
Better Scalable Algorithms for Broadcast
Scheduling

Nikhil Bansal∗ Ravishankar Krishnaswamy†
Viswanath Nagarajan∗

November 2009
CMU-CS-09-174

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗IBM T.J. Watson Research Center.
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. Work done
while the author was visiting IBM T.J. Watson Research Center.



Keywords: Broadcast Scheduling, Online Algorithms



Abstract

In the classic broadcast scheduling problem, there are n pages stored at a server, and requests for
these pages arrive over time. Whenever a page is broadcast, it satisfies all outstanding requests
for that page. The objective is to minimize average flowtime of the requests. For any ε > 0, we
give a (1+ε)-speedO(1/ε3)-competitive online algorithm for broadcast scheduling. This improves
over the recent breakthrough result of Im and Moseley [IM10], where they obtained a (1+ε)-speed
O(1/ε11)-competitive algorithm. Our algorithm and analysis are considerably simpler than [IM10].
More importantly, our techniques also extend to the general setting of non-uniform page-sizes and
dependent-requests. This is the first scalable algorithm for broadcast scheduling with varying size
pages, and resolves the main open question from [IM10].





1 Introduction
We consider the classic problem of scheduling in a broadcast setting to minimize the average
response time. In the broadcast scheduling problem, there are n pages, and requests for these
pages arrive over time. There is a single server that can broadcast pages. Whenever a page is
transmitted, it satisfies all outstanding requests for that page. In the most basic version of the
problem, we assume that time is slotted and that each page can be broadcast in a single time slot.
Any request r is specified by its arrival time a(r) and the page p(r) that it requests; we let [m]
denote the set of all requests. A broadcast schedule is an assignment of pages to time slots. The
flow-time (or response time) of request r under a broadcast schedule equals b(r) − a(r) where
b(r) ≥ a(r) + 1 is the earliest time slot after a(r) when page p(r) is broadcast. The objective is
to minimize the average flow-time, i.e. 1

m
·
∑

r∈[m](b(r)− a(r)). Note that the optimal value is at
least one.

More general versions of the problem have also been studied. One generalization is to assume
that pages have different sizes. A complicating issue in this case is that a request for a page may
arrive in the midst of a transmission of this page. There are two natural models studied here, with
caching and without caching. In the caching version, a request is considered satisfied as soon as
it sees one complete transmission of a page (so it could first receive the latter half of the page
and then receive the first half). Without a cache, a request can only be satisfied when it starts
receiving the page from the beginning and when the page is completely transmitted. The latter
version is natural, for example, with movie transmissions, while the former is more natural for say
data file transmissions. When pages have arbitrary sizes, it is also standard to consider preemptive
schedules (i.e. transmission of a page need not occur at consecutive time-slots). This is because
no reasonable guarantee can exist if preemption is disallowed.

Another generalization is the case of so called dependent requests. Here a request consists of a
subset of pages, and this request is considered completed only when all the pages for this request
have been broadcast.

1.1 Previous Work
The broadcast scheduling setting has studied extensively in the last few years, both in the of-
fline and online setting. Most of the work has been done on the most basic setting with unit
page sizes and no dependencies. In addition to minimizing the average response time, vari-
ous other metrics such maximum response time [BM00, CEHK08, CIM09a, CM09] through-
put maximization [CK06, KC04, ZFCCPW06], delay-factor [CM09] etc. have also been stud-
ied quite extensively. We describe here the work related to minimizing the average response
time. We first consider the offline case. The first guarantee of any kind was a 3-speed, 3-
approximation due to Kalyanasundaram, Pruhs and Veluthapillai [KPV00]. After a sequence of
works [GKKW04, GKPS06, BCKN05], an O(log2 n/ log log n)-approximation based on iterated
rounding techniques was obtained by Bansal, Coppersmith and Sviridenko [BCS06]. This is cur-
rently the best approximation known for the problem. It is also known that the problem is NP-Hard
[EH02, CEHK08]. While no APX-hardness result is known, it is known that the natural LP for-
mulation (which is the basis of all known results for this problem), has a (rather small) integrality
gap of 28/27 = 1.037 [BCKN05].
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In the online case, which is perhaps more interesting for practical applications of the problem,
very strong lower bounds are known. In particular, any deterministic algorithm must be Ω(n)
competitive and any randomized algorithm must be Ω(

√
n) competitive [KPV00, BCKN05]. Thus,

it is most natural to consider the problem in the resource augmentation setting, where the online
algorithm is provided a slightly faster server than the optimum offline algorithm. The first positive
result was due to Edmonds and Pruhs [EP03] who gave an algorithm B-Equi and showed that it
is (4 + ε)-speed, O(1/ε)-competitive. The algorithm B-Equi produced a schedule where several
pages may be transmitted fractionally in a single time slot. Edmonds and Pruhs [EP03] also showed
how to convert B-Equi into a valid schedule (i.e. only one page is transmitted in each time slot)
using another (1 + ε)-speedup and losing a factor of 1/ε in the competitive ratio, which gave a
(4 + ε)-speed, O(1/ε2)-competitive algorithm.

This result is based on a very interesting idea. The authors make a connection with an-
other scheduling problem on multiprocessors known as non-clairvoyant scheduling with sublinear-
nondecreasing speed-up curves. This problem is very interesting in its own right with several ap-
plications and was introduced in a previous paper by Edmonds [E00]. In that paper, Edmonds
gave a (2+ ε)-speed, O(1/ε)-competitive algorithm called Equi for the non-clairvoyant scheduling
problem. Edmonds and Pruhs showed that the broadcast scheduling problem can be reduced to
non-clairvoyant scheduling problem while losing a factor of 2 in the speed up required [EP03].
Given the (2+ ε)-speed, O(1/ε)-competitive algorithm Equi, this yields the (4+ ε)-speed, O(1/ε)-
algorithm B-Equi for broadcast (where pages are transmitted fractionally in each time-slot).

Recently, Edmonds and Pruhs [EP09] gave a very elegant algorithm called LAPS(β) for the
non-clairvoyant scheduling problem. They showed that for any ε > 0, the algorithm LAPS(ε/2) is
(1 + ε

2
)-speed O(1/ε2) competitive. Using the Edmonds-Pruhs reduction from broadcast to non-

clairvoyant scheduling mentioned above [EP03], this implies an (2+ε)-speed,O(1/ε2)-competitive
‘fractional’ broadcast schedule. Losing another factor of 1/ε, this can be converted to a valid
broadcast schedule that is (2 + ε)-speed, and O(1/ε3)-competitive. These results [EP03, EP09]
also hold when page sizes are non-unit but preemption is allowed.

Another natural online algorithm that has been studied is Longest Wait First (LWF). This is
a natural greedy algorithm that at any time broadcast the page for which the total waiting time
of outstanding requests is the highest. Edmonds and Pruhs [EP05] showed that LWF is 6-speed,
O(1)-competitive. They also showed that no no(1) guarantee is possible unless the speedup is at
least (1 +

√
5)/2 ≈ 1.61. In particular, this rules out the possibility of LWF being a (1 + ε)-speed,

O(1)-competitive, aka fully scalable, algorithm. Recently, the results for LWF has been improved
by [CIM09b]. They show that LWF if 2.74-speed, O(1)-competitive. They also improve the lower
bound on speed up required to 2− ε.

Until recently, a major open question in the area had been whether there are fully scalable
algorithms. Intuitively, fully scalable are important from a practical point of view, since one would
expect them to perform close to optimum in practice. See [KP00, PST04] for a formal discussion
of this issue. Recently, in a breakthrough result, Sungjin Im and Ben Moseley [IM10] obtained
the first scalable algorithms for broadcast scheduling. In particular, they design an algorithm call
LA − W , that is (1 + ε)-speed, O(1/ε11)-competitive. This algorithm is similar to LWF, but it
favors pages that have recent requests. The analysis of LA −W is based on a rather complicated
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charging scheme. Additionally, the algorithm in [IM10] only works for unit-size pages, and the
authors leave open the question for varying-size pages.

The case of dependent requests has been studied by [RS07]. They show that a generalization of
the B-Equi algorithm, called B-EquiSet is (4 + ε)-speed, O(1/ε3)-competitive, even in the setting
where pages have arbitrary lengths (with preemptions).

1.2 Our Results
In this paper we give fully scalable algorithms for broadcast scheduling with improved guarantees.
Our algorithm and analysis are much simpler than that of [IM10], and they also extend to the
general setting with non-uniform page sizes and dependent requests. In particular we prove the
following results:

Theorem 1.1 If all pages are of unit size, then for every 0 < ε ≤ 1, there is a (1 + ε)-speed,
O
(

1
ε2

)
-competitive randomized online algorithm for broadcast scheduling.

We note that there is a lower bound of Ω(1
ε
) on the competitiveness of even randomized 1 + ε

speed online algorithms [BCKN05].

