
Floating-point Bugs in Embedded GNU C Library

Soonho Kong Sicun Gao Edmund M. Clarke
November 19, 2013
CMU-CS-13-130

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We report serious bugs in floating-point computations for evaluating elementary functions in the
Embedded GNU C Library. For instance, the sine function can return values larger than 1053 in
certain rounding modes. Further investigation also exposed faulty implementations in the most re-
cent version of the library, which seemingly fixed some bugs, but only by discarding user-specified
rounding-mode requirements.

This research was sponsored by the National Science Foundation grants no. CNS1330014, no. CNS0926181 and
no. CNS0931985, the GSRC under contract no. 1041377, the Semiconductor Research Corporation under contract
no. 2005TJ1366, and the Office of Naval Research under award no. N000141010188.

Keywords: Floating-point computation, GNU C Library, Nonlinear Arithmetic

1 Introduction
We have found floating-point bugs in Linux systems using Embedded GLIBC (EGLIBC) version
2.16 or older. EGLIBC is a variant of the GNU C Library (GLIBC) which is used as the default
implementation in many distributions including Debian, Ubuntu, and their variants.

The following C program computes the value of sin(−2.437592) in double-precision after
setting the rounding direction to upward (+∞).

1 #include <math.h>
2 #include <fenv.h>
3 #include <stdio.h>
4

5 int main() {
6 double x = -2.437592;
7 fesetround(FE_UPWARD);
8 printf("sin(%f)=%f\n", x, sin(x));
9 return 0;

10 }

The IEEE754 standard [1] does not specify correct rounding methods on elementary func-
tions such as the exponential, logarithm, and trigonometric functions. Programmers and engi-
neers usually expect the program to print out an approximated value around sin(−2.437592) '
−0.64727239229 with an “acceptable” amount error. However, they all should agree that the result
be in the range between -1 and 1, even in the worst case.

However, a surprising result appears if we compile and execute the program in a machine
running Ubuntu 12.04 LTS (or any system with EGLIBC-2.15). The value is greater than 1053 and
it should not be a return value of sine function in any sense.

$ gcc exp_bug.c -lm && ./a.out
sin(-2.437592)=191561981424936943059347927032148030287313979209416704.00000

Here is another C program computing cosh(3.113408) with directed rounding toward +∞.
This example is more interesting because it shows different results on Intel and AMD machines,
and both of the results have serious problems.

1 #include <math.h>
2 #include <fenv.h>
3 #include <stdio.h>
4

5 int main() {
6 double x = 3.113408;
7 fesetround(FE_UPWARD);
8 printf("cosh(%f) = %f\n", x, cosh(x));
9 return 0;

10 }

1

Table 1: Experiment Setup
Function Domain Range Function Domain Range
sin [−10306, 10306] [−1.0, 1.0] acos [−1.0, 1.0] [−∞,+∞]
cos [−10306, 10306] [−1.0, 1.0] asin [−1.0, 1.0] [−∞,+∞]
tan [−10306, 10306] [−∞,+∞] atan [−1.0, 1.0] [−∞,+∞]
cosh [−500, 500] [1.0,+∞] exp [−100, 100] [0.0,+∞]
sinh [−500, 500] [−∞,+∞] log [10−306, 10306] [−∞,+∞]
tanh [−100, 100] [−1.0, 1.0] log10 [10−306, 10306] [−∞,+∞]
sqrt [0.0, 10306] [0.0,+∞]

In a machine with Intel Core i7 CPU, the program outputs inf while a machine with AMD
Opteron processor produces −160.191709.

[INTEL] $ gcc cosh_bug.c -lm && ./a.out
cosh(3.113408) = inf
[AMD] $ gcc cosh_bug.c -lm && ./a.out
cosh(3.113408) = -160.191709

Note that cosh(3.113408) ' 11.2710174432 and the both results inf and −160.191709 are
simply wrong. Moreover, each of the wrong results have significant implications:

• Intel (inf): It has a contagious effect in subsequent computations. inf is a special value in the
IEEE754 standard which indicates an overflow in a computation. If one of subexpressions is
evaluated to inf, then in general the main expression also becomes infinity (+∞ or −∞) or
NaN (Not a Number).

• AMD (-160.191709): Mathematically, cosh(x) is greater than or equal to 1 for all x ∈ R.
As a result, programmers and engineers write algorithms based on the invariant ∀x. 1 ≤
cosh(x). This result, −160.191709, breaks the invariant and could cause an unexpected
behavior.

2 Floating-point Bugs in EGLIBC (≤ 2.16)
We have tested the following math functions in C standard library:

sin, cos, tan, acos, asin, atan, cosh, sinh, tanh, exp, log, log10, sqrt.

For each function f , we take 100, 000 random numbers from a subset of function f ’s domain.
Table 1 shows each function’s sampling domain and range. We pick the sampling domain carefully
so that the result of the computation can be fit in a double-precision variable. We consider the four
rounding modes supported by C99 standard [2]:

· (nearest), →0 (toward zero), ↑ (toward +∞), ↓ (toward −∞).

2

Table 2: Experimental results on Intel and AMD machines: f↑, f↓, and f→0 indicate a function f
with rounding mode toward +∞, toward −∞, and toward 0 respectively. “Inconsistent” denotes
the number of cases in which the difference of two results are larger than 220 ULP (Unit of Least
Precision). “Incorrect” denotes the number of cases in which fC(x) is out of f ’s mathematical
range. “±∞” denotes the number of cases in which fC(x) is either −∞ or +∞.

