
Refinement Types for Logical Frameworks

William Lovas

CMU-CS-10-138

September 2010

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Frank Pfenning, Chair

Karl Crary
Robert Harper

Adriana Compagnoni (Stevens)
Carsten Schürmann (ITU Copenhagen)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2010 William Lovas

This research was sponsored by the National Science Foundation under grant CCR-0121633, by the
Fundação para a Ciência e Tecnologia (FCT), Portugal, under a grant from the Information and Com-
munications Technology Institute (ICTI) at Carnegie Mellon University, and by generous support from
Microsoft Corporation. The views and conclusions contained in this document are those of the author,
and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government, or any other entity.

Keywords: refinement types, logical frameworks, subtyping, intersection types,
dependent types

For laughter, for tears, for madness, for fears.

iv

Abstract

The logical framework LF and its metalogic Twelf can be used to encode
and reason about a wide variety of logics, languages, and other deductive
systems in a formal, machine-checkable way.

Recent studies have shown that ML-like languages can profitably be ex-
tended with a notion of subtyping called refinement types. A refinement type
discipline uses an extra layer of term classification above the usual type
system to more accurately capture certain properties of terms.

I propose that adding refinement types to LF is both useful and practical.
To support the claim, I exhibit an extension of LF with refinement types
called LFR, work out important details of its metatheory, delineate a practical
algorithm for refinement type reconstruction, and present several case studies
that highlight the utility of refinement types for formalized mathematics. In
the end I find that refinement types and LF are a match made in heaven:
refinements enable many rich new modes of expression, and the simplicity
of LF ensures that they come at a modest cost.

vi

Acknowledgments

Thanks to everybody.
Perhaps that bears further refinement. But everybody comes first, since I can’t

possibly fit everyone worth thanking onto one page, and even if I could, I would
surely miss a few despite my best efforts to the contrary.

What goes into a thesis? Having given the matter some thought, I think it comes
down to the 4 S’s: support, space, sustenance, and a spark.

First, support. Thanks to my advisor, Frank Pfenning, for constantly believing
I had what it takes, even when I wasn’t sure. Thanks to my committee—Karl
Crary, Bob Harper, Adriana Compagnoni, and Carsten Schürmann—for sharing
their valuable and limited time and attention, not to mention for the formative impact
their guidance has had on my research. Thanks to Jake Donham for encouraging me
to stick it out, even when he moved on to other endeavors himself. Thanks to Dan
Licata for his assistance reconstructing all of the “known” but unpublished results
about canonical forms. Thanks to Jason Reed for his uncanny ability to help me out
of a research rut. Thanks to Chris Martens for teaching me how to wake up in the
morning. Thanks to so many of my colleagues for so many inspiring conversations
about so many mathematical curiosities over so many tasty beverages. Thanks to
Tom Murphy VII, officemate and role model. Thanks to Rob Simmons, purveyor
of boundless enthusiasm. Thanks to Dan Spoonhower for apt advice on writing a
thesis. Thanks to Donna Malayeri for apt advice on writing the acknowledgments.
Thanks to Benjamin Pierce for first showing me that subtyping was cool. Thanks
to my parents for always being there for me, constantly providing the kind of
encouraging praise that can only come from parents without sounding insincere.

Next, space. One occasionally requires a change of scenery, and I owe a debt
of gratitude to a number of NYC cafes that served as my “office away from the
office” on occasion, including Society Coffee in Harlem, the Roasting Plant in the
West Village, and Kaffe 1668 in TriBeCa. Honorable mentions go to Dominican Joe
in Austin, where I produced most of the original material that became the first three
chapters, and Jitters right here in Pittsburgh for a chill environment close to home.
Major thanks are in order as well to the New York Public Library, Battery Park City
Branch, which provided an excellent and reliable workspace for a critical week in
which in which much of the content of the later chapters was written. Go libraries!

Sustenance. I would like to personally thank all of the following foods and
food groups for their invaluable contributions to my health and well-being during
the most crucial binge period of thesis-writing: fruit, nuts, cheese, peanut butter,
hummus, edamame, coffee, and tea. Oh, and tomatoes! Eaten as if they were apples!

But back to the coffee and tea for a moment, which brings me to my last point: a
spark. A spark of inspiration, a spark of creativity... a spark of liquid sleep after a
night without the real thing. And thus I thank coffee, possibly the greatest beverage
known to man. Particular thanks are in order for Tazza D’Oro’s CMU/GHC branch
for providing some of the tastiest cups I’ve ever had, served by the friendliest and
most uplifting staff I could imagine—many a work day was rescued by their verve.

Mostly, though, thanks to everybody.

viii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Properties as Sorts . 4
1.3 Contributions . 5

2 System and Examples 9
2.1 Example: Natural Numbers . 10
2.2 Adequacy . 15
2.3 Example: the Call-By-Value λ-Calculus . 18
2.4 Example: Normal Natural Deductions . 21
2.5 All Properties as Sorts? . 24
2.6 Summary . 26

3 Metatheory 27
3.1 Hereditary Substitution . 27
3.2 Decidability . 30
3.3 Identity and Substitution Principles . 33

3.3.1 Substitution . 34
3.3.2 Identity . 39

3.4 Subsorting at Higher Sorts . 40
3.5 Summary . 47

4 Subset Interpretation 49
4.1 Proof Irrelevance . 50
4.2 Overview of the Interpretation . 52
4.3 Dependent Base Sorts . 56
4.4 Subsorting . 61
4.5 Correctness . 63
4.6 Summary . 66

5 Sort Reconstruction 69
5.1 Overview . 70
5.2 Top-level Signature Reconstruction . 73
5.3 Preliminaries . 74

ix

5.3.1 Spine Form LFR . 74

5.3.2 Type Reconstruction . 79

5.3.3 Sort Variables . 84

5.4 Decidability in Principle by Enumeration 86

5.4.1 Finiteness of Refinements . 87

5.4.2 Impractical Sort Reconstruction Algorithm 89

5.5 Practical Sort Reconstruction . 90

5.5.1 Constraint Generation . 92

5.5.2 Solving the Constraints . 99

5.5.3 Practical Sort Reconstruction Algorithm 110

5.6 Summary . 112

6 Case Studies 113

6.1 Programming Languages . 113

6.1.1 Fragments of Polymorphism . 113

6.1.2 Values and Computations . 115

6.1.3 Other Evaluation Strategies . 117

6.1.4 Weak Head Normal Types in Higher-Order Subtyping 121

6.1.5 Singleton Kind Elimination . 122

6.1.6 The λ-Cube . 125

6.2 Proof Theory . 130

6.2.1 Cut-free Sequent Calculi . 131

6.2.2 Normal Natural Deductions . 132

6.2.3 Intuitionistic and Classical Proofs 134

6.2.4 General Eliminations and the Uniform Calculus 136

6.3 Omphaloskepsis . 138

6.3.1 Normalized Sorts . 139

6.3.2 Prenex DNF Constraints . 140

6.3.3 Subsorting Derivations . 142

6.3.4 Coloring Hypotheses . 145

6.4 Summary . 147

7 Future Work and Conclusions 149

7.1 Future Work . 150

A Complete LFR Rules 153

A.1 Grammar . 153

A.2 Expansion and Substitution . 154

A.3 Kinding . 155

A.4 Typing . 156

A.5 Signatures and Contexts . 157

x

B Full Proofs of Basic Metatheory 159
B.1 Lemma 3.13 (Composition of Substitutions) 159
B.2 Theorem 3.15 (Proto-Substitution, terms) 164
B.3 Lemma 3.21 (Commutativity of Substitution and η-expansion) 169
B.4 Theorem 3.22 (Expansion) . 173
B.5 Theorem 3.30 (Generalized Algorithmic⇒ Declarative) 174
B.6 Lemma 3.34 . 176
B.7 Theorem 3.38 (Generalized Intrinsic⇒ Algorithmic) 177

C Complete Subset Interpretation Rules 181
C.1 Kinding . 181
C.2 Typing . 183
C.3 Signatures and Contexts . 184

Bibliography 185

xi

xii

List of Figures

2.1 Typing in canonical LF, and sorting in LFR. 13
2.2 The refinement relation, well-formedness for sort families. 15
2.3 Two ways of specifying the evaluation judgment. 20
2.4 Natural deductions and normal/neutral natural deductions. 22

3.1 Judgments defining hereditary substitution. 28
3.2 Derived rules for subsorting at higher sorts. 41
3.3 Algorithmic subsorting. 43
3.4 Useful rules derivable from those in Figure 3.2. 44

4.1 Judgments of the translation. 53
4.2 Translation rules for atomic term sort synthesis 56
4.3 Translation rules for base sort class synthesis 60

5.1 Signature reconstruction. 73
5.2 The main judgments of LFR in spine form. 76
5.3 Weak refinement for sorts. 80
5.4 Type reconstruction of LFR sorts. 81
5.5 Spine and term consistency. 83
5.6 Filling of sort variables. 85
5.7 Estimated and actual number of refinements of various types. 89
5.8 Constraint generation. 93
5.9 Functional algorithm for generating constraints. 96
5.10 Overlapping constraints in tension. 103
5.11 Non-overlapping constraints in tension. 103
5.12 Base sort least upper bounds and least refinements. 105

6.1 Kind equivalence in the singleton calculus. 123
6.2 The λ-cube . 125
6.3 Natural deduction with general eliminations 136
6.4 “Declarative” formulation of base subsorting 142
6.5 “Early” formulation of base subsorting . 143
6.6 “Late” formulation of base subsorting . 144

xiii

xiv

Chapter 1

Introduction

Thesis. Refinement types are a useful and practical extension to the LF logical
framework.

The logical framework LF [HHP93] and its metalogic Twelf [PS99] can be used
to encode and reason about a wide variety of logics, languages, and other deductive
systems in a formal, machine-checkable way. Deductive systems are represented using
the judgments as types principle: the deductive system’s judgments are represented as LF
types, and derivations of evident judgments are represented as LF terms of those types.

Recent studies have shown that ML-like languages can profitably be extended with
a notion of subtyping called refinement types [Fre94, Dav05, Dun07]. A refinement type
discipline uses an extra layer of term classification above the usual type system to more
accurately capture certain properties of terms. Refinements, also known as sorts, are
usually only checked after ordinary typechecking succeeds, resulting in a system that
admits no more terms as well-typed but one that classifies more precisely the terms that
do typecheck—including the possibility of ruling some out as ill-sorted.

In this work, I show that such a refinement type system can also profitably be added
to LF. Under LF’s “judgments as types” representation methodology, refinement types
represent more precise judgments than those represented by ordinary types, with sub-
typing between refinements acting as a kind of judgmental inclusion. Things previously
tricky to encode in LF, like syntactic subset relations between terms of an object lan-
guage, become trivial to encode with the availability of refinement types. Furthermore,
refinement types come at a modest cost: they do not overly complicate the metatheory
of LF, and practical algorithms exist for things like sort checking and reconstruction.

To demonstrate that adding refinement types to LF is both useful and practical, I
exhibit an extension of LF with refinement types called LFR, work out important details
of its metatheory, and present several example signatures that highlight the utility of
refinement types for formalized mathematics. In the remainder of this chapter, I give
some further background, describe my approach in more detail, and outline a roadmap
for the rest of the dissertation.

1

1.1 Background

LF is a dependent type theory that was created as a framework for defining log-
ics [HHP93]. Early examples of logics whose syntax and proof theory could elegantly
be represented included first-order and higher-order arithmetic. LF was also recog-
nized early on as an excellent representation language for programming language cal-
culi [MP91], largely due to its support for higher-order abstract syntax, a technique
inspired by Church [Chu40] in which object-language variable binding is encoded using
the framework’s variable binding.

It was later realized that the same framework was also suitable for specifying the
metatheoretic properties of encoded deductive systems and proofs of those proper-
ties [Pfe00, Pfe92] (see Pfenning’s Handbook of Automated Reasoning article [Pfe01b] for an
overview), and furthermore that these proofs could be mechanically checked by verify-
ing that they represented total relations. These ideas culminated in the implementation
of the Twelf metalogical framework [PS99], which has been used in recent years to
mechanize the metatheory of programming languages that are prohibitively complex to
reason about on paper [Cra03, LCH07].

The key principle in LF’s methodology of representation is the judgments as types
principle: judgments about syntactic entities are represented as dependent type families,
and derivations of evident judgments are simply inhabitants of those type families. The
syntax of a deductive system can be thought of as a series of trivial, nullary judgments
(i.e., “there is a natural number”, “an expression exists”), and thus represented as a
collection of simple types populated by constructors representing the various syntactic
productions.

For example, suppose we wanted to model the natural numbers in LF. In ordinary
mathematical discourse, we might define them using a grammar:

n ::= Z | S[n] natural numbers

In LF, we introduce a type for the natural numbers and populate it with constructors for
zero and successor:

nat : type.
z : nat.
s : nat→ nat.

Suppose we wanted to define a judgment representing addition, n1 + n2 = n3. In LF, we
would model it with a three-place type family:

plus : nat→ nat→ nat→ type.

We would then give rules inhabiting plus N1 N2 N3 for various values of N1, N2, and N3.
Since judgments are represented by type families in the LF type theory, it is natural

to consider what other forms of judgments one might be able to naturally encode with a
richer type structure. For example, the linear logical framework LLF [CP96, Cer96, CP02]
provides elegant representations of ephemeral, stateful judgments as linear hypotheses,
and the concurrent logical framework CLF [WCPW02, WCPW04] introduces a monad

2

to represent concurrent computations. In this work, we consider the implications of
augmenting LF with a notion of subtyping and intersection types known as refinement
types.

Refinement type systems are so called because they introduce an extra layer of
classification above the normal “type” layer, a “refinement” layer. Each refinement
type, or sort, refines an ordinary type, and we only consider the question of whether
or not a term has a particular sort S if we have already established that it has the type
that S refines. This refinement restriction lets us populate the refinement layer with a
variety of interesting type-theoretic machinery, like subtyping and intersection types,
without their complexity infecting the metatheory of the system as a whole: the type
layer remains untouched. Furthermore, the refinement restriction ensures that even the
sort layer is amenable to analysis by imposing on it the structure of the type layer: it is
impossible, for example, to form pathological intersections like P ∧ (P → P) for some
base type P.

This is not the first work to consider the idea of augmenting a dependently-typed log-
ical framework with a form of subtyping. Even as early as deBruijn’s Automath [dB94b],
the historical progenitor to LF, people considered the idea of adding “inheritance” to a
proof assistant to avoid repetition and redundancy in the formalization of mathematical
ideas: Knuth had one such idea [personal communication], and deBruijn’s MV [dB94a]
was based around a notion of subtyping. More recent works have focused more closely
on the interactions that arise when subtyping is added to a dependent type theory.

Aspinall and Compagnoni [AC01] studied a type theory λP≤ with both dependent
types and subtyping, with much the same motivation as mine, but they treated sub-
typing directly rather than introducing a refinement layer. Their chief difficulty was
breaking the cycle that arises between subtyping, kinding, and typing in order to show
decidability. Aspinall [Asp00] has also studied an unconventional system of subtyping
with dependent types using “power types”, a type-theoretic analogue of power sets.
Aspinall’s system λPower has uniform “subtyping” at all levels since power “types” can
in fact classify type families; although the system remains predicative, this generaliza-
tion complicates the system’s metatheory. Both λP≤ and λPower treat subtyping directly
rather than introducing a refinement layer, but neither treats intersection types at all.

More directly related, Pfenning [Pfe93] attempted to extend LF with refinement types
in a manner superficially similar to what I consider in this work. The essential novelty
of this work comes from its use of the modern canonical forms-based approach to LF,
which enables considerably further development than the earlier work. The early stages
of this work can be seen as a reconstruction and reformulation of Pfenning’s ideas,
with a focus on canonical forms, decidability, and good proof-theoretic properties. The
later stages are entirely novel, and were in large part made feasible due to the early
simplifications that came from using the modern technology of canonical forms and
hereditary substitutions.

The modern canonical forms-based approach to the development of logical frame-
works is due to Watkins, who first used it in the development of CLF [WCPW02].
Canonical forms are β-normal and η-long, and in a canonical forms-based system, they
are the only terms that are admitted as well-formed. Since standard substitution might

3

introduce redexes even when substituting a normal term into a normal term, it is re-
placed with a notion of hereditary substitution that contracts redexes along the way,
yielding another normal term. Since only canonical forms are admitted, type equality is
just α-equivalence, and typechecking is manifestly decidable.

Canonical forms are exactly the terms one cares about when adequately encoding a
language in a logical framework, so this approach loses no expressivity. Since all terms
are normal, there is no notion of reduction, and thus the metatheory need not directly
treat properties related to reduction, such as subject reduction, Church-Rosser, or strong
normalization. All of the metatheoretic arguments can be carried out as elementary
structural inductions.

The canonical forms methodology is similar to the method of specifying a type the-
ory via a typed operational semantics [Gog94, Gog95], a methodology which has been
used to tame the metatheory of several type theories, including a calculus of higher-
order subtyping [CG03]. Both methodologies are based around the idea of captur-
ing normalization via an induction over types, an idea central Pfenning’s structural
proofs of cut elimination [Pfe00] and to Joachimski and Matthes’s “short ” normaliza-
tion proofs [JM03].

1.2 Properties as Sorts

If the methodology of LF is “judgments as types”, what is the methodology of LFR? To
draw out the answer, we continue with our example from above, the natural numbers.
An interesting property of the natural numbers is that they have a notion of parity: some
natural numbers are even and some are odd. We can capture parity succinctly with a
grammar:

e ::= Z | S[o] even numbers

o ::= S[e] odd numbers

To formally model the property of a number being even or odd, we can introduce two
refinements of the natural numbers, one for evens and one for odds, and we can give the
constructors z and s sorts to describe their properties.

even ⊏ nat.
odd ⊏ nat.
z :: even.
s :: even→ odd ∧ odd→ even.

Thus the methodology of LFR is properties as sorts: interesting properties of formal objects
can be represented intrinsically as refinements of the types of those objects.

Recall that the judgment of addition is represented in LF by a three-place type family,
plus N1 N2 N3. Using refinements, we can also express the parity properties of addition:
two even numbers add up to an even number, an even number and an odd number add
up to an odd number, and so on. We can use a notation like the following to capture
these properties:

4

plus :: even→ even→ even→ type

∧ even→ odd→ odd→ type

∧ odd→ even→ odd→ type

∧ odd→ odd→ even→ type.

We can also capture properties of derivations using refinements, like for instance the
property of not using a particular rule or set of rules. In this way we can isolate cut-free
derivations in a sequent calculus, or model a logic whose rules are a subset of those of
another logic. In fact, since derivations are just LF terms of certain types, we can capture
complex properties involving being constructed in a particular way, just like we did
above with the natural numbers, but now at the level of derivations.

For instance, given an encoding of the implicational fragment of natural deduction
using a “true” judgment,

true : o→ type.
⊃I : (true A→ true B)→ true (A ⊃ B).
⊃E : true (A ⊃ B)→ true A→ true B.

we can pick out normal natural deductions as a refinement using a well-known tech-
nique of pushing all of the introduction rules to the root of the derivation and all of
the eliminations towards the leaves with the help of the auxiliary notion of a neutral
natural deduction. The fact that neutral deductions are included in normal deductions
is modeled by a subsorting declaration, neutral ≤ normal.

normal ⊏ true.
neutral ⊏ true.

neutral ≤ normal.

⊃I :: (neutral A→ normal B)→ normal (A ⊃ B).
⊃E :: neutral (A ⊃ B)→ normal A→ neutral B.

We will return to both of these examples in more depth below in Chapter 2. As this
short preview demonstrates, refinements can succinctly model a variety of interesting
properties of syntactic elements, judgment forms, and derivations of evident judgments.

1.3 Contributions

To demonstrate the thesis that refinement types for LF are both useful and practical, I
make a number of concrete contributions.

First, I present the type theoretic core of LF with refinement types in Chapter 2.
The presentation is guided by several small motivating examples, and along the way,
I refine and explore the LFR representation methodology of properties as sorts. While
the examples begin to suggest the utility of refinement types, they primarily serve to
motivate the design of the type theory, which has its foundations in canonical forms,
hereditary substitution, and bidirectional typing. An interesting feature which emerges

5

from the canonical forms-based presentation is that the subsorting judgment is only
needed at base sorts.

The system I present has all of the important metatheoretic properties we demand of
a logical framework, like identity and substitution principles witnessing the reflexivity
and transitivity of entailment, which I prove in Chapter 3. Using these properties, we
can show that although subsorting is only defined at base sorts, the usual expected
principles of subsorting at higher sorts are derived as inclusions of canonical forms,
thereby yielding the happy situation of being permitted to use higher-sorted reasoning
principles without having to account for them directly in the metatheory. All of the
metatheoretic arguments are elementary inductions, suggesting that refinement types
are a quite practical addition to LF.

After exploring the metatheory of LFR, I take a slight diversion in Chapter 4 to
explore its meaning by showing how to soundly and completely translate it into LF
with proof irrelevance, a translation known as the subset interpretation: sorts turn into
predicates, and sorting derivations turn into proofs of those predicates. Although sound
and complete, the translation turns out to be quite complicated, further demonstrating
the practicality of refinement types through the balance between their expressive power
and their complexity.

No one could seriously argue for the practicality of a logical framework without
showing that it admits some form of type reconstruction. Encoding deductive systems
entirely in the core type theory of LF would involve too much burdensome redundancy
to offer the practitioner any real benefit, but type reconstruction alleviates much of the
burden, making LF a practical tool for representing one’s ideas. Similarly, encoding
deductive systems entirely in the core type theory of LFR is too burdensome to offer any
benefit; in fact, the problem is further exacerbated by the apparently greater expressivity
offered by refinements: a user may be forced to write down many redundant copies of
rules if a judgment can take on many forms.

So to really argue for the practicality of LFR, I outline in Chapter 5 an algorithm
for sort reconstruction: given a signature in a concrete syntax similar to that of Twelf,
my algorithm computes a most general signature in the fully explicit core type theory
of LFR. Although this problem turns out to be decidable in principle, it is in general
computationally infeasible, so the main thrust of the work is delineating an algorithm
that is incomplete by design, but that works well on the kinds of examples we expect to
arise in practice.

Then, to bolster the claim of utility, I embark on a number of larger case studies in
Chapter 6, showing how the framework, methodology, and algorithms I envision would
work in practice. For each case study, I compare the LFR code to the LF code one would
have to write to replicate its functionality. In all cases, I show that the LFR encoding
is significantly simpler than the corresponding LF encoding, demonstrating that the
extensions offered by LFR are actually useful in practice. The case studies represent a
realistic sampling of representational challenges that have come up either in my own
work or in the work of my colleagues.

I hope to convince the reader by the end of this dissertation that my extensions to LF
are both useful and practical, demonstrating my thesis. But as with any large undertak-

6

ing, the work does not end here, so in concluding in Chapter 7, I suggest a number of
directions for future work, including a stronger focus on porting the metalogical features
of Twelf to the refinement technology of LFR. Someday in the near future, I hope to
realize these ideas as a practical extension of Twelf, one that allows more concise and
expressive representations of deductive systems and proofs of their properties.

7

8

Chapter 2

System and Examples

We present our system of LF with Refinements, LFR, through several examples. In what
follows, R refers to atomic terms and N to normal terms. Our atomic and normal terms
are exactly the terms from canonical presentations of LF.

R ::= c | x | R N atomic terms

N,M ::= R | λx.N normal terms

In this style of presentation, typing is defined bidirectionally by two judgments: R⇒ A,
which says atomic term R synthesizes type A, and N ⇐ A, which says normal term N
checks against type A. Since λ-abstractions are always checked against a given type, they
need not be decorated with their domain types.

Types are similarly stratified into atomic and normal types.

P ::= a | P N atomic type families

A,B ::= P | Πx:A.B normal type families

The operation of hereditary substitution, written [N/x]
A

, is a partial function which
computes the normal form of the standard capture-avoiding substitution of N for x. It
is indexed by the putative type of x, A, to ensure termination, but neither the variable
x nor the substituted term N are required to bear any relation to this type index for the
operation to be defined. Later, in Chapter 3, we will show that when N and x do have
type A, hereditary substitution is a total function on well-formed terms.

As a philosophical aside, we note that restricting our attention to normal terms in
this way is similar to the idea of restricting one’s attention to cut-free proofs in a sequent
calculus [Pfe00]. Showing that hereditary substitution can always compute a canonical
form is analogous to showing the cut rule admissible. And just as cut admissibility may
be used to prove a cut elimination theorem, hereditary substitution may be used to prove
a normalization theorem relating the canonical approach to traditional formulations. We
will not explore the relationship any further in the present work: the canonical terms are
the only ones we care about when formalizing deductive systems in a logical framework,
so we simply take the canonical presentation as primary.

9

Our layer of refinements uses metavariables Q for atomic sorts and S for normal
sorts. These mirror the definition of types above, except for the addition of intersection
and “top” sorts.

Q ::= s | Q N atomic sort families

S,T ::= Q | Πx::S⊏A.T | ⊤ | S1 ∧ S2 normal sort families

Sorts are related to types by a refinement relation, S ⊏ A (“S refines A”), discussed
below. We only sort-check well-typed terms, and a term of type A can be assigned a
sort S only when S ⊏ A. These constraints are collectively referred to as the “refinement
restriction”. We occasionally omit the “⊏ A” from function sorts when it is clear from
context.

We will make reference to the refinement restriction frequently, as it is a cornerstone
of our approach and often enables dramatic simplifications. It is useful to keep in mind
that one reason the refinement restriction works is that our language of terms (normal
and atomic) remains exactly the same as that of “unrefined” LF. This reuse is made
possible by the decision not to label abstractions λx.N, neither by types nor by sorts, a
simplification which is in turn enabled by the bidirectional typing discipline that comes
with the canonical forms approach.

Recall that deductive systems are encoded in LF using the judgments as types princi-
ple [HHP93, HL07]: syntactic categories are represented by simple types, and judgments
over syntax are represented by dependent type families. Derivations of judgments are
inhabitants of those type families, and well-formed derivations correspond to well-
typed LF terms. An LF signature is a collection of kinding declarations a : K and typing
declarations c : A that establishes a set of syntactic categories, a set of judgments, and
inhabitants of both. In LFR, we can represent syntactic subsets or sets of derivations that
have certain properties using sorts. Thus we say that the methodology of LFR is properties
as sorts.

2.1 Example: Natural Numbers

For the first running example we will return to the natural numbers in unary notation.
Recall that in LF, they would be specified as follows:

nat : type.
z : nat.
s : nat→ nat.

These declarations establish a syntactic category of natural numbers populated by two
constructors, a constant constructor representing zero and a unary constructor repre-
senting the successor function.

Suppose we would like to distinguish the odd and the even numbers as refinements
of the type of all numbers.

10

even ⊏ nat.
odd ⊏ nat.

The form of the declaration is s ⊏ a where a is a type family already declared and s is a
new sort family. Sorts headed by s are declared in this way to refine types headed by a.
The relation S ⊏ A is extended through the whole sort hierarchy in a compositional way.

Next we declare the sorts of the constructors. For zero, this is easy:

z :: even.

The general form of this declaration is c :: S, where c is a constant already declared in
the form c : A, and where S ⊏ A. The declaration for the successor is slightly more
interesting, because the successor of an even number is odd and the successor of an odd
number is even. In order to capture both properties simultaneously we need to use an
intersection sort, written as S1 ∧ S2.1

s :: even→ odd ∧ odd→ even.

In order for an intersection to be well-formed, both components must refine the same
type. The nullary intersection ⊤ can refine any type, and represents the maximal re-
finement of that type. The following are suggestive rules, but we will give more precise
ones below.2

s ⊏ a ∈ Σ

s N1 . . .Nk ⊏ a N1 . . .Nk

S ⊏ A T ⊏ B

Πx::S.T ⊏ Πx:A.B

S1 ⊏ A S2 ⊏ A

S1 ∧ S2 ⊏ A ⊤ ⊏ A

To show that the declaration for s is well-formed, we establish that even→ odd ∧ odd→
even ⊏ nat→ nat.

The refinement relation S ⊏ A should not be confused with the usual subtyping relation.
Although each is a kind of subset relation,3 they are quite different: Subtyping relates
two types, is contravariant in the domains of function types, and is transitive, while
refinement relates a sort to a type, so it does not make sense to consider its variance or
whether it is transitive. We will discuss subtyping below and in Section 3.4.

Now suppose that we also wish to distinguish the strictly positive natural numbers.
We can do this by introducing a sort pos refining nat and declaring that the successor
function yields a pos when applied to anything, using the maximal sort.

pos ⊏ nat.
s :: . . . ∧ ⊤ → pos.

1Intersection has lower precedence than arrow.
2As usual, we write A→ B as shorthand for the dependent typeΠx:A.B when x does not occur in B.
3It may help to recall the interpretation of S ⊏ A: for a term to be judged to have sort S, it must

already have been judged to have type A for some A such that S ⊏ A. Thus, the refinement relation
represents an inclusion “by fiat”: every term with sort S is also a term of type A, by invariant. By contrast,
subsorting S1 ≤ S2 is a more standard sort of inclusion: every term with sort S1 is also a term of sort S2,
by subsumption (see Section 3.4).

11

Since we only sort-check well-typed programs and s is declared to have type nat→ nat,
the sort ⊤ here acts as a sort-level reflection of the entire nat type.

We can specify that all odd numbers are positive by declaring odd to be a subsort of
pos.

odd ≤ pos.

As it happens in this example, we can see that any closed instance of odd is pos even
without the declaration, but if there were other constructors that returned sort odd, their
applications would now also have sort pos.4

Putting it all together, we have the following:

even ⊏ nat.
odd ⊏ nat.
pos ⊏ nat.
odd ≤ pos.
z :: even.
s :: even→ odd ∧ odd→ even ∧ ⊤ → pos.

Now we should be able to verify that, for example, s (s z) ⇐ even. To explain how,
we analogize with pure canonical LF. Recall that atomic types have the form a N1 . . .Nk

for a type family a and are denoted by P. Arbitrary types A are either atomic (P) or
(dependent) function types (Πx:A.B). Canonical terms are then characterized by the
rules shown in the left column of Figure 2.1.

There are two typing judgments, N ⇐ A which means that N checks against A (both
given) and R⇒ A which means that R synthesizes type A (R given as input, A produced
as output). Both take place in a context Γ assigning types to variables and an implicit
ambient signature Σ containing declarations for constants. To force terms to be η-long,
the rule for checking an atomic term R only checks it at an atomic type P. It does so by
synthesizing a type P′ and comparing it to the given type P. In canonical LF, all types
are already canonical, so this comparison is just α-equality.

On the right-hand side we have shown the corresponding rules for sorts. First, note
that the format of the context Γ is slightly different, because it declares sorts for variables,
not just types. The rules for functions and applications are straightforward analogues
to the rules in ordinary LF. The rule switch for checking atomic terms R at atomic sorts
Q replaces the equality check with a subsorting check and is the only place where we
appeal to subsorting (defined below). For applications, we use the type A that refines
the type S as the index parameter of the hereditary substitution.

Subsorting is exceedingly simple: it only needs to be defined on atomic sorts, and is
just the reflexive and transitive closure of the declared subsorting relationship extended
through applications to identical arguments.

s1≤s2 ∈ Σ

s1 ≤ s2

Q1 ≤ Q2

Q1 N ≤ Q2 N Q ≤ Q

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

4The declaration would also be necessary to establish that variables of sort odd are pos, if we were to
consider “open” natural numbers.

12

Canonical LF LF with Refinements

Γ, x:A ⊢ N ⇐ B

Γ ⊢ λx.N⇐ Πx:A.B

Γ ⊢ R⇒ P′ P′ = P

Γ ⊢ R⇐ P

x:A ∈ Γ

Γ ⊢ x⇒ A

c:A ∈ Σ

Γ ⊢ c⇒ A

Γ ⊢ R⇒ Πx:A.B Γ ⊢ N⇐ A

Γ ⊢ R N⇒ [N/x]A B

Γ, x::S⊏A ⊢ N⇐ T

Γ ⊢ λx.N⇐ Πx::S⊏A.T
(Π-I)

Γ ⊢ R⇒ Q′ Q′ ≤ Q

Γ ⊢ R⇐ Q
(switch)

x::S⊏A ∈ Γ

Γ ⊢ x⇒ S
(var)

c :: S ∈ Σ

Γ ⊢ c⇒ S
(const)

Γ ⊢ R⇒ Πx::S⊏A.T Γ ⊢ N⇐ S

Γ ⊢ R N ⇒ [N/x]A T
(Π-E)

Figure 2.1: Typing in canonical LF, and sorting in LFR.

The sorting rules we’ve given thus far do not yet treat intersections. In line with
the general bidirectional nature of the system, the introduction rules are part of the
checking judgment, and the elimination rules are part of the synthesis judgment. Binary
intersection S1∧S2 has one introduction and two eliminations, while nullary intersection
⊤ has just one introduction.

Γ ⊢ N ⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2

(∧-I)
Γ ⊢ N ⇐ ⊤

(⊤-I)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S1

(∧-E1)
Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S2

(∧-E2)

Note that although (canonical forms-style) LF type synthesis is unique, LFR sort syn-
thesis is not, due to the intersection elimination rules. The checking rule ⊤-I may seem
alarming at first glance, since it seems to assign a sort to any term, well-typed or not,
but recall that under the refinement restriction, these rules can only be applied to terms
that have already been type-checked. In this way, the refinement restriction justifies the
intuition that ⊤ represents a “maximal refinement”—the sort of a term that satisfies no
special properties beyond being well-typed.

Now we can see how these rules generate a deduction of s (s z)⇐ even. The context
is always empty and therefore omitted. To save space, we abbreviate even as e, odd as o,

13

and pos as p, and we omit reflexive uses of subsorting.

⊢ s⇒ e→ o ∧ (o→ e ∧⊤ → p)
(const)

⊢ s⇒ o→ e ∧⊤ → p
(∧-E2)

⊢ s⇒ o→ e
(∧-E1)

⊢ s⇒ e→ o ∧ (. . .)
(const)

⊢ s⇒ e→ o
(∧-E1)

⊢ z⇒ e
(const)

⊢ z⇐ e
(switch)

⊢ s z⇒ o
(Π-E)

⊢ s z⇐ o
(switch)

⊢ s (s z)⇒ e
(Π-E)

⊢ s (s z)⇐ e
(switch)

Using the ∧-I rule, we can check that s z is both odd and positive:

...
⊢ s z⇐ o

...
⊢ s z⇐ p

⊢ s z⇐ o ∧ p
(∧-I)

Each remaining subgoal now proceeds similarly to the above example.
To illustrate the use of sorts with non-trivial dependent type families, consider the

definition of the double relation in LF. We declare a type family representing the doubling
judgment and populate it with two proof rules.

double : nat→ nat→ type.
dbl/z : double z z.
dbl/s : ΠX:nat.ΠY:nat. double X Y→ double (s X) (s (s Y)).

With sorts, we can now directly express the property that the second argument to double
must be even. But to do so, we require a notion analogous to kinds that may contain sort
information. We call these classes and denote them by L.

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S⊏A. L | ⊤ | L1 ∧ L2 classes

Classes L mirror kinds K, and they have a refinement relation L ⊏ K similar to S ⊏ A.
(We elide the rules here, but they are included in Appendix A.) Now, the general form
of the s ⊏ a declaration is s ⊏ a :: L, where a : K and L ⊏ K; this declares sort constant s
to refine type constant a and to have class L.

For now, we reuse the type name double as a sort, as no ambiguity can result. As
before, we use ⊤ to represent a nat with no additional restrictions.

double ⊏ double :: ⊤ → even→ sort.
dbl/z :: double z z.
dbl/s :: ΠX::⊤.ΠY::even. double X Y→ double (s X) (s (s Y)).

Since the sort family double has a non-trivial class, we see now that to check these
declarations, we must sort check arguments to double, which means that the refinement

14

Γ ⊢ S ⊏ A

Γ ⊢ Q ⊏ P′ ⇒ L P′ = P L = sort

Γ ⊢ Q ⊏ P
(Q-F)

Γ ⊢ S ⊏ A Γ, x::S⊏A ⊢ S′ ⊏ A′

Γ ⊢ Πx::S⊏A. S′ ⊏ Πx:A.A′
(Π-F)

Γ ⊢ ⊤ ⊏ A
(⊤-F)

Γ ⊢ S1 ⊏ A Γ ⊢ S2 ⊏ A

Γ ⊢ S1 ∧ S2 ⊏ A
(∧-F)

Γ ⊢ Q ⊏ P⇒ L

s⊏a::L ∈ Σ

Γ ⊢ s ⊏ a⇒ L

Γ ⊢ Q ⊏ P⇒ Πx::S⊏A. L Γ ⊢ N⇐ S

Γ ⊢ Q N ⊏ P N ⇒ [N/x]A L

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2

Γ ⊢ Q ⊏ P⇒ L1

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2

Γ ⊢ Q ⊏ P⇒ L2

Figure 2.2: The refinement relation, well-formedness for sort families.

relation must be relative to a context, Γ ⊢ S ⊏ A. The new rules are shown in Figure 2.2,
and have a bidirectional flavor similar to the sort checking rules we saw earlier.

After these declarations, it would be a static sort error to pose a query such as
“?- double X (s (s (s z))).” before any search is ever attempted. In LF, queries like this
could fail after a long search or even not terminate, depending on the search strategy.
One of the important motivations for considering sorts for LF is to avoid uncontrolled
search in favor of decidable static properties whenever possible.

The tradeoff for such precision is that now sort checking itself is non-deterministic
and has to perform search because of the choice between the two intersection elimination
rules. As Reynolds has shown, this non-determinism causes intersection type checking
to be PSPACE-hard [Rey96], even for normal terms as we have here [Rey89]. Our
experience though shows that many sort-checking problems that arise in the context
of formalizing deductive systems can be solved efficiently based on a straightforward
backtracking interpretation of the rules shown here.

2.2 Adequacy

One of the greatest advantages of the LF approach to formalized mathematics is that it
was designed from the outset to allow for a notion of adequacy of an encoding. Generally
speaking, an adequacy theorem establishes an isomorphism between the “informal”
mathematial objects we write on paper and their corresponding formal entities in the

15

logical framework. In the LF logical framework in particular, adequacy typically takes
the form of a compositional bijection between informal objects and canonical forms of
certain type families [HHP93].

For our natural numbers example, we have the following encoding function ǫ(−)
along with its inverse δ(−):5

ǫ(Z) = z δ(z) = Z

ǫ(S[n]) = s ǫ(n) δ(s N) = S[δ(N)]

Theorem 2.1 (LF Adequacy, natural numbers). The encoding ǫ(−) is a bijection between
natural numbers n and canonical forms of type nat in the empty context and the signature of
natural numbers, and δ(−) is its inverse.

Proof. By induction on n, and by induction on canonical forms of type nat. To recognize
that δ(−) is a total function, we use inversion to show that in the signature of the natural
numbers and the empty context, the only ways to form canonical objects of type nat are
using z and s. �

Note that since our encoding of the natural numbers does not allow variables, com-
positionality need not be shown.

A happy consequence of the refinement approach is that such LF adequacy results
can be taken off-the-shelf to serve as the basis of an LFR adequacy result. Assuming
our refinement signature is based on an LF signature already known to be adequate
with respect to some informal presentation, we immediately get for free an encoding
function, its inverse decoding function, and the knowledge that the encoding composes
with substitution, yielding a true isomorphism between informal objects and canonical
forms of certain type families. To extend this to an adequacy result for the refinement
portion of a signature, we follow our slogan, properties as sorts: we must show that
properties of informal objects correspond to sorting derivations, and vice versa. In other
words, we must show that the encoding preserves the properties of interest.

Recall that earlier we gave an informal specification of even and odd numbers with
a grammar. The properties of being even or odd can equivalently be captured by a pair
of mutually inductive judgments on natural numbers, n even and n odd:

Z even

n odd

S[n] even

n even

S[n] odd

Our encoding is an adequate representation of parity because there is a correspondence
between the informal parity judgments and their formal characterization as sorts:

Theorem 2.2 (LFR Adequacy, even and odd numbers). The encoding ǫ(−) preserves the
properties of being even and odd:

5Recent approaches based on canonical forms-only presentations of LF employ a clever technique
where the bijection is given as a single relation which is shown to be functional in both directions [HL07],
but for our purposes, it will be simpler to work directly with encoding and decoding functions.

16

1. n even if and only if · ⊢ ǫ(n)⇐ even

2. n odd if and only if · ⊢ ǫ(n)⇐ odd

Proof. (=⇒) By induction on the given property derivation. It is always straightforward
to build the required sorting derivation.

(⇐=) By induction on the given sorting derivation. We can use inversion principles
specialized to the LFR signature of even and odd numbers to enumerate the ways we
can derive · ⊢ N ⇐ even or · ⊢ N ⇐ odd, and then show for each one that δ(N) even or
δ(N) odd, respectively. �

Let us digress for a moment to compare our approach with the pure LF approach.
The extrinsic characterization of parity through the judgments n even and n odd can
easily be represented in LF without the use of refinements:

even : nat→ type.
odd : nat→ type.

even/z : even z.
even/s : ΠN:nat. odd N→ even (s N).
odd/s : ΠN:nat. even N→ odd (s N).

The code above is typical of the usual strategy for representing properties in LF: first,
the properties are recast as judgments, and then those judgments are represented in
LF using the “judgments as types” methodology. In fact, any property that can be
captured using sorts can be captured using judgments and “judgments as types” (and
a small measure of proof irrelevance, as we show in Chapter 4). The disadvantage
of this extrinsic formulation is that now, whenever another judgment requires that a
natural number be even, one must either pass in evidence of this fact or one must prove
that such evidence always exists. Both approaches are cumbersome and awkward: the
programmer must pay a high cost to use such rich representations.

The LFR methodology of “properties as sorts” avoids the indirection through judg-
ments and the caveats that come along with it. Instead of the programmer bearing
the burden of conjuring up evidence or proving its existence, the sort checker verifies
automatically that representations are used in a manner consistent with their properties.
Refinements enable direct, succinct, and intrinsic representations of many interesting
properties.

We now return to the adequacy of our encoding. Having established the adequacy
of the encodings of even and odd, we proceed similarly for the part of the signature
describing positive natural numbers. Since that part of the signature involves a sub-
sorting declaration, the adequacy argument is slightly more interesting. First, we give a
judgment representing positivity:

S[n] pos

We could consider an additional rule stating that any odd number is positive, but such
a rule is admissible.

17

Lemma 2.3. If n odd, then n pos.

Proof. By inversion, n must have the form S[n′], and by rule, S[n′] pos. �

Since we are considering a representation of natural numbers without any free vari-
ables (i.e., we make a “closed world” asumption), a similar metatheorem holds of our
encoding, making the declaration that odd ≤ pos redundant. We proceed assuming the
declaration anyway to illustrate how subsorting interacts with adequacy.

Theorem 2.4 (LFR Adequacy, positive numbers). The encoding ǫ(−) preserves the property
of being positive: n pos if and only if · ⊢ ǫ(n)⇐ pos.

Proof. (=⇒) By inversion, n has the form S[n′], and thus ǫ(n) = s ǫ(n′). We can easily
build a derivation of · ⊢ s ǫ(n′)⇐ pos by noting that · ⊢ ǫ(n′)⇐ ⊤.

(⇐=) Suppose · ⊢ N ⇐ pos, and show that δ(N) pos. By inversion, N = R such that
either · ⊢ R ⇒ odd or · ⊢ R⇒ pos, since the only subsorts of pos are odd and pos itself. If
· ⊢ R⇒ odd, then · ⊢ R⇐ odd, so by Theorem 2.2, δ(R) odd and by Lemma 2.3, δ(R) pos.
If · ⊢ R⇒ pos, then by inversion, R = s N′, so δ(R) = S[δ(N′)] and by rule δ(R) pos. �

2.3 Example: the Call-By-Value λ-Calculus

As a second example, we represent the untyped call-by-value λ-calculus. To avoid
confusion with the framework abstraction and application, we will write “\” for the
object-language abstraction and infix “@” for object-language application.

e ::= x | \x. e | e1 @ e2

Theλ-calculus can be adequately represented by the following LF signature using higher-
order abstract syntax:

exp : type.

lam : (exp→ exp)→ exp.
app : exp→ exp→ exp.

The encoding ǫX(e) is given relative to the set of free variables X of the expression e, and
its inverse is defined by induction on the canonical forms of type exp.

ǫX,x(x) = x δX,x(x) = x

ǫX(\x. e) = lam (λx. ǫX,x(e)) δX(lam λx.N) = \x. δX,x(N)

ǫX(e1 @ e2) = app ǫX(e1) ǫX(e2) δX(app N1 N2) = δX(N1) @ δX(N2)

Here, since the encoding involves variables and binding, we must be careful to specify
the LF contexts that are appropriate for the encoding. If X = x1, . . . , xn, let ΓX represent
the context x1:exp, . . . , xn:exp.

18

Theorem 2.5 (LF Adequacy, expressions). The encoding ǫX(−) is a bijection between λ-
calculus expressions e with free variables among X and canonical forms of type exp in the context
ΓX and the LF signature containing declarations for lam and app. Furthermore, this bijection is
compositional in the sense that it commutes with substitution.

Proof. By induction on the structure λ-calculus expressions, and by induction on canon-
ical forms of type exp, using the appropriate inversion principles. �

Informally, we can distinguish the set of values from the set of arbitrary computations
using a pair of grammars:

v ::= x | \x. c

c ::= v | c1 @ c2

We can use sorts to make the distinction formal. While this can be encoded in LF in a
variety of ways, they are all significantly more cumbersome than the LFR encoding.

cmp ⊏ exp. % the sort of computations
val ⊏ exp. % the sort of values

val ≤ cmp. % every value is a (trivial) computation

lam :: (val→ cmp)→ val.
app :: cmp→ cmp→ cmp.

The most interesting declaration is the one for the constant lam. The argument type
(val→ cmp) indicates that lam binds a variable which stands for a value and the body is
an arbitrary computation. The result type val indicates that any λ-abstraction is a value.
Now we have, for example: · ⊢ lam λx. lam λy. x⇐ val.

To argue that our encoding is adequate, we must show that it preserves the properites
of being a value and being a computation. As before, we recast the grammars for values
and computations as judgments e val and e cmp:

x val

e cmp

\x. e val

e val

e cmp

e1 cmp e2 cmp

e1 @ e2 cmp

Additionally, just as we had to specify the LF contexts that were appropriate for the repre-
sentation of expressions, we must take care to specify the set of LFR contexts appropriate
for the representation of values and computations. Since our intention is that variables
stand for values, we represent them with variables of sort val: if X = x1, . . . , xn, then

let ΓX denote the LFR context x1::val⊏exp, . . . , xn::val⊏exp. The LFR adequacy theorem is
then very similar to that for natural numbers:

Theorem 2.6 (LFR Adequacy, values and computations). Suppose the free variables of e
are contained in X. Then the encoding ǫX(−) preserves the properties of being a value and being
a computation:

19

e1 ⇓ e2

\x. e ⇓ \x. e
ev-lam

e1 ⇓ \x. e
′
1

e2 ⇓ e′2 [e′2/x] e′
1
⇓ e

e1 @ e2 ⇓ e
ev-app

c ⇓ v

\x. c ⇓ \x. c
ev-lam

c1 ⇓ \x. c
′
1

c2 ⇓ v2 [v2/x] c′
1
⇓ v

c1 @ c2 ⇓ v
ev-app

Figure 2.3: Two ways of specifying the evaluation judgment.

1. e val if and only if ΓX ⊢ ǫX(e)⇐ val

2. e cmp if and only if ΓX ⊢ ǫX(e)⇐ cmp

Proof. Similar to Theorem 2.2.
(=⇒) By induction on the derivation of e val.
(⇐=) By induction on the given derivation using the inversion principles appropriate

to the LFR signature of values and computations and the context ΓX. �

Of course, what makes the calculus “call-by-value” is its evaluation strategy. The
evaluation judgment for the call-by-value λ-calculus is given in Figure 2.3, in two differ-
ent ways: both ways have the exact same rules, but the second way has a more precise
judgment form in that it specifies that the left-hand argument to the evaluation relation
is an arbitrary computation while the right-hand argument is necessarily a value. Just
as visual inspection can informally verify this property of the rules, LFR sort-checking
can verify the property formally.

The evaluation judgment e1 ⇓ e2 is represented as a two-place relation in LF. Since
the declarations below are intended to represent a logic program, we follow the logic
programming convention of reversing the arrows in the declaration of ev-app:

eval : exp→ exp→ type.

ev-lam : eval (lam λx.E x) (lam λx.E x).

ev-app : eval (app E1 E2) E
← eval E1 (lam λx.E′

1
x)

← eval E2 E′2
← eval (E′

1
E′2) E.

The more precise form of the evaluation judgment c ⇓ v can be represented in LFR as a
refinement eval’ of the eval type family with a more precise class:

20

eval’ ⊏ eval :: cmp→ val→ sort.

ev-lam :: eval’ (lam λx.C x) (lam λx.C x).

ev-app :: eval’ (app C1 C2) V
← eval’ C1 (lam λx.C′

1
x)

← eval’ C2 V2

← eval’ (C′
1

V2) V.

Sort checking the above declarations demonstrates that when evaluation returns at all,
it returns a syntactic value. Moreover, if sort reconstruction gives C′

1
the “most general”

sort val → cmp, the declarations also ensure that the language is indeed call-by-value:
it would be a sort error to ever substitute a computation for a lam-bound variable, for
example, by evaluating (C′

1
C2) instead of (C′

1
V2) in the ev-app rule. We explore this

example further in Chapter 5 when we outline an algorithm for computing most general
sorts.

Adequacy for the judgment e1 ⇓ e2 establishes a bijection between derivations E ::
e1 ⇓ e2 and canonical forms of type eval ǫ(e1) ǫ(e2). However, since the derivations
of e1 ⇓ e2 are isomorphic to the derivations of c ⇓ v, there is little interesting to say
about the LFR adequacy of this encoding, so we postpone a discussion of adequacy for
judgments until the next section. We will note, though, that such an adequacy argument
depends on a basic well-formedness criterion: for any expressions e1 and e2, we have
· ⊢ eval ǫ(e1) ǫ(e2) ⇐ type, a criterion follows from the adequacy of the encoding of
expressions. There is an analogous well-formedness criterion for the LFR encoding: for
a computation c and a value v, we have · ⊢ eval’ ǫ(c) ǫ(v) ⊏ eval ǫ(c) ǫ(v). Since the
encoding of computations and values is adequate, the refinement corresponding to the
judgment form is well-formed.

2.4 Example: Normal Natural Deductions

For our final example, we consider natural deduction encoded in LF, with normal
natural deductions as a refinement. Figure 2.4 gives the informal presentation of natural
deduction, in which the metavariablesφ andψ range over a set of propositions including
implication φ ⊃ ψ. Formally, natural deductions are represented by encoding the
judgment φ true as a type family and the inference rules as its constructors. The
hypothetical judgment is represented using the LF function space.

o : type.
⊃ : o→ o→ o. % implication, used as an infix operator

true : o→ type.
⊃I : (true Phi→ true Psi)→ true (Phi ⊃ Psi).
⊃E : true (Phi ⊃ Psi)→ true Phi→ true Psi.

