792 of Lecture Notes in Computer Science,
pages 350–369. Springer, 2013.

[61] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style reasoning in a logic for higher-order
concurrency. In 18th ACM SIGPLAN International Conference on Functional Programming (ICFP), pages
377–390. ACM, 2013.

[62] V. Vafeiadis. Concurrent separation logic and operational semantics. Electronic Notes in Theoretical Computer
Science, 276:335–351, 2011.

[63] P. Wadler. Linear types can change the world! In Woking Conference on Programming Concepts and Methods,
1990.

[64] P. Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), pages 273–286. ACM, 2012.

[65] D. Walker and K. Watkins. On regions and linear types. In 6th ACM SIGPLAN International Conference on
Functional Programming (ICFP’06), pages 181–192. ACM, 2001.

[66] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework i: Judgments and
properties. Technical Report CMU-CS-02-101, Computer Science Department, Carnegie Mellon University,
2002. Revised May 2003.

[67] M. Willsey, R. Prabhu, and F. Pfenning. Design and implementation of Concurrent C0. In Fourth International
Workshop on Linearity, June 2016.

64

	Introduction
	Background
	Manifest Sharing
	A Programming Perspective
	A Logic Perspective
	Equi-Synchronizing Session Types

	More Examples
	Dining Philosophers
	Atomicity
	Nondeterminism

	Semantics
	Configuration Typing
	Preservation and Progress
	Asynchronous Dynamics

	Encoding the Untyped -calculus into SILLS
	Implementation
	Related Work
	Discussion and Future Work
	Abstract Syntax
	Statics
	Signature Checking
	Process Typing
	Configuration Typing

	Operational Semantics
	Preservation and Progress
	Definitions, Lemmas, and Corollaries
	Definitions
	Lemmas and Corollaries

	Preservation
	Progress

	Examples
	``Imperative'' Queue
	Cycles and Deadlocks
	Cycles and Blocking
	Linear Forwarding