Theorem 1.2 If all pages are of unit size, then for every 0 < ε ≤ 1, there is a (1 + ε)-speed,
O
(

1
ε3

)
-competitive deterministic online algorithm for broadcast scheduling.

Our algorithm and its analysis are inspired by the algorithm LAPS for non-clairvoyant schedul-
ing [EP09]. Our main idea is to bypass the [EP03] reduction (from broadcast scheduling to non-
clairvoyant scheduling) that loses a factor of 2 in the speedup and directly adapt those ideas to
broadcast scheduling. The algorithm and its analysis are actually very simple. Our approach is the
following: We first consider the fractional version of the problem (i.e. pages can be fractionally
transmitted in each time-slot) and show that a variant of LAPS (adapted to the broadcast setting)
is (1 + ε)-speed, O(1/ε2)-competitive. Note that this guarantee matches that for LAPS. Then we
show how to round this fractional schedule in an online manner to obtain an integral schedule
(i.e. only one page transmitted in each time-slot). This idea of reducing broadcast scheduling to
a fractional version, and solving the fractional version was also used implicitly in the algorithms
of Edmonds and Pruhs [EP03, EP05], but one main difference in our work is that we consider a
different fractional relaxation, and this enables us to obtain a fully scalable algorithm.

Our algorithm and its analysis can be extended to a more general setting where the pages have
arbitrary sizes, and the requests have dependencies. As mentioned earlier (and we describe an
example in Section 5.3 for completeness), in order to obtain any reasonable guarantees under ar-
bitrary page-sizes, one needs to consider the preemptive version, i.e. transmissions of a need not
occur consecutively. We emphasize that in a valid preemptive schedule only one page is transmit-
ted in each time-slot; however since pages have arbitrary sizes, complete transmission of a page
may involve several (non-consecutive) time-slots. Hence a preemptive schedule differs from a
‘fractional schedule’, where several pages may be fractionally transmitted in the same time-slot.
Notice that when all page-sizes are unit, a valid preemptive schedule in fact does not preempt any
page. In Section 5 we prove the following generalization of Theorem 1.2.
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Theorem 1.3 Consider the broadcast scheduling setting where pages have arbitrary sizes and
requests are dependent. Moreover, no cache is available. Then, if preemption is allowed, for every
0 < ε ≤ 1, there is a (1 + ε)-speed, O

(
1
ε3

)
-competitive deterministic online algorithm.

Thus we resolve the main open question from Im and Moseley [IM10], by obtaining a scalable
algorithm for broadcast scheduling with varying page sizes. The approach here is similar to that
for unit-size pages, namely reducing to fractional broadcast scheduling. However the rounding
algorithm used to achieve this reduction is much more involved than for unit-sizes.

Remark: Our algorithm can be modified so that the amortized number of preemptions per page
is O(log n). That is, if a schedule transmits k pages over the entire time horizon, then the number
of preemptions is at most O(k log n).

Remark: Although we state the above result only for the (more restrictive) version where there
is no cache available, the approximation guarantee in Theorem 1.3 holds relative to an optimal
schedule for the (less restrictive) version where cache is available. Thus Theorem 1.3 implies
scalable online algorithms for both versions, with and without caching. For the setting where
cache is available, the problem can even be reduced to dependent requests with single sized pages,
since we can replace a page p of length `p by `p unit size pages, and modify any original request
for p to now request the corresponding `p unit size pages.

Given the results above, a natural question is whether the loss of factor 2 speed up in previous
approaches [EP03, EP05] can be avoided in the reduction from broadcast scheduling to the non-
clairvoyant scheduling problem. It turns out that this is indeed possible. We give a reduction from
fractional broadcast scheduling to non-clairvoyant scheduling that does not incur any loss in speed
up or in the competitive ratio (i.e. it is a (1, 1) transformation). Again, the main idea to achieve
this lies in the appropriate definition of the fractional broadcast problem, and the online rounding
algorithms required to reduce the broadcast problem to its fractional relaxation. Note that this
reduction combined with LAPS [EP09] would also imply our results. However, in this paper we
have chosen to present our results directly without going via the non-clairvoyant reduction, since
the proofs seem much simpler and cleaner with this approach. We note that this reduction could
be useful in other contexts, and present it for completeness in Section 6.

Finally, in Section 7 we investigate an alternate variant of dependent requests, where a request
is specified by several pages, but it is satisfied when any one of those pages is transmitted (instead
of when all of these pages are transmitted). We show that this variant is much harder, even in the
offline setting. In particular, any no(1) approximation for the problem requires at least Ω(log n)
speed up.

2 Fractional Broadcast Scheduling
In this section we study a “continuous” variant of the broadcast scheduling problem and obtain a
(1 + ε)-speed, O(1/ε2)-competitive algorithm for it. In the next two sections, we will show how
to transform this algorithm into one for the actual broadcast problem. To obtain the randomized
algorithm in Section 3, we use an α-point randomized rounding technique from [BCKN05]. To
obtain the deterministic algorithm in Section 4, we present a different technique that loses an
additional factor of 1/ε.
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The setting for the fractional broadcast scheduling problem is the same as that for usual broad-
cast scheduling, namely a single server has n pages and requests for pages arrive online. The key
point is that the fractional schedule can transmit pages in a continuous manner. At any continuous
time instant t, a 1-speed schedule is allowed to broadcast each page p ∈ [n] at rate xp(t), such
that

∑n
p=1 xp(t) ≤ 1. Again in the resource augmentation setting, a (1 + ε)-speed schedule has∑

p xp(t) ≤ 1 + ε at all times t. For any request r ∈ [m], let us define its completion time under
such a continuous schedule to be:

b(r) := inf

{
s :

∫ s

a(r)

xp(r)(t)dt ≥ 1

}
,

i.e. the time after the release of request r when one unit of page p(r) has been broadcast. Finally
the flow-time of request r equals b(r)− a(r). Note that the flow-time of any request is at least one
(for a 1-speed schedule). The objective in fractional broadcast scheduling is to compute a schedule
that minimizes average flowtime, 1

m

∑
r∈[m] (b(r)− a(r)).

2.1 Algorithm for Fractional Broadcast
At any continuous time t, let N(t) denote the set of active requests, i.e. those which have not yet
been fractionally completed. Let N ′(t) denote the ε|N(t)| “most-recent” requests among N(t),
i.e. those with the latest arrival times, with ties broken arbitrarily. The algorithm then time shares
among N ′(t), i.e.

xp(t) := (1 + 4ε) · |{r ∈ N
′(t) : p(r) = p}|
|N ′(t)|

, ∀ p ∈ [n].

Clearly,
∑n

p=1 xp(t) ≤ 1 + 4ε at all times t. For the sake of analysis, also define:

yr(t) :=

{ 1+4ε
|N ′(t)| if r ∈ N ′(t)
0 if r 6∈ N ′(t) , ∀ t ≥ 0

In particular, yr(t) is the share of request of r if we distribute the processing power of 1+4ε equally
among requests in N ′(t). In the rest of this section, we prove the following.

Theorem 2.1 For any 0 < ε ≤ 1
4
, the above algorithm is a (1 + 4ε)-speed O

(
1
ε2

)
competitive

deterministic online algorithm for fractional broadcast scheduling.

2.2 Analysis for Fractional Broadcast
Our analysis is based on a potential function argument inspired by that for LAPS [EP09]. Let Opt
denote an optimal fractional broadcast schedule for the given instance. Let On denote the fractional
online schedule produced by the above algorithm. We will define a potential Φ and show that the
following inequality holds over all sufficiently small intervals [t, t+dt) such that no requests arrive
or complete in On during this interval. Time instants where requests arrive or complete in On will
be handled separately.

∆On(t) + ∆Φ(t) ≤ 2

ε2
∆Opt(t). (2.1)

5



Here, ∆On(t) and ∆Opt(t) denote the additional cost incurred in an infinitesimal time interval
[t, t + dt) by the online schedule and the optimal schedule respectively, and ∆Φ(t) is the change
in potential function. Moreover, we will ensure that Φ(0) = Φ(∞) = 0. It can then be easily seen
that this implies Theorem 2.1.

At any (continuous) time t and for any page p ∈ [n], let x∗p(t) denote the rate at which Opt
broadcasts p. We have

∑
p x
∗
p(t) ≤ 1 since the offline optimal is 1-speed. For page p ∈ [n] and

times t1 < t2, let Opt(p, t1, t2) :=
∫ t2
t1
x∗p(t)dt denote the amount of page p transmitted by Opt in

the interval [t1, t2].
For any request r ∈ [m], let b∗(r) denote the completion time of r in Opt, and let b(r) denote its

completion time in On. For any r ∈ [m], and times t1 < t2, define On(r, t1, t2) :=
∫ t2
t1
yr(t)dt, i.e.

the fractional time that the online algorithm has devoted towards request r in the interval [t1, t2].
Observe that any request r is inactive after time b(r), and hence yr(t) = 0 for all t > b(r). Thus
On(r, t,∞) = On(r, t, b(r)) for all r ∈ [m] and t ≥ 0. At any continuous time t, let N(t) and
N∗(t) respectively denote the set of requests that are not yet completed in On and Opt.

