
δ-Complete Analysis for Bounded
Reachability of Hybrid Systems

Sicun Gao Soonho Kong Wei Chen
Edmund M. Clarke

July 16, 2014
CMU-CS-14-111

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present the framework of δ-complete analysis for bounded reachability problems of general
hybrid systems. We perform bounded reachability checking through solving δ-decision problems
over the reals. The techniques take into account of robustness properties of the systems under
numerical perturbations. We prove that the verification problems become much more mathemati-
cally tractable in this new framework. Our implementation of the techniques, an open-source tool
dReach, scales well on several highly nonlinear hybrid system models that arise in biomedical
and robotics applications.
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1 Introduction

Formal verification is difficult for hybrid systems with nonlinear dynamics and complex discrete
controls [2,19]. A major difficulty of applying advanced verification techniques in this domain
comes from the need of solving logic formulas over the real numbers with nonlinear functions,
which is notoriously hard. Recently, we have defined the δ-decision problem that is much easier to
solve [13,12]. Given an arbitrary positive rational number δ, the δ-decision problem asks if a logic
formula is false or δ-true (or, dually, true or δ-false). The latter answer can be given, if the for-
mula would be true under δ-bounded numerical changes on its syntactic form [13]. The δ-decision
problem is decidable for bounded first-order sentences over the real numbers with arbitrary Type 2
computable functions. Type 2 computable functions [26] are essentially real functions that can be
approximated numerically. They cover almost all functions that can occur in realistic hybrid sys-
tems, such as polynomials, trigonometric functions, and solutions of Lipschitz-continuous ODEs.
The goal of this paper is to develop a new framework for solving bounded reachability problems
for hybrid systems based on solving δ-decisions. We prove that this framework makes bounded
reachability of hybrid systems a much more mathematically tractable problem and show that our
practical implementation can handle highly nonlinear hybrid systems.

The framework of δ-complete analysis consists of techniques that perform verification and
allow bounded errors on the safe side. For bounded reachability problems, δ-complete analysis
aims to find one of the following answers:

– safe (bounded): The system does not violate the safety property within a bounded period of
time and a bounded number of discrete mode changes.

– δ-unsafe: The system would violate the safety property under some δ-bounded numerical per-
turbations.

Thus, when the answer is safe, no error is involved. On the other hand, a system that is δ-unsafe
would violate the safety property under bounded numerical perturbations. Realistic hybrid systems
interact with the physical world and it is impossible to avoid slight perturbations. Thus, δ-unsafe
systems should indeed be regarded as unsafe, under reasonable choices of δ. Note that such ro-
bustness problems can not be discovered by solving the precise decision problem, and the use of
δ-decisions strengthens the verification results.

δ-Complete reachability analysis reduces verification problems to δ-decision problems of for-
mulas over the reals. It follows from δ-decidability of these formulas [13] that δ-complete reacha-
bility analysis of a wide range of nonlinear hybrid systems is decidable. Such results stand in sharp
contrast to the standard high undecidability of bounded reachability for simple hybrid systems.

We emphasize that the new framework is immediately practical. We implemented the tech-
niques in our open-source tool dReach based on our nonlinear SMT solver dReal [14]. In our
previous work, we have shown the underlying solver scales on nonlinear systems [15]. The tool
successfully verified safety properties of various nonlinear models that are beyond the scope of
existing tools.

The paper is organized as follows. After a short review of δ-decidability, we show how to
represent hybrid systems with LRF -formulas and how to interpret trajectories through semantics
of the formulas in Section 2. Then we focus on bounded reachability and show the encoding in
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LRF in Section 3. In Section 4, we show experimental results of our open-source implementation
on highly nonlinear hybrid systems, and discuss the comparison with reachable set computation
techniques in Section 5 and conclude in Section 6.

Related Work. Our framework can be seen as a converging point for several lines of existing work.
First of all, the use of logic formulas to express model checking of hybrid systems dates back
to [3,5], where formulas with linear arithmetic over the reals are used. The lack of an appropriate
logic for encoding nonlinear systems beyond real arithmetic has been a major bottleneck in this
direction. Second, the realization that robustness assumptions help reduce verification complexity
as been realized frequently. Franzle’s work [10] was among the first to recognize that verifica-
tion problems are more tractable when robustness is assumed for polynomial hybrid systems. The
direction was continued with more positive results such as [25]. These works present theoretical
results that do not directly translate to practical solving techniques, and the results are sensitive
to the definitions. For instance, it is also shown in [20] that a slightly different notion of robust-
ness and noise does not improve the theoretical properties. We focus on formulating a framework
that directly corresponds to practical solving techniques, and the positive theoretical results fol-
low naturally at the same time. There has also been much recent work on using constraint solving
techniques for solving hybrid systems [11,21,18,7], as well as solving frameworks that exploit ro-
bustness properties of the systems [24,22]. These methods can all handle nonlinear dynamics to
certain degrees (mostly polynomial systems, with the exception of [7] which we will mention again
in the experiments). We aim to extend these works to a most broad class of nonlinear hybrid sys-
tems, and provide precise correctness guarantees. We also provide an open-source implementation
that scales well on highly nonlinear systems that arise in practical applications.