21

φ true

φ true
u

...
ψ true

φ ⊃ ψ true
⊃Iu

φ ⊃ ψ true φ true

ψ true
⊃E

φ normal

φ neutral
u

...
ψ normal

φ ⊃ ψ normal
⊃Iu

φ neutral

φ normal
∗

φ neutral

φ ⊃ ψ neutral φ normal

ψ neutral
⊃E

Figure 2.4: Natural deductions and normal/neutral natural deductions.

The adequacy argument for this representation gives an encoding ǫγ(−) relative to a
collection of labeled hypotheses γ = u1:φ1, . . . , un:φn.

ǫγ,u:φ

(
φ true

u
)
= u

ǫγ

φ true
u

D
ψ true

φ ⊃ ψ true
⊃Iu

= ⊃I (λu. ǫγ,u:φ(D))

ǫγ

D1

φ ⊃ ψ true
D2

φ true

ψ true
⊃E

= ⊃E ǫγ(D1) ǫγ(D2)

We assume an adequate encoding of propositions ǫ(φ) as objects of type o. If γ =
u1:φ1, . . . , un:φn, then let Γγ = u1:true ǫ(φ1), . . . , un:true ǫ(φn).

Theorem 2.7 (LF Adequacy, natural deduction). The encoding ǫγ(−) is a bijection between
natural deductionsD :: φ true with hypotheses among γ and canonical forms of type true ǫ(φ)
in the context Γγ and the LF signature for natural deduction. Furthermore, this bijection is
compositional in the sense that it commutes with substitution.

As shown in Figure 2.4, we can isolate the normal natural deductions by defining a
pair of mutually inductive judgments φ normal and φ neutral. The rule labeled with an

22

asterisk “∗” represents a judgmental inclusion; if we imagine this rule being suppressed
in derivations, it is evident that derivations of φ normal and φ neutral are just special
forms of derivations of φ true. We can make this intuition precise by defining them as
LFR sort families refining true, using subsorting to encode the judgmental inclusion.6

normal ⊏ true.
neutral ⊏ true.

neutral ≤ normal. % judgmental inclusion

⊃I :: (neutral Phi→ normal Psi)→ normal (Phi ⊃ Psi).
⊃E :: neutral (Phi ⊃ Psi)→ normal Phi→ neutral Psi.

Adequacy for the judgments φ normal and φ neutral is a statement about particular
forms of derivations of φ true. In a way, it is quite similar to the adequacy of the
encoding of even and odd natural numbers and the adequacy of the encoding of values
and computations. The similarity follows from the uniformity of the LF approach: since
syntax and deductions are both represented as canonical LF terms, refinements can
uniformly represent subsets of either.

Note that in both the statement and the proof of this theorem, we consider a derivation
D of φ normal or φ neutral to be identical to the derivation of φ true with the same
structure. In particular, we consider the judgmental inclusion rule “∗” to be a no-op: it
simply allows us to treat a derivation of φ neutral as if it were a derivation of φ normal
without actually constructing a new derivation. Equating derivations in this way may
seem peculiar, but it is in keeping with the conventions we have been assuming for
syntax: for instance a value v is still considered to be an expression—just one with a
particular form.

Given a collection of labeled natural deduction hypotheses γ = u1:φ1, . . . , un:φn, let

Γγ = u1::neutral ǫ(φ1), . . . , un::neutral ǫ(φn).

Theorem 2.8 (LFR Adequacy, normal and neutral natural deductions). Let D be a
derivation of φ true whose hypotheses come from γ. The encoding ǫγ(−) of natural deductions
preserves the properties of being normal and being neutral.

1. D :: φ normal if and only if Γγ ⊢ ǫγ(D)⇐ normal ǫ(φ)

2. D :: φ neutral if and only if Γγ ⊢ ǫγ(D)⇐ neutral ǫ(φ)

Proof. Straightforward induction in both directions. �

6In this presentation of normal natural deductions, there are no restrictions on the applicability of the
judgmental inclusion: any deduction of φ neutral is as good as a deduction of φ normal regardless of
the form of φ. Later in Section 6.2.2, we will return to this example to explore the question of encoding
restricted variations on the judgmental inclusion.

23

2.5 All Properties as Sorts?

Now that we have seen a few examples of LFR sorts in action, we might ask the question
of how far it can go. We have already mentioned the fact that any property that can be
captured with sorts can be captured with judgments as well. Does the converse also
hold?

Certainly not, for judgments are just arbitrary logical specifications of recursively
enumerable properties. It is not difficult for example to craft rules specifying an un-
decidable judgment e normalizing that holds of all and only those untyped λ-calculus
expressions that have a normal form, and it is equally easy to represent this judgment as
a predicate normalizing : exp→ type in LF. But as we will see in Chapter 3, the sort check-
ing problem for LFR is decidable, so clearly arbitrary judgments are capable of capturing
more properties than refinement types. Even if we restrict our attention to judgments
capturing decidable properties, there are plenty of judgments we would not expect to
be definable using sorts. Consider for example the decidable judgment n prime which
holds of all prime natural numbers: such a rich property will not be representable using
sorts.

The power of sorts is something like the power of regular tree grammars, extended
to higher-order binding trees. Regular tree grammars and the equivalent tree automata
have long played a role in the development of type systems for logic programs in the
form of regular tree types [DZ92] and regular unary logic (RUL) programs [YS91], and
work on refinement types has long drawn inspiration from them [Fre94, Dav05]. All of
the examples we’ve seen so far—even and odd natural numbers, values of theλ-calculus,
normal natural deductions—take the form of higher-order regular tree grammars, and
the fact they could also all be written as unary judgments of a certain form is a reflection of
the equivalence between regular tree grammars and tree automata. We take a moment to
sketch the correspondence intuitively; for a more formal development of tree automata,
we refer the reader to Tree Automata Techniques and Applications [CDG+07].

Tree automata are somewhat like finite automata, except instead of tracking a
state through a string, tree automata track states through trees. A (bottom-up, non-
deterministic) tree automata contains transition rules of the form f (q1, . . . , qn) −→ q,
where f is a first-order function symbol and q1 through qn are the states of its children;
the transition rule indicates that the automaton can apply the rewrite anywhere in its
input to transition the node labelled by f into state q. If the root of the input ever
transitions to a final state, it is accepted.

For example, a tree automata for recognizing even and odd numbers would consist
of the states even and odd, with function symbols s and z and transition rules:

z −→ even

s(even) −→ odd

s(odd) −→ even

To verify that the number 3 is odd, we start with the term s(s(s(z))) and attempt to find an
execution path that leads it to a final state of odd. We can reach odd through the following

24

series of transitions. In each transition, the rewritten subterm is underlined.

s(s(s(z))) −→ s(s(s(even)))

−→ s(s(odd))

−→ s(even)

−→ odd

Intuitively, this tree automaton corresponds to our signature of even and odd num-
bers:

z :: even.
s :: even→ odd
∧ odd→ even.

Generally, states q correspond to our sorts, and function symbols f correspond to our
constructors. The transitions rules of an automaton for a particular root symbol corre-
spond to sort declarations for the corresponding constructor. Subsorting declarations
like odd ≤ pos can be represented as “ε-rules” of the form q1 −→ q2, which do not con-
sume any root symbol, but rather just change the state of the automaton. We might
write

odd −→ pos

to indicate that any number that has reached state odd can move to state pos.
Non-deterministic tree automata can also be defined in a “top-down” style, working

from the root of the tree to the leaves, so the rules have the form q(f (x1, . . . , xn)) −→
f (q1(x1), . . . , qn(xn)).

even(z) −→ z

odd(s(x)) −→ s(even(x))

even(s(x)) −→ s(odd(x))

Presented in this style, a term t is accepted as satisfying q if, starting from state q(t), there
is a sequence of transitions resulting in just the term t by itself. To see that 3 is odd in
the top-down style, we perform the following execution:

odd(s(s(s(z)))) −→ s(even(s(s(z))))

−→ s(s(odd(s(z))))

−→ s(s(s(even(z))))

−→ s(s(s(z)))

The top-down presentation of tree automata emphasizes the connection to logic pro-
gramming and treating sorts as predicates, a connection which we explore further in the
subset interpretation of Chapter 4. Every tree automaton can be simulated by a unary-
predicate logic program obeying certain syntactic constraints called a regular unary logic

25

program, or RUL program [YS91]. Our sorts can be simulated by similarly constrained
logic programs, but ones that may include binding of parameters and higher-order
subgoals as in Elf and Twelf.

In either presentation, the “non-determinism” in the automaton is reflected in the
fact that there are multiple rules for the successor constructor. This is the same as the
non-determinism that arises from intersection sorts. Compare the automaton executions
above to the sorting derivation for s (s (s z)) ⇐ odd, where the omitted subderivations
correspond to the non-deterministic choices made in the execution of the automaton:

...
⊢ s⇒ even→ odd

...
⊢ s⇒ odd→ even

...
⊢ s⇒ even→ odd

...
⊢ z⇒ even

⊢ z⇐ even
(switch)

⊢ s z⇒ odd
(Π-E)

⊢ s z⇐ odd
(switch)

⊢ s (s z)⇒ even
(Π-E)

⊢ s (s z)⇐ even
(switch)

⊢ s (s (s z))⇒ odd
(Π-E)

⊢ s (s (s z))⇐ odd
(switch)

We shall not endeavor to formalize the correspondence any further, but perhaps the
above informal discussion will help the reader to bear in mind the kinds of properties
we mean when we say properties as sorts.

2.6 Summary

Through three examples spanning a variety of deductive systems, we have explored the
properties as sorts representation methodology of LFR. We saw how the adequacy of an
LF encoding serves as the foundation for demonstrating adequacy of an LFR encoding:
given an adequate LF encoding, one proves that it preserves the properties represented by
the sorts in an LFR encoding extending it. This methodology and its notion of adequacy
are uniform between the level of syntax and the level of judgments. Sometimes, though,
as with the example of evaluation in the λ-calculus, a property of a judgment isn’t
a subset, but rather a more stringent well-formedness condition on the form of the
judgment itself.

Now that we have an idea how LFR can be used to represent properties of deductive
systems, we move on to proving important metatheoretic results about the framework
itself.

26

Chapter 3

Metatheory

In this chapter, we present some metatheoretic results about our framework. After a
preliminary discussion of hereditary substitution, we demonstrate that sort checking in
our framework is decidable. Then we prove two foundationally important results for a
logical framework, the identity and substitution principles that witness the reflexivity
and transitivity of entailment. The proofs of these results follow a similar pattern
to previous work using hereditary substitutions [WCPW02, NPP07, HL07]. We give
sketches of all proofs. Technically tricky proofs can be found in Appendix B.

Finally, we present some surprising results about subsorting: despite our framework
only defining subsorting at base sorts, it nonetheless admits the usual higher-sort sub-
sorting principles as a derived notion of inclusion of canonical forms. We present a
variety of equivalent formulations of this derived notion and show that they all admit
the usual rules for deriving subsorting judgments, including the rules for distributing
intersection sorts over function sorts. In fact, not only do we admit the usual rules, but
the converse also holds: any inclusion of canonical forms between two sorts is reflected
by some derivation using the usual rules. Thus the usual rules represent a sound and
complete axiomatization of inclusion between the canonical forms of sorts in LFR.

3.1 Hereditary Substitution

Recall that we replace ordinary capture-avoiding substitution with hereditary substitution,
[N/x]

A
, an operation which substitutes a normal term into a canonical form yielding

another canonical form, contracting redexes “in-line”. The operation is indexed by the
putative type of N and x to facilitate a proof of termination. In fact, the type index on
hereditary substitution need only be a simple type to ensure termination. To that end,
we denote simple types by α and inductively define an erasure of normal types to simple
types, written (A)−.

α ::= a | α1 → α2 (a N1 . . .Nk)
− = a (Πx:A.B)− = (A)− → (B)−

For clarity, we also index hereditary substitutions by the syntactic category on which
they operate, so for example we have [N/x]n

A
M = M′ and [N/x]s

A
S = S′. Figure 3.1 lists

27

Judgment: Substitution into:

[N0/x0]rr
α0

R = R′ Atomic terms (yielding atomic)
[N0/x0]rn

α0
R = (N′, α′) Atomic terms (yielding normal)

[N0/x0]n
α0

N = N′ Normal terms

[N0/x0]
p
α0

P = P′ Atomic types
[N0/x0]a

α0
A = A′ Normal types

[N0/x0]
q
α0

Q = Q′ Atomic sorts
[N0/x0]s

α0
S = S′ Normal sorts

[N0/x0]k
α0

K = K′ Kinds
[N0/x0]l

α0
L = L′ Classes

[N0/x0]
γ
α0
Γ = Γ′ Contexts

Figure 3.1: Judgments defining hereditary substitution.

all of the judgments defining substitution. We write [N/x]n
A

M = M′ as short-hand for
[N/x]n

(A)−
M =M′.

Our formulation of hereditary substitution is defined judgmentally by inference
rules; all of the rules for substitution into terms are included in Appendix A.2 for
reference, but we discuss a few of them here. Observe that the only place β-redexes
might be introduced is when substituting a normal term N into an atomic term R: N
might be a λ-abstraction, and the variable being substituted for may occur at the head
of R. Therefore, the judgments defining substitution into atomic terms are the most
interesting ones.

We denote substitution into atomic terms by two judgments: [N0/x0]rr
α0

R = R′, for
when the head of R is not x0, and [N0/x0]rn

α0
R = (N′, α′), for when the head of R is x0,

where α′ is the simple type of the output N′. The former is just defined compositionally;
the latter is defined by two rules:

[N0/x0]rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]n

α0
N2 = N′2 [N′2/x]n

α2
N1 = N′1

[N0/x0]rn
α0

R1 N2 = (N′1, α1)
(subst-rn-β)

The rule subst-rn-var just returns the substitutend N0 and its putative type index α0. The
rule subst-rn-β applies when the result of substituting into the head of an application is a
λ-abstraction; it avoids creating a redex by hereditarily substituting into the body of the
abstraction, and in this way it corresponds quite closely to β-reduction in a call-by-value
typed operational semantics [Gog95].

A simple lemma establishes that these two judgments are mutually exclusive by

28

examining the head of the input atomic term.

head(x) = x head(c) = c head(R N) = head(R)

Lemma 3.1.

1. If [N0/x0]rr
α0

R = R′, then head(R) , x0.

2. If [N0/x0]rn
α0

R = (N′, α′), then head(R) = x0.

Proof. By induction on the given derivation. �

Substitution into normal terms has two rules for atomic terms R, one which calls the
“rr” judgment and one which calls the “rn” judgment.

[N0/x0]rr
α0

R = R′

[N0/x0]n
α0

R = R′
(subst-n-atom)

[N0/x0]rn
α0

R = (R′, a′)

[N0/x0]n
α0

R = R′
(subst-n-atom-norm)

Note that the latter rule requires both the term and the type returned by the “rn”
judgment to be atomic.

Every other syntactic category’s substitution judgment is defined compositionally,
tacitly renaming bound variables to avoid capture. For example, the remaining rule
defining substitution into normal terms, the rule for substituting into a λ-abstraction,
just recurses on the body of the abstraction.

[N0/x0]n
α0

N = N′

[N0/x0]n
α0
λx.N = λx.N′

Although we have only defined hereditary substitution relationally, it is easy to show
that it is in fact a partial function by proving that there only ever exists one “output” for
a given set of “inputs”.

Theorem 3.2 (Functionality of Substitution). Hereditary substitution is a functional rela-
tion. In particular:

1. If [N0/x0]rr
α0

R = R1 and [N0/x0]rr
α0

R = R2, then R1 = R2,

2. If [N0/x0]rn
α0

R = (N1, α1) and [N0/x0]rn
α0

R = (N2, α2), then N1 = N2 and α1 = α2,

3. If [N0/x0]n
α0

N = N1 and [N0/x0]n
α0

N = N2, then N1 = N2,

and similarly for other syntactic categories.

Proof. Straightforward induction on the first derivation, applying inversion to the second
derivation. The cases for rules subst-n-atom and subst-n-atom-norm require Lemma 3.1
to show that the second derivation ends with the same rule as the first one. �

Additionally, it is worth noting that hereditary substitution behaves just like “ordi-
nary” substitution on terms that do not contain the distinguished free variable.

29

Theorem 3.3 (Trivial Substitution). Hereditary substitution for a non-occurring variable has
no effect.

1. If x0 < FV(R), then [N0/x0]rr
α0

R = R,

2. If x0 < FV(N), then [N0/x0]n
α0

N = N,

and similarly for other syntactic categories.

Proof. Straightforward induction on term structure. �

3.2 Decidability

A hallmark of the canonical forms/hereditary substitution approach is that it allows a
decidability proof to be carried out comparatively early, before proving anything about
the behavior of substitution, and without dealing with any complications introduced by
β/η-conversions inside types. Ordinarily in a dependently typed calculus, one must first
prove a substitution theorem before proving typechecking decidable, since typechecking
relies on type equality, type equality relies on β/η-conversion, and β/η-conversions rely
on substitution preserving well-formedness. (See for example [HP05] for a typical non-
canonical forms-style account of LF definitional equality.)

In contrast, if only canonical forms are permitted, then type equality is just α-convert-
ibility, so one only needs to show decidability of substitution in order to show decidability
of typechecking. Since LF encodings represent judgments as type families and proof-
checking as typechecking, it is comforting to have a decidability proof that relies on so
few assumptions.

Lemma 3.4. If [N0/x0]rn
α0

R = (N′, α′), then α′ is a subterm of α0.

Proof. By induction on the derivation of [N0/x0]rn
α0

R = (N′, α′). In rule subst-rn-var, α′

is the same as α0. In rule subst-rn-β, our inductive hypothesis tells us that α2 → α1 is a
subterm of α0, so α1 is as well. �

By working in a constructive metalogic, we are able to prove decidability of a judg-
ment by proving an instance of the law of the excluded middle; the computational
content of the proof then represents a decision procedure.

Theorem 3.5 (Decidability of Substitution). Hereditary substitution is decidable. In par-
ticular:

1. Given N0, x0, α0, and R, either ∃R′. [N0/x0]rr
α0

R = R′, or ∄R′. [N0/x0]rr
α0

R = R′,

2. Given N0, x0, α0, and R, either ∃(N′, α′). [N0/x0]rn
α0

R = (N′, α′), or
∄(N′, α′). [N0/x0]rn

α0
R = (N′, α′),

3. Given N0, x0, α0, and N, either ∃N′. [N0/x0]n
α0

N = N′, or ∄N′. [N0/x0]n
α0

N = N′,

30

and similarly for other syntactic categories.

Proof. By lexicographic induction on the type subscript α0, the main subject of the sub-
stitution judgment, and the clause number. For each applicable rule defining hereditary
substitution, the premises are at a smaller type subscript, or if the same type subscript,
then a smaller term, or if the same term, then an earlier clause. The case for rule
subst-rn-β relies on Lemma 3.4 to know that α2 is a strict subterm of α0. �

Theorem 3.6 (Decidability of Subsorting). Given Q1 and Q2, either Q1 ≤ Q2 or Q1 6≤ Q2.

Proof. Since the subsorting relation Q1 ≤ Q2 is just the reflexive, transitive closure of the
declared subsorting relation s1 ≤ s2, it suffices to compute this closure, check that the
heads of Q1 and Q2 are related by it, and ensure that all of the arguments of Q1 and Q2

are equal. �

We prove decidability of typing by exhibiting a deterministic algorithmic system that
is equivalent to the original. Instead of synthesizing a single sort for an atomic term, the
algorithmic system synthesizes an intersection-free list of sorts, ∆.

∆ ::= · | ∆,Q | ∆,Πx::S⊏A.T

(As usual, we freely overload comma to mean list concatenation, as no ambiguity can
result.) One can think of ∆ as the intersection of all its elements. Instead of applying
intersection eliminations, the algorithmic system eagerly breaks down top-level inter-
sections using a “split” operator, leading to a deterministic “minimal-synthesis” system.

split(Q) = Q split(S1 ∧ S2) = split(S1), split(S2)

split(Πx::S⊏A.T) = Πx::S⊏A.T split(⊤) = ·

c::S ∈ Σ

Γ ⊢ c⇛ split(S)

x::S⊏A ∈ Γ

Γ ⊢ x⇛ split(S)

Γ ⊢ R⇛ ∆ Γ ⊢ ∆ @ N = ∆′

Γ ⊢ R N ⇛ ∆′

The rule for applications uses an auxiliary judgment Γ ⊢ ∆ @ N = ∆′ which computes
the possible types of R N given that R synthesizes to all the sorts in ∆. It has two key
rules:

Γ ⊢ · @ N = ·

Γ ⊢ ∆ @ N = ∆′ Γ ⊢ N⇚ S [N/x]s
A T = T′

Γ ⊢ (∆,Πx::S⊏A.T) @ N = ∆′, split(T′)

The other rules force the judgment to be defined when neither of the above two rules
apply.

Γ ⊢ ∆ @ N = ∆′ Γ 0 N ⇚ S

Γ ⊢ (∆,Πx::S⊏A.T) @ N = ∆′
Γ ⊢ ∆ @ N = ∆′ ∄T′. [N/x]s

A T = T′

Γ ⊢ (∆,Πx::S⊏A.T) @ N = ∆′

Γ ⊢ ∆ @ N = ∆′

Γ ⊢ (∆,Q) @ N = ∆′

31

Finally, to tie everything together, we define a new checking judgment Γ ⊢ N ⇚ S that
makes use of the algorithmic synthesis judgment; it looks just like Γ ⊢ N ⇐ S except for
the rule for atomic terms, which must search through the synthesized list for a suitable
atomic sort.

Γ ⊢ R⇛ ∆ Q′ ∈ ∆ Q′ ≤ Q

Γ ⊢ R⇚ Q

Γ, x::S⊏A ⊢ N ⇚ T

Γ ⊢ λx.N⇚ Πx::S⊏A.T

Γ ⊢ N⇚ ⊤

Γ ⊢ N⇚ S1 Γ ⊢ N ⇚ S2

Γ ⊢ N ⇚ S1 ∧ S2

This new algorithmic system is manifestly decidable: despite the negative conditions
in some of the premises, the definitions of the judgments are well-founded by the
ordering used in the following proof. (If we wished, we could also explicitly synthesize
a definition of Γ 0 N⇚ S, but it would not illuminate the algorithm any further.)

Theorem 3.7. Algorithmic sort checking is decidable. In particular:

1. Given Γ and R, either ∃∆. Γ ⊢ R⇛ ∆ or ∄∆. Γ ⊢ R⇛ ∆.

2. Given Γ, N, and S, either Γ ⊢ N⇚ S or Γ 0 N ⇚ S.

3. Given Γ, ∆, and N, ∃∆′. Γ ⊢ ∆ @ N = ∆′.

Proof. By lexicographic induction on the term R or N, the clause number, and the sort
S or the list of sorts ∆. For each applicable rule, the premises are either known to be
decidable, or at a smaller term, or if the same term, then an earlier clause, or if the same
clause, then either a smaller S or a smaller ∆. For clause 3, we must use our inductive
hypothesis to argue that the rules cover all possibilities, and so a derivation always
exists. �

Note that the algorithmic synthesis system sometimes outputs an empty ∆ even
when the given term is ill-typed, since the Γ ⊢ ∆ @ N = ∆′ judgment is always defined.

It is straightforward to show that the algorithm is sound and complete with respect
to the original bidirectional system.

Lemma 3.8. If Γ ⊢ R⇒ S, then for all S′ ∈ split(S), Γ ⊢ R⇒ S′.

Proof. By induction on S, making use of the ∧-E1 and ∧-E2 rules. �

Theorem 3.9 (Soundness of Algorithmic Typing).

1. If Γ ⊢ R⇛ ∆, then for all S ∈ ∆, Γ ⊢ R⇒ S.

2. If Γ ⊢ N ⇚ S, then Γ ⊢ N ⇐ S.

3. If Γ ⊢ ∆ @ N = ∆′, and for all S ∈ ∆, Γ ⊢ R⇒ S, then for all S′ ∈ ∆′, Γ ⊢ R N ⇒ S′.

32

Proof. By induction on the given derivation, using Lemma 3.8. �

For completeness, we use the notation ∆ ⊆ ∆′ to mean that ∆ is a sublist of ∆′.

Lemma 3.10. If Γ ⊢ ∆ @ N = ∆′ and Γ ⊢ R ⇛ ∆ and Πx::S⊏A.T ∈ ∆ and Γ ⊢ N ⇚ S and
[N/x]s

A
T = T′, then split(T′) ⊆ ∆′.

Proof. By straightforward induction on the derivation of Γ ⊢ ∆ @ N = ∆′. �

Theorem 3.11 (Completeness for Algorithmic Typing).

1. If Γ ⊢ R⇒ S, then Γ ⊢ R⇛ ∆ and split(S) ⊆ ∆.

2. If Γ ⊢ N ⇐ S, then Γ ⊢ N ⇚ S.

Proof. By straightforward induction on the given derivation. In the application case, we
make use of the fact that Γ ⊢ ∆ @ N = ∆′ is always defined and apply Lemma 3.10. �

Soundness, completeness, and decidability of the algorithmic system gives us a
decision procedure for the judgment Γ ⊢ N ⇐ S. First, decidability tells us that either
Γ ⊢ N ⇚ S or Γ 0 N ⇚ S. Then soundness tells us that if Γ ⊢ N ⇚ S then Γ ⊢ N ⇐ S,
while completeness tells us that if Γ 0 N ⇚ S then Γ 0 N ⇐ S.

Decidability theorems and proofs for other syntactic categories’ formation judgments
proceed similarly. When all is said and done, we have enough to show that the problem
of sort checking an LFR signature is decidable.

Theorem 3.12 (Decidability of Sort Checking). Sort checking is decidable. In particular:

1. Given Γ, N, and S, either Γ ⊢ N ⇐ S or Γ 0 N⇐ S,

2. Given Γ, S, and A, either Γ ⊢ S ⊏ A or Γ 0 S ⊏ A, and

3. Given Σ, either ⊢ Σ sig or 0 Σ sig.

Proof. Corollary of Theorems 3.7, 3.9, and 3.11, and the analogous results regarding the
refinement and signature formation judgments. �

Now that we have established decidability for our original rules, we return to proving
other metatheoretic properties they enjoy. We will not have anything further to say about
the algorithmic formulation of sort checking until Section 3.4 below, where we develop
a similarly algorithmic system for subsorting.

3.3 Identity and Substitution Principles

Since well-typed terms in our framework must be canonical, that is β-normal and η-long,
it is non-trivial to prove S → S for non-atomic S, or to compose proofs of S1 → S2 and
S2 → S3. The Identity and Substitution principles ensure that our type theory makes
logical sense by demonstrating the reflexivity and transitivity of entailment. Reflexivity
is witnessed by η-expansion, while transitivity is witnessed by hereditary substitution.

The Identity principle effectively says that synthesizing (atomic) objects can be made
to serve as checking (normal) objects. The Substitution principle dually says that check-
ing objects may stand in for synthesizing assumptions, that is, variables.

33

3.3.1 Substitution

The goal of this section is to give a careful proof of the following substitution theorem.

Suppose ΓL ⊢ N0 ⇐ S0 . Then:

1. If

• ⊢ ΓL, x0::S0⊏A0, ΓR ctx , and

• ΓL, x0::S0⊏A0, ΓR ⊢ S ⊏ A , and

• ΓL, x0::S0⊏A0, ΓR ⊢ N ⇐ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ⊢ ΓL, Γ
′
R

ctx , and

• [N0/x0]s
A0

S = S′ and [N0/x0]a
A0

A = A′ and ΓL, Γ
′
R
⊢ S′ ⊏ A′ , and

• [N0/x0]n
A0

N = N′ and ΓL, Γ
′
R
⊢ N′ ⇐ S′ ,

2. If

• ⊢ ΓL, x0::S0⊏A0, ΓR ctx and

• ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ⊢ ΓL, Γ
′
R

ctx , and [N0/x0]s
A0

S = S′ , and either

– [N0/x0]rr
A0

R = R′ and ΓL, Γ
′
R
⊢ R′ ⇒ S′ , or

– [N0/x0]rn
A0

R = (N′, α′) and ΓL, Γ
′
R
⊢ N′ ⇐ S′ ,

and similarly for other syntactic categories.
(Theorem 3.19 below.)

To prove the substitution theorem, we require a lemma about how substitutions
compose. The corresponding property for a ordinary non-hereditary substitution says
that [N0/x0] [N2/x2] N = [[N0/x0] N2/x2] [N0/x0] N. For hereditary substitutions, the sit-
uation is analogous, but we must be clear about which substitution instances we must
assume to be defined and which we may conclude to be defined: If the three “inner”
substitutions are defined, then the two “outer” ones are also defined, and equal. Note
that the composition lemma is something like a diamond property; the notation below
is meant to suggest this connection.

Lemma 3.13 (Composition of Substitutions). Suppose [N0/x0]n
α0

N2 = N82 and x2 < FV(N0).
Then:

1. If [N0/x0]n
α0

N = N8 and [N2/x2]n
α2

N = N′, then for some N8′,
[N82/x2]n

α2
N8 = N8′ and [N0/x0]n

α0
N′ = N8′ ,

2. If [N0/x0]rr
α0

R = R8 and [N2/x2]rr
α2

R = R′, then for some R8′,
[N82/x2]rr

α2
R8 = R8′ and [N0/x0]rr

α0
R′ = R8′ ,

34

3. If [N0/x0]rr
α0

R = R8 and [N2/x2]rn
α2

R = (N′, β), then for some N8′,
[N82/x2]rn

α2
R8 = (N8′, β) and [N0/x0]n

α0
N′ = N8′ ,

4. If [N0/x0]rn
α0

R = (N8, β) and [N2/x2]rr
α2

R = R′, then for some N8′,
[N82/x2]n

α2
N8 = N8′ and [N0/x0]rn

α0
R′ = (N8′, β) ,

and similarly for other syntactic categories.

Proof (sketch). By lexicographic induction, first on the unordered pair {α0, α2}, and second
on the first substitution derivation in each clause. Unordered pairs are ordered by

{α, β} < {α′, β′} if α < α′ and β = β′, or α = α′ and β < β′

where {α, β} = {β, α}. The cases for rule subst-rn-β in clauses 3 and 4 appeal to the
induction hypothesis at a smaller type using Lemma 3.4. The case in clause 4 swaps the
roles of α0 and α2, necessitating the unordered induction metric. (The full proof may be
found in Appendix B.1.) �

We also require a simple lemma about substitution into subsorting derivations:

Lemma 3.14 (Substitution into Subsorting). If Q1 ≤ Q2 and [N0/x0]
q
α0

Q1 = Q′
1

and
[N0/x0]

q
α0

Q2 = Q′2, then Q′
1
≤ Q′2.

Proof. Straightforward induction using Theorem 3.2 (Functionality of Substitution),
since the subsorting rules depend only on term equalities, and not on well-formedness.

�

Next, we must state the substitution theorem in a form general enough to admit
an inductive proof. Following previous work on canonical forms-based LF [WCPW02,
HL07], we strengthen its statement to one that does not presuppose the well-formedness
of the context or the classifying sorts, but instead merely presupposes that hereditary
substitution is defined on them.1 We call this strengthened theorem “proto-substitution”
and prove it in several parts. In order to capture the convention that we only sort-check
well-typed terms, proto-substitution includes hypotheses about well-typedness of terms
(set in gray); these hypotheses use an erasure Γ∗ that transforms an LFR context into an
LF context.

·∗ = · (Γ, x::S⊏A)∗ = Γ∗, x:A

The structure of the proof under this convention requires that we interleave the proof
of the core LF proto-substitution theorem. Generally, reasoning related to core LF
presuppositions is analogous to refinement-related reasoning and can be dealt with
mostly orthogonally, but the presuppositions are necessary in certain cases.

1Taking care to stage the theorem to require only minimal assumptions simplifies the proof dramatically.
If we were to presuppose well-formedness of the context and the classifying sort, then we would have to
ensure the well-formedness of the sort output by the synthesis judgment in order to be able to apply the
inductive hypothesis for the checking premise of the Π-E rule. To ensure the well-formedness of the sort
synthesized by theΠ-E rule, though, we would need the substitution theorem on sorts. As a consequence,
at the very least we would have to include the substitution theorem for sorts in our mutual induction,
but it’s not even clear that such a strategy is tenable: it is difficult if not impossible to find an suitable
induction metric to justify the inductive call to substitution on sorts at the point where it is needed.

35

Theorem 3.15 (Proto-Substitution, terms).

1. If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L
⊢ N0 ⇐ A0) , and

• ΓL, x0::S0⊏A0, ΓR ⊢ N⇐ S (and Γ∗
L
, x0:A0, Γ

∗
R
⊢ N⇐ A) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
, and

• [N0/x0]s
A0

S = S8 (and [N0/x0]a
A0

A = A8) ,

then

• [N0/x0]n
A0

N = N8 , and

• ΓL, Γ
8

R
⊢ N8 ⇐ S8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ N8 ⇐ A8) .

2. If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L
⊢ N0 ⇐ A0) , and

• ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S (and Γ∗
L
, x0:A0, Γ

∗
R
⊢ R⇒ A) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]s
A0

S = S8 (and [N0/x0]a
A0

A = A8), and

• either

– [N0/x0]rr
A0

R = R8 and

– ΓL, Γ
8

R
⊢ R8 ⇒ S8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ R8 ⇒ A8),

or

– [N0/x0]rn
A0

R = (N8, (A8)−) and

– ΓL, Γ
8

R
⊢ N8 ⇐ S8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ N8 ⇐ A8) .

Note: We tacitly assume the implicit signature Σ is well-formed. We do not tacitly
assume that any of the contexts, sorts, or types are well-formed. We do tacitly assume
that contexts respect the usual variable conventions in that bound variables are always
fresh, both with respect to other variables bound in the same context and with respect
to other free variables in terms outside the scope of the binding.

Proof (sketch). By lexicographic induction on (A0)− and the derivation D hypothesizing
x0::S0⊏A0.

The most involved case is that for application R1 N2. When head(R1) = x0 hereditary
substitution carries out a β-reduction, and the proof invokes the induction hypothesis
at a smaller type but not a subderivation. This case also requires Lemma 3.13 (Compo-
sition): since function sorts are dependent, the typing rule for application carries out a
substitution, and we need to compose this substitution with the [N0/x0]s

α0
substitution.

36

In the case where we check a term at sort ⊤, we require the core LF assumptions in
order to invoke the core LF proto-substitution theorem. (The full proof may be found in
Appendix B.2.) �

Next, we can prove analogous proto-substitution theorems for sorts/types and for
classes/kinds.

Theorem 3.16 (Proto-Substitution, sorts and types).

1. If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L
⊢ N0 ⇐ A0) ,

• ΓL, x0::S0⊏A0, ΓR ⊢ S ⊏ A (and Γ∗
L
, x0:A0, Γ

∗
R
⊢ A⇐ type) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]s
A0

S = S8 (and [N0/x0]a
A0

A = A8) , and

• ΓL, Γ
8

R
⊢ S8 ⊏ A8 , (and Γ∗

L
, (Γ8

R
)∗ ⊢ A8 ⇐ type) .

2. If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L
⊢ N0 ⇐ A0) ,

• ΓL, x0::S0⊏A0, ΓR ⊢ Q ⊏ P⇒ L (and Γ ⊢ P⇒ K) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]
q

A0
Q = Q8 (and [N0/x0]

p

A0
P = P8) , and

• [N0/x0]l
A0

L = L8 (and [N0/x0]k
A0

K = K8) , and

• ΓL, Γ
8

R
⊢ Q8 ⊏ P8 ⇒ L8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ P8 ⇒ K8) .

Proof. By induction on the derivation hypothesizing x0::S0⊏A0, using Theorem 3.15
(Proto-Substitution, terms). The reasoning is essentially the same as the reasoning
for Theorem 3.15. �

Theorem 3.17 (Proto-Substitution, classes and kinds).
If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L
⊢ N0 ⇐ A0) ,

• ΓL, x0::S0⊏A0, ΓR ⊢ L ⊏ K (and Γ∗
L
, x0:A0, Γ

∗
R
⊢ K⇐ kind) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

37

• [N0/x0]l
A0

L = L8 (and [N0/x0]k
A0

K = K8) , and

• ΓL, Γ
8

R
⊢ L8 ⊏ K8 , (and Γ∗

L
, (Γ8

R
)∗ ⊢ K8 ⇐ kind) .

Proof. By induction on the derivation hypothesizing x0::S0⊏A0, using Theorem 3.16
(Proto-Substitution, sorts and types). �

Then, we can finish proto-substitution by proving a proto-substitution theorem for
contexts.

Theorem 3.18 (Proto-Substitution, contexts).
If

• ΓL ⊢ N0 ⇐ S0 (and Γ∗
L
⊢ N0 ⇐ A0) , and

• ⊢ ΓL, x0::S0⊏A0 ctx (and ⊢ Γ∗
L
, x0:A0, Γ

∗
R

ctx) ,

then

• [N0/x0]
γ

A0
ΓR = Γ

8

R
, and

• ⊢ ΓL, Γ
8

R
ctx (and ⊢ Γ∗

L
, (Γ8

R
)∗ ctx) .

Proof. Straightforward induction on ΓR. �

Finally, we have enough to obtain a proof of the desired substitution theorem.

Theorem 3.19 (Substitution). Suppose ΓL ⊢ N0 ⇐ S0 . Then:

1. If

• ⊢ ΓL, x0::S0⊏A0, ΓR ctx , and

• ΓL, x0::S0⊏A0, ΓR ⊢ S ⊏ A , and

• ΓL, x0::S0⊏A0, ΓR ⊢ N⇐ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ⊢ ΓL, Γ
′
R

ctx , and

• [N0/x0]s
A0

S = S′ and [N0/x0]a
A0

A = A′ and ΓL, Γ
′
R
⊢ S′ ⊏ A′ , and

• [N0/x0]n
A0

N = N′ and ΓL, Γ
′
R
⊢ N′ ⇐ S′ ,

2. If

• ⊢ ΓL, x0::S0⊏A0, ΓR ctx and

• ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ⊢ ΓL, Γ
′
R

ctx , and [N0/x0]s
A0

S = S′ , and either

38

– [N0/x0]rr
A0

R = R′ and ΓL, Γ
′
R
⊢ R′ ⇒ S′ , or

– [N0/x0]rn
A0

R = (N′, α′) and ΓL, Γ
′
R
⊢ N′ ⇐ S′ ,

and similarly for other syntactic categories.

Proof. Straightforward corollary of Proto-Substitution Theorems 3.15, 3.16, 3.17, and
3.18. �

Having proven substitution, we henceforth tacitly assume that all subjects of a judg-
ment are sufficiently well-formed for the judgment to make sense. In particular, we
assume that all contexts are well-formed, and whenever we assume Γ ⊢ N ⇐ S, we
assume that for some well-formed type A, we have Γ ⊢ S ⊏ A and Γ ⊢ N ⇐ A. These
assumptions embody our refinement restriction: we only sort-check a term if it is already
well-typed and even then only at sorts that refine its type.

Similarly, whenever we assume Γ ⊢ S ⊏ A, we tacitly assume that Γ ⊢ A⇐ type, and
whenever we assume Γ ⊢ L ⊏ K, we tacitly assume that Γ ⊢ K⇐ kind.

3.3.2 Identity

Just as we needed a composition lemma to prove the substitution theorem, in order to
prove the identity theorem we need a lemma about how η-expansion commutes with
substitution.2

In stating this lemma, we require a judgment that predicts the simple type output of
“rn” substitution. This judgment just computes the simple type as in “rn” substitution,
but without computing anything having to do with substitution. Since it resembles a sort
of “approximate typing judgment”, we write it x0:α0 ⊢ R : α. As with “rn” substitution,
it is only defined when the head of R is x0.

x0:α0 ⊢ x0 : α0

x0:α0 ⊢ R : α→ β

x0:α0 ⊢ R N : β

Lemma 3.20. If [N0/x0]rn
α0

R = (N′, α′) and x0:α0 ⊢ R : α, then α′ = α.

Proof. Straightforward induction. �

Lemma 3.21 (Commutativity of Substitution and η-expansion). Substitution commutes
with η-expansion. In particular:

1. (a) If [ηα(x)/x]n
α N = N′, then N = N′ ,

(b) If [ηα(x)/x]rr
α R = R′, then R = R′ ,

(c) If [ηα(x)/x]rn
α R = (N, β), then ηβ(R) = N ,

2. If [N0/x0]n
α0
ηα(R) = N′, then

2The categorically-minded reader might think of this as the right and left unit laws for ◦while thinking
of the composition lemma above as the associativity of ◦, where ◦ in the category represents substitution,
as usual.

39

(a) if head(R) , x0, then [N0/x0]rr
α0

R = R′ and ηα(R′) = N′ ,

(b) if head(R) = x0 and x0:α0 ⊢ R : α, then [N0/x0]rn
α0

R = (N′, α) ,

and similarly for other syntactic categories.

Proof (sketch). By lexicographic induction on α and the given substitution derivation.
The proofs of clauses 1a, 1b, and 1c analyze the substitution derivation, while the proofs
of clauses 2a and 2b analyze the simple type α at which R is η-expanded. (The full proof
may be found in Appendix B.3.) �

Note: By considering the variable being substituted for to be a bound variable
subject to α-conversion3, we can see that our commutativity theorem is equivalent to
an apparently more general one where the η-expanded variable is not the same as the
substituted-for variable. For example, in the case of clause (1a), we would have that if
[ηα(x)/y]n

α N = N′, then [x/y] N = N′. We will freely make use of this fact in what follows
when convenient.

Theorem 3.22 (Expansion). If Γ ⊢ S ⊏ A and Γ ⊢ R⇒ S, then Γ ⊢ ηA(R)⇐ S.

Proof (sketch). By induction on S. The Πx::S1⊏A1. S2 case relies on Theorem 3.19 (Sub-
stitution) to show that [ηA1

(x)/x]s
A1

S2 is defined and on Lemma 3.21 (Commutativity) to
show that it is equal to S2. (The full proof may be found in Appendix B.4.) �

Theorem 3.23 (Identity). If Γ ⊢ S ⊏ A, then Γ, x::S⊏A ⊢ ηA(x)⇐ S.

Proof. Corollary of Theorem 3.22 (Expansion). �

3.4 Subsorting at Higher Sorts

Our bidirectional typing discipline limits subsorting checks to a single rule, the switch
rule when we switch modes from checking to synthesis. Since we insist on typing only
canonical forms, this rule is limited to checking at atomic sorts Q, and consequently,
subsorting need only be defined on atomic sorts. These observations naturally lead one
to ask, what is the status of higher-sort subsorting in LFR? How do our intuitions about
things like structural rules, variance, and distributivity—in particular, the rules shown
in Figure 3.2—fit into the LFR picture?

It turns out that despite not explicitly including subsorting at higher sorts, LFR
implicitly includes an intrinsic notion of higher-sort subsorting through the η-expansion
associated with canonical forms. The simplest way of formulating this intrinsic notion is
as a variant of the identity principle: S is taken to be a subsort of T if Γ, x::S⊏A ⊢ ηA(x)⇐
T. This notion is equivalent to a number of other alternate formulations, including a
subsumption-based formulation and a substitution-based formulation.

3In other words, by reading [N0/x0]n
α0

N = N′ as something like substn
α0

(N0, x0.N) = N′, where x0 is
bound in N.

40

S1 ≤ S2

S ≤ S
(refl)

S1 ≤ S2 S2 ≤ S3

S1 ≤ S3

(trans)
S2 ≤ S1 T1 ≤ T2

Πx::S1.T1 ≤ Πx::S2.T2

(S-Π)

S ≤ ⊤
(⊤-R)

T ≤ S1 T ≤ S2

T ≤ S1 ∧ S2

(∧-R)

S1 ≤ T

S1 ∧ S2 ≤ T
(∧-L1)

S2 ≤ T

S1 ∧ S2 ≤ T
(∧-L2)

⊤ ≤ Πx::S.⊤
(⊤/Π-dist)

(Πx::S.T1) ∧ (Πx::S.T2) ≤ Πx::S. (T1 ∧ T2)
(∧/Π-dist)

Figure 3.2: Derived rules for subsorting at higher sorts.

Theorem 3.24 (Alternate Formulations of Subsorting). Suppose that for some Γ0, we have
Γ0 ⊢ S1 ⊏ A and Γ0 ⊢ S2 ⊏ A, and define:

1. S1 ≤1 S2

def
= for all Γ and R: if Γ ⊢ R⇒ S1, then Γ ⊢ ηA(R)⇐ S2.

2. S1 ≤2 S2

def
= for all Γ: Γ, x::S1⊏A ⊢ ηA(x)⇐ S2.

3. S1 ≤3 S2

def
= for all Γ and N: if Γ ⊢ N ⇐ S1, then Γ ⊢ N ⇐ S2.

4. S1 ≤4 S2

def
= for all ΓL, ΓR, N, and S: if ΓL, x::S2⊏A, ΓR ⊢ N ⇐ S then ΓL, x::S1⊏A, ΓR ⊢

N ⇐ S

5. S1 ≤5 S2

def
= for all ΓL, ΓR, N, S, and N1: if ΓL, x::S2⊏A, ΓR ⊢ N ⇐ S and ΓL ⊢ N1 ⇐ S1,

then ΓL, [N1/x]
γ

A
ΓR ⊢ [N1/x]n

A
N ⇐ [N1/x]s

A
S.

Then, S1 ≤1 S2 ⇐⇒ S1 ≤2 S2 ⇐⇒ · · · ⇐⇒ S1 ≤5 S2.

Proof. Using the identity and substitution principles along with Lemma 3.21, the com-
mutativity of substitution with η-expansion.

1 =⇒ 2 By rule, Γ, x::S1⊏A ⊢ x⇒ S1. By 1, Γ, x::S1⊏A ⊢ ηA(x)⇐ S2.

2 =⇒ 3 Suppose Γ ⊢ N ⇐ S1. By 2, Γ, x::S1⊏A ⊢ ηA(x)⇐ S2. By Theorem 3.19 (Substitu-
tion), Γ ⊢ [N/x]n

A
ηA(x)⇐ S2. By Lemma 3.21 (Commutativity), Γ ⊢ N ⇐ S2.

3 =⇒ 4 Suppose ΓL, x::S2⊏A, ΓR ⊢ N ⇐ S. By weakening, ΓL, y::S1⊏A, x::S2⊏A,
ΓR ⊢ N ⇐ S. By Theorem 3.23 (Identity), ΓL, y::S1⊏A ⊢ ηA(y) ⇐ S1. By 3,

41

ΓL, y::S1⊏A ⊢ ηA(y) ⇐ S2. By Theorem 3.19 (Substitution), ΓL, y::S1⊏A,
[ηA(y)/x]

γ

A
ΓR ⊢ [ηA(y)/x]n

A
N ⇐ [ηA(y)/x]s

A
S. By Lemma 3.21 (Commutativity)

and α-conversion, ΓL, x::S1⊏A, ΓR ⊢ N⇐ S.

4 =⇒ 5 Suppose ΓL, x::S2⊏A, ΓR ⊢ N ⇐ S and ΓL ⊢ N1 ⇐ S1. By 4, ΓL, x::S1⊏A,
ΓR ⊢ N ⇐ S. By Theorem 3.19 (Substitution), ΓL, [N1/x]

γ

A
ΓR ⊢ [N1/x]n

A
N ⇐

[N1/x]s
A

S.

5 =⇒ 1 Suppose Γ ⊢ R ⇒ S1. By Theorem 3.22 (Expansion), Γ ⊢ ηA(R) ⇐ S1. By
Theorem 3.23 (Identity), Γ, x::S2⊏A ⊢ ηA(x) ⇐ S2. By 5, Γ ⊢ [ηA(R)/x]n

A
ηA(x) ⇐ S2.

By Lemma 3.21 (Commutativity), Γ ⊢ ηA(R)⇐ S2. �

If we take “subsorting as η-expansion” to be our model of subsorting, we can show
the “usual” presentation in Figure 3.2 to be both sound and complete with respect to this
model. In other words, subsorting as η-expansion really is subsorting (soundness), and
it is no more than subsorting (completeness). Alternatively, we can say that completeness
demonstrates that there are no subsorting rules missing from the usual declarative
presentation: Figure 3.2 accounts for everything covered intrinsically by η-expansion.
By the end of this section, we will have shown both theorems: if S ≤ T, then Γ, x::S⊏A ⊢
ηA(x)⇐ T, and vice versa.

Soundness is a straightforward inductive argument.

Theorem 3.25 (Soundness of Declarative Subsorting). If S ≤ T, thenΓ, x::S⊏A ⊢ ηA(x)⇐
T.

Proof. By induction on the derivation of S ≤ T. The alternate formulations given by
Theorem 3.24 are useful in many cases. �

The proof of completeness is considerably more intricate. We demonstrate complete-
ness via a detour through an algorithmic subsorting system very similar to the algorith-
mic typing system from Section 3.2, with judgments ∆ ≦ S and ∆ @ x::∆1⊏A1 = ∆2. To
show completeness, we show that intrinsic subsorting implies algorithmic subsorting
and that algorithmic subsorting implies declarative subsorting; the composition of these
theorems is our desired completeness result.

If Γ, x::S⊏A ⊢ ηA(x)⇐ T, then split(S) ≦ T. (Theorem 3.39 below.)

If split(S) ≦ T, then S ≤ T. (Theorem 3.31 below.)

The following schematic representation of soundness and completeness may help the
reader to understand the key theorems.

“declarative”
S ≤ T

soundness
-

“intrinsic”
Γ, x::S⊏A ⊢ ηA(x)⇐ T

completeness

“algorithmic”
split(S) ≦ T

�

�

42

∆ ≦ S

∆ ≦ ⊤

∆ ≦ S1 ∆ ≦ S2

∆ ≦ S1 ∧ S2

Q′ ∈ ∆ Q′ ≤ Q

∆ ≦ Q

∆ @ x::split(S1)⊏A1 = ∆2 ∆2 ≦ S2

∆ ≦ Πx::S1⊏A1. S2

∆ @ x::∆1⊏A1 = ∆2

· @ x::∆1⊏A1 = ·

∆ @ x::∆1⊏A1 = ∆2 ∆1 ≦ S1 [ηA1
(x)/y]n

A1
S2 = S′2

(∆,Πy::S1⊏A1. S2) @ x::∆1⊏A1 = ∆2, split(S′2)

∆ @ x::∆1⊏A1 = ∆2 ∆1 6≦ S1

(∆,Πy::S1⊏A1. S2) @ x::∆1⊏A1 = ∆2

∆ @ x::∆1⊏A1 = ∆2 ∄S′2. [ηA1
(x)/y]s

A1
S2 = S′2

(∆,Πy::S1⊏A1. S2) @ x::∆1⊏A1 = ∆2

∆ @ x::∆1⊏A1 = ∆2

(∆,Q) @ x::∆1⊏A1 = ∆2

Figure 3.3: Algorithmic subsorting.