We now define the contribution of any request r ∈ [m] to the potential as follows.

zr(t) = On(r, t,∞) · Opt(p(r), a(r), t)

Note that zr(t) ≥ 0 for any r and t. Finally, the overall potential function is defined as:

Φ(t) :=
1

ε
·
∑
r∈N(t)

rank(r) · zr(t),

where rank is the function which orders active requests based on arrival times (with the highest
rank of |N(t)| going to the request which arrived most recently and a rank of 1 to the oldest active
request).

We now show that (2.1) holds.
Request Arrival: We show that ∆Φ = 0 (clearly this suffices, since we can assume that arrivals

happen instantaneously and hence ∆On = ∆Opt = 0). When a request r arrives at time t, we
have zr(t) = 0 as r is entirely unsatisfied by Opt. Thus, Φ does not change due to r. Moreover,
as the requests are ranked in the increasing order of their arrival, the ranks of other requests are
unaffected and hence ∆Φ = 0.

Request completes under Online Algorithm and leaves the set N(t): When a request r leaves
N(t), by definition its zr(t) reaches 0. Moreover, the rank of any other request r′ ∈ N(t) can only
decrease. Since zr′(t) ≥ 0 for any r′, the contribution due to these requests to the potential can
only decrease. Thus ∆Φ ≤ 0. And again, at that instant, ∆On = ∆Opt = 0, and hence equation
(2.1) holds.

Now consider any sufficiently small interval (t, t + dt) when neither of the above two events
happen. There are two causes for change in potential:

Offline Opt broadcast in (t, t + dt): We will show that ∆Φ(t) ≤ 1
ε
|N(t)|dt. To see this,

consider any page p. The amount of page p transmitted by Opt in this interval is x∗p(t)dt. This
broadcast of x∗p(t)dt amount of page p causes the quantity zr(t) to increase for all those requests
r with p = p(r) that are alive in On at time t. That is, the page p transmission increases potential
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corresponding to the requests:

C(t, p) := {r ∈ [m] | p(r) = p, a(r) ≤ t < b(r)}

Now, since the rank of any alive request is at most |N(t)|, we get that the total increase in Φ
over the interval [t, t+ dt) due to Opt’s broadcast is at most:

∆Φ ≤ 1

ε
|N(t)| ·

n∑
p=1

∑
r∈C(t,p)

On(r, t,∞)x∗p(t)dt. (2.2)

We now show that
∑

r∈C(t,p) On(r, t,∞) ≤ 1 for any page p. Let r′ = arg max{b(r) | r ∈
C(t, p)} be the request in C(t, p) which is completed last by On. Since r′ is not completed until
b(r′) and a(r′) ≤ t, it must be that On broadcasts at most 1 unit of page p during [t, b(r′)]; otherwise
b(r′) would be smaller. Hence

∑
r∈C(t,p) On(r, t, b(r′)) ≤ 1. Observe that for all r ∈ C(p, t) and

t ≥ b(r′), we have yr(t) = 0 since b(r) ≤ b(r′). Thus
∑

r∈C(t,p) On(r, t,∞) ≤ 1. Now plugging
this into equation (2.2), we have that

∆Φ ≤ 1

ε
|N(t)| ·

n∑
p=1

x∗p(t)dt ≤
1

ε
|N(t)| · dt (2.3)

Recall that
∑

p x
∗
p(t) ≤ 1 since Opt is 1-speed.

Online broadcast in (t, t+ dt): Recall that On broadcasts page p at rate xp(t), and yr(t) is the
rate at which On works on request r. Consider any fixed request r ∈ N ′(t) \N∗(t), i.e. on which
On works but has been completed by Opt. Observe that Opt(p(r), a(r), t) ≥ 1 since Opt has
completed request r by time t. Thus zr(t) ≥ On(r, t,∞). Note also that yr(t) = (1 + 4ε)/|N ′(t)|.
Thus,

d

dt
zr(t) ≤

d

dt
On(r, t,∞) = −yr(t) = − 1 + 4ε

|N ′(t)|
, for all r ∈ N ′(t) \N∗(t).

Furthermore, since each request that On works on in [t, t+dt) has rank at least (1− ε) · |N(t)|,
the potential Φ increases at rate,

d

dt
Φ(t) ≤ −1

ε
(1− ε)N(t) · (1 + 4ε)

|N ′(t)|
· (|N ′(t)| − |N∗(t)|) .

Since (1− ε)(1 + 4ε) ≥ (1 + 2ε) for ε ≤ 1/4, we get

d

dt
Φ(t) ≤ −

(
1

ε
+ 2

)
|N(t)|+ 1

ε2
(1 + 4ε)|N∗(t)| ≤ −

(
1

ε
+ 1

)
· |N(t)|+ 2

ε2
· |N∗(t)|. (2.4)

Observe that d
dt

On(t) = |N(t)| and d
dt

Opt(t) = |N∗(t)|. Using (2.3) and (2.4), we get that

d

dt
On(t) +

d

dt
Φ(t) ≤ |N(t)|+ 1

ε
|N(t)| −

(
1

ε
+ 1

)
|N(t)|+ 2

ε2
|N∗(t)|

≤ 2

ε2
|N∗(t)| =

2

ε2
· d
dt

Opt(t),
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which proves Equation (2.1). Thus we obtain Theorem 2.1.

Note the the resulting fractional broadcast schedule may complete requests at fractional times.
However, even if we round up these completion times to integer values, the average flow-time
objective only increases by a constant factor. In the description of the rounding techniques, it will
be useful to assume that we have a fractional broadcast schedule where each request arrives and
completes at integral times.

3 Deterministic Online Algorithm
In this section, we show how to obtain an online deterministic (integral) broadcast schedule from
the fractional schedule presented in Section 2.1. Our rounding technique requires a speed up of
(1 + ε), and loses a factor of O(1/ε) (as usual, 1 + ε speed up means that the algorithm gets
to transmit one additional free page every d1

ε
e time-steps). Our technique is similar to that used

by Edmonds and Pruhs [EP03] to convert their “fractional” algorithm B-EQUI to B-EQUI-EDF.
However, there are some crucial differences, in particular since our notion of fractional schedule is
somewhat different (it is precisely the difference that allows us to avoid the loss of factor 2 in the
speed up required).

3.1 Algorithm
Let On denote the fractional algorithm Recalling the notation from the previous section, a(r)
denotes the time a request r arrives, b(r) denotes the time it is fractionally satisfied under On, and
xp(t) denotes the fractional amount of page transmitted at time t. Let us define, the width w(r) of
request r as w(r) = b(r)− a(r).

The rounding algorithm Rnd is a simple greedy algorithm. It maintains a queue Q (initially
empty) of request that are as yet unsatisfied requests by Rnd by have been fractionally satisfied by
On. At any time, it transmits the request from the queue with the least width. Formally, at time t,
the algorithm operates as follows:

Algorithm 1 OnlineRounding(t)
1: for any request r that completes under On at time t, i.e. b(r) = t, and is yet unsatisfied under

Rnd do
2: enqueue the tuple 〈r, w(r) = b(r)− a(r)〉 into Q.
3: end for
4: dequeue the request 〈rt, w(rt)〉 that has least width w(r) among all elements in the queueQ.
5: broadcast the page p(rt).
6: delete all requests 〈r′, w′〉 in Q such that p(r′) = p(r).
7: repeat steps 4-6 again if t is an integer multiple of d1

ε
e.

3.2 Analysis
We will show that
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Theorem 3.1 Given any fractional broadcast schedule, the above algorithm produces an integral
schedule such that ∑

r

(bI(r)− a(r)) ≤ O

(
1

ε

)
·
∑
r

(b(r)− a(r))

where bI(r) denote the time r is satisfied in the integral schedule.
In fact we show the following stronger guarantee for every request. For any request r, the

algorithm will broadcast page p(r) during the interval
[
a(r), b(r) + 2

ε
(b(r)− a(r)) + 2

]
.

Proof. Consider some request r. If there is a broadcast of the page p(r) in the interval [a(r), b(r)],
then clearly the claimed bound for request r holds.