2 LRF -Representations of Hybrid Automata

2.1 LRF -Formulas and δ-Decidability

We will use a logical language over the real numbers that allows arbitrary computable real func-
tions [26]. We write LRF to represent this language. Intuitively, a real function is computable if
it can be numerically simulated up to an arbitrary precision. For the purpose of this paper, it suf-
fices to know that almost all the functions that are needed in describing hybrid systems are Type 2
computable, such as polynomials, exponentiation, logarithm, trigonometric functions, and solution
functions of Lipschitz-continuous ordinary differential equations.

More formally, LRF = 〈F , >〉 represents the first-order signature over the reals with the set
F of computable real functions, which contains all the functions mentioned above. Note that con-
stants are included as 0-ary functions. LRF -formulas are evaluated in the standard way over the
structure RF = 〈R,FR, >R〉. It is not hard to see that we can put any LRF -formula in a normal
form, such that its atomic formulas are of the form t(x1, ..., xn) > 0 or t(x1, ..., xn) ≥ 0, with
t(x1, ..., xn) composed of functions in F . To avoid extra preprocessing of formulas, we can explic-
itly define LF -formulas as follows.
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Definition 1 (LRF -Formulas). Let F be a collection of computable real functions. We define:

t := x | f(t(x)), where f ∈ F (constants are 0-ary functions);
ϕ := t(x) > 0 | t(x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.

In this setting ¬ϕ is regarded as an inductively defined operation which replaces atomic formulas
t > 0 with −t ≥ 0, atomic formulas t ≥ 0 with −t > 0, switches ∧ and ∨, and switches ∀ and ∃.

Definition 2 (Bounded LRF -Sentences). We define the bounded quantifiers ∃[u,v] and ∀[u,v] as
∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ) and ∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v) → ϕ) where u
and v denote LRF terms, whose variables only contain free variables in ϕ excluding x. A bounded
LRF -sentence is

Q
[u1,v1]
1 x1 · · ·Q[un,vn]

n xn ψ(x1, ..., xn),

where Q[ui,vi]
i are bounded quantifiers, and ψ(x1, ..., xn) is quantifier-free.

Definition 3 (δ-Variants). Let δ ∈ Q+ ∪ {0}, and ϕ an LRF -formula

ϕ : QI1
1 x1 · · ·QIn

n xn ψ[ti(x,y) > 0; tj(x,y) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k + 1, ...,m}. The δ-weakening ϕδ of ϕ is defined as the result of
replacing each atom ti > 0 by ti > −δ and tj ≥ 0 by tj ≥ −δ:

ϕδ : QI1
1 x1 · · ·QIn

n xn ψ[ti(x,y) > −δ; tj(x,y) ≥ −δ].

It is clear that ϕ→ ϕδ (see [13]).

In [13,12], we have proved that the following δ-decision problem is decidable, which is the basis
of our framework.

Theorem 1 (δ-Decidability). Let δ ∈ Q+ be arbitrary. There is an algorithm which, given any
bounded LRF -sentence ϕ, correctly returns one of the following two answers:

– δ-True: ϕδ is true.
– False: ϕ is false.

When the two cases overlap, either answer is correct.

Theorem 2 (Complexity). Let S be a class of LRF -sentences, such that for any ϕ in S, the terms
in ϕ are in Type 2 complexity class C. Then, for any δ ∈ Q+, the δ-decision problem for bounded
Σn-sentences in S is in (ΣP

n )
C.

2.2 LRF -Representations and Hybrid Trajectories

We first show that LRF -formulas can concisely represent hybrid automata.
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Definition 4 (LRF -Representations of Hybrid Automata). A hybrid automaton inLRF -representation
is a tuple

H = 〈X,Q, {flowq(x,y, t) : q ∈ Q}, {invq(x) : q ∈ Q},
{jumpq→q′(x,y) : q, q

′ ∈ Q}, {initq(x) : q ∈ Q}〉

whereX ⊆ Rn for some n ∈ N,Q = {q1, ..., qm} is a finite set of modes, and the other components
are finite sets of quantifier-free LRF -formulas.

Notation 3 For any hybrid system H , we write X(H), flow(H), etc. to denote its corresponding
components.

Almost all hybrid systems studied in the existing literature can be defined by restricting the set of
functions F in the signature. For instance,

Example 1 (Linear and Polynomial Hybrid Automata). Let F lin = {+} ∪ Q and Fpoly = {×} ∪
F lin. Rational numbers are considered as 0-ary functions. In existing literature, H is a linear hy-
brid automaton if it has an LRFlin

-representation, and a polynomial hybrid automaton if it has an
LRFpoly

-representation.