As mentioned above, the algorithmic subsorting system is characterized by two
judgments: ∆ ≦ S and ∆ @ x::∆1⊏A1 = ∆2 ; rules defining them are shown in Figure 3.3.
As in Section 3.2, ∆ represents an intersection-free list of sorts. The interpretation of the
judgment ∆ ≦ S, made precise below, is roughly that the intersection of all the sorts in ∆
is a subsort of the sort S.

The rule for checking whether∆ is a subsort of a function type makes use of the appli-
cation judgment ∆ @ x::∆1⊏A1 = ∆2 to extract all of the applicable function codomains
from the list ∆. As in Section 3.2, care is taken to ensure that this judgment is defined
even in seemingly “impossible” scenarios that well-formedness preconditions would
rule out, like ∆ containing atomic sorts or hereditary substitution being undefined.

First, we must verify that the definitions of the two judgments are well-founded since
they involve negative occurrences. We make use of the following ordering: ∆ is smaller
than S if every element of ∆ is a subterm of S, and ∆ is smaller than ∆′ if every element
of ∆ is a subterm of some element of ∆′. We combine it with the unordered pair ordering
that we saw in the proof of Lemma 3.13 (Composition of Substitutions).

Theorem 3.26. Algorithmic subsorting is decidable. In particular:

1. Given ∆ and S, either ∆ ≦ S or ∆ 6≦ S.

2. Given ∆, ∆1, and A1, there is a ∆2 smaller than ∆ such that ∆ @ x::∆1⊏A1 = ∆2.

43

S1 ≤ T1 S2 ≤ T2

S1 ∧ S2 ≤ T1 ∧ T2

(S-∧)
S1 ∧ (S2 ∧ S3) ≤ (S1 ∧ S2) ∧ S3

(∧-assoc)

S ≤ Πx::T1.T2 T1 ≤ S1

S ∧Πx::S1. S2 ≤ Πx::T1. (T2 ∧ S2)
(∧/Π-dist′)

Figure 3.4: Useful rules derivable from those in Figure 3.2.

Proof. By mutual induction on the unordered pairs {∆, S} and {∆,∆1}. For each applicable
rule, the premises are either known to be decidable or at a smaller pair. In the second
clause, whatever the inputs are, some rule applies, but when ∆ = ∆′,Πy::S1⊏A1. S2, we
require the unordered inductive hypothesis to tell us that either ∆1 ≦ S1 or ∆1 6≦ S1. �

Our next task is to demonstrate that the algorithm has the interpretation alluded to
above. To that end, we define an operator

∧
(−) that transforms a list ∆ into a sort S by

“folding” ∧ over ∆ with unit ⊤.

∧
(·) = ⊤

∧
(∆, S) =

∧
(∆) ∧ S

Now our goal is to demonstrate that if the algorithm says ∆ ≦ S, then declaratively∧
(∆) ≤ S. First, we prove some useful properties of the

∧
(−) operator.

Lemma 3.27.
∧

(∆1) ∧
∧

(∆2) ≤
∧

(∆1,∆2)

Proof. Straightforward induction on ∆2. �

Lemma 3.28. S ≤
∧

(split(S)).

Proof. Straightforward induction on S. �

Lemma 3.29. If Q′ ∈ ∆ and Q′ ≤ Q, then
∧

(∆) ≤ Q.

Proof. Straightforward induction on ∆. �

Theorem 3.30 (Generalized Algorithmic⇒ Declarative).

1. If D :: ∆ ≦ T, then
∧

(∆) ≤ T.

2. If D :: ∆ @ x::∆1⊏A1 = ∆2, then
∧

(∆) ≤ Πx::
∧

(∆1)⊏A1.
∧

(∆2).

Proof (sketch). By induction onD, using Lemmas 3.27, 3.28, and 3.29. The derivable rules
from Figure 3.4 come in handy in the proof of clause 2. (The full proof may be found in
Appendix B.5.) �

Theorem 3.30 is sufficient to prove that algorithmic subsorting implies declarative
subsorting.

44

Theorem 3.31 (Algorithmic⇒ Declarative). If split(S) ≦ T, then S ≤ T.

Proof. Suppose split(S) ≦ T. Then,
∧

(split(S)) ≤ T By Theorem 3.30.
S ≤
∧

(split(S)) By Lemma 3.28.
S ≤ T By rule trans.

�

Now it remains only to show that intrinsic subsorting implies algorithmic. To do so,
we require some lemmas. First, we extend our notion of a sort S refining a type A to an
entire list of sorts ∆ refining a type A in the obvious way.

Γ ⊢ · ⊏ A

Γ ⊢ ∆ ⊏ A Γ ⊢ S ⊏ A

Γ ⊢ (∆, S) ⊏ A

This new notion has the following important properties.

Lemma 3.32. If Γ ⊢ ∆1 ⊏ A and Γ ⊢ ∆2 ⊏ A, then Γ ⊢ ∆1,∆2 ⊏ A.

Proof. Straightforward induction on ∆2. �

Lemma 3.33. If Γ ⊢ S ⊏ A, then Γ ⊢ split(S) ⊏ A.

Proof. Straightforward induction on S. �

Lemma 3.34. If D :: Γ ⊢ ∆ ⊏ Πx:A1.A2 and E :: Γ ⊢ ∆ @ N = ∆2 and [N/x]a
A1

A2 = A′2, then
Γ ⊢ ∆2 ⊏ A′2.

Proof (sketch). By induction on E, using Theorem 3.9 (Soundness of Algorithmic Typing)
to appeal to Theorem 3.19 (Substitution), along with Lemmas 3.32 and 3.33. (The full
proof may be found in Appendix B.6.) �

We will also require an analogue of subsumption for our algorithmic typing system,
which relies on two lemmas about lists of sorts.

Lemma 3.35. If Γ ⊢ ∆ ⊏ A, then for all S ∈ ∆, Γ ⊢ S ⊏ A.

Proof. Straightforward induction on ∆. �

Lemma 3.36. If for all S ∈ ∆, Γ ⊢ N ⇐ S, then Γ ⊢ N ⇐
∧

(∆).

Proof. Straightforward induction on ∆. �

Theorem 3.37 (Algorithmic Subsumption). If Γ ⊢ R⇛ ∆ and Γ ⊢ ∆ ⊏ A and ∆ ≦ S, then
Γ ⊢ ηA(R)⇚ S.

Proof. Straightforward deduction, using soundness and completeness of algorithmic
typing.

45

∀S′ ∈ ∆. Γ ⊢ R⇒ S′ By Theorem 3.9 (Soundness of Alg. Typing).
∀S′ ∈ ∆. Γ ⊢ S′ ⊏ A By Lemma 3.35.
∀S′ ∈ ∆. Γ ⊢ ηA(R)⇐ S′ By Theorem 3.22 (Expansion).
Γ ⊢ ηA(R)⇐

∧
(∆) By Lemma 3.36.

∆ ≦ S By assumption.∧
(∆) ≤ S By Theorem 3.30 (Generalized Alg. ⇒ Decl.).

Γ ⊢ ηA(R)⇐ S By Theorem 3.25 (Soundness of Decl. Subsorting) and
Theorem 3.24 (Alternate Formulations of Subsorting).

Γ ⊢ ηA(R)⇚ S By Theorem 3.11 (Completeness of Alg. Typing).

�

Now we can prove the following main theorem, which generalizes our desired
“Intrinsic⇒ Algorithmic” theorem:

Theorem 3.38 (Generalized Intrinsic⇒ Algorithmic).

1. If Γ ⊢ R⇛ ∆ and E :: Γ ⊢ ηA(R)⇚ S and Γ ⊢ ∆ ⊏ A and Γ ⊢ S ⊏ A, then ∆ ≦ S.

2. If Γ ⊢ x ⇛ ∆1 and E :: Γ ⊢ ∆ @ ηA1
(x) = ∆2 and Γ ⊢ ∆1 ⊏ A1 and Γ ⊢ ∆ ⊏ Πx:A1.A2,

then ∆ @ x::∆1⊏A1 = ∆2.

Proof (sketch). By induction on A, S, and E.
Clause 1 is most easily proved by case analyzing the sort S and applying inversion to

the derivation E. The case when S = Πx::S1⊏A1. S2 appeals to the induction hypothesis
at an unrelated derivation but at a smaller type, and Lemmas 3.32 and 3.33 are used to
satisfy the preconditions of the induction hypotheses.

Clause 2 is most easily proved by case analyzing the derivation E. In one case,
we require the contrapositive of Theorem 3.37 (Algorithmic Subsumption) to convert a
derivation of Γ 0 ηA1

(x)⇚ S1 into a derivation of ∆1 6≦ S1.
(The full proof may be found in Appendix B.7.) �

Theorem 3.38 along with Theorem 3.11, the Completeness of Algorithmic Typing,
gives us our desired result:

Theorem 3.39 (Intrinsic⇒ Algorithmic). If Γ, x::S⊏A ⊢ ηA(x)⇐ T, then split(S) ≦ T.

Proof. Suppose Γ, x::S⊏A ⊢ ηA(x)⇐ T. Then,

Γ, x::S⊏A ⊢ x⇛ split(S) By rule.
Γ, x::S⊏A ⊢ ηA(x)⇚ T By Theorem 3.11 (Completeness of Alg. Typing).
split(S) ≦ T By Theorem 3.38.

�

46

Finally, we have completeness as a simple corollary:

Theorem 3.40 (Completeness of Declarative Subsorting). If Γ, x::S⊏A ⊢ ηA(x)⇐ T, then
S ≤ T.

Proof. Corollary of Theorems 3.39 and 3.31. �

3.5 Summary

To be called a logical framework at all, there are certain properties a formal system must
possess: decidability, substitution, identity. To claim to support “subtyping”, there are
certain principles a formal system must respect: closure under subsumption, the usual
rules of subtyping.

In this chapter, we have justified LFR as a logical framework by establishing all of
the standard important metatheoretic results. And we have justified LFR as a theory
of subtyping by showing that despite only defining subsorting at base sorts, the usual
principles are derived through η-expansion, including the order-theoretic distributiv-
ity properties expected of intersections. A common theme throughout our toil was
structural inductions and syntactic methods, a simplification afforded by the modern
canonical forms approach.

These metatheoretic results and the simplicity of their proofs demonstrate that LFR is
a powerful yet practical theory, containing multitudes not obvious from its definition. In
the next chapter, we leverage some of these results to explore the power of LFR further,
relating it to another well-studied extension of LF, proof irrelevance.

47

48

Chapter 4

Subset Interpretation

We have seen in Chapter 2 that it is natural to use refinements to represent certain
subsets of data types. Conversely, refinements can be interpreted as defining subsets.
In this chapter, we take a slight detour from our primary development to exhibit an
interpretation of LF refinement types which we refer to as the “subset interpretation”.
Although the interpretation will not have much bearing on the technical developments
to come, it does provide an alternate understanding of refinement types which the
reader may find enlightening. As such, this chapter may be regarded as an optional
metatheoretic foray relating our work to previous work on proof irrelevance and subset
types.

We call this interpretation the “subset interpretation” since a sort refining a type is
interpreted as a predicate embodying the refinement, and the set of terms having that
sort is simply the subset of terms of the refined type that also satisfy the predicate.

For a simple example, recall the signature of even and odd natural numbers:

nat : type.
z : nat.
s : nat→ nat.

even ⊏ nat :: sort.
odd ⊏ nat :: sort.
z :: even.
s :: even→ odd
∧ odd→ even.

Under the subset interpretation, we translate the refinements even and odd to predicates
on natural numbers. The natural numbers themselves remain unchanged, and the
refinement declarations for z and s turn into constructors for proofs of the even and odd
predicates.

even : nat→ type.
odd : nat→ type.
ẑ : even z.
ŝ1 : Πx:nat. even x→ odd (s x).
ŝ2 : Πx:nat. odd x→ even (s x).

49

The successor function’s two unrelated sorts translate to proof constructors for two
different predicates.

We show that our interpretation is correct by proving, for instance, that a term N

has sort S if and only if its translation N̂ has type Ŝ(N), where Ŝ(−) is the translation of
the sort S into a type family representing a predicate; thus, an adequate encoding using
refinement types remains adequate after translation. The chief complication in proving
correctness is the dependency of types on terms, which forces us to deal with a coherence
problem [BTCGS91, Rey91].

Normally, subset interpretations are not subject to the issue of coherence—that is, of
ensuring that the interpretation of a judgment is independent of its derivation—since
the terms in the target of the translation are the same as the terms in the source, just with
the stipulation that a certain property hold of them. The proofs of these properties are
computationally immaterial, so they may simply be ignored. But the presence of full
dependent types in LF means that the interpretation of a sort might depend on these
proofs, potentially violating the adequacy of representations.

In order to solve the coherence problem we employ proof irrelevance, a technique
used in type theories to selectively hide the identities of terms representing proofs
[Pfe01a, AB04]. In the example, the terms whose identity should be irrelevant are those
constructing proofs of odd(n) and even(n), that is, those composed from ẑ, ŝ1, and ŝ2.

The subset interpretation completes our intuitive understanding of refinement types
as representing subsets of types. It turns out that in the presence of variable binding
and dependent types, this understanding is considerably more difficult to attain than it
might seem from the small example shown here.

We begin the remainder of the chapter by recapitulating briefly prior work on ex-
tending LF with proof irrelevance. We then describe our interpretation piece by piece,
focusing in particular on the difficulties introduced by dependencies and subsorting.
Finally, we sketch the soundness and completeness of the interpretation, obtaining as a
corollary the preservation of adequacy of representations.

4.1 Proof Irrelevance

When constructive type theory is used as a foundation for verified functional program-
ming, we notice that many parts of proofs are computationally irrelevant, that is, their
structure does not affect the returned value we are interested in. The role of these proofs
is only to guarantee that the returned value satisfies the desired specification. For ex-
ample, from a proof of ∀x:A.∃y:B.C(x, y) we may choose to extract a function f : A→ B
such that C(x, f (x)) holds for every x:A, but ignore the proof that this is the case. The
proof must be present, but its identity is irrelevant. Proof-checking in this scenario has
to ascertain that such a proof is indeed not needed to compute the relevant result.

A similar issue arises when a type theory such as λΠ is used as a logical framework.
For example, assume we would like to have an adequate representation of prime num-
bers, that is, to have a bijection between prime numbers p and closed terms M : primenum.
It is relatively easy to define a type family prime : nat→ type such that there exists a closed

50

M : prime N if and only if N is prime. Then primenum = Σn:nat. prime n is a candidate
(with members 〈N,M〉), but it is not actually in bijective correspondence with prime
numbers unless the proof M that a number is prime is always unique. Again, we need
the existence of M, but would like to ignore its identity. This can be achieved with subset
types [C+86, SS88] {x:nat | prime(x)} whose members are just the prime numbers p, but
if the restricting predicate is undecidable then type-checking would be undecidable,
which is not acceptable for a logical framework.

For LF, we further note that Σ is not available as a type constructor, so we instead
introduce a new type primenum with exactly one constructor, primenum/i:

primenum : type.
primenum/i : ΠN:nat. prime N→÷ primenum.

Here the second arrow→÷ represents a function that ignores the identity of its argument.
The inhabitants of primenum, all of the form primenum/i N [M], are now in bijective
correspondence with prime numbers since primenum/i N [M] = primenum/i N [M′] for all
M and M′.

In the extension of LF with proof irrelevance [Pfe01a, RP08], or LFI, we have a new
form of hypothesis x÷A (x has type A, but the identity of x should be irrelevant). In the
non-dependent case (the only one important for the purposes of this paper), such an
assumption is introduced by a λ-abstraction:

Γ, x÷A ⊢ M⇐ B

Γ ⊢ λx.M⇐ A→÷ B
.

We can use such variables only in places where their identity doesn’t matter, e.g., in
the second argument to the constructor primenum/i in the prime number example. More
generally, we can only use it in arguments to constructor functions that do not care about
the identity of their argument:

Γ ⊢ R⇒ A→÷ B Γ⊕ ⊢ N ⇐ A

Γ ⊢ R [N]⇒ B
.

Here, Γ⊕ is the promotion operator which converts any assumption x÷A to x:A, thereby
making x usable in N. Note that there is no direct way to use an assumption x÷A.

The underlying definitional equality “=” (usually just α-conversion on canonical
forms) is extended so that R [N] = R′ [N′] if R = R′, no matter what N and N′ are.

The substitution principle (shown here only in its simplest, non-dependent form)
captures the proper typing as well as the irrelevance of assumptions x÷A:

Principle 4.1 (Irrelevant Substitution). If Γ, x÷A ⊢ N ⇐ B and Γ⊕ ⊢ M ⇐ A then
Γ ⊢ [M/x] N ⇐ B and [M/x] N = N (under definitional equality).

One typical use of proof irrelevance in type theory is to render the typechecking of
subset types [C+86, SS88] decidable. A subset type {x:A | B(x)} represents the set of
terms of type A which also satisfy B; typechecking is undecidable because to determine

51

if a term M has this type, you must search for a proof of B(M). One might attempt to
recover decidability by using a dependent sum Σx:A.B(x), representing the set of terms
M of type A paired with proofs of B(M); typechecking is decidable, since a proof of
B(M) is provided, but equality of terms is overly fine-grained: if there are two proofs of
B(M), the two pairs will be considered unequal. Using proof irrelevance, one can find
a middle ground with the type Σx:A. [B(x)], where [−] represents the proof irrelevance
modality. Type checking is decidable for such terms, since a proof of the property B is
always given, but the identity of that proof is ignored, so all pairs with the same first
component will be considered equal.

Our situation with the subset interpretation is similar: we would like to represent
proofs of sort-checking judgments without depending on the identities of those proofs.
By carefully using proof irrelevance to hide the identities of sort-checking proofs, we
are able to make a translation that is sound and complete, preserving the adequacy of
representations.

4.2 Overview of the Interpretation

We interpret LFR into LFI by representing sorts as predicates and derivations of sorting
as proofs of those predicates. In this section, we endeavor to explain our general
translation by way of examples of it in action. The translation is derivation-directed
and compositional: for each judgment Γ ⊢ J , there is a corresponding judgment Γ ⊢
J { X whose rules mimic the rules of Γ ⊢ J . The syntactic class of X and its precise
interpretation vary from judgment to judgment. For reference, the various forms are
listed in Figure 4.1, but we will explain them in turn as they arise in our examples.

Recall our simplest example of refinement types: the natural numbers, where the
even and odd numbers are isolated as refinements.

nat : type.
z : nat.
s : nat→ nat.

even ⊏ nat.
odd ⊏ nat.
z :: even.
s :: even→ odd ∧ odd→ even.

As described above, our translation represents even and odd as predicates on natural
numbers, and the refinement declarations for z and s become declarations for constants
for constructing proofs of those predicates.

even : nat→ type.
odd : nat→ type.
ẑ : even z.
ŝ1 : Πx:nat. even x→ odd (s x).
ŝ2 : Πx:nat. odd x→ even (s x).

52

Judgment: Result:

Γ ⊢ L ⊏ K
form
{ L̂f(−) Type of proofs of the formation family

K
pred
{ K̂p(− , −) Kind of the predicate family

K
≤
{ K̂s(−,−,−,−,−) Type of coercions between families of kind K

Γ ⊢ S ⊏ A{ Ŝ(−) Metafunction representing predicate

Γ ⊢ Q ⊏ P⇒ L{ Q̂ Proof that Q is well-formed

Γ ⊢ N ⇐ S{ N̂ Proof that N has sort S

Γ ⊢ R⇒ S{ R̂ Proof that R has sort S

Γ ⊢ Q1 ≤ Q2 { F(− , −) Metacoercion from proofs of Q1 to proofs of Q2

Q1 ≤ Q2 { Q̂1-Q2 Coercion from proofs of Q1 to proofs of Q2

⊢ Γ ctx{ Γ̂ Translated context

⊢ Σ sig{ Σ̂ Translated signature

Figure 4.1: Judgments of the translation.

Starting simple, the proof constructor declaration for ẑ can be read as an assertion that
the constant z satisfies a certain predicate, namely that of being even.

In fact, every sort S will have a representation as a predicate, not just the base sorts like
even and odd. Generally, a predicate is just a type with a hole for a term; conventionally,

we write the predicate representation of S as a meta-level function Ŝ(−), and we say

that a term N satisfies such a predicate if the type Ŝ(N) is inhabited. Predicates will

be the output of the sort translation judgment, Γ ⊢ S ⊏ A { Ŝ, which mirrors the sort
formation judgment, adding a translation as an output.

For example, the predicate corresponding to the sort even→ odd is the meta-function
(Πx:nat. even x→ odd ((−) x)), and we see this predicate applied to the successor con-
stant s in the type of the proof constructor ŝ1. Thus the proof constructor declaration
for ŝ1 can also be read as an assertion: the constant s satisfies the predicate that, when
applied to an even natural number, it yields an odd one.

Our analysis suggests a general strategy for translating a refinement type declaration:
translate its sort into a predicate, and yield a declaration of a proof constructor asserting
that the predicate holds of the original constant.

⊢ Σ sig{ Σ̂ c:A ∈ Σ · ⊢Σ S ⊏ A{ Ŝ

⊢ Σ, c::S sig{ Σ̂, ĉ:̂S(ηA(c))

As a reflection of the fact that in general these predicates may be applied to arbitrary
terms, not just atomic ones, we fullyη-expand the constant before applying the predicate.

How do arrow sorts like even→ odd translate in general? Recall that S → T is just
shorthand for the dependent function sort Πx::S.T when x does not occur in T. The

53

general rule for translating dependent function sorts is:

Γ ⊢ S ⊏ A{ Ŝ Γ, x::S⊏A ⊢ T ⊏ B{ T̂

Γ ⊢ Πx::S⊏A.T ⊏ Πx:A.B{ λN.Πx:A.Πx̂:̂S(ηA(x)). T̂(N@x)
(Π-F)

There are two points of note in this rule. First, writing predicates as types with holes
becomes cumbersome, so we instead write metafunctions explicitly using meta-level
abstraction, written as a bold λ; we continue to write meta-level application using bold
(parens). Second, since as we noted above, the term argument of a predicate is in general
a canonical term, and canonical terms may not appear in application position, we appeal
to an auxiliary judgment that applies a canonical term to an atomic one, N@R = N′. It is
defined by the single clause,

(λx.N)@R = [R/x] N,

where the right-hand side is an ordinary non-hereditary substitution. Now we can read
the translation output as the predicate of a term N which holds if there is a function from

objects x : A satisfying predicate Ŝ to proofs that N applied to x satisfies predicate T̂.
But what about the fact that s only had one declaration in the original signature, but

there are two proof constructor declarations asserting predicates that hold of it? For
compositionality’s sake, we would like to translate the single refinement declaration for
s into a single proof constructor declaration, but one that can effectively serve the roles
of both ŝ1 and ŝ2. To this end, we use a product type.

ŝ : (Πx:nat. even x→ odd (s x))
× (Πx:nat. odd x→ even (s x)).

Now πi ŝ may be used anywhere ŝi was used before. Generally, an intersection sort
will translate to a conjunction of predicates, represented as a type-theoretic product.
Similarly, the nullary intersection ⊤will translate to a unit type.1

Γ ⊢ S1 ⊏ A{ Ŝ1 Γ ⊢ S2 ⊏ A{ Ŝ2

Γ ⊢ S1 ∧ S2 ⊏ A{ λN. Ŝ1(N) × Ŝ2(N)
(∧-F)

Γ ⊢ ⊤ ⊏ A{ λN. 1
(⊤-F)

What kinds of proofs inhabit these predicates? Such proofs are the output of the

term translation judgment Γ ⊢ N ⇐ S{ N̂, which mirrors the sort checking judgment,
adding a translation as an output. Generally, a derivation that a term N has sort S

will translate to a proof N̂ that the predicate Ŝ holds of N (where Ŝ is as usual the

interpretation of S as a predicate), or symbolically, if S ⊏ A{ Ŝ and N ⇐ S{ N̂, then

N̂ ⇐ Ŝ(N)—ignoring for a moment the question of what happens to the contexts. This

1Strictly speaking, this means our translation targets an extension of LFI with product and unit types.
Such an extension is orthogonal to the addition of proof irrelevance, and has been studied by many
people over the years, including Schürmann [Sch03] and Sarkar [Sar09]. Alternatively, products may
be eliminated after translation by a simple currying transformation, but that is beyond the scope of this
article.

54

expectation begins to hint at the soundness theorem we will demonstrate below, but for
now we will use it just to guide our intuitions.

For example, since an intersection sort is represented by a product of predicates,
we should expect that a term judged to have an intersection sort should translate to a
proof of a product, or a pair. Similarly, since the sort ⊤ translates to a trivially true unit
predicate, a term judged to have sort ⊤ should translate to a trivial unit element.

Γ ⊢ N⇐ S1 { N̂1 Γ ⊢ N ⇐ S2 { N̂2

Γ ⊢ N ⇐ S1 ∧ S2 { 〈N̂1, N̂2〉
(∧-I)

Γ ⊢ N ⇐ ⊤{ 〈〉
(⊤-I)

Intuitively, knowing that a term has an intersection sort S1 ∧ S2 gives us two pieces
of information about it, while knowing that a term has sort ⊤ tells us nothing new.
This aspect of our translation is similar in spirit to Liquori and Ronchi Della Rocca’s
Λt
∧ [LRDR07], a Church-style type system for intersections in which derivations are

explicitly represented as proofs and intersections as products, though in their setting the
proofs are viewed as part of a program rather than the output of a translation.

We can similarly intuit the appropriate proof for an implication predicate by exam-
ining the rule for translating Πx::S.T above. We start from the sort-checking rule Π-I,
which shows that a term λx.N has sort Πx::S.T. To prove that the corresponding Π
predicate holds of λx.N, we will have to produce a function taking an object x of type A

and a proof that x satisfies Ŝ and yielding a proof that (λx.N)@x = [x/x] N = N satisfies

T̂. This is easily done: the translation of the body N is precisely the proof we require
about N, and we wrap this in two λ-abstractions to get a proof of the Π predicate.

Γ, x::S⊏A ⊢ N ⇐ T{ N̂

Γ ⊢ λx.N⇐ Πx::S⊏A.T{ λx. λx̂. N̂
(Π-I)

Careful examination of the Π-I rule reveals a subtlety: it is clear from our under-
standing of the sort-checking part of the rule that the free variables of N and T may

include x, but we seem to have indicated by our λ-abstraction that the proof N̂ may
depend not only on the variable x, but also on a variable x̂. Where did this second
variable come from?

The answer—as hinted above—is that we have not yet specified with respect to what
context the translation of a term is to be interpreted. This context should in fact be
the translation of the context Γ associated with the original term N, and by convention

we write it as Γ̂. The judgment translating contexts is an annotated version of the

context-formation judgment, written ⊢ Γ ctx{ Γ̂.

⊢ · ctx{ ·

⊢ Γ ctx{ Γ̂ Γ ⊢ S ⊏ A{ Ŝ

⊢ Γ, x::S⊏A ctx{ Γ̂, x:A, x̂:̂S(ηA(x))

The second rule is quite similar to the translation rule we have seen for signature
declarations c:A: each declaration x::S⊏A splits into a typing declaration x:A and a proof

55

Γ ⊢Σ R+ ⇒ S−{ R̂−

c::S ∈ Σ

Γ ⊢ c⇒ S{ ĉ
(const)

x::S⊏A ∈ Γ

Γ ⊢ x⇒ S{ x̂
(var)

Γ ⊢ R1 ⇒ Πx::S2⊏A2. S{ R̂1 Γ ⊢ N2 ⇐ S2 { N̂2 [N2/x]s
A2

S = S′

Γ ⊢ R1 N2 ⇒ S′ { R̂1 N2 N̂2

(Π-E)

Γ ⊢ R⇒ S1 ∧ S2 { R̂

Γ ⊢ R⇒ S1 { π1 R̂
(∧-E1)

Γ ⊢ R⇒ S1 ∧ S2 { R̂

Γ ⊢ R⇒ S2 { π2 R̂
(∧-E2)

Figure 4.2: Translation rules for atomic term sort synthesis

declaration x̂:̂S(ηA(x)). Now it is easily seen why the proof N̂ in the translation rule Π-I

may depend on x̂: our soundness criterion will tell us that Γ̂, x:A, x̂:̂S(ηA(x)) ⊢ N̂ ⇐ T̂(N).
There is just one sort checking rule remaining: the switch rule for checking an

atomic term at a base sort. This rule appeals to subsorting, so we postpone discussion
of it until we discuss the translation of subsorting judgments in Section 4.4. For now,
the reader may think of the rule as simply returning the result of the sort synthesis

translation judgment, Γ ⊢ R ⇒ S { R̂. At the base cases, this judgment returns the
hatted proof constants ĉ and variables x̂ we have seen in the translations of signature
declarations and contexts. The other rules correspond to elimination forms, and they
follow straightforwardly by the same intuitions we used to derive the introduction rules
in the sort checking translation. All the rules for this judgment are shown in Figure 4.2.

There is also just one sort formation rule remaining: the rule for translating base sorts
Q. Although this translation seems straightforward in the case of simple sorts like even
and odd, it is rather subtle when it comes to dependent sort families due to a problem
of coherence. To explain, we return to another early example, the doubling relation on
natural numbers.

4.3 Dependent Base Sorts

Recall the double relation defined as a type family in LF:

double : nat→ nat→ type.
dbl/z : double z z.
dbl/s :ΠN:nat.ΠN2:nat. double N N2→ double (s N) (s (s N2)).

As we saw earlier, we can use LFR refinement kinds, or classes, to express and enforce the
property that the second subject of any doubling relation is always even, no matter what

56

properties hold of the first subject. To do so we define a sort double* which is isomorphic
to double, but has a more precise class.2

double* ⊏ double :: ⊤→ even→ sort.
dbl/z :: double* z z.
dbl/s :: ΠN::⊤. ΠN2::even. double* N N2 → double* (s N) (s (s N2)).

Successfully sort-checking the declarations for dbl/z and dbl/s demonstrates that when-
ever double* M N is inhabited, the second argument, N, is even.

There is a crucial difference between refinements like even or odd and refinements
like double*: while even and odd denote particular subsets of the natural numbers, the
inhabitants of the refinement double* M N are identical to those of the ordinary type
double M N. What is important is not whether a particular instance double* M N is
inhabited, but rather whether it is well-formed at all.

For this reason, we separate the formation of a dependent refinement type family from
its inhabitation. Simple sorts like even and odd are always well-formed, but we would
like a way to explicitly represent the formation of an indexed sort like double* M N.

Therefore, we translate double* into two parts: a formation family, written ̂double*, and a
predicate family, written using the original name of the sort, double*.

There are two declarations involving the formation family. First, the declaration of
the formation family itself:

̂double* : nat→ nat→ type.

The formation family has the same kind as the original refined type. Intuitively, the

formation family ̂double* M N should be inhabited whenever the sort double* M N would

have been a well-formed sort pre-translation. For example, ̂double* z z will be inhabited,
since double* z z was a well-formed sort.

Next, we have a constructor for the formation family:

̂double*/i : Πx:nat.Πy:nat. even y→ ̂double* x y.

The constructor takes all the arguments to double* along with evidence that they have the
appropriate sorts and yields a member of the formation family, i.e., a proof that double*

applied to those arguments was well-formed pre-translation. For example, ̂double*/i z z ẑ
is a proof that double* z z was well-formed, since it contains the necessary evidence: a
proof that the second argument z is even.

Finally, we have a declaration for the predicate family itself:

double* : Πx:nat. Πy:nat. ̂double* x y→÷ double x y→ type.

For any M and N, the predicate family will be inhabited by proofs that derivations of
double M N have the refinement double* M N, provided that double* M N is well-formed
in the first place. In our doubling example, all derivations of double M N satisfy the
refinement double* M N, so the predicate family will have one inhabitant for each of them.

2Earlier, we used the name double for both the type family and the sort family refining it, but in what
follows it will be important to distinguish the two.

57

As before, these inhabitants come from the translation of the refinement declarations for
dbl/z and dbl/s. Writing arguments in irrelevant position in [square brackets], we get:

d̂bl/z : double* z z

[̂double*/i z z ẑ]
dbl/z.

d̂bl/s : ΠN:nat. ΠN2:nat. ΠN̂2:even N2. ΠD:double N N2.

double* N N2 [̂double*/i N N2 N̂2] D
→ double* (s N) (s (s N2))

[̂double*/i (s N) (s (s N2)) (̂s2 (s N2) (̂s1 N2 N̂2))]
(dbl/s N N2 D).

As is evident even from this short and abbreviated example, the interpretation leads
to a significant blowup in the size and complexity of a signature, underscoring the
importance of a primitive understanding of refinement types.

Note that in the declaration of the predicate family double*, the proof of well-
formedness is made irrelevant using a proof-irrelevant function space A →÷ B, repre-
senting functions from A to B that are insensitive to the identity of their argument.
Using irrelevance ensures that a given sort has a unique translation, up to equivalence.
We elaborate on this below.

Generalizing from the above example, a sort declaration translates into three decla-
rations: one for the formation family, one for the proof constructor for the formation family,
and one for the predicate family.

⊢ Σ sig{ Σ̂ a:K ∈ Σ · ⊢Σ L ⊏ K
form
{ L̂f K

pred
{ K̂p

⊢ Σ, s⊏a::L sig{ Σ̂, ŝ:K, ŝ/i:̂Lf(̂s), s:K̂p (̂s, a)

The class formation judgment Γ ⊢ L ⊏ K
form
{ L̂f yields a metafunction describing the type

of proofs of formation family, while an auxiliary kind translation judgment K
pred
{ K̂p

yields a metafunction describing the kind of the predicate family. As in the example,
the kind of the formation family is the same as the kind of the refined type, K.

The metafunction L̂f takes as input the formation family so far, initially just ŝ. The
translation ofΠ classes adds an argument, and the base case returns the formation family
so constructed.

Γ ⊢ S ⊏ A{ Ŝ Γ, x::S⊏A ⊢ L ⊏ K
form
{ L̂

Γ ⊢ Πx::S⊏A. L ⊏ Πx:A.K
form
{ λQf. Πx:A.Πx̂:̂S(ηA(x)). L̂(Qf ηA(x))

Γ ⊢ sort ⊏ type
form
{ λQf. Qf

58

Employing a similar trick as we did with intersection sorts, we will translate intersection
and ⊤ classes to unit and product types.

Γ ⊢ L1 ⊏ K
form
{ L̂1 Γ ⊢ L2 ⊏ K

form
{ L̂2

Γ ⊢ L1 ∧ L2 ⊏ K
form
{ λQf. L̂1(Qf) × L̂2(Qf) Γ ⊢ ⊤ ⊏ K

form
{ λQf. 1

Intersection classes give multiple ways for a sort to be well-formed, and a product of
formation families gives multiple ways to project out a proof of well-formedness.

The metafunction K̂p takes two arguments: one for the formation family so far
(initially ŝ) and one for the refined type so far (initially a). The rule forΠ kinds just adds
an argument to each:

K
pred
{ K̂

Πx:A.K
pred
{ λ(Qf, P).Πx:A. K̂(Qf ηA(x), P ηA(x))

while the translation is really characterized by its behavior on the base kind, type:

type
pred
{ λ(Qf, P). Qf →÷ P→ type

The kind of the predicate family for a base sort Q refining P is essentially a one-place
judgment on terms of type P, along with an irrelevant argument belonging to the
formation family of Q.

Finally, we are able to make sense of the rule for translating base sorts:

Γ ⊢ Q ⊏ P′ ⇒ L{ Q̂ P′ = P L = sort

Γ ⊢ Q ⊏ P{ λN. Q [Q̂] N
(Q-F)

The class synthesis translation judgment Γ ⊢ Q ⊏ P ⇒ L { Q̂ (similar to the sort
synthesis judgment; see Figure 4.3) yields a proof of Q’s formation family; thus the
predicate for a base sort Q, given an argument N, is simply the predicate family Q

applied to an irrelevant proof Q̂ that Q is well-formed and the argument itself, N.
What if we hadn’t made the proofs of formation irrelevant? Then if there were more

than one proof that Q were well-formed, a soundness problem would arise. To see
how, let us return to the doubling example. Imagine extending our encoding of natural
numbers with a sort distinguishing zero as a refinement.

zero ⊏ nat.
z :: even ∧ zero.

As with even and odd, the sort zero turns into a predicate. Now that z has two sorts, it
translates to two proof constructors.3

3For the sake of simplicity, we will continue our example with the slightly unfaithful assumptions
we’ve been making all along. Strictly speaking, zero should also have a formation family with a single
trivial member, and the two declarations ẑ1 and ẑ2 should be one declaration of product type. The point
we wish to make will be the same nonetheless.

59

Γ ⊢Σ Q+ ⊏ P− ⇒ L−{ Q̂−

s⊏a::L ∈ Σ

Γ ⊢ s ⊏ a⇒ L{ ŝ/i

Γ ⊢ Q ⊏ P⇒ Πx::S⊏A. L{ Q̂ Γ ⊢ N ⇐ S{ N̂ [N/x]l
A L = L′

Γ ⊢ Q N ⊏ P N ⇒ L′ { Q̂ N N̂

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2 { Q̂

Γ ⊢ Q ⊏ P⇒ L1 { π1 Q̂

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2 { Q̂

Γ ⊢ Q ⊏ P⇒ L2 { π2 Q̂

Figure 4.3: Translation rules for base sort class synthesis

zero : nat→ type.
ẑ1 : even z.
ẑ2 : zero z.

Next, we can observe that zero always doubles to itself and augment the declaration
of double* using an intersection class:

double* ⊏ double :: ⊤→ even→ sort

∧ zero→ zero→ sort.

After translation, since there are potentially two ways for double* x y to be well-formed,
there are two introduction constants for the formation family.

̂double*/i1 : Πx:nat. Πy:nat. even y→ ̂double* x y.
̂double*/i2 : Πx:nat. zero x→ Πy:nat. zero y→ ̂double* x y.

The declarations for ̂double* and double* remain the same.
Now recall the refinement declaration for doubling zero,

dbl/z :: double* z z ,

and observe that it is valid for two reasons, since double* z z is well-formed for two
reasons. Consequently, after translation, there will be two proofs inhabiting the forma-

tion family ̂double* z z, but only one of them will be used in the translation of the dbl/z
declaration. Supposing it is the first one, we’ll have

d̂bl/z : double* z z [̂double*/i1 z z ẑ1] dbl/z ,

but our soundness criterion will still require that the constant d̂bl/z check at the type

double* z z [̂double*/i2 z ẑ2 z ẑ2] dbl/z, the other possibility. The apparent mismatch is
resolved by the fact that the formation proofs are irrelevant, and so the two types are

60

considered equal. Without proof irrelevance, the two types would be distinct and we
would have a counterexample to the soundness theorem (Theorem 4.2) we prove below.

4.4 Subsorting

We now return to the question of how the translation handles subsorting. Recall that an
LFR signature can include subsorting declarations between sort family constants, s1≤s2.
For instance, continuing with our running example of the natural numbers, we might
note that any nat that is zero is even by declaring:

zero ≤ even.

Such a declaration may seem redundant, since the only thing declared to have sort zero
has already been declared to have sort even, but it may be necessary given the inherently
open-ended nature of an LF signature. We may find ourselves later in a situation where
we have a new hypothesis x : zero, and without the inclusion, we would not be able to
conclude that x : even. For example, the derivation of · ⊢ λx. x ⇐ zero → even requires
the inclusion to satisfy the second premise of the switch rule.

x:zero ⊢ x⇒ zero
var

zero≤even ∈ Σ

zero ≤ even

x:zero ⊢ x⇐ even
switch

· ⊢ λx. x⇐ zero→ even
Π-I

How should we translate that derivation into a proof? As we saw earlier, the repre-
sentation of zero→ even as a predicate is λN.Πx:nat. zero x→ even (N @ x), and applying
this predicate to λx. x yields the type we need the proof to have: Πx:nat. zero x→ even x.
It is not much of a leap of the imagination to see that one solution is simply to posit
a constant of the appropriate type, an explicit coercion from proofs of “zero-ness” to
proofs of “even-ness”:

zero-even : Πx:nat. zero x→ even x.

Now the translation of λx. x ⇐ zero→ even can be simply the η-expansion of this con-
stant: λx. λx̂. zero-even x x̂. This makes intuitive sense: the constant zero-even witnesses
the meaning of the declaration zero ≤ even under the subset interpretation.

Our example leads us to a rule: a subsorting declaration s1≤s2 will translate into a
declaration for a coercion constant s1-s2.

⊢ Σ sig{ Σ̂ s1⊏a::L ∈ Σ s2⊏a::L ∈ Σ a:K ∈ Σ K
≤
{ K̂s

⊢ Σ, s1≤s2 sig{ Σ̂, s1-s2:K̂s(a, ŝ1, s1, ŝ2, s2)

The auxiliary judgment K
≤
{ K̂s yields a metafunction describing the type of proof

coercions between sorts that refine a type family of kind K. The metafunction K̂s takes
five arguments: the refined type, the formation family and predicate family for the

61

domain of the coercion, and the formation family and predicate family for the codomain
of the coercion. As before, the Π translation adds an argument to each of the meta-
arguments.

K
≤
{ K̂

Πx:A.K
≤
{ λ(P,Q1f,Q1,Q2f,Q2). Πx:A. K̂(P′,Q1

′
f,Q

′
1,Q2

′
f,Q

′
2)

(where, for each P, P′ = P ηA(x))

At the base kind type, the rule outputs the type of the coercion:

type
≤
{ λ(P,Q1f,Q1,Q2f,Q2).Π f1:Q1f.Π f2:Q2f.Πx:P.Q1 [f1] x→ Q2 [f2] x

Essentially, this is the type of coercions, given x, from proofs of Q1 x to proofs of Q2 x,
but in the general case, we must pass the predicates Q1 and Q2 evidence that they are
well-formed, so the coercion requires formation proofs as inputs as well.

How do these coercions work? Recall that subsorting need only be defined at base
sorts Q, and there, it is simply the application-compatible, reflexive, transitive closure
of the declared relation. For the purposes of the translation, we employ an equivalent
algorithmic formulation of subsorting. Following the inspiration of bidirectional typing,
there are two judgments: a checking judgment that takes two base sorts as inputs and a
synthesis judgment that takes one base sort as input and outputs another base sort that
is one step higher in the subsort hierarchy.

The synthesis judgment constructs a coercion from the new coercion constants in the
signature.

s1≤s2 ∈ Σ

s1 ≤ s2 { s1-s2

Q1 ≤ Q2 { Q̂1-Q2

Q1 N ≤ Q2 N{ Q̂1-Q2 N

The checking judgment, on the other hand, constructs a meta-level coercion between
proofs of the two sorts. It is defined by two rules: a rule of reflexivity and a rule to climb
the subsort hierarchy.

Q1 = Q2

Γ ⊢ Q1 ≤ Q2 { λ(R,R1). R1

(refl)

Q1 ≤ Q′ { Q̂1-Q′ Γ ⊢ Q1 ⊏ P⇒ sort{ Q̂1

Γ ⊢ Q′ ≤ Q2 { F Γ ⊢ Q′ ⊏ P⇒ sort{ Q̂′

Γ ⊢ Q1 ≤ Q2 { λ(R, R1). F(R, Q̂1-Q′ Q̂1 Q̂′ R R1)
(climb)

The reflexivity rule’s metacoercion simply returns the proof it is given, while the climb

rule composes the actual coercion Q̂1-Q′ with the metacoercion F. Two extra premises
generate the necessary formation proofs.

62

Finally, we have described enough of the translation to explain the rule most central
to the design of LFR, the switch rule.

Γ ⊢ R⇒ Q′ { R̂ Γ ⊢ Q′ ≤ Q{ F

Γ ⊢ R⇐ Q{ F(R, R̂)
(switch)

The first premise produces a proof R̂ that R satisfies property Q′, and the second premise
generates the meta-level proof coercion that transforms such a proof into a proof that R
satisfies property Q.

Having sketched the translation and the role of proof irrelevance, we now review
some metatheoretic results.

4.5 Correctness

Our translation is both sound and complete with respect to the original system of LF
with refinement types, and so our correctness criteria will come in two flavors.

Soundness theorems tell us that the result of a translation is well-formed. But even
more importantly than telling us that our translation is on some level correct, they serve
as an independent means of understanding the translation. In a sense, a soundness
theorem can be read as the meta-level type of a translation judgment—a specification
of its intended behavior—and just as types serve as an organizing principle for the
practicing programmer, so too do soundness theorems serve the thoughtful theoretician.
We explain our soundness theorems, then, not only to demonstrate the sensibility of our
translation, but also to aid the reader in understanding its purpose.

In what follows, form(Q) represents the formation family for a base sort Q.

form(s) = ŝ form(Q N) = form(Q) N

Theorem 4.2 (Soundness). Suppose ⊢ Γ ctx{ Γ̂ and ⊢ Σ sig{ Σ̂. Then:

1. If Γ ⊢ S ⊏ A{ Ŝ and Γ ⊢ N ⇐ S{ N̂, then Γ̂ ⊢
Σ̂

N̂ ⇐ Ŝ(N).

2. If Γ ⊢ R⇒ S{ R̂, then Γ ⊢ S ⊏ A{ Ŝ and Γ̂ ⊢
Σ̂

R̂⇒ Ŝ(ηA(R))

(for some A and Ŝ).

3. If Γ ⊢ S ⊏ A{ Ŝ and Γ ⊢ N ⇐ A, then Γ̂ ⊢
Σ̂

Ŝ(N)⇐ type.

4. If Γ ⊢ Q ⊏ P⇒ L{ Q̂, then for some K, L̂f, and K̂p,

• Γ ⊢ L ⊏ K
form
{ L̂f and Γ̂ ⊢

Σ̂
Q̂⇒ L̂f(form(Q)), and

• K
pred
{ K̂p and Γ̂ ⊢

Σ̂
Q⇒ K̂p(form(Q), P).

63

5. If Γ ⊢ L ⊏ K
form
{ L̂f and Γ ⊢ P⇒ K, then Γ̂ ⊢

Σ̂
L̂f(P)⇐ type.

6. If K
pred
{ K̂p, Γ ⊢ Qf ⇒ K, and Γ ⊢ P⇒ K, then Γ̂ ⊢

Σ̂
K̂p(Qf, P)⇐ kind.

7. If Q1 ≤ Q2 { Q̂1-Q2, Γ ⊢ Q1 ⊏ P⇒ L, Γ ⊢ P⇒ K, and K
≤
{ K̂s, then Γ ⊢ Q2 ⊏ P⇒ L

and Γ̂ ⊢ Q̂1-Q2 ⇒ K̂s(P, form(Q1),Q1, form(Q2),Q2).

8. If Γ ⊢ R ⇒ P, Γ ⊢ Qi ⊏ P { Q̂i, Γ ⊢ Q1 ≤ Q2 { F, and Γ̂ ⊢ R1 ⇒ Q̂1(R), then

Γ̂ ⊢ F(R, R1)⇒ Q̂2(R).

9. If K
≤
{ K̂s, K

pred
{ K̂p, Γ ⊢ P ⇒ K, Γ ⊢ Qif ⇒ K, and Γ̂ ⊢ Qi ⇒ K̂p(Qif, P), then

Γ̂ ⊢ K̂s(P,Q1f,Q1,Q2f,Q2)⇐ type.

Proof. By induction on each clause’s main input derivation. Several clauses must be
proved mutually; for instance, clauses 1, 2, 8, and 4 are all mutual, since the rules for
translating terms refer to the translation of subsorting, the rules for translating subsorting
refer to the class synthesis translation, and since sorts may be dependent, the rules for
class synthesis translation refer back to the term translation. �

The proofs use entirely standard syntactic methods, but they appeal to several key
lemmas about the structure of the translation.

Lemma 4.3 (Erasure). If Γ ⊢ J { X, then Γ ⊢ J .

Proof. Straightforward induction on the structure of the translation derivation. The
translation rules are premise-wise strictly more restrictive than the original LFR rules,
except for the subsorting rules, which are also more restrictive in the sense that they
force rules to be applied in a certain order. �

Lemma 4.4 (Reconstruction). If Γ ⊢ J , then for some X, Γ ⊢ J { X.

Proof. By induction on the structure of the LFR derivation. The cases for the subsorting
rules require us to demonstrate that an LFR subsorting derivation can be put into
“algorithmic form”, with all uses of reflexivity and transitivity outermost and right-
nested, like the algorithmic translation rules refl and climb. We also make use of the
tacit assumption that the judgment Γ ⊢ J itself is well-formed, e.g. if J = N ⇐ S, then
Γ ⊢ S ⊏ A, which ensures that we will have the necessary formation premises when we
need to apply the climb rule. �

Erasure and reconstruction substantiate the claim that our translation is derivation-
directed by allowing us to move freely between translation judgments and ordinary
ones. Using erasure and reconstruction, we can leverage all of the LFR metatheory
without reproving it for translation judgments. For example, several cases require
us to substitute into a translation derivation: we can apply erasure, appeal to LFR’s
substitution theorem, and invoke reconstruction to get the output we require.

64

But since reconstruction only gives us some output X, we may not know that it is the
one that suits our needs. Therefore, we usually require another lemma, compositionality,
to tell us that the translation commutes with substitution. There are several such lemmas;
we show here the ones for sort and class translation. Note that compositionality is a
purely syntactic property relating the translation and substitution, and as such, the
lemma and its proof ignore the sort of the variable being substituted for, in this case x.

Lemma 4.5 (Compositionality). Let σ denote [M/x]
A

.

1. If ΓL, x:: , ΓR ⊢ S ⊏ A{ Ŝ and ΓL, σΓR ⊢ σS ⊏ σA{ Ŝ′, then σŜ(N) = Ŝ′(σN)
(for any N such that σN is defined),

2. If ΓL, x:: , ΓR ⊢ L ⊏ K
form
{ L̂ and Γ, σΓR ⊢ σL ⊏ σK

form
{ L̂′, then σ̂L(P) = L̂′(σP)

(for any P such that σP is defined),

and similarly for K
≤
{ K̂s and K

pred
{ K̂p.

Proof. Straightforward induction using functionality of hereditary substitution. The
base case of the first clause leverages the irrelevance introduced in the Q-F translation
rule: both sort formation derivations will have a premise outputting evidence for the
well-formedness of the sort, and there is no guarantee they will output the same evidence,
but since the evidence is relegated to an irrelevant position, its identity is ignored. The
second clause’s Π case appeals to the first clause, since Π classes contain sorts. �

Finally, there is a lemma demonstrating that proof variables only ever occur irrele-
vantly, so substituting for them cannot change the identity of a sort or class meta-function
output by the translation.

Lemma 4.6 (Proof Variable Substitution).

