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Abstract

This paper introduces differential hybrid games, which combine differential games with hybrid
games. In both kinds of games, two players interact with continuous dynamics. The difference is
that hybrid games also provide all the features of hybrid systems and discrete games, but only de-
terministic differential equations. Differential games, instead, provide differential equations with
input by both players, but not the luxury of hybrid games, such as mode switches and discrete
or alternating interaction. This paper augments differential game logic with modalities for the
combined dynamics of differential hybrid games. It shows how hybrid games subsume differen-
tial games and introduces differential game invariants and differential game variants for proving
properties of differential games inductively.

This material is based upon work supported by the National Science Foundation under NSF CAREER Award
CNS-1054246. The views and conclusions contained in this document are those of the author and should not be inter-
preted as representing the official policies, either expressed or implied, of any sponsoring institution or government.
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s)
and do not necessarily reflect the views of any sponsoring institution or government.



Keywords: differential games; hybrid games; logic; differential game invariants; partial dif-
ferential equations; viscosity solutions; real algebraic geometry



1 Introduction
Differential games [Isa67, Fri71, Háj75, KS88, Pet93, BRP99, EK74, ES84, Sou85] support adver-
sarial interaction and game play during the continuous dynamics of a differential equation. They
allow the two players to control inputs to the differential equation during its evolution by mea-
surable functions. This is to be contrasted with hybrid systems [Hen96] and hybrid games, where
differential equations are deterministic and the only decision is how long to evolve. Differential
games are useful, e.g., for studying pursuit-evasion in aircraft if both players can react continuously
to each other. They are a good match for tight-loop, analog, or rapid interaction.

Hybrid games [NRY96, HHM99, TLS00, DR06, BBC10, VPVD11, Pla14] are games of two
players on a hybrid system’s discrete and continuous dynamics where the players have control
over some discrete-time choices during the evolution of the system, but the continuous dynamics
stays deterministic. Hybrid games can model discrete aspects like decision delays and games with
different dynamics or different controls in different modes of the system. They are a good match
for sporadic or discrete-time interaction with discrete sensors or reaction delays. There is even a
game aspect in sporadic interactions such as requesting flight plan changes.

The primary purpose of this paper is to show that both game principles are not in conflict but
can be integrated seamlessly to complement each other. This paper introduces differential hybrid
games that combine the aspects of hybrid games with those of differential games resulting in a
model where discrete, continuous, and adversarial dynamics mix freely. This makes it possible
to model games that combine continuous-time interactions (e.g. auto-evasion curves for aircraft)
with discrete interactions (e.g. whether to call air traffic control for a collision avoidance advisory
or whether to disengage the autopilot and follow a nonstandard manual flight maneuver).

The key insight behind hybrid systems is that it is helpful to understand each aspect of a system
on its natural level [Pla12b]. Discrete dynamics is a good fit for some aspects. Continuous dynam-
ics is more natural for others. Differential hybrid games enable the same flexibility for games rather
than systems, so that each adversarial aspect in a cyber-physical system can be understood on its
most natural level. Which level that is depends on modeling/analysis tradeoffs. Differential hybrid
games provide a unifying framework in which both game aspects coexist and combine freely to
enable such tradeoffs.

This paper introduces an adaptation of differential game logic dGL [Pla14] for differential
hybrid games, extending differential game logic for hybrid games [Pla14]. Since this yields a
compositional logic and proof technique, the primary attention in this paper is on how differential
games combine seamlessly with hybrid games and how properties of differential games can be
proved. Proof techniques for the resulting differential hybrid games then follow from composi-
tionality principles.

In addition to presenting the first logical language that can model differential hybrid game
dynamics, this paper presents inductive proof rules for differential games to obtain a sound and
compositional proof calculus for differential hybrid games. Differential game invariants and their
companions (differential game variants and differential game refinements) give a logical approach
for differential games, complementing geometric viability theory and other approaches based on
numerical integration of partial differential equations (PDEs). The advantage is that differential
game (in)variants provide simple and sound witnesses for the existence of winning strategies for
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differential games, even in unbounded time, and without building a formally verified numerical
solver for PDEs with formally verified error bounds to obtain sound formal proofs.

Soundness is a big issue in differential games due to their surprising subtleties. It took 30 years
to correctly relate Isaacs’ PDEs to the differential games they were intended for [Isa67, BRP99].
After a long period of gradual progress, differential games are now handled primarily by solving
the PDEs they induce or corresponding geometric equivalents from viability theory for the same
PDEs [CQSP07]. Soundness issues with a number of approaches for differential games were
reported [MBT05].1

This raises the challenge how to prove properties of differential games with the correctness
demands of a proof system. This paper advocates for dedicated proof rules for differential games
alongside proof rules for hybrid games. Logic is good at combining sound proof rules soundly
with each other in a modular way and at adding them to a theorem prover.

The paper concludes with a theoretical insight. Hybrid systems have been shown to be equiv-
alently reducible proof-theoretically to differential equations [Pla12a] and even to equivalently
reduce to discrete systems [Pla12a]. This trend reverses for hybrid games, which do not reduce to
differential games.

While the results are elegant and all background for the proofs is given, these proofs draw from
many areas, including logic, proof theory, Carathéodory solutions, viscosity solutions of partial
differential equations, real algebraic geometry, and real analysis. Byproducts of the soundness
proof yield results of independent interest. All new proofs, which are the ones for results without
citations, are included.

2 Differential Game Logic
This section introduces the differential game logic dGL of differential hybrid games, which adds
differential games to differential game logic of (non-differential) hybrid games from previous work
[Pla14]. The difference between hybrid games and differential hybrid games is that only the latter
allow differential games, while the former allow only differential equations instead. The respective
differential game logics are built in the same way around the respective game models.

Differential hybrid games are games of two players, Angel and Demon. Differential game
logic uses modalities: [α]φ refers to the existence of winning strategies for Demon for the objective
specified by formula φ in differential hybrid game α and 〈α〉φ refers to the existence of winning
strategies for Angel for objective φ in differential hybrid game α. So [α]φ and 〈α〉¬φ refer to
complementary winning conditions (φ for Demon ¬φ for Angel) in the same differential hybrid
game α.

2.1 Syntax
The terms θ of dGL are polynomial terms (more general terms are possible but do not guarantee
decidable arithmetic). In applications, it may be convenient to use min,max terms as well, which

1The results presented here are of independent interest, because they provide a fix for an incorrect cyclic quantifier
dependency in a proof in said paper [MBT05, Lem. 8] that was confirmed by the authors.
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are definable as semialgebraic functions [Tar51].

Definition 1 (Differential hybrid games). The differential hybrid games of differential game logic
dGL are defined by the following grammar (α, β are differential hybrid games, x a variable, θ a
term, C a dGL formula, y ∈ Y and z ∈ Z formulas in free variable y or z, respectively, f(x, y, z)
a term in the free variables x, y, z):2

α, β ::= x′ = f(x, y, z) & y ∈ Y d&z ∈ Z | x := θ | ?C | α ∪ β | α; β | α∗ | αd

Definition 2 (dGL formulas). The formulas of differential game logic dGL are defined by the
following grammar (φ, ψ are dGL formulas, θi are (polynomial) terms, x a variable, and α is a
differential hybrid game):

φ, ψ ::= θ1 ≥ θ2 | ¬φ | φ ∧ ψ | ∃xφ | 〈α〉φ | [α]φ

Other operators >,=,≤, <,∨,→,↔,∀x can be defined as usual, e.g., ∀xφ ≡ ¬∃x¬φ. The
modal formula 〈α〉φ expresses that Angel has a winning strategy3 to achieve φ in differential hybrid
game α, i.e. Angel has a strategy to reach any of the states satisfying dGL formula φ when playing
differential hybrid game α, no matter what Demon does. The modal formula [α]φ expresses that
Demon has a winning strategy to achieve φ in differential hybrid game α, i.e. a strategy to reach
any of the states satisfying φ, no matter what Angel does.

As usual, x := θ is an assignment and ?C the test game or challenge that Angel only passes if C
holds true in the current state. Otherwise she loses immediately, because she failed a test. Further,
α ∪ β is a game of choice where Angel gets to choose to play α or β. The sequential game α; β
plays α followed by β (unless a player lost a challenge during α). The repeated game α∗ plays
α repeatedly and permits Angel to decide after each play of α whether she wants to play another
iteration. The dual game αd is the same as game α except all choices that Angel has in α are
resolved by Demon in αd and all choices that Demon has in α are resolved by Angel in αd. During
a differential hybrid game, players can only lose by violating the rules of the game, expressed in
the tests. The proper winning condition is specified in the postcondition φ.

The (important) addition compared to prior work [Pla14] is the inclusion of differential games
in the syntax for hybrid games. Predicate symbols have been removed, because they are of no
immediate concern for the core focus of this paper: adding differential games to hybrid games. All
occurrences of y, z in x′ = f(x, y, z) & y ∈ Y d&z ∈ Z are bound. Finally, x, y, z can be vectorial
provided that f(x, y, z) is a vectorial term of the same dimension as x.

Observe the use of suggestive notation that is adopted in the interest of traceability with math-
ematical results throughout this paper: ∀y∈Y φ stands for ∀y (y ∈ Y → φ) and ∃y∈Y φ for
∃y (y ∈ Y ∧ φ), in which y ∈ Y is understood as convenient notation for a logical formula of one
free variable (vector) y. The Euclidean scalar product of vectors v, w is denoted by v · w. The
Euclidean norm of a vector v by |v| def

=
√
v · v.

2The d in differential game x′ = f(x, y, z) & y ∈ Y d&z ∈ Z is a mere mnemonic reminder that Demon controls
dual input y and Angel controls z.

3The mnemonic is that, just like the diamond operator 〈·〉 Angel has wings.
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2.2 Differential Games
This section recalls the definition of differential games using the approach of nonanticipative strate-
gies [EK74, ES84, BRP99].

Definition 3 (Differential game). Let Y ⊂ Rk, Z ⊂ Rl compact sets of controls for the respective
players. And let f : [η, T ] × Rn × Y × Z → Rn bounded, uniformly continuous4, and in x
uniformly Lipschitz5. For time horizon T ≥ 0, initial time η < T and state ξ ∈ Rn, a differential
game has the form {

x′(s) = f(s, x(s), y(s), z(s)) η ≤ s ≤ T

x(η) = ξ
(1)

where the controls y : [η, T ] → Y and z : [η, T ] → Z are measurable functions for the respective
players. The terminal6 payoff is defined by a bounded and Lipschitz g : Rn → R.

LetMY andMZ denote the set of (measurable) controls.

Lemma 1 (Response). For each controls y ∈ MY , z ∈ MZ and initial data η, ξ, the differential
equation (1) has a unique Carathédory solution7 x : [η, T ]→ Rn, called response and denoted by
x(s; ξ, y, z)

def
= x(s) as a function of time s. Finally, x(s; ξ, y, z) = x(s; ξ, ŷ, ẑ) if y = ŷ a.e. and

z = ẑ a.e.

Proof. f(s, x, y(s), z(s)) is continuous in x, because f is (even uniformly) continuous, and mea-
surable in s, because it is a composition of measurable functions. Let l(s) denote the maximum of
the bound of f and its Lipschitz constant L from Footnote 5. Then l is measurable and integrable
on [η, T ] (it is constant) and satisfies |f(s, 0, y(s), z(s)| ≤ l(s) and the (generalized) Lipschitz
condition for all s, x, a:

|f(s, x, y(s), z(s))− f(s, a, y(s), z(s))| ≤ l(s)|x− a|

Thus, Carathéodory’s existence and uniqueness theorem [Wal00, §10.XX] shows the existence of
a unique solution that can be continued to the boundary of the domain, hence is global since f is
bounded. The fundamental theorem of calculus for Lebesgue-integrals [Wal95, Thm. 9.23] implies
that changing y and z on a set of measure zero does not change the response x(s; ξ, y, z).

4i.e. for all ε > 0 there is a δ > 0 such that |f(t, x, y, z) − f(s, a, b, c)| < ε for all |(t, x, y, z) − (s, a, b, c)| < δ.
The usual relations help simplify: f ∈ C1 on a compact set ⇒ differentiable with bounded derivatives ⇒ Lipschitz
⇐⇒ 1-Hölder continuous ⇒ Hölder continuous ⇒ uniformly continuous ⇒ continuous. Where f is λ-Hölder
continuous iff for some C |f(x)− f(y)| ≤ C|x− y|λ for all x, y. So 0-Hölder ⇐⇒ bounded. Continuous functions
on compact sets are bounded and uniformly continuous.

5i.e. there is an L such that f is uniformly L-Lipschitz in x, that is |f(t, x, y, z)− f(t, a, y, z)| ≤ L|x− a| for all
t, x, a, y, z.

6Differential games with a running payoff h can be converted to terminal payoff by adding a differential equation
r′(s) = h(s, x(s), y(s), z(s)) with terminal payoff g̃(x, r) = g(x) + r.