Example 2 (Nonlinear Bouncing Ball). The bouncing ball is a standard hybrid system model. Its
nonlinear version (with air drag) can be LRF -represented in the following way:

– X = R2 and Q = {qu, qd}. We use qu to represent bounce-back mode and qd the falling mode.
– flow = {flowqu(x0, v0, xt, vt, t), flowqd(x0, v0, xt, vt, t)}. We use x to denote the height of the

ball and v its velocity. Instead of using time derivatives, we can directly write the flows as
integrals over time, using LRF -formulas:
• flowqu(x0, v0, xt, vt, t) defines the dynamics in the bounce-back phase:

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1− βv(s)2)ds)

• flowqd(x0, v0, xt, vt, t) defines the dynamics in the falling phase:

(xt = x0 +

∫ t

0

v(s)ds) ∧ (vt = v0 +

∫ t

0

g(1 + βv(s)2)ds)

where β is a constant. Again, note that the integration terms define Type 2 computable func-
tions.

– jump = {jumpqu→qd(x, v, x
′, v′), jumpqd→qu(x, v, x

′, v′)} where
• jumpqu→qd(x, v, x

′, v′) is (v = 0 ∧ x′ = x ∧ v′ = v).
• jumpqd→qu(x, v, x

′, v′) is (x = 0 ∧ v′ = αv ∧ x′ = x), for some constant α.
– initqd is (x = 10 ∧ v = 0) and initqu is ⊥.
– invqd is (x >= 0 ∧ v >= 0) and invqu is (x >= 0 ∧ v <= 0).
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Trajectories of hybrid systems combine continuous flows and discrete jumps. This motivates
the use of a hybrid time domain, with which we can keep track of both the discrete changes and
the duration of each continuous flow. A hybrid time domain is a sequence of closed intervals on
the real line, and a hybrid trajectory is a mapping from the time domain to the Euclidean space.
Formally, we use the following definition given by Davoren in [9]:

Definition 5 (Hybrid Time Domains and Hybrid Trajectories [9]). A hybrid time domain is a
subset of N× R of the form

Tm = {(i, t) : i < m and t ∈ [ti, t
′
i] or [ti,+∞)},

where m ∈ N ∪ {+∞}, {ti}mi=0 is an increasing sequence in R+, t0 = 0, and t′i = ti+1. When
X ⊆ Rn is an Euclidean space and Tm a hybrid time domain, a hybrid trajectory is a continuous
mapping ξ : Tm → X. We can write the time domain Tm of ξ as T (ξ).

We can now define trajectories of hybrid automata. To link hybrid trajectories with automata, we
need a labeling function σξ,H(i) that maps each step i in the hybrid trajectory to an appropriate
discrete mode in H , and make sure that the flow, jump, inv, init conditions are satisfied.

Definition 6 (Trajectories of Hybrid Automata). Let H be a hybrid automaton, Tm a hybrid
domain, and ξ : Tm → X a hybrid trajectory. We say that ξ is a trajectory of H of discrete depth
m, written as ξ ∈ JHK, if there exists a labeling function σξ,H : N→ Q such that:

– For some q ∈ Q, σξ,H(0) = q and RF |= initq(ξ(0, 0)).
– For any (i, t) ∈ Tm, RF |= invσξ,H(i)(ξ(i, t)).
– For any (i, t) ∈ Tm,
• When i = 0, RF |= flowq0(ξ(0, 0), ξ(0, t), t).
• When i = k + 1, where 0 < k + 1 < m,

RF |= flowσHξ (k+1)(ξ(k + 1, tk+1), ξ(k + 1, t), (t− tk+1)), and

RF |= jumpσξ,H(k)→σξ,H(k+1)(ξ(k, t
′
k), ξ(k + 1, tk+1)).

The definition is straightforward. In each mode, the system flows continuously following the dy-
namics defined by flowq. Note that (t− tk) is the actual duration in the k-th mode. When a switch
between two modes is performed, it is required that ξ(k + 1, tk+1) is updated from the exit value
ξ(k, t′k) in the previous mode, following the jump conditions.

Remark 1 (jump vs inv). The jump conditions specify when H may switch to another mode. The
invariants (when violated) specify whenH must switch to another mode. They will require different
logical encodings.

Note that we gave no restriction on the formulas that can be used for describing hybrid automata
in Definition 4. A minimal requirement is that the flow predicates should define continuous trajec-
tories over time, namely:

Definition 7 (Well-Defined Flow Predicates). Let flow(x,y, t) be a flow predicate for a hybrid
automaton H . We say the flow predicate is well-defined, if for all tuples (a, b, τ) ∈ X(H) ×
X(H) × R≥0 such that R |= flow(a, b, τ), there exists a continuous function η : [0, τ ] → X
such that η(0) = a, η(τ) = b, and for all t′ ∈ [0, τ ], we have R |= flow(a, η(t), t). We say H is
well-defined if all its flow predicates are well-defined.
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This definition requires that we can always construct a trajectory from the end points and the initial
points that satisfy a flow predicate. Flows that are defined using differential equations, differential
inclusions, and explicit continuous mappings all satisfy this condition. Thus, from now on our
discussion of hybrid automata assume their well-definedness.