1. If ΓL, x::S0⊏A0, ΓR ⊢ S ⊏ A{ Ŝ then [M/x̂]a
A0

Ŝ(N) = Ŝ([M/x̂]n
A0

N).

2. If ΓL, x::S0⊏A0, ΓR ⊢ L ⊏ K
form
{ L̂ then [M/x̂]a

A0
L̂(P) = L̂([M/x̂]

p

A0
P).

Proof. Straightforward induction, noting in the base case, the Q-F rule, the only term
that could depend on x̂ is in an irrelevant position. �

Completeness theorems tell us that our target is not too rich: that everything we
find evidence of in the codomain of the translation actually holds true in its domain.
While important for establishing general correctness, completeness theorems are not as
informative as soundness theorems, so we give here only the cases for terms—and in
any case, those are the only cases we require to fulfill our goal of preserving adequacy.

65

In stating completeness, we syntactically isolate the set of terms that could represent

proofs using metavariables R̂ and N̂.

R̂ ::= ĉ | x̂ | R̂ N N̂ | π1 R̂ | π2 R̂

N̂ ::= F̂ | λx. λx̂. N̂ | 〈N̂1, N̂2〉 | 〈〉

F̂ ::= R̂ | Q̂1-Q2 Q̂1 Q̂2 R F

Q̂1-Q2 ::= s1-s2 | Q̂1-Q2 N

Q̂ ::= ŝ/i | Q̂ N N̂ | π1 Q̂ | π2 Q̂

Theorem 4.7 (Completeness). Suppose ⊢ Γ ctx{ Γ̂ and ⊢ Σ sig{ Σ̂. Then:

1. If Γ ⊢ S ⊏ A{ Ŝ and Γ̂ ⊢
Σ̂

N̂ ⇐ Ŝ(N), then Γ ⊢ N ⇐ S.

2. If Γ̂ ⊢
Σ̂

R̂ ⇒ B, then Γ ⊢ S ⊏ A { Ŝ, B = Ŝ(ηA(R)), and Γ ⊢ R ⇒ S (for some S, A, Ŝ,
and R).

3. If Γ̂ ⊢ F̂⇒ Q [Q̂] R, then Γ̂ ⊢ R̂⇐ Q.

4. If Γ̂ ⊢ Q̂1-Q2 ⇒ B, then K
≤
{ K̂s, B = K̂s(P, form(Q1),Q1, form(Q2),Q2), and Q1 ≤ Q2

(for some K, K̂s, P, Q1, and Q2).

5. If Γ̂ ⊢ Q̂ ⇒ B, then Γ ⊢ L ⊏ K
form
{ L̂f, B = L̂f(form(Q)), and Γ ⊢ Q ⊏ P⇒ L (for some

L, K, L̂f, and Q).

Proof. By induction over the structure of the proof term. �

Adequacy of a representation is generally shown by exhibiting a compositional
bijection between informal entities and terms of certain LFR sorts. Since we have
undertaken a subset interpretation, the set of terms of any LFR sort are unchanged
by translation, and so any bijective correspondence between those terms and informal
entities remains after translation. Furthermore, soundness and completeness tell us
that our interpretation preserves and reflects the derivability of any refinement type
judgments over those terms. Thus, we have achieved our main goal: any adequate LFR
representation can be translated to an adequate LFI representation.

4.6 Summary

In this chapter we have described a sound and complete way of embedding the language
of LF with refinement types into the language of LF with proof irrelevance. Treating
properties as predicates is an obvious idea to any practitioner of LF, but the technical sub-
tleties involved in applying just enough proof irrelevance in just the right way to achieve
the desired correspondence are significant. The comparatively high expressivity-to-cost

66

ratio afforded by refinements makes them attractive for the subset of properties they can
represent: although in some sense less powerful than proof irrelevance, refinements are
more practical in many situations.

Moving forward, we will see how refinement types can be made even more practical
through an account of sort reconstruction akin to the type reconstruction enjoyed by even
the most novice user of Twelf.

67

68

Chapter 5

Sort Reconstruction

In order to be practical as a tool for formalizing deductive systems, an implementation of
a logical framework like LF needs to have some form of type reconstruction to relieve the
user from the burdens of specifying the types of metavariables and writing numerous
redundant parameters when they are unambiguously clear from context. This need is
even greater in a logical framework with refinement types like LFR since intersection
sorts and classes can be used to encode a great deal of information about the various
forms a judgment may take. We would like to keep the user of our framework from
having to enter nearly identical versions of rules for various judgment forms.

In this chapter, we explore the problem of sort reconstruction. We start offwith a brief
overview of the entire process to set the stage for what is to come. Then, we describe
some preliminaries necessary to fully specify the sort reconstruction problem, including
a formulation of LFR known as spine form and an algorithm for first reconstructing the
ordinary types appearing in a refinement declaration. After that, we show that the
sort reconstruction problem for LFR—unlike the type reconstruction problem for LF—is
decidable, at least in principle. The naive solution is wildly impractical, though, due to
the exponential growth in the number of sorts that refine a type as new base refinements
are introduced.

Therefore, we then move on to describe a more practical algorithm for sort recon-
struction that works in two phases: first, we generate a set of constraints that must hold
for a declaration to be well-sorted, and then we determine whether those constraints
have an easy-to-find most general solution. The algorithm is sound but, by design,
only partially complete: if it succeeds, it returns the most general reconstruction, and
if no reconstruction exists, it reports an error, but the algorithm may also give up if
it determines that a declaration does not have sufficient structure to induce a solution
without enumerating the sorts that refine a type. In the last case, the user may make
the declaration more explicit with sort annotations to help point the way to the desired
reconstruction.

69

5.1 Overview

The Twelf implementation of LF has a permissive concrete syntax in which metavariables
of a declaration may be left free, types and terms may be expressly omitted, and constants
may have arbitrarily many “implicit” parameters that are expected to be inferred from
context. It is the job of type reconstruction to tame this syntax, transforming it in the
most general way possible into the fully-explicit syntax we have assumed for all of our
metatheory [Pie10].

The type reconstruction problem for LF can be stated as follows: given a declaration
with some free term variables, omitted types, and omitted terms, compute most general
closed, well-formed instance of that declaration by (1) synthesizing appropriate implicit
parameters for constants that require them, (2) computing instantiations for omitted
types and terms, and (3)Π-quantifying over the explicit free term variables and any other
variables introduced along the way. The variables quantified over represent the implicit
parameters that must be synthesized when reconstructing later declarations in which
the constant is used. The meaning of “most general” is that as many things as possible
should be left as parameters, so that the constant declared may be used in the widest
possible variety of contexts. The problem is undecidable in general due to its relationship
to higher-order unification [Dow93], but in practice, the Twelf implementation is able to
compute most general reconstructions for many typical examples.

The sort reconstruction problem for LFR can be stated as follows: given a fully type-
reconstructed declaration with some omitted sorts, compute the most general instance
of that declaration. The meaning of “most general” here is roughly that the declaration’s
parameters should be given the most general sorts possible, which will ensure that the
constant declared can be used in the widest possible variety of contexts. Interestingly,
this problem is decidable, thanks to the refinement restriction: once type reconstruction
succeeds the overall structure of the solution to sort reconstruction is determined, and
since there are finitely many sorts that refine any given type we can find the most general
solution by enumeration. In particular, after LF type reconstruction we no longer have
to perform any higher-order unification.

We begin by examining a simple example to help to illustrate the essential ideas; in
the sections that follow, we will describe the phases involved more formally. Recall the
signature of even and odd natural numbers:

nat : type.
z : nat.
s : nat→ nat.

even ⊏ nat :: sort.
odd ⊏ nat :: sort.

z :: even.
s :: even→ odd
∧ odd→ even.

70

We can define the successor relation as a judgment. Although this is a rather trivial
judgment—it has only one rule, and it is not recursive—it will serve well to highlight
the key ideas of sort reconstruction.

succ : nat→ nat→ type.
succ/i : succ X (s X).

After LF type reconstruction, the free variable X becomes quantified at type nat.

succ/i : ΠX:nat. succ X (s X).

In this particular example, the set of variables that must be quantified over—just X—is
syntactically evident, but in general this may not be the case due to the presence of
implicit dependencies in the types of free variables like X. The Twelf implementation
treats such dependencies as implicit parameters of succ and inserts placeholders for them
during the first phase of type reconstruction [Pfe91, PS99, Pie10]. It then uses a higher-
order unification algorithm [DHKP96, Ree09] to determine the most general identities for
the placeholders; any that remain uninstantiated become additional implicit parameters
of succ/i.

We can define a refinement succ’ of succ with a more precise class describing its
parity-changing behavior:

succ’ ⊏ succ :: even→ odd→ sort

∧ odd→ even→ sort.

A user of LFR might populate the refinement succ’ by giving a sort declaration for the
succ/i rule:

succ/i :: succ’ X (s X).

Since the succ’ judgment relates even numbers to odd ones and odd numbers to even
ones, the variable X may have either sort even or sort odd, and the job of sort reconstruction
is to infer this fact without the user having to write down two succ’ rules.

Before getting to the problem of sort reconstruction proper, we have to solve a prob-
lem analogous to LF type reconstruction to come up with a “fully type-reconstructed”
LFR declaration, i.e., one in which all variables are explicitly quantified and all type
information is present, but some sort information is omitted. Leveraging the refinement
restriction and the type-reconstructed LF declaration for succ/i, we can construct the
following fully type-reconstructed LFR declaration:

succ/i ::ΠX::?⊏nat. succ’ X (s X).

in which the ? represents an unknown sort. This step proceeds simply by matching the
incomplete LFR declaration against the type-reconstructed LF declaration that it refines,
leaving a ? wherever complete sort information is unavailable.

Next, we go through the type-reconstructed declaration and fill in any unknown
sorts ? with fresh sort variables like σ.

succ/i ::ΠX::σ⊏nat. succ’ X (s X).

71

Now, we are ready to tackle the problem of sort reconstruction proper, which amounts
to finding the most general sort we can fill in for the sort variables such as σ. There
may be multiple solutions of incomparable generality, in which case we intersect all
solutions together to yield the most precise classifier for the succ/i constant—the most
precise classifier for a constant is the one that will allow the constant to be applied in the
widest variety of contexts.

At this point, the impractical algorithm resorts to the finiteness of refinements to
construct a solution by enumeration: there are only four refinements of the type nat, so
we can fill in σ with each one in turn and see which instances are well-formed; if we
intersect all of the results together, we will have the most precise possible reconstruction.
The four refinements are ⊤, even, odd, and even ∧ odd, and all but the first yield a well-
formed sort when substituted for the sort variable σ in the above declaration:

ΠX::even⊏nat. succ’ X (s X)
ΠX::odd⊏nat. succ’ X (s X)
ΠX::even∧odd⊏nat. succ’ X (s X)

The last one is redundant, though, since the two previous ones are subsorts of it. Ab-
breviating succ’ X (s X) as Q, we have

ΠX::even⊏nat. Q ≤ ΠX::even∧odd⊏nat. Q and
ΠX::odd⊏nat. Q ≤ ΠX::even∧odd⊏nat. Q .

Thus, up to equivalence, we have the following as the most general reconstruction:

succ/i :: ΠX::even⊏nat. succ’ X (s X)
∧ ΠX::odd⊏nat. succ’ X (s X).

In many situations, including this example, there is a more efficient possibility than
enumeration: we can perform sort checking on the fully type-reconstructed declaration,
generating a constraint that the sort variables must obey for sort checking to succeed.
Then finding the most general solution to that constraint corresponds to finding the most
general reconstruction. Here, we generate the constraint that either σ ≤ even or σ ≤ odd,
a constraint that has two incomparable “most general” solutions, namely σ = even and
σ = odd.1 Instantiating and intersecting the two solutions together, we arrive at the same
solution as the impractical algorithm above.

In the following sections, we explain formally the above-outlined ideas. First we give
a formal account of the entire top-level signature reconstruction process (Section 5.2).
Then, we take a brief detour to describe some preliminary notions, including a term rep-
resentation known as spine form (Section 5.3.1) which we will be using for the remainder
of the chapter, the “matching” algorithm we use for LFR type reconstruction (Sec-
tion 5.3.2), and the role of sort variables and how they come into existence (Section 5.3.3).
Finally, we describe sort reconstruction proper, first as a complete but impractical algo-
rithm (Section 5.4), primarily to demonstrate the decidability of the problem, and then
as an incomplete algorithm which works well in practice (Section 5.5).

1As above, there is a third solution, σ = even∧odd, but this solution is “less general” than both solutions
given in that it makes more commitments than necessary to resolve the constraint. We return to this point
below in Section 5.5.2 when we discuss generality.

72

⊢ Σ sig ◮ Σ′

⊢ · sig ◮ ·

⊢ Σ sig ◮ Σ′ · ⊢Σ′ K⇐ kind ◮ (K′, i)

⊢ Σ, a:K sig ◮ Σ′, (a:K′, i)

⊢ Σ sig ◮ Σ′ · ⊢Σ′ A⇐ type ◮ (A′, i)

⊢ Σ, c:A sig ◮ Σ′, (c:A′, i)

⊢ Σ sig ◮ Σ′ (a:K, i) ∈ Σ′ ⊢i
Σ′ L ⊏
˜

K ◮ L1 L1 ◮
− (Ξ ⊢ L2) Ξ ⊢Σ′ L2 ⊏ K ◮ L′

⊢ Σ, s⊏a::L sig ◮ Σ′, (s⊏a::L′, i)

⊢ Σ sig ◮ Σ′ (c:A, i) ∈ Σ′ ⊢i
Σ′ S ⊏
˜

A ◮ S1 S1 ◮
− (Ξ ⊢ S2) Ξ ⊢Σ′ S2 ⊏ A ◮ S′

⊢ Σ, c::S sig ◮ Σ′, (c::S′, i)

⊢ Σ sig ◮ Σ′ (s1⊏a::L, i) ∈ Σ′ (s2⊏a::L, i) ∈ Σ′

⊢ Σ, s1≤s2 sig ◮ Σ′, s1≤s2

Figure 5.1: Signature reconstruction.

5.2 Top-level Signature Reconstruction

As shown in the overview above, we reconstruct a signature one declaration at a time: for
each declaration, we know that we have fully reconstructed the entirety of the signature
before that declaration. For LFR declarations, we then proceed first by performing LFR
type reconstruction, next by filling unknown sorts with sort variables, and finally by
performing sort reconstruction proper.

The signature reconstruction judgment in Figure 5.1 makes this intuition formal. Each
declaration is reconstructed only after the declarations preceding it, and with respect
to those reconstructed declarations. There are a number of reconstruction judgments,
which we preview briefly.

First, we assume a pair of LF type reconstruction judgments, Γ ⊢Σ K ⇐ kind ◮ (K′, i)
andΓ ⊢Σ A⇐ type ◮ (A′, i). These elaborate the classifier of an LF declaration in concrete,
“implicit” syntax to fully-explicit internal form, and correspond to what is implemented
in the Twelf system. Each judgment has the possibility of introducing some number
i of implicit parameters, and this number of implicit parameters for each constant is
recorded in its corresponding declaration in the fully reconstructed signature. The
signature reconstruction rules that refer to these judgments are set in gray in Figure 5.1
to indicate that we do not explain them further in this work; for a formal treatment of
LF type reconstruction, we refer the reader to Pientka [Pie10].

Next, we have two LFR type reconstruction judgments, ⊢i
Σ

L ⊏
˜

K ◮ L′ and ⊢i
Σ

S ⊏
˜

A ◮

73

S′. These verify the refinement restriction and elaborate LFR classifiers to fully-explicit
form. The LFR constants inherit their implicit parameters from the LF constants they
refine, so LFR type reconstruction takes the number of implicit arguments as an input
and fills in the implicit parameters based on the reconstruction of the refined declaration.
These judgments are described in more detail below in Section 5.3.2.

After type reconstruction, there is a filling pass, with judgments L ◮t (Ξ ⊢ L′) and
S ◮t (Ξ ⊢ S′), which replace unknown sorts with fresh sort variables of an appropriate
tendency, t, either maximizing (+) or minimizing (−). The goal of sort reconstruction is to
come up with the most precise possible classifier for each constant that is still an instance
of the incomplete classifier that the user wrote down, and the tendency of a sort variable
tells whether that variable is in a position that needs to be maximized or minimized in
order to attain that goal, taking contravariance of functions into account. Since at the
top-level we want to minimize the classifier, filling is done at tendency “−”. The filling
judgments also return a sort variable context Ξ containing all the free sort variables in
the result. Filling and tendencies are described in more detail below in Section 5.3.3.

Finally, we have two LFR sort reconstruction judgments, Ξ ⊢Σ L ⊏ K ◮ L′ and
Ξ ⊢Σ S ⊏ A ◮ S′. These judgments reconstruct any unknown sort information remaining
in a type-reconstructed LFR classifier. They are the main focus of this chapter, and two
different implementations are discussed below, the impractical one in Section 5.4 and
the practical one in Section 5.5.

5.3 Preliminaries

5.3.1 Spine Form LFR

The Twelf implementation of LF does not use the technology of atomic and canonical
terms we have described for its internal representation; instead, it uses an isomorphic
presentation known as spine form after Cervesato and Pfenning’s “linear spine calcu-
lus” [CP03]. The essential feature of spine form is that application has “reversed asso-
ciativity”: the head of an application is immediately exposed and all of the arguments
follow in a list called the “spine”. From a practical standpoint, spine form is useful
because it allows for much more efficient implementation of operations like unifica-
tion, which are frequently the bottleneck in logic programming and theorem proving
applications. Cervesato and Pfenning studied spine form not only as an efficient rep-
resentation technique, but also because of its connection to uniform proofs [MNPS91].
Herbelin [Her95] touched on many of the key insights in his study of a similar calculus

he called the λ-calculus, designed to extend the propositions-as-types correspondence
to (a focused fragment of) Gentzen’s intuitionistic sequent calculus.

Since spine form is the representation best suited for an implementation of a logical
framework, we study the problem of sort reconstruction using a spine form framework.
The correspondence between spine form and “spineless” atomic/canonical form is well-
understood, so we omit a detailed discussion of it here. Instead, we simply describe
the basic spine form framework and relate it informally to the framework we have been

74

using until now.
As mentioned above, the essential feature of spine form is the representation of

applicative terms as a head, which is either a variable or a constant, and a spine, which is
a list of canonical arguments that the head is applied to. In canonical terms as we have
in a logical framework, the spine must include all of the arguments, since heads must be
fully applied to be η-long—there is no such thing as a “partial application” in canonical
spine form. We have three syntactic categories: heads h, which are just variables or
constants, normal terms N, which correspond to normal terms from earlier, and spines
Sp, which correspond roughly to atomic terms R without their heads.

h ::= c | x heads

N ::= h · Sp | λx.N normal terms

Sp ::= () | (N; Sp) spines

Rules for sort-checking spine form terms are shown in Figure 5.2. Normal terms N are
sort-checked by a judgment Γ ⊢ N ⇐ S, which has a similar interpretation—and similar
rules—to the identically-written judgment in the atomic/canonical system. Spines Sp
are sort-checked by a judgment Γ ⊢ Sp :: S < Q, which can be read “under context Γ,
spine Sp can eliminate a term of sort S yielding a result that checks at sort Q”.

The two judgments come together at the rules for checking at base sorts Q. In the
atomic/canonical presentation of LF, only atomic terms may be checked at base sorts. In
spine form, “atomic terms” are terms of the form h · Sp, where h is either a constant or a
variable. The rules first determine the type of h from its entry in either the signature or
the context, and then check that Sp can eliminate h to yield a result that checks at sort Q.

Spines can be thought of as something like continuations, but with an explicit result
type, Q. Under this reading, the nil spine () is something like the identity continuation:
it can accept something of sort Q′ and yield a result of sort Q, provided that Q′ ≤ Q. The
spine (N; Sp) corresponds to a continuation which, when given a function, first applies
that function to N and then continues according to the continuation Sp. The typing
rule reflects this interpretation: (N; Sp) can take a function to a result sort Q as long as
the argument N belongs to the function’s domain and the continuation Sp can take the
function’s co-domain to the result Q. Finally, a continuation can accept an intersection
S1 ∧ S2 as long as it can accept either conjunct.

In spine form, every rule has the property that one of its subjects becomes smaller
from the conclusion to the premises. This property did not hold of atomic/canonical
form: while spine form derivations always proceed from the root of the derivation
towards the leaves, in atomic/canonical form the checking judgment proceeds from the
root upward and the synthesis judgment proceeds from the leaves downward, and they
meet in the middle at the switch rule. A pleasant consequence of the spine presentation’s
“uni-directionality” is that it can be read as a straightforward decision procedure.

Theorem 5.1 (Decidability, spine form). Spine form sort checking is decidable.

1. Given Γ, N, and S, either Γ ⊢ N ⇐ S or Γ 0 N⇐ S.

75

Γ ⊢ N ⇐ S

x::S⊏A ∈ Γ Γ ⊢ Sp :: S < Q

Γ ⊢ x · Sp⇐ Q
(var)

c::S ∈ Σ Γ ⊢ Sp :: S < Q

Γ ⊢ c · Sp⇐ Q
(const)

Γ, x::S⊏A ⊢ N ⇐ T

Γ ⊢ λx.N⇐ Πx::S⊏A.T
(Π-R)

Γ ⊢ N ⇐ ⊤
(⊤-R)

Γ ⊢ N ⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2

(∧-R)

Γ ⊢ Sp :: S < Q

Q′ ≤ Q

Γ ⊢ () :: Q′ < Q
(switch)

[N/x]s
A T = T′ Γ ⊢ Sp :: T′ < Q Γ ⊢ N ⇐ S

Γ ⊢ (N; Sp) :: Πx::S⊏A.T < Q
(Π-L)

Γ ⊢ Sp :: S1 < Q

Γ ⊢ Sp :: S1 ∧ S2 < Q
(∧-L1)

Γ ⊢ Sp :: S2 < Q

Γ ⊢ Sp :: S1 ∧ S2 < Q
(∧-L2)

Figure 5.2: The main judgments of LFR in spine form.

76

2. Given Γ, Sp, S, and Q, either Γ ⊢ Sp :: S < Q or Γ 0 Sp :: S < Q.

Proof. Straightforward lexicographic induction on N and S (for clause 1), and Sp and S
(for clause 2). �

To give a hint of the equivalence between spine form and atomic/canonical form, we
briefly sketch the translations between the two.

sp(λx.N) = λx. sp(N) ac(λx.N) = λx. ac(N)

sp(R) = sp′(R, ()) ac(h · Sp) = ac′(h, Sp)

sp′(h, Sp) = h · Sp ac′(R, ()) = R

sp′(R N, Sp) = sp′(R, (sp(N); Sp)) ac′(R, (N; Sp)) = ac′(R ac(N), Sp)

The function sp(−) translates atomic/canonical form to spine form, and the function ac(−)
translates spine form to atomic/canonical form. Both translations make use of auxiliary
functions that essentially reverse the associativity of applications one argument at a
time.

Theorem 5.2 (Atomic/canonical⇒ Spine form).

1. If Γ ⊢ac N⇐ S, then Γ ⊢sp sp(N)⇐ S.

2. If Γ ⊢ac R⇒ S and Γ ⊢sp Sp :: S < Q, then Γ ⊢sp sp′(R, Sp)⇐ Q.

Proof. By mutual induction on the derivations of Γ ⊢ac N⇐ S and Γ ⊢ac R⇒ S. �

Theorem 5.3 (Spine form⇒ Atomic/canonical).

If Γ ⊢sp N ⇐ S then Γ ⊢ac ac(N)⇐ S.

If Γ ⊢sp Sp :: S < Q, and Γ ⊢ac R⇒ S then Γ ⊢ac ac′(R, Sp)⇐ Q.

Proof. By mutual induction on the derivations of Γ ⊢sp N⇐ S and Γ ⊢sp Sp :: S < Q. �

Spine form’s regular structure also makes it easy to prove a strengthening theorem
for hypotheses that are not used.

Theorem 5.4 (Strengthening, spine form).

1. If ΓL, x:: , ΓR ⊢ N⇐ S and x < FV(ΓR) ∪ FV(N) ∪ FV(S), then ΓL, ΓR ⊢ N ⇐ S.

2. If ΓL, x:: , ΓR ⊢ Sp :: S < Q and x < FV(ΓR) ∪ FV(Sp) ∪ FV(S) ∪ FV(Q), then ΓL, ΓR ⊢

Sp :: S < Q.

Proof. Straightforward mutual induction. �

Since spines are something like continuations, the sort that a spine is checked at is in
a contravariant position and behaves “backwards” with respect to subsumption. Using
strengthening, we can partially extend Theorem 3.24 as follows:

77

Lemma 5.5 (Spine subsumption). If S ≤ T and Γ ⊢ Sp :: T < Q, then Γ ⊢ Sp :: S < Q.

Proof. Suppose S ≤ T and Γ ⊢ Sp :: T < Q. By weakening, Γ, x::T ⊢ Sp :: T < Q and then
by rule var, Γ, x::T ⊢ x ·Sp⇐ Q. By Theorem 3.24, Γ, x::S ⊢ x ·Sp⇐ Q. Then by inversion,
Γ, x::S ⊢ Sp :: S < Q and by strengthening, Γ ⊢ Sp :: S < Q. �

Recall that when we presented atomic/canonical form, we gave a “mode” interpreta-
tion of the two judgments: we said that the checking judgment Γ ⊢ N ⇐ S treated Γ, N,
and S as inputs, while the synthesis judgment Γ ⊢ R ⇒ S treated Γ and R as inputs but
produced S as an output. In the presentation of spine form we give here, all subjects of
both judgments are considered inputs, a design choice which bears some discussion.

Often in spine form calculi, the result type of the spine-checking judgment Γ ⊢ Sp ::
S < Q is considered an output.2 If we had made that choice, the subsort check would
move from the switch rule to the var and const rules: instead of performing the subsort
check when checking the nil spine, we would perform it after synthesizing a type from
an atomic term h ·S. Such an organization would seem to be more analogous to the rules
we presented for atomic/canonical form, so why did we make the opposite choice when
formulating our spine presentation?

The reason for our choice is efficiency: when thought of as a proof search procedure,
the spine form rules can be more efficient if the result sort of the spine checking judgment
is an input. Imagine checking a spine, and consider in particular the Π-L rule. If we
search for proofs of the premises in the order we have written them in the rule, we have
a chance to fail quickly in the Sp-checking premise before even bothering to check that
the argument N is appropriate. Failing quickly in this way can have a dramatic impact
on the performance of sort checking. Consider the following signature:

c :: Πx1::S1. . . .Πxk::Sk. Q’
∧ Πx1::T1. . . .Πxk::Tk. Q.

Suppose we would like to check that · ⊢ c · (N1; . . . ; Nk) ⇐ Q, where Q′ � Q. If, while
checking the spine of arguments, we choose the first conjunct in the sort of c, then we
may check all of · ⊢ N1 ⇐ S1 through · ⊢ Nk ⇐ Sk before learning that all our work was
for naught, since Q′ � Q. We will then backtrack and re-check all of the Ni, now at the
sorts Ti. If however we formulate the rules as we have, we will encounter failure with
the first conjunct before bothering to check any of the Ni at all—a factor of two savings
in time. If applications are deeply right-nested, this factor of two increase becomes an
exponential increase.

For a concrete example, it is much more efficient to use the strategy suggested by our
rules to check that · ⊢ 64⇐ even than it would be using the alternate formulation where
the spine-checking result is an output. This kind of optimization is important even in
LF to avoid needless proof search and type checking, but its importance is underscored
in the presence of intersections due to the nondeterminism they introduce into the sort
checking process.

2In such presentations, the spine checking judgment is usually written Γ ⊢ Sp :: S > Q, a notation
which suggests that the result type of the spine is produced as an output. Since we make opposite choice
here, we write the judgment suggestively as Γ ⊢ Sp :: S < Q.

78

We have now described and justified a spine form presentation of LFR suitable as
the basis of an implementation of sort reconstruction. Strictly speaking, several loose
ends remain beyond what we have shown here. For instance, we have neglected to give
translations for types and sorts and all of the requisite judgments, but a complete account
of spine form equivalence would have to treat them. In addition, we should define
hereditary substitution on spine form terms and reprove all of the relevant theorems.
But the machinery for explicating these matters precisely is well-understood, so we have
refrained from recapitulating it here, relying instead on intuition and a small sampling
of metatheoretic results.

Interestingly, it will turn out that we don’t really need substitution in our implementa-
tion anyway: thanks to the refinement restriction, after performing type reconstruction,
each base sort’s term indices are completely determined, and the only thing left for
us to discover is the identity of its head. We shall now move on to discuss the type
reconstruction process that makes this simplification possible.

5.3.2 Type Reconstruction

Just as the concrete syntax of LF accepted by the Twelf implementation allows incomplete
declarations with free metavariables, implicit parameters, and omitted type or term
information, the concrete syntax of LFR allows such incomplete declarations as well.
Fortunately, we are able to leverage Twelf’s implementation of type reconstruction
heavily to fill in most of the implicit or omitted information, freeing us to focus our
attention on reconstructing just the missing sort information. A familiar pattern repeats
itself here: thanks to the refinement restriction, we can leverage LF-based technology
essentially off-the-shelf without having to recapitulate its functionality in the context of
our new, richer type theory.

In this section, we show just precisely how we leverage Twelf’s type reconstruction
to perform a kind of type reconstruction on incomplete LFR declarations. Our type
reconstruction process serves several purposes. Primarily, it verifies a weakened form
of the refinement restriction: the sort or class in any declaration must refine the corre-
sponding type or kind. In verifying this restriction, our algorithm additionally fills in
any omitted type information, determines the identity of any omitted index parameters
to dependent sorts, and adds implicit arguments where necessary in both declarations
and uses of constants.

Why a “weakened form” of the refinement restriction? In the rules we gave in Chap-
ter 2, the refinement judgments Γ ⊢ S ⊏ A and Γ ⊢ L ⊏ K guaranteed well-formedness of
the main subject by sort-checking any embedded terms. The type reconstruction process
does not guarantee well-formedness in this sense—we defer sort-checking until the sort
reconstruction phase. Instead, it guarantees only the “structural” part of the refinement
relation: the sort produced must have an appropriate shape for the type it is meant to
refine. At base sorts, this means that the head of the sort must refine the head of the type
and their argument spines must be identical. The definition of this “weak refinement”
relation is shown in Figure 5.3. Observe that it is essentially the refinement relation

79

⊢Σ S ⊏
˜

A

s⊏a::L ∈ Σ

⊢ s · Sp ⊏
˜

a · Sp

⊢ S ⊏
˜

A ⊢ T ⊏
˜

B

⊢ Πx::S⊏A.T ⊏
˜
Πx:A.B

⊢ S1 ⊏˜
A ⊢ S2 ⊏˜

A

⊢ S1 ∧ S2 ⊏˜
A ⊢ ⊤ ⊏

˜
A ⊢ ?A ⊏˜

A

Figure 5.3: Weak refinement for sorts.

from before stripped of the checks on the index arguments of a base sort, modulo one
addition: the syntax ?A represents an unknown sort refining the type A.3

LFR type reconstruction is spread across several judgments. The main judgments
are ⊢i S ⊏

˜
A ◮ S′ and ⊢ S ⊏

˜
A ◮ S′, and are shown in Figure 5.4. The latter of these

may be read, “match concrete-syntax sort S against internal-syntax type A, elaborating
to internal-syntax sort S′.” The former is similar, but it specifies that the type A contains
i implicit arguments which should be added to the sort during elaboration; once i
becomes zero, it appeals to the i-less judgment. Most of the rules proceed as one would
expect, matching the structure of the concrete sort against that of the internal type and
inserting unknowns ?A whenever necessary. We call attention to two features of note:
the treatment of intersections and the handling of base sorts.

First, intersections are taken care of in the implicit-arguments judgment: no implicit
arguments will be inserted in front of an intersection, because the intersections are broken
down eagerly. Consider a concrete declaration like c :: p X ∧ q X, where the constant c is
known to take only one implicit parameter—clearly, this parameter must be X, but there
are two ways one might reconstruct the declaration. One is:

c :: ΠX::?. (p X ∧ q X).

The other, preferred by the rules we’ve given, is:

c :: ΠX::?. p X
∧ ΠX::?. q X.

At first glance, these two reconstructions appear equivalent because of distributivity,
but remember that eventually we must fill in the unknown sorts, and the second recon-
struction gives us more leeway in how we do so. Suppose p :: s→ sort and q :: t→ sort,
where the sorts s and t are unrelated. Then given the first type reconstruction, the best
well-formed instance we can construct is:

c :: ΠX::s∧t. (p X ∧ q X).

The metavariable X must be appropriate for both p and q. Given the second, though, we
can fill in the omitted sorts as follows:

3We frequently omit the subscript A from ?A when it is either unimportant or clear from context.

80

⊢i
Σ

S ⊏
˜

A ◮ S′

⊢i S ⊏
˜

B ◮ S′

⊢i+1 S ⊏
˜
Πx:A.B ◮ Πx:: ?A ⊏A. S′

⊢ S ⊏
˜

A ◮ S′

⊢0 S ⊏
˜

A ◮ S′

⊢i ⊤ ⊏
˜

A ◮ ⊤

⊢i S1 ⊏˜
A ◮ S′1 ⊢i S2 ⊏˜

A ◮ S′2

⊢i S1 ∧ S2 ⊏˜
A ◮ S′1 ∧ S′2

⊢Σ S ⊏
˜

A ◮ S′

⊢ S ⊏
˜

A′ ◮ S′ ⊢ A ≅ A′ ⊢ T ⊏
˜

B ◮ T′

⊢ Πx::S⊏A.T ⊏
˜
Πx:A′.B ◮ Πx::S′⊏A′.T′

(s⊏a::L, i) ∈ Σ ⊢i Sp ≅ Sp′

⊢ s · Sp ⊏
˜

a · Sp′ ◮ s · Sp′

⊢ ⊏
˜

A ◮ ?A

Figure 5.4: Type reconstruction of LFR sorts.

c ::ΠX::s. p X
∧ ΠX::t. q X.

This second reconstruction is more precise than the first:

(ΠX::s. p X) ∧ (ΠX::t. q X) ≤ (ΠX::s∧t. p X) ∧ (ΠX::s∧t. q X) by ∧-compatibility

≤ ΠX::s∧t. (p X ∧ q X) by distributivity

It is for this reason that our rules and our implementation prefer to push intersections as
far to the outside as possible: it allows for more precise sort reconstructions down the
road. (The principle of distributing intersections outward will arise again in Section 5.4.1
in the context of enumerating refinements.)

Next, we examine the handling of base sorts. As expected, to match s · Sp against
a · Sp′, the head s must refine the head a. More interesting though is the handling of
argument spines. There are three basic concerns: the concrete spine may contain omitted
subterms , it will lack any implicit parameters, and it might just be plain ill-typed. All
three concerns can be taken care of by elaborating using the internal spine Sp′, and
indeed, that’s what the rule does: it throws out the user’s input and instead uses its own
trusted internal reconstruction. This behavior may be somewhat alarming to the user, so
the implementation also performs a consistency check to verify that the concrete spine
matches that of the refined type. We will return to the discussion of this consistency
check below, but since what we have is already sufficient for our formal development,
we pause a moment to reflect.

81

Theorem 5.6 (Soundness, LFR type reconstruction).

1. If ⊢i S ⊏
˜

A ◮ S′, then ⊢ S′ ⊏
˜

A.

2. If ⊢ S ⊏
˜

A ◮ S′ then ⊢ S′ ⊏
˜

A.

Proof. Straightforward induction on the given derivation. This theorem holds even if
we delete the consistency check from the rule for elaborating base sorts. �

Syntactically, what we’ve accomplished through LFR type reconstruction is to fill in
all omitted information and implicit parameters except that which pertains to unknown
sorts. To be clear, the external, concrete syntax includes productions for omitted types,
terms, and sorts (all written as an underscore), while the internal syntax allows only
for omitted sorts (written ?A). Semantically, concrete terms may have free variables
and potentially ill-typed subterms, while the internal elaboration is fully quantified and
well-typed. At this point, we may proceed assuming the refinement restriction is in
effect: sorts have the correct structure and terms have already been typechecked.

We now return to the matter of consistency checking during elaboration of base
sorts. Although formally all of our problems are solved by ignoring the user’s input,
we would like to behave in accordance with the principle of least surprise and give
some kind of error in the case that their input disagrees with our desired reconstruction.
It’s not enough to just check the argument spines for equality: the concrete spine may
have omitted terms and lack implicit parameters. We instead have two spine consistency
judgments, ⊢i Sp ≅ Sp′ and ⊢ Sp ≅ Sp′, and a term consistency judgment ⊢ N ≅ N′, all of
whose rules are shown in Figure 5.5.

The basic spine consistency judgment ⊢ Sp ≅ Sp′ is just defined pointwise, calling out
to term consistency. The i-ful judgment ⊢i Sp ≅ Sp′ drops i implicit arguments and then
compares the rest of the spines for consistency—the implicit parameters are accounted
for by type reconstruction, and the user cannot get them wrong. Term consistency
⊢ N ≅ N′ is mostly pointwise, but an omitted term is consistent with anything, and
the rule for checking consistency of c · Sp makes sure to drop an appropriate number
of implicit arguments. All consistency judgments must be relative to the signature Σ in
order to have access to information about constants’ implicit parameters.

As we saw above, after comparing the argument spines for consistency, the rule
for matching base sorts returns an elaborated output consisting of the head of the sort
applied to the internal spine from the refined type. In this way, an LFR base sort gets its
implicit parameters from its refined type. But how do we match the free variables from
the concrete declaration with the bound variables introduced for implicit parameters?
In the formal system, the answer is α-conversion: the rule that inserts aΠ for an implicit
parameter can always “choose” its bound variables to match the free occurrences in
the concrete input sort if they are in fact used consistently therein. We give a sample
derivation to illustrate the idea, matching p x againstΠx:A. b x, where the first argument
is implicit, relative to the signature b : A → type, p ⊏ b :: ⊤ → sort. For clarity, we

82

⊢i
Σ

Sp ≅ Sp′

⊢i Sp ≅ Sp′

⊢i+1 Sp ≅ (N; Sp′)

⊢ Sp ≅ Sp′

⊢0 Sp ≅ Sp′

⊢Σ Sp ≅ Sp′

⊢ () ≅ ()

⊢ N ≅ N′ ⊢ Sp ≅ Sp′

⊢ (N; Sp) ≅ (N′; Sp′)

⊢Σ N ≅ N′

⊢ Sp ≅ Sp′

⊢ x · Sp ≅ x · Sp′
(c::S, i) ∈ Σ ⊢i Sp ≅ Sp′

⊢ c · Sp ≅ c · Sp′
⊢ N ≅ N′

⊢ λx.N ≅ λx.N′ ⊢ ≅ N′

Figure 5.5: Spine and term consistency.

abbreviate a one-element spine (N; ()) as just (N).

(p ⊏ b :: ⊤ → sort, 0) ∈ Σ

⊢ () ≅ ()

⊢ x · () ≅ x · () ⊢ () ≅ ()

⊢ (x · ()) ≅ (x · ())

⊢0 (x · ()) ≅ (x · ())

⊢ p · (x · ()) ⊏
˜

b · (x · ()) ◮ p · (x · ())

⊢0 p · (x · ()) ⊏
˜

b · (x · ()) ◮ p · (x · ())

⊢1 p · (x · ()) ⊏
˜
Πx:A. b · (x · ()) ◮ Πx:: ?A . p · (x · ())

Note how the bound variable is chosen such that when stripped away, the free variables
from the concrete external sort match those of the internal refined type.

Implementation notes. Our implementation of LFR type reconstruction is almost iden-
tical to the judgments presented here except for the use of α-conversion to ensure consis-
tency between concrete free variables and internal bound ones. In the implementation,
we instead lazily maintain a renaming that maps free variables to the bound ones they
seem to correspond to. If the consistency check ever finds something that contradicts

83

the current renaming, then the concrete sort cannot be made to match the internal type,
so we signal an error.

Two other small differences are that (1) concrete terms are actually in atomic/canonical
form in the implementation, not spine form, so the consistency check must reassociate
applicative terms in order to compare them, and (2) we allow η-contracted functions
in the external syntax,4 expanding them on the fly during consistency checking; a
suggestive notation for the appropriate rule might look something like this:

⊢ R x ≅ N

⊢ R ≅ λx.N

Observe that this rule requires us to be able to add an argument to a partial application,
which is easy in the atomic/canonical form of the concrete syntax.

5.3.3 Sort Variables

LFR type reconstruction resolves all missing type and term information in an LFR
declaration, but leaves markers ?A in places where sort information is still missing. The
next step after sort reconstruction is to replace these markers with sort variables, a step
called “filling”. Although this sounds like an entirely trivial operation, we treat it as a
separate step because of one small but important complication: tendencies.

Recall that the goal of sort reconstruction is to infer the most precise possible sort or
class for every constant declaration. By most precise, we mean smallest in the derived
higher-subsort relation. Since functions are contravariant and metavariables wind up
being implicitly quantified at the outermost level, sort reconstruction must compute the
largest possible sort for each metavariable. This requirement agrees with our intuition
from LF type recostruction, where the requirement is to compute the most general type
for each metavariable.

Of course, since function sorts may be nested, we have to be careful to come up with
the smallest possible sort for any sort variable that occurs as the domain of a function sort
in the sort of a metavariable. The observation goes “all the way down”, of course, so we
must take care to record in which direction a sort variable would like to be optimized.
We do so by annotating each sort variable with a tendency to either maximize (+) or
minimize (−). We also annotate each sort variable with the type that it refines in order to
allow us to leverage the refinement restriction later on. Thus sort variables are written
either σ+

A
or σ−

A
. Other metavariables we use for sort variables are τ, ρ, and ξ.

We write the filling judgment S ◮t (Ξ ⊢ S′), where t stands for an arbitrary tendency
and Ξ is a sort variable context containing the free sort variables generated for S′.

t ::= + | − Ξ ::= · | Ξ, σt
A

Following the usual conventions, when we extend a context Ξ, σt
A

, we tacitly assume
that σ is not already in Ξ, and when we join two contexts Ξ1,Ξ2 we tacitly assume that

4Perhaps we should refer to it instead as “atomic/normal” syntax to reflect this fact.

84

S ◮t (Ξ ⊢ S′)

s · Sp ◮t (· ⊢ s · Sp)

S ◮∼t (Ξ1 ⊢ S′) T ◮t (Ξ2 ⊢ T′)

Πx::S⊏A.T ◮t (Ξ1,Ξ2 ⊢ Πx::S′⊏A.T′)

S1 ◮
t (Ξ1 ⊢ S′1) S2 ◮

t (Ξ2 ⊢ S′2)

S1 ∧ S2 ◮
t (Ξ1,Ξ2 ⊢ S′1 ∧ S′2) ⊤ ◮t (· ⊢ ⊤) ?A ◮

t (σt
A ⊢ σ

t
A)

Figure 5.6: Filling of sort variables.

they do not overlap. The parameter t represents the tendency of the current position in a
sort, initially −, and the rules essentially just replace every unknown ?A with a fresh sort
variable of the current tendency. Since functions are contravariant, the rule for filling
a function sort makes use of a tendency-flipping function ∼t, defined by ∼+ = − and
∼− = +. See Figure 5.6.

To capture the appropriate invariant on filling, we extend weak refinement to be with
respect to a sort variable context in the obvious way, writing Ξ ⊢ S ⊏

˜
A. This judgment

admits weakening.

Theorem 5.7 (Soundness, filling). If ⊢ S ⊏
˜

A and S ◮t (Ξ ⊢ S′), then Ξ ⊢ S′ ⊏
˜

A.

Proof. Straightforward induction over the filling derivation, using inversion on the weak
refinement derivation. To combine two inductive hypotheses, we appeal to weakening.

�

Another important invariant of the filling judgment—and one that we will leverage
in proving principality of our algorithm below—is that it produces a sort with the
appropriate initial tendency. The judgment tendency(S, t) says that the complete sort S is
consistent with tendency t.

tendency(S, t)

tendency(s · Sp, t)

tendency(S,∼t) tendency(T, t)

tendency(Πx::S.T, t) tendency(⊤, t)

tendency(S1, t) tendency(S2, t)

tendency(S1 ∧ S2, t) tendency(σt
A, t)

Theorem 5.8. If S ◮t (Ξ ⊢ S′), then tendency(S′, t).

Proof. By induction on the given filling derivation. �

85

Both the impractical algorithm and the practical algorithm we describe below ma-
nipulate sort substitutions.

θ ::= [] | [θ, S/σA]

Substitutions are typed with sort variable contexts using the extended weak refinement
judgment.

Ξ0 ⊢ [] : ·

Ξ0 ⊢ θ : Ξ Ξ0 ⊢ S ⊏
˜

A

Ξ0 ⊢ [θ, S/σA] : Ξ, σA

We elide the standard definition of applying a substitution—but note that since terms
and spines do not mention sorts, it is always the case that θN = N and θSp = Sp. We
also freely “reorder” substitutions to equivalent ones as convenient.

We are now prepared to tackle the problem of sort reconstruction proper. In the next
section, we give an impractical but complete and total algorithm for sort reconstruction
in order to demonstrate that the problem is decidable in principle. In the one that
follows, we describe a practical algorithm that reduces the problem to one of constraint
solving. We will have much to say about sort variable substitutions along the way, but
we will not touch on sort variable tendencies again until Section 5.5.2 when we explain
our algorithm for constraint solving and its properties.

5.4 Decidability in Principle by Enumeration

After LFR type reconstruction, an LFR declaration is a fully-quantified and explicitly-
typed declaration with some sort variables representing missing sort information. Since
all that is missing is some sort information, and since we know the type refined by every
sort variable, if we knew there were only finitely many refinements of a type, then we
could simply enumerate the possibilities and filter out the non-sensical ones. As it turns
out, there are only finitely many refinements of a type, and describing the enumerative
solution is precisely the goal of this section.

The enumerative “algorithm” is quite inefficient in practice, though, even on rela-
tively small examples. Why do we bother studying it then? There are two essential
reasons. First, the existence of an enumerative algorithm demonstrates that sort recon-
struction is in principle decidable, an important contrast with the undecidability of LF
type reconstruction and one which highlights the benefits of the refinement methodol-
ogy. Second, the enumerative solution also serves to provide us a kind of specification
for the sort reconstruction problem: since it is a complete procedure, any solution pro-
duced by our (soon to be discussed) efficient algorithm should match the solution given
by enumeration.

We begin by showing that, up to equivalence of sorts, there are finitely many re-
finements of a type. Then, having established finiteness, we outline the enumerative
algorithm and demonstrate its correctness.

86

5.4.1 Finiteness of Refinements

As discussed in Section 3.4, although our framework only defines subsorting at base
sorts, all of the usual structural rules (Figure 3.2) are in some sense admissible, including
the rules for distributing intersection sorts over function sorts. The derived higher-sort
subsorting S ≤ T induces an equivalence: S ≡ T if and only if both S ≤ T and T ≤ S. Up
to this notion equivalence, there are finitely many refinements of any given type.

To begin, we note that in the presence of the distributivity rules, every sort can
be put into a normal form by distinguishing “basic” (non-intersection, non-⊤) sorts
from “composite” ones. The essential idea is to restrict all function codomains to be
basic—any intersections in a codomain can be distributed outward by the equivalence
S→ (T1 ∧ T2) ≡ (S→ T1) ∧ (S→ T2) [BCDC83].

S,T ::= Q | Πx::S.T basic sorts

S,T ::= S | S1 ∧ S2 | ⊤ composite sorts

This normal form is well-known: it is essentially the same as the “normalized types” of
Coppo, et al. [CDCV81] and the “normal type schemes” of Hindley [Hin82]. Pierce [Pie97]
made use of a similar notion to demonstrate semi-decidability of subtyping in F∧, and
Reynolds [Rey96] used another to show how to compute the subtype relation of Forsythe.
The embedding of general sorts into this restricted normal form is given by the follow-
ing normalization function norm(−), which appeals to an auxiliary function pi(x::S.−)
to carry out the distributivities described above.

norm(S) = S

norm(Q) = Q

norm(⊤) = ⊤

norm(S1 ∧ S2) = norm(S1) ∧ norm(S2)

norm(Πx::S.T) = pi(x:: norm(S). norm(T))

pi(x::S.T) = S′

pi(x::S.T) = Πx::S.T

pi(x::S.⊤) = ⊤

pi(x::S.T1 ∧ T2) = pi(x::S.T1) ∧ pi(x::S.T2)

Normalization always produces an equivalent sort.

Theorem 5.9 (Equivalence of normal forms).

1. For all S and T, we have pi(x::S.T) ≡ Πx::S.T.

87

2. For all S, we have norm(S) ≡ S, and

Proof. Straightforward (non-mutual) induction on S and T, using the rules⊤/Π-dist and
∧/Π-dist to establish the equivalences in the first clause. �

Following this normal form, we can construct a pair of functions that enumerate the
basic and composite refinements of a type. Basic refinements are generated following the
structure of the refined type, while composite refinements are generated by considering
the n-way intersection of every possible subset of the set of basic refinements. We abuse
our earlier notation slightly by conflating sets of sorts with lists of sorts, but our meaning
should be clear.

refsΣ(A) = {S1, . . . ,Sn}

refs(A) = {
∧

(∆) | ∆ ∈ P(brefs(A))}

brefsΣ(A) = {S1, . . . , Sn}

brefs(a · Sp) = {s · Sp | s⊏a:: ∈ Σ}

brefs(Πx:A.B) = {Πx::S.T | S ∈ refs(A),T ∈ brefs(B)}

Note that the basic refinements of a base type must be generated with respect to a
particular signature Σ, which we leave implicit as usual. We do not however need a
context Γ, since we do not check argument spines for well-formedness at this stage—we
will filter out ill-formed refinements later in the process.

Analyzing these functions gives us an upper-bound on the number of refinements
of a type. For instance, given a base type an with n base refinements, there are no
more than 2n·2n

refinements of the type an → an. This is not a tight upper-bound,
though, as many subsets of brefs(A) may represent equivalent composite sorts. For
example, brefs(nat → nat) will contain both even → even and ⊤ → even, but their
intersection is equivalent to just the latter. Experiments with an implementation that
filters by sort equivalence can pin down the true number of distinct refinements for small
examples, and we summarize a few results in Figure 5.7. It should be clear that even
the actual number of refinements of a type grows too fast to be the basis of a practical
implementation.5

Although they are somewhat naive, our enumeration functions are complete: they
generate all weak refinements of a type.

Theorem 5.10 (Completeness of refinement enumeration).

5A few searches of the On-Line Encyclopedia of Integer Sequences [OEI10] suggests a connection
between the refinements of a type and monotone functions over power sets, but a full exploration of
the connection is unnecessary for the purposes of demonstrating the infeasibility of enumeration. We
therefore defer it to future work.

