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Abstract

Hybrid systems are a fusion of continuous dynamical systems and discrete dynamical systems.
They freely combine dynamical features from both worlds. For that reason, it has often been
claimed that hybrid systems are more challenging than continuous dynamical systems and than
discrete systems. We now show that, proof-theoretically, this is not the case. We present a com-
plete proof-theoretical alignment that interreduces the discrete dynamics and continuous dynamics
of hybrid systems. We give a sound and complete axiomatization of hybrid systems relative to
continuous dynamical systems and a sound and complete axiomatization of hybrid systems rel-
ative to discrete dynamical systems. Thanks to our axiomatization, proving properties of hybrid
systems is exactly the same as proving properties of continuous dynamical systems and again, ex-
actly the same as proving properties of discrete dynamical systems. This fundamental cornerstone
sheds light on the nature of hybridness and enables flexible and provably perfect combinations of
discrete reasoning with continuous reasoning that lift to all aspects of hybrid systems and their
fragments.





1 Introduction
Hybrid systems are dynamical systems that combine discrete dynamics and continuous dynam-
ics. They play an important role in modeling systems that use computers to control physical
systems. Hybrid systems feature (iterated) difference equations for discrete dynamics and dif-
ferential equations for continuous dynamics. They, further, combine conditional switching, non-
determinism, and repetition. The theory of hybrid systems concluded that very limited classes
of systems are undecidable [AM98, Hen96, CL00]. Most hybrid systems research since focused
on practical approaches for efficient approximate reachability analysis for classes of hybrid sys-
tems [ADG03,Col07,PC07,GG09]. Undecidability also did not stop researchers in program verifi-
cation from making impressive progress. This progress, however, concerned both the practice and
the theory, where logic was the key to studying the theory beyond undecidability [Pra76, Coo78,
HMP77, HKT00, Lei06].

We take a logical perspective, with which we study the logical foundations of hybrid systems
and obtain interesting proof-theoretical relationships in spite of undecidability. We have developed
a logic and proof calculus for hybrid systems [Pla08, Pla10b] in which it becomes meaningful to
investigate concepts like “what is true for a hybrid system” and “what can be proved about a hybrid
system” and investigate how they are related. Our proof calculus is sound, i.e., all it can prove is
true. Soundness should be sine qua non for formal verification, but is so complex for hybrid
systems [PC07] that it is often inadvertently forsaken. In logic, we can simply ensure soundness
locally per proof rule.

More intriguingly, however, our logical setting also enables us to ask the converse: is the
proof calculus complete, i.e., can it prove all that is true? A corollary to Gödel’s incompleteness
theorem shows, however, that hybrid systems do not have a sound and complete calculus that is
effective, because both their discrete fragment and their continuous fragment alone are nonax-
iomatizable since each can define integer arithmetic [Pla08, Theorem 2]. But logic can do better.
The suitability of an axiomatization can still be established by showing completeness relative to
a fragment [Coo78, HMP77]. This relative completeness, in which we assume we were able to
prove valid formulas in a fragment and prove that we can then prove all others, also tells us how
subproblems are related computationally. It tells us whether one subproblem dominates the others.
Standard relative completeness [Coo78, HMP77], however, which works relative to the data logic,
is inadequate for hybrid systems, whose complexity comes from the dynamics, not the data logic,
first-order real arithmetic, which is decidable [Tar51].

In this paper, we answer an open problem about hybrid systems proof theory [Pla08]. We prove
that differential dynamic logic (dL), which is a logic of hybrid systems, has a sound and complete
axiomatization relative to its discrete fragment. This is the first discrete relative completeness
result for hybrid systems.

Together with our previous result of a sound and complete axiomatization of hybrid systems
relative to the continuous fragment, we obtain a complete alignment of the proof theories of hybrid
systems, of continuous dynamical systems, and of discrete dynamical systems. Even though these
classes of dynamical systems seem to have quite different intuitive expressiveness, their proof
theories actually align perfectly and make them (provably) interreducable. Our dL calculus can
prove properties of hybrid systems exactly as good as properties of continuous systems can be
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proved, which, in turn, our calculus can do exactly as good as discrete systems can be proved.
Exactly as good as any one of those subquestions can be solved, dL can solve all others. Relative to
the fragment for either system class, our dL calculus can prove all valid properties for the others. It
lifts any approximation for the fragment perfectly to all hybrid systems. This also defines a relative
decision procedure for dL sentences, because our completeness proofs are constructive.

On top of its theoretical value and the full provability alignment that our new result shows, our
discrete completeness result is significant in that—in computer science and verification—programs
are closer to being understood than differential equations. Well-established and (partially) auto-
mated machinery exists for classical program verification, which, according to our result, has un-
expected direct applications in hybrid systems. Completeness relative to discrete systems increases
the confidence that discrete computers can solve hybrid systems questions at all. Conversely, con-
trol theory provides valuable tools for understanding continuous systems. Previously, it had been
just as hard to generalize discrete computer science techniques to continuous questions as it has
been to generalize continuous control approaches to discrete phenomena, let alone to the mixed
case of hybrid systems.

Overall, our results provide a perfect link between both worlds and allow—in a sound and
complete, and constructive way—to combine the best of both worlds. dL allows discrete reasoning
as well as continuous reasoning within one single logic and proof system. The dL calculus links
and transfers one side of reasoning in a provably perfect (that is sound and complete) way to the
other side. For whatever question about a hybrid system (or its fragments) a discrete approach is
more natural or promising, dL lifts this reasoning in a perfect way to continuous systems, and to
hybrid systems, and vice versa for any part where a continuous approach is more useful.

This complete alignment of the proof theories is a fundamental cornerstone for understanding
hybridness and relations between discrete and continuous dynamics. In a nutshell, we can proof-
theoretically equate:

“hybrid = continuous = discrete”

2 Differential Dynamic Logic

2.1 Regular Hybrid Programs
We use (regular) hybrid programs (HP) [Pla08] as hybrid system models. HPs form a Kleene
algebra with tests [Koz97]. Atomic HPs are instantaneous discrete jump assignments x := θ, tests
?χ of a first-order formula1 χ, and differential equation (systems) x′ = θ&χ for a continuous
evolution restricted to the domain of evolution χ. Compound HPs are generated from atomic
HPs by nondeterministic choice (∪), sequential composition (;), and Kleene’s nondeterministic
repetition (∗). We use polynomials with rational coefficients as terms. HPs are defined by the
following grammar (α, β are HPs, x a variable, θ a term possibly containing x, and χ a formula of
first-order logic of real arithmetic):

α, β ::= x := θ | ?χ | x′ = θ&χ | α ∪ β | α; β | α∗

1 The test ?χ means “if χ then skip else abort”.
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These operations can define all hybrid systems [Pla10b]. We, e.g., write x′ = θ for the unrestricted
differential equation x′ = θ& true. We allow differential equation systems and use vectorial nota-
tion. Vectorial assignments are definable from scalar assignments (and ;).

A state ν is a mapping from variables to R. We denote the value of term θ in ν by [[θ]]ν . Each HP
α is interpreted semantically as a binary reachability relation ρ(α) over states, defined inductively
by

• ρ(x := θ) = {(ν, ω) : ω = ν except ω(x) = [[θ]]ν}

• ρ(?χ) = {(ν, ν) : ν |= χ}

• ρ(x′ = θ&χ) = {(ϕ(0), ϕ(r)) : ϕ(t) |= x′ = θ and ϕ(t) |= χ for all 0 ≤ t ≤ r for a solu-
tion ϕ of any duration r}; i.e., with ϕ(t)(x′)

def
= dϕ(ζ)(x)

dζ (t), ϕ solves the differential equation
and satisfies χ at all times [Pla08]

• ρ(α ∪ β) = ρ(α) ∪ ρ(β)

• ρ(α; β) = ρ(β) ◦ ρ(α)

• ρ(α∗) =
⋃
n∈N

ρ(αn) with αn+1 ≡ αn;α and α0 ≡ ?true.

We refer to our book [Pla10b] for a comprehensive background. We also refer to [Pla10b] for an
elaboration how the case r = 0 (in which the only condition is ϕ(0) |= χ) is captured by the above
definition. To avoid technicalities, we consider only polynomial differential equations, which are
all smooth.

2.2 dL Formulas
The formulas of differential dynamic logic (dL) are defined by the grammar (where φ, ψ are dL
formulas, θ1, θ2 terms, ∼ ∈ {=,≥, >}, x a variable, α a HP):

φ, ψ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | ∀xφ | [α]φ

The satisfaction relation ν |= φ is as usual in first-order logic (of real arithmetic) with the addition
that ν |= [α]φ iff ω |= φ for all ω with (ν, ω) ∈ ρ(α). The operator 〈α〉 dual to [α] is defined by
〈α〉φ ≡ ¬[α]¬φ. Consequently, ν |= 〈α〉φ iff ω |= φ for some ω with (ν, ω) ∈ ρ(α). Operators
≤, <,∨,→,↔,∃x can be defined as usual. A dL formula φ is valid, written � φ, iff ν |= φ for all
states ν.

2.3 Axiomatization
Our axiomatization of dL is shown in Figure 1. To highlight the logical essentials, we present
a significantly simplified axiomatization in comparison to our earlier work [Pla08], which was
tuned for automation. The axiomatization we use here is closer to that of Pratt’s dynamic logic for

3



[:=] [x := θ]φ(x)↔ φ(θ)

[?] [?χ]φ↔ (χ→ φ)

[′] [x′ = θ]φ↔ ∀t≥0 [x := y(t)]φ (y′(t) = θ)

[&]
[x′ = θ&χ]φ

↔ ∀t0=x0 [x′ = θ]
(
[x′ = −θ](x0 ≥ t0 → χ)→ φ

)
[∪] [α ∪ β]φ↔ [α]φ ∧ [β]φ

[;] [α; β]φ↔ [α][β]φ

[∗n] [α∗]φ↔ φ ∧ [α][α∗]φ

K [α](φ→ ψ)→ ([α]φ→ [α]ψ)

I [α∗](φ→ [α]φ)→ (φ→ [α∗]φ)

C
[α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1))

→ ∀v (ϕ(v)→ 〈α∗〉∃v≤0ϕ(v))
(v 6∈ α)

B ∀x [α]φ→ [α]∀xφ (x 6∈ α)

V φ→ [α]φ (FV (φ) ∩BV (α) = ∅)

G
φ

[α]φ

Figure 1: Differential dynamic logic axiomatization

conventional discrete programs [Pra76, HMP77]. We use the first-order Hilbert calculus (modus
ponens and ∀-generalization) as a basis and allow all instances of valid formulas of first-order real
arithmetic as axioms. The first-order theory of real-closed fields is decidable [Tar51]. We write
` φ iff dL formula φ can be proved with dL rules from dL axioms (including first-order rules and
axioms).