2.3 δ-Perturbations

We can now define δ-perturbations on hybrid automata directly through perturbations on the logic
formulas in their LRF -representations. For any set S of LRF -formulas, we write Sδ to denote the
set containing the δ-perturbations of all elements of S.

Definition 8 (δ-Weakening of Hybrid Automata). Let δ ∈ Q+ ∪ {0} be arbitrary. Suppose

H = 〈X,Q, flow, jump, inv, init〉

is an LRF -representation of hybrid system H . The δ-weakening of H is

Hδ = 〈X,Q, flowδ, jumpδ, invδ, initδ〉

which is obtained by weakening all formulas in the LRF -representations of H .

Example 3. The δ-weakening of the bouncing ball automaton is obtained by weakening the for-
mulas in its description. For instance, flowδ

qu(x0, v0, xt, vt, t) is

|xt − (x0 +

∫ t

0

v(s)ds)| ≤ δ ∧ |vt − (v0 +

∫ t

0

g(1− βv(s)2)ds))| ≤ δ

and jumpδqd→qu(x, v, x
′, v′) is

|x| ≤ δ ∧ |v′ − αv| ≤ δ ∧ |x′ − x| ≤ δ.

Remark 2. It is important to note that the notion of δ-perturbations is a purely syntactic one (de-
fined on the description of hybrid systems) instead of a semantic one (defined on the trajecto-
ries). The syntactic perturbations correspond to semantic over-approximation ofH in the trajectory
space.

Proposition 1. For any H and δ ∈ Q+ ∪ {0}, JHK ⊆ JHδK.

Proof. Let ξ ∈ JHK be any trajectory of H . Following Definition 3, for any LRF sentence ϕ, we
have ϕ→ ϕδ. Since ξ satisfies the conditions in Definition 6, after replacing each formula by their
δ-weakening, we have ξ ∈ JHδK.

6



2.4 Reachability

We can now formally state the reachability problem for hybrid automata usingLRF -representations
and their interpretations.

Definition 9 (Reachability). Let H be an n-dimensional hybrid automaton, and U a subset of
its state space Q × X . We say U is reachable by H , if there exists ξ ∈ JHK,such that there exists
(i, t) ∈ T (ξ) satisfying (σHξ (i), ξ(i, t)) ∈ U.

The bounded reachability problem for hybrid systems is defined by restricting the continuous time
duration to a bounded interval, and the number of discrete transitions to a finite number.

Definition 10 (Bounded Reachability). Let H be an n-dimensional hybrid automaton, whose
continuous state space X is a bounded subset of Rn. Let U be a subset of its state space. Set k ∈ N
and M ∈ R≥0. The (k,M)-bounded reachability problem asks whether there exists ξ ∈ JHK such
that there exists (i, t) ∈ T (ξ) with i ≤ k, t =

∑k
i=0 ti where ti ≤M , and (σξ(i), ξ(i, t)) ∈ U.

Remark 3. By “step”, we mean the number of discrete jumps. We say H can reach U in k steps, if
there exists ξ ∈ JHK that contains k discrete jumps, which consists of k + 1 pieces of continuous
flows in the corresponding discrete modes.

In the seminal work of [4,3], it is already shown that the bounded reachability problem for
simple classes of hybrid automata is undecidable. The goal of δ-complete analysis is to bypass
much of this difficulty.

3 δ-Complete Analysis for Bounded Reachability

3.1 Encoding Bounded Reachability in LRF

We now define the LRF -encoding of bounded reachability. The encodings are standard bounded
model checking, and have been studied in existing work but without the generality of a full LRF -
language. As a result, some issues have not been discovered. For example, the full encoding of
non-deterministic flows with invariant conditions require second-order quantification, and the first-
order encoding requires additional assumptions. We will give the full LRF -encodings and discuss
such details.

Notation 4 Let H be a hybrid automaton. We use unsafe = {unsafeq : q ∈ Q} as the LRF -
representation of an unsafe region in the state space ofH . We can write JunsafeK =

⋃
q∈QJunsafeqK×

{q}.

First, we need to define a set of auxiliary formulas that will be important for ensuring that a partic-
ular mode is picked at a certain step.

Definition 11. Let Q = {q1, ..., qm} be a set of modes. For any q ∈ Q, and i ∈ N, use biq to
represent a Boolean variable. We now define

enforceQ(q, i) = biq ∧
∧

p∈Q\{q}

¬bip
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enforceQ(q, q
′, i) = biq ∧ ¬bi+1

q′ ∧
∧

p∈Q\{q}

¬bip ∧
∧

p′∈Q\{q′}

¬bi+1
p′

We omit the subscript Q when the context is clear.

The use of the auxiliary of formulas will be explained when we define the full encodings of
bounded reachability.

Systems with no invariants. We start with the simplest case for hybrid automata with no invariants.
Naturally, we say a hybrid automaton H is invariant-free if invq(H) = > for every q ∈ Q(H).
We define the following formula that checks whether an unsafe region is reachable after exactly k
steps of discrete transition in a hybrid system.