Function
Intel AMD

Inconsistent Incorrect ±∞ Total Inconsistent Incorrect ±∞ Total
sin↑ 10055 446 0 10501 9853 450 0 10303
sin↓ 9619 497 0 10116 10009 450 0 10459
sin→0 10087 436 0 10523 9904 423 0 10327
cos↑ 10097 434 0 10531 9880 423 0 10303
cos↓ 9815 442 0 10257 9910 461 0 10371
cos→0 9737 444 0 10181 9913 441 0 10354
tan↑ 12218 0 0 12218 12452 0 0 12452
tan↓ 12387 0 0 12387 12378 0 0 12378
tan→0 12486 0 0 12486 12506 0 0 12506
cosh↑ 18768 30139 935 49842 37091 12295 291 49677
cosh↓ 49766 0 0 49766 49673 0 0 49673
cosh→0 49713 0 0 49713 49772 0 0 49772
sinh↑ 47807 0 0 47807 47451 0 266 47717
sinh↓ 47493 0 0 47493 47676 0 0 47676
sinh→0 47911 0 0 47911 48046 0 0 48046
tanh↑ 3107 0 0 3107 3242 0 0 3242
tanh↓ 3135 0 0 3135 3268 0 0 3268
exp↑ 47386 2536 0 49922 37883 11708 124 49715
exp↓ 49646 0 0 49646 49978 0 0 49978
exp→0 50022 0 0 50022 49836 0 0 49836

For each sample x and for each rounding mode rnd, we compute two values f rnd
C (x) and

f rnd
MPFR(x) where fC is a function f in C standard library and fMPFR is a function f in the GNU

MPFR library. MPFR supports arbitrary-precision floating-point computation and we use it as a
reference implementation to have a comparison. The correctness of MPFR is, of course, another
issue and we do not discuss it here. In the experiments, we use 256-bit precision for MPFR.

We have the following expectations for the two values:

• Consistency: The difference between f rnd
C (x) and f rnd

MPFR(x) should not be too large. In this
experiment, we set the threshold of 220 ULP (Unit of Least Precision) which is the spacing
between two adjacent floating-point numbers. Note that IEEE754 double-precision format
has 53 bits of precision and 220 ULP implies that it loses 20-bit precision out of 53. If
|f rnd

C (x)− f rnd
MPFR(x)| > 220ULP, we label the case as “inconsistent”.

• Correctness: The value of f rnd
C (x) should be in the range of the mathematical function f .

3

For instance, sinrnd
C (x) has to be between -1.0 and 1.0 no matter how imprecise it is.

We run the experiments1 on two machines – one with Intel Core i7-2600 CPU (8-core, 3.40GHz)
and another with AMD Opteron Processor 6134 (32-core, 2.30GHz). Both of them are running
Ubuntu 12.04 LTS in which uses EGLIBC-2.15 for the C standard library implementation. We use
MPFR-3.1.1 and g++-4.8.1 C++ compiler in the experiments.

The experimental results are summarized in table 2.

1. The implementations of sin, cos, tan, cosh, sinh, tanh and exp functions have severe prob-
lems when used with non-default rounding modes (toward ∞, toward −∞, and toward 0).
It is also not rare to have the problematic case in practice. For instance, cosh↑ function gives
wrong results almost 50% of cases (49,842 out of 100,000).

2. We have not observed any problem under the default rounding mode (toward nearest rep-
resentable number). Also the implementations of acos, asin, atan, tanh, log, log10, and sqrt
functions pass our tests.

3 Patch in EGLIBC-2.17
In EGLIBC-2.17, they provided a patch for the problem. The following is a part of the new
implementation of sine function (IEEE754 double-precision)2:

eglibc-2.17/libc/sysdeps/ieee754/dbl-64/s sin.c
101 __sin(double x){
102 double xx,res,t,cor,y,s,c,sn,ssn,cs,ccs,xn,a,da,db,eps,xn1,xn2;
103 #if 0
104 double w[2];
105 #endif
106 mynumber u,v;
107 int4 k,m,n;
108 #if 0
109 int4 nn;
110 #endif
111 double retval = 0;
112

113 SET_RESTORE_ROUND_53BIT (FE_TONEAREST);

We find that the patch does not really fix the problem. At line 113, it resets the rounding mode
to “round to nearest” and compute the value of sin(x) while ignoring the user-specified rounding
mode. We found a case in which the value of sin↑

C(x) is smaller than the value of sin·
MPFR(x),

which violates the semantics of “toward +∞” rounding mode:

sin↑
C(−3.93799) = 0.714841448083829766879659928236

sin·
MPFR(−3.93799) = 0.714841448083829771665831705916

1Source code is available at https://github.com/soonhokong/fp-test
2Available at http://www.eglibc.org/cgi-bin/viewvc.cgi/branches/eglibc-2_17/

libc/sysdeps/ieee754/dbl-64/s_sin.c?view=markup

4

http://www.eglibc.org/cgi-bin/viewvc.cgi/branches/eglibc-2_17/libc/sysdeps/ieee754/dbl-64/s_sin.c?view=markup
http://www.eglibc.org/cgi-bin/viewvc.cgi/branches/eglibc-2_17/libc/sysdeps/ieee754/dbl-64/s_sin.c?view=markup

4 Conclusion
We report serious bugs in floating-point computations for evaluating elementary functions in the
Embedded GNU C Library. It is not a negligible numerical error but either a significant error (220

ULP) or mathematically incorrect result (i.e. sin(x) > 1053) which can trigger severe problems in
the following computations. Moreover, the chances of having these results are not rare at all as we
have shown in section 2. The current fix does not mitigate the problem but hides it.

References
[1] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic. Au-

gust 1985.

[2] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C. Interna-
tional Organization for Standardization, Geneva, Switzerland, December 2011.

5

	1 Introduction
	2 Floating-point Bugs in EGLIBC (2.16)
	3 Patch in EGLIBC-2.17
	4 Conclusion