88

Type Estimated Actual

a0 → a0 1 1
a1 → a1 4 3
a2 → a2 256 36
a3 → a3 16, 777, 216 8, 000

Type Estimated Actual

a0 → a1 2 2
a1 → a1 4 3
a2 → a1 16 6
a3 → a1 256 20
a4 → a1 65, 536 168
a5 → a1 4, 294, 967, 296 7, 581

Figure 5.7: Estimated and actual number of refinements of various types, where the base
type an is assumed to have n base refinements.

1. If ⊢ S ⊏
˜

A, then for some S′ ≡ S, we have S′ ∈ refs(A).

2. If ⊢ S ⊏
˜

A, then for some S′ ≡ S, we have S′ ∈ brefs(A).

Proof. By mutual induction on S and S, using inversion on the given weak refinement
derivation. Some notes:

1. The result follows in each case from basic facts about the power set: that it contains
the empty set (case S = ⊤), that it contains singleton sets (case S = S), and that it is
closed under binary unions (case S = S1 ∧ S2).

2. In the base case, inverting the weak refinement derivation gives us the fact s⊏a:: ∈
Σ necessary to show the required result. �

Since every sort has an equivalent normal form, we have the obvious corollary.

Corollary 5.11. If ⊢ S ⊏
˜

A, then for some S′ ≡ S, we have S ∈ refs(A).

5.4.2 Impractical Sort Reconstruction Algorithm

Armed with enumeration of refinements, we can formulate a procedure for solving sort
reconstruction completely and exactly, though inefficiently. A high-level overview of
the algorithm is as follows:

1. From an incomplete declaration, extract the sort variables and their refined types,

2. For each sort variable, enumerate all refinements of its refined type,

3. Collect the enumerated refinements to enumerate all possible grounding substitu-
tions,

4. Try each substitution in turn and check whether it yields a well-formed instance
of the declaration, and

5. Intersect together all well-formed instances, yielding the principal reconstruction.

89

Recall from the discussion of signature reconstruction above (Section 5.2) that decla-
rations c::S are reconstructed by appeal to a (yet-to-be-discussed) sort reconstruction
judgment, Ξ ⊢ S ⊏ A ◮ S′, where Ξ ⊢ S ⊏

˜
A. The above procedure can be formally

represented by the following single rule, which provides a complete characterization of
the sort reconstruction judgment, though not the one we will ultimately adopt.

Ξ = {σ1 A1
, . . . , σn An}

refs(A1) = S1 . . . refs(An) = Sn

Θ = {[S1/σ1, . . . , Sn/σn] | S1 ∈ S1, . . . , Sn ∈ Sn}

S = {θS | θ ∈ Θ, · ⊢ θS ⊏ A}

Ξ ⊢ S ⊏ A ◮
∧

(S)

The result of reconstruction is well-formed, the most basic correctness criterion we
require.

Theorem 5.12 (Soundness, impractical algorithm). If Ξ ⊢ S ⊏ A ◮ S′, then · ⊢ S′ ⊏ A.

Proof. By inversion, S′ =
∧

(S), and by construction every Si ∈ S has the property that
· ⊢ Si ⊏ A. It follows by a series of applications of ∧-F rules that · ⊢ S′ ⊏ A. �

Furthermore, the result sort is the principal reconstruction since any other conceiv-
able grounding instance of the sort S is subsumed by it.

Theorem 5.13 (Principality, impractical algorithm). Suppose Ξ ⊢ S ⊏ A ◮ S′. For any
⊢ θ : Ξ such that · ⊢ θS ⊏ A, we have S′ ≤ θS.

Proof. By construction. �

Principality may seem like a trivial result since it merely recapitulates a property
which we specifically crafted the reconstruction algorithm to have, but its implications
run deep. If we recast the conclusion S′ ≤ θS using one of the alternate formulations
of subsorting from Theorem 3.24, it lets us conclude that in any context expecting
a term of a well-formed substitution instance of S, a term of sort S′ will suffice: if
ΓL, x::θS⊏A, ΓR ⊢ M⇐ T and ΓL ⊢ N ⇐ S′, then ΓL, [N/x]

γ

A
ΓR ⊢ [N/x]n

A
M⇐ [N/x]s

A
T.

In other words, if we reconstruct a declaration c::S to c::S′ using the procedure
sketched above, the constant c will be maximally applicable: any place we could possibly
expect it to work, it will.

5.5 Practical Sort Reconstruction

As the previous section demonstrates, the sort reconstruction problem is in principle
solvable in a most general fashion. But an enumerative solution becomes infeasible quite
quickly as problem size increases. Can the problem be solved efficiently, to a sufficient
degree as to be useful in practice? We now show that it can be in many practical cases
by giving an algorithm that terminates efficiently with one of three outcomes: either it

90

finds the most general reconstruction, or it reports an error if no reconstruction exists,
or it gives up because not enough information is available to compute the most general
reconstruction efficiently.

The algorithm we give here follows a typical pattern: we sort-check a term as usual,
but generate constraints when we come to questions involving sort variables, and then
we find a most general solution to those constraints to determine the least commitments
we must make regarding the identities of the sort variables. The ”generate and solve
constraints” algorithm is essentially the algorithm used for ML type inference and LF
type reconstruction, though there are a few key differences in our setting.

Chief among the differences is the nature of the constraints. In type reconstruction
for languages like ML and LF, the constraints are equality constraints between types and
can be solved by unification. By contrast, in our setting, the constraints are subsorting
constraints, and so the algorithm for solving them bears little resemblance to unification.
Typically in implementations of ML-like or LF-like languages, constraint generation
is interleaved with unification, yielding a one-pass algorithm that seeks solutions as
eagerly as possible. Here, we maintain a split between the generation of constraints and
their solution, since it is difficult to solve subsorting constraints in an eager fashion.6

Another important difference is the existence of solutions. As discussed in the pre-
vious section, most general solutions can always be constructed for sort reconstruction
problems, though perhaps not efficiently. Thus, we find ourselves in between the worlds
of ML and LF: like ML, our sort reconstruction problems are always solvable, but since
they may be computationally infeasible, we must adopt a partial point-of-view like LF,
sometimes giving up instead of pressing on.

We first describe the constraint generation process, which effectively reduces a sort
checking problem to a constraint solving problem by finding a constraint whose satisfi-
ability is both necessary and sufficient for the sort checking problem to have a solution.
Then we explain how we efficiently solve a generated constraint without resorting to
enumeration, all the while making the least commitments possible. Finally, we present
the full sort reconstruction algorithm itself, a composition of constraint generation and
constraint solving, and we argue for its correctness based on the correctness of its com-
ponents.

For clarity’s sake, we restrict our attention to the case of simple sorts in this section.
The generalization to full dependent types is a straightforward one thanks to the refine-
ment restriction: the indices to any dependent sort family are completely determined
by the indices of its refined type, so we just have to ensure that at the end of the day all
of those indices are appropriate to the sort families they apply to. We additionally focus
only on the term- and spine-checking judgments, but again, the generalization to sort
and class formation judgments is not difficult.

6Although it has proven beneficial to eagerly simplify the constraints using various logical equivalences.
See the “implementation notes” below for details.

91

5.5.1 Constraint Generation

Following Pierce’s textbook [Pie02] and drawing inspiration from Pottier and Rémy’s AT-
TAPL article on HM(X) [PR05], we present constraint generation as a pair of judgments
that follow the structure of sort checking. We have two judgments, Ξ; Γ ⊢ N ⇐ S | C
and Ξ; Γ ⊢ Sp :: S < Q | C, for generating a constraint by sort checking a term or by
sort checking a spine, respectively; the rules are shown in Figure 5.8. The context Ξ is
intended to comprise the sort variables appearing free in the remainder of the judgment,
and we maintain this property in the rules. All subjects of both judgments are thought
of as inputs, except for the final generated constraint C. Note that now both general
sorts S and base sorts Q may include sort variables σ.7

A constraint generation judgment Ξ; Γ ⊢ J | C effectively gives meaning to a judg-
ment Γ ⊢ J that involves free sort variables among Ξ. Such an “open” judgment may
or may not be derivable after substituting its sort variables by concrete sorts, but the
judgment Ξ; Γ ⊢ J | C gives us a handle on which substitutions have which effect:
roughly, Γ ⊢ J should hold under a substitution if and only if that substitution satisfies
the constraint C. Formally, our interpretation is justified by a soundness theorem estab-
lishing the sufficiency of generated constraints and a completeness theorem establishing
their minimality, both of which we describe below.

The language of constraints we generate is a finitary fragment of first-order logic,
where the domain of quantification is ground sorts. We have one atomic constraint,
subsorting S1 ≤ S2. In addition we have conjunction, disjunction, the always true and
always false constraints, implication, and universal and existential quantification.

C ::= S1 ≤ S2 | tt | C1 T C2 | ff | C1 U C2 | C1 ⊃ C2 | ∀σA.C | ∃σA.C

In order to avoid confusion with the intersection sort S1 ∧ S2, we write the constraint
conjunction and disjunction as C1 T C2 and C1 U C2.

Before discussing the semantics of constraints, we take a moment to sketch some
of the intuitions behind the rules in Figure 5.8. Most of the rules are straightforward.
Moderately noteworthy are the rules ⊤-L and ∧-L—where before we had no spine-
checking rules for the sort ⊤, now we have one that returns the always-false constraint,
and where before we had two spine-checking rules for intersection sorts, we now have
just one that returns a disjunction constraint. Most interesting though are the rules for
checking functions and application spines at sort variables,→-R/sv and→-L/sv.

The rule→-L/sv generates a constraint that must hold for an application spine (N; Sp)
to take a head of variable sort to some base sort. Intuitively, in order to check that an
application spine (N; Sp) takes some sort S to Q, the sort S must be an intersection of
function sorts, one of which has the property that N is a member of its domain and that
Sp takes its codomain to sort Q. This intuition is captured by an existential constraint:
to check (N; Sp) at a variable ρ, there must be some function sort σ→ τ that is above ρ,
and σ and τ must satisfy the constraints required for N and Sp to be well-formed.

7It is a slight abuse of notation to let Q range over sort variables, but it turns out to be more convenient
than troublesome.

92

Ξ; Γ ⊢ N ⇐ S | C

x::S⊏A ∈ Γ Ξ; Γ ⊢ Sp :: S < Q | C

Ξ; Γ ⊢ x · Sp⇐ Q | C
(var)

c::S ∈ Σ Ξ; Γ ⊢ Sp :: S < Q | C

Ξ; Γ ⊢ c · Sp⇐ Q | C
(const)

Ξ; (Γ, x::S) ⊢ N ⇐ T | C

Ξ; Γ ⊢ λx.N⇐ S→ T | C
(→-R)

(Ξ, σ, τ); (Γ, x::σ) ⊢ N ⇐ τ | C

Ξ; Γ ⊢ λx.N⇐ ρt
A→B | ∀σ

∼t
A .∀τ

t
B. (ρ ≤ σ→ τ) ⊃ C

(→-R/sv)

Ξ; Γ ⊢ N ⇐ ⊤ | tt
(⊤-R)

Ξ; Γ ⊢ N ⇐ S1 | C1 Ξ; Γ ⊢ N ⇐ S2 | C2

Ξ; Γ ⊢ N ⇐ S1 ∧ S2 | C1 T C2

(∧-R)

Ξ; Γ ⊢ Sp :: S < Q | C

Ξ; Γ ⊢ () :: Q′ < Q | Q′ ≤ Q
(switch)

Ξ; Γ ⊢ Sp :: T < Q | C1 Ξ; Γ ⊢ N ⇐ S | C2

Ξ; Γ ⊢ (N; Sp) :: S→ T < Q | C1 T C2

(→-L)

(Ξ, σ, τ); Γ ⊢ Sp :: τ < Q | C1 (Ξ, σ, τ); Γ ⊢ N ⇐ σ | C2

Ξ; Γ ⊢ (N; Sp) :: ρt
A→B < Q | ∃σ∼t

A .∃τ
t
B. (ρ ≤ σ→ τ)T C1 T C2

(→-L/sv)

Ξ; Γ ⊢ Sp :: ⊤ < Q | ff
(⊤-L)

Ξ; Γ ⊢ Sp :: S1 < Q | C1 Ξ; Γ ⊢ Sp :: S2 < Q | C2

Ξ; Γ ⊢ Sp :: S1 ∧ S2 < Q | C1 U C2

(∧-L)

Figure 5.8: Constraint generation.

93

Dually, in order to check a function λx.N at a sort, that sort must be an intersection of
function sorts, all of which correctly describe the body of the function. The rule→-R/sv
captures this intuition with a universal constraint: for λx.N to check at a variable ρ,
that variable must be such that any function sort σ→ τ that it can be promoted to is an
appropriate sort for the function. Our interpretation of function-checking as a universal
constraint is novel, and we will see that it is both necessary and sufficient below.

The semantics of constraints is given by a constraint satisfaction judgment � C,
which lifts a ground constraint (one with no free sort variables) to a proposition of our
metalanguage. The interpretation of the quantifiers shows that they range over ground
sorts refining the appropriate types.

� S1 ≤ S2 iff S1 ≤ S2

� tt always
� C1 T C2 iff � C1 and � C2

� ff never
� C1 U C2 iff � C1 or � C2

� C1 ⊃ C2 iff if � C1, then � C2

� ∀σA.C iff for every ground S ⊏ A, we have � [S/σ]C
� ∃σA.C iff for some ground S ⊏ A, we have � [S/σ]C

Since there are finitely many refinements of a type, the domain of quantified con-
straints is finite, and thus constraint satisfaction is decidable.

Theorem 5.14 (Decidability, constraint satisfaction). Given a ground constraint C, either
� C or 2 C.

Proof. By induction on the structure ofC, resorting to enumeration in the quantifier cases
and the decidability of subsorting at the atomic constraint. �

Our presentation of constraint generation differs from Pierce’s [Pie02] in several ways.
First, our treatment of names is different: instead of “generating” fresh names over the
course of a derivation and ensuring that the names generated by two subderivations
do not overlap, we simply make use of standard variable-binding conventions and
α-conversion to ensure “freshness”. Furthermore, by introducing quantifiers into the
language of constraints, we are able to maintain the property that the free variables of a
generated constraint are contained in the free variables of the inputs to the judgment, a
property that will simplify our completeness theorem significantly.

Finally, we specialize rules to expect either a sort of the appropriate form or a sort
variable. See for example the rules →-R and →-R/sv; alternatively, we could have a
single generic rule which does not inspect the form of the sort:

(Ξ, σ, τ); (Γ, x::σ) ⊢ N ⇐ τ | C

Ξ; Γ ⊢ λx.N⇐ S | ∀σ∼t
A .∀τ

t
B. (S ≤ σ→ τ) ⊃ C

(→-R’)

It may seem that by formulating the rules the way we have, we have lost the property
that constraint generation always succeeds, a property that justifies our claim that we

94

can reduce sort reconstruction to constraint solving. But in fact, thanks to the refinement
restriction, the rules we have given are indeed total, and since they result in simpler
constraints, we choose to adopt them. We capture totality with the following theorem,
in which Γ∗ erases refinement information from the context Γ and the judgment Ξ ⊢ Γ c̃tx

extends the sort variable-sensitive weak refinement relation to context formation.

Ξ ⊢ · c̃tx

Ξ ⊢ Γ c̃tx Ξ ⊢ S ⊏
˜

A

Ξ ⊢ Γ, x::S⊏A c̃tx

Theorem 5.15 (Totality of constraint generation). Constraint generation succeeds on all
well-typed inputs. Suppose Ξ ⊢ Γ c̃tx. Then:

1. If Γ∗ ⊢ N ⇐ A and Ξ ⊢ S ⊏
˜

A, then Ξ; Γ ⊢ N ⇐ S | C, for some C, and

2. If Γ∗ ⊢ Sp :: A < P and Ξ ⊢ S ⊏
˜

A and Ξ ⊢ Q ⊏
˜

P, then Ξ; Γ ⊢ Sp :: S < Q | C,
for some C.

Proof. By lexicographic induction on the typing derivation and the refinement derivation
for S. In the cases where the sort S is an intersection, we induct on the same typing
derivation and subderivations of the refinement derivation, while in the cases where
the sort S is a variable, we induct on subderivations of the typing derivation and new
variable refinement derivations. �

From the totality result, we can extract a functional specification of constraint gen-
eration. We include it in Figure 5.9 for the interested reader. The function recon(Γ,N, S)
implements the judgment Ξ; Γ ⊢ N ⇐ S | C while the function reconSp(Γ, Sp, S,Q) im-
plements the judgment Ξ; Γ ⊢ Sp :: S < Q | C. In the functional code, we leave the sort
variable context Ξ implicit.

As alluded to above, the meaning of constraint generation Ξ; Γ ⊢ J | C is given
by soundness and completeness results for the generated constraint C. The soundness
result establishes that the generated constraint sufficiently captures the derivability of the
judgment Γ ⊢ J : a solution to the constraint will serve as a solution to the judgment.
Conversely, the completeness result establishes that the generated constraint necessarily
captures the derivability of Γ ⊢ J : a solution to the judgment must necessarily provide
a solution to the constraint.

In both cases, a “solution” is of course a grounding substitution. From the definition
of ⊢ θ : Ξ, we can learn something about the form of a sort being substituted for a
variable that refines a function type. The following lemma will be useful in proving
both soundness and completeness.

Lemma 5.16. If σA→B ∈ Ξ and ⊢ θ : Ξ, then θσ ≡ S1 → T1 ∧ . . . ∧ Sn → Tn where for each i
between 1 and n, we have · ⊢ Si ⊏ A and · ⊢ Ti ⊏ B.

Proof. Straightforward induction on the derivation of ⊢ θ : Ξ gives us that · ⊢ θσ ⊏ A→
B, from which the result follows by a straightforward structural rule induction. �

Theorem 5.17 (Soundness, constraint generation). Suppose ⊢ θ : Ξ.

95

recon(Γ,N,⊤) = tt

recon(Γ,N, S1 ∧ S2) = recon(Γ,N, S1)T recon(Γ,N, S2)

recon(Γ, λx.N, S→ T) = recon((Γ, x::S),N,T)

recon(Γ, λx.N, ρt
A→B) = ∀σ∼t

A .∀τ
t
B. (ρ ≤ σ→ τ) ⊃ recon((Γ, x::S),N, τ)

recon(Γ, x · Sp,Q) = reconSp(Γ, Sp, Γ(x),Q)

recon(Γ, c · Sp,Q) = reconSp(Γ, Sp,Σ(c),Q)

reconSp(Γ, Sp,⊤,Q) = ff

reconSp(Γ, Sp, S1 ∧ S2,Q) = reconSp(Γ, Sp, S1,Q)U reconSp(Γ, Sp, S2,Q)

reconSp(Γ, (),Q′,Q) = Q′ ≤ Q

reconSp(Γ, (N; Sp), S→ T,Q) = reconSp(Γ, Sp,T,Q)T recon(Γ,N, S)

reconSp(Γ, (N; Sp), ρt
A→B,Q) = ∃σ∼t

A .∃τ
t
B. (ρ ≤ σ→ τ)T reconSp(Γ, Sp, τ,Q)T recon(Γ,N, σ)

Figure 5.9: Functional algorithm for generating constraints.

1. If Ξ; Γ ⊢ N ⇐ S | C and � θC, then θΓ ⊢ N⇐ θS.

2. If Ξ; Γ ⊢ Sp :: S < Q | C and � θC, then θΓ ⊢ Sp :: θS < θQ.

Proof. By induction on the given constraint generation derivation. We give here the
cases for the→-R/sv and→-L/sv rules; the rest are straightforward.

Case:
(Ξ, σ, τ); (Γ, x::σ) ⊢ N ⇐ τ | C

Ξ; Γ ⊢ λx.N⇐ ρt
A→B | ∀σ

∼t
A .∀τ

t
B. (ρ ≤ σ→ τ) ⊃ C

(→-R/sv)

� ∀σ.∀τ. (θρ ≤ σ→ τ) ⊃ θC By assumption.
For every S ⊏ A and T ⊏ B, if θρ ≤ S→ T, then � [S/σ,T/τ]θC By definition.
θρ ≡ S1 → T1 ∧ . . . ∧ Sn → Tn, where · ⊢ Si ⊏ A and · ⊢ Ti ⊏ B By Lemma 5.16.
For each i between 1 and n:
⊢ [θ, Si/σ,Ti/τ] : Ξ, σA, τB By substitution formation rules.
θρ ≤ Si → Ti By subsorting rules.
� [θ, Si/σ,Ti/τ]C By above implication.
θΓ, x::Si ⊢ N⇐ Ti By i.h. and freshness reasoning (σ, τ < FSV(Γ)).
θΓ ⊢ λx.N⇐ Si → Ti By rule.

θΓ ⊢ λx.N⇐ Si → Ti ∧ . . . ∧ Sn → Tn By rules.
θΓ ⊢ λx.N⇐ θρ By equivalence.

Case:
(Ξ, σ, τ); Γ ⊢ Sp :: τ < Q | C1 (Ξ, σ, τ); Γ ⊢ N⇐ σ | C2

Ξ; Γ ⊢ (N; Sp) :: ρt
A→B < Q | ∃σ∼t

A .∃τ
t
B. (ρ ≤ σ→ τ)T C1 T C2

(→-L/sv)

96

� ∃σ∼t
A
.∃τt

B. (ρ ≤ σ→ τ)T C1 T C2 By assumption.
For some S ⊏ A and T ⊏ B,
θρ ≤ S→ T and � [θ, S/σ,T/τ]C1 and � [θ, S/σ,T/τ]C2 By definition.
⊢ [θ, S/σ,T/τ] : Ξ, σA, τB By substitution formation rules.
θΓ ⊢ Sp :: T < θQ and θΓ ⊢ N ⇐ S By i.h. and freshness reasoning.
θΓ ⊢ (N; Sp) :: S→ T < θQ By rule.
θΓ ⊢ (N; Sp) :: θρ < θQ By subsumption (Lemma 5.5). �

Theorem 5.18 (Completeness, constraint generation). Suppose · ⊢ θ : Ξ.

1. If Ξ; Γ ⊢ N ⇐ S | C and θΓ ⊢ N⇐ θS, then � θC.

2. If Ξ; Γ ⊢ Sp :: S < Q | C and θΓ ⊢ Sp :: θS < θQ, then � θC.

Proof. By induction on the given constraint generation derivation, using inversion on
the other given derivation. We give here the cases for the→-R/sv and→-L/sv rules; the
rest are straightforward.

Case:
(Ξ, σ, τ); (Γ, x::σ) ⊢ N⇐ τ | C

Ξ; Γ ⊢ λx.N⇐ ρt
A→B | ∀σ

∼t
A .∀τ

t
B. (ρ ≤ σ→ τ) ⊃ C

(→-R/sv)

θΓ ⊢ N ⇐ θρ By assumption.
Let S ⊏ A and T ⊏ B, and assume θρ ≤ S→ T:
θΓ ⊢ N ⇐ S→ T By subsumption.
θΓ, x::S ⊢ N⇐ T By inversion.
[θ, S/σ,T/τ] (Γ, x::σ) ⊢ N ⇐ [θ, S/σ,T/τ] τ By equality and freshness reasoning.
⊢ [θ, S/σ,T/τ] : Ξ, σA, τB By substitution formation rules.
� [θ, S/σ,T/τ]C By i.h.

For every S ⊏ A and T ⊏ B, if θρ ≤ S→ T, then � [θ, S/σ,T/τ]C.
� θ(∀σ∼t

A
.∀τt

B
. (ρ ≤ σ→ τ) ⊃ C) By definition.

Case:
(Ξ, σ, τ); Γ ⊢ Sp :: τ < Q | C1 (Ξ, σ, τ); Γ ⊢ N ⇐ σ | C2

Ξ; Γ ⊢ (N; Sp) :: ρt
A→B < Q | ∃σ∼t

A .∃τ
t
B. (ρ ≤ σ→ τ)T C1 T C2

(→-L/sv)

θΓ ⊢ (N; S)p :: θρ < Q By assumption.
θρ ≡ S1 → T1 ∧ . . . ∧ Sn → Tn, where · ⊢ Si ⊏ A and · ⊢ Ti ⊏ B By Lemma 5.16.
For some i between 1 and n:
θΓ ⊢ Sp :: Ti < Q and θΓ ⊢ N ⇐ Si By multi-step inversion.
Let θ′ = [θ, Si/σ,Ti/τ]:
θ′Γ ⊢ Sp :: θ′τ < θ′Q and θ′Γ ⊢ N ⇐ θ′σ By equality and freshness reasoning.
⊢ θ′ : Ξ, σA, τB By substitution formation rules.
� θ′C1 and � θ′C2 By i.h.
θρ ≤ Si → Ti By subsorting rules.
� θ(∃σ∼t

A
.∃τt

B. (ρ ≤ σ→ τ)T C1 T C2) By definition. �

97

The proof of the completeness theorem draws attention to an important distinction
between our treatment of constraint generation and that of Pottier and Rémy [PR05].
Although we follow them in using quantification over sort variables to manage “fresh-
ness”, we diverge by including universal quantification and not just existential. In
our →-R/sv rule, we generate a universally quantified constraint, while Pottier and
Rémy generate an existentially quantified one. Porting their rule to our setting and our
notation, it might be written something like this:

(Ξ, σ, τ); (Γ, x::σ) ⊢ N ⇐ τ | C

Ξ; Γ ⊢ λx.N⇐ ρt
A→B | ∃σ

∼t
A .∃τ

t
B. (σ→ τ ≤ ρ)T C

(→-R/sv’)

Observe not only that the quantifiers differ (and correspondingly, that their rule has
a conjunction instead of an implication), but also that the direction of subsorting is
reversed: the Pottier-Rémy rule posits that σ → τ be below ρ. Although this approach
works in the setting of HM(X), the rule is incomplete in our setting due to the presence
of intersection sorts.

The intuition behind the rule→-R/sv’ is roughly that in order for λx.N to have sort
ρ, it must have some function sort σ → τ which is a subsort of ρ. In LFR, a calculus
with intersection sorts, we can see immediately that this is not necessarily the case:
perhaps it has sort ρ by virtue of the fact that ρ is an intersection of function sorts,
each one of which is a supersort of the sort ρ. Following this line of reasoning, we can
construct a counterexample to completeness. Consider a signature with two unrelated
base sorts u and v and a constant c :: u→ u ∧ v→ v. If we generate a constraint
ρA→B; · ⊢ λx. c x⇐ ρ | C using the new rule→-R/sv’, we get:

C = ∃σA.∃τB. σ→ τ ≤ ρT
(
(σ ≤ uT u ≤ τ)U (σ ≤ vT v ≤ τ)

)

It is easily seen that for θ = [u → u ∧ v → v/ρ], we can derive · ⊢ λx. c x ⇐ θρ, so by
completeness, we should expect that � θC. But this is impossible: suppose we could
find some S ⊏ A and T ⊏ B such that S → T ≤ u → u ∧ v → v, and either S ≤ u and
u ≤ T, or S ≤ v and v ≤ T. In the case that S ≤ u and u ≤ T, we can immediately derive
u→ u ≤ S→ T. By transitivity, we discover that u→ u ≤ v→ v, which contradicts our
original assumption that u and v were unrelated. In the other case, we symmetrically
learn that v→ v ≤ u→ u, an equally contradictory conclusion. Therefore, it must be the
case that 2 θC.

Implementation notes. Our implementation of constraint generation follows the sys-
tem presented here closely, but with a few important optimizations.

• We maintain constraints in disjunctive normal form, which serves two purposes:
(1) it will make the constraints easier to solve later, and (2) it cuts down the search
space by making conjunction automatically “short-circuit” when one conjunct or
the other is unsatisfiable.

98

• We furthermore apply a number of on-the-fly logical simplifications when comput-
ing constraints: the conjunction of two clauses deletes any redundant constraints
([ATB]T [A] = ATB), and the disjunction of two clauses keeps only the weaker
one, if one implies the other ([A T B] U [A] = A). The disjunctive normal form
of a constraint can be quite large, but these simplifications help keep constraints
from blowing up needlessly.

• We do not generate a “suspended” constraint Q1 ≤ Q2 when Q1 and Q2 are ground
base sorts; instead we just perform the subsorting check and emit either tt or ff
accordingly, culling the search space further still.

• Finally, we fail instead of generating universally-quantified constraints—our con-
straint solving algorithm does not handle them, and we argue below that they are
uncommon in practice.

5.5.2 Solving the Constraints

We now give an algorithm for determining the identity of each sort variable given a
constraint. We restrict our attention to purely existential constraints—ones with no
universal quantifiers—for several reasons. For one, purely existential constraints can be
put into prenex form, essentially allowing us to forget about the quantification altogether
and just solve propositional constraints. This approach corresponds fairly closely to
what has been studied in the literature. For another, purely existential constraints
can often be solved without resorting to enumeration, a case that cannot be made for
universal constraints since they quantify over all ground sorts in a non-parametric
fashion. As we have seen, enumeration marks the downfall of practicality, and should
be treated as a last resort.

Most importantly, though, universal constraints do not seem to arise very frequently
in practice. Moreover, we can make a general argument explaining why. Recall from
Figure 5.8 that universal constraints are only generated when we attempt to check
an abstraction λx.N at a sort variable. Such a situation in turn arises only when an
abstraction appears in the spine of an application h · (. . . ;λx.N; . . .) whose head is of
unknown sort. What kinds of heads have unknown sort? Certainly not term or type
constants from earlier in the signature, since as we have seen, all such constants would
have already had their sorts fully reconstructed at this point.

In order to be of unknown sort, the guilty head must be a variable, either an implicitly
quantified metavariable or an explicitly bound local variable. For such a variable to take
a function as one of its arguments, the containing clause would as a whole have to be
third-order or higher:

c ::ΠE::(S→T)→U. p (E (λx.N)).

c :: q A B C
← (Πy::(S→T)→U. p (y (λx.N))).

99

Such examples are not unheard of among LF wizards, but neither are they typical. Thus
we choose not to worry ourselves too much over focusing on a fragment that excludes
them for the present.

Every pure existential constraint can be recast as a logically equivalent one with
only prenex quantification in disjunctive normal form. So for the purposes of constraint
solving, we consider a constraint to be some number of existential quantifiers whose
body is the disjunction of a set of clauses, where each clause is a conjunction of atomic
subsorting constraints. Even for the atomic constraints, we can restrict their form further
based on the kinds of constraints generated by our algorithm in the previous section: a
subsorting constraint is either between two base-or-variable sorts or between a variable
and a function sort made of variables of appropriate tendencies. We writeA for atomic
constraints, C for conjunctive clauses, D for disjunctions of clauses, and E for prenex-
quantified disjunctions.

A ::= Q ≤ Q′ | σ ≤ Q | Q ≤ σ | σ ≤ τ | ρt ≤ σ∼t → τt

C ::= tt | AT C

D ::= ff | CUD

E ::= ∃σt
A.E | D

In this section, we mean for Q to range over ground base sorts, in order to make the
distinction between differentA productions meaningful.

The top-level algorithm simply solves by clauses after adding the prenex-quantified
variables to the local context, producing a list of substitutions Θ ::= · | θ,Θ.

solve(Ξ,E) = Θ

solve((Ξ, σ),E) = Θ

solve(Ξ,∃σ.E) = Θ \ σ solve(Ξ,ff) = ·

solveClause(Ξ,C) = θ solve(Ξ,D) = Θ

solve(Ξ,CUD) = θ,Θ

unsatClause(Ξ,C) solve(Ξ,D) = Θ

solve(Ξ,CUD) = Θ

When we solve an existential constraint, we remove the bound variable from the sub-
stitutions returned, written Θ \ σ, since it is no longer free. After the quantifiers, each
clause yields a single substitution which satisfies C, and we package them all together in
a list of substitutionsΘ. Any substitution in the list is a solution to the entire disjunction
of constraints, but we must generate them all in order to achieve principality. If a clause
is unsatisfiable then it does not contribute to the result. If for some clause C neither
solveClause(Ξ,C) = θ nor unsatClause(Ξ,C), then the clause is too underconstrained for
our algorithm to find its solution, and there will be no solve derivation.

It is in solving a single clause that we finally come to care about the tendency of a sort
variable. Every sort variable σ in a constraint has some upper bounds σ ≤ S and some
lower bounds T ≤ σ. If the variable is a maximizing one, then we solve it by setting it to

100

the greatest lower bound of its upper bounds, i.e., their intersection. By definition, this
is the largest possible sort that satisfies the constraints bounding σ from above. But of
course, we must check that this solution satisfies the constraints bounding σ from below
as well. If the variable is a minimizing one, then we follow the dual strategy: σ is solved
by the least upper bound of its lower bounds, and we check that this also satisfies the
upper bounds. Though we do not have union types in our calculus, the least upper
bound of two sorts is definable, and we describe how below.

The strategy above is surprisingly effective for how intuitive and simple it sounds,
but sometimes it can fail to produce a most general solution. The reason is that two sort
variables may be in tension: a maximizing variable may be constrained to be below a
minimizing one, σ+ ≤ τ−. Such constraints are intuitively problematic: a maximizing
variable wants to be as large as possible, but it is bounded from above by a minimizing
variable, one that wants to be as small as possible, and vice versa. More concretely, such
constraints are problematic because they match both forms of constraint mentioned
above, a maximizing variable bounded from above and a minimizing variable bounded
from below. Choosing to treat it wholly as one or the other amounts to preferring
the tendency of one of the variables over that of the other, a strategy which sacrifices
generality.

Before we discuss the solution to such constraints, though, we should convince
ourselves that they arise in practice—if they are as uncommon as universally quantified
constraints, perhaps we can just ignore the issue. But as it turns out, constraints with
tension are rather common: they arise anytime one variable of unknown maximizing sort
is applied to another. The following constraint-generation derivation for f x illustrates
the pattern:

f ::ρ+ ∈ Γ

. . . ; Γ ⊢ () :: τ+ < Q | τ+ ≤ Q

x::ξ+ ∈ Γ . . . ; Γ ⊢ () :: ξ+ < σ− | ξ+ ≤ σ−

. . . ; Γ ⊢ x · ()⇐ σ− | ξ+ ≤ σ−

. . . ; Γ ⊢ (x) :: ρ+ < Q | ∃σ−.∃τ+. (ρ+ ≤ σ− → τ+)T . . .

. . . ; Γ ⊢ f · (x · ())⇐ Q | . . .

The offending constraint ξ+ ≤ τ− appears in the upper right of the derivation. Intuitively,
what happens is that x must check at the domain sort of f , which means that the sort of x
must be a subsort of the domain sort of f . If the sort of f is maximizing, its domain sort
will be minimizing due to contravariance. So assuming the sort of x is maximizing, we
generate a constraint asserting that a maximizing sort variable be below a minimizing
one.

But how often does it happen in LFR that we write an application f x, where the
sorts of both f and x are unknown and maximizing? Well, recall that the most gen-
eral reconstruction for a declaration must maximize the sorts of its metavariables, and
metavariables are precisely the parts of the input which begin life with unknown sorts,
so anytime we apply one metavariable to another, we create a constraint with tension.
This situation is quite common in LF code using higher-order abstract syntax, where ap-
plication encodes object-language substitution. We have already seen one such example,

101

in fact, in the rule for evaluating an application in the call-by-value λ-calculus:

ev-app :: eval’ (app E1 E2) V
← eval’ E1 (lam λx.E′

1
x)

← eval’ E2 V2

← eval’ (E′
1

V2) V.

The application E′
1

V2 representing the substitution [v2/x] e′
1

leads to a tense constraint
in just the manner described above. We will explore this example more closely below.

First, though, let us try to gain some intuition by examining the implications of tense
constraints more carefully. Consider for the sake of discussion the following constraint:

t ≤ τ− T σ+ ≤ τ− T σ+ ≤ s.

The maximizing variable σ+ has one ground upper bound, s, while the minimizing
variable τ− has one ground lower bound, t. The middle constraint σ+ ≤ τ− can be
thought of either as placing an upper bound on σ+ or a lower bound on τ−, but the two
choices lead to different results. If we think of it as an upper bound on σ+, then we will
set σ+ = s ∧ τ−, the intersection of its upper bounds, and τ− = t, the least upper bound
of its lower bounds, resulting in the substitution

[s ∧ t/σ+, t/τ−].

But if we think of σ+ ≤ τ− as a lower bound on τ, then we will set σ+ = s and τ− to the
least upper bound of σ+ and t. Assuming s and t are unrelated, their upper bound is ⊤,
so the end result is the following substitution:

[s/σ+,⊤/τ−].

Both substitutions make the constraint clause true, but the first does a better job of
minimizing τ− while the second does a better job maximizing σ+. Neither substitution
represents a better solution than the other. Furthermore, in general, finding solutions to
constraints involving such tension might require enumeration of all sorts between two
bounds.

If we imagine that constraints determine linear intervals in which sort variables must
fall, we can visualize the problem as in Figure 5.10. In the figure, σ+ and τ− are both
constrained to certain intervals, but σ+, being a maximizing variable, would like to live
at the top of his interval, on the right edge, while τ−, being a minimizing variable, would
like to live at the bottom of his interval, on the left edge. Unfortunately, their intervals
overlap: any point inside the grey area represents a most general solution, with σ+ as
large as he can be and τ− as small as he can be, subject to the constraint that σ+ ≤ τ−.
This enumeration we deem impractical and so we would reject the clause that generated
the constraint.

If on the other hand the situation is more like that of Figure 5.11, then there is a single
most general solution, and it is easy to find: σ+ gets to be the top edge of his interval just
like he wants, while τ− enjoys the view from the bottom edge of his interval. Since σ+’s

102

σ
+

τ
-

Figure 5.10: Overlapping constraints in tension.

σ
+
 τ

-
. . .

Figure 5.11: Non-overlapping constraints in tension.

interval is entirely beneath τ−’s interval, their wishes are not at odds and they need not
reach a compromise—forces beyond both of them have determined the way of things.

Our story suggests a strategy: use only the ground upper and lower bounds to
determine the identities of sort variables, treating variable-variable constraints like σ ≤ τ
as after-the-fact checks that everything works out all right in the end. In this particular
case, we set σ+ to s and τ− to t and then check to see if s ≤ t: if so, then we have found a
solution that everyone can agree on! If not, then we have found a pair of incompatible
preferences and a non-trivial interval that we would have to enumerate to find the most
general solution.

This is the strategy that we adopt, with one twist: we must first compute the transitive
closure of the constraints in order to ensure that we find all of a variable’s ground bounds,
even those that act at a distance. Computing this closure is useful in its own right, since it
can lead us to discover that a clause is unsatisfiable when it contains a pair of constraints
like s ≤ σ and σ ≤ t, where s 6≤ t.

We do not apply this strategy to constraints of the form ρ ≤ σ→ τ, though: for these
types of constraints, we can be more eager. A quick scan of the constraint generation
rules reveals that any variable-variable constraint σ ≤ τ will come from the switch rule,
and thus be a constraint on base sorts by the refinement restriction, so tense variable-
variable constraints are never on variables refining function type. Furthermore, note
that we only generate constraints of the form ρ ≤ σ→ τ when σ and τ are freshly made
up to have the correct tendencies. So constraints on sort variables representing functions
will never involve tension and can be solved eagerly using our original naive strategy.

Before elucidating the technical details, we turn to a real example of the algorithm
in action. Recall the rule for evaluating an application in the call-by-value λ-calculus.
After LFR type reconstruction and filling it reads as follows:

ev-app ::ΠE1::σ+
1
. ΠE2::σ+2 . ΠE′

1
::ρ+

1
.ΠV2::τ+2 . ΠV::τ+.

eval’ (app E1 E2) V

103

← eval’ E1 (lam λx.E′
1

x)
← eval’ E2 V2

← eval’ (E′
1

V2) V.

The constraint generation algorithm generates the following constraint for this declara-
tion, which has a single clause. We have organized them by the first line in the program
that induces them, and deleted redundant conjuncts.

σ+1 ≤ cmp T σ+2 ≤ cmp T τ+ ≤ val

T ρ+1 ≤ ξ
−
1 → ξ+2 T ξ+2 ≤ cmp T val ≤ ξ−1

T τ+2 ≤ val

T ρ+1 ≤ ξ
−
3 → ξ+4 T ξ+4 ≤ cmp T τ+2 ≤ ξ

−
3

In the last line, we see a tense constraint τ+2 ≤ ξ−3 which is generated by the line
eval (E′

1
V2) V: the variable ξ−3 represents one possible domain of the metavariable E′

1
,

while the variable τ+2 represents the unknown sort of the metavariable V2, the argument
to E′

1
.

First, we can solve for the arrow constraints: though we don’t know their identities
completely, it is safe to set them to their upper bound and move on.

[ξ−1 → ξ+2 ∧ ξ
−
3 → ξ+4 / ρ

+
1]

σ+1 ≤ cmp T σ+2 ≤ cmp T τ+ ≤ val

T ξ+2 ≤ cmp T val ≤ ξ−1
T τ+2 ≤ val

T ξ+4 ≤ cmp T τ+2 ≤ ξ
−
3

When we compute the transitive closure of the constraints to find all bounds, we get
two new conjuncts:

τ+2 ≤ ξ
−
1 from τ+2 ≤ val and val ≤ ξ−1

T τ+ ≤ ξ−1 from τ+ ≤ val and val ≤ ξ−1

Now we can solve the constraints that represent ground bounds, yielding the following
composite substitution and remaining constraints:

[cmp/σ+1 , cmp/σ+2 , val/τ+2 , val/τ+ ,

val→ cmp ∧ val→ cmp / ρ+1 ,

val/ξ−1 , cmp/ξ+2 , cmp/ξ+3 , cmp/ξ+4]

τ+2 ≤ ξ
−
3 T τ+2 ≤ ξ

−
1 T τ+ ≤ ξ−1

Two points are worth noting. First, in the entry for ρ+
1
, we have substituted further

for its variables as we learned their identities because it is always safe to do so for an
arrow variable, but we have not yet substituted into the remaining constraints, because

104

Q1 ⊔Q2 =
∧
{Q | Q1 ≤ Q and Q2 ≤ Q}

⊥P =
∧
{Q | · ⊢ Q ⊏ P}

⊥A→B = ⊤ → ⊥B

Figure 5.12: Base sort least upper bounds and least refinements.

doing so might have led to a non-general solution—recall the example of tension we
gave above. Second, although the variable ξ−3 had no ground bounds at all we have
determined its identity: since it is a minimizing variable, we solved it with the smallest
sort refining exp, in this case val.

Now we can check to make sure we haven’t created any overlapping intervals by
applying the substitution to the remaining constraints and making sure they are satisfied.

val ≤ val T val ≤ val T val ≤ val

Everything checks out! But remember that val ≤ cmp. Were that not the case, things
could have turned out differently. The smallest sort refining exp would not just be val,
but rather the intersection of both refinements: val ∧ cmp. Had we set ξ−3 appropriately,
the remaining constraints would substitute as follows:

val ≤ val ∧ cmp T val ≤ val T val ≤ val

This constraint is not satisfiable, so our algorithm would give up instead of enumerating
the sorts between val ∧ cmp and cmp.

Since val ≤ cmp does hold, though, we find the first solution. We can then substitute
into the original declaration to obtain the final, most generally reconstructed declaration:

ev-app ::ΠE1::cmp. ΠE2::cmp. ΠE′
1
::val→ cmp. ΠV2::val. ΠV::val.

eval’ (app E1 E2) V
← eval’ E1 (lam λx.E′

1
x)

← eval’ E2 V2

← eval’ (E′
1

V2) V.

Note in particular that the reconstructed sort of E′
1

is most general: it is the largest sort
that makes the rest of the declaration well-sorted.

In the formal development that follows, we restrict our attention once more to simple
sorts so we can focus on the core issues. As outlined above, we require a definition of
least upper bounds. We only need binary least upper bounds on base sorts: to compute
the least upper bound of Q1 and Q2, we simply intersect all of their upper bounds
together. For “nullary” least upper bounds, or least sorts refining a type, we proceed by
induction on the refined type. Both definitions are shown in Figure 5.12.

It is not difficult to verify that these definitions are correct.

105

Theorem 5.19 (Base sort least upper bounds). Q1 ⊔Q2 is the least upper bound of Q1 and
Q2. That is,

1. Q1 ≤ Q1 ⊔Q2 and Q2 ≤ Q1 ⊔Q2, and

2. for any Q, if Q1 ≤ Q and Q2 ≤ Q, then Q1 ⊔Q2 ≤ Q.

Proof.

1. By definition, Q1 ⊔Q2 is an intersection of upper-bounds of both Qi. Since each Qi

is below every conjunct, each is also below the intersection.

2. Suppose Q1 ≤ Q and Q2 ≤ Q. Then we have that Q1 ⊔ Q2 =
∧
{. . . ,Q, . . . }, and

therefore Q1 ⊔Q2 ≤ Q. �

Theorem 5.20 (Least sorts). ⊥A is the least sort refining A. That is, if · ⊢ S ⊏ A, then⊥A ≤ S.

Proof. By straightforward induction on the derivation of · ⊢ S ⊏ A using the derived
rules for subsorting at higher sorts. �

It will be convenient in what follows to have metavariables for both base and non-
base sorts that may be variables, and we write these in a calligraphic face.

Q ::= Q | σ

S ::= S | σ

As already mentioned, for base sort constraints we proceed by saturating to transi-
tivity. This is done with a judgment C ⊢sat Q1 ≤ Q2.

C ⊢sat Q1 ≤ Q2

Q1 ≤ Q2 ∈ C

C ⊢sat Q1 ≤ Q2

C ⊢sat Q1 ≤ Q
′ C ⊢sat Q

′ ≤ Q2

C ⊢sat Q1 ≤ Q2

The key property of the transitivity saturation judgment is that any solution to the
original constraints also validates any subsorting judgment entailed by saturation.

Lemma 5.21 (Soundness, saturation). If C ⊢sat Q1 ≤ Q2 and � θC, then θQ1 ≤ θQ2.

Proof. Straightforward induction on the derivation of C ⊢sat Q1 ≤ Q2. �

We split clause solving into three judgments: solveBases(Ξ,C) = θ which solves
a constraint containing only base sort variables, solveArrows(Ξ,C) = θ which solves
a constraint containing only arrow sort variables, and the actual solveClause(Ξ,C) = θ
which puts the results of the other two together. The split enables a proof of completeness
by taking care not to be too “eager” when solving base sort constraints that may involve
tension; as described above, though, since no tension can arise in arrow sort constraints,
we can be eager in solveArrows.

106

solveBases(Ξ,C) = θ

solveBases(·, tt) = []

S =
∧
{Q | C ⊢sat σ ≤ Q} solveBases(Ξ,C) = θ

solveBases((Ξ, σ+P),C) = [θ, S/σ]

T =
⊔
{Q | C ⊢sat Q ≤ τ} solveBases(Ξ,C) = θ

solveBases((Ξ, τ−P),C) = [θ, T/τ]

solveArrows(Ξ,C) = θ

solveArrows(·, tt) = []

U = S1 → T1 ∧ . . . ∧ Sn → Tn solveArrows(Ξ, [U/ρ]C) = θ

solveArrows((Ξ, ρ+A→B), ρ ≤ S1 → T1 T . . .T ρ ≤ Sn → Tn T C) = [θ, U/ρ]

U = ⊥A→B solveArrows(Ξ, [U/ρ]C) = θ

solveArrows((Ξ, ρ−A→B),C) = [θ, U/ρ]

In the definition of solveClause, we check the result of solveBases: it is possible that
it may return an invalid solution if the constraint given involves tension, as shown
by the example above; in such cases, our algorithm gives up rather than enumerating
all sorts in an interval. We write θ ◦ θ′ for the concatenation of two non-overlapping
substitutions.

solveClause(Ξ,C) = θ

solveBases(Ξbase,Cbase) = θbase � θbaseCbase solveArrows(Ξ→, θbaseC→) = θ→

solveClause((Ξbase,Ξ→),Cbase T C→) = θbase ◦ θ→

A clause is unsatisfiable if saturating it yields a contradiction.

unsatClause(Ξ,C)

C ⊢sat Q1 ≤ Q2 Q1 6≤ Q2

unsatClause(Ξ,C)

Lemma 5.22 (Soundness, solveBases). If solveBases(Ξ,C) = θ, then ⊢ θ : Ξ.

Proof. Straightforward induction on the derivation of solveBases(Ξ,C) = θ. �

107

Lemma 5.23 (Soundness, solveArrows). If solveArrows(Ξ,C) = θ, then ⊢ θ : Ξ and � θC.

Proof. By induction on the derivation of solveArrows(Ξ,C) = θ, making use of the fact
that [θ, S/σ]C = θ ([S/σ]C). �

Theorem 5.24 (Soundness, clause solving). If solveClause(Ξ,C) = θ, then ⊢ θ : Ξ and
� θC.

Proof. Using Lemmas 5.22 and 5.23, along with the premise � θbaseCbase. �

Theorem 5.25 (Soundness, constraint solving). If solve(Ξ,E) = Θ, then for every θ ∈ Θ,
we have ⊢ θ : Ξ and � θE.

Proof. By induction on the solve derivation, appealing to Theorem 5.24 when a new
substitution is added. �

The completeness direction requires a bit more care to state and prove. First, since
we do not expect our constraint solving algorithm to always succeed, we do not want a
“total” completeness result saying that if a solution exists, we will find it. Instead, we
want to say that if our algorithm does find a solution, it is at least as good as any other.

Assuming solve(Ξ,E) does return a solution Θ, we would like to say something like
“any substitution satisfying E is inΘ”. That’s too imprecise, though, because solve(Ξ,−)
only finds most general solutions: not every solution to E will be output by solve(Ξ,E),
but every solution to E should be subsumed by one in solve(Ξ,E). We formalize this with
a relation θ1 4 θ2, which can be read “θ1 is better than θ2”, “θ1 is more principal than
θ2”, or “θ1 is more general than θ2”. One substitution is better than another if it provides
a better solution for every variable, and a better solution is one that tends more towards
the tendency of the variable, maximizing or minimizing. Formally:

θ 4 θ′ if and only if for every σ+ ∈ dom(θ′), θ(σ) ≥ θ′(σ)

and for every σ− ∈ dom(θ′), θ(σ) ≤ θ′(σ).

There is an important connection between the “better” relation and tendencies which
we will exploit in the proofs below.

Theorem 5.26. The definition of the relation θ 4 θ′ lifts to complete sorts.

1. If θ 4 θ′ and tendency(S,−), then θS ≤ θ′S.

2. If θ 4 θ′ and tendency(S,+), then θS ≥ θ′S.

Proof. By induction on the given tendency derivation using the definition of θ 4 θ′ at
sort variables and the rules of higher-sort subsorting elsewhere. �

Lemma 5.27 (Completeness, solveBases). If solveBases(Ξ,C) = θ, then for every ⊢ θ′ : Ξ
such that � φ(θ′C) for some φ, we have θ 4 θ′.

108

Proof. By induction on the derivation of solveBases(Ξ,C) = θ. In the base case, θ′ = [] by
inversion, and [] 4 []. The case for the rule where we form an intersection proceeds as
follows:

Ξ = Ξ1, σ
+ This case.