Therefore, let us assume that there has been no broadcast of page p(r) in the interval [a(r), b(r)].
Since p(r) is not broadcast during [a(r), b(r)], it implies that the request r is added to the queue
Q at time t = b(r): as r is still unsatisfied at time b(r). Let w(r) = b(r) − a(r) be the width of
request r. Also define t` to be the latest time before t when (i) a request of width greater than w(r)
was dequeued, or (ii) Q was empty, i.e.

t` := max {z ≤ t | at time z, either some request of width > w(r) is dequeued, or Q is empty}

Clearly, by the greedy nature of the algorithm, at time t` there are no outstanding requests of width
at most w(r). Moreover during [t`, t], the algorithm always dequeues requests of width at most
w(r). We will show that there exists time t′ ≤ t` + 2w(r)

ε
+ 2, at which there are no outstanding

requests of width at most w(r). In particular, this would mean that request r is dequeued before
time t′, i.e. p(r) is broadcast during [b(r), t` + 2w(r)

ε
+ 2], which would complete the proof of the

theorem.
Suppose, for the sake of contradiction thatQ always has requests of width at most w(r) during

the entire interval T := [t`, t` + 2w(r)
ε

+ 2]. We first show the following claims about the fractional
extent to which any page is broadcast during the time interval T .

Claim 3.2 Consider any page p ∈ [n], and let t1 and t2 denote times (provided they exist) of some
two successive broadcasts of p in T . Then,

∫ t2
t1
xp(t)dt ≥ 1.

Proof. Since page p is broadcast at time t2, it must have been initiated by some unsatisfied
“trigger” request r′ for p that was dequeued at time t2. Furthermore, r′ must have arrived af-
ter t1 (i.e. a(r′) ≥ t1) as otherwise, it would have been already serviced by the broadcast
at t1. Now, since it enters the queue by time t2, it must be that b(r′) ≤ t2, implying that∫ t2
t1
xp(t)dt ≥

∫ b(r′)
a(r′)

xp(t)dt ≥ 1.

Claim 3.3 Consider any page p ∈ [n] that is broadcast at least once during T . If tp denotes the
time p was first broadcast in T , then

∫ tp
t`−w(r)

xp(t)dt ≥ 1.

Proof. By our assumption T , the algorithm only broadcasts requests having width at most w(r)
during T . In particular, the “trigger request” r′ that initiated the broadcast of p at time tp must have
width b(r′) − a(r′) ≤ w(r). Moreover, b(r′) ∈ [t`, tp]: indeed if b(r′) < t`, then the queue would
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have contained a request of width at most w(r) at time t` − 1, contradicting the definition of t`.
This implies that a(r′) ≥ b(r′)− w(r) ≥ t` − w(r). Thus∫ tp

t`−w(r)

xp(t)dt ≥
∫ b(r′)

a(r′)

xp(t) ≥ 1,

implying the claim.

Now, let Np denote the number of broadcasts of a page p during the interval T . Then, by the
preceding two claims, we know that we can pack 1 unit of fractional broadcast (in On) of page p
between (i) any two successive integral broadcasts of p in T , and (ii) between time t` −w(r) until
the first broadcast of p in T . Therefore, we can pack at leastNp units of fractional broadcast of page
pwithin the interval [t`−w(r), t`]∪T . Thus

∑
pNp ≤ |T |+w(r).On the other hand, as Rnd runs at

speed (1+ε) andQ is never empty during T , which implies that
∑

pNp ≥ (1+ε)|T |−1. These two
bounds imply that |T |+w(r) ≥ (1+ ε)|T |−1 which implies that |T | ≤ (w(r)+1)/ε ≤ 2w(r)/ε,
contradiction our assumption that T has length 2w(r)/ε+ 2.

Clearly Theorem 3.1 combined with Theorem 2.1 implies Theorem 1.2.

4 Randomized Online Algorithm
In this section, we give a randomized online procedure for rounding the fractional schedule into
a valid (integral) schedule, using 1 + ε speedup. The advantage of this algorithm over the one in
the previous section is that it only adds O(1/ε2) in expectation to the response of a request (which
can be subsumed in the competitive ratio). However, the drawback is that it assumes an oblivious
adversary.

The rounding algorithm is based on the α-point rounding technique. This result is originally
from Bansal et al. [BCKN05]; however we present it here for completeness since the proof as
presented in [BCKN05] appears incorrect; it claims an additive guarantee of O(1/ε), though the
proof only seems to imply a guarantee of O(1/ε2) .

The randomized online algorithm for broadcast scheduling works as follows. Consider some
fractional schedule generated in an online manner, say by running On in Section 2. For notational
convenience, we assume that On is running at speed 1, otherwise we can rescale the units of speed.
For page p ∈ [n] and times t1 < t2, let On(p, t1, t2) =

∫ t2
t1
xp(t)dt denote the (fractional) amount

of page p broadcast in the interval [t1, t2). The algorithm works as follows:
Recall that for any request r ∈ [m], its arrival time is a(r) and completion time under On is

b(r). The next claim is immediate from the α-point definition.

Claim 4.1 For each request r ∈ [m], the page p(r) enters Q at some time during [a(r), b(r)].

Proof. Let p := p(r) the page requested by r. Condition on any αp ∈ [0, 1). By definition of
the fractional completion time of r, we have On(r(p), a(r), b(r)) = 1. Thus there exists some
(fractional) time t ∈ (a(r), b(r)) such that On(r(p), 0, t) ∈ αp + Z+. Since a(r) and b(r) are
integral, the claim follows.
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Algorithm 2 α-point rounding for broadcast
1: choose αp ∈ [0, 1) uniformly at random and independently, for each p ∈ [n]. This is done

initially, and the αp’s are fixed forever.
2: simulate the fractional online algorithm to obtain schedule On (Section 2).
3: for each integral time t do
4: enqueue into Q all pages {p ∈ [n] | ∃i ∈ Z+, On(p, 0, t− 1) < i+ αp ≤ On(p, 0, t)}.
5: dequeue the first page in Q, and broadcast it. If t is a multiple of d1

δ
e perform this step

twice.
6: end for

Next we bound the expected time spent by each page in the queue. First, the following lemma
from [BCKN05] shows that it suffices to consider the expected queue length at any time t.

Lemma 4.2 Consider some page p, and let t be some time when it is enqueued. Then the expected
length of queue Q at time t (conditioned on p being enqueued at t), is at most 1 more than the
(unconditional) expected queue length at t.

Thus we bound the expected queue length at any time Q.

Lemma 4.3 At any time t, the expected length of queue Q is at most O(1/ε2).

Proof. We follow the analysis in [BCKN05]. Qt denotes the queue length at time t. Fix a k > 3
ε2

;
we will bound the probability Pr[Qt ≥ 4k]. Let t′ be the latest time before t that Q is empty. For
each j ≥ 0, let ηj denote the event that t′ ∈ (t− (j + 1)k, t− jk]; observe that exactly one of the
ηjs occurs. So,

Pr[Qt ≥ 4k] ≤
∑
j≥0

Pr[(Qt ≥ 4k) ∧ ηj]. (4.5)

We now bound each of these terms.

Claim 4.4 We have Pr[(Qt ≥ 4k) ∧ η0] ≤ e−k/2.

Proof. Observe that for (Qt ≥ 4k) ∧ η0 to happen, it must be that the number of enqueues during
[t − k, t] is at least 4k (denote this event H0). We now upper bound Pr[H0]. For each p ∈ [n]
let ap = On(p, t− k, t), and random variable Ap denote the number of enqueues of page p during
[t − k, t]. Since the αs for different pages are chosen independently, Aps are independent rvs.
Additionally, by α-point rounding we have Ap ∈ {bapc, dape} for all p ∈ [n]; and E[

∑n
p=1Ap] =∑n

p=1 ap. Thus we have
∑n

p=1 ap ≤ k Event H0 implies that
∑n

p=1Ap ≥ 4k ≥ 4 · E
[∑n

p=1Ap

]
.

Now using the multiplicative form of the Chernoff bound [AS00], Pr[H0] ≤ exp(−k/2), and we
obtain the claim.

Claim 4.5 For each j ≥ 1, Pr[(Qt ≥ 4k) ∧ ηj] ≤ exp(−ε2jk/3).
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Proof. For (Qt ≥ 4k)∧ηj to happen, it must be that the number of enqueues during [t− jk−k, t]
is at least (1 + ε) · jk+ 4k (call this event Hj). This is becauseQ was empty at some time t′ during
[t−jk−k, t−jk], the algorithm has speed (1+ε) andQ is never empty during [t−jk, t]. As in the
previous claim, define the following. For each p ∈ [n] let ap := On(p, t− jk − k, t), and random
variable Ap ∈ {bapc, dape} denotes the number of enqueues of page p during [t − jk − k, t]. We
also have E[

∑n
p=1Ap] =

∑n
p=1 ap ≤ (j + 1)k. Event Hj implies that:

n∑
p=1

Ap ≥ (1 + ε)jk + 4k ≥ (1 + ε) · E

[
n∑
p=1

Ap

]
.

Again by the Chernoff bound, Pr[Hj] ≤ exp(−ε2jk/3).

