
Authenticated Communication and

Computation in Known-Topology Networks
with a Trusted Authority

Haowen Chan

CMU-CS-09-165

September 30, 2009

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Adrian Perrig, chair

Virgil D. Gligor
Anupam Gupta

Panganamala Ramana (P.R.) Kumar
Hui Zhang

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

c© 2009 Haowen Chan

This research was sponsored by the National Science Foundation under grant numbers CNS-0347807 and CCR-
0122581, the Council for Logistics Research, Inc. under grant number CLR071345024, the University of California
(National Science Foundation) under subcontract SA48961080PG, and International Business Machines under grant
number 5002518338. The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: secure aggregation, sensor networks, data aggregation, authenticated communica-
tion, known topology networks

PhD. Dissertation: Haowen Chan

Abstract

We show that two distinguishing properties of sensor networks, i.e., the presence of a trusted

base station, and the pre-knowledge of the fixed network topology, can yield security protocols

that are both communication-efficient and highly general. We show new protocols for broadcast

authentication, credential dissemination and node-to-node signatures. For securing in-network

distributed computations, we show an algorithm for securely computing the sum of sensor readings

in the network, which we can generalize to tree computations for any combination of continuous

real-valued functions. Each of these primitives involves per-node communication costs that scale

logarithmically with the number of nodes in the network, do not require public key cryptography,

and are secure against arbitrary coalitions of malicious nodes. The broadcast authentication scheme

achieves better properties with fewer assumptions than existing work, and the other new protocols

have no known previous approach that do not require either expensive network-wide unicast or

public key cryptography.

Acknowledgments

My advisor, Adrian Perrig, has been my teacher, guide, counsellor, and friend during the entire

PhD process. He gave unstintingly of his guidance, encouragement and advice to show me the most

fruitful avenues of development for myself and my work. I thank him for not only working with me

and helping me during this process but also for providing a wonderful role model as a researcher,

faculty member and mentor.

I would also like to thank the other members of my thesis committee: Virgil Gligor, Anupam

Gupta, P.R. Kumar and Hui Zhang for their guidance and assistance during the process of working

on this dissertation. Their insightful feedback and guidance has been invaluable in refining my

approach to the thesis and their understanding and encouragement have made the process of

researching and writing this dissertation both instructive and fulfilling. I am deeply thankful for

their support.

I am grateful to my co-authors as well as the students and faculty at CMU for their gracious

collaboration and feedback in the various discussions I have had with them: Ross Anderson, Lujo

Bauer, Debabrata Dash, Anupam Datta, James Hendricks, Abhishek Jain, Mark Luk, Bryan Parno,

Bartosz Przydatek, Mike Reiter, Dawn Song, Avi Yaar, and Xin Zhang. I would also like to thank

my collaborators William Aiello and Patrick McDaniel (at AT&T Research) and Aca Gacic and

Soundar Srinivasan (at Robert Bosch Corp.) for their guidance and assistance during my internships

at those respective locations.

Finally, I would like to thank my wife, Jody Elliott, for her continuous love, patience and

support.