Axiom [:=] is Hoare’s assignment rule. Formula φ(θ) is obtained from φ(x) by substituting θ
for x, provided x does not occur in the scope of a quantifier or modality binding x or a variable of θ.
A modality [α] containing z := or z′ binds z (written z ∈ BV (α)). In axiom [′], y(·) is the (unique
[Wal98, Theorem 10.VI]) solution of the symbolic initial value problem y′(t) = θ, y(0) = x. It
goes without saying that variables like t are fresh in Figure 1. Axiom [∗n] is the iteration axiom.
Axiom K is the modal modus ponens from modal logic [HC96]. Axiom I is an induction schema
for loops. Axiom C, in which v does not occur in α (written v 6∈ α), is a variation of Harel’s
convergence rule, suitably adapted to hybrid systems over R. Axiom B is the Barcan formula of
first-order modal logic, characterizing anti-monotonic domains [HC96]. In order for it to be sound

4



for dL, xmust not occur in α. The converse of B is provable2 [HC96, BFC p. 245] and we also call
it B. Axiom V is for vacuous modalities and requires that no free variable of φ (written FV (φ)) is
bound by α. The converse holds, but we do not need it. Rule G is Gödel’s necessitation rule for
modal logic [HC96]. Note that, unlike rule G, axiom V crucially requires the variable condition
that ensures that the value of φ is not affected by running α.

We add the new modular dL axiom [&] that reduces differential equations with evolution do-
main constraints to differential equations without them by checking the evolution domain con-
straint backwards along the reverse flow. It checks χ backwards from the end up to the initial
time t0, using that x′ = −θ follows the same flow as x′ = θ, but backwards. See Figure 2 for an

t

x

χ

revert flow and time x0;
check χ backwards

x′ = θ

t0 = x0
r

x′ = −θ

Figure 2: “There and back again” axiom [&] checks evolution domain along backwards flow over
time

illustration. To simplify notation, we assume that the (vector) differential equation x′ = θ in [&]
already includes a clock x′0 = 1 for tracking time.

The following loop invariant rule ind derives from G and I. Convergence rule con derives from
∀-generalization, G, and C (like in C, v does not occur in α):

(ind)
φ→ [α]φ

φ→ [α∗]φ
(con)

ϕ(v) ∧ v > 0→ 〈α〉ϕ(v − 1)

ϕ(v)→ 〈α∗〉∃v≤0ϕ(v)

While this is not the focus of this paper, we note that we have successfully used a refined sequent
calculus variant of the Hilbert calculus in Figure 1 for automatic verification of hybrid systems,
including trains, cars, and aircraft; see [Pla08, Pla10b].

2 From ∀xφ → φ, derive [α](∀xφ → φ) by G, from which K and propositional logic derive [α]∀xφ → [α]φ.
Then, first-order logic derives [α]∀xφ→ ∀x [α]φ, as x is not free in the antecedent.

(
←−
∆) [x′ = f(x)]F ← ∃h0>0 ∀0<h<h0 [(x := x+ hf(x))∗]F (closed F )

(
−→
∆) [x′ = f(x)]F → ∀t≥0 ∃h0>0 ∀0<h<h0 [(x := x+ hf(x))∗](t ≥ 0→ F ) (open F )

(
←→
∆ ) [x′ = f(x)]F ↔ ∀t≥0 ∃ε0>0∀0<ε<ε0 ∃h0>0 ∀0<h<h0 [(x := x+ hf(x))∗]

(
t ≥ 0→ ¬Uε(¬F )

)
(open F )

Figure 3: Discrete Euler approximation axioms (for f ∈ C2, fresh variables,
−→
∆ and

←→
∆ assume

t′ = −1)
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3 Continuous Completeness
We have shown that our previous dL calculus [Pla08] is a sound and complete axiomatization of
dL relative to the continuous fragment (FOD). FOD is the first-order logic of differential equations,
i.e., first-order real arithmetic augmented with formulas expressing properties of differential equa-
tions, that is, dL formulas of the form [x′ = θ]F with a first-order formula F . We prove that our
simplified dL axiomatization in Figure 1 is sound and complete relative to FOD (see Appendix):

Theorem 1 (Continuous relative completeness of dL). The dL calculus is a sound and complete
axiomatization of hybrid systems relative to FOD, i.e., every valid dL formula can be derived from
FOD tautologies.

Axioms V and B are not needed for the proof of Theorem 1; see Appendix. They are included for
subsequent results.

4 Discrete Completeness
We study completeness of dL relative to the discrete fragment. We denote the discrete fragment
of dL by DL, i.e., the fragment without differential equations (for our purposes we can restrict DL
to the operators :=, ∗ and allow either ; or vector assignments). The axiomatization in Figure 1 is
not complete relative to the discrete fragment, since not all differential equations even have closed-
form solutions, let alone polynomial solutions. We develop an extension of the dL calculus that is
complete relative to the discrete fragment by adding an axiom for differential equations.

4.1 Open Discrete Completeness
Axioms like [′] that require solutions for differential equations cannot be complete, because most
differential equations do not have closed-form solutions. We can understand properties of differ-
ential equations from a discrete perspective using discretizations of the dynamics. The question is
why that should be complete or even sound. All discretization schemes have errors. Could errors
for difficult cases become so large that we cannot obtain conclusive evidence? Or could errors be so
unmanageable that they may mislead us into concluding incorrect properties from approximations?
Our first step for an answer is for open postconditions.

Theorem 2 (Soundness of approximation). The approximation axioms in Figure 3 are sound. To
simplify notation, we assume that the (vector) differential equation x′ = f(x) in

−→
∆ and

←→
∆ already

includes an extra clock t′ = −1.

Before we prove Theorem 2, we develop a number of auxiliary results and consider exam-
ples that show why the conditions for the axioms in Figure 3 are necessary. For a set S ⊆ Rn

and ε > 0 we denote the open set {x : ‖x− y‖ < ε for a y ∈ S} around S by Uε(S). U ε(S) is
{x : ‖x− y‖ ≤ ε for a y ∈ S}. For a logical formula F with the free variable (vector) x and a
term ε we define the formula representing the ε-neighborhood around F as

Uε(F )
def≡ ∃y (‖x− y‖ < ε ∧ F (y))
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Figure 4: (top) Dark circle shows true solution, light line segments show Euler approximation
for h = 1

4
(bottom) Dark true bounded trigonometric solution and Euler approximation in lighter

colors with increasing errors over time t

The logical formula Uε(F ) is indeed true for exactly those values of x that are within distance <ε
from a y satisfying F . Note the nontrivial similarities when comparing axiom

←→
∆ with [′]. The

difference is that [′] requires a closed-form solution y(t), whereas
←→
∆ uses a repeated assignment

of the right-hand side f(x) of the differential equation. The latter is appropriate thanks to the
extra quantifiers for the approximations. The conditions of the axioms in Figure 3 about F being
open/closed are decidable over real-closed fields [Tar51].

Axiom
←−
∆ is incomplete, since the following valid closed property is not provable by

←−
∆ , as no

approximation, however small h is, works for all time horizons t (see Figure 4 for an illustration):

x2 + y2 ≤ 1.1→ [x′ = y, y′ = −x]x2 + y2 ≤ 1.1

For completeness of approximation schemes, axiom
−→
∆ , thus, only states the existence of a h0 for

each time bound t. Axiom
←−
∆ is also insufficient for another reason, because it would be unsound

for open F , since the following formula is invalid (Figure 4):

x = 1 ∧ y = 0→ [x′ = y, y′ = −x](x ≤ 0→ x2 + y2 > 1)

All Euler approximations stay in x2 + y2 > 1, e.g., when x ≤ 0, but the dynamics only remains
inside its closure x2 + y2 ≥ 1. For the same reason, the converse of

−→
∆ would be unsound for open

F , and, thus, is insufficient. For closed F , instead, the converse of
−→
∆ is sound and can be derived

from
←−
∆ and simple extra arguments. Unlike its converse, axiom

−→
∆ itself, however, would not be

sound for closed F , because no approximation for the following valid formula stays in x2 + y2 = 1
for any positive duration:

x2 + y2 = 1→ [x′ = y, y′ = −x]x2 + y2 = 1
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This property only holds in the limit case that defines the solution of the differential equation and
does not hold for any approximation with piecewise polynomial functions. Soundness of axiom−→
∆ implies, however, that the converse of

−→
∆ can completely prove by approximation that a system

does not leave the closure F of a postcondition, provided the true dynamics never even leaves its
interior

◦
F . The above examples show, however, that this pair of axioms is incomplete, because

they do not align and only prove a weaker closed property and need a stronger open assumption.
To handle properties of differential equations by approximation schemes more completely, we

use axiom
←→
∆ , instead, which, for each time bound t, in addition, quantifies universally over suf-

ficiently small tolerances ε that the discrete approximation tolerates around the reachable states
without violating F (as reflected in ¬Uε(¬F )). It is this nesting of quantifiers where

←−
∆ and

−→
∆

“meet” in the sense that both directions of the implication hold. The equivalence axiom
←→
∆ com-

pletely handles open F . But there are valid properties with closed postconditions F that are still
not provable just by

←→
∆ . The following formula is valid (e.g., provable by a differential invari-

ant [Pla10a]):
x2 + y2 ≤ 1→ [x′ = y, y′ = −x]x2 + y2 ≤ 1 (1)

Unfortunately, no Euler approximation for the dynamics, however small h is, satisfies x2 + y2 ≤ 1

for any duration t > 0; see Figure 4 for an illustration. The otherwise (i.e., using
←→
∆ ) provable

open property
x2 + y2 < 1.1→ [x′ = y, y′ = −x]x2 + y2 < 1.1

illustrates that
←→
∆ would be incomplete if we inverted the order of the quantifiers in

←→
∆ to be

∃ε>0 ∀t≥0 . Time-uniform approximations are rare. Our approach, instead, uses “proof-uniform”
approximations, i.e., one proof for all t, not one value ε for all t. We will answer the question to
what extent our approach can always work.