θ′ = [θ′
1
, S′/σ+], where ⊢ θ′

1
: Ξ1 By inversion.

� φ([θ′
1
, S′/σ+]C) By assumption.

For each Q such that C ⊢sat σ
+ ≤ Q: S′ ≤ Q By Lemma 5.21.

S′ ≤
∧
{Q | C ⊢sat σ

+ ≤ Q} By iterated ∧-R.

� [φ, S′/σ+] (θ′C) By reordering.
θ 4 θ′ By i.h.

[θ, S/σ+] 4 [θ′, S′/σ+] By definition.

The case for the remaining rule is similar, but it makes use of Lemmas 5.19 and 5.20 to
show that

⊔
{Q | C ⊢sat Q ≤ τ−} ≤ S′. �

The completeness argument for solveArrows relies on the fact that generated arrow
constraints are non-tense: for every generated ρt ≤ S, we have tendency(S, t).

Lemma 5.28 (Completeness, solveArrows). Suppose ⊢ φ : Ξ0 and ⊢ φ′ : Ξ0, and that φ 4 φ′.
If solveArrows(Ξ, φC) = θ and C is non-tense, then for every ⊢ θ′ : Ξ such that � θ′(φ′C), we
have θ 4 θ′.

Proof. By induction on the derivation of solveArrows(Ξ,C) = θ. In the base case, θ′ = []
by inversion, and [] 4 []. The case for the rule where we form an intersection proceeds
as follows:

Case: U = S1 → T1 ∧ . . . ∧ Sn → Tn solveArrows(Ξ1, [U/ρ]φC1) = θ1

solveArrows((Ξ1, ρ
+
A→B)

︸ ︷︷ ︸
Ξ

, ρ ≤ S1 → T1 T . . .T ρ ≤ Sn → Tn T φC1︸ ︷︷ ︸
φC

) = [θ1, U/ρ]
︸ ︷︷ ︸

θ

C = ρ+ ≤ S1 T . . .T ρ
+ ≤ Sn T C1, where φSi = Si → Ti By equality reasoning.

θ′ = [θ′
1
, U′/ρ+], where ⊢ θ′

1
: Ξ1 By inversion.

� [θ′
1
, U′/ρ] (φ′C) By assumption.

For each i from 1 to n:
[θ′

1
, U′/ρ] (φ(ρ ≤ Si)) = U′ ≤ φ′Si Since ⊢ φ′, φ : Ξ0 and φ is grounding.

� U′ ≤ φ′Si By definition and equality reasoning.
U′ ≤ φ′Si By definition.
tendency(Si,+) Since C is non-tense.
φ′Si ≤ φSi By Theorem 5.26, since φ 4 φ′.
U′ ≤ φSi By transitivity.

U′ ≤ φS1 ∧ . . . ∧ φSn By iterated ∧-R.
U′ ≤ U By equality reasoning.

109

⊢ [φ, U/ρ] : (Ξ0, ρ) and ⊢ [φ′, U′/ρ] : (Ξ0, ρ),
and [φ, U/ρ] 4 [φ′, U′/ρ] By definition.
solveArrows(Ξ1, [φ, U/ρ]C1) = θ1 By equality reasoning on subderivation.
� θ′

1
([φ′, U′/ρ]C1) By reordering.

θ1 4 θ
′
1

By i.h.

[θ1, U/ρ] 4 [θ′
1
, U′/ρ] By definition.

The case for the remaining rule is similar, but it makes use of Lemma 5.20 to show that
⊥A→B ≤ U′. �

Theorem 5.29 (Completeness, clause solving). If solveClause(Ξ,C) = θ, then for every
⊢ θ′ : Ξ such that � θ′C, we have θ 4 θ′.

Proof. Suppose ⊢ θ′ : (Ξbase,Ξ→) and � θ′(Cbase T C→). By inversion, θ′ must have
the form θ′

base
◦ θ′→, where ⊢ θ′

base
: Ξbase and ⊢ θ′→ : Ξ→. Note that by Lemma 5.22,

⊢ θbase : Ξbase. By Lemma 5.27 with φ = θ′→, we have θbase 4 θ
′
base

. Since C→ is non-tense,
by Lemma 5.28, θ→ 4 θ

′
→. Putting it all together, we have (θbase ◦ θ→) 4 (θ′

base
◦ θ′→), or

θ 4 θ′. �

Theorem 5.30 (Soundness, clause unsatisfiability). If unsatClause(Ξ,C), then there is no
⊢ θ : Ξ such that � θC.

Proof. Suppose that unsatClause(Ξ,C) but that ⊢ θ : Ξ and � θC. By inversion, C ⊢sat Q1 ≤

Q2, and by Lemma 5.21, Q1 ≤ Q2, a contradiction. �

Theorem 5.31 (Completeness, constraint solving). If solve(Ξ,E) = Θ, then for every
⊢ θ′ : Ξ such that � θ′E, there is some θ ∈ Θ such that θ 4 θ′.

Proof. By induction on the solve derivation. In the case where we solve a clause, The-
orem 5.29 (Completeness, clause solving) and the inductive hypothesis give us the de-
sired result. In the case where we find an unsatisfiable clause, Theorem 5.30 (Soundness,
clause unsatisfiability) and the inductive hypothesis give us the desired result. �

5.5.3 Practical Sort Reconstruction Algorithm

Now that we have described practical algorithms for constraint generation and con-
straint solving, we can chain them together to get a practical algorithm for sort recon-
struction. Recall from Section 5.2 that top-level reconstruction of declarations s⊏a::L
and c::S proceeds by first performing LFR type reconstruction, then by filling unknown
sorts with fresh appropriate-tendency sort variables, and finally by calling out to “sort
reconstruction proper” to find the best possible instantiations for those variables. We

110

recapitulate the two key rules here.

⊢ Σ sig ◮ Σ′ (a:K, i) ∈ Σ′ ⊢i
Σ′ L ⊏
˜

K ◮ L1 L1 ◮
− (Ξ ⊢ L2) Ξ ⊢Σ′ L2 ⊏ K ◮ L′

⊢ Σ, s⊏a::L sig ◮ Σ′, (s⊏a::L′, i)

⊢ Σ sig ◮ Σ′ (c:A, i) ∈ Σ′ ⊢i
Σ′ S ⊏
˜

A ◮ S1 S1 ◮
− (Ξ ⊢ S2) Ξ ⊢Σ′ S2 ⊏ A ◮ S′

⊢ Σ, c::S sig ◮ Σ′, (c::S′, i)

In Section 5.4.2, we saw one way of specifying the sort reconstruction judgment Ξ ⊢Σ′
S ⊏ A ◮ S′ (and by analogy the class reconstruction Ξ ⊢Σ′ L ⊏ K ◮ L′), a single rule that
explicitly enumerated and intersected together all possible instantiations.

We can similarly define a practical algorithm for sort reconstruction as a single rule
that composes together the constraint generation and constraint solving judgments. As
before, we focus on the rule for reconstructing a sort; the rule for reconstructing a class
is analogous.

Ξ; · ⊢ S ⊏ A | C solve(Ξ,C) = Θ

Ξ ⊢ S ⊏ A ◮
∧
{θS | θ ∈ Θ}

In words, given a fully type-reconstructed declaration c::S which may have some free
sort variables, we compute the best instantiation by (1) generating a constraint which
soundly and completely captures the requirements imposed on those sort variables by
the structure of the declaration, (2) solving that constraint to obtain a sound and complete
set of valid instantiations, and (3) intersecting together the results of applying all of the
instantiations to the original declaration.

We can easily show that the reconstructed sort produced in this way is well-formed.

Theorem 5.32 (Soundness, practical algorithm). If Ξ ⊢ S ⊏ A ◮ S′, then · ⊢ S′ ⊏ A.

Proof. By inversion, we know Ξ; · ⊢ S ⊏ A | C and solve(Ξ,C) = Θ, and we must show
that · ⊢

∧
{θS | θ ∈ Θ} ⊏ A.

By Theorem 5.25 (Soundness, constraint solving), for every θ ∈ Θ, we have � θC.
Then for each θ, by Theorem 5.17 (Soundness, constraint generation), we have · ⊢ θS ⊏
A. Finally, by several applications of the intersection refinement rule ∧-F, we have
· ⊢
∧
{θS | θ ∈ Θ} ⊏ A, which is the desired result. �

We furthermore know that the reconstructed sort is principal, since our constraint
solving algorithm makes the least possible commitments in every case. We may assume
that the result of sort reconstruction has minimizing tendency since the sort reconstruc-
tion judgment is called from top-level signature reconstruction on the result of filling at
minimizing tendency (“−”) (c.f., Theorem 5.8).

Theorem 5.33 (Principality, practical algorithm). Suppose Ξ ⊢ S ⊏ A ◮ S′ and that
tendency(S,−). For any ⊢ θ′ : Ξ such that · ⊢ θ′S ⊏ A, we have S′ ≤ θ′S.

111

Proof. Suppose ⊢ θ′ : Ξ such that · ⊢ θ′S ⊏ A. By inversion, we know Ξ; · ⊢ S ⊏ A | C
and solve(Ξ,C) = Θ, and we must show that

∧
{θS | θ ∈ Θ} ≤ θ′S.

By Theorem 5.18 (Completeness, constraint generation), we have � θ′C. Then by
Theorem 5.31 (Completeness, constraint solving), there is some θ ∈ Θ such that θ 4 θ′.
By Theorem 5.26, since tendency(S,−), we have θS ≤ θ′S. Finally, by several applications
of ∧-L1 and ∧-L2, we have

∧
{θS | θ ∈ Θ} ≤ θ′S, which is the desired result. �

5.6 Summary

We have seen in this chapter decidability results and practical algorithms for recon-
structing LFR signatures given in an implicit concrete syntax similar to that of Twelf.
We explained sort reconstruction by a simple and elegant reduction to constraint satisfi-
ability for a finitary fragment of first-order logic, and we gave an efficient algorithm for
solving a class of constraints representative of many typical applications, bolstering our
claim that refinement types are a practical addition to the logical framework LF.

Just how practical is our algorithm? In terms of algorithmic complexity, we cannot
hope for very much, since as mentioned in Chapter 2, even the problem of sort checking
for LFR is PSPACE-hard. By focusing on situations that seem to arise in practice and
ruling out enumerative cases that would obviously be expensive, we believe we have
constructed an algorithm that hits a certain “sweet spot”: efficient enough to handle
typical situations despite being decidedly partial. Our preliminary experiments bear
this out, with our algorithm returning the expected reconstruction on almost all of
the examples we’ve considered, and requiring only minimal annotations to cover the
remainder.

Now that we can work in a practical concrete syntax similar to Twelf’s, we are ready
to explore the expressive power of refinements through case studies more substantial
than the small examples we have restricted ourselves to until now.

112

Chapter 6

Case Studies

In this chapter, we present a few larger, more realistic case studies showing how we
expect LFR to be used in practice. All of the case studies are inspired by representational
challenges that have come up during the course of actual research.

The examples we give are divided into three sections. First, we explore several
encodings related to the field of programming languages, where refinements primarily
help us to get a handle on subsyntax and invariants captured by the forms of judgments.
Next, we cover a variety of examples from logic and proof theory, where refinements
are particularly useful for isolating subsets of derivations. Finally, we present a series
of challenges that arise specifically in the study of logical frameworks, several of which
come from this very dissertation.

6.1 Programming Languages

6.1.1 Fragments of Polymorphism

The study of polymorphism is a rich and beautiful subject, seemingly simple but with
deep implications. As first studied indepently by Girard [Gir72] and Reynolds [Rey74],
the essence of polymorphism was to extend the type structure of the λ-calculus with
universally quantified types:

t ::= α | b | t1 → t2 | ∀α. t

Polymorphic types are easy to represent in LF using higher-order abstract syntax:

base : type.
tp : type.

? : base→ tp.
➪ : tp→ tp→ tp.
∀ : (tp→ tp)→ tp.

113

Since polymorphism was first invented, people have studied various fragments of it
that have important properties like decidable type inference. Here, we consider two of
them: the prenex polymorphism of ML [DM82] and rank-2 polymorphism [KT92].

Damas and Milner’s [DM82] type inference algorithm for ML is based around the
idea of prenex polymorphism, or type schemes, where all of the quantifiers are outermost:

τ ::= α | b | τ1 → τ2 simple types

σ ::= τ | ∀α. σ type schemes

We can represent type schemes succinctly in LFR, using a sort family simple for the
simple types and a sort family prenex for the type schemes:

simple ⊏ tp.

? :: base→ simple.
➪ :: simple→ simple→ simple.

prenex ⊏ tp.

simple ≤ prenex.
∀ :: (simple→ prenex)→ prenex.

As we have seen before, the inclusion of simple types into prenex type schemes is
captured by a subsorting declaration.

ML polymorphism is celebrated for its combination of simplicity and power, but it is
not the only decidable fragment of polymorphism. Kfoury and Tiuryn [KT92] showed
that type inference for rank-2 polymorphism is polynomial-time equivalent to ML type
inference. Polymorphism of rank k, intuitively, is the fragment where quantified types
may only appear in positions that are not to the left of more than k arrows. Kfoury
and Tiuryn’s work is based on a system slightly more restrictive than but ultimately
equivalent to rank-2 polymorphism, in which quantifiers are pushed as far to the front
as possible:

τ ::= α | b | τ1 → τ2 simple types

σ ::= τ | ∀α. σ type schemes

ρ ::= τ | σ→ τ rank-2 types

π ::= ρ | ∀α. π rank-2 type schemes

As is evident, the system of rank-2 types is a strict superset of prenex polymorphism. A
rank-2 type scheme has the form ∀α1. . . .∀αn. σ1 → . . . σm → τ, where each σi is a type
scheme and τ is a simple type. Using a feature of our implementation wherein multiple
declarations for a constant are interpreted as conjuncts of an intersection declaration,
we can extend our encoding of prenex polymorphism to one of rank-2 polymorphism,
writing rank2 for the rank-2 types and prenex2 for the rank-2 type schemes.

rank2 ⊏ tp.

114

prenex2 ⊏ tp.

simple ≤ rank2.
➪ :: prenex→ rank2→ rank2.

rank2 ≤ prenex2.
∀ :: (simple→ prenex2)→ prenex2.

Suppose we wanted to formalize the equivalence of the simplified rank-2 system and
the full strength rank-2 system. The full system’s type language has a regular structure
that captures the intuition that a rank-k arrow type can only have a domain of rank k− 1
or lower.

R(0) ::= α | b | R(0)→ R(0) rank-0 types

R(1) ::= R(0) | R(0)→ R(1) | ∀α.R(1) rank-1 types

R(2) ::= R(1) | R(1)→ R(2) | ∀α.R(2) rank-2 types

Observe that the full system is indeed a generalization of the restricted one: every rank-2
type scheme π is a member of R(2), and every ML type scheme σ is a member of R(1),
but in neither case does the converse hold. We can easily define the full system in LFR,
opening the way for a formalization of Kfoury and Tiuryn’s results.

r0 ⊏ tp.

? :: base→ r0.
➪ :: r0→ r0→ r0.

r1 ⊏ tp.

r0 ≤ r1.
➪ :: r0→ r1→ r1.
∀ :: (r0→ r1)→ r1.

r2 ⊏ tp.

r1 ≤ r2.
➪ :: r1→ r2→ r2.
∀ :: (r0→ r2)→ r2.

6.1.2 Values and Computations

A typical practice in the study of the operational semantics of programming languages
is to distinguish values from arbitrary computations. Earlier, we saw an encoding of
values and expressions along with their evaluation judgment. We recap it here and
extend it with pairing and projections.

115

exp : type.

lam : (exp→ exp)→ exp.
app : exp→ exp→ exp.
pair : exp→ exp→ exp.

val ⊏ exp.
cmp ⊏ exp.

val ≤ cmp.

lam :: (val→ cmp)→ val.
app :: cmp→ cmp→ cmp.
pair :: val→ val→ val
∧ cmp→ cmp→ cmp.

pi1 :: cmp→ cmp.
pi2 :: cmp→ cmp.

eval :: cmp→ val→ type.

ev/lam :: eval (lam E) (lam E).

ev/app :: eval (app E1 E2) V
← eval E1 (lam E1’)
← eval E2 V2
← eval (E1’ V2) V.

ev/pair :: eval (pair E1 E2) (pair V1 V2)
← eval E1 V1
← eval E2 V2.

ev/pi1 :: eval (pi1 E) V1
← eval E (pair V1 V2).

ev/pi2 :: eval (pi2 E) V2
← eval E (pair V1 V2).

We present this extended example to highlight the expressive power of intersections:
the pair constructor can be applied either to two values, with the result being a value, or
to two computations, with the result being a computation. The duality is exploited in
the ev/pair rule, where the first pair is a computation and the second a value.

Contrast this with the way the example might be represented in ordinary LF, with
two separate types for values and computations.

val : type.

116

cmp : type.

% ...

pair : cmp→ cmp→ cmp.
vpair : val→ val→ val.

% ...

eval : cmp→ val→ type.

% ...

ev/pair : eval (pair E1 E2) (vpair V1 V2)
← eval E1 V1
← eval E2 V2.

In the LF encoding, we have been forced to introduce a second constructor for pairs,
one which takes in values and returns a value. If we were to define other judgments on
λ-expressions, we would have to define them twice—once for computations and once
for values—with duplicated cases for the pair constructs. If we were to prove theorems
about expressions, we would have to prove them twice as well. The situation can be quite
cumbersome if our encoded language’s values and computations overlap significantly.
Using the LFR approach, we encode just one language and isolate whatever fragments
we wish.

Of course, we always have the option to work in pure LF and use judgments to isolate
fragments of the language, and this is also frequently done in practice, but it comes with
all the caveats we mentioned in Section 2.2: the burden of proof is now on the user to
verify that representations are used correctly.

6.1.3 Other Evaluation Strategies

“Values and expressions” is a typical theme that comes up frequently in the literature. In
Harper and Lillibridge’s study of explicit polymorphism and CPS [HL93], they delineate
several evaluation strategies for an extension of Fω with control operators. For each
evaluation strategy, they give a grammar of values, redexes, and evaluation contexts.
We can isolate each of these sub-languages as refinements of a larger language. Ignoring
the kind and constructor levels, the syntax of the larger language is given as follows:

kinds K ::= . . .

constructors A ::= . . .

terms M ::= x | λx:A.M |M1 M2 | Λu:K.M |M{A} | callccA(M) | abortA(M)

It is encoded in LF in the usual manner:

117

knd : type.
con : type.

tm : type.

lam : con→ (tm→ tm)→ tm.
app : tm→ tm→ tm.
Lam : knd→ (con→ tm)→ tm.
App : tm→ con→ tm.
callcc : con→ tm→ tm.
abort : con→ tm→ tm.

A complete grammar subsuming all manners of evaluation contexts is never given in
the paper, but we can induce what it must be from the sub-languages:

evaluation contexts E ::= [] | E M |M E | Λu:K.E | E{A}

Again, it is not difficult to encode this grammar in LF:

evctx : type.

〈〉 : evctx.
capp1 : evctx→ tm→ evctx.
capp2 : tm→ evctx→ evctx.
cLam : knd→ (con→ evctx)→ evctx.
cApp : evctx→ con→ evctx.

Some auxiliary notions will turn out to be useful below. First, when encoding redexes,
it is useful to isolate immediate abstractions as refinements of terms.

lambda ⊏ tm. lambda :: sort.
lam :: ⊤→ (⊤→ ⊤)→ lambda.

Lambda ⊏ tm. Lambda :: sort.
Lam :: ⊤→ (⊤→ ⊤)→ Lambda.

Second, it will turn out that the control operators are always redexes, so it is useful to
isolate them as a refinement control.

control ⊏ tm. control :: sort.
abort :: ⊤→ ⊤→ control.
callcc :: ⊤→⊤→ control.

Call-by-Value (CBV) Strategy. Harper and Lillibridge give the syntax of CBV values,
redexes, and expressions as follows:

V ::= x | λx:A.M | Λu:K.M

R ::= (λx:A.M) V | (Λu:K.M){A} | abortA(M) | callccA(M)

E ::= [] | E M | V E | E{A}

118

We encode this grammar in LFR by delineating three new refinements.

v/value ⊏ tm. v/value :: sort. % CBV values V.
v/redex ⊏ tm. v/redex :: sort. % CBV redexes R.
v/evctx ⊏ evctx. v/evctx :: sort. % CBV eval contexts E.

We must take care to define a new “immediate abstraction” refinement, since in the call-
by-value language, variables represent values. (Compare with the declarations above
for the sort lambda.)

v/lambda ⊏ tm. v/lambda :: sort.
lam :: ⊤→ (v/value→⊤)→ v/lambda.

The only values are CBV λ-abstractions and ordinary Λ-abstractions.

v/lambda ≤ v/value.
Lambda ≤ v/value.

Redexes are either applications of an appropriate abstraction to an appropriate argument
or control operators.

app :: v/lambda→ v/value→ v/redex.
App :: Lambda→⊤→ v/redex.
control ≤ v/redex.

The evaluation contexts follow in a straightforward manner.

〈〉 :: v/evctx.
capp1 :: v/evctx→⊤→ v/evctx.
capp2 :: v/value→ v/evctx→ v/evctx.
cApp :: v/evctx→⊤→ v/evctx.

The remaining sub-languages follow similar techniques, so we simply give the gram-
mars and their encodings. Two “ML-like” strategies are interesting in that they allow
reduction under Λ-abstractions.

Call-by-Name (CBN) Strategy.

V ::= λx:A.M | Λu:K.M

R ::= (λx:A.M1) M2 | (Λu:K.M){A} | abortA(M) | callccA(M)

E ::= [] | E M | E{A}

n/value ⊏ tm. n/value :: sort. % CBN values V.
n/redex ⊏ tm. n/redex :: sort. % CBN redexes R.
n/evctx ⊏ evctx. n/evctx :: sort. % CBN eval contexts E.

lambda ≤ n/value.
Lambda ≤ n/value.

119

app :: lambda→⊤→ n/redex.
App :: Lambda→⊤→ n/redex.
control ≤ n/redex.

〈〉 :: n/evctx.
capp1 :: n/evctx→⊤→ n/evctx.
cApp :: n/evctx→⊤→ n/evctx.

ML-like Call-by-Value (ML-CBV) Strategy .

V ::= x | λx:A.M | Λu:K.V

R ::= (λx:A.M) V | (Λu:K.V){A} | abortA(M) | callccA(M)

E ::= [] | E M | V E | Λu:K.E | E{A}

mlv/value ⊏ tm. mlv/value :: sort. % ML−CBV values V.
mlv/redex ⊏ tm. mlv/redex :: sort. % ML−CBV redexes R.
mlv/evctx ⊏ evctx. mlv/evctx :: sort. % ML−CBV eval contexts E.

mlv/lambda ⊏ tm. mlv/lambda :: sort.
lam :: ⊤→ (mlv/value→⊤)→ mlv/lambda.
mlv/Lambda ⊏ tm. mlv/Lambda :: sort.
Lam :: ⊤→ (⊤→ mlv/value)→ mlv/Lambda.

mlv/lambda ≤ mlv/value.
mlv/Lambda ≤ mlv/value.

app :: mlv/lambda→ mlv/value→ mlv/redex.
App :: mlv/Lambda→⊤→ mlv/redex.
control ≤ mlv/redex.

〈〉 :: mlv/evctx.
capp1 :: mlv/evctx→⊤→ mlv/evctx.
capp2 :: mlv/value→ mlv/evctx→ mlv/evctx.
cLam :: ⊤→ (⊤→ mlv/evctx)→ mlv/evctx.
cApp :: mlv/evctx→⊤→ mlv/evctx.

ML-like Call-by-Name (ML-CBN) Strategy.

V ::= λx:A.M | Λu:K.V

R ::= (λx:A.M1) M2 | (Λu:K.V){A} | abortA(M) | callccA(M)

E ::= [] | E M | Λu:K.E | E{A}

120

mln/value ⊏ tm. mln/value :: sort. % ML−CBN values V.
mln/redex ⊏ tm. mln/redex :: sort. % ML−CBN redexes R.
mln/evctx ⊏ evctx. mln/evctx :: sort. % ML−CBN eval contexts E.

mln/Lambda ⊏ tm. mln/Lambda :: sort.
Lam :: ⊤→ (⊤→ mln/value)→ mln/Lambda.

lambda ≤ mln/value.
mln/Lambda ≤ mln/value.

app :: lambda→⊤→ mln/redex.
App :: mln/Lambda→⊤→ mln/redex.
control ≤ mln/redex.

〈〉 :: mln/evctx.
capp1 :: mln/evctx→⊤→ mln/evctx.
cLam :: ⊤→ (⊤→ mln/evctx)→ mln/evctx.
cApp :: mln/evctx→⊤→ mln/evctx.

6.1.4 Weak Head Normal Types in Higher-Order Subtyping

Compagnoni and Goguen [CG03] present a typed operational semantics for an Fω≤-like
language with higher-order subtyping. Typed operational semantics is a way of present-
ing type theories similar to the canonical forms/hereditary substitutions methodology,
and it leads to similar reductions in the complexity of metatheoretic arguments.

The constructors of the language they define is given as follows:

K ::= . . .

A ::= X | A→ A | ∀X≤A:K.A | ΛX≤A:K.A | A A | T⋆

Its encoding in LF is typical:

kd : type.
tp : type.

T⋆ : tp.
arrow : tp→ tp→ tp.
all : tp→ kd→ (tp→ tp)→ tp.
Lam : tp→ kd→ (tp→ tp)→ tp.
App : tp→ tp→ tp.

The work makes use of a notion of weak head normal form for type constructors,
which is described by the following definition [CG03]:

121

D 3.1 (Weak-Head Normal)
T⋆, A1 → A2, ∀X≤A:K.B, and ΛX≤A:K.B are weak head normal.
X(A1, . . . ,An) is weak head normal if A1, . . .An are in normal form.

To encode this notion in LFR, we first encode normal types via the usual “atomic/normal”
strategy:

atp ⊏ tp. atp :: sort.
ntp ⊏ tp. ntp :: sort.

T⋆ :: ntp.
arrow :: ntp→ ntp→ ntp.
all :: ntp→⊤→ (atp→ ntp)→ ntp.
Lam :: ntp→⊤→ (atp→ ntp)→ ntp.
App :: atp→ ntp→ atp.
atp ≤ ntp.

We can then isolate the weak head normal types by directly following the definition.
Note that we already have a way of describing a variable type applied to a series of
normal arguments, atp, so we use a subsort inclusion to declare that such types are weak
head normal.

whntp ⊏ tp. whntp :: sort.
T⋆ :: whntp.
arrow :: ⊤→ ⊤→ whntp.
all :: ⊤→ ⊤→ (atp→⊤)→ whntp.
Lam :: ⊤→ ⊤→ (atp→⊤)→ whntp.
atp ≤ whntp.

6.1.5 Singleton Kind Elimination

Singleton kinds can be used in type-preserving compilers to track the partial identities
of type variables. Crary [Cra07] gives a sound and complete procedure for compiling
away singleton kinds, in the form of a translation from a language with singletons
to a language without. Using sorts, we can encode the singleton-free language as a
refinement of the full language, both in terms of the syntactic elements and in terms
of the rules defining judgments over those elements. In doing so, we highlight the
expressive power afforded by the uniformity of the LFR approach.

The kinds of the singleton calculus are the base kind “type”, singletons of construc-
tors, and dependent products and sums of kinds. We focus our attention on the kind
layer, but note that the constructor layer includes the variables bound by dependent
product and sum kinds.

kinds K ::= T | S(c) | Πα:K1.K2 | Σα:K1.K2

constructors c ::= α | . . .

As usual, the encoding in LF is typical.

122

Γ ⊢ ok

Γ ⊢ T = T
(14)

Γ ⊢ c1 = c2 : T

Γ ⊢ S(c1) = S(c2)
(15)

Γ ⊢ K′2 = K′1 Γ, α:K′1 ⊢ K′′1 = K′′2

Γ ⊢ Πα:K′1.K
′′
1 = Πα:K′2.K

′′
2

(16)
Γ ⊢ K′1 = K′2 Γ, α:K′1 ⊢ K′′1 = K′′2

Γ ⊢ Σα:K′1.K
′′
1 = Σα:K′2.K

′′
2

(17)

Figure 6.1: Kind equivalence in the singleton calculus.

kd : type.
tp : type.

t : kd.
sing : tp→ kd.
pi : kd→ (tp→ kd)→ kd.
sigma : kd→ (tp→ kd)→ kd.

One of the judgments of the singleton calculus is the equivalence of kinds, written
Γ ⊢ K1 = K2. Typically kind equivalence is trivial, but in the singleton calculus, it must
depend on constructor equivalence. The four rules defining kind equivalence are shown
in Figure 6.1, exactly as they appear in Crary’s article. We can encode the rules of the
kind equivalence judgment in LF using the usual technique of higher-order judgments.
We declare, but do not define, judgments for type equivalence (eq) and kinding of
constructors (kof).

eq : tp→ tp→ kd→ type.
kof : tp→ kd→ type.
% ...

keq : kd→ kd→ type.

rule14 : keq t t.

rule15 : keq (sing C1) (sing C2)
← eq C1 C2 t.

rule16 : keq (pi K′
1
λa.K′′

1
a) (pi K′2 λa.K′′2 a)

← keq K′2 K′
1

← (Πa. kof a K′
1
→ keq (K′′

1
a) (K′′2 a)).

rule17 : keq (sigma K′
1
λa.K′′

1
a) (sigma K′2 λa.K′′2 a)

← keq K′
1

K′2
← (Πa. kof a K′

1
→ keq (K′′

1
a) (K′′2 a)).

123

Crary defines the singleton-free target language in terms of its differences from the
singleton calculus: its kinds and constructors may not mention any singleton kinds, and
any rules dealing with singleton kinds are omitted, including rule 15 above. To encode
the syntax of the singleton-free language, we declare two refinements sf/kd and sf/tp. The
constructor for singletons, sing, does not belong to the refinement sf/kd.

sf/kd ⊏ kd.
sf/tp ⊏ tp.

t :: sf/kd.
% no ”sing” declaration
pi :: sf/kd→ (sf/tp→ sf/kd)→ sf/kd.
sigma :: sf/kd→ (sf/tp→ sf/kd)→ sf/kd.

The singleton-free judgments are defined as refinements of the ordinary ones, noting
that they apply only to singleton-free syntactic elements. Rule 15 is omitted.

sf/eq ⊏ eq :: sf/tp→ sf/tp→ sf/kd→ sort.
sf/kof ⊏ kof :: sf/tp→ sf/kd→ sort.
% ...

sf/keq ⊏ keq :: sf/kd→ sf/kd→ sort.

rule14 :: sf/keq t t.

% no ”rule15” declaration

rule16 :: sf/keq (pi K′
1
λa.K′′

1
a) (pi K′2 λa.K′′2 a)

← sf/keq K′2 K′
1

← (Πa. sf/kof a K′
1
→ sf/keq (K′′

1
a) (K′′2 a)).

rule17 :: sf/keq (sigma K′
1
λa.K′′

1
a) (sigma K′2 λa.K′′2 a)

← sf/keq K′
1

K′2
← (Πa. sf/kof a K′

1
→ sf/keq (K′′

1
a) (K′′2 a)).

The singleton-free rules are all well-sorted since they only apply to singleton-free syntax.
We now have an encoding of the target singleton-free calculus suitable for formalizing
Crary’s translation.

It is worth noting that the LFR framework prevents one from accidentally including
rule 15 in the singleton-free calculus, since the singleton-free judgments should only
apply to singleton-free syntax. Since there is no singleton-free declaration for the sing
constructor, the following declaration would produce a sort error:

% ∗∗∗ sort error: ∗∗∗
rule15 :: sf/keq (sing C1) (sing C2)

← sf/eq C1 C2 t.

124

x:A ∈ Γ

Γ ⊢ x : A Γ ⊢ ∗ : �

Γ ⊢ T1 : s1 Γ, x:T1 ⊢ T2 : s2

Γ ⊢ Πx:T1.T2 : s2

(s1, s2)

Γ ⊢ U1 : s Γ, x:U1 ⊢ T : U2

Γ ⊢ λx:U1.T : Πx:U1.U2

Γ ⊢ T1 : Πx:U2.U Γ ⊢ T2 : U2

Γ ⊢ T1 T2 : [T2/x] U

Figure 6.2: The λ-cube

So not only does LFR allow one to easily isolate a syntactic and judgmental subset of a
language, but it also protects one from the mistake of doing so inconsistently.

6.1.6 The λ-Cube

In this section we present an encoding of a system similar to Barendregt’s cube of typed
λ-calculi [Bar92] which makes extensive use of intersections as finitary polymorphism.
The rules are given first without distinguishing the levels of objects, type families, and
kinds, and then refinements are given that make all distinctions apparent.

The syntax of our system is the same as Barendregt’s, an undifferentiated mass of
terms representing objects, families, and constructors.

T,U ::= x | ∗ | � | T1 T2 | λx:U.T | Πx:U1.U2

The rules we encode are shown in Figure 6.2. They are not precisely the same as
Barendregt’s: in particular, the rule for checking λ abstractions does not check the well-
formedness of its entire classifier, but rather just the domain. In the PTS presentation
of the cube, the check on the classifier serves to limit the kinds of λ-abstractions we
consider to those that should be present in the current point on the cube; we will encode
the limitation directly using intersections. We also omit the conversion rule for brevity.

The rule labelled “s1, s2” is what Barendregt referred to as the “specific rules”: there
would be one for each pair (s1, s2) currently in effect, where s1 and s2 are either ∗ or
�. Our encoding represents the syntax and rules in the usual manner, but with one
perhaps alarming change: instead of distinguishing between ∗ and �, we have just one
term representing both, written tp. This change is alarming because the rule which
previously said ∗ : � now says tp : tp, a looming paradox! But we will sort things out
shortly with refinements.

term : type.

tp : term.
pi : term→ (term→ term)→ term.
lm : term→ (term→ term)→ term.
ap : term→ term→ term.

125

of : term→ term→ type.

of-tp : of tp tp.

of-pi : of (pi T1 λx.T2 x) tp
← of T1 tp
← (Πx:term. of x T1→ of (T2 x) tp).

of-lm : of (lm U1 λx.T x) (pi U1 λx.U2 x)
← of U1 tp
← (Πx:term. of x U1→ of (T x) (U2 x)).

of-ap : of (ap T1 T2) (U T2)
← of T1 (pi U2 λx.U x)
← of T2 U2.

We sort things out by declaring four refinements of terms: objects, families, kinds, and
hyperkinds. Hyperkinds classify kinds, but we will see there is only one, namely �.

hyp ⊏ term :: sort.
knd ⊏ term :: sort.
fam ⊏ term :: sort.
obj ⊏ term :: sort.

The constant tp represents both ∗ and �. Since ∗ is a kind, the kind “type”, and � is a
hyperkind, the hyperkind “kind”, the constant tp is classified as both.

tp :: hyp ∧ knd.

The remainder of the constructors are given intersection types that bake in all eight
points of the λ-cube.

pi :: fam→ (obj→ fam)→ fam % dependent function types, {x:A} B.
∧ fam→ (obj→ knd)→ knd % type family kinds, {x:A} K.
∧ knd→ (fam→ fam)→ fam % polymorphic function types, {a:K} A.
∧ knd→ (fam→ knd)→ knd. % type operator kinds, {a:K1} K2.

lm :: fam→ (obj→ obj)→ obj % functions, [x:A] M.
∧ fam→ (obj→ fam)→ fam % type families, [x:A] B.
∧ knd→ (fam→ obj)→ obj % polymorphic abstractions, [a:K] M.
∧ knd→ (fam→ fam)→ fam. % type operators [a:K] A.

ap :: obj→ obj→ obj % ordinary application, M N
∧ fam→ obj→ fam % type family application, A M
∧ obj→ fam→ obj % polymorphic instantiation, M [A]
∧ fam→ fam→ fam. % type operator instatiation, A B

126

Then we define a stratified typing judgment of’, which tells us that kinds are classified
by hyperkinds, families by kinds, and objects by families.

of’ ⊏ of
:: knd→ hyp→ sort

∧ fam→ knd→ sort

∧ obj→ fam→ sort.

Now we simply recapitulate the rules from before—but they mean much more, now,
since the form of the of’ judgment are much more stringent than the form of the of judg-
ment. Note in particular that the alarming declaration of’ tp tp is no longer worrisome:
the left tp must have sort knd and the right one hyp, so we are in no danger of paradox.

of-tp :: of’ tp tp.

of-pi :: of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx. of’ x T1→ of’ (T2 x) tp).

of-lm :: of’ (lm U1 λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp
← (Πx. of’ x U1→ of’ (T x) (U2 x)).

of-ap :: of’ (ap T1 T2) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

In theory, sort reconstruction should be able to automatically infer which instances of
these rules are valid given the declarations we gave for the term constructors. Then we
should be able to obtain any point on the cube by deleting some conjuncts from our
constructor declarations above.

Unfortunately, the problem turns out to be just beyond the limits of our algorithms.
First, we reconstruct of-pi. Focusing on just the parts of the declaration introduced by
sort reconstruction and eliding the remainder with ellipses, we get the following output:

of-pi :: ΠT1::fam. ΠT2::obj→ fam. ...← (Πx::hyp∧knd∧fam∧obj. ...)
∧ ΠT1::fam. ΠT2::obj→ knd. ...← (Πx::hyp∧knd∧fam∧obj. ...)
∧ ΠT1::knd. ΠT2::fam→ fam. ...← (Πx::hyp∧knd∧fam∧obj. ...)
∧ ΠT1::knd. ΠT2::fam→ knd. ...← (Πx::hyp∧knd∧fam∧obj. ...).

So far, things seem roughly as expected: we see the four sorts we expect for functions
in this far corner of the cube. The sort of the bound variable in the subgoal is somewhat
surprising—we might expect it to be obj in the first two conjuncts and fam in the last two—
but after a moment’s thought, we realize that the sort assigned to x is in a minimizing
position, so indeed, this represents a better solution than the expected one.

Moving forward, we try of-lm. Again, we focus our attention on the newly introduced
sort information and elide the remainder with ellipses:

127

of-lm ::
ΠU1::fam. ΠU2::obj→ fam. ΠT::obj→ obj. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::fam. ΠU2::obj→ knd.ΠT::obj→ fam. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::fam∧knd.ΠU2::fam→ fam. ΠT::obj→ obj. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::knd∧fam.ΠU2::obj→ fam. ΠT::fam→ obj. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::knd. ΠU2::fam→ fam. ΠT::fam→ obj. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::fam∧knd.ΠU2::fam→ knd. ΠT::obj→ fam. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::knd∧fam.ΠU2::obj→ knd.ΠT::fam→ fam. ...← (Πz::hyp∧knd∧fam∧obj. ...)
∧ ΠU1::knd. ΠU2::fam→ knd. ΠT::fam→ fam. ...← (Πz::hyp∧knd∧fam∧obj. ...)

Here, we see that something is definitely amiss. Recall the roles of the metavariables
in this rule: we are checking λx:U1.T at the classifier Πx:U1.U2. The first conjunct of
the reconstruction seems correct enough: it corresponds to the rule for checking an
object-level function λx:A1.M at the typeΠx:A1.A2. The second conjunct is expected, as
well: it corresponds to the rule for checking a family-level λ-abstraction λx:A1.B at the
dependent kind Πx:A1.K2.

When we reach the third conjunct, things begin to break down. The sort assigned
to T suggests an object-level function, just as in the first conjunct, but the sort assigned
to U2 suggests a polymorphic function type, and of course the only way to make this
work is for U1 to be both a family and a kind! If such a thing were to exist, perhaps
written as Ak1, we could say that this conjunct represents the rule for checking the object
function λx:Ak1.M at the polymorphic type ∀α:Ak1.A2. This is clearly not something we
intended, and the other conjuncts involving intersections in the sort of U1 are equally
meaningless.

The situation worsens even further when we run our sort reconstruction algorithm
on the of-ap rule: reconstruction gives up because a constraint in tension would require
enumeration. What can we do now? Can we recover our modular presentation without
being forced to give the fully explicit four-conjunct rules we expect?

Fortunately, we can get by with giving two-conjunct rules that include some anno-
tations. The role of the annotations is to rule out pathological intersected classifiers like
we saw in the reconstruction of of-lm. They also have the effect of simplifying the strange
sorts given to the bound variable x we saw above.

of-pi :: of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx::obj. of’ x T1 → of’ (T2 x) tp).

∧ of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx::fam. of’ x T1→ of’ (T2 x) tp).

of-lm :: of’ (lm (U1 :: fam) λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp
← (Πx::obj. of’ x U1→ of’ (T x) (U2 x)).

∧ of’ (lm (U1 :: knd) λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp

128

← (Πx::fam. of’ x U1→ of’ (T x) (U2 x)).

of-ap :: of’ (ap T1 (T2 :: obj)) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

∧ of’ (ap T1 (T2 :: fam)) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

These annotations—on the bound variable for of-pi, on the bound variable and the do-
main type for of-lm, and on the argument of the application for of-app, are enough to
coax our sort reconstruction algorithm into producing the expected four-clause recon-
structions that follow:

of-pi :: ΠT1::fam. ΠT2::obj→ fam.
of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx::obj. of’ x T1→ of’ (T2 x) tp).

∧ ΠT1::fam.ΠT2::obj→ knd.
of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx::obj. of’ x T1→ of’ (T2 x) tp).

∧ ΠT1::knd.ΠT2::fam→ fam.
of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx::fam. of’ x T1 → of’ (T2 x) tp).

∧ ΠT1::knd.ΠT2::fam→ knd.
of’ (pi T1 λx.T2 x) tp
← of’ T1 tp
← (Πx::fam. of’ x T1 → of’ (T2 x) tp).

of-lm :: ΠU1::fam. ΠU2::obj→ fam. ΠT::obj→ obj.
of’ (lm U1 λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp
← (Πx::obj. of’ x U1→ of’ (T x) (U2 x)).

∧ ΠU1::fam. ΠU2::obj→ knd. ΠT::obj→ fam.
of’ (lm U1 λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp
← (Πx::obj. of’ x U1→ of’ (T x) (U2 x)).

∧ ΠU1::knd. ΠU2::fam→ fam. ΠT::fam→ obj.
of’ (lm U1 λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp
← (Πx::fam. of’ x U1→ of’ (T x) (U2 x)).

∧ ΠU1::knd. ΠU2::fam→ knd. ΠT::fam→ fam.

129

of’ (lm U1 λx.T x) (pi U1 λx.U2 x)
← of’ U1 tp
← (Πx::fam. of’ x U1→ of’ (T x) (U2 x)).

of-ap :: ΠT1::obj.ΠT2::obj.ΠU2::fam. ΠU::obj→ fam.
of’ (ap T1 T2) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

∧ ΠT1::obj.ΠT2::fam. ΠU2::knd. ΠU::fam→ fam.
of’ (ap T1 T2) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

∧ ΠT1::fam. ΠT2::obj. ΠU2::fam. ΠU::obj→ knd.
of’ (ap T1 T2) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

∧ ΠT1::fam. ΠT2::fam. ΠU2::knd. ΠU::fam→ knd.
of’ (ap T1 T2) (U T2)
← of’ T1 (pi U2 λx.U x)
← of’ T2 U2.

An interesting question for future work arises: could we have managed with fewer
annotations? For each declaration, we had to give two conjuncts that only varied in small
ways. Perhaps we could do better by introducing a form of quantification analogous to
the generalized λ-abstractions of Reynolds’s Forsythe [Rey96] or an explicit alternation
construct like the for construct of Pierce’s F∧ [Pie97].

Better still, perhaps there is some general modification we can make to the sort
reconstruction process to allow us to encode certain invariants, like for instance the fact
that we never intend for there to be any terms of sort fam ∧ knd. Armed with such extra
information, perhaps in the form of somehing like a %worlds declaration, maybe sort
reconstruction can be made to handle a broader class of representation needs that arise
in common practice.

6.2 Proof Theory

We now turn our attention to a few case studies in the realm of proof theory and logic.
Of course, many of the ideas apply equally well to programming languages, thanks to
the propositions-as-types correspondence.

In this section, we will work relative to the following signature of implicational
propositions.

atom : type.
o : type.

130

? : atom→ o.
⊃ : o→ o→ o.
%infix right 10 ⊃.

6.2.1 Cut-free Sequent Calculi

One of the earliest formal developments done in Twelf was Pfenning’s structural proof
of cut elimination for intuitionistic and classical first-order sequent calculi [Pfe94]. Pfen-
ning’s essential insight was to first prove the cut rule admissible in a cut-free variant of
the sequent calculus, and then to show via a simple structural induction leveraging that
admissibility that every proof in the calculus with cut can be converted to a proof in the
calculus without cut.

We show here the LF encoding of the implicational fragment of the intuitionistic
sequent calculus with cut.

hyp : o→ type.
conc : o→ type.

init : conc A
← hyp A.

⊃R : conc (A ⊃ B)
← (hyp A→ conc B).

⊃L : (hyp (A ⊃ B)→ conc C)
← conc A
← (hyp B→ conc C).

cut : conc C
← conc A
← (hyp A→ conc C).

The type family hyp represents hypotheses on the left of a sequent, while the type family
conc represents the distinguished conclusion of a sequent.

Next, Pfenning encoded the rules for a cut-free version of the same calculus, using a
different name for the conclusion judgment and different names for all of the inference
rules. Unsurprisingly, we can do better using refinements: instead of cut-free proofs
being a different type family altogether, they become simply a refinement of proofs with
cut.

cutfree ⊏ conc.

init :: cutfree A
← hyp A.

131

⊃R :: cutfree (A ⊃ B)
← (hyp A→ cutfree B).

⊃L :: (hyp (A ⊃ B)→ cutfree C)
← cutfree A
← (hyp B→ cutfree C).

Cut-free proofs are fundamentally just a subset of ordinary cut-full proofs, and the LFR
encoding captures the inclusion intrinsically without needing two separate types of
proofs.

Although we still have to explicitly write out all of the rules for the cut-free version
of the calculus, there are a number of advantages to the LFR representation. First, the
refinement restriction guarantees that the cut-free calculus is indeed a fragment of the
original: every rule still has to have essentially the same form it did previously. In this
way, the refinement restriction prevents certain kinds of encoding mistakes where one
accidentally makes a calculus that is not a sub-calculus of another, a mistake that would
typically not be caught until much later in the proof of some interesting metatheorem.
Additionally, the refinement approach saves the user from the burden of having to
invent entirely new names for all of the constants representing the sequent calculus
rules. Even if we used a module system to isolate the two type families in separate
namespaces, we would still lose the fundamental connection between cut-free proofs
and proofs with cut—namely that every cut-free proof can be regarded as a proof with
zero uses of cut—unless we encoded it post-hoc as another metatheorem.1

6.2.2 Normal Natural Deductions

Just as we can represent the cut-free sequent calculus as a refinement, we can represent
normal natural deductions as refinements of unconstrained ones. The problem is a little
bit more interesting because the “bidirectional” nature of natural deduction proofs—
introducing upwards, eliminating downwards—gives an intricate structure to their
normal forms.

Recall the encoding of natural deductions and the refinements of neutral and normal
ones we saw earlier, based on the rules in Figure 2.4:

true : o→ type.

⊃I : (true A→ true B)→ true (A ⊃ B).
⊃E : true (A ⊃ B)→ true A→ true B.

normal ⊏ true.
neutral ⊏ true.

1The signature morphisms of Rabe and Schümann [RS09] can go a long way towards automating the
correspondence, though.

132

neutral ≤ normal. % judgmental inclusion

⊃I :: (neutral A→ normal B)→ normal (A ⊃ B).
⊃E :: neutral (A ⊃ B)→ normal A→ neutral B.

Since hypotheses are neutral and proofs are normal, there must be some way of medi-
ating between the two. In Chapter 2, we represented a judgmental inclusion of neutral
derivations into normal ones by way of a “phantom” rule of inference labelled ∗ whose
use we supressed when reasoning about the adequacy of our encoding. In our encoding,
the inclusion is represented by subsorting.

Another interesting refinement of natural deductions is canonical derivations, or veri-
fications. They are structured precisely the same way as normal derivations modulo one
extra constraint: the judgmental inclusion rule ∗ is only applicable at atomic propositions
P:

P neutral

P normal
∗

This paradigm should of course sound familiar, since it is the basis of the canonical
forms of LF that we have use throughout this dissertation. Can we represent it in LFR?

Unfortunately the answer is no. What we would like of our encoding is a sort
representing atomic propositions, atomic, and a way to say that for any P⇐ atomic, we
should have neutral P ≤ normal P. It is easy enough to represent atomic propositions as
a refinement:

atomic ⊏ o.
? :: ⊤→ atomic.

But we have no way of expressing our desired subsorting relationship. A plausible
suggestion might be something like the following:

neutral ≤ normal :: atomic→ sort.

We have not thus far specified the behavior of such a declaration: our subsorting decla-
rations are bare, s1≤s2. In the signature formation rules, we require that to declare s1≤s2,
it must be the case that s1 and s2 refine the same type and have the same class. Perhaps
there is some notion of compatibility between classes that would allow subsorting dec-
larations to be at a particular class, s1≤s2 :: L, provided that it is compatible with the
classes of the two subjects.

Relatedly, perhaps there is a way of relaxing the restriction on subsorting declarations
that the two sorts have the same class. If we allowed s1≤s2 when s1⊏a::L1 and s2⊏a::L2,
we would still want to check some notion of compatibility between L1 and L2. Using
the relaxed semantics, it may be possible to encode canonical derivations without using
classed subsorting declarations by doing something like the following:

neutral-atomic ⊏ true :: atomic→ sort.

neutral ≤ neutral-atomic.
neutral-atomic ≤ neutral.

133

neutral-atomic ≤ normal.

The idea here is that neutral derivations should be equivalent to neutral-atomic ones—
i.e., one can be converted to the other and vice-versa—but neutral-atomic derivations
have a more stringent requirement on their subject, namely that it be atomic. Then we
permit only neutral-atomic derivations to be promoted to normal ones. Given a deriva-
tion of neutral P where P ⇐ atomic, we should be able to promote it to neutral-atomic P,
since that sort is also well-formed, and then to normal P as desired.

The subset interpretation of Chapter 4 would be an ideal vehicle for studying classed
subsorting declarations since its subsorting judgment Γ ⊢ Q1 ≤ Q2 { F(− , −) is
required to sort-check the arguments of Q1 and Q2 anyway, for the purposes of the
translation. A careful study of this aspect of the subset interpretation might lend some
insight into how LFR might be extended along these lines.

6.2.3 Intuitionistic and Classical Proofs

It is well known that intuitionistic logic proves fewer theorems than classical logic,
and conversely that classical logic makes fewer distinctions than intuitionistic. There
are many interesting results to study relating the two, for instance double-negation
translations and their relationship to CPS conversion. We can represent intuitionistic
logic as a refinement of classical logic so that such investigations can take place with
respect to a single language of proof terms. This case study is courtesy of Frank Pfenning
and Ron Garcia.