v

vi

Contents

1 Introduction 1

2 Related Work 7

2.1 Secure Communications in Structured Networks . 7

2.2 Secure Aggregation . 9

2.3 Secure Distributed Computation . 11

2.4 Distributed Algorithms . 11

2.5 Rate Limiting in Wireless Networks . 12

3 Thesis, Problem Statements and Assumptions 13

3.1 General Thesis . 13

3.2 Problem Model . 15

3.2.1 Network Assumptions . 15

3.2.2 Security Infrastructure . 15

3.2.3 Attacker Model . 15

3.2.4 Problem Metrics . 16

4 A Protocol for Hash Tree Construction 17

4.1 Background: Hash Trees . 17

4.2 The HT Protocol . 18

4.2.1 Hash Tree Construction . 19

4.2.2 Authentication Path Dissemination . 21

vii

viii CONTENTS

4.3 Optimizations to the HT Protocol . 21

4.4 Network-wide Aggregated Acknowledgement . 24

4.4.1 Network-wide Confirmations on a Computed Value 25

5 Authenticated Broadcast 27

5.1 Problem Statement and Assumptions . 27

5.2 Using HT for Broadcast Authentication . 28

5.3 Security Analysis . 30

5.3.1 A Proof under the Random Oracle Model . 30

5.3.2 A Proof assuming Hash Function Collision Resistance 32

5.4 Nonce Implementation Details . 35

5.5 Discussion and Analysis . 37

6 Credential Dissemination 39

6.1 Problem Statement and Assumptions . 39

6.1.1 The Public Key Management Problem . 40

6.2 Using HT for Credential Dissemination . 41

6.2.1 Composition with Authenticated Broadcast of Chapter 5 42

6.3 Security Analysis . 45

6.4 Performance Analysis . 46

6.5 Further Applications . 47

7 Node-to-Node Signatures 49

7.1 Problem Statement and Assumptions . 50

7.2 Using HT for Node-to-Node Signatures . 50

7.3 Security Analysis . 52

7.4 Performance Analysis . 54

7.5 Applications of Node-to-Node Signatures . 55

8 Secure Data Aggregation 59

8.1 Problem Statement and Assumptions . 60

CONTENTS ix

8.2 Secure SUM Aggregation . 61

8.2.1 Lower-bounding the SUM Protocol . 62

8.2.2 Analysis of the Lower Bound Property . 63

8.2.3 Reducing Upper Bounds to Lower Bounds . 65

8.2.4 Building Other Aggregation Functions from SUM 67

8.3 Generalizing the Algorithm for One-pass, One-output Functions 68

8.3.1 The Generalized Algorithm . 68

8.3.2 Correctness of the General Algorithm . 70

8.3.3 Making the General Algorithm Practical . 72

8.3.4 Accuracy of Representation . 74

8.3.5 Continuous Function Computation in a Tree: Result 75

8.4 Input Verification . 76

8.4.1 Exhaustive Input Verification . 76

8.4.2 Cluster-based Computation Verification . 77

9 Rate-Limiting Using the HT Framework 83

9.1 Problem Definition . 84

9.2 Naive Approach: Direct Audit . 85

9.2.1 Locating an Adversary . 87

9.2.2 Bounds on Adversarial Injection Capabilities 89

9.3 Distributed Detection . 89

9.3.1 Assumptions . 90

9.3.2 Algorithm Overview . 91

9.3.3 Correctness . 93

10 Low Latency Broadcast Authentication 95

10.1 Problem Definition . 96

10.1.1 Background: Hash Chain Broadcast Authentication 97

10.2 Linear Topology . 98

10.2.1 Hash Tree Based Schemes . 99

x CONTENTS

10.2.2 Hash Chain Based Schemes . 104

10.3 Fully Connected Topology . 111

10.3.1 Doubling Broadcast / Maximum Dissemination Trees 112

10.3.2 Hash Tree Based Schemes . 112

10.3.3 Hash Chain Based Schemes . 115

10.4 Congestion-Latency Lower Bounds . 116

10.5 Extending the Lower Bound to Tree Topologies . 122

10.6 Low Latency Authenticated Broadcast: Results . 126

11 Summary and Conclusion 129

Chapter 1

Introduction

Sensor networks are an increasingly important application area for distributed algorithms and

security protocols. Sensor networks consist of a number of sensor nodes deployed over a geographical

area. The nodes form a wireless network which forwards sensed data to one or more base stations

which act as gateways, forwarding the data to off-site servers which can then be queried for the

sensed data. The sensor nodes can be used to perform distributed computations to process aggregate

sensed data in-network, or to perform control functions (for example, controlling the temperature

and light levels of rooms based on occupancy).