7Carathéodory solutions are absolutely continuous functions satisfying the differential equation a.e. (almost every-
where, which means except on a subset of a measure 0 set).
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The (terminal) payoff for controls y(·) and z(·) of (1) is

g(x(T )) = g(x(T ; ξ, y, z))

Let SY→Z be the set of causal or nonanticipative strategies for Z, i.e. the set of β : MY →MZ

such that for all η ≤ s ≤ T and all y, ŷ ∈MY :

if y = ŷ a.e. on [η, s] (i.e. y(τ) = ŷ(τ) for a.e. η ≤ τ ≤ s)

then β(y) = β(ŷ) a.e. on [η, s]

That is, nonanticipative strategies for Z give the player for Z the current state, history (which is
irrelevant because the games are Markovian), and the opponent’s current action. Unlike mere state
feedback strategies, time-dependent controls ensure the response exists and is unique [Háj75, §2.2].
The reaction β(y) of a nonanticipative strategy to y cannot depend on the opponent’s future input
beyond the current time. The set of nonanticipative strategies for Y is SZ→Y , i.e. of α : MZ →
MY such that for all η ≤ s ≤ T and all z, ẑ ∈MZ :

if z = ẑ a.e. on [η, s]

then α(z) = α(ẑ) a.e. on [η, s]

2.3 Semantics
The semantics extends the meaning of hybrid games seamlessly to differential hybrid games by
adding differential game winning regions. The modular design of dGL makes this integration of
differential games with hybrid games simple. Since hybrid games have been described before
[Pla14], the focus will be on elaborating the new case of differential games.

A state ξ is a mapping from variables to R. Let S the set of states, which, for n variables, is
isomorphic to Euclidean space Rn. For a subset X ⊆ S the complement S \X is denoted X{.
Let ξdx denote the state that agrees with state ξ except for the interpretation of variable x, which is
changed to d ∈ R. The value of term θ in state ξ is denoted by [[θ]]ξ. The denotational semantics
of dGL formulas will be defined in Def. 4 by simultaneous induction along with the denotational
semantics, ςα(·) and δα(·), of differential hybrid games, defined in Def. 5, because dGL formulas
are defined by simultaneous induction with differential hybrid games.

Unlike the dGL quantifiers ∃x ,∀x , the notation for quantifiers in the mathematical metalan-
guage is ∃ξ and ∀ξ .

Definition 4 (dGL semantics). The semantics of a dGL formula φ is the subset [[φ]] ⊆ S of states
in which φ is true. It is defined inductively as follows

1. [[θ1 ≥ θ2]] = {ξ ∈ S : [[θ1]]ξ ≥ [[θ2]]ξ}
2. [[¬φ]] = ([[φ]]){

3. [[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]

4. [[∃xφ]] = {ξ ∈ S : ξκx ∈ [[φ]] for some κ ∈ R}
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5. [[〈α〉φ]] = ςα([[φ]])

6. [[[α]φ]] = δα([[φ]])

Formula φ is valid, written � φ, iff [[φ]] = S.

Definition 5 (Semantics of differential hybrid games). The semantics of a differential hybrid game
α is a function ςα(X), that, for each of Angel’s winning states X ⊂ S, gives the winning region of
Angel, i.e. the set of states ςα(·) from which Angel has a winning strategy to achieve X (whatever
strategy Demon chooses). It is defined inductively as

1. ςx′=f(x,y,z) & y∈Y d&z∈Z(X) = {ξ ∈ S :
∃T≥0∃β ∈ SY→Z ∀y ∈MY ∃0≤ζ≤T
x(ζ; ξ, y, β(y)) ∈ X}

2. ςx:=θ(X) = {ξ ∈ S : ξ
[[θ]]ξ
x ∈ X}

3. ς?C(X) = [[C]] ∩X
4. ςα∪β(X) = ςα(X) ∪ ςβ(X)

5. ςα;β(X) = ςα(ςβ(X))

6. ςα∗(X) =
⋂
{Z ⊆ S : X ∪ ςα(Z) ⊆ Z}

7. ςαd(X) = (ςα(X{)){

The winning region of Demon, i.e. the set of states δα(·) from which Demon has a winning strategy
to achieve X (whatever strategy Angel chooses) is defined inductively as

1. δx′=f(x,y,z) & y∈Y d&z∈Z(X) = {ξ ∈ S :
∀T≥0∀β ∈ SY→Z ∃y ∈MY ∀0≤ζ≤T
x(ζ; ξ, y, β(y)) ∈ X}

2. δx:=θ(X) = {ξ ∈ S : ξ
[[θ]]ξ
x ∈ X}

3. δ?C(X) = ([[C]]){ ∪X
4. δα∪β(X) = δα(X) ∩ δβ(X)

5. δα;β(X) = δα(δβ(X))

6. δα∗(X) =
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)}

7. δαd(X) = (δα(X{)){

Time horizon T , nonanticipative strategy β, and stopping times ζ of differential games are
Angel’s choice while control of y is Demon’s choice. In particular, Angel needs to choose a finite
time horizon T but the corresponding control β(y) from her nonanticipative strategy β gives her
a chance to observe Demon’s current action from Demon’s control y. Angel ultimately gets to
inspect the resulting state and decide whether she wants to stop playing the differential game. This
is the continuous counterpart of α∗, where Angel gets to inspect the state and decides whether she
wants to repeat the loop again or not, which follows from the fixpoint semantics of α∗ as elaborated
in prior work [Pla14]. The fact that Angel has to choose some arbitrarily large but finite horizon
T first corresponds to her not being allowed to play the differential game indefinitely, just like she
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is not allowed to repeat playing α∗ forever, which again results from its least fixpoint semantics
[Pla14]. Demon has a winning strategy in the differential game x′ = f(x, y, z) & y ∈ Y d&z ∈ Z
to achieve X if for all of Angel’s time horizons T and all of Angel’s nonanticipative strategies β
for Demon’s controls there is a control y for Demon such that for all of Angel’s stopping times
ζ the game ends in one of Demon’s winning states (i.e. in X). Demon knows β ∈ SY→Z when
choosing y ∈MY , so he can predict the states over time by solving (1) via Lemma 1. But Angel’s
nonanticipative β allows β(y)(s) to depend on y(s), which gives her an information advantage. The
(dual) quantifier order for 〈·〉 is the same, so that Angel finds some β that works for any y since
she cannot predict what Demon will play. Hence, the informational advantage of the opponent’s
current action as well as the advantage of controlling time in a differential game consistently goes
to Angel, whether in 〈·〉 or in [·].

It might appear that the last quantifier ζ is not important, because, if Angel wins, there is a
maximum time horizon T within which she wins so that it seems like it would be enough for her to
choose that maximum time horizon T and check for the terminal state at time T . However, Demon
might then still let Angel “win” earlier by playing suboptimally if that gives him the possibility
of moving outside Angel’s winning condition before time T again when the winning condition is
checked. It is, thus, important for Angel to be able to stop the differential game at any time based
on the state she observes. She will want to stop when the game reached her target. Consider, e.g.,
the race car game, where Demon is in control of a car toward a goal x2 < 1 and Angel is in control
of time:

x=−9 ∧ t=0→ [x′ = y, t′ = 1 & y ∈ [1, 2]d](4<t<8→ x2<1)

If Angel were to declare ζ = T upfront by advance notice, Demon could compute an optimal
velocity y = 8

ζ
∈ [1, 2] to win, since Angel has to choose 4 < ζ < 8 to stand a chance. Since

Angel declares a time bound T and chooses ζ only after Demon revealed y ∈MY , she can choose
T = 7 and, if Demon has not moved x to x2 < 1 at time 4.1, end the game at ζ = 4.1 to win. If
Demon has moved x to x2 < 1, so x > −1, then Angel still wins by waiting the full time ζ = T ,
which is at least 2 more seconds, during which Demon must have moved at least 2 and left x2 < 1
to lose. This example hinges on a postcondition that is neither open nor closed.

Since differential hybrid games have the same information structure for 〈α〉 and [α], just re-
ferring to another player’s winning strategy, the determinacy theorem [Pla14, Thm. 2] extends to
differential hybrid games. In each state, exactly one player has a winning strategy. The proof is
easier than (partial) determinacy results for other scenarios and information patterns [Car96].

Theorem 2 (Determinacy). Differential hybrid games are determined, i.e. � ¬〈α〉¬φ↔ [α]φ.

Proof. The proof shows by induction on the structure of α that ςα(X{){ = δα(X) for all X ⊆ S
with some set of states S, which implies the validity of ¬〈α〉¬φ↔ [α]φ using X def

= [[φ]] by Def. 4.
The only difference to a corresponding proof for hybrid games [Pla14] is the additional case of
differential games:

1. ςx′=f(x,y,z) & y∈Y d&z∈Z(X{){ =
{ξ ∈ S : ∃T≥0 ∃β ∈ SY→Z ∀y ∈MY ∃0≤ζ≤T x(ζ; ξ, y, β(y))) 6∈ X}{ =
{ξ ∈ S : not ∃T≥0∃β ∈ SY→Z ∀y ∈MY ∃0≤ζ≤T x(ζ; ξ, y, β(y))) 6∈ X} =
{ξ ∈ S : ∀T≥0 ∀β ∈ SY→Z ∃y ∈MY ∀0≤ζ≤T x(ζ; ξ, y, β(y))) ∈ X} = δx′=f(x,y,z) & y∈Y d&z∈Z(X)
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2. ςx:=θ(X{){ = {ξ ∈ S : ξ
[[θ]]ξ
x 6∈ X}{ = ςx:=θ(X) = δx:=θ(X)

3. ς?C(X{){ = ([[C]] ∩X{){ = ([[C]]){ ∪ (X{){ = δ?C(X)

4. ςα∪β(X{){ = (ςα(X{) ∪ ςβ(X{)){ = ςα(X{){ ∩ ςβ(X{){ = δα(X) ∩ δβ(X) = δα∪β(X)

5. ςα;β(X{){ = ςα(ςβ(X{)){ = ςα(δβ(X){){ = δα(δβ(X)) = δα;β(X)

6. ςα∗(X{){ =
(⋂
{Z ⊆ S : X{ ∪ ςα(Z) ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ ςα(Z){){ ⊆ Z}

){
=
(⋂
{Z ⊆ S : (X ∩ δα(Z{)){ ⊆ Z}

){
=
⋃
{Z ⊆ S : Z ⊆ X ∩ δα(Z)} = δα∗(X). 8

7. ςαd(X{){ = (ςα((X{){){){ = δα(X{){ = δαd(X)

A formula is called atomically open if its negation normal form is built from ∧,∨, >,<. Atom-
ically open formulas define topologically open sets. The converse is not true, because there can
be spurious extra subformulas: 0 < x ∧ x < 5 ∨ x = 2 is topologically open but has an ir-
relevant topologically closed subformula x = 2. A formula is atomically closed if its negation
normal form is built from ∧,∨,≥,≤,=. Atomically closed formulas define topologically closed
sets. Both converses can always be made true by transforming it to avoid superfluous subformu-
las [BCR98, 2.7.2]. The primary focus in this paper is on postconditions that are open or closed.

Lemma 3 (R arithmetization). There is an effective mapping (·)< from first-order formulas to
(continuous) terms of mixed polynomials, min, and max. If F is atomically open, then � F ↔
(F< > 0). If F is atomically closed, � F ↔ (F< ≥ 0).

Proof. By quantifier elimination, F can be assumed to be quantifier-free and in negation normal
form. The term F< of mixed polynomials, min, max for F is defined inductively:

(a > b)< ≡ a− b
(a < b)< ≡ (b > a)<

(a ≥ b)< ≡ a− b
(a ≤ b)< ≡ (b ≥ a)<

(a = b)< ≡ (a ≥ b ∧ b ≥ a)<

(F ∧G)< ≡ min(F<, G<)

(F ∨G)< ≡ max(F<, G<)

Even if not all are necessary, the assumptions in Def. 3 will be required to hold when playing
differential games from Def. 1. They can be checked using the remarks in Footnote 4, which are
decidable for the relevant terms in first-order real arithmetic [Tar51]. The easiest criterion is the
following:

8The penultimate equation follows from the µ-calculus equivalence νZ.Υ(Z) ≡ ¬µZ.¬Υ(¬Z) and the fact that
least pre-fixpoints are fixpoints and that greatest post-fixpoints are fixpoints for monotone functions.
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Lemma 4 (Well-definedness). If f is bounded for compact [[y ∈ Y ]],[[z ∈ Z]] and F is open or
closed, all differential games for [x′ = f(x, y, z) & y ∈ Y d&z ∈ Z]F and
〈x′ = f(x, y, z) & y ∈ Y d&z ∈ Z〉F are well-defined.

Proof. Let b a bound on the norm of f . For any initial state ξ and any time horizon T ≥ 0
(from Def. 5) any response x(ζ; ξ, y, β(y)) of (1) remains on the compact ball of radius bT around
ξ. Without changing the differential game, f can, thus, be replaced by a f̂ that agrees with f
on this compact ball and accordingly for the payoff. On that compact set, the dGL term f and
the arithmetization F< define Lipschitz continuous functions (even when using min,max terms)
as follows. Polynomials are smooth and, thus, Lipschitz on compact sets. The absolute value
function is Lipschitz. The composition min(x, y) = (x+ y)/2− |x− y|/2 of Lipschitz functions
is Lipschitz9 and so is max(x, y) = −min(−x,−y). By Tietze [Wal95, 2.19], there are Lipschitz
continuous extensions f̂ of f and ĝ of F< that agree on the compact ball and remain bounded. The
differential game x′ = f̂(x, y, z) & y ∈ Y d&z ∈ Z with payoff ĝ is equivalent by Lemma 1 and
Lemma 3 and it meets the requirements in Def. 3.

For any horizon T and initial state ξ, f can be replaced in similar ways by a bounded function
without changing the game [GS11], since f is continuous by Def. 1. Unlike semantic differential
games (Def. 3), differential games in the logic (Def. 1) have no implicit time-dependency but need
an explicit extra clock variable t with differential equation t′ = 1 to express time-dependencies.
An explicit time-dependency for semantic differential games (Def. 3) is helpful for the proofs.

3 Differential Game Proofs
This section presents new inductive proof rules for differential games with differential game in-
variants and differential game variants as well as with differential game refinements.