To justify
←→
∆ , we use an estimate of the global error of Euler approximations in a neighborhood

of the solution [SB02, Theorem 7.2.2.3]. For the sake of a self-contained presentation, a proof of
Theorem 3 is in the Appendix.

Theorem 3 (Global error). Let f ∈ C2, x̂0 ∈ Rn, and x a solution on [0, t] of x′ = f(x), x(0) = x̂0.
Let f be Lipschitz-continuous with Lipschitz-constant L on UE(x([0, t])) for some E > 0. Then
there is an h0 > 0 such that for all h with 0 < h ≤ h0 and all n ∈ N with nh ≤ t, the sequence
x̂n+1 = x̂n + hf(x̂n) satisfies:

‖x(nh)− x̂n‖ ≤ h

2
max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lt − 1

L

The following lemmas are proved in the Appendix.

Lemma 4 (Continuous distance). For a set S ⊆ Rn the distance d(·, S) : Rn → R;x 7→ infy∈S ‖x− y‖
is a continuous map.

Lemma 5. Let K ⊆ F a compact subset of an open set F . Then infx∈K d(x, F {) > 0 for comple-
ment F {.
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Figure 5: Dark partial covering for dark solution and light partial covering for light approximation

Equipped with this prelude of lemmas and cautionary examples we proceed to prove Theo-
rem 2.

Proof of Theorem 2.
←−
∆ : Assume the antecedent is true in a state ν. In order to show that the

succedent is true in ν, consider any solution x(·) of x′ = f(x) with initial value according to ν.
Let t ≥ 0 be the duration of x(·). We need to show that x(t) |= F . Since f is C1, it is locally
Lipschitz continuous and, thus, Lipschitz continuous on every compact subset (these conditions
are equivalent for locally compact spaces). Fix an arbitrary E > 0. As a continuous image of the
compact x([0, t])× UE(0) under addition, U def

= UE(x([0, t])) =
⋃
q∈x([0,t]) UE(q) is compact. See

Figure 5 for a partial illustration. Let L a Lipschitz constant for f on U . Consider any small h
(0 < h < h0 according to the antecedent). Let x̂n be the value of variable x after n iterations of the
discrete program in the antecedent of

←−
∆ . By Theorem 3, for sufficiently small h with nh ≤ t:

‖x(nh)− x̂n‖ ≤ h max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lt − 1

2L︸ ︷︷ ︸
C(t)

!
< ε (2)

The last inequality holds on [0, t] for all sufficiently small h > 0 for the following reason. Since
f is C1, the solution3 x(·) is C2. Given the initial state ν, the remaining factor C(t) is a constant

3 x solves x′ = f(x), hence x ∈ C . So the composition x′ = f(x) is continuous, hence, x ∈ C1. Yet then again
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depending on t, because the continuous function x′′(ζ) is bounded on the compact set [0, t]. Here
we need that L for x′ = f(x) is determined by ν and t and the choice of E. In short, for any
0 < ε < E inequality (2) holds for all sufficiently small h > 0 (also satisfying h < h0) and all n
with nh ≤ t. Consider n def

= b t
h
c, which satisfies nh ≤ t but (n+1)h > t. By mean-value theorem,

there is a ξ ∈ (nh, t) such that

‖x(t)− x(nh)‖ = ‖x′(ξ)‖(t− nh) = ‖f(x(ξ))‖(t− nh) ≤ max
ξ∈[0,t]

‖f(x(ξ))‖︸ ︷︷ ︸
=:D(t)

(t− nh)
!
< ε (3)

The last inequality holds for all sufficiently small h > 0 (with h < h0), because nh→ t as h→ 0

with n def
= b t

h
c and D(t) is a constant. Constant D(t) is determined by t and the initial state for

x′ = f(x) corresponding to ν, because the continuous function f(x(ξ)) is bounded on the compact
set [0, t]. Combining (2) with (3) we obtain that for any 0 < ε < E and all sufficiently small h > 0

(still h < h0) and n def
= b t

h
c:

‖x(t)− x̂n‖ ≤ ‖x(t)− x(nh)‖ + ‖x(nh)− x̂n‖ < 2ε (4)

By antecedent, x̂n |= F for all these h and n. By (4), there, thus, is a sequence of x̂n in F that
converges to x(t) as h→ 0. Thus, x(t) |= F , because F is closed.
−→
∆ : Assume [x′ = f(x)]F is true in a state ν, which fixes the initial state of the differential

equation. According to Picard-Lindelöf [Wal98, Theorem 10.VI], let x(·) be the unique solution
(of maximal duration) of x′ = f(x) starting with the initial value corresponding to ν. Consider any
duration t ≥ 0 for which x(·) is defined. By assumption, the compact set x([0, t]) lies in the region
where F is true, which is open. Thus Lemma 5 implies that there is a ε1

def
= infq∈x([0,t]) d(q, F {) > 0

so that the open ε1 ball around each point of x([0, t]) is still in F . Here, F { is the region of
states q with q 6|= F . Fix any 0 < E < ε1. Then U

def
= UE(x([0, t])) is in F by construction

and, again, compact. Part of this construction is illustrated in Figure 5 Let L be a Lipschitz con-
stant for f on U . Now (2), which follows from Theorem 3, implies for sufficiently small h with
nh ≤ t, that ‖x(nh)− x̂n‖ < E. Thus, x̂n |= F for sufficiently small h with nh ≤ t. Thus,
∃h0>0 ∀0<h<h0 [(x := x+ hf(x))∗](t ≥ 0→ F ) is true in ν where the initial time horizon t was
arbitrary. Recall that the decreasing clock t′ = −1 was assumed to be part of the differential equa-
tion x′ = f(x) for simplicity. Thus, nh ≤ t iff t ≥ 0 holds after the loop. Note that h0 depends on
t. Relation (4) relates different points in time and bounds the maximum difference of solution x(·)
and its discrete approximation x̂n when they exist for different durations by choosing sufficiently
small h.←→

∆ : Like in the proof for
−→
∆ , we assume that ν |= [x′ = f(x)]F and, using that F is open,

conclude that UE(x([0, t])) is in F for an E > 0 that depends on ν and t. Thus (recall that t is a
decreasing clock):

ν |= [x′ = f(x)]
(
t ≥ 0→ ∀z (‖z − x‖ < E → F (z))

)
(5)

the composition x′ = f(x) is C1, because f ∈ C1. Henceforth, x ∈ C2.
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By (2) we conclude for all 0 < ε < E
2

and sufficiently small hwith nh ≤ t that ‖x(nh)− x̂n‖ < ε.
Thus,

‖x(nh)− z‖ ≤ ‖x(nh)− x̂n‖ + ‖x̂n − z‖ < 2ε ≤ E

for all z with ‖x̂n − z‖ < ε. Hence, F (z) holds by (5). Let νn the state reached after n iterations
of the loop in

←→
∆ , then νn |= t ≥ 0→ ∀z (‖z − x̂‖ < ε→ F (z)), as νn |= t ≥ 0 iff ν |= nh ≤ t,

since t is a decreasing clock. Soundness of the “→” direction of
←→
∆ follows with the respective

choice ε0
def
= E

2
for each t and ν.

The converse “←” direction of
←→
∆ follows from the soundness of

←−
∆ using that ¬Uε(¬F ),

which is equivalent to ∀z (‖z − x‖ < ε → F (z)), is closed since the union Uε(S) is open for any
S. The proof follows by observing that, for each time bound t > 0, the region t≥0→ ¬Uε(¬F ) is
closed for the purpose of

←→
∆ , because the solution x(·) cannot leave a closed region on a compact

time interval [0, t] unless it already leaves it on [0, t). It is also easy to derive this direction formally
from

←−
∆ with corresponding arithmetic.

To prove Theorem 2, one could simply try a finite covering of the open balls for U , which
exists by compactness of x([0, t]). The ε neighborhoods of all points of an arbitrary finite covering,
however, are not guaranteed to remain within F , see Figure 5 at t ≈ 6.

4.2 Closed Discrete Completeness

Axiom
←→
∆ handles open postconditions of differential equations but not closed postconditions.

Even though the property in (1) is a closed region and not provable using
←→
∆ alone, this property

and other closed F are still provable indirectly using dL axioms together with
←→
∆ . We need the

following formula that we derive4 when no free variable of φ is bound in α

(V∨) φ ∨ [α]ψ ↔ [α](φ ∨ ψ)

Proposition 6. For every (topologically) closed F , the following formula is provable in dL

(Ů ) [x′ = f(x)]F ↔ ∀ε̌>0 [x′ = f(x)]Uε̌(F )

Proof. For a set S ⊆ Rn we denote its (topological) closure by S. Since Rn has a regular topology:

x ∈ S ⇐⇒ ∀∀ε̌>0 ∃∃y ∈ S ‖x− y‖ < ε̌

⇐⇒ ∀∀ε̌>0 Uε̌(x) ∩ S 6= ∅
⇐⇒ ∀∀ε̌>0 x ∈ Uε̌(S)

⇐⇒ x ∈
⋂
ε̌>0

Uε̌(S)

4 “→”: Trivially, (φ ∨ [α]ψ)→ (φ ∨ [α]ψ), from which V derives (φ∨[α]ψ)→ ([α]φ∨[α]ψ). Thus, (φ∨[α]ψ)→
[α](φ ∨ ψ) derives by a consequence [HC96, K4 p. 31] of G.
“←”: Conversely, K derives [α](¬φ→ ψ)→ ([α]¬φ→ [α]ψ), from which V derives [α](¬φ→ ψ)→ (¬φ→ [α]ψ).
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Set S is closed iff S = S, i.e., iff S =
⋂
ε̌>0 Uε̌(S). Since F is closed, the following equivalence is

valid, hence, provable in real arithmetic

F ↔ ∀ε̌>0Uε̌(F ) i.e., F ↔ ∀ε̌ (¬(ε̌>0) ∨ Uε̌(F ))

Since ε̌ does not occur in the dynamics, both sides of Ů are, thus, equivalent using B and V∨.