Sensor networks represent a new adversary model for which new efficient security protocols must

be devised. Traditional adversary models have either assumed that the entire network consists of

legitimate processors and security is directed against external threats, or that the network is a self-

organized system with no coordinating authority, consisting of autonomous, independent entities

each of which may be arbitrarily malicious [34, 45, 48]. The first network model (the Dolev-Yao

model) constrains the attacker to control the medium only; the second network model (Byzantine

networks) introduces a much stronger attacker model, allowing the attacker to potentially control

both the medium, the network topology, and any subset of the active principals.

A realistic attacker model for sensor networks lies in the continuum between these two extremes.

In sensor networks, it is infeasible to guarantee the integrity of every processor in the network; since

sensor nodes are often deployed in a physically insecure locations and are not designed to be tamper-

1

2 CHAPTER 1. INTRODUCTION

resistant, a malicious attacker may physically compromise a subset of the nodes and subvert the

computation results or alter the messages exchanged in the system. The presence of malicious nodes

implies the existence of malicious insiders in the network, making the adversary model necessarily

stronger than simple control of the medium.

Although some unknown fraction of sensor nodes may be malicious, it is reasonable from the

point of view the sensor nodes to assume that some master authority remains uncompromised. This

makes the sensor network adversary model somewhat weaker than the Byzantine model, since we

can always rely on the fact that the most important principal is trusted by all others and is free

from fault.

There are several reasons supporting the argument for assuming the presence of a secure master

authority in the design of a distributed sensor network algorithm. First, since the network is

owned and operated by a single entity, it is natural to perform administrative functions from a

centralized point: this avoids the problems of coordination and consistency in fully distributed

implementations. For example, the Zigbee standard specifies a Zigbee Coordinator which performs

centralized security services, and topology and membership control [87]. It is much easier to secure

a high-capability centralized administrative device than a distributed functionality over resource-

constrained sensor nodes; for example, base stations can be made tamper-resistant and remote

servers can be stored in locations that are secure against physical compromise, and independent

countermeasures can be implemented to resist online intrusion. Finally, given the existence of

a centralized point of administration, it is clear that very few functions of the network can be

preserved if the central administrative functions are successfully attacked by an adversary. As

such, it is reasonable to assume that, from the point of view of the distributed protocols running

on the wireless nodes, we must necessarily depend on the availability and security of the central

administrative functionality. Actually securing the device that provides the central administrative

function is a security problem orthogonal to the design of resilient secure distributed algorithms on

the wireless nodes.

The other distinguishing property in our assumption set is that the central point of administra-

tion is aware of the static network topology; specifically, we have knowledge of the fixed communi-

cation relationships between nodes. This assumption is reasonable for sensor networks since in the

3

majority of applications sensor nodes tend to be stationary and inter-node relationships tend to be

stable over time.

In summary, the distinguishing characteristic of the standard sensor network attacker model

is that, while insider sensor nodes may be malicious, there exists a secure trusted administrative

functionality that has a global view of relevant details of the network (for example, including

topological relationships of the nodes in the network) and also possesses all security information

relevant to any sensor node. This model of node compromise with a trusted authority is also the

security model used by Zigbee, the de-facto communication standard for sensor networks [87].

The central thesis of this dissertation is that the two properties of topology knowledge and

having a trusted authority allow the development of powerful and efficient algorithms for distributed

computation and communication that achieve performance bounds that are not currently feasible

in the more general autonomous network model. A brief discussion of the limitations of existing

work follows.

Secure distributed computation for sensor networks, ad-hoc networks and other distributed

systems has been approached in distributed systems research with specific algorithms designed for

specific application areas [39, 58, 63, 24]. Such protocols typically deal with a specific function

computation such as summation and cannot be generalized further; in addition, they often do

not work when removed from their specific topological assumptions; furthermore, as is commonly

the case in protocols optimised for specific systems, very often their efficiency is only empirically

studied through simulation and not asymptotically proven; and their security analyses are informal,

typically proving that specific classes of attacks are foiled rather than rigorously reducing the attack

problem into a computationally difficult (or impossible) task for the attacker. Our work provides

provably secure, efficient and general algorithms for all the basic directions of communications

between nodes and the trusted authority in the network, and also for several general modes of

in-network computation. It is the first comprehensive general framework for secure and efficient

computation and communication in structured networks.