Combining the two claims above with (4.5), we obtain:

Pr[Qt ≥ 4k] ≤ e−k/2 +
∑
j≥1

exp(−ε2jk/3)

≤ e−k/2 + exp(−ε2k/3)
∞∑
j=0

(
exp(−ε2k/3)

)j
≤ e−k/2 + 2 · exp(−ε2k/3) ≤ 3 · exp(−ε2k/3),

where the second last inequality follows from k ≥ 3
ε2

. Using this expression, we bound

E[Qt] =
∞∑
`=0

Pr[Qt > `] ≤ 12

ε2
+ 4

∞∑
k≥3/ε2

Pr[Qt > 4k] ≤ 12

ε2
+ 12

∞∑
k≥3/ε2

e−ε
2k/3 ≤ 48

ε2
.

This completes the proof of the lemma.

Using Claim 4.1 and Lemmas 4.3 and 4.2 we obtain that for each request r ∈ [m], its ex-
pected flow-time in the integral schedule is at most b(r) − a(r) + O(1/ε2). Since On is O(1/ε2)-
competitive, the expected average flow time is at most O(1/ε2) times the optimal.

Combined with Theorem 2.1 this proves Theorem 1.1.

5 The General Setting: Dependent Requests and Non-Uniform
Pages

We first define the non-uniform broadcast scheduling problem with dependencies: There are n
pages with each page p having an integer size lp; page p consists of lp distinct units/positions that
are numbered 1 to lp. Requests for subsets of these pages arrive over time. There is a single server
that can broadcast pages: in each time-slot the server broadcasts some position of some page. Any
request r is specified by its arrival time a(r) and the set of pages P(r) ⊆ [n] that it requests; we
let [m] denote the set of all requests. A broadcast schedule is an assignment of page-positions (i.e.
tuple 〈p, i〉 where p ∈ [n] and i ∈ {1, · · · , lp}) to time slots. For any request r, page p ∈ P(r) is
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said to be completed if the server has broadcast after time a(r), all the lp positions of page p (not
necessarily in consecutive time-slots, but in the order 1 through lp). This is a preemptive schedule
since we allow non-contiguous transmission of pages. The flow-time of request r under a broadcast
schedule equals b(r)− a(r) where b(r) ≥ a(r) + 1 is the earliest time slot after a(r) when all the
pages requested in P(r) have been completed. The objective is to minimize the average flow-time,
i.e. 1

m
·
∑

r∈[m](b(r) − a(r)). We assume that the pages all have size at least 1, and therefore the
optimal value is also at least one.

Our algorithm is again based on first solving the ‘continuous’ version of the problem, and then
rounding this fractional schedule into a valid ‘integral’ schedule. Recall that with non-uniform
page sizes, an integral schedule is one where only one page is transmitted in each time slot; how-
ever since pages have arbitrary sizes, complete transmission of a page may occupy non-contiguous
time-slots.

5.1 The Fractional Algorithm
In the fractional broadcast problem, the algorithm can transmit pages in a continuous manner.
Here, at any (continuous) time instant t, the algorithm is allowed to broadcast each page p ∈ [n]
at rate xp(t), such that

∑n
p=1 xp(t) ≤ 1 for all t. Again in the resource augmentation setting, we

allow
∑

p xp(t) ≤ 1 + ε for all t. For any request r ∈ [m] and page p ∈ P(r), define

b(r, p) := inf

{
s :

∫ s

a(r)

xp(t)dt ≥ lp

}
,

i.e. the earliest time after the release of request r when lp units of page p have been broadcast. The
completion time of any request r ∈ [m] is then:

b(r) := max
p∈P(r)

b(r, p),

i.e. the time after the release of request r when all pages requested by r have been completely
broadcast. Finally the flow-time of request r equals b(r) − a(r). Note that in fractional broadcast
(unlike the original broadcast problem), we do not have the notion of lp distinct positions of each
page p; we only require the schedule to broadcast lp indistinguishable units for page p.

At any continuous time t, let N(t) denote the set of active requests, i.e. those which have
not yet been fractionally completed. Let N ′(t) denote the ε|N(t)| “most-recent” requests among
N(t), i.e. those with the latest arrival times. For each request r ∈ N ′(t), let Unfin(r, t) denote an
arbitrary page p ∈ P(r) that has not been fractionally broadcast to an extent lp since the arrival
time a(r). The algorithm then time shares among the pages {Unfin(r, t) | r ∈ N ′(t)}, i.e.

xp(t) := (1 + 4ε) · |{r ∈ N
′(t) : Unfin(r, t) = p}|
|N ′(t)|

, ∀ p ∈ [n].

Clearly,
∑n

p=1 xp(t) ≤ 1 + 4ε at all times t. For the sake of analysis, also define:

yr,p(t) :=

{ 1+4ε
|N ′(t)| if r ∈ N ′(t), and p = Unfin(r, t)

0 otherwise
, ∀ t ≥ 0

In particular, yr,p(t) is the share of request of r for page p, if we distribute the 1 + 4ε processing
equally among requests in N ′(t).

13



5.2 Analysis of Fractional Broadcast
The analysis is very similar to that for the uniform broadcast scheduling case presented in Sec-
tion 2.2. We first describe the potential function, and then use it to bound the competitive ratio.

Let Opt denote an optimal (offline) fractional broadcast schedule for the given instance, and
let On denote the fractional online schedule produced by the above algorithm. For any request
r ∈ [m], let b∗(r) denote the completion time of r in Opt, and let b(r) denote its completion time
in On. For any r ∈ [m], page p ∈ P(r), and times t1 < t2, define On(r, p, t1, t2) :=

∫ t2
t1
yr,p(t)dt,

i.e. the fractional time that the online algorithm has devoted towards page p on behalf of request
r in the interval [t1, t2]. Observe that since any request r is inactive after time b(r), we have
yr,p(t) = 0 for all t > b(r) and p ∈ P(r). Thus On(r, p, t,∞) = On(r, p, t, b(r)) for all r ∈ [m],
p ∈ P(r), and t ≥ 0.

At any (continuous) time t and for any page p ∈ [n], let x∗p(t) denote the rate at which Opt
broadcasts p. We have

∑
p x
∗
p(t) ≤ 1 since the offline optimal is 1-speed. For page p ∈ [n] and

times t1 < t2, let Opt(p, t1, t2) :=
∫ t2
t1
x∗p(t)dt denote the amount of page p transmitted by Opt in

the interval [t1, t2]. At any continuous time t, let N(t) and N∗(t) denote the set of requests that are
not completed in On and Opt respectively.

We now define the contribution of any request r ∈ [m] and page p ∈ P(r) to the potential as
follows.

zr,p(t) =
On(r, p, t,∞) · Opt(p, a(r), t)

lp

The total contribution of request r is then zr(t) =
∑

p∈P(r) zr,p(t). Note that zr(t) ≥ 0 for any
r and t. Finally, the overall potential function is defined as

Φ(t) :=
1

ε
·
∑
r∈N(t)

rank(r) · zr(t),

where rank is the function which orders active requests based on arrival times (with the highest
rank of |N(t)| going to the request which arrived most recently and a rank of 1 to the oldest active
request). The following analysis is almost identical to the one in Section 2.2, and is presented for
the sake of completeness.

We will now show that the following inequality holds over all sufficiently small intervals [t, t+
dt) such that no requests arrive or complete in On during this interval. Time instants where requests
arrive or complete in On will be handled separately.

∆On(t) + ∆Φ(t) ≤ 2

ε2
∆Opt(t). (5.6)

Since we ensure that Φ(0) = Φ(∞) = 0, it is immediate to see that the total cost of the online
algorithm is competitive with the optimal offline cost, up to a factor of 2

ε2
.

Request Arrival: We show that ∆Φ = 0 (clearly this suffices, since we can assume that arrivals
happen instantaneously and hence ∆On = ∆Opt = 0). When a request r arrives at time t, we
have zr(t) = 0 as r is entirely unsatisfied by Opt. Thus, Φ does not change due to r. Moreover,
as the requests are ranked in the increasing order of their arrival, the ranks of other requests are
unaffected and hence ∆Φ = 0.
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Request Completes under Online and leaves the set N(t): When a request r leaves N(t), by
definition its zr(t) reaches 0. Moreover, the rank of any other request r′ ∈ N(t) can only decrease.
Since zr′(t) ≥ 0 for any r′, the contribution due to these requests to the potential can only decrease.
Thus ∆Φ ≤ 0. And again, at that instant, ∆On = ∆Opt = 0, and hence equation (5.6) holds.