With an extra quantifier, Ů transforms closed postconditions to open postconditions, which
←→
∆

handles. Recall that
←−
∆ also handles closed postconditions, but, unlike

←→
∆ together with Ů , axiom←−

∆ cannot prove them all.

4.3 Discrete Completeness of dL∆ = dL+ ∆

Locally closed postconditions (conjunctions O ∧ C of a closed region C and an open O) are
handled in a sound and complete way when combining

←→
∆ ,Ů , and the following formula derived

from K [HC96, K3 p. 28]
([]∧) [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ

One missing case is where postcondition F is a union O ∨C of an open O and a closed C. We
generalize the idea behind Proposition 6 to this case.

Proposition 7. For every (topologically) open O and (topologically) closed C, the following for-
mula is provable in dL

(Ǔ ) [x′ = f(x)](O ∨ C)↔ ∀ε̌>0 [x′ = f(x)](O ∨ Uε̌(C))

Proof. As in the proof of Proposition 6, C is closed and C ↔ ∀ε̌>0Uε̌(C) valid, and, thus, prov-
able in real arithmetic. Since ε̌ is fresh, we, thus, derive equivalence of both sides of Ǔ using V∨
and B

[x′ = f(x)](O ∨ C) ≡ [x′ = f(x)](O ∨ ∀ε̌>0Uε̌(C))

≡ [x′ = f(x)]∀ε̌>0 (O ∨ Uε̌(C))

≡ ∀ε̌>0 [x′ = f(x)](O ∨ Uε̌(C))

Like Ů , Ǔ reduces non-open postconditions to (quantified) open postconditions, which we then
want to prove by

←→
∆ . Can we prove all resulting formulas when they are valid? More generally,

can we prove all valid dL formulas from discrete DL this way?
The dL calculus is complete relative to the continuous fragment (Theorem 1), but incomplete

relative to the discrete fragment. We study the dL calculus in Figure 1 enriched with the ap-
proximation axiom

←→
∆ in Figure 3 and denote this calculus by dL∆. The dL∆ calculus inherits

completeness relative to the continuous fragment from Theorem 1. We now prove that dL∆ is a
sound and complete axiomatization of dL relative to discrete DL, i.e., every valid dL formula can
be proved in the dL∆ calculus from valid DL formulas.

In particular, we need to prove that dL can express all required invariants and variants, and the
resulting formulas with all their nested repetitions, assignments, differential equations and so on
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are provable in the dL∆ calculus from valid DL facts. This would be a tricky proof. Instead, we
prove completeness in an unusual way. We leverage the fact that we have already proved dL to be
complete relative to the continuous fragment FOD in Theorem 1. Thus, every valid dL formula
can be proved in the dL calculus (and the dL∆ calculus) from valid FOD formulas. FOD is, in a
sense, farthest away from dL∆, because it only involves differential equations, which is precisely
what is missing in DL. But by basing our proof on Theorem 1, we can piggyback on its proof how
proofs about repetitions and interactions of discrete and continuous dynamics reduce in a sound
and complete way to FOD formulas. So we only need to prove the remaining step that dL∆ can
prove all valid FOD formulas from DL tautologies, which is significantly easier than having to
worry about all formulas of dL.

Theorem 8 (Discrete relative completeness of dL∆). The dL∆ calculus is a sound and complete
axiomatization of hybrid systems relative to its discrete fragment DL, i.e., every valid dL formula
can be derived from DL tautologies.

Proof. Theorems 1 and 2 show that the dL∆ calculus is sound. We need to show that the dL∆

calculus can prove all valid dL formulas from instances of DL tautologies. By Theorem 1, dL is
complete relative to its continuous fragment, i.e., elementary properties of differential equations
in FOD. Consequently, all valid dL formulas can be proved in the dL (and dL∆) calculus from
instances of valid FOD formulas. All that remains to be shown is that we can then prove all those
valid FOD formulas from valid formulas of discrete DL in the dL∆ calculus. Consider any valid
FOD formula φ. We proceed by induction on the structure of φ and show that dL∆ can (provably)
translate φ into an equivalent DL formula φ# (with the same free variables), which can be proved
by assumption. Observe that the construction of φ# from φ is effective.

1. When φ is a (valid) formula of first-order real arithmetic, then φ# def≡ φ is already in DL and
provable by assumption. First-order real arithmetic is even decidable by quantifier elimina-
tion [Tar51].

2. When φ is of the form [x′ = f(x)]F with a first-order (or semialgebraic) formula F of real
arithmetic5, then, by a standard boolean argument for normal forms applied to semialgebraic
sets obtained by quantifier elimination [Tar51], F is provably equivalent to a formula of the
form

m∧
i=1

(∨
j

pi,j > 0 ∨
∨
k

qi,k ≥ 0

)
with polynomials pi,j and qi,k. As a preimage of an open set, the set {x ∈ Rn : pi,j(x) > 0}
is an open set, since pi,j is a continuous function. Dually, the set where qi,k ≥ 0 is a closed
set, because it is the complement of the open set where −qi,k > 0. As a union of open sets,

the set where Oi
def≡
∨
j pi,j > 0 holds is open. As a finite union of closed sets, the set where

5 We can assume F to be semialgebraic, because, by Theorem 1, FOD does not need nested modalities since it has
quantifiers.
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Ci
def≡
∨
k qi,k ≥ 0 holds is closed. This gives the following (provable) equivalence:

` F ↔
m∧
i=1

(Oi ∨ Ci)

Formula []∧, which derives from K, thus, derives

` φ↔
m∧
i=1

[x′ = f(x)](Oi ∨ Ci)

With m uses of Ǔ , we derive

` φ↔
m∧
i=1

∀ε̌>0 [x′ = f(x)](Oi ∨ Uε̌(Ci))

Since, for ε̌ > 0, each Oi ∨ Uε̌(Ci) is open for every i, we, therefore, derive with m uses of
axiom

←→
∆ that ` φ↔ φ# where

φ# def≡
m∧
i=1

∀ε̌>0ψ(Oi ∨ Uε̌(Ci))

By ψ(Oi ∨ Uε̌(Ci)) we denote the DL formula in the right-hand side of axiom
←→
∆ with

Oi ∨ Uε̌(Ci) in place of F . Thus, ` φ↔ φ# is provable in the dL∆ calculus, φ# is in DL,
and, thus, provable by assumption.

3. When φ is of the form [x′ = f(x) &χ]F , then it is by axiom [&] provably equivalent to
a formula without evolution domain restrictions, which is structurally simpler and, thus,
provable from DL by induction hypothesis.

4. When φ is of the form ¬ψ, then, by induction hypothesis, the simpler formula ψ is provably
equivalent to the DL formula ψ#. This equivalence ψ ↔ ψ# is provable in dL∆ by induction

hypothesis. Consequently, φ is (in dL∆) provably equivalent to φ# def≡ ¬(ψ#), which is a DL
formula and, thus, provable by assumption.

5. When φ is of the form φ1∧φ2, then φ is provable from DL by induction hypothesis, because
both φ1 and φ2 can be turned into DL formulas φ#

1 and φ#
2 , respectively, with provable

φi ↔ φ#
i . Thus, φ1 ∧ φ2 ↔ φ#

1 ∧ φ
#
2 is provable in dL∆.

6. When φ is of the form ∀xψ, then, by induction hypothesis, ψ is provably equivalent to a
DL formula ψ#, i.e., ψ ↔ ψ# is provable in dL∆. Thus, ∀xψ is, by congruence, provably

equivalent to φ# def≡ ∀x (ψ#), which is a DL formula and, thus, provable by assumption.
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The proof of Theorem 8 and its base Theorem 1 and the other proofs in this section are con-
structive. Hence, there is a constructive way of proving dL formulas by systematic reduction to
discrete program properties. The resulting formulas may be unnecessarily complicated, because of
the way our proof reduces the completeness of dL∆ relative to DL to the completeness of dL rela-
tive to FOD, which may require turning dL into continuous FOD and then back into discrete DL.
Still, the proof is constructive and shows an upper bound on how quantifier alternations increase in
the reduction. A more efficient reduction may be sought in practice. Thanks to our result, we now
know that this reduction is possible at all.

Note that recursive reductions would be flawed. The validity of dL formulas reduces to that of
FOD, which reduces to DL, which again reduces to FOD etc. But we need an approximation to
handle either fragment, for we cannot otherwise break this cycle of mutual reductions. This makes
approximations of either fragment (or even combined fragments) interesting and ensures that they
lift to dL perfectly.

5 Relative Decidability
Our relative completeness results entail relative decidability results for free. Since our relative
completeness proofs are constructive and the rules automatable [Pla08], they even define a relative
decision procedure. The proof of relative decidability rests on the coincidence lemma for dL,
which shows that only the values of free variables of a formula affect its truth-value.

Lemma 9 (Coincidence lemma). If the states ν and ω agree on all free variables of formula φ,
then ν |= φ iff ω |= φ.

Proof. The proof is by a simple structural induction using the definitions of ν |= · and ρ(·).

Theorem 10 (Relative decidability). Validity of dL sentences (i.e., formulas without free variables)
is decidable relative to either an oracle for continuous FOD or an oracle for discrete DL.