Differential equations are already hard to solve and it is challenging to use their solutions
for proofs [Pla12a]. It is even more difficult, however, to solve differential games, because their
Carathéodory solution depends on the control choices adopted by the two players, which can be
arbitrary measurable functions. A faithful representation of this would, thus, require not just alter-
nating quantification over arbitrary measurable functions but also the ability to solve all resulting
ordinary differential equations and to prove properties about all their respective behaviors – a truly
daunting enterprise.

Differential game invariants, instead, define a simple induction principle for differential games.
The proof rule of differential game invariants and its counterpart for differential game variants are
shown in Figure 1. Differential game invariants have a simple intuition. If, in each state x (∀x
is implicit in the premise of DGI and follows from the definition of validity in Def. 4), there is
a choice of control action y for Demon such that for all choices of Angel’s control action z the
derivative F ′f(x,y,z)

x′ of F holds when substituting the right-hand side f(x, y, z) of the differential
game for the left-hand side x′. Intuitively, this means there is always a way for Demon to make F

9|f(g(x))−f(g(y))| ≤ L|g(x)−g(y)| ≤ LK|x−y|makes f ◦g Lipschitz when L,K are the Lipschitz constants
of f and g, respectively.
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(DGI)
∃y ∈ Y ∀z ∈ Z F ′f(x,y,z)

x′

F → [x′ = f(x, y, z) & y ∈ Y d&z ∈ Z]F

(DGV)
∃ε>0∀x ∃z ∈ Z ∀y ∈ Y (g ≤ 0→ g′

f(x,y,z)
x′ ≥ ε)

〈x′ = f(x, y, z) & y ∈ Y d&z ∈ Z〉g ≥ 0

(DGR)
∀u ∈ U ∃y ∈ Y ∀z ∈ Z ∃v ∈ V ∀x (f(x, y, z) = g(x, u, v))

[x′ = g(x, u, v) &u ∈ Ud&v ∈ V ]F → [x′ = f(x, y, z) & y ∈ Y d&z ∈ Z]F

Figure 1: Differential game proof rules.

“more true” with y, whatever Angel is trying with z. So, Demon has a winning strategy no matter
how long Angel decides to evolve. Recall that Angel gets to inspect Demon’s current y action in
her nonanticipative strategy before choosing z, which explains the order of quantifiers in DGI.

Differential game variants (rule DGV) also have a simple intuition. Angel can reach the post-
condition if, from any state where she has not won yet, there is a progress of at least ε towards the
goal that, uniformly at all x, she can realize for some z control choice of hers, no matter what y
action Demon chose. The quantifier order in DGV is conservative to simplify the proofs. Other
postconditions are possible but DGV becomes notationally more involved then.

Differential game refinements (rule DGR) relate differential games whose equations can be
made to agree when matching the U control that Demon sought in its antecedent with some of
Demon’s Y control in the succedent if any control Z that Angel has in the succedent can be
matched by a control V that Angel already had in the antecedent. Via the induced identification,
Demon’s winning strategy for the differential game in the antecedent carries over to a winning
strategy for the differential game in the succedent if Demon has more corresponding control power
in the succedent while Angel has less. A dual of DGR for 〈·〉 is induced by Theorem 2.

As with invariants, it may sometimes be difficult to find good differential game invariants
or differential game variants for the proof of a property. Once found, they are computationally
attractive, since easy to check by decidable arithmetic.

Differential game invariants use syntactic total derivations to compute differential game deriva-
tives syntactically.

Definition 6 (Derivation). The operator∇(·) that is defined as follows on terms is called syntactic
(total) derivation from (polynomial) terms to differential terms, i.e. terms in which differential
symbols x′ for variables x are allowed:

∇(r) = 0 for numbers r ∈ R (2a)
∇(x) = x′ for variables x (2b)

∇(a+ b) = ∇(a) +∇(b) (2c)
∇(ab) = ∇(a)b+ a∇(b) (2d)

It extends to (quantifier-free) first-order real-arithmetic formulas F as follows:

∇(F ∧G) ≡ ∇(F ) ∧∇(G) (3a)

10



∇(F ∨G) ≡ ∇(F ) ∧∇(G) (3b)
∇(a ≥ b) ≡ ∇(a) ≥ ∇(b) (3c)
∇(a ≤ b) ≡ ∇(a) ≤ ∇(b) (3d)
∇(a = b) ≡ ∇(a) = ∇(b) (3e)
∇(a > b) ≡ ∇(a) ≥ ∇(b) (3f)
∇(a < b) ≡ ∇(a) ≤ ∇(b) (3g)

Define F ′θx′ to be the result of substituting θ for x′ in ∇(F ) and substituting 0 for all other differ-
ential symbols c′ that have no differential equation / differential game.

The relation of the syntactic derivation ∇(e) to analytic differentiation is identified in the fol-
lowing result, which further identifies the syntactic term∇(e)θx′ with a Lie-derivative.

Lemma 5 (Derivation). Let θ a (vectorial) term of the same dimension as x and e a term, then
[[∇(e)θx′ ]]ξ = [[θ]]ξ ·Dx[[e]]ξ, where Dx[[e]]ξ is the gradient at ξ with respect to x of the value of e.

Proof. By a minor variation of [Pla12c, Lem. 3.3].

The rules in Figure 1 assume the well-definedness condition from Lemma 4. For reference,
the complete axiomatization for the other hybrid game operators of dGL [Pla14] are shown in
Appendix B. They play no further role for the purposes of this paper, though, except to manifest
how seamlessly differential games proving integrates with hybrid games proving in dGL.

While a strong point of dGL is that it enables such a seamless integration of differential games
and hybrid games in modeling and analysis, the examples shown only explore simple differential
games for space reasons. An example for DGR is in the proof of Lemma 24. Consider the strength
game with −1≤y≤1 for y ∈ I , which proves easily with DGI:

∗
R ∃y ∈ I ∀z ∈ I 0 ≤ 3x2(−1 + 2y + z)

∃y ∈ I ∀z ∈ I (0 ≤ 3x2x′)
−1+2y+z
x′

DGI1 ≤ x3→[x′ = −1 + 2y + z& y ∈ Id&z ∈ I]1 ≤ x3

Using vectorial notation, let y ∈ B be y2
1 + y2

2 ≤ 1. Let terms L ≤M denote the maximum speeds
of l and m. The simple pursuit [Isa67], that vector m can escape the vector l, proves easily:

∗
R ∃y ∈ B ∀z ∈ B (2(l −m) · (Lz −My) ≥ 0)

∃y ∈ B ∀z ∈ B (2(l −m) · (l′ −m′) ≥ 0)My
m′

Lz
l′

DGI|l−m|2>0→[m′ = My, l′ = Lz& y∈Bd&z∈B]|l−m|2>0

Non-convex y ∈ Y defined as y2 = 1 or games with input by just one player work as well (similar
for higher dimensions):

∗
∃y2 = 1 (3/2x2x3y ≥ 2xx3y)

∃y2 = 1 (3/2x2x′ ≥ 2xx′)
x3y
x′

DGIx3/2 > x2 − 1→[x′ = x3y& y2 = 1d]x3/2 > x2 − 1

11



To fit to the simple well-definedness condition (Lemma 4), the differential equation

x′ = max(min(x3y, k),−k)

could be used instead, which still proves for all bounds k ≥ 0. Alternatively, the global bounding
with x′ = x3y/(1 +

√
(x3y)2), which does not change the game outcome [GS11], proves as well.

These simple proofs entail for all nonanticipative strategies, the existence of measurable control
functions to win the game.

4 Soundness Proof
The differential game invariant proof rule DGI is a natural generalization of differential invariants
for differential equations [Pla10,PC08,Pla12c] to differential games. Its quantifier pattern matches
the information pattern of the differential game.

The only difficulty is its soundness proof. The premise of DGI shows that, at every point in
space x, a control action y exists for Demon that will, for all control actions z that Angel could
respond with, make the Lie-derivative F ′f(x,y,z)

x′ true. In conventional (non-game) wisdom, this
makes the truth-value of F never decrease. However, it is not particularly obvious whether those
various local control actions for each x at various points of the state space can be reassembled
into a single coherent control signal that is measurable and passes muster on leading the whole
differential game to a successful response for every strategy of Angel. Certainly, the original
quantification over nonanticipative strategies and measurable control signals from the semantics is
hard to capture in useful (first-order) proof rules.

It also took 30 years to justify Isaacs equations for differential games, however innocent they
may look. Fortunately, unlike Isaacs [Isa67], differential game invariants have most required ad-
vances of mathematics already at their disposal. This section proves soundness of the differential
game proof rules. That is: If their premise is valid, then so is their respective conclusion. Proving
soundness, thus, assumes the premise (above rule bar) to be valid and considers a state ξ ∈ S in
which the antecedent (left side of →) of the conclusion (below rule bar) is true to show that its
succedent (right side of→) is true in ξ, too.

4.1 Differential Game Refinement
DGR can be proved sound using the notions introduced so far. The key is to exploit the Borel
measurability and existence of semialgebraic Skolem functions to extract measurable and nonan-
ticipative correspondence functions from its premise.
Remark 6 (Preimage). The preimage f−1(A) = {x : f(x)∈A} of set A under function f satisfies
the usual properties:

1. A ⊆ B implies f−1(A) ⊆ f−1(B)
2. f−1(A{) = (f−1(A)){ for the complement A{ of A
3. f−1(

⋂
i∈I Ai) =

⋂
i∈I f

−1(Ai) for any index family I
4. (f ◦ g)−1(A) = g−1(f−1(A)))
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For the sequel note: by Case 4, the composition f ◦g isM-measurable if f is Borel measurable
and g isM-measurable.

Lemma 7. Semialgebraic functions10 are Borel measurable.

Proof. Let f be a semialgebraic function. The proof of its Borel measurability is by induction
along the Borel hierarchy.
1) The preimage f−1(A) of any semialgebraic set A is semialgebraic [BPR06, Proposition 2.83],
thus, Borel measurable.
2) The preimage f−1(A{) = (f−1(A)){ of the complement A{ of any set A whose preimage
f−1(A) is Borel is a complement of a Borel set and, thus, Borel.
3) The preimage f−1(

⋂
i∈I Ai) =

⋂
i∈I f

−1(Ai) of an intersection of any family of sets Ai whose
preimage f−1(Ai) is Borel is an intersection of Borel sets and, thus, Borel.

Theorem 8 (Differential game refinement). Differential game refinements (rule DGR) are sound.

Proof. The formulas u ∈ U, v ∈ V, y ∈ Y, z ∈ Z only have the indicated free variables, so write
[[Z]] for the set of values for z that satisfy z ∈ Z, etc. The premise implies

� ∃y ∈ Y ∀z ∈ Z ∃v ∈ V ∀x (f(x, y, z) = g(x, u, v))

Since this formula and its parts describe semialgebraic sets and real-closed fields have definable
Skolem functions [Mar02, Corollary 3.3.26], this induces a semialgebraic, so by Lemma 7 Borel
measurable, function ȳ : [[U ]] → [[Y ]] such that11

� ∀z ∈ Z ∃v ∈ V ∀x (f(x, ȳ(u), z) = g(x, u, v)) (4)

The validity (4) similarly induces a semialgebraic, thus, Borel measurable function v̄ : [[U ]] ×
[[Z]] → [[V ]] such that

� ∀x (f(x, ȳ(u), z) = g(x, u, v̄(u, z))) (5)

To show validity of the conclusion, consider any state ξ in which its antecedent is true and show
that its succedent is. That is, assume ξ ∈ δx′=g(x,u,v) &u∈Ud&v∈V ([[F ]]), which implies

∀T≥0 ∀γ ∈ SU→V ∃u ∈MU ∀0≤ζ≤T xg(ζ; ξ, u, γ(u)) ∈ [[F ]] (6)

It remains to be shown that ξ ∈ δx′=f(x,y,z) & y∈Y d&z∈Z([[F ]]), which is

∀T≥0 ∀β ∈ SY→Z ∃y ∈MY ∀0≤ζ≤T xf (ζ; ξ, y, β(y)) ∈ [[F ]] (7)

Consider any T ≥ 0 and β ∈ SY→Z . From (6), obtain some u ∈MU corresponding to the strategy
γ defined as

γ(u)(s)
def
= v̄

(
u(s), β(ȳ ◦ u)(s)

)
10i.e. a function between semialgebraic sets whose graph is semialgebraic.
11Substitution of a semialgebraic function ȳ(u) for y into a formula F (u, y) of real arithmetic is definable, e.g.,

by ∀y (y = ȳ(u) → F (u, y)). The subsequent proof only needs ȳ to be measurable, which the measurable selection
theorem [RS98, §6 Theorem 6.13] guarantees. The only inconvenience then is that ȳ cannot be syntactically inserted
into the logical formulas but their mathematical equivalents need to be used.
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which defines a function γ :MU →MV , because the composition ȳ ◦ u of Borel measurable
function ȳ with measurable u is measurable, which makes β(ȳ ◦ u) measurable and so is its com-
position with the Borel measurable v̄ while u was measurable to begin with. The function γ is also
nonanticipative, hence, γ ∈ SU→V , because for all η ≤ s ≤ T and u, û ∈MU :

if u(τ) = û(τ) for a.e. η ≤ τ ≤ s

so (ȳ ◦ u)(τ) = (ȳ ◦ û)(τ) for a.e. η ≤ τ ≤ s

then β(ȳ ◦ u)(τ) = β(ȳ ◦ û)(τ) for a.e. η ≤ τ ≤ s

hence γ(u)(τ) = γ(û)(τ) for a.e. η ≤ τ ≤ s

because β ∈ SY→Z and the compositions with Borel measurable functions ȳ and v̄ preserve equal-
ity a.e.12 Define the control y for strategy β by y(s)

def
= (ȳ ◦ u)(s) = ȳ(u(s)). The corresponding

responses xf and xg of the respective differential games satisfy

x′f (s)=f(xf (s), y(s), β(y)(s))=f(xf (s), (ȳ◦u)(s), β(ȳ◦u)(s))

x′g(s)=g(xg(s), u(s), γ(u)(s))=g(xg(s), u(s), v̄(u(s), β(ȳ◦u)(s)))

which (5) equates

f(xf (s), ȳ(u(s)), β(ȳ ◦ u)(s)) = g(xf (s), u(s), v̄(u(s), β(ȳ ◦ u)(s)))

so that the response xf solves the same differential equation that xg does, which shows xf = xg by
uniqueness (Lemma 1). Consequently, the antecedent (6) implies (7), which shows the conclusion
of DGR to be valid since ξ was arbitrary.