Now consider any sufficiently small interval (t, t + dt) when neither of the above two events
happen. There are two causes for change in potential:

Offline broadcast in (t, t + dt): We will show that ∆Φ(t) ≤ 1
ε
|N(t)|dt. To see this, consider

any page p. The amount of page p transmitted by Opt in this interval is x∗p(t)dt. This broadcast
of x∗p(t)dt amount of page p causes the quantity zr,p(t) to increase for all those requests r that are
alive and have p ∈ P(r) unfinished in On at time t. Recall the definition of ‘completion time’
b(r, p) for page p of request r. Define,

C(t, p) := {r ∈ [m] | p ∈ P(r), a(r) ≤ t < b(r, p)}

Now, since the rank of any alive request is at most |N(t)|, we get that the total increase in Φ
over the interval [t, t+ dt) due to Opt’s broadcast is at most:

∆Φ ≤ 1

ε
|N(t)| ·

∑
p

∑
r∈C(t,p)

On(r, t,∞)x∗p(t)dt

lp
. (5.7)

We show that
∑

r∈C(t,p) On(r, t,∞) ≤ lp for any page p. The proof is exactly as in the unit-
sized case. Let r′ = arg max{b(r, p) | r ∈ C(t, p)} be the request in C(t, p) for which page p is
completed last by On. Since page p for r′ is not completed until b(r′, p) and a(r′) ≤ t, it must
be that On broadcasts at most lp units of page p during [t, b(r′, p)]; otherwise b(r′, p) would be
smaller. Hence

∑
r∈C(t,p) On(r, t, b(r′, p)) ≤ lp. Observe that for all r ∈ C(p, t) and t ≥ b(r′, p),

we have yr,p(t) = 0 since b(r, p) ≤ b(r′, p). Thus
∑

r∈C(t,p) On(r, t,∞) ≤ lp. Now plugging this
into equation (5.7), we have that

∆Φ ≤ 1

ε
|N(t)| ·

∑
p

x∗p(t)dt ≤
1

ε
|N(t)| · dt (5.8)

Recall that
∑

p x
∗
p(t) ≤ 1 since Opt is 1-speed.

Online broadcast in (t, t + dt): Recall that On broadcasts page p at rate xp(t), and yr,p(t)
is the rate at which On works on page p for request r. Consider any fixed request r ∈ N ′(t) \
N∗(t), i.e. on which On works but is completed by Opt. Observe that for every p ∈ P(r),
Opt(r, p, t) ≥ lp since Opt has completed request r. Thus zr(t) ≥

∑
p∈P(r) On(r, p, t,∞). Note

also that
∑

p∈P(r) yr,p(t) = (1 + 4ε)/|N ′(t)|. Thus,

d

dt
zr(t) ≤ −

∑
p∈P(r)

yr,p(t) = − 1 + 4ε

|N ′(t)|
, for all r ∈ N ′(t) \N∗(t).

Furthermore, since each request that On works on in [t, t+dt) has rank at least (1− ε) · |N(t)|,
the potential Φ increases at rate,

d

dt
Φ(t) ≤ −1

ε
(1− ε)N(t) · (1 + 4ε)

|N ′(t)|
(|N ′(t)| − |N∗(t)|) .
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Since (1− ε)(1 + 4ε) ≥ (1 + 2ε) for ε ≤ 1/4, we get

d

dt
Φ(t) ≤ −

(
1

ε
+ 2

)
|N(t)|+ 1

ε2
(1 + 4ε)|N∗(t)| ≤ −

(
1

ε
+ 1

)
· |N(t)|+ 2

ε2
· |N∗(t)|. (5.9)

Observe that d
dt

On(t) = |N(t)| and d
dt

Opt(t) = |N∗(t)|. Using (5.8) and (5.9),

d

dt
On(t) +

d

dt
Φ(t) ≤ |N(t)|+ 1

ε
|N(t)| −

(
1

ε
+ 1

)
|N(t)|+ 2

ε2
|N∗(t)|

≤ 2

ε2
|N∗(t)| =

2

ε2
· d
dt

Opt(t),

which proves Equation (5.6). Thus we obtain:

Theorem 5.1 For any 0 < ε ≤ 1
4
, there is a (1+4ε)-speedO

(
1
ε2

)
competitive deterministic online

algorithm for fractional broadcast scheduling with dependencies and non-uniform sizes.

5.3 Deterministic Online Rounding of Fractional Broadcast
In this section, we focus on getting an integral broadcast schedule from the fractional schedule in
an online deterministic fashion. Formally, given any 1-speed fractional broadcast schedule On, we
will obtain a (1 + ε)-speed integral broadcast schedule Rnd (which gets to transmit an additional
unit of page every d1

ε
e time-steps) such that

∑
r

(bI(r)− a(r)) ≤ O

(
1

ε

)
·
∑
r

(b(r)− a(r))

where bI(r) (resp. b(r)) is the completion time of request r in the integral (resp. fractional)
schedule. An important issue in converting the fractional schedule to an integral one is that a
valid broadcast of any page p now requires the lp positions of page p to be transmitted in the
correct order. While this is relatively easy to guarantee if one is willing to lose a factor of 2 in the
speed up, see for example the rounding step in [EP03, RS07], the algorithm here is much more
subtle. The algorithm we present below is an extension of that discussed in Section 3, and requires
considerably more work.

For any request r ∈ [m] and page p ∈ P(r), job 〈r, p〉 denotes the page p request due to r.
The arrival time of job 〈r, p〉 is the arrival time a(r) of the corresponding request. We say that a
job 〈r, p〉 is completed if the schedule contains a valid broadcast of page p starting after time a(r).
The completion time of job 〈r, p〉 in schedule Rnd (resp. On) is denoted bI(r, p) (resp. b(r, p)).
The rounding algorithm maintains a queue of tuples (denoting transmissions of pages) of the form
τ = 〈p, w, s, i〉 where p ∈ [n] is a page, w ∈ R+ is the width, s ∈ Z+ is the start-time, and
i ∈ {1, · · · , lp} is the index of the next position of page p to transmit. At each time-slot, the
deterministic schedule broadcasts the current position of the tuple having least width.

Note the extension here from the scheme in Section 3; since page sizes are arbitrary, for each
page we also track the time s when the current transmission began for this page, and an index that
tracks how much fraction of this page has been transmitted since time s.
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Algorithm 3 GenRounding(t)
1: initialize all jobs as unmarked when they arrive.
2: simulate fractional online algorithm to obtain schedule On.
3: for any unmarked job 〈r, p〉 that completes under On at time t, i.e. b(r, p) = t, do
4: if there is a tuple τ = 〈p, w, s, i〉 ∈ Q of page p with s ≥ a(r) then
5: update the width of tuple τ to min(w, b(r, p)− a(r)).
6: else
7: insert new tuple 〈p, b(r, p)− a(r),∞, 1〉 into Q.
8: end if
9: end for

10: dequeue the tuple τ = 〈p, w, s, i〉 that has least width amongst all elements in Q.
11: broadcast position i of page p in this time-slot.
12: if broadcast of p corresponding to τ is just beginning (i.e. i = 1) then
13: mark set s = t, i.e. equal to the current time slot .
14: end if
15: if broadcast of p corresponding to τ is complete (i.e. i = lp) then
16: mark all jobs 〈r′, p〉 of page p having a(r′) ≤ s.
17: else
18: enqueue the modified tuple 〈p, w, s, i+ 1〉 into Q.
19: end if

In order to bound the flowtime in schedule Rnd, we prove the following:

bI(r, p)− a(r) ≤ 3

ε
·
(
b(r, p)− a(r)

)
+

5

ε
, for all jobs 〈r, p〉. (5.10)

Consider any fixed job 〈r, p〉, and let t = b(r, p). If at this time t, job 〈r, p〉 is marked then
clearly bI(r, p) ≤ t = b(r, p) and Equation (5.10) holds. So assume that 〈r, p〉 is unmarked. In
this case (from the description of the algorithm) it must be that Q contains a tuple τ = 〈p, w, s, i〉
where width w ≤ b(r, p)− a(r). Define,

tA := max {z ≤ t | at time z, either some request of width > w is dequeued, or Q is empty}

tB := min {z ≥ t | at time z, either some request of width > w is dequeued, or Q is empty}
Hence schedule Rnd always broadcasts some tuple of width at most w during interval T :=

(tA, tB), and there are no tuples of width at most w at times tA and tB. Clearly bI(r, p) ≤ tB and
b(r, p) = t ≥ tA; so it suffices to upper bound tB − tA by the right hand side in (5.10).

Fix a page q ∈ [n], and let Πq denote the set of all tuples of page q that are broadcast (in even
one time-slot) during T . Let Nq = |Πq|. We now prove some claims regarding Πq.

Claim 5.2 For each τ ∈ Πq, the start-time s(τ) ≥ tA − w.

Proof. Since τ is broadcast at some time-slot during T , its width must be at most w at that time.
Let 〈r′, q〉 denote the job that caused τ ’s width to be at most w. Then it must be that a(r′) ≤ s(τ)
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and b(r′, q) ≤ a(r′) + w ≤ s(τ) + w. Observe that at time tA, queue Q contains no tuple of width
at most w. Thus b(r′, q) ≥ tA, i.e. s(τ) ≥ tA − w, which proves the claim.

Based on this claim, we index tuples in Πq as {τj | 1 ≤ j ≤ Nq} in increasing order of the
start-times, i.e. tA − w ≤ s(τ1) ≤ s(τ2) ≤ · · · s(τNq) ≤ tB. In the following, for page q and times
t1 < t2, On(q, t1, t2) denotes the amount of page q transmitted by fractional schedule On during
interval (t1, t2).