Proof. Let φ by a sentence in dL and ν a state. Then either ν |= φ or ν 6|= φ. Thus, either ν |= φ
or ν |= ¬φ. By coincidence lemma 9, however, ν |= φ iff ω |= φ for arbitrary ω, because the truth-
value of dL formula φ is determined entirely6 by the value of its free variables, of which there are
none. Consequently, either � φ or � ¬φ. In either case, Theorems 8 and 1 imply that the respective
valid formula is provable in dL∆ from valid DL (or FOD) formulas.

6 Related Work
A general overview of hybrid systems and logics can be found in [ADG03, GG09, DN00, Pla10b].
Hybrid systems are undecidable and do not have finite-state bisimulations [Hen96, AHLP00], so
abstractions and approximations are often used. Euler approximations are standard. Discrete
approximations have been considered many times before [LT05, Col07, PC07]. Discretizations

6 The semantics of dL function and predicate symbols is fixed.
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have been used for linear systems [GG09], to obtain abstractions of fragments of hybrid systems
[AHLP00, ADI06, Tiw08], and to approximate nonlinear systems by hybrid systems [HHWT98]
or by piecewise linear dynamics [ADG03] when assuming that error bounds or Lipschitz constants
are given. See [Hen96, Col07, PC07] for a discussion of the limits and decidability frontier. These
are interesting uses of approximation. But we use approximations for a different, proof-theoretical
purpose: to obtain a sound and complete axiomatization relative to properties of discrete programs.

Related approaches do not take a logic and proofs perspective. That made it difficult to for-
mulate appropriate completeness notions, which are natural in logic. Previous completeness-type
arguments for hybrid systems were restricted to bounded model checking [ADI06], continuous
systems [Tiw08], discrete linear systems on compact domains that are assumed to be so robustly
save that simulation is enough [GP06], or assume the system could be changed without affecting
the property [HHWT98]. We, instead, prove full relative completeness of an expressive logic rel-
ative to a small fragment. Our results identify a more fundamental, proof-theoretical connection
between discrete, continuous, and hybrid dynamics. They are also not limited to safety properties
but extend to the full expressivity of dL.

Our notion of relative completeness is inspired by relative completeness for conventional pro-
grams, which has been pioneered by Cook [Coo78] and, for dynamic logic of conventional discrete
programs [Pra76], by Harel et al. [HMP77, HKT00]. They show that Hoare’s and Pratt’s program
logics are complete relative to an oracle for the first-order logic of the program data. Relative
completeness is the standard approach to showing adequacy of calculi for undecidable classical
program logics. Those completeness notions are inadequate for hybrid systems, however, because
the data logic of hybrid systems is real arithmetic, hence decidable [Tar51]. It is not the data,
but the dynamics proper, that causes incompleteness. We, thus, prove completeness relative to
fragments of the dynamics.

As an alternative to arithmetical relative completeness notions, Leivant [Lei06] considered
completeness of discrete program logics by alignment with proof schemes in higher-order logic.
It is not clear how that would generalize to a compelling completeness notion for hybrid systems,
whose semantics intimately depends on arithmetical models that are rich enough to give differential
equations a well-defined semantics.

Discrete Turing machines have been encoded into classes of hybrid [AM98, Hen96, CL00] or
continuous systems [Bra95, GCB07]. Our proof works the other way around and handles full
hybrid systems. We use discrete dynamics to understand hybrid dynamics. Our results are also
about provability not encodability.

7 Conclusions
We have presented a significantly simplified axiomatization of differential dynamic logic (dL),
our logic for hybrid systems. We have introduced a new axiom for discrete approximation of
differential equations based on Euler discretizations. We prove the calculus to be a sound and
complete axiomatization of dL relative to the continuous fragment (differential equations) and also
a sound and complete axiomatization relative to the discrete fragment. Our results show that the
proof theory of hybrid systems aligns completely with that of continuous systems and with that of
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discrete systems. Our axiomatization defines a perfect lifting. Because our proofs are constructive,
our axiomatization even defines relative decision procedures for dL sentences. Our construction
shows how quantifier alternations increase when interreducing dynamics.

Our complete alignment shows that any reasoning technique in one domain has a counterpart
in the other. (In)variants, which are the predominant proof technique for loops, have differential
(in)variants [Pla10a] as a counterpart of induction for differential equations. Our results indicate
a high potential for identifying other practical consequences of our theoretical alignment. They
also revitalize and justify the hope that control and computer science techniques can work together
to understand hybrid systems and can even work together to understand purely discrete or purely
continuous systems.
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[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143–189, 2008.

18
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A Euler Approximation Proofs
In this section of the appendix, we prove the lemmas from Section 4. For the sake of a self-
contained presentation we report an explicit yet standard proof of the error bound for Euler ap-
proximation shown in Theorem 3. A more general result can be found in [SB02, Theorem 7.2.2.3].

Proof of Theorem 3. By f ∈ C2 and footnote 3 we have x ∈ C2. Consider the variation defined as
x̌n+1 = x̌n + hΦ̌(hn, x̌n) with x̌0 = x̂0 = x(0) and

Φ̌(ζ, y)
def
=

{
f(y) if ‖y − x(ζ)‖ ≤ E

f
(
x(ζ) + E y−x(ζ)

‖y−x(ζ)‖

)
if ‖y − x(ζ)‖ ≥ E

Like f , Φ̌ is continuous and Lipschitz-continuous in y with Lipschitz-constant L, but, by construc-
tion, for all y ∈ Rn, because ‖x(ζ) + E y−x(ζ)

‖y−x(ζ)‖ − x(ζ)‖ ≤ E for all ζ ≤ t. Consider any n ∈ N.
By Taylor approximation for x at nh we know for some ξ ∈ (nh, (n+ 1)h) that

‖x((n+ 1)h)− x̌n+1‖

= ‖x(nh) + x′(nh)h+
x′′(ξ)

2
h2 − x̌n − hΦ̌(nh, x̌n)‖

ODE
= ‖x(nh)− x̌n + (f(x(nh))− Φ̌(nh, x̌n))h+

x′′(ξ)

2
h2‖

= ‖x(nh)− x̌n + (Φ̌(nh, x(nh))− Φ̌(nh, x̌n))h+
x′′(ξ)

2
h2‖

≤ ‖x(nh)− x̌n‖ + Lh‖x(nh)− x̌n‖ +
h2

2
‖x′′(ξ)‖

≤ (1 + Lh)‖x(nh)− x̌n‖ +
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

This error bound holds for any n ∈ N starting with error ‖x(0)− x̌0‖ = 0. Thus, recursively, for
any n:

‖x(nh)− x̌n‖

≤ (1 + Lh)‖x((n− 1)h)− x̌n−1‖ +
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

≤ (1 + Lh)
(
(1 + Lh)‖x((n− 2)h)− x̌n−2‖

+
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖
)

+
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

≤ . . .

≤
n∑
k=0

(1 + Lh)k
h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖

≤ h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖
n∑
k=0

(eLh)k
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≤ h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖
∫ n

0

eLhtdt

≤ h2

2
max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lhn − 1

Lh

because 1 + Lh ≤ eLh for Lh ≥ 0, which can be seen by its power series expansion. The next-
to-last inequality follows, because the sum is a particlar lower Riemann sum of the integral, since
eLhk ≥ 0 is monotone in k. Since 0 ≤ hn ≤ t is bounded and E > 0, there is an h0 > 0 such that
‖x(nh)− x̌n‖ < E for all 0 ≤ h ≤ h0 and all n ∈ N with nh ≤ t. Therefore, x̂n = x̌n for these
h, n and

‖x(nh)− x̂n‖ ≤ h

2
max
ζ∈[0,t]

‖x′′(ζ)‖ e
Lt − 1

L

Proof of Lemma 4. Write d(x, y)
def
= ‖x− y‖ for x, y ∈ Rn. d(·, S) satisfies the triangle inequality

d(x, S) = infz∈S d(x, z) ≤ infz∈S(d(x, y) + d(y, z)) = d(x, y) + d(y, S). For ε > 0 and x, y with
d(x, y) < δ := ε we, thus, know d(x, S) − d(y, S) ≤ d(x, y) < ε. Also, d(y, S) − d(x, S) ≤
d(y, x) = d(x, y) < ε.

Proof of Lemma 5. Suppose infx∈K d(x, F {) = 0. Then there is a sequence (xn)n∈N ⊆ K with
d(xn, F

{)→ 0 as n→∞. By compactness of K, we can pass to a subsequence xnk
such that

xnk
→ x converges to an x ∈ K as k →∞. By Lemma 4,

d( lim
k→∞

xnk
, F {) = lim

k→∞
d(xnk

, F {) = lim
n→∞

d(xn, F
{) = 0

Now x ∈ K ⊆ F implies x 6∈ F {. Since d(x, F {) = infy∈F { d(x, y) = 0, there is a sequence in
F { \ {x} converging to x. Yet, F { is closed, hence x ∈ F {, contradicting x ∈ F .
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B Continuous Completeness Proof
We will first prove the soundness direction of Theorem 1. Then it remains to prove the complete-
ness direction of Theorem 1. In this appendix, we present a fully constructive proof of Theorem 1,
following our proof structure from [Pla08]. Thanks to our significantly simplified axiomatization,
the soundness and relative completeness proofs are much simplified. The relative completeness
proof shows that for every valid dL formula, there is a finite set of valid FOD formulas from which
it can be derived in the dL calculus.

Proof Outline. The (constructive) proof, which, in full, is contained in the remainder of this ap-
pendix, adapts the techniques of Cook [Coo78] and Harel [HMP77, HKT00] to the hybrid case.
The decisive step is to show that every valid property of a repetition α∗ can be proven by axioms
I or C, respectively, with a sufficiently strong invariant or variant that is expressible in dL. For
this, we show that dL formulas can be expressed equivalently in FOD, and that valid dL formulas
can be derived from corresponding FOD axioms in the dL calculus. In turn, the crucial step is to
construct a finite FOD formula that characterizes the effect of unboundedly many repetitive hybrid
transitions and just uses finitely many real variables.