4.2 Values of Differential Games
Using the response x(s) = x(s; ξ, y, β(y)) of differential game (1) for initial condition x(η) = ξ,
the lower value of differential game (1) with the player for Z minimizing payoff and the player for
Y maximizing captures the optimal payoff with nonanticipative strategies for minimizer for Z, i.e.
when minimizer moves last [EK74, ES84, BRP99]. It is defined as:

V (η, ξ) = inf
β∈SY→Z

sup
y∈MY

g(x(T ; ξ, y, β(y))) (8)

= inf
β∈SY→Z

sup
y∈MY

V (η + σ, x(η + σ; ξ, y, β(y))) (9)

with (9) being the dynamic programming optimality condition [EK74, ES84, Thm 3.1] for any
0 ≤ η < η + σ ≤ T and ξ ∈ Rn for payoff g. With response x(s) = x(s; ξ, α(z), z), the upper
value of differential game (1) captures the optimal payoff when maximizer for Y moves last and is
defined as:

U(η, ξ) = sup
α∈SZ→Y

inf
z∈MZ

g(x(T ; ξ, α(z), z)) (10)

= sup
α∈SZ→Y

inf
z∈MZ

U(η + σ, x(η + σ; ξ, α(z), z)) (11)

12If f is function and g(τ) = ĝ(τ) for a.e. τ , then f(g(τ)) = f(ĝ(τ)) for a.e. τ , because {τ : f(g(τ)) 6=
f(ĝ(τ))} ⊆ {τ : g(τ) 6= ĝ(τ)} is contained in a set of measure 0.
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for any 0 ≤ η < η + σ ≤ T and ξ ∈ Rn, again with (11) being the dynamic programming
optimality condition.

Theorem 9 (Continuous values [EK74, ES84, Thm 3.2]). V and U are bounded and Lipschitz (in
η, ξ).

The following observation relates signs of values to the existence of strategies and controls for
winning their corresponding differential game at time T .

Lemma 10 (Signs of value). Let T > 0.

1. V (0, ξ) > 0 iff ∃b>0∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) > b.

2. V (0, ξ) < 0 iff ∃b<0∃β ∈ SY→Z ∀y ∈MY g(x(T ; ξ, y, β(y))) < b.

3. V (0, ξ) ≥ 0 iff ∀b<0∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) ≥ b.

4. V (0, ξ) ≤ 0 iff ∀b>0∃β ∈ SY→Z ∀y ∈MY g(x(T ; ξ, y, β(y))) ≤ b.

5. V (0, ξ) = 0 iff ∀b>0 :
∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) ≥ −b and
∃β ∈ SY→Z ∀y ∈MY g(x(T ; ξ, y, β(y))) ≤ b.

Similar relations hold for the upper value, e.g.:

6. U(0, ξ) > 0 iff ∃b>0 ∃α ∈ SZ→Y ∀z ∈MZ g(x(T ; ξ, α(z), z)) > b.

7. U(0, ξ) ≥ 0 iff ∃b>0 ∃α ∈ SZ→Y ∀z ∈MZ g(x(T ; ξ, α(z), z)) ≥ b.

Proof. Case 3 is the contrapositive of Case 2, which proves as follows. If V (0, ξ) < 0, then
V (0, ξ) < 2b for some b < 0. Thus, by (8), ∃β ∈ SY→Z such that supy∈MY

g(x(T ; ξ, y, β(y))) <
b. Hence, ∃β ∈ SY→Z ∀y ∈MY g(x(T ; ξ, y, β(y))) < b < 0. The converse proves accordingly,
where b, β are witnesses for V (0, ξ) = infβ∈SY→Z supy∈MY

g(x(T ; ξ, y, β(y))) ≤ b < 0.
Case 4 is the contrapositive of Case 1, which proves as follows. If V (0, ξ) > 0, then V (0, ξ) >

2b for some b > 0. Thus, by (8), ∀β ∈ SY→Z supy∈MY
g(x(T ; ξ, y, β(y))) > 2b. Hence, ∀β ∈

SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) > b.

The following Lemma 11 is a stronger version of Case 3 and shows that the simplicity of Case 1
continues to hold for ≥ instead of >. The proof is more complex based on the results developed
in the remainder of this section using Tychonoff’s theorem, the Borel swap, and a continuous de-
pendency result for Carathédory solutions that justifies continuous responses of differential games.
This stronger version, Lemma 11, makes it possible to lift differential game invariants to closed
sets.

Lemma 11 (Closed values). Let T > 0. Then V (0, ξ) ≥ 0 iff

∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) ≥ 0
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Proof. “⇐ ”: This direction follows from Case 3 of Lemma 10 because 0 ≥ b for all b < 0.
“⇒ ”: Let B̄ def

= {b̄ :MY →MZ Borel-measurable}. Note B̄ ⊆ SY→Z , because the mapping
b̄(y)(s)

def
= b̄(y(s)) is nonanticipative. The infimum over bigger sets is smaller, thus, by V (0, ξ) ≥

0:

0 ≤ inf
β∈SY→Z

sup
y∈MY

g(x(T ; ξ, y, β(y)))

≤ inf
b̄∈B̄

sup
y∈MY

g(x(T ; ξ, y, b̄(y))))

= max
y∈MY

min
z∈MZ

g(x(T ; ξ, y, z)) by Lemma 12

Hence, ∃y ∈ MY ∀z ∈ MZ g(x(T ; ξ, y, z)) ≥ 0 as min,max extrema will be assumed. Since this
applies for all possible values β(y) ∈MZ of any β ∈ SY→Z , this implies

∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) ≥ 0

Interestingly, this last step is essentially Herbrandization.
It remains to show that Lemma 12 is applicable. The [0, T ]-fold product {y : [0, T ] → Y }

of compact space Y is compact by Tychonoff’s theorem with respect to the product topology, i.e.
yn → y for n → ∞ iff yn(s) → y(s) for n → ∞ for all s. Since pointwise limits of measurable
functions are measurable [Wal95, 9.9], MY is a closed subset, thus, remains compact [Wal95,
1.16]. Similarly, MZ is compact. That g(x(T ; ξ, y, z)) is continuous (in the product topology
which is the one of pointwise convergence) as a functional of y and z follows from Lemma 14 and
the continuity of g.

Lemma 11 would not hold for infinite time horizon T = ∞ or non-compact control sets Y, Z.
Lemma 12 is insightful as a separate step, explaining the game’s quantifier swaps [Qui11].

Lemma 12 (Borel swap [Qui11]). If G : A × B → R is continuous on compact A,B and B̄ def
=

{b̄ : A→ B Borel-measurable}:

min
a∈A

max
b∈B

G(a, b) = sup
b̄∈B̄

inf
a∈A

G(a, b̄(a))

max
a∈A

min
b∈B

G(a, b) = inf
b̄∈B̄

sup
a∈A

G(a, b̄(a))

Proof. The proof is for the first equation, the second proves by duality. “≥”: Fix b̄ ∈ B̄. Then
for any a: G(a, b̄(a)) ≤ supb∈B G(a, b). Thus, infa∈AG(a, b̄(a)) ≤ infa∈A supb∈B G(a, b). Since b̄
was arbitrary supb̄∈B̄ infa∈AG(a, b̄(a)) ≤ infa∈A supb∈B G(a, b).

“≤”: Fix ε > 0. For any a ∈ A choose a ba ∈ B such that G(a, ba) ≥ supb∈B G(a, b) − ε
2
.

Since G is continuous and B compact, the function a 7→ supb∈B G(a, b) is continuous. There,
thus, is a finite open cover Oi ⊆ B and bi ∈ A such that G(a, bi) ≥ supb∈B G(a, b)− ε for a ∈ Oi.
Thus, G(a, b(a)) ≥ supb∈B G(a, b)− ε for all a ∈ A when defining the Borel measurable function

b(a)
def
= bi if a ∈ Oi \

⋃
j<i

Oj

16



Consequently, infa∈AG(a, b(a)) ≥ infa∈A supb∈B G(a, b) − ε. So, supb̄∈B̄ infa∈AG(a, b̄(a)) ≥
infa∈A supb∈B G(a, b)− ε→ infa∈A supb∈B G(a, b) for ε→ 0.

Carathéodory solutions depend continuously on the right-hand side if uniformly bounded and
uniformly Lipschitz.

Lemma 13 (Continuous dependence). Let hn:[η, T ]×Rn→Rn a sequence of functions that are
measurable in t, uniformly L-Lipschitz in x, and of common supremum bound. If hn → h for
n→∞ pointwise and x, xn are Carathéodory solutions:

x′(s) = h(s, x(s)) x′n(s) = hn(s, xn(s)) x(η) = xn(η)

Then xn → x uniformly13 on [η, T ] for n→∞.

Proof. The assumptions are |hn(t, x)| ≤ B, |hn(t, x) − hn(t, y)| ≤ L|x − y| for all n, t, x, y and
hn(t, x) → h(t, x) for n → ∞ and all t, x. By [Wal00, §10.XIX], x and xn are Carathéodory
solutions of their respective differential equation iff they satisfy corresponding integral equations:

x(t) = x(η) +

∫ t

η

h(s, x(s))ds

xn(t) = xn(η) +

∫ t

η

hn(s, xn(s))ds

Thus

|x(t)− xn(t)| = |
∫ t

η

h(s, x(s))− hn(s, xn(s))ds|

= |
∫ t

η

h(s, x(s))− hn(s, x(s)) + hn(s, x(s))− hn(s, xn(s))ds|

≤
∫ t

η

|h(s, x(s))−hn(s, x(s))|ds+
∫ t

η

|hn(s, x(s))−hn(s, xn(s))|ds

≤
∫ t

η

|h(s, x(s))− hn(s, x(s))|ds+

∫ t

η

L|x(s)− xn(s)|ds

Due to its norm, the first term is nondecreasing, hence Grönwall’s inequality implies:

|x(t)− xn(t)| ≤ e
∫ t
η Lds︸ ︷︷ ︸
eLt

∫ t

η

|h(s, x(s))− hn(s, x(s))|ds→ 0

for n → ∞ by dominated convergence [Wal95, 9.14], because |h(s, x(s))− hn(s, x(s))| → 0 for
all s and |h(s, x(s))−hn(s, x(s))| is bounded by the Lebesgue-integrable function 2B since all hn
are bounded by the same B and so is h as their pointwise limit.

13i.e. convergent in supremum norm ‖xn − x‖∞ → 0 for n → ∞, which is equivalent to: ∀ε > 0∃n0 ∀n ≥
n0 ∀s |xn(s)− x(s)| < ε
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Lemma 14 (Continuous response). Responses of a differential game depend continuously on the
controls: if yn → y and zn → z for n → ∞ pointwise, then x(·; ξ, yn, zn) → x(·; ξ, y, z) for
n→∞ uniformly on [η, T ].

Proof. Let yn → y and zn → z for n → ∞ pointwise. Then the respective right-hand sides of
(1) converge: f(s, x, yn(s), zn(s))→ f(s, x, y(s), z(s)) for n→∞ pointwise by continuity of f .
The response x(·; ξ, y, z) solves (1), which, with h(s, x)

def
= f(s, x, y(s), z(s)), is

x′(s) = h(s, x(s)) x(η) = ξ (12)

Likewise, response xn(s)
def
= x(s; ξ, yn, zn) solves

x′n(s) = hn(s, xn(s)) xn(η) = ξ (13)

with hn(s, x)
def
= f(s, x, yn(s), zn(s))→ h(s, x) pointwise for n→∞. By Def. 3, hn and h satisfy

the assumptions of Lemma 13 using the Lipschitz constant L of f in x and a bound on f , which
implies xn → x uniformly for n→∞.

Controls are usually not continuous over time nor continuous functions of the state [Háj75,
§2.2]. Lemma 14 merely entails that the responses depend continuously on the controls in the
product topology. Lemma 14 may not hold when replacing zn by β(yn), because the nonanticipa-
tive strategy β does not have to depend continuously on yn, so β(yn) may not converge to β(y).
This is despite the fact that SY→Z is compact, which holds as follows. By Tychonoff’s theorem,
the product {β : MY → MZ} is compact since MZ is compact (proof of Lemma 11). Since
pointwise limits of nonanticipative functions are nonanticipative14, SY→Z is a closed subset, thus,
still compact.

4.3 Viscosity Solutions
The lower and upper values of a differential game satisfy the Isaacs partial differential equation
when generalizing the concept of solution beyond classical differentiable cases.

This section recalls viscosity solutions, which are the appropriate notion of weak solutions for
Hamilton-Jacobi type partial differential equations [CL83, Bar13], using an elegant characteriza-
tion with sub- and superdifferentials, which capture all derivatives from below and from above
a function [Bre, Bar13]. They are based on single-sided understandings of the gradient operator
D = ( ∂

∂x1
, . . . , ∂

∂xn
). To emphasize the affected variables x, D is also written as Dx. Another

common notation for a single variable t is to write xt for Dtx.