In contrast to the specificity and empirical nature of the protocols proposed by the distributed

systems community, research in cryptography and distributed algorithms have examined the reliable

computation problem with a more theoretical approach: for the computation of general functions

4 CHAPTER 1. INTRODUCTION

with proven security and asymptotic bounds on time and communication complexity. However

these approaches have their own assumptions and inherent weaknesses. Cryptographers study the

problem of reliable distributed computation in the form of secure multiparty computation. In this

setting, besides requiring that the result of the computation be correct, there is the additional

requirement that each party gains no information about what the other parties are contributing

as inputs to the computation. To fulfil this stronger requirement, algorithms for secure multiparty

computation typically require communication between all parties and are not scalable to large net-

works. Distributed algorithms typically approach the reliable computation problem in the form

of Byzantine agreement. Such approaches generally have similar drawbacks in terms of high com-

munication overhead and requiring high connectivity. Certain algorithms work for bounded-degree

graphs but typically these graphs are selected by the algorithm rather than being given as an input;

thus limiting their usefulness to parallel computation networks and peer-to-peer overlay networks

where any-to-any addressing is possible. In particular, such algorithms are ill-suited to networks

with a pre-determined structure which is typical of wireless sensor networks.

In contrast to these traditional approaches, in this dissertation we show that, by leveraging

the power of the single trusted authority and the predetermined network structure, we can design

efficient, secure and general communication and computation protocols. We address a number of

general network communication and computation problems with a single construction for authen-

tication and integrity. None of the constructions in this dissertation require the use of computa-

tionally expensive public key cryptography, making them highly feasible for resource constrained

applications such as sensor networks. Specifically, we design the following mechanisms:

1. Broadcast Authentication: Disseminate a single message from the base station to all nodes.

2. Information Binding: Allow nodes to receive centrally-authorized attestations regarding cer-

tain properties associated with them (e.g., a public key), these attestations must be verifiable

by any other node.

3. Node-to-Node Signatures: Allow any two nodes to send authenticated, non-repudiable mes-

sages to each other without prior key establishment.

5

4. Secure Aggregation (tree computation): In-network computation of general numerical func-

tions by collating data from the leaf nodes of the topology inwards towards the root. We show

constructions with different performance tradeoffs for the addition “sum” computation, for

general real-valued functions, and for completely general functions. This allows us to build

applications for securely performing data queries on the network as well as to perform secure

auditing and monitoring functions.

In our proposed approach, we note that each of these problems can be solved the using the base

station as a direct trusted intermediary. We assume that each sensor node shares a unique pairwise

key with the trusted base station. This allows us to use the base station as a central point of

trust and coordination. The straightforward method for each of these protocols is therefore simply

for each node to only communicate with the base station directly. This leads to an unicast-based

solution for all the above problems (e.g., broadcast simply becomes multiple unicasts from the base

station to every node in the network). The issue with such a simplistic solution is that it is highly

inefficient and unscalable. To maximize sensor node lifetimes, we use network congestion as our

metric, which is defined as the total communication overhead on the most heavily loaded link in

the network. All unicast-based approaches incur O(n) congestion overhead (where n is the number

of nodes in the network). In all our proposed protocols, the congestion is either logarithmic in n

or proportional to the distance of the farthest node from the base station (which is also roughly

O(log n) in a uniformly distributed sensor network).

We introduce related work in Chapter 2 and define the problem formally in Chapter 3.