Natural numbers are definable in FOD [Pla08, Theorem 2]. For the sake of a complete presen-
tation, we recall our proof.

Theorem 11 (Incompleteness). Both the discrete fragment and the continuous fragment of dL are
not effectively axiomatisable, i.e., they have no sound and complete effective calculus, because
natural numbers are definable in both fragments.

Proof. We prove that natural numbers are definable among the real numbers of dL interpretations
in both fragments. Then these fragments extend first-order integer arithmetic such that the incom-
pleteness theorem of Gödel [Göd31] applies. Gödel’s incompleteness theorem shows that no logic
extending first-order integer arithmetic can have a sound and complete effective calculus. Natu-
ral numbers are definable in the discrete fragment without continuous evolutions using repetitive
additions:

nat(n)↔ 〈x := 0; (x := x+ 1)∗〉x = n.

In the continuous fragment, an isomorphic copy of the natural numbers is definable using linear
differential equations:

nat(n)↔ ∃s=0∃c=1∃τ=0 〈s′ = c, c′ = −s, τ ′ = 1〉(s = 0 ∧ τ = n).

These differential equations characterise sin and cos as unique solutions for s and c, respectively.
Their zeros, as detected by τ , correspond to an isomorphic copy of natural numbers, scaled by π,
i.e., nat(n) holds iff n is of the form kπ for a k ∈ N; see Figure 6. The initial values for s and c
prevent the trivial solution identical to 0.

Let the FOD formula nat(x) be true iff x is a natural number. In this section, we abbreviate
quantifiers over natural numbers by ∀x :N φ and ∃x :N φ for ∀x (nat(x)→ φ) and ∃x (nat(x) ∧ φ).
Likewise, we abbreviate quantifiers over integers, e.g., by ∀x :Z φ.
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Figure 6: Characterisation of N as zeros of solutions of differential equations

B.1 Soundness of dL Calculus
Before we turn to prove completeness, we first prove the soundness direction of Theorem 1. We
state soundness as a separate theorem, because it is of independent interest:

Theorem 12 (Soundness of dL). The dL calculus is sound, i.e., every provable formula is valid,
i.e., true in all states.

Proof. All axioms of the dL calculus in Figure 1 are sound, i.e., all their instances valid.

[:=] Axiom [:=] is sound. For state ν, let ω be the unique state such that (ν, ω) ∈ ρ(x := θ).
That is, ω = ν except ω(x) = [[θ]]ν . By the Substitution Lemma [Pla10b, Lemma 2.2] for
admissible substitutions, ω |= φ iff ν |= φθx. Thus, ν |= [x := θ]φ iff ν |= φθx.

[?] Axiom [?] is sound. Consider a state ν. If ν |= χ, then the only transition is (ν, ν) ∈ ρ(?χ),
hence, ν |= [?χ]φ iff ν |= φ, which holds iff ν |= χ→ φ. If, otherwise, ν 6|= χ, then ?χ
allows no transitions (ν, ω) ∈ ρ(?χ) hence ν |= [?χ]φ holds vacuously and ν |= χ→ φ holds
vacuously, too.

[′] Axiom [′] is sound, because y is the solution (unique by Picard-Lindelöf [Wal98, Theorem 10.VI])
of the differential equation y(t)′ = θ with symbolic initial values y(0) = x. Thus, ν |= [x′ = θ]φ
iff φ holds at all times t ≥ 0 along y(t). That is, ν |= [x′ = θ]φ iff ν |= ∀t≥0 [x := y(t)]φ.

[&] Axiom [&] is sound, because the right-hand side checks χ along the reverse flow. Continuous
evolution is reversible, i.e., the transitions of x′ = −θ are inverse to those of x′ = θ. For this,
consider (ν, ω) ∈ ρ(x′ = θ), that is, let ϕ be the unique [Pla08, Lemma 1] solution of x′ = θ
of some duration r starting in state ν and ending in ω. Then % defined as %(ζ) = ϕ(r − ζ),
is of duration r, starts in ω and ends in ν. Furthermore, % is a solution of x′ = −θ:

d%(t)(x)

dt
(ζ) =

dϕ(r−t)(x)

dt
(ζ) =

dϕ(u)(x)

du
d(r−t)

dt
(ζ)

=− dϕ(u)(x)

du
(ζ) = −[[θ]]ϕ(ζ) = [[−θ]]ϕ(ζ).

Consequently, all evolutions of [x′ = −θ] follow the same flow as [x′ = θ], but backwards.
The antecedent of the postcondition tests whether, along the reverse flow, χ has been true
at all times until the starting time t0; see Figure 2. The quantifier ∀t0 = x0 . . . , which is
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an abbreviation for ∀t0 (t0 = x0 → . . . ), remembers the initial time x0 in t0. Recall that we
assume x0 to be a clock with the differential equation x′0 = 1 in the vectorial differential
equation x′ = θ to track time.

[∪] Axiom [∪] is sound. Since ρ(α ∪ β) = ρ(α) ∪ ρ(β), we have that (ν, ω) ∈ ρ(α ∪ β) iff
(ν, ω) ∈ ρ(α) or (ν, ω) ∈ ρ(β). Thus, ν |= [α ∪ β]φ iff ν |= [α]φ and ν |= [β]φ.

[;] Axiom [;] is sound. Since ρ(α; β) = ρ(β)◦ρ(α), we have that (ν, ω) ∈ ρ(α; β) iff (ν, µ) ∈ ρ(α)
and (µ, ω) ∈ ρ(β) for some middle state µ. Hence, ν |= [α; β]φ iff µ |= [β]φ for all µ with
(ν, µ) ∈ ρ(α). That is ν |= [α; β]φ iff ν |= [α][β]φ.

[∗n] Axiom [∗n] is sound. Since ρ(α∗) =
⋃
n∈N ρ(αn), there are two cases: α either repeats for 0

or for 1 or more iterations. Thus ν |= [α∗]φ iff ν |= [α0]φ and ν |= [α;α∗]φ. Thus, by the
soundness of [;], ν |= [α∗]φ iff ν |= φ and ν |= [α][α∗]φ.

K Let ν |= [α](φ→ ψ) and ν |= [α]φ. Consider any ω with (ν, ω) ∈ ρ(α). Then, ω |= φ→ ψ
and ω |= φ. Thus, ω |= ψ, implying ν |= [α]ψ, since ω was arbitrary with (ν, ω) ∈ ρ(α).

I Let ν |= [α∗](φ→ [α]φ) and ν |= φ. Since ρ(α∗) =
⋃
n∈N ρ(αn), it is enough to show that

ν |= [αn]φ for all n ∈ N. For n = 0, this follows from ν |= φ. Inductively, from ν |= [αn]φ,
we show that ν |= [αn+1]φ. By soundness of [;], it is enough to show ν |= [αn][α]φ. For
any ω with (ν, ω) ∈ ρ(αn), we know ω |= φ and need to show ω |= [α]φ. Yet, we also know
ω |= φ→ [α]φ by ν |= [α∗](φ→ [α]φ), because ρ(αn) ⊆ ρ(α∗).

C Let ν |= [α∗]∀v>0 (ϕ(v)→ 〈α〉ϕ(v − 1)) and ν |= ∃v ϕ(v). First note that v does not occur
in α, hence its value does not change during α∗ and does not affect the runs of α∗. We
show ν |= 〈α∗〉∃v≤0ϕ(v) by a well-founded induction along states ω with (ν, ω) ∈ ρ(α∗)
satisfying ω |= ϕ(v) for some value of v. If ω |= ϕ(v) for a value of v ≤ 0, we have
ω |= ∃v≤0ϕ(v), which implies ν |= 〈α∗〉∃v≤0ϕ(v) by (ν, ω) ∈ ρ(α∗). Otherwise, if ω |= ϕ(v)
for a value of v > 0, then by antecedent, we know ω |= v > 0 ∧ ϕ(v)→ 〈α〉ϕ(v − 1), be-
cause (ν, ω) ∈ ρ(α∗). Thus, ω |= 〈α〉ϕ(v − 1). Thus, there is a ω1 with (ω, ω1) ∈ ρ(α) such
that ω1 |= ϕ(v − 1). The induction is, thus, well-founded, because the value of v decreases
at least by 1, which it can only do finitely often down to the base case v ≤ 0.

B Contrapositively, let ν 6|= [α]∀xφ. Thus, there is a state ω with (ν, ω) ∈ ρ(α) such that ω 6|= ∀xφ,
because ωdx 6|= φ where ωdx is like ω except for the value of x, which is d ∈ R in ωdx. Since
B assumes x not to occur in α, its value does not change during α and does not affect runs
of α. Thus, for the state νdx that is like ν except for the value of x, which is d in νdx, we have
that (νdx, ω

d
x) ∈ ρ(α). Hence, ωdx 6|= φ implies νdx 6|= [α]φ, i.e., ν 6|= ∀x [α]φ.

V Let ν with ν |= φ. Consider any ω with (ν, ω) ∈ ρ(α). Since V assumes α not to bind any
variable that is free in φ, the free variables of φ cannot change their value when passing from
ν to ω, hence ν |= φ iff ω |= φ by Coincidence Lemma 9.

G Rule G is (globally) sound, which we show by induction on the structure of the proof. The
dL axioms (and basic axioms of first-order logic and first-order real arithmetic) are sound,
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∞∑
i=0

ai
2i

= a0.a1a2 . . .

∞∑
i=0

bi
2i

= b0.b1b2 . . .

∞∑
i=0

(
ai

22i−1
+

bi
22i

)
= a0b0.a1b1a2b2 . . .

Figure 7: Fractional encoding principle of R-Gödel encoding by bit interleaving

hence, the proof can only start from valid formulas. Let φ be provable, and let [α]φ result
from φ by application of G. The proof of φ has one step less than that of [α]φ, hence, by
induction hypothesis, the proof of φ is sound, which means that φ is valid (� φ). That is, φ
is true in all states ν, which implies that, in particular, φ is true (ν |= φ) in all states ω for
which (ν, ω) ∈ ρ(α). Thus, [α]φ is valid and its proof sound.