14Let βn → β, i.e. βn(y)→ β(y) for all y, which, because of the nested product topology, is βn(y)(s)→ β(y)(s)
for all s and all y. Let y(τ) = ỹ(τ) for a.e. τ ≤ s. Then, βn(y)(τ) = βn(ỹ)(τ) for a.e. τ ≤ s, as βn ∈ SY→Z

for all n. This equality (a.e.) is preserved for both limits βn(y)(τ) → β(y)(τ) and βn(ỹ)(τ) → β(ỹ)(τ) such that
β(y)(τ) = β(ỹ)(τ) for a.e. τ ≤ s.
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Definition 7 (Subdifferentials, superdifferentials). Let Ω ⊆ Rn be open. The superdifferential
D+ u(x) of u : Ω→ R at x ∈ Ω and the subdifferential D− u(x) of u at x are defined as

D+ u(x)
def
= {p ∈ Rn : lim sup

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≤ 0}

D− u(x)
def
= {p ∈ Rn : lim inf

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≥ 0}

Both D+ u(x), D− u(x) are closed, convex [AF90, §6.4.3].

Lemma 15 (Characterizations [Bre, Lem. 2.2,2.5] [Bar13, Thm. 3.3]). Let u ∈ C(Ω) on an open
set Ω ⊆ Rn. Then

1. p ∈ D+ u(x) iff the hyperplane y 7→ u(x) + p · (y − x) is tangent from above to the graph
of u at x. That is:

u(x) + p · (y − x) ≥ u(y) for all y sufficiently close to x

Similarly, p ∈ D− u(x) iff it is tangent from below:

u(x) + p · (y − x) ≤ u(y) for all y sufficiently close to x

2. p ∈ D+ u(x) iff there is a v ∈ C1(Ω) such that Dv(x) = p and u−v has a local maximum15

at x.

3. p ∈ D− u(x) iff there is a v ∈ C1(Ω) such that Dv(x) = p and u− v has a local minimum
at x.

4. If D+ u(x) 6= ∅ and D− u(x) 6= ∅, then u is differentiable at x.

5. If u is differentiable at x, then D+ u(x) = D− u(x) = {Du(x)} coincides with the gradient
Du(x).

6. {x ∈ Ω : D+ u(x) 6= ∅} and {x ∈ Ω : D− u(x) 6= ∅} are dense in Ω.

Lemma 16. The superdifferential D+ u(x) of the pointwise minimum u(x)
def
= mini ui(x) of the

functions u1, . . . , uk : Ω→ R at x ∈ Ω is the convex hull of their support (similar forD−maxi ui(x)):

D+ u(x) = Conv
⋃

ui(x)=u(x)

D+ ui(x)

15v(x) = u(x) can be assumed without loss of generality in both cases. Furthermore, u− v can be assumed a strict
local maximum/minimum at x. The property is also equivalent when using smooth v ∈ C∞(Ω) instead [CEL84].
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Proof. “⊆”: Let p ∈ D+ ui(x) for some i with ui(x) = u(x), then p ∈ D+ u(x) because:

lim sup
y→x

u(y)− u(x)− p · (y − x)

|y − x|

≤ lim sup
y→x

ui(y)− ui(x)− p · (y − x)

|y − x|
≤ 0

because ui(x) = u(x) and u(y) ≤ ui(y) for all y and i. Since D+ u(x) is convex [AF90, §6.4.3],
D+ u(x) thus contains the convex hull of all such p, which gives the right-hand side.

“⊇”: Consider any x and let j such that u(x) = uj(x). Let p ∈ D+ u(x), i.e. for all y close to
x:

p · (y − x) ≤ u(y)− u(x) = min
i
ui(y)− uj(x) ≤ uj(y)− uj(x)

Definition 8 (Viscosity solution). Let F : Ω× R× Rn → R continuous with an open Ω ⊆ Rn. A
continuous function u ∈ C(Ω) is a viscosity solution of the first-order partial differential equation
(PDE)

F (x, u(x), Du(x)) = 0 (14)

for terminal boundary problems iff it satisfies both:

subsolution: F (x, u(x), p) ≥ 0 for all p ∈ D+ u(x), x ∈ Ω

supersolution: F (x, u(x), p) ≤ 0 for all p ∈ D− u(x), x ∈ Ω

By Lemma 15, viscosity solutions are classical solutions, i.e. (14) holds with gradientDu(x), at
points xwhere they are differentiable. PDEs are not extensional, though: (14) and−F (x, u,Du) =
0 can have different viscosity solutions [Bre].

The partial differential equation of relevance here is the terminal16 evolutionary Hamilton-
Jacobi equation {

ut +H(t, x,Du) = 0 in (0, T )× Rn (15a)
u(T, x) = g(x) in Rn (15b)

with a continuous HamiltonianH : [0, T ]×Rn×Rn → R and a bounded and uniformly continuous
g : Rn → R. Bounded, uniformly continuous solutions will suffice for this paper. The Hamiltonian
H describes the time derivative of u but simultaneously depends on the space derivatives of u.

The major workhorse for PDEs are comparison theorems [Bre, Thm. 5.3] [Bar13, Thm. 5.2]
[BRP99, §2, Thm. 3.3].16

Theorem 17 (Comparison). Let u, v bounded, uniformly continuous sub- and supersolutions of
(15a) and u ≤ v on {T}×Rn, then u ≤ v on [0, T ]×Rn provided one of the following conditions
is true:

16Signs in terminal value problems reverse compared to initial value problems [ES84, Eva10, Chapter 10.3]. A
terminal subsolution u of (15a) induces an initial subsolutionw(t, x) = u(T−t, x) ofwt+J(t, x,Dw) = 0, w(0, x) =
g(x) where J(t, x, p) = −H(T − t, x, p) and likewise for supersolutions.
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1. H is Lipschitz, i.e. there is a C such that

|H(t, x, p)−H(t, x, q)| ≤ C|p− q|
|H(t, x, p)−H(s, y, p)| ≤ C(|t− s|+ |x− y|)(1 + |p|)

2. u is Lipschitz in x uniformly in t
3. v is Lipschitz in x uniformly in t, i.e.
|v(t, x)− v(t, y)| ≤ L|x− y| for all x, y, t

Generalizations to bounded open Ω or modules of continuity exist. If u is growing faster and ends
u ≤ v, it must have been smaller all along, which remains true for viscosity solutions:

Corollary 18 (Monotone comparison). Assume one of the conditions of Theorem 17 holds or that
Hamiltonian J is Lipschitz. Let u be a viscosity subsolution of (15a) and v a viscosity supersolution
of

vt + J(t, x,Dv) = 0 in (0, T )× Rn

If u ≤ v on {T} × Rn and H ≤ J , then u ≤ v on [0, T ]× Rn.

Proof. v is a supersolution of vt + J(t, x,Dv) = 0 if:

τ + J(t, x, p) ≤ 0 ∀(τ, p) ∈ D− v(x) (16)

Thus, v is also a supersolution of vt +H(t, x,Dv) = 0, i.e.

τ +H(t, x, p) ≤ 0 ∀(τ, p) ∈ D− v(x)

which follows from (16) using H ≤ J . In the case where the conditions of Theorem 17 are
satisfied, this implies u ≤ v by Theorem 17. Otherwise J is Lipschitz, and the proof proceeds as
follows. u is a subsolution of ut +H(t, x,Du) = 0 if:

τ +H(t, x, p) ≥ 0 ∀(τ, p) ∈ D+ u(x) (17)

Thus, u is also a subsolution of ut + J(t, x,Du) = 0, i.e.

τ + J(t, x, p) ≥ 0 ∀(τ, p) ∈ D+ u(x)

which follows from (17) using J ≥ H . Since J is Lipschitz, this implies u ≤ v by Theorem 17.

4.4 Isaacs Equations
Seminal results [Sou85,BEJ84,ES84] characterize the upper and lower values of differential games
by the Isaacs equations [Isa67]. For reference, a proof of Theorem 19 is in Appendix C.
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Theorem 19 (Isaacs PDE [ES84, Thm 4.1]). The lower value V from (8) of (1) is the unique
bounded, uniformly continuous viscosity solution of lower Isaacs equation{

Vt +H−(t, x,DxV ) = 0 (0 ≤ t ≤ T, x ∈ Rn)

V (T, x) = g(x) (x ∈ Rn)
(18)

H−(t, x, p) = max
y∈Y

min
z∈Z

f(t, x, y, z) · p

and U (10) the unique such solution of upper Isaacs equation{
Ut +H+(t, x,DxU) = 0 (0 ≤ t ≤ T, x ∈ Rn)

U(T, x) = g(x) (x ∈ Rn)
(19)

H+(t, x, p) = min
z∈Z

max
y∈Y

f(t, x, y, z) · p

Corollary 20 (Minimax [ES84, Corollary 4.2]). V ≤ U holds. If H+(t, x, p) = H−(t, x, p) for all
0 ≤ t ≤ T, x, p ∈ Rn, then V = U , i.e. the game has value.

Proof. H− ≤ H+ holds, so Corollary 18 implies V ≤ U . If H− = H+ holds, too, then Corol-
lary 18 implies U ≤ V .

The fact V ≤ U follows from the observation that the player who chooses last is at advantage
for optimizing the resulting value. The assumption H+(t, x, p) = H−(t, x, p) corresponds to order
independence, which implies V = U .

Corollary 21. The Isaacs equations for U, V hold classically a.e. in (0, T ) × Rn, i.e. except on a
subset of a measure 0 set.

Proof. By Theorem 9, U and V are Lipschitz and, hence, by Rademacher’s theorem, differentiable
a.e., which implies by Lemma 15 that the Isaacs equations that U and V satisfy by Theorem 19
hold classically in those points.

4.5 Frozen Games
The results from Sect. 4.2 and 4.4 characterize winning regions of differential games by signs of
the solutions of their PDEs if Angel chooses ζ = T . Lifting these characterizations to the case
where Angel decides to stop early by choosing ζ < T is possible by repeating the same analysis
for minimum payoff games [Ser02]. This leads to less convenient PDEs, though.

An easier way is to add an extra freeze input [MBT05] for Angel, which she can control to
slow down or lock the system in place. The freeze factor c ∈ [0, 1] multiplies the differential game
and is under Angel’s control, which will keep the system unmodified (c = 1), in stasis (c = 0), or
in slow motion (0 < c < 1). Angel controls time ζ and freeze factor c. So the frozen system does
not need early stopping, because she can freeze c = 0 instead. The quantifier for ζ in Def. 5 is,
thus, irrelevant.
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Lemma 22 (Frozen values). For any atomically open F : ξ ∈ δx′=cf(x,y,z) & y∈Y d&z∈Z∧c∈[0,1]([[F ]])

iff its lower value satisfies V (0, ξ) > 0 for all T ≥ 0 when using the realization g def
= F< as payoff.

Accordingly for atomically closed F .

Proof. “⇒ ”: by Case 1 of Lemma 10 using Lemma 3.
“⇐ ”: By Lemma 3 and Case 1 of Lemma 10, it only remains to be shown that ζ can always be

instantiated to T in Def. 5 for this game. Instead of stopping prematurely at ζ < T , Angel can set
her extra freeze input c to 0 at ζ , because c = 0 will keep x constant.

The proof for closed F uses Lemma 11 instead.

When replacing all differential games with their frozen version, Lemma 22 implies that the
results from Sect. 4.2 and 4.4 characterize their winning regions by signs of values. Yet, it is more
efficient to exploit the structure of the frozen game to get rid of c with a minimal change in the
Hamiltonian.

Lemma 23 (Frozen Isaacs). According to Theorem 19, let H− and H+ the Hamiltonians for the
lower and upper values of

x′ = f(x, y, z) & y ∈ Y d&z ∈ Z (20)

Then the lower and upper values of the frozen differential game

x′ = cf(x, y, z) & y ∈ Y d&z ∈ Z ∧ c ∈ [0, 1] (21)

respect the lower (18) and upper (19) Isaacs equations with the following Hamiltonians instead:

J−(t, x, p) = min(0, H−(t, x, p)) (22)
J+(t, x, p) = min(0, H+(t, x, p))

Proof. By Theorem 19, the lower value and upper value of (21) satisfy the lower and upper Isaacs
equations with the following Hamiltonians:

J−(t, x, p) = max
y∈Y

min
z∈Z

min
c∈[0,1]

cf(t, x, y, z) · p

= max
y∈Y

min
z∈Z

min(0, f(t, x, y, z) · p)

= min(0,max
y∈Y

min
z∈Z

f(t, x, y, z) · p)

J+(t, x, p) = min
c∈[0,1]

min
z∈Z

max
y∈Y

cf(t, x, y, z) · p

= min(0,min
z∈Z

max
y∈Y

f(t, x, y, z) · p)

since min and max are mutually distributive. By Corollary 18, those transformations do not change
the solution.