Here we use the type o of propositions to represent the object-language types of
an intrinsically typed encoding of a classical λ-calculus. We extend it with one more
member, the false proposition:

ff : o.

In classical logic, there are thre kinds of terms: expressions having a type, continua-
tions accepting a type, and contradictions.

exp : o→ type.
cont : o→ type.
impossible : type.

Abstraction, application, and falsehood-elimination have their usual rules introducing
expressions:

lam : (exp A→ exp B)→ exp (A ⊃ B).
app : exp (A ⊃ B)→ exp A→ exp B.
abort : exp ff→ exp A.

Continuations serve as the hypotheses introduced by a control operator, and they can
be thrown an appropriately-typed expression to create an impossible state.

ctrl : (cont A→ impossible)→ exp A.
throw : cont A→ exp A→ impossible.

134

Now we can isolate as refinements an intuitionistic calculus iexp that never uses the
control operator:

iexp ⊏ exp :: ⊤→ sort.

lam :: (iexp A→ iexp B)→ iexp (A ⊃ B).
app :: iexp (A ⊃ B)→ iexp A→ iexp B.
abort :: iexp ff→ iexp A.

And a classical calculus cexp freely making use of all rules:

cexp ⊏ exp :: ⊤→ sort.
ccont ⊏ cont :: ⊤→ sort.
cimpossible ⊏ impossible.

lam :: (cexp A→ cexp B)→ cexp (A ⊃ B).
app :: cexp (A ⊃ B)→ cexp A→ cexp B.
abort :: cexp ff→ cexp A.

throw :: ccont A→ cexp A→ cimpossible.
ctrl :: (ccont A→ cimpossible)→ cexp A.

Using this encoding, we can write an intrinsically correct CPS transformation that
translates classical expressions to (parametrically double-negated) intuitionistic ones.
We have not run this example in our prototype sort reconstructor, and it almost certainly
would not reconstruct successfully due to its third-order nature, but we list it here
anyway to illustrate the richness of properties that can be expressed through refinements.
Perhaps it will inspire the reader to imagine other similarly rich encodings.

% ... e2t, f2t, c2t ...
e2t’ ⊏ e2t :: cexp A→ (Πc. (Πc’. iexp A→ iexp c’)→ iexp c)→ sort.
f2t’ ⊏ f2t :: cimpossible→ (Πc. iexp c)→ sort.
c2t’ ⊏ c2t :: ccont A→ (Πc. iexp A→ iexp c)→ sort.

e2t-lam :: e2t’ (lam λx.E x)
(λc.λk.k c (lam λx’.M x’ B (λc’.λz.k c’ (lam λq.z))))

← (Πx:cexp A. Πx’:iexp A.
e2t’ x (λc.λk.k c x’)
→ e2t’ (E x) (λc.λk.M x’ c λa.λe.k a e)).

e2t-app :: e2t’ (app E1 E2)
(λc.λk.M1 c (λc1.λf.M2 c1 (λc2.λz.k c2 (app f z))))

← e2t’ E2 (λc.λk.M2 c λa.λe.k a e)
← e2t’ E1 (λc.λk.M1 c λa.λe.k a e).

e2t-abort :: e2t’ (abort E)
(λc.λk.M c (λc’.λx.abort x))

135

Γ =⇒ C

Γ,A =⇒ A
(ax)

Γ,A =⇒ B

Γ =⇒ A ⊃ B
(⊃-C)

Γ =⇒ A ⊃ B Γ =⇒ A Γ,B =⇒ C

Γ =⇒ C
(⊃-D)

Figure 6.3: Natural deduction with general eliminations

← e2t’ E (λc.λk.M c λa.λe.k a e).

e2t-ctrl :: e2t’ (ctrl λu.F u) (λc.λk.M c (λc’.λx.k c’ x))
← (Πu:ccont A. Πk:Πc. iexp A→ iexp c.

c2t’ u (λa.λe.k a e)
→ f2t’ (F u) (λc.M c λa.λe.k a e)).

f2t-throw :: f2t’ (throw U E) (λc.M c (λc’.K c’))
← c2t’ U K
← e2t’ E (λc.λk.M c k).

6.2.4 General Eliminations and the Uniform Calculus

Rules for natural deduction can be given in a style where the eliminations are always
toward a general conclusion like the usual rule for eliminating disjunctions, a style
sometimes referred to as “closed-scope eliminations”. Figure 6.3 gives one such for-
mulation, which is similar to von Plato’s system of natural deduction with general
eliminations [vP01] and Negri and von Plato’s “uniform calculus” [NvP01]. An in-
teresting property of this inference system is that it contains both the usual natural
deduction system and the sequent calculus as subsystems, i.e., subsets of derivations
with a particular form. In this section, we will show how to encode those subsystems
as refinements.

First, we give an LF encoding of natural deduction with general eliminations. In both
Figure 6.3 and its LF encoding, we give the rules names which suggest neither natural
deduction nor sequent calculus. The rule ax uses an assumption, while the rules ⊃-C
and ⊃-D construct and destruct implications, respectively.

left : o→ type.
right : o→ type.

ax : left A→ right A.

% implication constructor
⊃C : (left A→ right B)→ right (A ⊃ B).
% implication destructor, with general conclusion

136

⊃D : right (A ⊃ B)→ right A→ (left B→ right C)→ right C.

The encoding shares some aspects of the encoding of natural deduction and some
aspects of the encoding of the sequent calculus. Like the sequent calculus, there are two
different judgments, one for assumptions to the left of the sequent arrow and one for the
conclusion to the right of the sequent arrow. But like natural deduction, the principal
formula of the destructor appears on the right in a premise rather than on the left.

Suppose we had a derivation using the generalized rules such that every use of the
destructor ⊃-D derived its first premise by the assumption rule ax. It is not difficult
to see that such a derivation would correspond precisely to a derivation in the sequent
calculus, where each use of the destructor ⊃-D corresponded to a use of the sequent
calculus left rule ⊃-L. In other words, any derivation using the general rules such that
the first premise of each use of the destructor is initial corresponds to a sequent calculus
proof.

We can encode this restriction on generalized natural deductions easily using refine-
ments.

seqhyp ⊏ left.
seq ⊏ right.

initial ⊏ right.
initial ≤ seq.

ax :: seqleft A→ initial A.

% right rule: same as the constructor
⊃C :: (seqhyp A→ seq B)→ seq (A ⊃ B).
% left rule: restrict proof of A ⊃ B to be initial
⊃D :: initial (A ⊃ B)→ seq A→ (seqhyp B→ seq C)→ seq C.

We first define refinements of left and right called seqhyp and seq. We then define a special
refinement of right called initial such that every initial derivation is also a seq derivation,
but the only way to conjure up an initial derivation is using the ax rule. Finally, we
require that the first argument to the ⊃D rule be an initial sequent.

The only difference between standard natural deduction and the generalized rules is
the general form of the destructor. Suppose we had a derivation in which each use of the
destructor ⊃-D was an immediate use of the just-introduced assumption, such that the
conclusion was the same as the consequent of the implication being destructed. Such
a derivation would correspond directly to a standard “open-scope” natural deduction,
with uses of the destructor ⊃-D corresponding to uses of the elimination rule ⊃-E.

Again, we can encode this restriction using sorts quite easily.

ndhyp ⊏ left.
nd ⊏ right.

immedhyp ⊏ left.

137

immed ⊏ right.

ax :: ndhyp A→ nd A
∧ immedhyp A→ immed A.

% intro rule: same as the constructor
⊃C :: (ndhyp A→ nd B)→ nd (A ⊃ B).
% elim rule: restrict proof of B ⊢ C to be immediate use of B
⊃D :: nd (A ⊃ B)→ nd A→ (immedhyp B→ immed C)→ nd C.

As before, we first introduce natural deduction refinements of left and right, called ndhyp
and nd. Next, we introduce two further refinements of left and right for immediate
hypotheses and immediate uses of them. The assumption rule ax has two forms, rep-
resented by an intersection: one is the standard natural deduction hypothesis rule that
lets you use an assumption of A as a derivation of A; the other converts an immediate
hypothesis of A to an immediate proof of A. It is this latter form which captures the
appropriate restriction on the destructor: the “continuation” of the derivation must be
an immediate use of the just-introduced assumption. Since immedhyp hypotheses are not
introduced anywhere else in a derivation, and since the ax rule is the only way conjure
up a proof of immed A, we know that the third argument to ⊃D must in fact be λh.ax h.

6.3 Omphaloskepsis

We now examine some case studies close to home. This section concerns examples
from the study of logical frameworks, and indeed mostly examples that come from this
very dissertation. It is our hope that through these examples, the reader will come to
understand the LFR philosophy and begin to see refinements everywhere they look.

In what follows, we will assume the following partial signature representing an
encoding of LFR itself.

tm : type.
% ... terms ...

ast : type.
% ... atomic sorts ...

st : type.

? : ast→ st.
pi : st→ (tm→ st)→ st.
top : st.
inter : st→ st→ st.

138

6.3.1 Normalized Sorts

Recall the “normalized sorts” from Section 5.4.1, in which intersections are distributed
as far outwards as possible, so that they only occur to the left of arrows.

S,T ::= Q | Πx::S.T basic sorts

S,T ::= S | S1 ∧ S2 | ⊤ composite sorts

This sort of example is the bread and butter of refinement types:

basic ⊏ st. basic :: sort.
composite ⊏ st. composite :: sort.

? :: ⊤→ basic.
pi :: composite→ (⊤→ basic)→ basic.

basic ≤ composite.
top :: composite.
inter :: composite→ composite→ composite.

Armed with this formalization, we can even go on to formalize the normalization pro-
cedure, giving it a class that makes it manifestly correct. We omit the LF declarations
for the normalization, giving just the LFR ones.

norm : tp→ tp→ type.
normpi : tp→ (tm→ tp)→ tp→ type.
% ...

norm’ ⊏ norm :: ⊤→ composite→ sort.
normpi’ ⊏ normpi :: composite→ (tm→ composite)→ composite→ sort.

norm/? :: norm’ (? Q) (? Q).
norm/top :: norm’ top top.
norm/inter :: norm’ (inter S1 S2) (inter S′

1
S′2)

← norm’ S1 S′
1

← norm’ S2 S′2.
norm/pi :: norm’ (pi S (λx.T x)) Pi

← norm’ S S’
← (Πx. norm’ (T x) (T’ x))
← normpi’ S’ (λx.T’ x) Pi.

normpi/basic :: normpi’ S (λx.T x) (pi S (λx.T x)).
normpi/top :: normpi’ S (λx.top) top.
normpi/inter :: normpi’ S (λx.inter (T1 x) (T2 x)) (inter T′

1
T′2)

← normpi’ S (λx.T1 x) T′
1

← normpi’ S (λx.T2 x) T′2.

139

The most interesting declaration is the one for the constant normpi/basic: it should
correspond to the basic clause from the definition of pi(x::S.T):

pi(x::S.T) = Πx::S.T

Yet it seems like it would match any input, basic or not. How does the clause “know”
that the body T x is basic? The answer is that it is constrained to be so by the type of
the result: if we can form pi S (λx.T x), then it must be because T x is basic. Indeed, our
prototype implementation returns the following reconstruction for the clause:

normpi/basic :: ΠS::composite.ΠT::tm→ basic. normpi’ S (λx.T x) (pi S (λx.T x)).

In a sense, things seem backwards here. On paper when we wrote T it was meant as a
check on the input that we needed to perform in order to produce well-formed output.
But in the LFR code, we just write the equivalent of T, an unconstrained sort, and the
framework figures out that we must have meant T because of our declaration that the
result had to be well-formed. The framework is very trusting, isn’t it.

The declaration normpi/basic is interesting as well from a logic programming per-
spective: it is a rule that cannot be run to produce correct output unless it has been
sort-reconstructed. The original LF declaration which we elided would not have had
the correct operational behavior: only the LFR code will. We have not yet undertaken
to study the logic programming interpretation of LFR, but it would make for interesting
future work, and it will be important to bear in mind examples such as this one.

6.3.2 Prenex DNF Constraints

Recall the first-order logic of constraints we used to capture the problem of sort recon-
struction. It is easily encoded in LF:

constraint : type.

sub : st→ st→ constraint.
tt : constraint.
and : constraint→ constraint→ constraint.
ff : constraint.
or : constraint→ constraint→ constraint.
imp : constraint→ constraint→ constraint.
forall : (st→ constraint)→ constraint.
exists : (st→ constraint)→ constraint.

When we described our procedure for solving these constraints in Section 5.5.2, we
made it clear that it only solved a fragment of these constraints, namely the fragment
of prenex existential constraints whose propositional bodies were in disjunctive normal
form. Not surprisingly, we can encode this fragment succinctly using sorts:

base ⊏ st.
? :: ⊤→ base.

140

var ⊏ st.

vararrow ⊏ st.
vararrow :: var→ var→ vararrow.

atomic ⊏ constraint.

sub :: var→ base→ atomic
∧ base→ var→ atomic
∧ var→ var→ atomic
∧ var→ vararrow→ atomic.

clause ⊏ constraint. clause :: sort.

tt :: clause.
and :: atomic→ clause→ clause.

dnf ⊏ constraint. dnf :: sort.

ff :: dnf.
or :: clause→ dnf→ dnf.

eprenex ⊏ constraint. eprenex :: sort.

dnf ≤ eprenex.
exists :: (var→ eprenex)→ eprenex.

The most interesting aspect of this encoding is its treatment of variables. In order to
capture the invariants on the forms of atomic subsorting constraints, we must be able
to recognize variables. But the LF encoding of constraints used higher-order abstract
syntax to represent variables, so it would seem that we have no way of recognizing
them. We can, though, using refinements.

First, we posit a new refinement of st called var with no constructors and no constants.
Then, when we give a refinement for the existential constraint, we make it bind a variable
of this new sort. Since the existential quantifier is the only way variables are introduced
into a prenex constraint, we now know that every variable in a well-sorted inhabitant
of eprenex will have sort var, and in this way will be recognizable to the sub constructor.
We get the benefits of an intrinsic encoding of variablehood without weakening our use
of higher-order abstract syntax through the introduction of a separate variable type.

141

Q1 ≤ Q2

s1≤s2 ∈ Σ

s1 ≤ s2

Q1 ≤ Q2

Q1 N ≤ Q2 N Q ≤ Q

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

Figure 6.4: “Declarative” formulation of base subsorting

6.3.3 Subsorting Derivations

This case study concerns the representation of various forms of subsorting declarations
which arose at various stages during our work on LFR itself. Recall from Chapter 2
that originally we gave a relatively “declarative” formulation of subsorting, shown in
Figure 6.4. This way of formulating the rules of subsorting is simple and permissive:
reflexivity and transitivity may be used at any point in a derivation. It can be faithfully
represented in LF by a signature such as the following:

stconst : type.

c : stconst→ ast.
@ : ast→ tm→ ast.
%infix left 10 @.

leqconst : stconst→ stconst→ type.
leq : ast→ ast→ type.

leq/c : leq (c S1) (c S2)
← leqconst S1 S2.

leq/@ : leq (Q1 @ N) (Q2 @ N)
← leq Q1 Q2.

leq/refl : leq Q Q.

leq/trans : leq Q1 Q2

← leq Q1 Q’
← leq Q’ Q2.

The type ast represents our atomic sorts Q, with the constructor c lifting a sort constant
to an atomic sort and the infix constructor @ applying an atomic sort family to an index
argument. Subsorting declarations s1≤s2 are represented by the type family leqconst and
the relation Q1 ≤ Q2 is represented by the type family leq. The rules are essentially a
direct transcription of the ones given in Figure 6.4.

142

Q1 ≤E Q2

s1 ≤
clo
E s2

s1 ≤E s2

Q1 ≤E Q2

Q1 N ≤E Q2 N

s1 ≤
clo
E

s2

s1≤s2 ∈ Σ

s1 ≤
clo
E s2 s ≤clo

E s

s1 ≤
clo
E s′ s′ ≤clo

E s2

s1 ≤
clo
E s2

Figure 6.5: “Early” formulation of base subsorting

Such a formulation of subsorting is fine for metatheory, but it says little about how
to implement the subsorting relation. In our implementation, we take a cue from the
decidability proof: the relation Q1 ≤ Q2 can be implemented by computing the reflexive,
transitive closure of the relation s1≤s2 on sort constants, verifying that the heads of Q1

and Q2 are related by that closure, and checking that all of the index arguments of Q1

and Q2 are equal. In order to prove that this algorithm is complete, we can write down
alternate rules for the subsorting relation that capture the extra imposed structure and
then prove these alternate rules equivalent to the original ones above. We give such
rules in Figure 6.5, writing the new relation Q1 ≤E Q2. The “E” stands for “early”: this
relation requires reflexivity and transitivity to be resolved early, before any arguments
are accumulated. It makes use of an auxiliary relation s1 ≤

clo
E

s2 which represents the
reflexive, transitive closure of the declared relation on constants.

A moment’s thought allows one to see that this new, “early” formulation of subsorting
is really nothing but a restricted form of the original formulation. If we read the rule
that lets us pass from s1 ≤

clo
E

s2 to s1 ≤E s2 as a judgmental inclusion, then any derivation
in “early” form can be trivially erased to one in the original relation. Using refinements,
we can make this observation formal by regarding ≤E and ≤clo

E
to be refinements of the

original relation.

% ”early” subsorting: reflexivity and transitivity only at the leaves.
leqE ⊏ leq :: ⊤→ ⊤→ sort.
leqclo

E
⊏ leq :: ⊤→ ⊤→ sort.

leqclo
E
≤ leqE.

s/@ :: leqE (Q1 @ N) (Q2 @ N)
← leqE Q1 Q2.

% once we pass from leqclo
E

to leqE, there’s no going back −−
% reflexivity and transitivity are only allowed at the auxiliary relation.

143

Q1 ≤L Q2

Q ≤L Q

Q1 ≤
syn

L
Q′ Q′ ≤L Q2

Q1 ≤L Q2

s1 ≤
syn

L
s2

s1≤s2 ∈ Σ

s1 ≤
syn

L
s2

Q1 ≤
syn

L
Q2

Q1 N ≤
syn

L
Q2 N

Figure 6.6: “Late” formulation of base subsorting

s/c :: leqclo
E

(c S1) (c S2)
←⊤. % i.e., leqconst S1 S2.

s/refl :: leqclo
E

S S.

s/trans :: leqclo
E

S1 S2

← leqclo
E

S1 S’
← leqclo

E
S’ S2.

As we have seen before, the judgmental inclusion of s1 ≤
clo
E

s2 into the ≤E relation is
handled by a subsorting declaration. In the declaration for s/c, we write the type ⊤ to
mean leqconst S1 S2, i.e., the maximal refinement of that type.

In Chapter 4 when we explored the subset interpretation of LFR into LF with proof
irrelevance, we found it necessary to recast subsorting yet again. For the purposes of the
subset interpretation, it was necessary to split subsorting into a “checking” judgment
that only made sense at fully-applied atomic sorts and a “synthesis” judgment that,
given a sort, synthesized a sort one step higher in the sort hierarchy. Instead of a
transitivity rule, we had a “climb” rule which said that a sort Q1 was below a sort Q2

if we could synthesize a sort Q′ one step higher than Q1 and check that Q′ was below
Q2, with the whole process ending at an application of reflexivity. Rules defining this
relation Q1 ≤L Q2 and the auxiliary synthesis relation Q1 ≤

syn

L
Q2 are shown in Figure 6.6.

The “L” now stands for “late”, indicating that reflexivity and transitivity can only be
applied after we have finished accumulating arguments.

Once again, after a moment’s thought, we realize that this new “late” formulation
is in fact just a different restricted form of subsorting derivations: appeals to reflexivity
and transitivity can only occur near the root of the derivation, and repeated appeals to
transitivity must be right-nested. And as before, this restricted form is easily captured
using refinement types as a pair of sort families refining the original judgment.

144

% ”late” subtyping: reflexivity and transitivity only towards the root,
% right−nested. like the refl and climb rules of the subset interpretation.
leqL ⊏ leq :: ⊤→ ⊤→ sort.

leq
syn

L
⊏ leq :: ⊤→ ⊤→ sort.

s/refl :: leqL Q Q.

s/trans :: leqL Q1 Q2

← leq
syn

L
Q1 Q’

← leqL Q’ Q2.

s/c :: leq
syn

L
(c S1) (c S2)

←⊤. % i.e., leqconst S1 S2.

s/@ :: leq
syn

L
(Q1 @ N) (Q2 @ N)

← leq
syn

L
Q1 Q2.

If we were to extend LFR to handle Twelf-like metatheoretic reasoning about encod-
ings, we could prove four theorems establishing the equivalence of the three represen-
tations: two theorems showing that the new formulations are sound, i.e., every “early”
or “late” derivation corresponds to an ordinary one, and two showing that they are
complete, i.e., every ordinary derivation can be put into either “early” or “late” form.
The soundness theorems would be completely trivial, since they say nothing beyond
the refinement restriction: every “early” or “late” form derivation must be an ordinary
derivation by invariant.

This case study further exemplifies the power of refinement types in specifying
various “normal forms” of derivations of judgments. In the next section, we will see an
even more dramatic example of what can be achieved using refinements.

6.3.4 Coloring Hypotheses

Finally, we consider a case study not directly related to LFR, but related to metatheorem
checking in logical frameworks in general. Consider the signature of the untyped λ-
calculus along with a “copying” predicate that recursively copies a term.

exp : type.

app : exp→ exp→ exp.
lam : (exp→ exp)→ exp.

cp : exp→ exp→ type.

cp/app : cp (app E1 E2) (app F1 F2)
← cp E1 F1
← cp E2 F2.

145

cp/lam : cp (lam λx.E x) (lam λy.F y)
← (Πx. Πy. cp x y→ cp (E x) (F y)).

One can also think of the predicate cp as defining a kind of logical-relations-style equiv-
alence on λ-terms. The key idea is that when copying a λ-abstraction, we have to make
a copy of its bound variable to use while copying the body.

Intuitively, this predicate is total with mode (+,−): every λ-expression can be copied.
Twelf fails to recognize its totality, though, because of an apparent coverage error: the
variable y in the higher-order subgoal is not covered by any clause.

We can correct the problem through a procedure called “coloring”. If we color all
expressions either red or green, then we can specify that the copying predicate takes a
red expression as input and yields a green one. If we color the hypotheses correctly,
coverage checking ought to succeed. Unfortunately, it is inconvenient to do coloring with
the standard tools: one must duplicate the entire syntax of expressions and consequently
all judgments and metatheoretic results.

Enter refinements, the usual way of dealing with such problems. We can represent
red and green not as separate types, but as refinements of the type of expressions.

red :: exp.
green :: exp.

app :: red→ red→ red
∧ green→ green→ green.

lam :: (red→ red)→ red
∧ (green→ green)→ green.

An interesting property of this representation is that red and green are isomorphic, if we
restrict our attention to ground terms. This is an example where refinements only start
to make interesting distinctions when we work in an open context and start creating
new hypotheses.

ccp ⊏ cp. ccp :: red→ green→ sort.

cp/app :: ccp (app E1 E2) (app F1 F2)
← ccp E1 F1
← ccp E2 F2.

cp/lam :: ccp (lam λx.E x) (lam λy.F y)
← (Πx::red. Πy::green. ccp x y→ ccp (E x) (F y)).

Note the explicit annotations coloring x red and y green—now we have introduced an
example of a red sort that is not also green.

Although we have not studied the problem of adding metatheoretic tools to LFR as
they exist in Twelf, we conjecture that the above clause would totality check in such
an extension. Thus we have a way of distinguishing hypothetical parameters even if

146

we don’t distinguish anything about ground terms, illustrating a different way of using
refinements.

6.4 Summary

In this chapter, we showed how refinements can be used to represent interesting prop-
erties of several real-world deductive systems drawn from a variety of fields. It is our
hope that the case studies we’ve shown speak to the wide applicability of these tech-
niques, supporting our assertion that refinement types are a useful addition to the logical
framework LF.

147

148

Chapter 7

Future Work and Conclusions

This dissertation began with the following thesis:

Refinement types are a useful and practical extension to the LF logical framework.

In the chapters that followed, we defended this thesis in a variety of ways.
First, in Chapter 2 we exhibited a system of refinement types extending the logical

framework LF. The inherent complexity of dependent types, subsorting, and inter-
sections was tamed by following the modern LF methodology of working only with
canonical forms. The result was a simple, bidirectional system of sort and class checking
in which subsorting was only defined at base sorts. The restrictions imposed by the
refinement methodology were instrumental in developing a clear picture of the repre-
sentation methodology of properties as sorts, and we presented several examples of this
representation methodology in action.

From the very beginning, we saw a bird’s eye view of a refinement type system for LF
that was both practical, by being based on modern simplifying technology, and useful, by
solving several representational challenges not otherwise easily captured with existing
languages. The remainder of this work further supported the claims of practicality and
utility through a combination of theory and practice.

In Chapter 3, we established the fundamental metatheory required of any extension
of LF: the decidability of sort checking and the transitivity and reflexivity of LFR’s
entailment. In addition, we explored some of the implications of the novel combination
of refinements and canonical forms, including the fact that more traditional accounts of
subtyping at higher types are intrinsically accounted for in a sound and complete manner
by our canonical presentation. Together, these metatheoretic arguments establish the
sensibility of our extension and justify our referring to it as a logical framework with
subtyping.

We then further explored the meaning of LFR by presenting in Chapter 4 an inter-
pretation of it into LF augmented with a notion of proof irrelevance. The soundness
and completeness of our interpretation established that LF with refinement types is no
more expressive or complex than LF with proof irrelevance, an extension that has been
studied on its own for many years. But the inherent complexity of the uniform trans-
lation itself bolstered our claims of expressivity: although everything that can be done

149

with refinement types can be done with proof irrelevance, it is only with great cost. The
relative simplicity of refinement types as an independent notion demonstrates a high
expressivity-to-cost ratio.

Next, in Chapter 5, we outlined some partial algorithms for sort reconstruction, an
essential element of any practical implementation. By freeing the LFR user from writing
down a great deal of redundant information regarding sorts, we end up with a logical
framework which is roughly as simple to use in practice as the Twelf implementation
of LF. Although the reconstruction problem is in principle decidable, we argued for the
importance of partial algorithms that run quickly in practice, and we argued that our
algorithms do run quickly on examples that typify the kinds of uses we expect.

Finally, we further explored the kinds of uses we expect by outlining in Chapter 6 a
number of realistic case studies, drawing inspiration from representational challenges
that arise in day-to-day research in programming languages and type theory. The
expressive power offered by refinements allowed for intrinsic representations of several
typical notions of subsets of derivations, and at a level comparable to the usual informal
“on paper” representations of such things. While not the end of the story by any means,
the representative sampling of case studies establishes the usefulness of refinement types
for formalization carried out in a logical framework like LF.

7.1 Future Work

Although we’ve come a long way, as always, the story doesn’t end here. There are
several further directions that would be interesting to pursue.

One direction would be to loosen the conditions required for a subsorting declaration
to be accepted: as currently formulated, in order to be able to declare that s1≤s2, the sort
families s1 and s2 must have the exact same class. Instead, we could allow them to have
any two compatible classes, for some appropriate notion of compatible. Or perhaps more
interestingly, we could allow subsorting declarations themselves to be at a particular
class, as in s1≤s2::L, provided that L is appropriately compatible with the classes of s1 and
s2. The meaning of such a declaration would be that the sort families are in the subsort
relation only if the arguments are well-formed according to the class L. For instance, if
we were to declare s1≤s2 :: S→ sort, then s1 N would be a subsort of s2 N in a context Γ
only if Γ ⊢ N⇐ S.

Such extended subsorting declarations would be useful for encoding a variety of
deductive systems where a judgmental inclusion is restricted to judgments of a particular
form. For example, to encode canonical natural deductions, one must be able to declare
an inclusion between atomic derivations and canonical derivations, but one that holds
only as long as the derivations are of an atomic proposition. Similarly, one could use
classed subsorting declarations to encode the sequent calculus with the “init” rule only
at atomic propositions as a refinement of the unrestricted version.

Another direction would be to delineate more precisely the fragment of LFR sig-
natures we can efficiently reconstruct. Ideally, it would be nice to have some simple,
syntactic characterization of efficiently-reconstructible signatures analogous to the “pat-

150

tern fragment” for languages like Twelf and λProlog. Also along these lines would be an
exploration of ways a user could annotate a non-reconstructable signature to produce
one that is efficiently reconstructable, or ways the language might be extended with
first-class constraints in order to capture certain patterns more completely.

Finally, it would be interesting to see how refinements interact with other extensions
to the type theory of LF, like the linear logical framework LLF or the concurrent logical
framework CLF. Orthogonally, it would also be nice to explore the logic programming
interpretation of LFR, and in doing so try to incorporate some of the metatheoretic
aspects of the Twelf system so that we could produce machine-checkable proofs of
metatheorems about representations like the ones we’ve seen.

151

152

Appendix A

Complete LFR Rules

In the judgment forms below, superscript + and − indicate a judgment’s “inputs” and
“outputs”, respectively.

A.1 Grammar

Kind level

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S⊏A. L | ⊤ | L1 ∧ L2 classes

Type level

P ::= a | P N atomic type families

A ::= P | Πx:A1.A2 canonical type families

Q ::= s | Q N atomic sort families

S ::= Q | Πx::S1⊏A1. S2 | ⊤ | S1 ∧ S2 canonical sort families

Term level

R ::= c | x | R N atomic terms

N ::= R | λx.N canonical terms

Signatures and contexts

Σ ::= · | Σ,D signatures

D ::= a:K | c:A | s⊏a::L | s1≤s2 | c::S declarations

Γ ::= · | Γ, x::S⊏A contexts

153

A.2 Expansion and Substitution

All bound variables are tacitly assumed to be sufficiently fresh.

(A)− = α

α, β ::= a | α1 → α2

(a)− = a

(P N)− = (P)−

(Πx:A.B)− = (A)− → (B)−

ηα(R) = N

ηa(R) = R

ηα→β(R) = λx. ηβ(R ηα(x))

[N0/x0]n
α0

N = N′

[N0/x0]rn
α0

R = (N, a)

[N0/x0]n
α0

R = N

[N0/x0]rr
α0

R = R′

[N0/x0]n
α0

R = R′
[N0/x0]n

α0
N = N′

[N0/x0]n
α0
λx.N = λx.N′

[N0/x0]rr
α0

R = R′

x , x0

[N0/x0]rr
α0

x = x [N0/x0]rr
α0

c = c

[N0/x0]rr
α0

R1 = R′1 [N0/x0]n
α0

N2 = N′2

[N0/x0]rr
α0

R1 N2 = R′1 N′2

[N0/x0]rn
α0

R = (N′, α′)

[N0/x0]rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]n

α0
N2 = N′2 [N′2/x]n

α2
N1 = N′1

[N0/x0]rn
α0

R1 N2 = (N′1, α1)
(subst-rn-β)

(Substitution for other syntactic categories (q, p, s, a, l, k, γ) is compositional.)

154

A.3 Kinding

Γ ⊢Σ L+ ⊏ K+

Γ ⊢ sort ⊏ type

Γ ⊢ S ⊏ A Γ, x::S⊏A ⊢ L ⊏ K

Γ ⊢ Πx::S⊏A. L ⊏ Πx:A.K

Γ ⊢ ⊤ ⊏ K

Γ ⊢ L1 ⊏ K Γ ⊢ L2 ⊏ K

Γ ⊢ L1 ∧ L2 ⊏ K

Γ ⊢Σ Q+ ⊏ P− ⇒ L−

s⊏a::L ∈ Σ

Γ ⊢ s ⊏ a⇒ L

Γ ⊢ Q ⊏ P⇒ Πx::S⊏A. L Γ ⊢ N ⇐ S [N/x]l
A L = L′

Γ ⊢ Q N ⊏ P N ⇒ L′

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2

Γ ⊢ Q ⊏ P⇒ L1

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2

Γ ⊢ Q ⊏ P⇒ L2

Γ ⊢Σ S+ ⊏ A+

Γ ⊢ Q ⊏ P′ ⇒ L P′ = P L = sort

Γ ⊢ Q ⊏ P
(Q-F)

Γ ⊢ S ⊏ A Γ, x::S⊏A ⊢ S′ ⊏ A′

Γ ⊢ Πx::S⊏A. S′ ⊏ Πx:A.A′
(Π-F)

Γ ⊢ ⊤ ⊏ A
(⊤-F)

Γ ⊢ S1 ⊏ A Γ ⊢ S2 ⊏ A

Γ ⊢ S1 ∧ S2 ⊏ A
(∧-F)

Note: no intro rules for classes ⊤ and L1 ∧ L2.

155

A.4 Typing

Γ ⊢Σ R+ ⇒ S−

c::S ∈ Σ

Γ ⊢ c⇒ S
(const)

x::S⊏A ∈ Γ

Γ ⊢ x⇒ S
(var)

Γ ⊢ R1 ⇒ Πx::S2⊏A2. S Γ ⊢ N2 ⇐ S2 [N2/x]s
A2

S = S′

Γ ⊢ R1 N2 ⇒ S′
(Π-E)

Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S1

(∧-E1)
Γ ⊢ R⇒ S1 ∧ S2

Γ ⊢ R⇒ S2

(∧-E2)

Γ ⊢Σ N+ ⇐ S+

Γ ⊢ R⇒ Q′ Q′ ≤ Q

Γ ⊢ R⇐ Q
(switch)

Γ, x::S⊏A ⊢ N ⇐ S′

Γ ⊢ λx.N⇐ Πx::S⊏A. S′
(Π-I)

Γ ⊢ N ⇐ ⊤
(⊤-I)

Γ ⊢ N⇐ S1 Γ ⊢ N ⇐ S2

Γ ⊢ N ⇐ S1 ∧ S2

(∧-I)

Q+
1
≤ Q+2

Q1 = Q2

Q1 ≤ Q2

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

s1≤s2 ∈ Σ

s1 ≤ s2

Q1 ≤ Q2

Q1 N ≤ Q2 N

156

A.5 Signatures and Contexts

⊢ Σ sig

⊢ · sig

⊢ Σ sig · ⊢Σ∗ K⇐ kind a:K′ < Σ

⊢ Σ, a:K sig

⊢ Σ sig · ⊢Σ∗ A⇐ type c:A′ < Σ

⊢ Σ, c:A sig

⊢ Σ sig a:K ∈ Σ · ⊢Σ L ⊏ K s⊏a′::L′ < Σ

⊢ Σ, s⊏a::L sig

⊢ Σ sig c:A ∈ Σ · ⊢Σ S ⊏ A c::S′ < Σ

⊢ Σ, c::S sig

⊢ Σ sig s1⊏a::L ∈ Σ s2⊏a::L ∈ Σ

⊢ Σ, s1≤s2 sig

⊢Σ Γ ctx

⊢ · ctx

⊢ Γ ctx Γ ⊢ S ⊏ A

⊢ Γ, x::S⊏A ctx

157

158

Appendix B

Full Proofs of Basic Metatheory

B.1 Lemma 3.13 (Composition of Substitutions)

Lemma 3.13 (Composition of Substitutions). Suppose [N0/x0]n
α0

N2 = N82 and x2 < FV(N0).
Then:

1. If [N0/x0]n
α0

N = N8 and [N2/x2]n
α2

N = N′, then for some N8′,
[N82/x2]n

α2
N8 = N8′ and [N0/x0]n

α0
N′ = N8′ ,

2. If [N0/x0]rr
α0

R = R8 and [N2/x2]rr
α2

R = R′, then for some R8′,
[N82/x2]rr

α2
R8 = R8′ and [N0/x0]rr

α0
R′ = R8′ ,

3. If [N0/x0]rr
α0

R = R8 and [N2/x2]rn
α2

R = (N′, β), then for some N8′,
[N82/x2]rn

α2
R8 = (N8′, β) and [N0/x0]n

α0
N′ = N8′ ,

4. If [N0/x0]rn
α0

R = (N8, β) and [N2/x2]rr
α2

R = R′, then for some N8′,
[N82/x2]n

α2
N8 = N8′ and [N0/x0]rn

α0
R′ = (N8′, β) ,

and similarly for other syntactic categories.

Proof. By lexicographic induction on the unordered pair of α0 and α2, and on the first
substitution derivation in each clause.

Not all clauses’ proofs need be mutually inductive—the four given cases can be
proven independently of the ones elided. We give only the proof for the four given
cases; the rest are straightforward.

1. Suppose [N0/x0]n
α0

N2 = N82 (We want to show:
andD :: [N0/x0]n

α0
N = N8 [N82/x2]n

α2
N8 = N8′

and E :: [N2/x2]n
α2

N = N′. and [N0/x0]n
α0

N′ = N8′.)

Case: D =

D1

[N0/x0]rn
α0

R = (N8, a)

[N0/x0]n
α0

R = N8

159

E =

E1

[N2/x2]rr
α2

R = R′

[N2/x2]n
α2

R = R′
By inversion, using Lemma 3.1.

[N82/x2]n
α2

N8 = N8′ and [N0/x0]rn
α0

R′ = (N8′, a)
By i.h. (4) onD1.

[N0/x0]n
α0

R′ = N8′ By rule.

Case: D =

D1

[N0/x0]rr
α0

R = R8

[N0/x0]n
α0

R = R8

E =

E1

[N2/x2]rn
α2

R = (N′, a)

[N2/x2]n
α2

R = N′
or E =

E1

[N2/x2]rr
α2

R = R′

[N2/x2]n
α2

R = R′

By inversion.

Subcase: E =

E1

[N2/x2]rn
α2

R = (N′, a)

[N2/x2]n
α2

R = N′

[N82/x2]rn
α2

R8 = (N8′, a) and [N0/x0]n
α0

N′ = N8′

By i.h. (3) onD1.
[N82/x2]n

α2
R8 = N8′ By rule.

Subcase: E =

E1

[N2/x2]rr
α2

R = R′

[N2/x2]n
α2

R = R′

[N82/x2]rr
α2

R8 = R8′ and [N0/x0]rr
α0

R′ = R8′ By i.h. (2) onD1.
[N82/x2]n

α2
R8 = R8′ and [N0/x0]n

α0
R′ = R8′ By rule.

Case: D =

D1

[N0/x0]n
α0

N = N8

[N0/x0]n
α0
λx.N = λx.N8

E =

E1

[N2/x2]n
α2

N = N′

[N2/x2]n
α2
λx.N = λx.N′

By inversion.

160

[N82/x2]n
α2

N8 = N8′ and [N0/x0]n
α0

N′ = N8′ By i.h. (1) onD1.
[N82/x2]n

α2
λx.N8 = λx.N8′ and [N0/x0]n

α0
λx.N′ = λx.N8′ By rule.

2. Suppose [N0/x0]n
α0

N2 = N82 (We want to show:
andD :: [N0/x0]rr

α0
R = R8 [N82/x2]rr

α2
R8 = R8′

and E :: [N2/x2]rr
α2

R = R′. and [N0/x0]rr
α0

R′ = R8′.)

Case: D =
x , x0

[N0/x0]rr
α0

x = x

E =
x , x2

[N2/x2]rr
α2

x = x
By inversion.

[N82/x2]rr
α2

x = x and [N0/x0]rr
α0

x = x By rule.

Case: D =
[N0/x0]rr

α0
c = c

E =
[N2/x2]rr

α2
c = c

By inversion.

[N82/x2]rr
α2

c = c and [N0/x0]rr
α0

c = c By rule.

Case: D =

D1

[N0/x0]rr
α0

R3 = R8
3

D2

[N0/x0]n
α0

N4 = N8
4

[N0/x0]rr
α0

R3 N4 = R83 N84

E =

E1

[N2/x2]rr
α2

R3 = R′
3

E2

[N2/x2]n
α2

N4 = N′
4

[N2/x2]rr
α2

R3 N4 = R′3 N′4
By inversion.

[N82/x2]rr
α2

R83 = R8′3 and [N0/x0]rr
α0

R′3 = R8′3 By i.h. (2) onD1.
[N82/x2]n

α2
N8

4
= N8′

4
and [N0/x0]n

α0
N′

4
= N8′

4
By i.h. (1) onD2.

[N82/x2]rr
α2

R83 N8
4
= R8′3 N8′

4
and [N0/x0]rr

α0
R′3 N′

4
= R8′3 N8′

4
By rule.

161

3. Suppose [N0/x0]n
α0

N2 = N82 (We want to show:
andD :: [N0/x0]rr

α0
R = R8 [N82/x2]rn

α2
R8 = (N8′, β)

and E :: [N2/x2]rn
α2

R = (N′, β). and [N0/x0]n
α0

N′ = N8′.)

Case: D =
x , x0

[N0/x0]rr
α0

x = x
, where R8 = x

E =
[N2/x2]rn

α2
x2 = (N2, α2)

, where N′ = N2 and x = x2

By inversion.

[N82/x2]rn
α2

x2 = (N82, α2) By rule.
[N0/x0]n

α0
N2 = N82 By assumption.

Case: D =
[N0/x0]rr

α0
c = c

, where R = c

Impossible: no rule can conclude E :: [N2/x2]rn
α2

c = (N′, β).

Case: D =

D1

[N0/x0]rr
α0

R3 = R8
3

D2

[N0/x0]n
α0

N4 = N8
4

[N0/x0]rr
α0

R3 N4 = R83 N84

E =

E1

[N2/x2]rn
α2

R3 = (λx.N′
3
, α4 → α3)

E2

[N2/x2]n
α2

N4 = N′
4

E3

[N′
4
/x]n

α4
N′

3
= N̂′

3

[N2/x2]rn
α2

R3 N4 = (N83, α3)
By inversion.

We need to show: [N82/x2]rn
α2

R83 N8
4
= (N̂8′3 , α3) and [N0/x0]n

α0
N̂′3 = N̂8′3 .

[N82/x2]rn
α2

R83 = (λx.N8′3 , α4 → α3) and [N0/x0]n
α0
λx.N′3 = λx.N8′3

By i.h. (3) onD1.
[N0/x0]n

α0
N′3 = N8′3 By inversion.

[N82/x2]n
α2

N8
4
= N8′

4
and [N0/x0]n

α0
N′

4
= N8′

4
By i.h. (1) onD2.

[N8′
4
/x]n

α4
N8′3 = N̂8′3 and [N0/x0]n

α0
N̂′3 = N̂8′3

By i.h. (1) on (α0, α4), using
[N0/x0]n

α0
N′

4
= N8′

4
,

[N0/x0]n
α0

N′3 = N8′3 ,

162

and [N′
4
/x]n

α4
N′3 = N̂′3

[N82/x2]rn
α2

R83 N8
4
= (N̂8′3 , α3) By rule, using

[N82/x2]rn
α2

R83 = (λx.N8′3 , α4 → α3),
[N82/x2]n

α2
N8

4
= N8′

4
,

and [N8′
4
/x]n

α4
N8′3 = N̂8′3 .

4. Suppose [N0/x0]n
α0

N2 = N82 (We want to show:
andD :: [N0/x0]rn

α0
R = (N8, β) [N82/x2]n

α2
N8 = N8′

and E :: [N2/x2]rr
α2

R = R′. and [N0/x0]rn
α0

R′ = (N8′, β).)

Case: D =
[N0/x0]rn

α0
x0 = (N0, α0)

, where N8 = N0

E =
x0 , x2

[N2/x2]rr
α2

x0 = x0

, where R′ = x0 By inversion.

[N82/x2]n
α2

N0 = N0 By trivial substitution, since x2 < FV(N0).
[N0/x0]rn

α0
x0 = (N0, α0) By rule.

Case: D =

D1

[N0/x0]rn
α0

R3 = (λx.N3, α4 → α3)

D2

[N0/x0]n
α0

N4 = N8
4

D3

[N8
4
/x]n

α4
N3 = N8

3

[N0/x0]rn
α0

R3 N4 = (N83, α3)

E =

E1

[N2/x2]rr
α2

R3 = R′
3

E2

[N2/x2]n
α2

N4 = N′
4

[N2/x2]rr
α2

R3 N4 = R′3 N′4
By inversion.

We need to show: [N82/x2]n
α2

N83 = N8′3 and [N0/x0]rn
α0

R′3 N′
4
= (N8′3 , α3)

[N82/x2]n
α2
λx.N3 = λx.N′3 and [N0/x0]rn

α0
R′3 = (λx.N′3, α4 → α3)

By i.h. (4) onD1.
[N82/x2]n

α2
N3 = N′3 By inversion.

[N82/x2]n
α2

N8
4
= N8′

4
and [N0/x0]n

α0
N′

4
= N8′

4

By i.h. (1) onD2.

163

[N8′
4
/x]n

α4
N′3 = N8′3 and [N82/x2]n

α2
N83 = N8′3

By i.h. (1) on (α2, α4), using
[N82/x2]n

α2
N8

4
= N8′

4
,

[N82/x2]n
α2

N3 = N′3,
andD3 :: [N8

4
/x]n

α4
N3 = N83.

[N0/x0]rn
α0

R′3 N′
4
= (N8′3 , α3) By rule, using

[N0/x0]rn
α0

R′3 = (λx.N′3, α4 → α3)
[N0/x0]n

α0
N′

4
= N8′

4
,

and [N8′
4
/x]n

α4
N′3 = N8′3 .

�

B.2 Theorem 3.15 (Proto-Substitution, terms)

Theorem 3.15 (Proto-Substitution, terms).

1. If

• ΓL ⊢ N0 ⇐ S0A0 (and Γ∗
L
⊢ N0 ⇐ A0) , and

• ΓL, x0::S0⊏A0, ΓR ⊢ N⇐ SA (and Γ∗
L
, x0:A0, Γ

∗
R
⊢ N ⇐ A) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
, and

• [N0/x0]s
A0

S = S8 (and [N0/x0]a
A0

A = A8) ,

then

• [N0/x0]n
A0

N = N8 , and

• ΓL, Γ
8

R
⊢ N8 ⇐ S8A8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ N8 ⇐ A8) .

2. If

• ΓL ⊢ N0 ⇐ S0A0 (and Γ∗
L
⊢ N0 ⇐ A0) , and

• ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ SA (and Γ∗
L
, x0:A0, Γ

∗
R
⊢ R⇒ A) , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]s
A0

S = S8 (and [N0/x0]a
A0

A = A8), and

• either

– [N0/x0]rr
A0

R = R8 and

– ΓL, Γ
8

R
⊢ R8 ⇒ S8A8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ R8 ⇒ A8),

or

– [N0/x0]rn
A0

R = (N8, (A8)−) and

164

– ΓL, Γ
8

R
⊢ N8 ⇐ S8A8 (and Γ∗

L
, (Γ8

R
)∗ ⊢ N8 ⇐ A8) .

Proof. By lexicographic induction on (A0)− and the derivationDhypothesizing x0 ::S0⊏A0.

1. Suppose ΓL ⊢ N0 ⇐ S0

andD :: ΓL, x0::S0⊏A0, ΓR ⊢ N ⇐ S
and [N0/x0]

γ

A0
ΓR = Γ

8

R

and [N0/x0]s
A0

S = S8.

Case: D =

D1

ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ Q1

D2

Q1 ≤ Q

ΓL, x0::S0⊏A0, ΓR ⊢ R⇐ Q

[N0/x0]s
A0

Q1 = Q8
1

and either

([N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
⊢ R8 ⇒ Q8

1
), or

([N0/x0]rn
A0

R = (N8, (P8
1
)−) and ΓL, Γ

8

R
⊢ N8 ⇐ Q8

1
)

By i.h. (2) onD1.

S8 = Q8 and [N0/x0]
q

A0
Q = Q8 By inversion.

Q8
1
≤ Q8 By Lemma 3.14 (Substitution into Subsorting).

Subcase: [N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
⊢ R8 ⇒ Q8

1

[N0/x0]n
A0

R = R8 By rule subst-n-atom.

ΓL, Γ
8

R
⊢ R8 ⇐ Q8 By rule switch.

Subcase: [N0/x0]rn
A0

R = (N8, (P8
1
)−) and ΓL, Γ

8

R
⊢ N8 ⇐ Q8

1

N8 = R8 and ΓL, Γ
8

R
⊢ R8 ⇒ Q82 and Q82 ≤ Q8

1
By inversion.

(P8
1
)− = a, for some a By definition.

[N0/x0]n
A0

R = R8 By rule subst-n-atom-norm.

Q82 ≤ Q8 By rule.
ΓL, Γ

8

R
⊢ R8 ⇐ Q8 By rule switch.

Case: D =

D1

ΓL, x0::S0⊏A0, ΓR, x::S1⊏A1 ⊢ N ⇐ S2

ΓL, x0::S0⊏A0, ΓR ⊢ λx.N⇐ Πx::S1⊏A1. S2

S8 = Πx::S8
1
⊏A8

1
. S82 and [N0/x0]s

A0
S1 = S8

1
and

[N0/x0]a
A0

A1 = A8
1

and [N0/x0]s
A0

S2 = S82 By inversion.

[N0/x0]
γ

A0
ΓR, x::S1⊏A1 = Γ

8

R
, x::S8

1
⊏A8

1
By rule.

[N0/x0]n
A0

N = N8 and ΓL, Γ
8

R
, x::S8

1
⊏A8

1
⊢ N8 ⇐ S82

By i.h. (1) onD1.
[N0/x0]n

A0
λx.N = λx.N8 By rule.

165

ΓL, Γ
8

R
⊢ λx.N8 ⇐ Πx::S8

1
⊏A8

1
. S82 By rule.

Case: D =

D1

ΓL, x0::S0⊏A0, ΓR ⊢ N⇐ S1

D2

ΓL, x0::S0⊏A0, ΓR ⊢ N ⇐ S2

ΓL, x0::S0⊏A0, ΓR ⊢ N⇐ S1 ∧ S2

S8 = S8
1
∧ S82 and [N0/x0]s

A0
S1 = S8

1
and [N0/x0]s

A0
S2 = S82

By inversion.
[N0/x0]s

A0
N = N8

1
and ΓL, Γ

8

R
⊢ N8

1
⇐ S8

1
By i.h. (1) onD1.

[N0/x0]s
A0

N = N82 and ΓL, Γ
8

R
⊢ N82 ⇐ S82 By i.h. (1) onD2.

N8
1
= N82 By Theorem 3.2 (Functionality of Substitution).

Let N8 = N8
1
= N82: ΓL, Γ

8

R
⊢ N8 ⇐ S1 ∧ S2 By rule.

Case: D =
ΓL, x0::S0⊏A0, ΓR ⊢ N⇐ ⊤

[N0/x0]n
A0

N = N8 By core LF Proto-Substitution Theorem.

ΓL, Γ
8

R
⊢ N8 ⇐ ⊤ By rule.

Note: This case is where we make use of the three grey assumptions to
clause 1. The remainder of the grey assumptions and conclusions are only
required to ensure that these three key assumptions are satisfied on every
inductive appeal. (The interested reader may gain great insight into the
essential difficulty of the proof by tracing these dependencies; all of the action
is in the “application” case of clause 2.)