Soundness of the rules and axioms of the first-order Hilbert calculus are as usual. Modus ponens
is obvious and ∀-generalization follows the pattern of G.

Next, we can turn to proving relative completeness.

B.2 Characterizing Real Gödel Encodings
As the central device for constructing a FOD formula that captures the effect of unboundedly many
repetitive hybrid transitions and just uses finitely many real variables, we prove that a real version
of Gödel encoding is definable in FOD. That is, we give a FOD formula that reversibly packs finite
sequences of real values into a single real number. The standard prime power constructions for
natural number pairings do not generalize to the reals, because factorization is not unique.

Observe that a single differential equation system is not sufficient for defining real pairing func-
tions as their solutions are differentiable, and yet, as a consequence of Morayne’s theorem [Mor87],
there is no differentiable surjection R → R2, nor to any part of R2 of positive measure. We show
that real sequences can be encoded nevertheless by chaining the effects of solutions of multiple
(but finitely many!) differential equations and quantifiers.

Lemma 13 (R-Gödel encoding). The formula at(Z, n, j, z), which holds iff Z is a real number
that represents a Gödel encoding of a sequence of n real numbers with real value z at position j
(for 1 ≤ j ≤ m), is definable in FOD. For a formula φ(z) we abbreviate ∃z (at(Z, n, j, z) ∧ φ(z))

by φ(Z
(n)
j ).

Proof. The basic idea of the R-Gödel encoding is to interleave the bits of real numbers as depicted
in Figure 7 (for a pairing of n = 2 numbers a and b). For defining at(Z, n, j, z), we use several
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at(Z, n, j, z) ↔ ∀i :Z digit(z, i) = digit(Z, n(i− 1) + j) ∧ nat(n) ∧ nat(j) ∧ n > 0
digit(a, i) = intpart(2 frac(2i−1a))
intpart(a) = a− frac(a)

frac(a) = z ↔ ∃i :Z z = a− i ∧ −1 < z ∧ z < 1 ∧ az ≥ 0
2i = z ↔ i ≥ 0 ∧ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x ln 2, t′ = 1〉(t = i ∧ x = z))

∨ i < 0 ∧ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = −x ln 2, t′ = −1〉(t = i ∧ x = z))
ln 2 = z ↔ ∃x ∃t (x = 1 ∧ t = 0 ∧ 〈x′ = x, t′ = 1〉(x = 2 ∧ t = z))

Figure 8: FOD definition characterizing Gödel encoding of R-sequences in one real number

auxiliary functions to improve readability; see Figure 8. Note that these definitions need no recur-
sion. Hence, as in the notation φ(Z

(n)
j ), we can consider occurrences of the function symbols as

syntactic abbreviations for quantified variables satisfying the respective definitions.
The function symbol digit(a, i) gives the ith bit of a ∈ R when represented with basis 2. For

i > 0, digit(a, i) yields fractional bits, and, for i ≤ 0, it yields bits of the integer part. For instance,
digit(a, 1) yields the first fractional bit, digit(a, 0) is the least-significant bit of the integer part
of a. The function intpart(a) represents the integer part of a ∈ R. The function frac(a) represents
the fractional part of a ∈ R, which drops all integer bits. The last constraint in its definition
implies that frac(a) keeps the sign of a (or 0). Consequently, intpart(a) and digit(a, i) also keep
the sign of a (or 0). Exponentiation 2i is definable using differential equations, using an auxiliary
characterization of the natural logarithm ln 2. The definition of 2i splits into the case of exponential
growth when i ≥ 0 and a symmetric case of exponential decay when i < 0.

B.3 Expressibility and Rendition of Hybrid Program Semantics

Sxi:=θ(~x,~v) ≡ vi = θ ∧
∧
j 6=i

vj = xj

Sx′=θ(~x,~v) ≡ 〈x′ = θ〉~v = ~x

Sx′=θ&χ(~x,~v) ≡ ∃t
(
t = 0 ∧ 〈x′ = θ, t′ = 1〉

(
~v = ~x ∧ [x′ = −θ, t′ = −1](t ≥ 0→ χ)

))
S?χ(~x,~v) ≡ ~v = ~x ∧ χ
Sβ∪γ(~x,~v) ≡ Sβ(~x,~v) ∨ Sγ(~x,~v)

Sβ; γ(~x,~v) ≡ ∃~z (Sβ(~x, ~z) ∧ Sγ(~z,~v))

Sβ∗(~x,~v) ≡ ∃Z ∃n :N
(
Z

(n)
1 = ~x ∧ Z(n)

n = ~v ∧ ∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))

)
Figure 9: Explicit rendition of hybrid program transition semantics in FOD

In order to show that dL is sufficiently expressive to state the invariants and variants that are
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needed for proving valid statements about loops with axioms I and C, we prove an expressibility
result. We give a constructive proof that the state transition relation of hybrid programs is defin-
able in FOD, i.e., there is a FOD formula Sα(~x,~v) characterizing the state transitions of hybrid
program α from the state characterized by the vector ~x of variables to the state characterized by
vector ~v.

For this, we need to characterize hybrid programs equivalently by differential equations in
FOD. Observe that the existence of such characterizations does not follow from results embedding
Turing machines into differential equations [Bra95,GCB07], because, unlike Turing machines, hy-
brid programs are not restricted to discrete values on a grid (such as Nk) but work with continuous
real values. Furthermore, Turing machines only have repetitions of discrete transitions on discrete
data (e.g., N). For hybrid programs, in contrast, we have to characterize repetitive interactions of
interacting discrete and continuous transitions in continuous space (some Rk).

Lemma 14 (Hybrid program rendition). For every hybrid program α with variables among
~x = x1, . . . , xk, there is a FOD formula Sα(~x,~v) with variables among the 2k distinct variables
~x = x1, . . . , xk and ~v = v1, . . . , vk such that

� Sα(~x,~v)↔ 〈α〉~x = ~v

Proof. By the Coincidence Lemma 9, interpretations of the vectors ~x and ~v completely characterize
the input and output states, respectively, as far as α is concerned. These vectors are finite because α
is finite. Vectorial equalities like ~x = ~v or quantifiers ∃~v are to be understood componentwise. The
program rendition is defined inductively in Figure 9.

The (vectorial) differential equation case x′ = θ (we avoid the notation ~x′ = θ) gives FOD
formulas; no further reduction is needed. Evolution along differential equations with evolution
domain restrictions is definable in terms of differential equations by the soundness of axiom [&].
Formula Sx′=θ&χ(~x,~v) is obtained by duality from the right-hand side of axiom [&]. We add a
clock t to x explicitly. Unlike all other cases, this case in Figure 9 uses nested FOD modalities,
which can be avoided altogether when using the following equivalent FOD formula instead (cf.
Figure 2 on p. 5):

∃t∃r
(
t = 0 ∧ 〈x′ = θ, t′ = 1〉(~v = ~x ∧ r = t)∧

∀~x∀t (~x = ~v ∧ t = r → [x′ = −θ, t′ = −1](t ≥ 0→ χ))
)
.

With a finite formula, the characterization of repetition Sβ∗(~x,~v) in FOD needs to capture
arbitrarily long sequences of intermediate real-valued states and the correct transition between
successive states of such a sequence. To achieve this with first-order quantifiers, we use the real
Gödel encoding from Lemma 13 in Figure 9 to map unbounded sequences of real-valued states
reversibly to a single real number Z, which can be quantified over in first-order logic.

Using the program rendition from Lemma 14 to characterize modalities, we prove that every
dL formula can be expressed equivalently in FOD.

Lemma 15 (dL expressibility). Logic dL is expressible in FOD: for each dL formula φ there is a
FOD formula φ[ that is equivalent, i.e., � φ↔ φ[. The converse holds trivially.
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Proof. The proof follows an induction on the structure of formula φ for which it is imperative to
find an equivalent φ[ in FOD. Observe that the construction of φ[ from φ is effective.

0) If φ is a first-order formula, then φ[ := φ already is a FOD formula such that nothing has to
be shown.

1. If φ is of the form ϕ ∨ ψ, then by the induction hypothesis there are FOD formulas ϕ[, ψ[

such that � ϕ↔ ϕ[ and � ψ ↔ ψ[, from which we can conclude by congruence that

� (ϕ ∨ ψ)↔ (ϕ[ ∨ ψ[)

giving � φ↔ φ[ by choosing ϕ[ ∨ ψ[ for φ[. Similar reasoning addresses the other proposi-
tional connectives or quantifiers by congruence.

2. The case where φ is of the form 〈α〉ψ is a consequence of the characterization of the seman-
tics of hybrid programs in FOD. Expressibility follows from the induction hypothesis using
the equivalence of explicit hybrid program renditions from Lemma 14:

� 〈α〉ψ ↔ ∃~v (Sα(~x,~v) ∧ ψ[~v~x).

3. The case where φ is [α]ψ is again a consequence of Lemma 14:

� [α]ψ ↔ ∀~v (Sα(~x,~v)→ ψ[
~v

~x)

Observe that the construction of φ[ out of φ is effective.

B.4 First-Order Continuous Relative Completeness
As special cases of Theorem 1, we first prove relative completeness for first-order assertions about
hybrid programs. These first-order cases constitute the basis for the general completeness proof
for arbitrary formulas of dL. We use the notation `D φ to indicate that a dL formula φ is derivable
in the dL calculus (Figure 1) from FOD tautologies. The following formula derives7 from K by
duality

(K〈〉) [α](φ→ ψ)→ (〈α〉φ→ 〈α〉ψ)

Proposition 16 (Relative completeness of first-order safety). For every hybrid program α and all
FOD formulas F,G

� F → [α]G implies `D F → [α]G.