When starting both differential games in the same initial state with the same payoff, the lower
and upper value of (20), thus, dominate the lower and upper value, respectively, of (21), by Corol-
lary 18, because J−(t, x, p) ≤ H−(t, x, p) and J+(t, x, p) ≤ H+(t, x, p). The freeze input c can be
removed from the Hamiltonian by Lemma 23. Indeed, c does not ever need to be introduced into
differential games explicitly either, because both winning regions are identical, based on [MBT05]:
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Lemma 24 (Superfluous freezing). Let X ⊆ S. Then

δx′=f(x,y,z) & y∈Y d&z∈Z(X) = δx′=cf(x,y,z) & y∈Y d&z∈Z∧c∈[0,1](X)

ςx′=f(x,y,z) & y∈Y d&z∈Z(X) = ςx′=cf(x,y,z) & y∈Y d&z∈Z∧c∈[0,1](X)

Proof. Angel can set her extra freeze input c to 0 to freeze the evolution of the game any time,
which, by smart freezing, will make the final outcome of the frozen game at time T equal to its
value at freeze time. Hence, frozen systems do not need to be stopped earlier (and the quantifier
for ζ in Def. 5 is irrelevant). The addition of c does not otherwise affect the system behavior or
capabilities, because its only effect is a time dilation. Note that time is not observable unless the
differential game includes a clock t′ = 1, in which case that clock will be frozen when changing c.
The idea is to speed up the system such that c is 1 first and then drops and stays at zero. And then
to show that such an evolution of c can be emulated by the other system by stopping when c drops
to zero. By Theorem 2, the equations imply each other, so the proof only considers δ...(X).
“⊇”: This inclusion follows from the soundness of the DGR proof step:

∀u∈Y ∃y∈Y ∀z∈Z ∃v∈Z, c∈[0,1]∀x (f(x, y, z) = cf(x, u, v))

[x′=cf(x, u, v) &u∈Y d&v∈Z∧c∈[0,1]]F → [x′=f(x, y, z) & y∈Y d&z∈Z]F

whose premise proves using y def
= u, v

def
= z, c

def
= 1.

“⊆”: This direction has been shown elsewhere [MBT05, Corollary 5].

In a similar way, differential games restricted to evolution domains are definable by the dual
freezing game that gives another freeze factor b to Demon with which he can suspend the system
should Angel ever try to leave the domain. A differential game with evolution domain C has to
remain in C and stop before leaving it. But only Angel is in control of time. She might try to leave
C temporarily and sneak back before Demon notices. Adding the dual freeze factor b to the game
gives Demon the option of slowing it down and challenging Angel to demonstrate to still be in C.
Ensuring that Demon does not slow the game down just to prevent Angel’s progress to victory is
possible by exploiting hybrid games around it:

t := x0; (x′ = bf(x, y, z), t′ = 1 & y ∈ Y ∧ b ∈ [0, 1]d&z ∈ Z);

?C; ?(x0 = t)d

This reduction assumes that the (vectorial) differential game x′ = f(x, y, z) contains a determin-
istic clock x′0 = 1 and adds a separate unfrozen absolute clock t′ = 1 starting from the same value
after the assignment t := x0. To slow the system down, Demon needs to choose b < 1 on a set
of non-zero measure (otherwise b = 1 a.e., which has no effect). That will slow down the frozen
x′0 = b compared to the unfrozen t′ = 1, so that Demon fails his time synchronicity test ?(x0 = t)d

and loses. Unless he correctly points out that the system left the domain C, in which case Angel
will lose because she fails her test ?C first. Even though Demon has no influence on Angel’s choice
of time ζ , he can choose b = 0 to force the game into stasis any time. He just needs to use that
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power wisely or else he will lose the game for false allegations. This is the differential game analo-
gon of the “there and back again game” for differential equations with evolution domains [Pla14].
The hybrid game enables simpler differential games compared to incorporating state constraints
into differential games [Rap98].

4.6 Soundness of Differential Game Invariants
This completes the background required for proving soundness of DGI. The soundness proof
proves the arithmetized postcondition to be a viscosity subsolution (Sect. 4.3) of the lower Isaacs
PDE that characterizes (Sect. 4.4) the lower value whose sign characterizes (Sect. 4.2) winning
regions (Sect. 2) independently of premature stopping (Sect. 4.5).

Theorem 25 (Soundness of differential game invariants). Differential game invariants (rule DGI)
are sound.

Proof. To prove soundness, assume the premise to be valid and the antecedent of the conclusion
true in a state ξ:

� ∃y ∈ Y ∀z ∈ Z F ′f(x,y,z)
x′ (23)

ξ |= F (24)

To make the proof easier to follow, the proof first considers the case where F is a simpler formula
even if that follows from subsequent cases.
1) Consider the case where F is of the form F ≡ (g > 0) for a (smooth) term g. Then the (valid)
premise (23) of DGI specializes to ∃y ∈ Y ∀z ∈ Z (g > 0)′

f(x,y,z)
x′ , which is

� ∃y ∈ Y ∀z ∈ Z (∇(g)
f(x,y,z)
x′ ≥ 0) (25)

When ξ ∈ S is a state, adopt the usual mathematical liberties of writing g(ξ) for the value [[g]]ξ of
term g in state ξ ∈ S to simplify notation substantially and keep it closer to mathematical practice.
Similarly for f(x, y, z), since it will be clear from the context whether the term f(x, y, z) or its
value is being referred to. If all the x, y, z are variables, f(x, y, z) is a term. If, instead, ξ, η, ζ are
all (vectors of) reals, f(ξ, η, ζ) refers to the corresponding value [[f(x, y, z)]]

σξx
η

y

ζ

z

instead. Mixed

cases where some x, y, z are variables and others are reals are not defined to avoid confusion.
Consider any time horizon T ≥ 0 of Angel’s choosing. The proof first shows that the time-

invariant extension ḡ(t, x)
def
= g(x) is a subsolution of the lower Isaacs equation (18) with unique

solution V (Theorem 19), which, by Theorem 17, implies ḡ ≤ V , because both functions coincide
at time T . Since ḡ is smooth, it, by Lemma 15, is a subsolution iff it satisfies the subsolution
inequality classically at every (η, ξ):

ḡt(η, ξ)︸ ︷︷ ︸
0

+ max
y∈Y

min
z∈Z

f(ξ, y, z) ·Dxḡ(η, ξ)︸ ︷︷ ︸
≥0

≥ 0 (26)
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which holds since ḡ is time-invariant so its time-derivative ḡt vanishes and by premise (25), recall-
ing that f(ξ, y, z) ·Dxḡ(η, ξ) = [[∇(g)

f(x,y,z)
x′ ]]ξ for all ζ, y, z by Lemma 5, so that (25) implies:

∃y ∈ Y ∀z ∈ Z f(ξ, y, z) ·Dxḡ(η, ξ) = [[∇(g)
f(x,y,z)
x′ ]]ξ ≥ 0

By (26), ḡ is a subsolution of (18), so g(ξ) = ḡ(η, ξ) ≤ V (η, ξ) for all η, ξ by Theorem 17, which is
applicable because V is bounded and uniformly continuous by Theorem 19, and Lipschitz in x, t by
Theorem 9, thus, Lipschitz in x uniformly in t since t is bounded by T so the maximum Lipschitz
bound among t ∈ [0, T ] is finite. For the applicability of Theorem 17, note that g and ḡ are
bounded and Lipschitz (on the domain from Lemma 1) by Def. 3 and, thus, uniformly continuous
by Footnote 4.

So V (η, ξ) ≥ g(ξ) > 0 for all η and any initial state ξ that satisfies the antecedent F ≡ (g > 0)
of the conclusion of DGI, i.e. (24) which is g(ξ) > 0. Hence, Case 1 of Lemma 10 implies

∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) > 0

This shows that Demon can achieve g > 0 from any initial state ξ where g > 0 holds if Angel
decides to evolve the full duration T . Since g(ξ) ≤ V (t, ξ) is a time-independent lower bound for
all times t and all time horizons T , Angel cannot achieve a lower value of g by stopping earlier:
Part 1. If the payoff g is a time-independent subsolution of (18) with g(ξ) > 0, then

ξ ∈ δx′=f(x,y,z) & y∈Y d&z∈Z([[g > 0]]) (27)

The case g(ξ) ≥ 0 is accordingly with [[g ≥ 0]] instead.
Subproof: The function g is a subsolution of (18) iff:

τ︸︷︷︸
0

+H−(t, x, p) ≥ 0 for all (τ, p) ∈ D+ g(t, x) and all t, x

Thus, g is a subsolution of the frozen lower Isaacs equation with Hamiltonian (22) from Lemma 23:

τ︸︷︷︸
0

+ min(0, H−(t, x, p)) ≥ 0 for (τ, p) ∈ D+ g(t, x) and t, x

Thus, the lower value of the frozen game (21) has lower bound g. By Lemma 22, it does not need
premature stopping, so that Lemma 10 proves

ξ ∈ δx′=cf(x,y,z) & y∈Y d&z∈Z∧c∈[0,1]([[g > 0]])

since T ≥ 0 was arbitrary. The “⊇” inclusion of Lemma 24, which follows from Theorem 8, then
implies (27), concluding the subproof.

Alternatively, without any freezing, g is a subsolution of the Isaacs equation for infimum cost
[Ser02]

min(vt(t, x) + h−(x, v(t, x), Dxv(t, x)), g(x)− v(t, x)) = 0

h−(x, r, p) =

{
maxy∈Y minz∈Z f(x, y, z) · p if g(x) ≤ r

∞ if g(x) > r
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that the infimum cost value over time solves

v(η, ξ) = inf
β∈SY→Z

sup
y∈MY

min
t≤T

g(x(t; ξ, y, β(y)))

because the choice of g(x) for v(t, x) satisfies

min(τ + h−(x, ḡ(t, x), p), g(x)− ḡ(t, x)) ≥ 0 ∀(τ, p) ∈ D+ ḡ(x)

Lemma 10 carries over to v with an extra ∃t ≤ T for time, so that 0 < g(ξ) ≤ v(0, ξ) directly
shows

ξ ∈ δx′=f(x,y,z) & y∈Y d&z∈Z([[g > 0]])

The downside of this alternative proof, which also works for time-dependent g, though, is that the
PDE assumes a convex image of f under Y and under Z to facilitate discontinuous games [Ser02],
which are not needed here. �
2) Consider the case where F is of the form F ≡ (g ≥ 0) for a (smooth) term g. Then the proof
proceeds as in Case 1, since the premise of DGI is still (25), because ∇(g ≥ 0) is equivalent to
∇(g > 0) by Def. 6. In that case, the antecedent (24) only implies ξ |= g ≥ 0 in the initial state ξ,
thus, V (η, ξ) ≥ g(ξ) ≥ 0 for all η. Yet, then Lemma 11 still implies

∀β ∈ SY→Z ∃y ∈MY g(x(T ; ξ, y, β(y))) ≥ 0

which shows the conclusion of DGI by Part 1.
3) Consider the case where F is atomically open. By congruence, it is enough to consider the case
where F is normalized by (a < b) ≡ (b− a > 0) so that it is built with ∧,∨ from formulas of the
form gi > 0. Let I def

= {i : gi(ξ) > 0} 6= ∅ the set of all indices whose atomic formula is true in the
initial state ξ. Part 2 shows that the time-invariant minimum ḡ(t, x)

def
= mini∈I gi(x) of the involved

continuously differentiable gi is a subsolution of the lower Isaacs equation.
Part 2. ḡ is a subsolution of lower Isaacs equation (18).

Validity of the conclusion of DGI follows from Part 2 like for Case 1 with Part 1 and the ob-
servation that the combination of subformulas of F that were true initially will stay true using
Lemma 3, because 0 < ḡ(η, ξ) ≤ V (η, ξ) for all η and the initial state ξ, which satisfies the
antecedent (24).
Subproof of Part 2: Now, the proof from Case 1 no longer works, because ḡ has no differentials at
points where the minimum switches from one gi to another gj unless their differentials happen to
align. A similar idea applies, however.

The premise (23) in this case yields

� ∀x ∃y ∈ Y ∀z ∈ Z
∧
i

(gi ≥ 0)′
f(x,y,z)
x′ (28)

which, in mathematical metalanguage is

∀x ∃y ∈ Y ∀z ∈ Z f(x, y, z) ·Dgi(x) ≥ 0 for all i (29)
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because (gi ≥ 0)′
f(x,y,z)
x′ is∇(gi)

f(x,y,z)
x′ ≥ 0, which is f(x, y, z)·Dgi(x) ≥ 0 by Lemma 5. Proving

that ḡ is a subsolution of lower Isaacs (18) requires proving

τ︸︷︷︸
0

+ max
y∈Y

min
z∈Z

f(x, y, z) · p ≥ 0 (30)

for all (τ, p) ∈ D+ ḡ(t, x) and all x ∈ S. Since ḡ is time-invariant, it is differentiable by t
with derivative 0 everywhere, hence the time component of its superdifferential coincides with the
gradient τ = 0 by Lemma 15. Dropping time from the notation simplifies (30) to:

max
y∈Y

min
z∈Z

f(x, y, z) · p ≥ 0 for all p ∈ D+ ḡ(x) and all x (31)

That is, it remains to show:

∀x∀p ∈ D+ ḡ(x)∃y ∈ Y ∀z ∈ Z f(x, y, z) · p ≥ 0

For any x, using the corresponding y ∈ Y from (29), it is the case that for all z ∈ Z and all i:

f(x, y, z) ·D+ gi(x) ≥ 0

because D+ gi(x) = {Dgi} by Lemma 15. According to Lemma 16, all convex generators of
D+ ḡ, thus, satisfy this property, which continues to hold for convex combinations, since for any
p, q ∈ D+ ḡ(x) and λ ∈ [0, 1]:

f(x, y, z) · (λp+ (1− λ)q) = λf(x, y, z) · p+ (1− λ)f(x, y, z) · q ≥ 0

This proves (31), so that ḡ is a subsolution of (18). �
4) The case where F is atomically closed proceeds as in Case 3. The premise of DGI is equivalent
to the premise in Case 3, because∇(a ≥ b) and∇(a > b) are equivalent by Def. 6. The additional
thought is as for Case 2. Since ḡ is a subsolution, the same combination of subformulas of F that
were true initially will stay true.
5) The case where F is any first-order formula (quantifier-free by quantifier elimination [Tar51])
reduces to Case 4. By congruence, it is enough to consider the case where F is normalized by
(a < b) ≡ (b − a > 0) and (a = b) ≡ (a − b ≥ 0 ∧ b − a ≥ 0) etc. so that it is built with ∧,∨
from formulas of the form gi ≥ 0 or hj > 0. Replace every strict inequality hj > 0 in F that is
true in the initial state ξ by a new weak inequality gj ≥ 0 with the term gj

def
= hj − aj , which is still

true in the initial state when choosing the constant aj
def
= hj(ξ) > 0. Replace every strict inequality

hj > 0 that is not true in the initial state ξ by −1 ≥ 0. The resulting formula G is closed, true
in the initial state, and, if Demon has a strategy to achieve G, then, by monotonicity of winning
regions, he also has a strategy to achieve the original F , because � G → F . Case 4 implies that
Demon can achieve G, because the premise of DGI that Case 4 assumes for G is implied by the
premise for F since ∇(hj > 0) is equivalent to ∇(hj ≥ 0) which is equivalent to ∇(hj − aj ≥ 0)
by Def. 6 as∇(aj) = 0 for constant aj . Likewise∇(−1 ≥ 0) ≡ (0 ≥ 0) is trivially implied.