Definition 12 (k-Step Reachability, Invariant-Free Case). Suppose H is invariant-free, and U
a subset of its state space represented by unsafe. The LRF -formula ReachH,U(k,M) is defined as:

∃Xx0∃Xxt0 · · · ∃Xxk∃Xxtk∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

)
∧

k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(x

t
i,xi+1) ∧ enforce(q, q′, i)

∧flowq′(xi+1,x
t
i+1, ti+1) ∧ enforce(q′, i+ 1)

))
∧
∨
q∈Q

unsafeq(x
t
k).

Intuitively, the trajectories start with some initial state satisfying initq(x0) for some q. In each step,
it follows flowq(xi,x

t
i, t) and makes a continuous flow from xi to xti after time t. When H makes

a jump from mode q′ to q, it resets variables following jumpq′→q(x
t
k,xk+1). The auxiliary enforce

formulas ensure that picking jumpq→q′ in the i-the step enforces picking flow′q in the (i+1)-th step.

Systems with invariants and deterministic flows. When the invariants are not trivial, we need to
ensure that for all the time points along a continuous flow, the invariant condition holds. Thus,
we need to universally quantify over time. This is a fact that has been previously discussed, for
instance, in [8]. However, if we allow nondeterministic flows, the situation is more complicated,
which has not been discovered in existing work. We give the encoding for systems with only
deterministic flows first, as follows:

Definition 13 (k-Step Reachability, Nontrivial Invariant and Deterministic Flow). Suppose H
contains invariants and only deterministic flow , and U a subset of its state space represented by
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unsafe. In this case, the LRF -formula ReachH,U(k,M) is defined as:

∃Xx0∃Xxt0 · · · ∃Xxk∃Xxtk∃[0,M ]t0 · · · ∃[0,M ]tk.∨
q∈Q

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

∧∀[0,t0]t∀Xx (flowq(x0,x, t)→ invq(x))
)

∧
k−1∧
i=0

( ∨
q,q′∈Q

(
jumpq→q′(x

t
i,xi+1) ∧ flowq′(xi+1,x

t
i+1, ti+1) ∧ enforce(q, q′, i)

∧enforce(q′, i+ 1) ∧ ∀[0,ti+1]t∀Xx (flowq′(xi+1,x, t)→ invq′(x)))
))

∧
∨
q∈Q

(unsafeq(x
t
k) ∧ enforce(q, k)).

The extra universal quantifier for each continuous flow expresses the requirement that for all the
time points between the initial and ending time point (t ∈ [0, ti + 1]) in a flow, the continuous
variables x must take values that satisfy the invariant conditions invq(x).

Systems with invariants and nondeterministic flows. In the most general case, a hybrid system can
contain non-deterministic flow: i.e., for some q ∈ Q, there exists a0,at,a

′
t ∈ Rn and t ∈ R such

that at 6= a′t and R |= flowq(a0,at, t) and R |= flowq(a0,a
′
t, t). Consequently, there is multiple

possible values for the continuous variable for each time point. Different values correspond to
different trajectories, and we only look for one of the trajectories that satisfies the invariant on all
time points. Thus, we need to quantify over a trajectory and write ∃ξ∀t. inv(ξ(t)). We conjecture
that, in general, this second-order quantification can not be fully reduced to a first-order expression.

In practice, the discussion of the invariant conditions in the existing work has (implicitly) as-
sumed that the invariant condition should hold for all possible trajectories in the case of non-
deterministic flow. We can formulate this assumption in the following way:

Definition 14 (Strictly-Imposed Invariants). We say a hybrid automaton H has strictly-imposed
mode invariants, if the following condition holds. Let flowq(x,y, t) and invq(x) be the flow and
invariant conditions in any mode q ofH . Let a be an arbitrary starting point in the mode, satisfying
inv(a). Then, for any b, b′ ∈ X(H) such that flow(a, b, τ) and flow(a, b′, τ) are true at the same
time point τ ∈ R, we have invq(b) iff invq(b

′).

If this condition is true, then a witness trajectory of bounded reachability has to require that all
flows satisfy the same invariants. Consequently, we can still use the encoding in Definition 13,
which requires that all possible flows satisfy the invariants. Thus, when this condition applies, we
can still use first-order encoding for reachability in the presence of non-deterministic flows.

3.2 δ-Complete Analysis of Bounded Reachability

We now define the δ-complete analysis problem and prove its decidability.
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Definition 15. LetH be a hybrid system andU a subset of its state space. SupposeU is represented
by the LRF -formula unsafe. Let k ∈ N and M ∈ R+. The δ-complete analysis for (k,M)-bounded
reachability problem asks for one of the following answers:

– (k,m)-Safety: H does not reach JunsafeK within the (k,M)-bound.
– δ-Unsafety: Hδ reaches JunsafeδK within the (k,M)-bound.