Claim 5.3 For any 1 ≤ j ≤ Nq − 1, we have On(q, s(τj), s(τj+1)) ≥ lq.

Proof. Consider the time t′ when tuple τj+1 is first inserted into Q. Since τj must have entered Q
before τj+1, it must be that s(τj) < t′ ≤ s(τj+1); otherwise τj+1 would not be inserted as a new
tuple. Suppose τj+1 is inserted due to the completion of job 〈r′, q〉 in On. Then it must also be that
a(r′) > s(τj); otherwise job 〈r′, q〉 would just have updated the width of τj and not inserted a new
tuple. Clearly b(r′, q) = t′, and hence On(q, s(τj), s(τj+1)) ≥ On(q, a(r′), b(r′, q)) ≥ lq.

Claim 5.4 On(q, tA − w, tC) ≥ lq, where tC = max{s(τ1), tA + w}.

Proof. Let 〈r′, q〉 denote the first job that caused τ1’s width to be at most w (recall from Claim 5.2,
there must be such a job). Again, it must be that b(r′, q) ≥ tA and so a(r′) ≥ tA −w. We consider
two cases:

1. s(τ1) ≤ tA. In this case, we have a(r′) ≤ s(τ1) ≤ tA and so b(r′, q) ≤ a(r′) + w ≤ tA + w.
Thus On(q, tA − w, tA + w) ≥ On(q, a(r′), b(r′, q)) ≥ lq.

2. s(τ1) > tA. Since start-time of tuple τ1 lies in T , and for job 〈r′, q〉 we have b(r′, q) ≤ s(τ1).
Thus in this case, On(q, tA − w, s(τ1)) ≥ On(q, a(r′), b(r′, q)) ≥ lq.

Since tC = max{s(τ1), tA + w}, the claim follows by the above cases.

Adding the expressions in Claims 5.3 and 5.4, we obtain:

Nq · lq ≤
Nq−1∑
j=1

On(q, s(τj), s(τj+1)) + On(q, tA − w, tC)

≤ On(q, tA − w, s(τ1)) +

Nq−1∑
j=1

On(q, s(τj), s(τj+1)) + On(q, tA − w, tA + w)

= On(q, tA − w, s(τNq)) + On(q, tA − w, tA + w)

≤ On(q, tA − w, tB) + On(q, tA − w, tA + w)

Now summing this inequality over all pages q ∈ [n],

n∑
q=1

Nq · lq ≤
n∑
q=1

On(q, tA − w, tB) +
n∑
q=1

On(q, tA − w, tA + w) ≤ tB − tA + 3w + 2, (5.11)
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where the last inequality follows from the fact that On is 1-speed.
On the other hand, Rnd is always busy during T : it is always broadcasting some tuple in⋃n

q=1 Πq. Since Rnd has 1 + ε speed, we obtain:

n∑
q=1

Nq · lq ≥ (1 + ε) · (tB − tA)− 3.

Combining this with (5.11), we have tB − tA ≤ 3
ε
· w + 5

ε
, which implies (5.10). Thus we obtain

Theorem 1.3.
Remark: Our rounding algorithm can be modified so that the amortized number of preemptions

per page is O(log n). That is, if a schedule transmits k pages over the entire time horizon, then the
number of preemptions is at most O(k log n). Note that in the current algorithm if a page p begins
transmission, then its width can only decrease over time until this page is completely transmitted.
To guarantee logarithmic number of amortized preemptions, we can modify the algorithm so that
it favors the transmission of the page it is currently transmitting and shifts to another page only if
the width of that page is less than half the width of the current page. It can be shown that number
of preemptions decreases dramatically and the current analysis carries through with some minor
modifications. We will include a full discussion and proof of this in a later version of this paper.

The Necessity of Preemption
We now give an example which illustrates the necessity of preemption in the case of non-uniform
pages. In particular, we show that if preemption is disallowed, there for any arbitrarily large
parameters b and c, there is an adversarial instance such that the online algorithm is at least b
competitive even if it has a speed up of factor c.

Consider the following adversarial input: At time t = 0, there is one request for page p0 of size
2c. Then, at each time slot i for i = 1, 2, 3, . . ., there are cbi requests for page pi, where page pi
has size 1

c2b2i3
. The adversary stops giving any requests at a time tf when (i) the online algorithm

schedules the page p0, or (ii) the time tf = b2c5.
The argument is based on two cases, depending on how soon the online algorithm schedules p0.

If it is the former case, then the broadcast of the page p0 must have spanned over two consecutive
time slots (even with c speed). Therefore, the cost of the online algorithm is at least cbtf (all the
jobs released at the beginning of time slot [tf , tf +1) wait for at least 1 complete time slot). On the
other hand, the adversary could schedule the broadcast of a small page pi as soon as its requests
arrive at time i, and then schedule the page p0 from time tf +1. The cost it incurs would be at most(

tf∑
i=1

cbi · 1

cbi3

)
+ (tf + 2c) ≤ 2tf + 2c.

Therefore the cost of the online algorithm is at least b times the cost of the optimal solution even if
the online algorithm has a speed-up of c.

In the other case, if the online algorithm has not broadcast p0 until time tf = b2c5, then its
flow time is at least b2c5. On the other hand we claim that offline incurs a cost of at most bc4.
Consider the solution that broadcasts p0 in the first 2c timeslots, and then the other pages. Since

19



the sum of their sizes
∑2c+1

i=1 (1/c2b2i3) ≤ 1, it follows that all the pages p1, p2, . . . , p2c and p2c+1

can be broadcast in the next time slot after completing p0. Therefore, the requests corresponding
to p1, p2, . . . , p2c incur a waiting time of at most (2c + 1), and all subsequent requests (for pages
p2c+1, p2c+2, . . .) incur a collective waiting time of at most

∑tf
i=2c+1 cbi ·(1/c2b2i3) ≤ 1, since these

pages can be broadcast immediately after the request arrives. The cost of this optimal solution is
therefore at most 2c+ cb(1 + 2 + . . .+ 2c) · (2c+ 1) + 1 ≤ 9c4b, which implies the claim.

6 Broadcast Scheduling to Non-Clairvoyant Unicast Schedul-
ing

The non-clairvoyant unicast model (stated in a more general form in [EP03]) is the following. The
input is a set of n jobs that are to be executed on a single processor. The jth job has the following
parameters: an arrival time denoted by aj , and a sequence of phases 〈Jj,1, Jj,2, . . . , Jj,qj〉. Each
phase is an ordered pair 〈wj,q,Γj,q〉 where wj,q denotes the amount of work and Γj,q denotes its
parallelizability (or the rate at which work is processed at for any phase of a job). That is, each
phase can either be fully parallel, that is, a phase where Γ(β) = β, or fully sequential, that is,
Γ(β) = 1 for every β ∈ [0, 1]. Therefore, sequential work completes work at a rate of 1 even
when absolutely no processing is allocated to it. Notice that we are only interested in these two
extremities, although the original motivation for introducing speed-up curves was that different
parts of code are parallelizable to different degrees.

A non-clairvoyant unicast scheduling algorithm is informed of the arrival of a new job j at
time aj , but is not aware of the nature of its phases (or the work to do in each phase). At each
time instant t, it must partition the effective processing power between the jobs. All jobs begin in
their first phase when they arrive. If a job j is executing a parallelizable phase q, it progresses from
phase q to q + 1 at the first time t such that the total processing time allocated to j since the time
it began phase q is at least wq. On the other hand, if q is a completely sequential phase for j, the
job stays in phase q for a duration of exactly wq regardless of the amount of processing time the
algorithm spends on j before moving to phase q+ 1. The completion time of a job Cj is defined as
the time at which the final phase of j completes. Its flow time is then, by definition, Cj − aj . Also,
for any job j, the non-clairvoyant algorithm is only notified of job arrival and completion, and not
notified of which phase phase it is in or how long each phase is, etc.

In [EP03], Edmonds and Pruhs show that the broadcast problem can be reduced to this non-
clairvoyant unicast scheduling problem (in fact to the special case where each job has a serial phase
and at most one parallel phase), provided we have a factor 2 speedup. In the following, we show
that if we care only about a fractional broadcast schedule (which can later be “rounded” online
into an integer broadcast with (1 + ε)-speedup), then we can avoid the loss of the factor 2.