This concludes the proof of Theorem 25.
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4.7 Soundness of Differential Game Variants
Since DGV settles for a conservative quantifier pattern, the soundness proof for DGI can be adapted
more easily for DGV.

Theorem 26 (Soundness of differential game variants). Differential game variants (rule DGV) are
sound.

Proof. Let ξ |= g < 0, i.e. g(ξ) < 0, otherwise Angel wins by choosing T = 0. The proof follows
the same principle as the proof of Theorem 25 by using the duality Theorem 2, since the same
game is played in [x′ = f(x, y, z) & y ∈ Y d&z ∈ Z] and 〈x′ = f(x, y, z) & y ∈ Y d&z ∈ Z〉 with
the same partition of control advantage and information just from another player’s perspective. To
facilitate proof reuse, rule DGV uses a conservative information pattern, so that the duality allows
to swap player controls and consider [x′ = f(x, y, z) & z ∈ Zd&y ∈ Y ](g ≥ 0). This formula
cannot be expected to be true, since the current state does not need to satisfy g ≥ 0 for Angel
would stop right away then. Yet, the study of its value will still prove to be informative and,
in particular, reuse the proof of Theorem 25. The only, but critical, change is that DGV does
not assume the postcondition to hold in the beginning and, instead, requires a proof that it will
finally be reached. This leads to the following variation on the choice of the subsolution for the
comparison theorem. Let ε the value whose existence the premise shows. For postcondition g ≥ 0,
consider ḡ(t, x)

def
= g(x) + ε

2
(T − t). This ḡ is smooth, so, by Lemma 15, a subsolution of the lower

Isaacs equation (18) iff:

ḡt(t, x)︸ ︷︷ ︸
− ε

2

+ max
y∈Y

min
z∈Z

f(x, y, z) ·Dxḡ(t, x)︸ ︷︷ ︸
≥ε

≥ 0 (32)

which again holds by premise using Lemma 5 if its assumption g(x) ≤ 0 holds. The left-hand side
of (32) is ≥ ε

2
on the closed set [[g ≤ 0]], and is a continuous functions, so it continues to be >0

on sufficiently small neighborhoods of [[g ≤ 0]]. Thus, the argument from Theorem 25 continues to
work when restricting the domain to a sufficiently small open neighborhood U of [[g ≤ 0]]. Since
ḡ(η, ξ) ≤ V (η, ξ) follows from Theorem 17 as in Theorem 25 and Lemma 11 proves the conclusion
of DGV from 0 ≤ V (0, ξ), this will happen for large enough T according to the definition of ḡ.
In particular, 0 < ḡ(η, ξ) ≤ V (η, ξ) when T is sufficiently large, e.g. T > −2

ε
g(ξ) > 0, which

is under Angel’s control. The existence of a (unique) solution of such a duration T follows from
Perron’s existence theorem for Hamilton Jacobi PDEs [Bar13, Thm. 7.1].

For this T , by Lemma 10, Demon of the flipped game, who plays for Angel’s controls of the
original differential game, will ultimately be in a state where g ≥ 0, if he just happens to be lucky
that such a long time is played and the game does not stop prematurely, so ζ = T such that (18)
characterizes the lower value (otherwise the frozen Isaacs Hamiltonian (22) would apply so that
(32) stops holding). For the original differential game, in which Angel is in charge of controlling
the time, this means that she can win g ≥ 0 by playing long enough, which is under her control,
and by limiting herself to ζ = T , which is her choice. Since 0 < ḡ(η, ξ) ≤ V (η, ξ) for all η and
g(x(s; ξ, y, β(y))) is continuous in s (Lemma 1), Angel will win into [[g ≥ 0]] before leaving the
open neighborhood U of [[g ≤ 0]].
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It is of apparent significance for DGV that the lower bound ε holds for all x, not just that there is
an ε for every x. Otherwise, the progress might converge (long) before g ≥ 0 is reached. Note that
it is also possible to prove soundness of DGV based on the soundness proof of DGR. That works
by replacing the Hamiltonian in (32) by a uniformly continuous continuation J (which exists by
Tietze [Wal95, 2.19]) to the full space, which agrees with the Hamiltonian from (32) on the open
neighborhood U of [[g ≤ 0]] and shares the same lower bound ε, but globally. The proof then uses
soundness of the 〈·〉 dual of DGR to show that the original game has a winning strategy since the
game corresponding to J has a winning strategy for g ≥ 0. The only additional thought is that it is
enough to restrict the premise of DGR to the set of x that can occur during the game starting from
ξ, which is where the values of the original game and the one for the Hamiltonian J coincide by
Tietze.

5 Differential Game Embeddings
The previous sections have immersed differential games within hybrid games to form differential
hybrid games and studied how their properties can be proved. This is a useful approach in practice.
The alternative is to understand how differential games relate to (non-differential) hybrid games
from a theoretical perspective. Tracing in dGL the characterizations developed in this paper for
open or closed postconditions gives:

Theorem 27 (Differential game characterization). Differential games are hybrid games, i.e. dif-
ferential game logic of differential hybrid games (dGLDHG) and differential game logic of hybrid
games (dGLHG) are equally expressive:17 dGLHG ≡ dGLDHG.

Proof. The proof uses the results in Appendix A. The nontrivial direction dGLDHG ≡ dGLHG can
be shown by a careful analysis of the constructions involved in characterizing differential games.
The original definition of differential games and their behavior in terms of nonanticipative strate-
gies and measurable functions of control input does not lend itself naturally to a characterization
without facing substantial challenges of having to characterize higher-order quantification in large
function classes. The indirect characterization of a differential game in terms of its Isaacs equa-
tions proves to be more useful. Using expressiveness results for the base logic [Pla12a, Pla14], it
is enough to consider the new elementary cases

[x′ = f(x, y, z) & y ∈ Y d&z ∈ Z]F (33)

and 〈x′ = f(x, y, z) & y ∈ Y d&z ∈ Z〉F . By Theorem 2 it is enough to consider (33).
1) Consider the case where F is atomically open. By Lemma 24, (33) is equivalent to its frozen
analogon18 [x′ = cf(x, y, z) & y ∈ Y d&z ∈ Z ∧ c ∈ [0, 1]]F . By Lemma 22, the latter needs no
premature stopping and is true in a state ξ iff V (0, ξ) > 0 for all T ≥ 0, using the realization

17Logic B is at least as expressive as A, written A ≤ B if every formula of A can be expressed by an equivalent
formula of B. Further, A ≡ B if A ≤ B and B ≡ A. And A < B if A ≤ B but not B < A.

18As in Part 1 of Theorem 25, Theorem 27 can alternatively be proved using the Isaacs equations for infimum cost
[Ser02] instead of the frozen differential game from Lemma 24.
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g
def
= F< as payoff. By Lemma 23, V satisfies the lower Isaacs equation (18) with the Hamiltonian

(22). Thus, (33) is true in ξ iff V (0, ξ) > 0 for all T ≥ 0. The quantification over T is definable
in first-order real arithmetic. So is the condition whether the state characterized by a variable
vector x satisfies V (0, x) > 0 if only V and its evaluation can be characterized, which is what
Corollary 32 in Appendix A shows. Postponing the evaluation of the (by Theorem 9 continuous)
V and its existential quantification until Corollary 32, the proof proceeds with the characterization
of V in logic. By Theorem 19, V is the unique bounded, uniformly continuous viscosity solution
of the lower Isaacs equation (18) with the Hamiltonian (22) from Lemma 23. Boundedness and
uniform continuity are characterizable in first-order real arithmetic, just as long as evaluation of
V is. The terminal condition, V (T, x) = g(x) for all x, is characterizable by quantification and
evaluation. The fact that V solves the (by Lemma 23 frozen) Isaacs equation

Vt + max
y∈Y

min
z∈Z

min
c∈[0,1]

cf(x, y, z) ·DV = 0

can be characterized by the definable condition

τ + max
y∈Y

min
z∈Z

min
c∈[0,1]

cf(x, y, z) · p ≥ 0 ∀(τ, p) ∈ D+ V (t, x)

provided quantification over all superdifferentials (τ, p) is definable. Once that succeeds, the argu-
ment is then the same to characterize that V is a viscosity supersolution.

Dropping the time coordinates t, τ for notational simplicity, Def. 7 implies that p ∈ D+ V (x)
iff

lim sup
y→x

V (y)− V (x)− p · (y − x)

|y − x|
≤ 0

which is characterizable as follows. Abbreviating the definable

(V (y)− V (x)− p · (y − x))/(|y − x|)

by h(y),
lim sup
y→x

h(y) = inf
ε>0

sup{h(y) : 0 < |y − x| < ε}

Whether, for a ε > 0, the inner sup has value s is definable:

∀y (0 < |y − x| < ε→ s ≥ h(y)) ∧ ∀b (∀y (0 < |y − x| < ε→ s ≥ h(y))→ s ≤ b)

A similar first-order formula around this one characterizes the value of the outer inf in terms of s.
Consequently, the set of states where dGL formula (33) is true is characterizable in dGL with-

out using differential games.
2) The case of closed formulas F is accordingly, using the criterion Case 3 from Lemma 10 or
Lemma 11 instead.

Theorem 28 (Expressive power). Differential games are strictly less expressive than hybrid games,
i.e. differential game logic of differential games (dGLDG) is less expressive than differential game
logic of hybrid games: dGLDG < dGLHG.
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Proof. The proof of Theorem 27 does not rely on special features of hybrid games but continues
to work when characterizing differential games in dL, the corresponding logic of hybrid systems
[Pla12a]. Thus, [Pla14, Thm. 19] shows that hybrid systems are strictly less expressive than hybrid
games.

This is surprising, because the contrary holds for hybrid systems. Hybrid systems are equiv-
alently reducible to differential equations [Pla12a]. Theorem 28 shows that this situation is quite
different for differential games versus hybrid games.

6 Related Work
A general overview of the long history of differential games since their conception [Isa67, Fri71]
and breakthroughs of their viscosity understanding [Sou85,BEJ84,ES84] is in the literature [BRP99].
This discussion of related work focuses on differential games as they relate to hybrid games. Hy-
brid games themselves [NRY96, HHM99, TLS00, DR06, BBC10, VPVD11] are discussed else-
where [Pla14]. See [MBT05] for a helpful broader overview of hybrid systems verification and
how Lagrangian verification relates to Eulerian verification. The relationship of differential games
to (robust) control theory [BM08], which is interesting for piecewise continuous controls or under
linearity assumptions but does not give a provably sound approach for general differential games,
is elaborated in the literature [BRP99, MBT05, CQSP07].

Previous techniques for handling and understanding differential games revolve around solving
the PDEs that they induce [BRP99, Isa67, MBT05], corresponding viability theory [CQSP07], or
classically by considering lower and upper time-discrete approximations with strategies changing
at finitely many points and then passing to the limit [Fri71]. The latter is hard to implement and its
theoretical understanding has been revolutionized by the invention of viscosity solutions [CL83,
ES84, Bar13]. The former are interesting but also difficult, because PDEs are highly nontrivial
to solve, and make it hard to obtain formal proofs that give 100% correct answers. Mitchell et
al. [MBT05], for example, report a number of subtle soundness issues with prior work depending
on the shape of the sets. Their own numerical scheme cannot provide correctness guarantees.
Unlike in dGL, the PDEs also only give answers for a fixed time horizon T .

Viability theory provides geometric notions for the PDEs of differential games [KNRY95,
CQSP07, BCSP07]. It is easier to give an internally consistent answer with viability theory than
with PDEs, but the errors off grid can be unbounded leading to soundness issues [MBT05], and
inherent discontinuities in the value function complicate the matter [MBT05]. Yet, viability theory
enables guaranteed approximation (on the grid, not off grid) and handles some cases of discontin-
uous dynamics [BRP99, Chapter 4]. Viability alternatives for hybrid systems are also pursued by
Gao et al. [GLQ07] for affine dynamics with convexity assumptions and if no input ever influences
a discrete state. Focusing on cases such as continuous controls or strategies [SP04] or convex
control images with affine dynamics [Car96] as well as relaxing to limits of extra separators are
common to make the problem more feasible; see [CQSP07, BRP99] for detailed comparisons.

Special purpose cases for differential games where players play hybrid input have been con-
sidered [DR06]. There is an argument to be made in favor of more modular designs such as dGL,
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where discrete and continuous games are integrated side-by-side in a modular way, as opposed
to all intermingled. The same complicated applications will still be described that way, but each
of their elements will have a conceptually easier description. This observation is paramount also
in hybrid systems, whose key success relates to the fact that they can describe even complicated
systems, but with elegantly separated smaller pieces of more narrow effect [Pla12b].