The following lemma comes from the intuitive meaning of the encodings. A proof is given in the
appendix.

Lemma 1. Let δ ∈ Q+ ∪ {0} be arbitrary. Suppose H is a well-defined hybrid automaton with
strictly-imposed invariants. Let U a subset of the state space of H , represented by the set unsafe
of LRF -formulas. Let ReachH,U(k,M) be the LRF -formula encoding (k,M)-bounded reachability
of H with respect to U . We always have that R |= (ReachH,U(k,M))δ iff there exists a trajectory
ξ ∈ JHδK such that for some (k, t) ∈ T (ξ), where 0 ≤ t ≤M , (ξ(k, t), σξ(k)) ∈ JunsafeδK.

Now we can show that δ-complete analysis for bounded reachability problems is decidable for
general LRF -representable hybrid systems.

Theorem 5 (Decidability). Let δ ∈ Q+ be arbitrary. There exists an algorithm such that, for any
bounded well-defined hybrid automaton LRF -represented by H with strictly imposed invariants,
and any unsafe region U LRF -represented by unsafe, correctly performs δ-complete analysis for
(k,M)-bounded reachability for H , for any k ∈ N,M ∈ R+.

Proof. We need to show that there is an algorithm that correctly returns one of the following:

– H does not reach JunsafeK within the (k,M)-bound.
– Hδ reaches JunsafeδK within the (k,M)-bound.

To do this, we only need to solve the δ-decision problem of ReachH,U(i,M) for 0 ≤ i ≤ k. We
obtain either ReachH,U(i,M) is false for all such i, or is δ-true for some i, then:

– Suppose ReachH,U(i,M) is false for all i. Then we know that for any i ≤ k, ReachH,U(i,M) is
false. Using Lemma 1 for the special case δ = 0, we know that there does not exist a trajectory
ξ ∈ JHK that can reach U within i steps, and consequently the system is safe within the (k,M)-
bound.

– Suppose ReachH,U(i,M) is δ-true for some i. We know that there exists i ≤ k such that
ReachδH,U(i,M) is true. Using Lemma 1 for δ ∈ Q+, we know that there exists a trajectory
ξ ∈ JHδK that can reach the region represented by unsafeδ in i-steps, i.e., within the (k,M)-
bound. ut

From the structures of the LRF -formulas encoding δ-reachability, we can obtain the following
complexity results of the reachability problems.

Theorem 6 (Complexity). Suppose all the LRF -terms in the description of H and U are in com-
plexity class C. Then deciding the (k,M)-bounded δ-reachability problem is in

– NPC for an invariant-free H;

10



– (ΣP
2 )

C for an H with strictly-imposed nontrivial invariants.

Corollary 1. For linear and polynomial hybrid automata, δ-complete bounded reachability anal-
ysis ranges from being NP-complete to ΣP

2 -complete for the three cases. For hybrid automata that
can be LRF -represented with whose F contains the set of ODEs defined P-computable right-hand
side functions, the problem is PSPACE-complete.

The results come from the fact that the complexity of polynomials is in P, and the set of ODEs in
questions are PSPACE-complete.

Remark 4. The complexity results indicate that the worst-case running time of the analysis is expo-
nential in all the input parameters. In particular, the worst-case running time grows exponentially
with the δ and the size of the domains. We need to use efficient decision procedures to manage this
complexity.

4 Experiments

Our tool dReach implements the techniques presented in the paper. The tool is built on several
existing packages,including opensmt [6] for the general DPLL(T) framework, realpaver [16]
for ICP, and CAPD [1] for computing interval-enclosures of ODEs. The tool is open-source
at http://dreal.cs.cmu.edu/dreach.html. All benchmarks and data shown here are
also available on the tool website.All experiments were conducted on a machine with a 3.4GHz
octa-core Intel Core i7-2600 processor and 16GB RAM, running 64-bit Ubuntu 12.04LTS. Table 1
is a summary of the running time of the tool on various hybrid system models which we explain
below.

Atrial Fibrillation. We studied the Atrial Fibrillation model as developed in [17]. The model has
four discrete control locations, four state variables, and nonlinear ODEs. A typical set of ODEs in
the model is:

du

dt
= e+ (u− θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2
(1 + exp(−2k(u− us)))

− gs2s

dv

dt
=−g+v · v

dw

dt
= −g+w · w

The exponential term on the right-hand side of the ODE is the sigmoid function, which often
appears in modelling biological switches.
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Prostate Cancer Treatment. The Prostate Cancer Treatment model [23] exhibits more nonlinear
ODEs. The reachability questions are

dx

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx((1− k3)

z

z + k4
+ k3))−m1(1−

z

z0
))x+ c1x

dy

dt
=m1(1−

z

z0
)x+ (αy(1− d

z

z0
)− βy)y + c2y

dz

dt
=
−z
τ

+ c3z

dv

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx(k3 + (1− k3)

z

z + k4
))