7 [α](¬ψ → ¬φ)→ ([α]¬ψ → [α]¬φ) by K. Thus, propositionally, [α](¬ψ → ¬φ)→ (¬[α]¬φ→ ¬[α]¬ψ). By
duality 〈α〉φ ≡ ¬[α]¬φ, this is [α](¬ψ → ¬φ)→ (〈α〉φ→ 〈α〉ψ). Thus, [α](φ→ ψ)→ (〈α〉φ→ 〈α〉ψ) derives as
follows. From the propositional tautology (φ→ ψ)→ (¬ψ → ¬φ) we derive [α]((φ→ ψ)→ (¬ψ → ¬φ)) with G,
from which K derives [α](φ→ ψ)→ [α](¬ψ → ¬φ), from which propositional reasoning yields the result.

28



Proof. We generalize the relative completeness proof by Cook [Coo78] and Harel et al. [HMP77]
to dL and follow an induction on the structure of program α. In the following, IH is short for the
induction hypothesis.

1. The cases where α is of the form x := θ, ?χ, β ∪ γ, or β; γ are consequences of the soundness
of the equivalence rules [;],[∪],[?],[:=]. Whenever their respective left-hand side is valid,
their right-hand side is valid and of smaller complexity (the programs get simpler), and
hence derivable by IH. Thus, we can derive F → [α]G by applying the respective rule. We
explicitly show the proof for β; γ as it contains an extra twist.

2. � F → [β; γ]G, which implies � F → [β][γ]G. By Lemma 15, there is a FOD formula G[

such that � G[ ↔ [γ]G. From that validity we conclude by IH that `D F → [β]G[ is deriv-
able. Similarly, due to � G[ → [γ]G, we conclude `D G[ → [γ]G by IH. Extending the
latter by G, we derive `D [β](G[ → [γ]G). Thus, K derives `D [β]G[ → [β][γ]G. Combin-
ing the above derivations propositionally (cut with [β]G[), we derive `D F → [β][γ]G, from
which [;] derives `D F → [β; γ]G.

3. � F → [x′ = θ]G is a FOD formula and hence provable by assumption.

4. � F → [x′ = θ&χ]G, then this formula is, by axiom [&], provably equivalent to a formula
without evolution domain restrictions. This is definable in FOD by Lemma 14, which we use
as an abbreviation in FOD. Later, in the proof of Theorem 1, axiom [&] also directly gives
a provably equivalent but structurally simpler formula, which is, thus, provable by induction
hypothesis. That part is like the case for [&] in the proof of Theorem 8.

5. � F → [β∗]G can be derived by induction as follows. Formula [β∗]G, which expresses that
all post-states of β∗ satisfy G, is an invariant of β∗ by ind, because [β∗]G→ [β][β∗]G is
valid, even provable by [∗n]. Thus, its equivalent FOD encoding according to Lemma 15 is
an invariant:

φ ≡ ([β∗]G)[ ≡ ∀~v (Sβ∗(~x,~v)→ G~v
~x).

F → φ and φ→ G are valid FOD formulas, hence derivable by assumption. By G the latter
derivation extends to `D [β∗](φ→ G), from which K derives `D [β∗]φ→ [β∗]G. As above,
φ→ [β]φ is valid by the semantics of repetition, and thus derivable by IH, since β is less
complex. Thus, G derives `D [β∗](φ→ [β]φ), from which I derives `D φ→ [β∗]φ. The
above derivations combine propositionally (cut with [β∗]φ and φ) to `D F → [β∗]G.

Proposition 17 (Relative completeness of first-order liveness). For each hybrid program α and all
FOD formulas F,G

� F → 〈α〉G implies `D F → 〈α〉G.

Proof. Most cases of this proof follow directly from the equivalence axioms used in Proposition 16,
just by the duality 〈α〉G ≡ ¬[α]¬G. What is different is that axiom I for repetitions is no equiva-
lence, and thus, does not give dual arguments. We generalize the arithmetic completeness proof by
Harel [HMP77] to the hybrid case. Assume that � F → 〈β∗〉G. To derive this formula by C, we
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use a FOD formula ϕ(n) as a variant expressing that, after n iterations, β can lead to a state sat-
isfying G. This formula is obtained from Lemmas 14 and 15 as (〈β∗〉G)[ ≡ ∃~v (Sβ∗(~x,~v) ∧G~v

~x),
except that the quantifier on the repetition count n is removed such that n becomes a free variable
(plus index shifting to count repetitions). We define ϕ(n− 1) to be

∃~v ∃Z
(
G~v
~x ∧ Z

(n)
1 = ~x ∧ Z(n)

n = ~v

∧ ∀i :N (1 ≤ i < n→ Sβ(Z
(n)
i , Z

(n)
i+1))

)
.

By Lemma 13,ϕ(n) can only hold true if n is a natural number. Now � ϕ(n) ∧ n > 0→ 〈β〉ϕ(n− 1)
is valid by construction according to the loop semantics: If n > 0 is a natural number then so
is n− 1, and if β can reach G after n repetitions, then, after executing β once, n− 1 repetitions
of β can reach G. By IH, this formula is derivable, since β contains less loops. From this, ∀-
generalization and G derive `D [β∗]∀n>0 (ϕ(n)→ 〈β〉ϕ(n− 1)). Thus, C derives

`D ∀v (ϕ(v)→ 〈β∗〉∃v≤0ϕ(v))

Standard first-order reasoning extends the latter to `D ∃v ϕ(v)→ 〈β∗〉∃v≤0ϕ(v). It only remains
to show that the antecedent is derivable from F and 〈β∗〉G is derivable from the succedent. The
following formulas are valid FOD formulas, hence derivable by assumption:

• � F → ∃v ϕ(v), because � F → 〈β∗〉G, and

• � (∃v≤0ϕ(v))→ G, because v ≤ 0, and the fact, that by Lemma 13, ϕ(v) only holds true
for natural numbers, imply ϕ(0). Further, ϕ(0) entails G, because zero repetitions of β have
no effect.

By G, the latter extends to `D [β∗](∃v≤0ϕ(v)→ G). From this, the dual (K〈〉) of K directly
derives `D 〈β∗〉∃v≤0ϕ(v)→ 〈β∗〉G. The above derivations combine propositionally to

`D F → 〈β∗〉G

(by a cut with 〈β∗〉∃v≤0ϕ(v) and with ∃v ϕ(v)).

B.5 Continuous Relative Completeness of dL
Having succeeded with the proofs of the above results we can finish the proof of Theorem 1.

Proof of Theorem 1. The proof follows a basic structure analogous to that of Harel et al.’s proof
for the discrete case [HMP77]. We have to show that every valid dL formula φ can be proven from
FOD axioms within the dL calculus: from � φ we have to prove `D φ. The proof proceeds as
follows: By propositional recombination, we inductively identify fragments of φ that correspond
to φ1 → [α]φ2 or φ1 → 〈α〉φ2 logically. Next, we express subformulas φi equivalently in FOD by
Lemma 15, and use Propositions 16 and 17 to resolve these first-order safety or liveness assertions.
Finally, we prove that the original dL formula can be re-derived from the subproofs in the dL
calculus.
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We can assume φ to be given in conjunctive normal form by appropriate propositional rea-
soning. In particular, we assume that negations are pushed inside over modalities using the du-
alities ¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ. The remainder of the proof follows an induction on
a measure |φ| defined as the number of modalities in φ. For a simple and uniform proof, we
assume quantifiers to be abbreviations for modal formulas: ∃xφ ≡ 〈x′ = 1〉φ ∨ 〈x′ = −1〉φ and
∀xφ ≡ [x′ = 1]φ ∧ [x′ = −1]φ.

0) |φ| = 0; then φ is a (quantifier-free) first-order formula; hence provable by assumption (even
decidable [Tar51]).

1. φ is of the form ¬φ1; then φ1 is first-order, as we assumed negations to be pushed inside.
Hence, |φ| = 0 and Case 0 applies.

2. φ is of the form φ1 ∧ φ2, then individually deduce simpler proofs for `D φ1 and `D φ2 by
IH, which combine propositionally to a proof for `D φ1 ∧ φ2.

3. φ is a disjunction and—without loss of generality—has one of the following forms (other-
wise use associativity and commutativity to select a different order for the disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2

As a unified notation for those cases we use φ1 ∨ 〈[α]〉φ2. Then, |φ2| < |φ|, since φ2 has less
modalities. Likewise, |φ1| < |φ| because 〈[α]〉φ2 contributes one modality to |φ| that is not
part of φ1.

According to Lemma 15 there are FOD formulas φ[1, φ
[
2 with � φi ↔ φ[i for i = 1, 2. By

congruence, the validity � φ yields � φ[1 ∨ 〈[α]〉φ[2, which directly implies � ¬φ[1 → 〈[α]〉φ[2.
Then by Propositions 16 or 17, respectively, we derive

`D ¬φ[1 → 〈[α]〉φ[2. (6)

Further � φ1 ↔ φ[1 implies � ¬φ1 → ¬φ[1, which is derivable by IH, because |φ1| < |φ|. We
combine `D ¬φ1 → ¬φ[1 with (6) (cut with ¬φ[1) to

`D ¬φ1 → 〈[α]〉φ[2. (7)

Likewise � φ2 ↔ φ[2 implies � φ[2 → φ2, which is derivable by IH, as |φ2| < |φ|. From
`D φ[2 → φ2 we derive `D [α](φ[2 → φ2) by G. Thus, by K or the dual (K〈〉) of K, we derive8

`D 〈[α]〉φ[2 → 〈[α]〉φ2. Finally we combine the latter derivation propositionally with (7) by
a cut with 〈[α]〉φ[2 to derive `D ¬φ1 → 〈[α]〉φ2, from which `D φ1 ∨ 〈[α]〉φ2 can be obtained
propositionally to complete the proof.

4. The case where φ is of the form [α]φ2 or 〈α〉φ2 is included in case 3 with φ1 ≡ false.

This completes the proof of Theorem 1.

8 We consider quantifiers as abbreviations. Otherwise, we would use a derivable variant of Hilbert’s ∀-
generalization rule: From φ→ ψ conclude ∀xφ→ ∀xψ (dually conclude ∃xφ→ ∃xψ).
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