2. Suppose ΓL ⊢ N0 ⇐ S0 andD :: ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S and [N0/x0]
γ

A0
ΓR = Γ

8

R
.

Case: D =
c:S ∈ Σ

ΓL, x0::S0⊏A0, ΓR ⊢ c⇒ S

FV(S) = ∅ By signature well-formedness.
[N0/x0]s

A0
S = S By trivial substitution.

[N0/x0]rr
A0

c = c By rule.

ΓL, Γ
8

R
⊢ c⇒ S By rule.

Case: D =
x::S⊏A ∈ ΓL, x0::S0⊏A0, ΓR

ΓL, x0::S0⊏A0, ΓR ⊢ x⇒ S

166

Subcase: x::S⊏A ∈ ΓL

x0 < FV(S) and x0 , x By α-conversion convention.
[N0/x0]s

A0
S = S By trivial substitution.

[N0/x0]rr
A0

x = x By rule.

ΓL, Γ
8

R
⊢ x⇒ S By rule.

Subcase: x::S⊏A = x0::S0⊏A0

x0 < FV(S0) By α-conversion convention.
[N0/x0]s

A0
S0 = S0 By trivial substitution.

[N0/x0]rn
A0

x0 = (N0, (A0)−) By rule.

ΓL ⊢ N0 ⇐ S0 By assumption.
ΓL, Γ

8

R
⊢ N0 ⇐ S0 By weakening.

Subcase: x::S⊏A ∈ ΓR

[N0/x0]
γ

A0
ΓR = Γ

8

R
By assumption.

x::S8⊏A8 ∈ Γ8
R

and [N0/x0]s
A0

S = S8 By inversion.

x0 , x By α-conversion convention.
[N0/x0]rr

A0
x = x By rule.

ΓL, Γ
8

R
⊢ x⇒ S8 By rule.

Case: D =

D1

ΓL, x0::S0⊏A0, ΓR ⊢ R1 ⇒ Πx::S2⊏A2. S1
D2

ΓL, x0::S0⊏A0, ΓR ⊢ N2 ⇐ S2

D3

[N2/x]s
A2

S1 = S′
1

ΓL, x0::S0⊏A0, ΓR ⊢ R1 N2 ⇒ S′1

[N0/x0]s
A0
Πx::S2⊏A2. S1 = S8 and either

([N0/x0]rr
A0

R1 = R8
1

and ΓL, Γ
8

R
⊢ R8

1
⇒ S8), or

([N0/x0]rn
A0

R1 = (N8
1
, (Πx:A82.A

8

1
)−) and ΓL, Γ

8

R
⊢ N8

1
⇐ S8)

By i.h. (2) onD1.
S8 = Πx::S82⊏A82. S

8

1

and [N0/x0]s
A0

S2 = S82 and [N0/x0]s
A0

S1 = S8
1

By inversion.

[N0/x0]n
A0

N2 = N82 and ΓL, Γ
8

R
⊢ N82 ⇐ S82 By i.h. (1) onD2.

[N82/x]s
A2

S8
1
= S8′

1
and [N0/x0]s

A0
S′

1
= S8′

1

By Lemma 3.13 (Composition).

Subcase: [N0/x0]rr
A0

R1 = R8
1

and ΓL, Γ
8

R
⊢ R8

1
⇒ Πx::S82⊏A82.A

8

1

[N0/x0]rr
A0

R1 N2 = R8
1

N82 By rule.

ΓL, Γ
8

R
⊢ R8

1
N82 ⇒ S8′

1
By rule.

167

Subcase: [N0/x0]rn
A0

R1 = (N8
1
, (Πx:A82.A

8

1
)−) and ΓL, Γ

8

R
⊢ N8

1
⇐ Πx::S82⊏A82. S

8

1

N8
1
= λx.N8 and ΓL, Γ

8

R
, x::S82⊏A82 ⊢ N8 ⇐ S8

1
By inversion.

[N82/x]n
A2

N8 = N8′ and ΓL, Γ
8

R
⊢ N8′ ⇐ S8′

1

By i.h. (1) at (A2)−, using
ΓL, Γ

8

R
⊢ N82 ⇐ S82 ,

ΓL, Γ
8

R
, x::S82⊏A82 ⊢ N8 ⇐ S8

1
,

[N82/x]
γ

A8
2

· = · ,

and [N82/x]s
A8

2

S8
1
= S8′

1
.

[N0/x0]rn
A0

R1 N2 = N8′ By rule, using

[N0/x0]rn
A0

R1 = (λx.N8, (Πx:A82.A
8

1
)−) ,

[N0/x0]n
A0

N2 = N82 ,

and [N82/x]n
A2

N8 = N8′ .

Case: D =

D1

ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S1 ∧ S2

ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S1

[N0/x0]s
A0

S1 ∧ S2 = S8 and either

([N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
⊢ R8 ⇒ S8), or

([N0/x0]rn
A0

R = (N8, (A8)−) and ΓL, Γ
8

R
⊢ N8 ⇐ S8)

By i.h. (2) onD1.
S8 = S8

1
∧ S82 and [N0/x0]s

A0
S1 = S8

1
By inversion.

Subcase: [N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
⊢ R8 ⇒ S8

1
∧ S82

ΓL, Γ
8

R
⊢ R8 ⇒ S8

1
By rule.

Subcase: [N0/x0]rn
A0

R = (N8, (A8)−) and ΓL, Γ
8

R
⊢ N8 ⇐ S8

1
∧ S82

ΓL, Γ
8

R
⊢ N8 ⇐ S8

1
By inversion.

Case: D =

D1

ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S1 ∧ S2

ΓL, x0::S0⊏A0, ΓR ⊢ R⇒ S2

Similar. �

168

B.3 Lemma 3.21 (Commutativity of Substitution and η-

expansion)

Lemma 3.21 (Commutativity of Substitution and η-expansion). Substitution commutes
with η-expansion. In particular:

1. (a) If [ηα(x)/x]n
α N = N′, then N = N′ ,

(b) If [ηα(x)/x]rr
α R = R′, then R = R′ ,

(c) If [ηα(x)/x]rn
α R = (N, β), then ηβ(R) = N ,

2. If [N0/x0]n
α0
ηα(R) = N′, then

(a) if head(R) , x0, then [N0/x0]rr
α0

R = R′ and ηα(R′) = N′ ,

(b) if head(R) = x0 and x0:α0 ⊢ R : α, then [N0/x0]rn
α0

R = (N′, α) ,

and similarly for other syntactic categories.

Proof. By lexicographic induction on α and the given substitution derivation.
Not all clauses’ proofs need be mutually inductive—the two given cases can be

proven independently of the ones elided. We give only the proof for the two given
cases; the rest are straightforward.

1. (a) SupposeD :: [ηα(x)/x]n
α N = N′.

Case: D =

D1

[ηα(x)/x]rr
α R = R′

[ηα(x)/x]n
α R = R′

R = R′ By i.h. (1b) on α,D1.

Case: D =

D1

[ηα(x)/x]rn
α R = (R′, a′)

[ηα(x)/x]n
α R = R′

ηa′(R) = R′ By i.h. (1c) on α,D1.
ηa′(R) = R By definition.
R = R′ By transitivity of equality.

Case: D =

D1

[ηα(x)/x]n
α N = N′

[ηα(x)/x]n
α λy.N = λy.N′

169

N = N′ By i.h. (1a) on α,D1.
λy.N = λy.N′ By compatibility of equality.

(b) SupposeD :: [ηα(x)/x]rr
α R = R′.

Case: D =
y , x

[ηα(x)/x]rr
α y = y

y = y By reflexivity of equality.

Case: D =
[ηα(x)/x]rr

α c = c

c = c By reflexivity of equality.

Case: D =

D1

[ηα(x)/x]rr
α R1 = R′

1

D2

[ηα(x)/x]n
α N2 = N′2

[ηα(x)/x]rr
α R1 N2 = R′1 R′2

R1 = R′
1

By i.h. (1b) on α,D1.
N2 = N′2 By i.h. (1a) on α,D2.
R1 N2 = R′

1
N′2 By compatibility of equality.

(c) SupposeD :: [ηα(x)/x]rn
α R = (N, β)

Case: D =
[ηα(x)/x]rn

α x = (ηα(x), α)

ηα(x) = ηα(x) By reflexivity of equality.

Case: D =

D1

[ηα(x)/x]rn
α R1 = (λy.N1, α2 → α1)

D2

[ηα(x)/x]n
α N2 = N′

2

D3

[N′
2
/y]n

α2
N1 = N′

1

[ηα(x)/x]rn
α R1 N2 = (N′1, α1)

We need to show: ηα1
(R1 N2) = N′

1
.

ηα2→α1
(R1) = λy.N1 By i.h. (1c) on α,D1.

170

ηα2→α1
(R1) = λy. ηα1

(R1 ηα2
(y)) By definition.

ηα1
(R1 ηα2

(y)) = N1 By compatibility of equality.

N2 = N′2 By i.h. (1a) on α,D2.

D3 :: [N2/y]n
α2
ηα1

(R1 ηα2
(y)) = N′

1
By replacing equals for equals.

y < FV(R1) and head(R1) , y By α-conversion convention.
[N2/y]rr

α2
R1 ηα2

(y) = R′ and ηα1
(R′) = N′

1
By i.h. (2a) on α1,D3.

R′ = R′
1

N′′2 and
[N2/y]rr

α2
R1 = R′

1
andD4 :: [N2/y]n

α2
ηα2

(y) = N′′2 By inversion.

[N2/y]rr
α2

R1 = R1 By trivial substitution.
R1 = R′

1
By functionality of substitution.

head(y) = y By definition.
y:α2 ⊢ y : α2 By rule.
[N2/y]rn

α2
y = (N′′2 , α2) By i.h. (2b) on α2,D4.

N′′2 = N2 By inversion.

R′ = R1 N2 By equality reasoning.
ηα1

(R′) = N′
1

From above.
ηα1

(R1 N2) = N′
1

By replacing equals for equals.

2. SupposeD :: [N0/x0]n
α0
ηα(R) = N′.

(a) Suppose head(R) , x0. We need to show: [N0/x0]rr
α0

R = R′ and ηα(R′) = N′.

Case: α = a.

ηa(R) = R By definition.
D :: [N0/x0]n

α0
R = N′ By equality.

N′ = R′ and [N0/x0]rr
α0

R = R′. By inversion, using Lemma 3.1.
ηa(R

′) = R′ By definition.

Case: α = α2 → α1.

ηα2→α1
(R) = λy. ηα1

(R ηα2
(y)) By definition.

D :: [N0/x0]n
α0
λy. ηα1

(R ηα2
(y)) = N′ By equality.

N′ = λy.N′′ andD1 :: [N0/x0]n
α0
ηα1

(R ηα2
(y)) = N′′ By inversion.

[N0/x0]rr
α0

R ηα2
(y) = R′′ and ηα1

(R′′) = N′′ By i.h. (2a) on α1,D1.

171

R′′ = R′ N and [N0/x0]rr
α0

R = R′ and [N0/x0]n
α0
ηα2

(y) = N
By inversion.

N = ηα2
(y) By trivial substitution and functionality.

ηα1
(R′′) = ηα1

(R′ηα2
(y)) = N′′ By equality.

ηα2→α1
(R′) = λy. ηα1

(R′ ηα2
(y)) By definition.

= λy.N′′ = N′ By equality.

(b) Suppose the head(R) = x0 and x0:α0 ⊢ R : α. We need to show: [N0/x0]rn
α0

R =
(N′, α).

Case: α = a.

ηa(R) = R By definition.
D :: [N0/x0]n

α0
R = N′. By equality.

[N0/x0]rn
α0

R = (N′, a′) By inversion, using Lemma 3.1.
a′ = a By Lemma 3.20.

Case: α = α2 → α1.

ηα2→α1
(R) = λy. ηα1

(R ηα2
(y)) By definition.

D :: [N0/x0]n
α0
λy. ηα1

(R ηα2
(y)) = N′ By equality.

N′ = λy.N′′ andD1 :: [N0/x0]n
α0
ηα1

(R ηα2
(y)) = N′′ By inversion.

x0:α0 ⊢ R ηα2
(y) : α1 By rule.

E :: [N0/x0]rn
α0

R ηα2
(y) = (N′′, α1) By i.h. (2b) on α1,D1.

E1 :: [N0/x0]rn
α0

R = (λy.N′′′, α′2 → α1) and
E2 :: [N0/x0]n

α0
ηα2

(y) = N and
E3 :: [N/y]n

α′
2
N′′′ = N′′ By inversion.

α′2 → α1 = α2 → α1 By Lemma 3.20.
N = ηα2

(y) By trivial substitution and functionality.
E3 :: [ηα2

(y)/y]n
α2

N′′′ = N′′ By equality.
N′′′ = N′′ By i.h. (1a) on α2,E3.

E1 :: [N0/x0]rn
α0

R = (λy.N′′, α2 → α1),
i.e., [N0/x0]rn

α0
R = (N′, α) By equality.

�

172

B.4 Theorem 3.22 (Expansion)

Theorem 3.22 (Expansion). If Γ ⊢ S ⊏ A and Γ ⊢ R⇒ S, then Γ ⊢ ηA(R)⇐ S.

Proof. By induction on S.

Case: S = ⊤

Γ ⊢ ηA(R)⇐ ⊤ By rule.

Case: S = S1 ∧ S2

Γ ⊢ S ⊏ A1 and Γ ⊢ S ⊏ A2 By inversion.
Γ ⊢ R⇒ S1 and Γ ⊢ R⇒ S2 By rules ∧-E1 and ∧-E2.
Γ ⊢ ηA(R)⇐ S1 and Γ ⊢ ηA(R)⇐ S2 By i.h. on S1 and S2.
Γ ⊢ ηA(R)⇐ S1 ∧ S2 By rule ∧-I.

Case: S = Q

A = P By inversion.
ηA(R) = ηP(R) = R By definition.
Q ≤ Q By rule.
Γ ⊢ R⇐ Q By rule switch.

Case: S = Πx::S1⊏A1. S2

A = Πx:A1.A2 and Γ ⊢ S1 ⊏ A1 and Γ, x::S1⊏A1 ⊢ S2 ⊏ A2

By inversion.
ηA(R) = ηΠx:A1.A2

(R) = λx. ηA2
(R ηA1

(x)) By definition.

Γ, y::S1⊏A1 ⊢ S1 ⊏ A1 By weakening.
Γ, y::S1⊏A1 ⊢ y⇒ S1 By rule.
Γ, y::S1⊏A1 ⊢ ηA1

(y)⇐ S1 By i.h. on S1.

Γ, y::S1⊏A1, x::S1⊏A1 ⊢ S2 ⊏ A2 By weakening.
[ηA1

(y)/x]s
A1

S2 = S′2 By Theorem 3.19 (Substitution).

S′2 = [y/x] S2 By Lemma 3.21 (Commutativity).

Γ, y::S1⊏A1 ⊢ R⇒ Πx::S1⊏A1. S2 By weakening.

173

Γ, y::S1⊏A1 ⊢ R ηA1
(y)⇒ [y/x] S2 By rule Π-E.

Γ, x::S1⊏A1 ⊢ R ηA1
(x)⇒ S2 By α-conversion.

Γ, x::S1⊏A1 ⊢ ηA2
(R ηA1

(x))⇐ S2 By i.h. on S2.
Γ ⊢ λx. ηA2

(R ηA1
(x))⇐ Πx::S1⊏A1. S2 By rule Π-I.

�

B.5 Theorem 3.30 (Generalized Algorithmic ⇒ Declara-

tive)

Theorem 3.30 (Generalized Algorithmic⇒ Declarative).

1. If D :: ∆ ≦ T, then
∧

(∆) ≤ T.

2. If D :: ∆ @ x::∆1⊏A1 = ∆2, then
∧

(∆) ≤ Πx::
∧

(∆1)⊏A1.
∧

(∆2).

Proof. By induction on D. To reduce clutter, we omit the refined type A1 from bound
variables, since it does not affect declarative subsorting in any significant way.

1. SupposeD :: ∆ ≦ T.

Case: D =
∆ ≦ ⊤

∧
(∆) ≤ ⊤ By rule ⊤-R.

Case: D =

D1

∆ ≦ S1

D2

∆ ≦ S2

∆ ≦ S1 ∧ S2

∧
(∆) ≤ S1 By i.h. (1) onD1.∧
(∆) ≤ S2 By i.h. (1) onD2.∧
(∆) ≤ S1 ∧ S2 By rule ∧-R.

Case: D =
Q′ ∈ ∆ Q′ ≤ Q

∆ ≦ Q

∧
(∆) ≤ Q By Lemma 3.29.

Case: D =

D1

∆ @ x::split(S1) = ∆2

D2

∆2 ≦ S2

∆ ≦ Πx::S1. S2

174

∧
(∆) ≤ Πx::

∧
(split(S1)).

∧
(∆2) By i.h. (2) onD1.

S1 ≤
∧

(split(S1)) By Lemma 3.28.∧
(∆2) ≤ S2 By i.h. (1) onD2.
Πx::
∧

(split(S1)).
∧

(∆)2 ≤ Πx::S1. S2 By rule S-Π.

∧
(∆) ≤ Πx::S1. S2 By rule trans.

2. SupposeD :: ∆ @ x::split(S1) = ∆2.

Case: D =
· @ x::∆1 = ·

∧
(·) = ⊤ By definition.

We need to show ⊤ ≤ Πx::
∧

(∆1).⊤.
⊤ ≤ Πx::

∧
(∆1).⊤ By rule ⊤/Π-dist.

Case: D =

D1

∆ @ x::∆1 = ∆2

D2

∆1 ≦ S1

D3

[ηA(x)/y]s
A

S2 = S′
2

(∆,Πy::S1⊏A. S2) @ x::∆1 = ∆2, split(S′2)

∧
(∆,Πy::S1⊏A. S2) =

∧
(∆) ∧Πy::S1⊏A. S2 By definition.

Want to show:
∧

(∆) ∧Πy::S1⊏A. S2 ≤ Πx::
∧

(∆1).
∧

(∆2, split(S′2)).
S′2 = [x/y] S2 By Lemma 3.21 (Commutativity).
So (α-varied):

∧
(∆) ∧Πx::S1⊏A. S′2 ≤ Πx::

∧
(∆1).

∧
(∆2, split(S′2)).

Note: in the following, we omit some uses of reflexivity (rule refl).

∧
(∆) ≤ Πx::

∧
(∆1).

∧
(∆2) By i.h. (2) onD1.∧

(∆1) ≤ S1 By i.h. (1) onD2.∧
(∆) ∧Πx::S1. S

′
2 ≤ Πx::

∧
(∆1).

(∧
(∆2) ∧ S′2

)
By rule ∧/Π-dist′.

S′2 ≤
∧

(split(S′2)) By Lemma 3.28.∧
(∆2) ∧ S′2 ≤

∧
(∆2) ∧

∧
(split(S′2)) By rule S-∧.∧

(∆2) ∧
∧

(split(S′2)) ≤
∧

(∆2, split(S′2)) By Lemma 3.27.∧
(∆2) ∧ S′2 ≤

∧
(∆2, split(S′2)) By rule trans.

Πx::
∧

(∆1).
(∧

(∆2) ∧ S′2

)
≤ Πx::

∧
(∆1).

∧
(∆2, split(S′2))

By rule S-Π.

∧
(∆) ∧Πx::S1. S

′
2 ≤ Πx::

∧
(∆1).

∧
(∆2, split(S′2)) By rule trans.

175

Case: D =

D1

∆ @ x::∆1 = ∆2
∆1 6≦ S1

∆,Πy::S1⊏A. S2 @ x :: ∆1 = ∆2

∧
(∆,Πy::S1⊏A. S2) =

∧
(∆) ∧Πy::S1⊏A. S2 By definition.∧

(∆) ≤ Πx::
∧

(∆1).
∧

(∆2) By i.h. (2) onD1.∧
(∆) ∧Πy::S1⊏A. S2 ≤ Πx::

∧
(∆1).

∧
(∆2) By rule ∧-L1.

Case: D =

D1

∆ @ x::∆1 = ∆2

∄S′2. [ηA(x)/y]s
A S2 = S′2

∆,Πy::S1⊏A. S2 @ x :: ∆1 = ∆2

Similar.

Case: D =

D1

∆ @ x::∆1 = ∆2

∆,Q @ x :: ∆1 = ∆2

Similar. �

B.6 Lemma 3.34

Lemma 3.34. If D :: Γ ⊢ ∆ ⊏ Πx:A1.A2 and E :: Γ ⊢ ∆ @ N = ∆2 and [N/x]a
A1

A2 = A′2, then
Γ ⊢ ∆2 ⊏ A′2.

Proof. By induction on E.

Case: E =
Γ ⊢ · @ N = ·

Γ ⊢ · ⊏ A′2 By rule.

Case: E =

E1

Γ ⊢ ∆ @ N = ∆2

E2

Γ ⊢ N ⇚ S1

E3

[N/x]s
A1

S2 = S′
2

Γ ⊢ (∆,Πx::S1⊏A1. S2) @ N = ∆2, split(S′2)

D1 :: Γ ⊢ ∆ ⊏ Πx:A1.A2 and
D2 :: Γ ⊢ Πx::S1⊏A1. S2 ⊏ Πx:A1.A2 By inversion onD.
Γ ⊢ ∆2 ⊏ A′2 By i.h. on E1.

176

Γ ⊢ S1 ⊏ A1 and Γ, x::S1⊏A1 ⊢ S2 ⊏ A2 By inversion onD2.
Γ ⊢ N ⇐ S1 By Theorem 3.9 (Soundness of Alg. Typing).
Γ ⊢ S′2 ⊏ A′2 By Theorem 3.19 (Substitution).
Γ ⊢ split(S′2) ⊏ A′2 By Lemma 3.33.

Γ ⊢ (∆2, split(S′2)) ⊏ A′2 By Lemma 3.32.

Case: E =

E1

Γ ⊢ ∆ @ N = ∆2

Γ 0 N ⇚ S1

Γ ⊢ (∆,Πx::S1⊏A1. S2) @ N = ∆2

Γ ⊢ ∆ ⊏ Πx:A1.A2 By inversion onD.
Γ ⊢ ∆2 ⊏ A′2 By i.h. on E1.

Case: E =

E1

Γ ⊢ ∆ @ N = ∆2

∄S′2. [N/y]s
A1

S2 = S′2

Γ ⊢ (∆,Πx::S1⊏A1. S2) @ N = ∆2

Similar.

Case: E =

E1

Γ ⊢ ∆ @ N = ∆2

Γ ⊢ (∆,Q) @ N = ∆2

Impossible:
Γ ⊢ Q ⊏ Πx:A1.A2 By inversion onD.
But there is no rule that can conclude this. �

B.7 Theorem 3.38 (Generalized Intrinsic⇒ Algorithmic)

Theorem 3.38 (Generalized Intrinsic⇒ Algorithmic).

1. If Γ ⊢ R⇛ ∆ and E :: Γ ⊢ ηA(R)⇚ S and Γ ⊢ ∆ ⊏ A and Γ ⊢ S ⊏ A, then ∆ ≦ S.

2. If Γ ⊢ x ⇛ ∆1 and E :: Γ ⊢ ∆ @ ηA1
(x) = ∆2 and Γ ⊢ ∆1 ⊏ A1 and Γ ⊢ ∆ ⊏ Πx:A1.A2,

then ∆ @ x::∆1⊏A1 = ∆2.

Proof. By induction on A, S, and E. We omit the refined type A1 from the ∆1 argument
of the application judgement when it is clear from context.

177

1. SupposeD :: Γ ⊢ R⇛ ∆, E :: Γ ⊢ ηA(R)⇚ S, F :: Γ ⊢ ∆ ⊏ A, and G :: Γ ⊢ S ⊏ A.

Case: S = Q

A = P By inversion on G.
ηP(R) = R By definition.

E =
Γ ⊢ R⇛ ∆ Q′ ∈ ∆ Q′ ≤ Q

Γ ⊢ R⇚ Q
By inversion.

∆ ≦ Q By rule.

Case: S = ⊤

∆ ≦ ⊤ By rule.

Case: S = S1 ∧ S2

E =

E1

Γ ⊢ ηA(R)⇚ S1

E2

Γ ⊢ ηA(R)⇚ S2

Γ ⊢ ηA(R)⇚ S1 ∧ S2

By inversion.

∆ ≦ S1 By i.h. (1) on S1 and E1

∆ ≦ S2 By i.h. (1) on S2 and E2

∆ ≦ S1 ∧ S2 By rule.

Case: S = Πx::S1⊏A1. S2

A = Πx:A1.A2 and
Γ ⊢ S1 ⊏ A1 and Γ, x::S1⊏A1 ⊢ S2 ⊏ A2 By inversion on G.
ηΠx:A1.A2

(R) = λx. ηA2
(R ηA1

(x)) By definition.

E =

E1

Γ, x::S1⊏A1 ⊢ ηA2
(R ηA1

(x))⇚ S2

Γ ⊢ λx. ηA2
(R ηA1

(x))⇚ Πx::S1⊏A1. S2

By inversion.

Γ, x::S1⊏A1 ⊢ R⇛ ∆ By weakening.
Γ, x::S1⊏A1 ⊢ ∆ @ ηA1

(x) = ∆2 By Theorem 3.7, clause (3).
Γ, x::S1⊏A1 ⊢ R ηA1

(x)⇛ ∆2 By rule.
[ηA1

(x)/A1]a
x A2 = A2 By validity of Πx:A1.A2 and Lemma 3.21.

178

Γ, x::S1⊏A1 ⊢ ∆2 ⊏ A2 By Lemma 3.34.
∆2 ≦ S2 By i.h. (1) on A2, S2, and E1.

Γ, x::S1⊏A1 ⊢ x⇛ split(S1) By rule.
Γ, x::S1⊏A1 ⊢ ∆ @ ηA1

(x) = ∆2 From above.
Γ ⊢ split(S1) ⊏ A1 By Lemma 3.33.
Γ ⊢ ∆ ⊏ Πx:A1.A2 By assumption.
∆ @ x::split(S1) = ∆2 By i.h. (2) on A1.

∆ ≦ Πx::S1⊏A1. S2 By rule.

2. Suppose D :: Γ ⊢ x ⇛ ∆1 and E :: Γ ⊢ ∆ @ ηA1
(x) = ∆2 and F :: Γ ⊢ ∆1 ⊏ A1 and

G :: Γ ⊢ ∆ ⊏ Πx:A1.A2.

Case: E =
Γ ⊢ · @ ηA1

(x) = ·

· @ x::∆1 = · By rule.

Case: E =

E1

Γ ⊢ ∆ @ ηA1
(x) = ∆2

E2

Γ ⊢ ηA1
(x)⇚ S1

E3

[ηA1
(x)/y]s

A1
S2 = S′

2

Γ ⊢ (∆,Πy::S1⊏A1. S2) @ ηA1
(x) = ∆2, split(S′2)

Γ ⊢ ∆ ⊏ Πx:A1.A2 and
Γ ⊢ S1 ⊏ A1 and Γ, y::S1⊏A1 ⊢ S2 ⊏ A2 By inversion on G.
∆ @ x::∆1 = ∆2 By i.h. (2) on E1.
∆1 ≦ S1 By i.h. (1) on E2.
[ηA1

(x)/y]s
A1

S2 = S′2 By subderivation E3.

(∆,Πy::S1⊏A1. S2) @ x::∆1 = (∆2, split(S′2)) By rule.

Case: E =

E1

Γ ⊢ ∆ @ ηA1
(x) = ∆2

Γ 0 ηA1
(x)⇚ S1

Γ ⊢ (∆,Πx::S1⊏A1. S2) @ ηA1
(x) = ∆2

Γ ⊢ ∆ ⊏ Πx:A1.A2 and
Γ ⊢ S1 ⊏ A1 and Γ, y::S1⊏A1 ⊢ S2 ⊏ A2 By inversion on G.
∆ @ x::∆1 = ∆2 By i.h. (2) on E1.
∆1 6≦ S1 By Theorem 3.37 (Alg. Subsumption), contrapositive.
(∆,Πy::S1⊏A1. S2) @ x::∆1 = ∆2 By rule.

179

Case: E =

E1

Γ ⊢ ∆ @ ηA1
(x) = ∆2

∄S′2. [ηA1
(x)/y]s

A1
S2 = S′2

Γ ⊢ (∆,Πy::S1⊏A1. S2) @ ηA1
(x) = ∆2

∆ @ x::∆1 = ∆2 By i.h. (2) on E1.
∄S′2. [ηA(x)/y]s

A1
S2 = S′2 By side condition.

(∆,Πy::S1⊏A1. S2) @ x::∆1 = ∆2 By rule.

Case: E =

E1

Γ ⊢ ∆ @ N = ∆2

Γ ⊢ (∆,Q) @ N = ∆2

Impossible:
Γ ⊢ Q ⊏ Πx:A1.A2 By inversion on G.
But there is no rule that can conclude this. �

180

Appendix C

Complete Subset Interpretation Rules

In the judgment forms below, superscript + and − indicate a judgment’s “inputs” and
“outputs”, respectively.

C.1 Kinding

Γ ⊢Σ L+ ⊏ K+
form
{ L̂−

Γ ⊢ sort ⊏ type
form
{ λQf. Qf

Γ ⊢ S ⊏ A{ Ŝ Γ, x::S⊏A ⊢ L ⊏ K
form
{ L̂

Γ ⊢ Πx::S⊏A. L ⊏ Πx:A.K
form
{ λQf. Πx:A.Πx̂:̂S(ηA(x)). L̂(Qf ηA(x))

Γ ⊢ ⊤ ⊏ K
form
{ λQf. 1

Γ ⊢ L1 ⊏ K
form
{ L̂1 Γ ⊢ L2 ⊏ K

form
{ L̂2

Γ ⊢ L1 ∧ L2 ⊏ K
form
{ λQf. L̂1(Qf) × L̂2(Qf)

Γ ⊢Σ Q+ ⊏ P− ⇒ L− { Q̂−

s⊏a::L ∈ Σ

Γ ⊢ s ⊏ a⇒ L{ ŝ/i

Γ ⊢ Q ⊏ P⇒ Πx::S⊏A. L{ Q̂ Γ ⊢ N ⇐ S{ N̂ [N/x]l
A L = L′

Γ ⊢ Q N ⊏ P N⇒ L′ { Q̂ N N̂

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2 { Q̂

Γ ⊢ Q ⊏ P⇒ L1 { π1 Q̂

Γ ⊢ Q ⊏ P⇒ L1 ∧ L2 { Q̂

Γ ⊢ Q ⊏ P⇒ L2 { π2 Q̂

181

Γ ⊢Σ S+ ⊏ A+{ Ŝ−

Γ ⊢ Q ⊏ P′ ⇒ L{ Q̂ P′ = P L = sort

Γ ⊢ Q ⊏ P{ λN. Q [Q̂] N
(Q-F)

Γ ⊢ S ⊏ A{ Ŝ Γ, x::S⊏A ⊢ S′ ⊏ A′ { Ŝ′

Γ ⊢ Πx::S⊏A. S′ ⊏ Πx:A.A′ { λN.Πx:A.Πx̂:̂S(ηA(x)). Ŝ′(N@x)
(Π-F)

Γ ⊢ ⊤ ⊏ A{ λN. 1
(⊤-F)

Γ ⊢ S1 ⊏ A{ Ŝ1 Γ ⊢ S2 ⊏ A{ Ŝ2

Γ ⊢ S1 ∧ S2 ⊏ A{ λN. Ŝ1(N) × Ŝ2(N)
(∧-F)

Note: no intro rules for classes ⊤ and L1 ∧ L2.

K+
pred
{ K̂−

type
pred
{ λ(Qf, P). Qf →÷ P→ type

K
pred
{ K̂

Πx:A.K
pred
{ λ(Qf, P). Πx:A. K̂(Qf ηA(x), P ηA(x))

K
≤
{ K̂

type
≤
{ λ(P,Q1f,Q1,Q2f,Q2).Π f1:Q1f.Π f2:Q2f.Πx:P.Q1 [f1] x→ Q2 [f2] x

K
≤
{ K̂

Πx:A.K
≤
{ λ(P,Q1f,Q1,Q2f,Q2). Πx:A. K̂(P′,Q1

′
f,Q

′
1,Q2

′
f,Q

′
2)

(where, for each P, P′ = P ηA(x))

182

C.2 Typing

Γ ⊢Σ R+ ⇒ S− { R̂−

c::S ∈ Σ

Γ ⊢ c⇒ S{ ĉ
(const)

x::S⊏A ∈ Γ

Γ ⊢ x⇒ S{ x̂
(var)

Γ ⊢ R1 ⇒ Πx::S2⊏A2. S{ R̂1 Γ ⊢ N2 ⇐ S2 { N̂2 [N2/x]s
A2

S = S′

Γ ⊢ R1 N2 ⇒ S′ { R̂1 N2 N̂2

(Π-E)

Γ ⊢ R⇒ S1 ∧ S2 { R̂

Γ ⊢ R⇒ S1 { π1 R̂
(∧-E1)

Γ ⊢ R⇒ S1 ∧ S2 { R̂

Γ ⊢ R⇒ S2 { π2 R̂
(∧-E2)

Γ ⊢Σ N+ ⇐ S+ { N̂−

Γ ⊢ R⇒ Q′ { R̂ Γ ⊢ Q′ ≤ Q{ F

Γ ⊢ R⇐ Q{ F(R, R̂)
(switch)

Γ, x::S⊏A ⊢ N⇐ S′ { N̂

Γ ⊢ λx.N⇐ Πx::S⊏A. S′ { λx. λx̂. N̂
(Π-I)

Γ ⊢ N⇐ ⊤{ 〈〉
(⊤-I)

Γ ⊢ N ⇐ S1 { N̂1 Γ ⊢ N ⇐ S2 { N̂2

Γ ⊢ N ⇐ S1 ∧ S2 { 〈N̂1, N̂2〉
(∧-I)

Γ ⊢ Q+
1
≤ Q+2 { F

Q1 = Q2

Γ ⊢ Q1 ≤ Q2 { λ(R, R1). R1

(refl)

Q1 ≤ Q′{ Q̂1-Q′ Γ ⊢ Q1 ⊏ P⇒ sort{ Q̂1

Γ ⊢ Q′ ≤ Q2 { F Γ ⊢ Q′ ⊏ P⇒ sort{ Q̂′

Γ ⊢ Q1 ≤ Q2 { λ(R,R1). F(R, Q̂1-Q′ Q̂1 Q̂′ R R1)
(climb)

Q+
1
≤ Q−2 { Q̂1-Q2

s1≤s2 ∈ Σ

s1 ≤ s2 { s1-s2

Q1 ≤ Q2 { Q̂1-Q2

Q1 N ≤ Q2 N{ Q̂1-Q2 N

183

C.3 Signatures and Contexts

⊢ Σ sig{ Σ̂

⊢ · sig{ ·

⊢ Σ sig{ Σ̂ · ⊢Σ∗ K⇐ kind a:K′ < Σ

⊢ Σ, a:K sig{ Σ̂, a:K

⊢ Σ sig{ Σ̂ · ⊢Σ∗ A⇐ type c:A′ < Σ

⊢ Σ, c:A sig{ Σ̂, c:A

⊢ Σ sig{ Σ̂ a:K ∈ Σ · ⊢Σ L ⊏ K
form
{ L̂f K

pred
{ K̂p s⊏a′::L′ < Σ

⊢ Σ, s⊏a::L sig{ Σ̂, ŝ:K, ŝ/i:L̂f(̂s), s:K̂p (̂s, a)

⊢ Σ sig{ Σ̂ c:A ∈ Σ · ⊢Σ S ⊏ A{ Ŝ c::S′ < Σ

⊢ Σ, c::S sig{ Σ̂, ĉ:̂S(ηA(c))

⊢ Σ sig{ Σ̂ s1⊏a::L ∈ Σ s2⊏a::L ∈ Σ a:K ∈ Σ K
≤
{ K̂

⊢ Σ, s1≤s2 sig{ Σ̂, s1-s2:K̂(a, ŝ1, s1, ŝ2, s2)

⊢Σ Γ ctx{ Γ̂

⊢ · ctx{ ·

⊢ Γ ctx{ Γ̂ Γ ⊢ S ⊏ A{ Ŝ

⊢ Γ, x::S⊏A ctx{ Γ̂, x:A, x̂:Ŝ(ηA(x))

184

Bibliography

[AB04] Steven Awodey and Andrej Bauer. Propositions as [types]. Journal of Logic
and Computation, 14(4):447–471, 2004. 4

[AC01] David Aspinall and Adriana B. Compagnoni. Subtyping dependent types.
Theoretical Computer Science, 266(1-2):273–309, 2001. 1.1

[Asp00] David Aspinall. Subtyping with power types. In Peter Clote and Helmut
Schwichtenberg, editors, CSL, volume 1862 of Lecture Notes in Computer
Science, pages 156–171. Springer, 2000. 1.1

[Bar92] Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gab-
bay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume II, pages 117–309. Oxford University Press, 1992. 6.1.6

[BCDC83] Henk Berendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A
filter lambda model and the completeness of type assignment. Journal of
Symbolic Logic, 48(4):931–940, December 1983. 5.4.1

[BTCGS91] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov.
Inheritance as implicit coercion. Information and Computation, 93(1):172–221,
July 1991. 4

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986. 4.1,
4.1

[CDCV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters
of solvable terms. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 27(2-6):45–58, 1981. 5.4.1

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
Available on: http://www.grappa.univ-lille3.fr/tata, 2007. release
October, 12th 2007. 2.5

[Cer96] Iliano Cervesato. A Linear Logical Framework. PhD thesis, Dipartimento di
Informatica, Università di Torino, February 1996. 1.1

185

http://www.grappa.univ-lille3.fr/tata

[CG03] Adriana Compagnoni and Healfdane Goguen. Typed operational semantics
for higher-order subtyping. Information and Computation, 184(2):242–297,
August 2003. 1.1, 6.1.4, 6.1.4

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940. 1.1

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In
E. Clarke, editor, Proceedings of the Eleventh Annual Symposium on Logic in
Computer Science, pages 264–275, New Brunswick, New Jersey, July 1996.
IEEE Computer Society Press. 1.1

[CP02] Iliano Cervesato and Frank Pfenning. A linear logical framework. Informa-
tion & Computation, 179(1):19–75, November 2002. 1.1

[CP03] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of
Logic and Computation, 13(5):639–688, 2003. 5.3.1

[Cra03] Karl Crary. Toward a foundational typed assembly language. In G. Mor-
risett, editor, Proceedings of the 30th Annual Symposium on Principles of Pro-
gramming Languages (POPL ’03), pages 198–212, New Orleans, Louisiana,
January 2003. ACM Press. 1.1

[Cra07] Karl Crary. Sound and complete elimination of singleton kinds. ACM
Transactions on Computational Logic (TOCL), 8(2), April 2007. 6.1.5

[Dav05] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie
Mellon University, May 2005. Available as Technical Report CMU-CS-05-
110. 1, 2.5

[dB94a] N. G. de Bruijn. The Mathematical Vernacular, a language for mathematics
with typed sets. In Nederpelt et al. [NGdV94], pages 865–935. 1.1

[dB94b] N. G. de Bruijn. A survey of the project Automath. In Nederpelt et al.
[NGdV94], pages 141–161. 1.1

[DHKP96] Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Uni-
fication via explicit substitutions: The case of higher-order patterns. In
M. Maher, editor, Proceedings of the Joint International Conference and Sympo-
sium on Logic Programming, pages 259–273, Bonn, Germany, September 1996.
MIT Press. 5.1

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL ’82), pages 207–212. ACM Press, 1982.
6.1.1

186

[Dow93] Gilles Dowek. The undecidability of typability in the lambda-pi-calculus.
In M. Bezem and J.F. Groote, editors, Proceedings of the International Confer-
ence on Typed Lambda Calculi and Applications, pages 139–145, Utrecht, The
Netherlands, March 1993. Springer-Verlag LNCS 664. 5.1

[Dun07] Joshua Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie
Mellon University, August 2007. Available as Technical Report CMU-CS-
07-129. 1

[DZ92] Philip W. Dart and Justin Zobel. A regular type language for logic programs.
In Frank Pfenning, editor, Types in Logic Programming, pages 157–187. MIT
Press, Cambridge, Massachusetts, 1992. 2.5

[Fre94] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon Uni-
versity, March 1994. Available as Technical Report CMU-CS-94-110. 1, 2.5

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris 7, 1972. 6.1.1

[Gog94] Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD
thesis, University of Edinburgh, 1994. Available as Technical Report ECS-
LFCS-94-304. 1.1

[Gog95] Healfdene Goguen. Typed operational semantics. In Mariangiola Dezani-
Ciancaglini and Gordon D. Plotkin, editors, Proceedings of the 2nd Interna-
tional Conference on Typed Lambda Calculi and Applications (TLCA ’95), number
902 in Lecture Notes in Computer Science, pages 186–200, London, UK, 1995.
Springer. 1.1, 3.1

[Her95] Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style
sequent calculus structure. In Leszek Pacholski and Jerzy Tiuryn, editors,
Computer Science Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland,
September 25-30, 1994, Selected Papers, volume 933 of Lecture Notes in Computer
Science, pages 61–75. Springer, 1995. 5.3.1

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993. 1, 1.1, 2, 2.2

[Hin82] J. R. Hindley. The simple semantics for Coppo-Dezani-Sallé types. In Mari-
angiola Dezani-Ciancaglini and Ugo Montanari, editors, International Sym-
posium on Programming, volume 137 of Lecture Notes in Computer Science,
pages 212–226. Springer, 1982. 5.4.1

[HL93] Robert Harper and Mark Lillibridge. Explicit polymorphism and CPS con-
version. In Proceedings of the 20th Annual Symposium on Principles of Program-
ming Languages (POPL ’93), pages 206–219, Charleston, SC, January 1993.
ACM, ACM. 6.1.3

187

[HL07] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical
framework. Journal of Functional Programming, 17(4–5):613–673, July 2007. 2,
5, 3, 3.3.1

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical forms
in the LF type theory. Transactions on Computational Logic, 6:61–101, January
2005. 3.2

[JM03] Felix Joachimski and Ralph Matthes. Short proofs of normalization. Archive
of Mathematical Logic, 42(1):59–87, 2003. 1.1

[KT92] A. J. Kfoury and J. Tiuryn. Type reconstruction in finite rank fragments of
the second-order λ-calculus. Information and Computation, 98:228–257, 1992.
6.1.1, 6.1.1

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized
metatheory of Standard ML. In Matthias Felleisen, editor, Proceedings of the
34th Annual Symposium on Principles of Programming Languages (POPL ’07),
pages 173–184, Nice, France, January 2007. ACM Press. 1.1

[LRDR07] Luigi Liquori and Simona Ronchi Della Rocca. Intersection-types à la
Church. Information and Computation, 205(9):1371–1386, 2007. 4.2

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uni-
form proofs as a foundation for logic programming. Annals of Pure and
Applied Logic, 51:125–157, 1991. 5.3.1

[MP91] Spiro Michaylov and Frank Pfenning. Natural semantics and some of its
meta-theory in Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister,
editors, Proceedings of the Second International Workshop on Extensions of Logic
Programming, pages 299–344, Stockholm, Sweden, January 1991. Springer-
Verlag LNAI 596. 1.1

[NGdV94] R. D. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors. Selected Pa-
pers on Automath. Number 133 in Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1994. C.3

[NPP07] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual
modal type theory. Transactions on Computational Logic, 2007. To appear. 3

[NvP01] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University
Press, 2001. 6.2.4

[OEI10] The on-line encyclopedia of integer sequences. Published electronically at
http://oeis.org, 2010. 5

188

http://oeis.org

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cam-
bridge University Press, 1991. 5.1

[Pfe92] Frank Pfenning. A proof of the Church-Rosser theorem and its representa-
tion in a logical framework. Technical Report CMU-CS-92-186, Department
of Computer Science, Carnegie Mellon University, September 1992. 1.1

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman
Geuvers, editor, Informal Proceedings of the Workshop on Types for Proofs and
Programs, pages 285–299, Nijmegen, The Netherlands, May 1993. 1.1

[Pfe94] Frank Pfenning. A structural proof of cut elimination and its representation
in a logical framework. Technical Report CMU-CS-94-218, Department of
Computer Science, Carnegie Mellon University, November 1994. 6.2.1

[Pfe00] Frank Pfenning. Structural cut elimination: I. intuitionistic and classical
logic. Information and Computation, 157(1-2):84–141, 2000. 1.1, 1.1, 2

[Pfe01a] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In J. Halpern, editor, Proceedings of the 16th Annual
Symposium on Logic in Computer Science (LICS’01), pages 221–230, Boston,
Massachusetts, June 2001. IEEE Computer Society Press. 4, 4.1

[Pfe01b] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, chapter 17, pages 1063–
1147. Elsevier Science and MIT Press, 2001. 1.1

[Pie97] Benjamin C. Pierce. Intersection types and bounded polymorphism. Math-
ematical Structures in Computer Science, 7(2):129–193, 1997. 5.4.1, 6.1.6

[Pie02] Benjamin C. Pierce. Type reconstruction. In Types and Programming Lan-
guages, chapter 22. MIT Press, 2002. 5.5.1, 5.5.1

[Pie10] Brigitte Pientka. An insider’s look at LF type reconstruction: Everything
you (n)ever wanted to know. Submitted, August 2010. Available from
http://www.cs.mcgill.ca/∼bpientka/papers/recon.pdf . 5.1, 5.1, 5.2

[PR05] Franois Pottier and Didier Rémy. The essence of ML type inference. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and Programming Languages,
chapter 10, pages 389–489. MIT Press, 2005. 5.5.1, 5.5.1

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th International Conference on Automated Deduction (CADE-
16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632. 1,
1.1, 5.1

189

http://www.cs.mcgill.ca/~bpientka/papers/recon.pdf

[Ree09] Jason Reed. Higher-order constraint simplification in dependent type the-
ory. In Proceedings of the 4th International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP ’09), pages 49–56. ACM, 2009.
5.1

[Rey74] John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Programming Symposium, volume 19 of Lecture Notes in Computer Science,
pages 408–425, Berlin, 1974. Springer-Verlag. 6.1.1

[Rey89] John C. Reynolds. Even normal forms can be hard to type. Unpublished,
marked Carnegie Mellon University, December 1, 1989. 2.1

[Rey91] John C. Reynolds. The coherence of languages with intersection types. In
Takayasu Ito and Albert R. Meyer, editors, Theoretical Aspects of Computer
Software, volume 526 of Lecture Notes in Computer Science, pages 675–700,
Berlin, 1991. Springer-Verlag. 4

[Rey96] John C. Reynolds. Design of the programming language Forsythe. Report
CMU–CS–96–146, Carnegie Mellon University, Pittsburgh, Pennsylvania,
June 28, 1996. 2.1, 5.4.1, 6.1.6

[RP08] Jason Reed and Frank Pfenning. Proof irrelevance in a logical framework.
Unpublished draft, July 2008. 4.1

[RS09] Florian Rabe and Carsten Schürmann. A practical module system for LF.
In Proceedings of the 4th International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice (LFMTP ’09), pages 40–48. ACM, 2009.
1

[Sar09] Susmit Sarkar. A Dependently Typed Programming Language, with Applica-
tions to Foundational Certified Code Systems. PhD thesis, Carnegie Mellon
University, May 2009. Available as Technical Report CMU-CS-09-128. 1

[Sch03] Carsten Schürmann. Towards practical functional program-
ming with logical frameworks. Unpublished, available at
http://cs-www.cs.yale.edu/homes/carsten/delphin/, July 2003.
1

[SS88] Anne Salvesen and Jan M. Smith. The strength of the subset type in Martin-
Löf’s type theory. In Proceedings of LICS’88, pages 384–391. IEEE Computer
Society Press, 1988. 4.1, 4.1

[vP01] Jan von Plato. Natural deduction with general elimination rules. Archive for
Mathematical Logic, 40:541–567, 2001. 6.2.4

190

http://cs-www.cs.yale.edu/homes/carsten/delphin/

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework I: Judgments and properties. Technical Re-
port CMU-CS-02-101, Department of Computer Science, Carnegie Mellon
University, 2002. Revised May 2003. 1.1, 3, 3.3.1

[WCPW04] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework: The propositional fragment. In S. Berardi,
M. Coppo, and F. Damiani, editors, Types for Proofs and Programs, pages 355–
377. Springer-Verlag LNCS 3085, 2004. Revised selected papers from the
Third International Workshop on Types for Proofs and Programs, Torino, Italy,
April 2003. 1.1

[YS91] Eyal Yardeni and Ehud Shapiro. A type system for logic programs. Journal
of Logic Programming, 10(2):125–153, 1991. 2.5, 2.5

191

	Introduction
	Background
	Properties as Sorts
	Contributions

	System and Examples
	Example: Natural Numbers
	Adequacy
	Example: the Call-By-Value lambda-Calculus
	Example: Normal Natural Deductions
	All Properties as Sorts?
	Summary

	Metatheory
	Hereditary Substitution
	Decidability
	Identity and Substitution Principles
	Substitution
	Identity

	Subsorting at Higher Sorts
	Summary

	Subset Interpretation
	Proof Irrelevance
	Overview of the Interpretation
	Dependent Base Sorts
	Subsorting
	Correctness
	Summary

	Sort Reconstruction
	Overview
	Top-level Signature Reconstruction
	Preliminaries
	Spine Form LFR
	Type Reconstruction
	Sort Variables

	Decidability in Principle by Enumeration
	Finiteness of Refinements
	Impractical Sort Reconstruction Algorithm

	Practical Sort Reconstruction
	Constraint Generation
	Solving the Constraints
	Practical Sort Reconstruction Algorithm

	Summary

	Case Studies
	Programming Languages
	Fragments of Polymorphism
	Values and Computations
	Other Evaluation Strategies
	Weak Head Normal Types in Higher-Order Subtyping
	Singleton Kind Elimination
	The lambda-Cube

	Proof Theory
	Cut-free Sequent Calculi
	Normal Natural Deductions
	Intuitionistic and Classical Proofs
	General Eliminations and the Uniform Calculus

	Omphaloskepsis
	Normalized Sorts
	Prenex DNF Constraints
	Subsorting Derivations
	Coloring Hypotheses

	Summary

	Future Work and Conclusions
	Future Work

	Complete LFR Rules
	Grammar
	Expansion and Substitution
	Kinding
	Typing
	Signatures and Contexts

	Full Proofs of Basic Metatheory
	Lemma 3.13 (Composition of Substitutions)
	Theorem 3.15 (Proto-Substitution, terms)
	Lemma 3.21 (Commutativity of Substitution and eta-expansion)
	Theorem 3.22 (Expansion)
	Theorem 3.30 (Generalized Algorithmic ==> Declarative)
	Lemma 3.34
	Theorem 3.38 (Generalized Intrinsic ==> Algorithmic)

	Complete Subset Interpretation Rules
	Kinding
	Typing
	Signatures and Contexts

	Bibliography