The reduction is almost identical to the one in [EP03], except for modifications that utilize
our definition of fractional broadcast (that differs from [EP03]). In the following, let I denote
an instance of the online broadcast scheduling problem, and A be a deterministic non-clairvoyant
algorithm for the “sequential-parallel unicast” problem. We now define B, an online algorithm for
the fractional broadcast problem which, using A as an oracle, decides which pages to broadcast at
any time. In the process, we also define the instance I ′ for the unicast problem that A solves.
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Algorithm 4 Reducing fractional broadcast to non-clairvoyant scheduling
1: for each continuous time instant t do
2: for each request r in I with a(r) = t do
3: create new job j(r) for I ′ and inform A of its arrival.
4: end for
5: set xp(t) ←

∑
r:p(r)=p yj(r)(t). Here y denotes the unicast schedule output by A and x

defines the broadcast schedule for B.
6: for each request r in I with

∫ t
a(r)

xp(r)(`)d` = 1 do
7: set C(r)← t, i.e. r is completed in I. Note that j(q) is not yet completed in I ′.
8: end for
9: for each job j(r) in I ′ with yj(r)(t) > 0 and C(r) < t do

10: inform A that job j(r) is completed.
11: end for
12: end for

We then show that the following inequalities hold.

Opt(I ′) ≤ Opt(I) (6.12)
B(I) ≤ A(I ′) (6.13)

Above Opt(I) denotes the optimal integral broadcast schedule for I. Notice that if A were an
s-speed c-competitive algorithm for I ′, then we would get that B is an s-speed fractional broadcast
that is c-competitive w.r.t. the optimal integral broadcast. We now establish these inequalities.

To complete defining the instance I ′, we need to assign phases (and processing requirements)
to each job. To this end, we compare Opt(I) to the schedule B(I) created by running our algo-
rithm. For any request r in I let C∗(r) denote its completion time under Opt(I); i.e. page p(r) is
broadcast in the interval (C∗(r) − 1, C∗(r)]. The job j(r) in I ′ corresponding to request r in I is
defined as follows:

• Type 1 jobs. If C(r) < C∗(r) then j(r) has only a serial phase of duration C(r)− a(r).

• Type 2 jobs. If C(r) ≥ C∗(r) then j(r) has a serial phase of duration C∗(r) − a(r) − 1

followed by a parallel phase with work
∫ C(r)

C∗(r)−1
yj(r)(t)dt+ δ. Here δ > 0 is infinitesimally

small.

The following observation is immediate by the algorithm description.

Observation 6.1 For any request r, its fractional completion time in B(I) is at most the comple-
tion time of the corresponding job j(r) in the schedule created by A(I ′).

This is because, if a request r (in the broadcast instance I) is fractionally completed in B at time
C(r), we declare completion of the corresponding job j(r) inA only at the earliest time after C(r)
whenA schedules j(r) to some infinitesimally small extent δ. The above observation immediately
gives us inequality 6.13, and we now turn our attention to proving that equation 6.12 holds.
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Lemma 6.2 Let Opt(I) be any optimal integral schedule for the broadcast instance. Then there
exists a schedule Sch(I ′) for the unicast instance such that, for any request r, the flow time of job
j(r) in Sch(I ′) is at most the flow time incurred by r in Opt(I). Thus Opt(I ′) ≤ Opt(I).

Proof. Firstly observe that in any schedule for I ′, the flow time for any type 1 job j(r) equals
C(r) − a(r) < C∗(r) − a(r), i.e. it is at most the flow time of request r under Opt(I). Thus it
suffices to bound the flow-time for type 2 jobs.

We create schedule Sch(I ′) for I ′ that at any integral time slot (t−1, t] does the following. Let
p denote the page broadcast by Opt(I) during (t− 1, t] and C(t, p) the set of outstanding requests
that were satisfied by this broadcast of page p. For each r ∈ C(t, p) where job j(r) is of type 2,
schedule

∫ C(r)

C∗(r)−1
yj(r)(`)d`+ δ units of j(r), i.e. all the parallel work of j(r).

We now show that Sch(I ′) is a feasible (1 + n δ)-speed schedule. Taking δ to be infinitesimal,
we would obtain a 1-speed schedule. To show feasibility, consider the total work packed in any
integral time interval (t− 1, t]. From the above it is at most

∑
r∈C(p,t)

∫ C(r)

C∗(r)−1
yj(r)(`)d`+ n δ.

For any r ∈ C(t, p), letWr :=
∫ C(r)

C∗(r)−1
yj(r)(`)d` =

∫ C(r)

t−1
yj(r)(`)d`. We claim that

∑
r∈C(t,p)Wr ≤

1, which implies the feasibility of Sch(I ′). Let request r′ := arg maxr∈C(t,p)C(r). Since r′

is alive during [t − 1, C(r′)), it must be that at most one unit of page p is broadcast by B dur-
ing [t − 1, C(r′)). Hence the total (parallel) work done by A on jobs corresponding to C(t, p)

is
∑

r∈C(t,p)

∫ C(r′)

t−1
yj(r)(`)d` ≤ 1. For all r ∈ C(t, p), since C(r) ≤ C(r′) we obtain Wr ≤∫ C(r′)

t−1
yj(r)(`)d`, which implies the desired claim.

Additionally, note that Sch(I ′) performs parallel work on any type 2 job j(r) only after time
C∗(r)− 1, i.e. after the serial phase of j(r). Thus Sch(I ′) is indeed feasible.

Next, we argue that the flow time for each type 2 job j(r) in Sch(I ′) is at most the flow time for
r in Opt(I). Let t = C∗(r). By the above definition, the entire parallel work of j(r) is completed
during (t − 1, t]. Thus its flow time in Sch(I ′) is at most t − a(r) = C∗(r) − a(r) which equals
the flowtime of r under Opt(I). Hence we obtain Opt(I ′) ≤ Sch(I ′) ≤ Opt(I).

Thus we have proved:

Theorem 6.3 If there is a non-clairvoyant s-speed c-competitive deterministic algorithm for uni-
cast scheduling, then there is an s-speed c-competitive (w.r.t. optimum integral schedule) algorithm
for fractional broadcast scheduling.

Combining this reduction with the (1 + ε)-speed O(1/ε2)-competitive online algorithm LAPS
for unicast scheduling [EP09], and the online rounding algorithm for fractional broadcast (Theo-
rem 3.1), we obtain an alternate proof of Theorem 1.2.

7 Broadcast Scheduling with Disjunctive Requirements
In this section, we consider another generalization (disjunctive broadcast scheduling) of the usual
broadcast problem, where each request r corresponds to a subset S(r) of pages and a request is
satisfied when any of the pages in S(r) is broadcast. This is different from broadcast scheduling
with dependencies [RS07] since the request’s requirement is a disjunction of page-broadcasts, as
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opposed to a conjunction. We observe that (assuming P 6=NP) the offline version of this problem
admits no sub-polynomial approximation guarantee unless the algorithm is allowed a speed-up of
Ω(log n).

Theorem 7.1 Any o(m1/3)-approximation algorithm for disjunctive broadcast scheduling with ρ
speed-up implies a 4ρ-approximation algorithm for set-cover (here m is the number of requests).

Proof. The proof is a simple reduction from set-cover. Let I denote an instance of set-cover
with universe [N ] and sets {Ai ⊆ [N ]}Mi=1. We construct an instance J of disjunctive broadcast
scheduling using T := N2 disjoint ‘copies’ of instance I as follows. There are n := M · T pages
denoted {Aji | i ∈ [M ], j ∈ [T ]} and m := N · T requests denoted {rjk | k ∈ [N ], j ∈ [T ]}. For
each j ∈ [T ] and k ∈ [N ], we set S(rjk) := {Aji | k ∈ Ai, i ∈ [M ]}. Note that requests and pages
naturally correspond to T disjoint instances of I.

Let κ ∈ {1, · · · ,M} be a guess of the optimal set-cover value for I (we will try all values).
The arrival times of the requests are then: a(rjk) = (j − 1) · κ for all k ∈ [N ] and j ∈ [T ]. Note
that there is a 1-speed schedule for J (using the optimal set-cover for I) having average flow-time
at most κ. Suppose that there is some o(m1/3)-approximation for disjunctive broadcast scheduling
with speed-up ρ. Since T

9N
= O(m1/3), this is also a T

9N
-approximation. Let β denote the resulting

schedule for instance J ; we now show how this implies a small set-cover for I. Consider the first
κT time slots, and let B denote the set of pages broadcast by β during these. Since β is ρ-speed,
we have |B| ≤ ρκT . For each j ∈ {1, · · · , T/2}, define Bj := {i ∈ [N ] | Aji ∈ B}. Let
T ′ ⊆ {1, · · · , T/2} denote the indices j ≤ T/2 such that |Bj| ≤ 4ρκ. Clearly |T ′| ≥ T/4. We
claim that one of {Bj | j ∈ T ′} is a set-cover for I. Suppose (for a contradiction) that this is not
the case. Then, for each j ∈ T ′ there is at least one request rjk (some k ∈ [N ]) that is unsatisfied
until time κT ; since j ≤ T/2 this request rjk has flow-time at least κT/2. Thus the average flow-
time of schedule β is at least 1

NT
· |T ′|κT/2 ≥ κT

8N
. However this contradicts the fact that schedule

β is a T
9N

-approximation. Since each Bj (for j ∈ T ′) has size at most 4ρκ, we obtain a set-cover
for I that is a 4ρ-approximation.
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