−m1(1−
z

z0
))x+ c1x+m1(1−

z

z0
)x+ (αy(1− d

z

z0
)− βy)y + c2y

Electronic Oscillator. The EO model represents an electronic oscillator model that contains non-
linear ODEs such as the following:

dx

dt
= −ax · sin(ω1 · τ)

dy

dt
= −ay · sin((ω1 + c1) · τ) · sin(ω2) · 2

dz

dt
= −az · sin((ω2 + c2) · τ) · cos(ω1) · 2

ω1

dt
= −c3 · ω1

ω2

dt
= −c4 · ω2

dτ

dt
= 1

Quadcopter Control. We developed a model that contains the full dynamics of a quadcopter. We
use the model to solve control problems by answering reachability questions. A typical set of the
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differential equations are the following:

dωx
dt

= L · k · (ω2
1 − ω2

3)(1/Ixx)− (Iyy − Izz)ωyωz/Ixx
dωy
dt

= L · k · (ω2
2 − ω2

4)(1/Iyy)− (Izz − Ixx)ωxωz/Iyy
dωz
dt

= b · (ω2
1 − ω2

2 + ω2
3 − ω2

4)(1/Izz)− (Ixx − Iyy)ωxωy/Izz
dφ

dt
= ωx +

sin (φ) sin (θ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωy +
sin (θ)

sin(φ)2 cos(θ)
cos(φ)

+ cos (φ) cos (θ)
ωz

dθ

dt
=−( sin (φ)2 cos (θ)(

sin(φ)2 cos(θ)
cos(φ)

ωy + cos (φ) cos (θ)
)
cos (φ)2

+
1

cos (φ)
)ωy

− sin (φ) cos (θ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωz

dψ

dt
=

sin (φ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωy +
1

sin(φ)2 cos(θ)
cos(φ)

+ cos (φ) cos (θ)
ωz

dxp

dt
= (1/m)(sin(θ) sin(ψ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · xp)

dyp

dt
= (1/m)(− cos(ψ) sin(θ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · yp)

dzp

dt
= (1/m)(−g − cos(θ)k(ω2

1 + ω2
2 + ω2

3 + ω2
4)− k · d · zp

dx

dt
= xp,

dy

dt
= yp,

dz

dt
= zp

Room for Improvements. We aim to provide an open-source framework that allows much more
optimization. In particular, while we can solve highly nonlinear models that are beyond the scope
of other existing tools, there are simpler examples that other tools perform better. For instance, the
Flow* tool [7] can efficiently compute a tight enclosure of the following system, while our tool
does not terminate in reasonable time:

dx/dt =−9(x− 2)− 7(y + 2) + (z − 1) + 0.2(x− 2)(y + 2)

+0.1(y + 2)(z − 1) + 0.1(x− 2)(z − 1) + 0.5(z − 1)2

dy/dt = 6(x− 2) + 4(y + 2) + z − 1

dz/dt = 3(x− 2) + 2(y + 2)− 2.5(z − 1)

The reason is that the CAPD package that we use for verified integration of ODE blows up on
this set of equations. However, our framework can integrate any reachable set computation tool,
in replace of CAPD, for computing pruning on continuous flows. We remark on this in the next
section.
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Benchmark #Mode #Depth #ODEs #Vars Delta Result Time(s) Trace

AF-GOOD 4 3 20 53 0.001 SAT 0.425 793K
AF-BAD 4 3 20 53 0.001 UNSAT 0.074 —
AF-TO1-GOOD 4 3 24 62 0.001 SAT 2.750 224K
AF-TO1-BAD 4 3 24 62 0.001 UNSAT 5.189 —
AF-TO2-GOOD 4 3 24 62 0.005 SAT 3.876 553K
AF-TO2-BAD 4 3 24 62 0.001 UNSAT 8.857 —
AF-TSO1-TSO2 4 3 24 62 0.001 UNSAT 0.027 —
AF8-K7 8 7 40 101 0.001 SAT 10.478 3.8M
AF8-K23 8 23 40 293 0.001 SAT 135.29 11M

EO-K2 3 2 18 48 0.01 SAT 3.144 1.9M
EO-K11 3 11 99 174 0.01 UNSAT 0.969 —

QUAD-K1 2 1 34 89 0.01 SAT 2.386 10M
QUAD-K2 2 2 34 125 0.01 SAT 4.971 13M
QUAD-K3 4 3 68 161 0.01 SAT 13.755 42M
QUAD-K3U 4 3 68 161 0.01 UNSAT 2.846 —

CT 2 2 10 41 0.005 SAT 345.84 3.1M
CT 2 2 10 41 0.002 SAT 362.84 3.1M

BB-K10 2 10 22 66 0.01 SAT 8.057 123K
BB-K20 2 20 42 126 0.01 SAT 39.196 171K

Table 1: #Mode = Number of modes in the hybrid system, #Depth = Unrolling depth, #ODEs = Number of ODEs in the unrolled
formula, #Vars = Number of variables in the unrolled formula, Result = Bounded Model Checking Result (delta-SAT/UNSAT) Time
= CPU time (s), Trace = Size of the ODE trajectory, AF = Atrial Filbrillation, EO = Electronic Oscillator, QUAD = Quadcopter
Control, CT = Cancer Treatment, BB = Bouncing Ball with Drag.