Differential game logic for hybrid games without differential games has been introduced along
with an axiomatization and theoretical analysis in prior work [Pla14]. The present paper extends
this approach with an integration of differential games into hybrid games. The focus in this paper
is on the characterization, study, and proof principles of differential games.

7 Future Work
Differential game invariants, variants, and refinements are simple inductive proof techniques for
differential games. Induction can be defined in different ways for differential equations. Similar
flexibility is expected for differential games, for which differential game invariants are the first
induction principle. In passing, Theorem 25 showed soundness of superdifferentials for differential
invariants, which will be investigated in future work. Recent advances in generating differential
invariants should also generalize to differential game invariants.
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[Háj75] Otomar Hájek. Pursuit Games: An Introduction to the Theory and Applications of
Differential Games of Pursuit and Evasion. Academic Press, 1975. doi:10.1016/
S0076-5392(08)60212-X.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, Los
Alamitos, 1996. IEEE Computer Society. doi:10.1109/LICS.1996.561342.

[HHM99] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rectangular hybrid
games. In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR, volume 1664 of
LNCS, pages 320–335. Springer, 1999. doi:10.1007/3-540-48320-9_23.

[Isa67] Rufus Philip Isaacs. Differential Games. John Wiley, 1967.

[KNRY95] Wolf Kohn, Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. Viability
in hybrid systems. Theor. Comput. Sci., 138(1):141–168, 1995. doi:10.1016/
0304-3975(94)00150-H.

[KS88] N.N. Krasovskii and A.I. Subbotin. Game-Theoretical Control Problems. Springer,
1988.

[LIC12] Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.

[Mar02] David Marker. Model Theory: An Introduction. Springer, New York, 2002.

[MBT05] Ian Mitchell, Alexandre M. Bayen, and Claire Tomlin. A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games. IEEE T. Automat.
Contr., 50(7):947–957, 2005.

35

http://dx.doi.org/10.1512/iumj.1984.33.33040
http://dx.doi.org/10.1109/TAC.2007.904449
http://dx.doi.org/10.1109/TAC.2007.904449
http://dx.doi.org/10.1137/100787829
http://dx.doi.org/10.1016/S0076-5392(08)60212-X
http://dx.doi.org/10.1016/S0076-5392(08)60212-X
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1007/3-540-48320-9_23
http://dx.doi.org/10.1016/0304-3975(94)00150-H
http://dx.doi.org/10.1016/0304-3975(94)00150-H


[NRY96] Anil Nerode, Jeffrey B. Remmel, and Alexander Yakhnis. Hybrid system games:
Extraction of control automata with small topologies. In Panos J. Antsaklis, Wolf
Kohn, Anil Nerode, and Shankar Sastry, editors, Hybrid Systems, volume 1273 of
LNCS, pages 248–293. Springer, 1996. doi:10.1007/BFb0031565.
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A Encoding Proofs for Embedding
The hybrid systems logic dL [Pla12a] is the sublogic of dGL that has differential equations but nei-
ther d nor differential games. By AB denote the set of functions B → A. The proof of Theorem 27
is based on the results in Appendix A.

Lemma 29 (R-Gödel encoding [Pla08, Lem. 4]). The formula at(Z, n, j, z), which holds iff Z is
a real number that represents a Gödel encoding of a sequence of n real numbers with real value z at
position j (for 1 ≤ j ≤ m), is definable in dL. For a formula φ(z) abbreviate ∃z (at(Z, n, j, z) ∧ φ(z))

by φ(Z
(n)
j ).

Corollary 30 (Infinite R-Gödel encoding). The bijection R→̃RN is characterizable in dL by a
formula at(Z,∞, j, z), which holds iff Z is a real number that represents a Gödel encoding of a
ω-infinite sequence of real numbers with real value z at position j. For a formula φ(z), abbreviate
∃z (at(Z,∞, j, z) ∧ φ(z)) by φ(Z

(∞)
j ).

Proof. at(Z,∞, j, z) is definable by repeated unpairing(
〈(j := j − 1;Z := Z

(2)
2 )
∗
〉(j = 0 ∧ z = Z

(2)
1 )
)

Note that the use of an abbreviation formula like Z(2)
2 inside a hybrid game is definable (e.g. in

rich-test dL).

Corollary 31. The bijections N→̃Q and R→̃RQ are characterizable in dL.

Proof. dL can define the formula rat(n, p, q), which holds iff p
q

is the n-th rational number (in some
fixed order):

rat(n, p, q)↔ p = n
(2)
1 ∧ q = n

(2)
2 ∧ q > 0

Corollary 32. The bijection R→̃C(R,R) from reals to the continuous functions on the reals is
characterizable in dL.
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Proof. Since continuous functions are uniquely defined by their values on the rationals, Corol-
lary 31 shows that dL can characterize the bijection by

∀ε>0 ∃δ>0 ∀p
q

:Q ∀n :N(
rat(n, p, q) ∧ |x− p

q
| < δ → |z − F (∞)

n | < ε)
)

Observe that the enumeration of p
q

from Corollary 31 enumerates identical fractions with different
denominators repeatedly, which would allow for the definition of inconsistent F that give different
values at p

q
and 2p

2q
. This is easily overcome, e.g., by skipping fractions that cancel, which can

be checked by divisibility or Euclid’s gcd algorithm, which are both definable with programs in
dL.

B Non-differential Hybrid Game Axiomatization
For reference, Figure 2 shows a sound and complete axiomatization for the case of differential
game logic for hybrid games with differential equations but without differential games from prior
work [Pla14]. The axiomatization is designed on top of the first-order Hilbert calculus (modus
ponens, uniform substitution, and Bernays’ ∀-generalization) with all instances of valid formulas
of first-order logic as axioms, including first-order real arithmetic. The only change of Figure 2
compared to prior work [Pla14] is the use of dualization to convert 〈·〉 axioms into [·] axioms. This
is a cosmetic change to make it easier for the reader to appreciate how differential game invariants
(proof rule DGI) integrate seamlessly into the proof calculus for the other operators of differential
hybrid games.

C Proof of Isaacs Equations
This section shows a proof of Theorem 19 that is simplified compared to its original version [ES84].
The proof of Theorem 19 uses two lemmas.

Lemma 33. Let v ∈ C1((0, T )×Rn). The upper value U of (1) satisfies for any 0 ≤ η ≤ η+σ ≤
T :

U(η, ξ)− v(η, ξ) = sup
α∈SZ→Y

inf
z∈MZ(∫ η+σ

η

∇fv(s)ds+ U(η + σ, x(η + σ))− v(η + σ, x(η + σ))
)

where x(ζ) = x(ζ; ξ, α(z), z) is the response of (1) for α(z)(·) and z(·) and

∇fv(s)
def
= vt(s, x(s)) + f(s, x(s), α(z)(s), z(s)) ·Dxv(s, x(s))
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〈·〉 〈α〉φ↔ ¬[α]¬φ

[:=] [x := θ]φ(x)↔ φ(θ)

[′] [x′ = f(x)]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = f(y))

[?] [?C]φ↔ (C → φ)

[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α; β]φ↔ [α][β]φ

[∗] φ ∧ [α][α∗]φ← [α∗]φ

[d] [αd]φ↔ ¬[α]¬φ

M
φ→ ψ

[α]φ→ [α]ψ

ind
ψ → [α]ψ

ψ → [α∗]ψ

Figure 2: Differential game logic axiomatization for hybrid games without differential games

Proof. The result follows from the dynamic programming optimality condition Sect. 4.2 with step
size σ. Recall U(η, ξ)

sup
α∈SZ→Y

inf
z∈MZ

U(η + σ, x(η + σ))

using the fundamental theorem of calculus [Wal95, Thm. 9.23] (since v is differentiable on the
open interval (η, η + σ) and continuous on the closed interval [η, η + σ]):

v(η + σ, x(η + σ))− v(η, ξ) =

∫ η+σ

η

dv(t, x(t))

dt
(s)ds =

∫ η+σ

η

∇fv(s)ds

Lemma 34 ( [ES84, Lem. 4.3]). Let v ∈ C1((0, T )× Rn). If

vt(η, ξ) +H+(η, ξ,Dv(η, ξ)) ≤ −θ < 0 (34)

then ∀σ ∃z ∈MZ ∀α ∈ SZ→Y ∫ η+σ

η

∇fv(s)ds ≤ −σθ
2

If
vt(η, ξ) +H+(η, ξ,Dv(η, ξ)) ≥ θ > 0 (35)

then ∀σ ∃α ∈ SZ→Y ∀z ∈MZ ∫ η+σ

η

∇fv(s)ds ≥ σθ

2
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Proof. To simplify the left-hand side, abbreviate

Λ(t, x, y, z)
def
= vt(t, x) + f(t, x, y, z) ·Dxv(t, x)

First prove the first inequality. By the definition of H+, (34) is

min
z∈Z

max
y∈Y

Λ(η, ξ, y, z) ≤ −θ < 0

which implies for some z∗ ∈ Z that

max
y∈Y

Λ(η, ξ, y, z∗) ≤ −θ < 0

Since Λ(t, x, y, z) is (uniformly) continuous

max
y∈Y

Λ(s, x(s), y, z∗) ≤ −θ
2

for s ∈ [η, η+ σ] with a sufficiently small σ when x(·) is the response of (1) for any y(·), z(·) with
initial condition x(η) = ξ. Consequently, for the constant control z(·) def

= z∗, any α ∈ SZ→Y gives

Λ(s, x(s), α(z)(s), z(s)) ≤ −θ
2

Now, prove the second inequality (35), which is

min
z∈Z

max
y∈Y

Λ(η, ξ, y, z) ≥ θ > 0

which implies that, for each z ∈ Z, there is a y ∈ Y such that

Λ(η, ξ, y, z) ≥ θ

Since Λ(t, x, y, z) is (uniformly) continuous

Λ(η, ξ, y, ζ) ≥ 3θ

4
(36)

for all ζ ∈ Z in an open ball around z. Since this holds for all z ∈ Z and Z is compact, there is
a finite open covering of Z with open balls Bi within which (36) holds for all ζ ∈ B ∩ Z. Pick a
function c : Z → Y such that c(z) is the center of the closest ballBi to z (breaking ties arbitrarily).
Then, for all z ∈ Z:

Λ(η, ξ, c(z), z) ≥ 3θ

4

Since Λ(t, x, y, z) is (uniformly) continuous,

Λ(η, ξ, c(z), z) ≥ θ

2
(37)
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for s ∈ [η, η+ σ] with a sufficiently small σ when x(·) is the response of (1) for any y(·), z(·) with
initial condition x(η) = ξ. Construct α ∈ SZ→Y for z ∈MZ as α(z)(s)

def
= c(z(s)) for all s. Then

(37) implies

Λ(s, x(s), α(z)(s), z(s)) ≥ θ

2

for all s ∈ [η, η + σ], which implies the desired inequality by integration from η to η + σ.

Proof of Theorem 19. U can be shown to be the viscosity solution of the upper Isaacs equation.
First, U(T, ξ) = g(x(T )) = g(ξ) for all ξ ∈ Rn. Second, consider any v ∈ C1((0, T ) × Rn). If
U − v attains a local maximum at (η, ξ) ∈ (0, T )× Rn, i.e.

U(η, ξ)− v(η, ξ) ≥ U(η + σ, x(η + σ))− v(η + σ, x(η + σ)) (38)

for sufficiently small σ and x(·) solving (1) with initial condition x(η) = ξ, then we need to show

vt(η, ξ) +H+(η, ξ,Dv(η, ξ)) ≥ 0 (39)

Otherwise, there were a θ such that

vt(η, ξ) +H+(η, ξ,Dv(η, ξ)) ≤ −θ < 0 (34∗)

By Lemma 33, (38) implies for any 0 ≤ η ≤ η + σ ≤ T

sup
α∈SZ→Y

inf
z∈MZ

∫ η+σ

η

∇fv(s)ds ≥ 0 (40)

By Lemma 34, (34) implies
∀σ ∃z ∈MZ ∀α ∈ SZ→Y ∫ η+σ

η

∇fv(s)ds ≤ −σθ
2

This choice of z (that is even common for all α) implies in particular

sup
α∈SZ→Y

inf
z∈MZ

∫ η+σ

η

∇fv(s)ds ≤ −σθ
2

(41)

Equation (40) contradicts (41) and, thus, refutes (34) and proves (39).
Third, if U − v attains a local minimum at (η, ξ) ∈ (0, T )× Rn, i.e.

U(η, ξ)− v(η, ξ) ≤ U(η + σ, x(η + σ))− v(η + σ, x(η + σ)) (42)

for sufficiently small σ and x(·) solving (1) with initial condition x(η) = ξ, then we need to show

vt(η, ξ) +H+(η, ξ,Dv(η, ξ)) ≤ 0 (43)

Otherwise, there were a θ such that

vt(η, ξ) +H+(η, ξ,Dv(η, ξ)) ≥ θ > 0 (35∗)
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By Lemma 33, (42) implies for any 0 ≤ η ≤ η + σ ≤ T

sup
α∈SZ→Y

inf
z∈MZ

∫ η+σ

η

∇fv(s)ds ≤ 0 (44)

By Lemma 34, (35) implies
∀σ ∃α ∈ SZ→Y ∀z ∈MZ ∫ η+σ

η

∇fv(s)ds ≥ σθ

2

This choice of α demonstrates the lower bound

sup
α∈SZ→Y

inf
z∈MZ

∫ η+σ

η

∇fv(s)ds ≥ σθ

2
(45)

Equation (44) contradicts (45) and, thus, refutes (35) and proves (43).
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