5 Discussion

Reachable set computation, which computes geometric representations of the complete set of
reachable states, is the mainstream approach for analyzing bounded reachability of hybrid sys-
tems. The techniques can have difficulty in scaling on systems with very complex dynamics and
discrete transitions. Bounded model checking has the advantage of focusing the search for one
counterexample, and does not maintain the complete set of reachable states. With fast SAT/SMT
solvers, bounded model checking techniques can natively handle the discrete components in hybrid
systems. Bounded model checking requires a very powerful solver, one that can handle ODEs and
nested quantifiers. We have proved that the complexity of bounded δ-reachability is comparable to
SAT solving, and it is reasonable to expect that with more improvement on the solver, large real-
istic systems can eventually be handled in practice. Note again that all the techniques in reachable
set computation can be directly used in logic solvers, and it is possible to have practical tools that
combine the advantages of both approaches.

6 Conclusion

We developed the framework of δ-complete analysis for bounded reachability of a wide range of
hybrid systems. δ-Complete reachability analysis reduces verification problems to δ-decision prob-
lems of formulas over the reals. It follows from δ-decidability of these formulas that δ-complete
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Fig. 1: Example trajectories computed for the following models: (a) Quadcopter Control, (b) Atrial
Fibrillation, (c) Electronic Oscillator.

reachability analysis of a wide range of nonlinear hybrid systems is decidable. In practice, δ-
reachability problems are solved through reduction to δ-decision problems for first-order formulas
over the reals. We demonstrated the scalability of our approach on highly nonlinear hybrid sys-
tems.
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Appendix

Proof of Lemma 1.

Proof. We prove for the case with nontrivial invariants. We work with the unperturbed encoding,
which easily applies to the δ-perturbed version. We will need to do induction on the subformula of
ReachH,U that does not contain the unsafe conditions. For reasons that will be made clear below,
we split the formula ReachH,U(k,M) into two parts and write it as the conjunction traj(k,M) ∧
unsafe(k), where unsafe(k) is

∨
q∈Q(unsafeq(x

t
k) ∧ enforce(q, k)).

Suppose R |= ReachH,U(k,M). We do induction on k to prove that there exists a trajectory
ξ ∈ JHK that contains k mode changes. When k = 0, without loss of generality we pick an
arbitrary starting mode q, such that the traj(k,M) part of the formula can be simplified as

∃Xx0∃Xxt0∃[0,M ]t0

(
initq(x0) ∧ flowq(x0,x

t
0, t0) ∧ enforce(q, 0)

∧∀[0,t0]t∀Xx (flowq(x0,x, t)→ invq(x))).

Since the formula is true, there exists witnesses a,at, τ such that the quantifier-free part is satisfied.
By well-definedness of flowq there exists a trajectory ξ from a0 to at such that for any 0 ≤ τ ′ ≤ τ ,
ξ(τ) satisfies the invariant condition. Now, suppose k = (k − 1) + 1 (k ≥ 1) and by inductive
hypothesis there exists a trajectory ξ′ ∈ JHK with k− 1 mode changes. We now extend ξ′ with one
more mode change. Let traj(k − 1,M) be the part of ReachH,U)(k − 1,M), and thus traj(k,M)
can be written as

∃xk∃Xxtk∃[0,M ]tk(
traj(k − 1,M) ∧

∨
q,q′∈Q

(
jumpq→q′(x

t
k−1,xk) ∧ flowq′(xk,x

t
k, tk)

∧enforce(q, q′, i) ∧ ∀[0,tk]t∀Xx (flowq′(xk,x, t)→ invq′(x))) ∧ enforce(q′, k)
))

Note that x0, ...,x
t
k−1 are quantified variables in traj(k − 1,M). Since the formula is true, there

exists ak,atk, τk that witness the satisfiability of the quantifier-free part of the formula outside of
traj(k − 1,M). Now, we extend ξ′ ∈ JHK in the following way. Let the last state of ξ′ be given
by atk−1. Following the formula, we have that jump1→q′(a

t
k−1,ak) satisfies the jumping condition

between mode q and q′. It is then followed by a continuous trajectory that starts from ak and ends
at atk, satisfying flow(ak,a

t
k, τk). Thus, there exists a trajectory ξ ∈ JHK with k mode changes.

Thus, for all k there exists a trajectory ξ ∈ JHK such that for some (k, t) ∈ T (ξ), ξ(k, t), σξ(k) ∈
JunsafeK.

The reverse direction is easy. Suppose there exists a trajectory ξ ∈ JHK such that for some
(k, t) ∈ T (ξ), ξ(k, t), σξ(k) ∈ JunsafeK, then the start and end points in each piece of the continu-
ous trajectories witness the formula ReachH,U(k,M). ut
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