In Chapter 4 we describe a primitive based on the distributed construction of cryptographic

hash trees; in subsequent Chapters 5 through 8 we show how to use the distributed hash tree as

a framework to efficiently “batch” large numbers of unicast communications to and from the base

station. This approach allows us to achieve the security functionality of the “base-station to all

nodes” unicast method, while achieving O(log n) congestion overhead in most cases. This yields

efficient protocols for highly general applications, providing authenticity for all combinations of

node-to-base station, base-station-to-node and node-to-node communication as well as for general

tree function computations, which are in most cases secure against arbitrary numbers of adversaries.

6 CHAPTER 1. INTRODUCTION

In Chapter 9, we show a case study of how a higher-level application can be constructed from

the general primitives designed in Chapters 4 through 8. We examine the problem of Rate Limiting,

or controlling the sending rate of nodes in the network. Using the same primitives as those in the

Hash Tree framework we show that it is possible to efficiently (with O(log n) congestion) detect

and locate nodes that are exceeding their traffic rates in a tree network.

In Chapter 10, we show how topology knowledge can be used to significantly speed up the

broadcast authentication protocol that was proposed in Chapter 5 as well as a well-known subclass

of efficient broadcast authentication protocols known as hash-chained authentication protocols. We

consider the linear topology (i.e., a path) and the fully connected topology (i.e., the complete graph,

representing any-to-any communication such as in the Internet) and show latency optimizations

that improve verification time significantly for both class of protocols, as well as a lower bound

showing that these verification times are close to optimal.

Our results show that by leveraging known topology and the trusted authority, secure protocols

for general communication and computation can be derived with efficiency far surpassing known

algorithms for secure computation and communication in the general autonomous network model.

These results indicate that secure computation and communication in structured networks with a

trusted authority admits algorithms that are fundamentally more practical than those for arbitrary

autonomous networks.

Chapter 2

Related Work

In this dissertation we examine how to provide authenticity and integrity for many general forms of

computation and communication in structured networks. This dissertation is unique in developing

a comprehensive framework for general integrity in fixed-topology networks; however the specific

subproblems and practical applications addressed arise in a number of well-studied subfields from

various branches of computer science. We describe prior work in each of these in turn, in roughly

the order that they are presented in this dissertation.

2.1 Secure Communications in Structured Networks

We review relevant literature related to broadcast authentication, credential dissemination and

node-to-node signatures in fixed-topology networks.

In the area of public-key-free broadcast authentication, the general Guy Fawkes protocol frame-

work was proposed by Anderson et al. [1]; Bergadano et al. propose CSA, a variant using explicit

synchronization with acknowledgements [4]. CSA uses per-receiver acknowledgements; Yao et al.

improve this for tree-based networks by proposing the construction of an authenticated aggregate

acknowledgement using hashes [80]. The main drawback of Guy Fawkes schemes is the requirement

for comprehensive acknowledgements: if even a single receiver did not receive the initial broadcast

(or did not acknowledge reception) then the protocol must abort. In comparison, in Chapter 5 we

present a scheme for authenticated broadcast that can recover from a few receivers not receiving

7

8 CHAPTER 2. RELATED WORK

the initial broadcast. The detailed differences are discussed in Section 5.5.

Perrig et al. propose TESLA [66, 67], which replaces explicit synchronization with loose time

synchronization. Improvements to TESLA have been proposed, all requiring some form of time

synchronization [51, 19]. Lu and Pooch suggest a parameterization where messages carry their

expected time of key disclosure [52]. Zhu et al. propose a lightweight variant for one-hop commu-

nications where messages are considered authentic if immediately followed by a valid hash chain

value [86]; this approach does not work for multi-hop broadcasts. Luk et al. propose families

of broadcast authentication mechanisms [53], but the communication overhead of their one-time

signature schemes can be quite substantial.

Multicast MACs (MMACs) are another major class of broadcast authentication mechanisms.

An inexhaustive list of work on MMACs follows. Desmedt et al. propose a polynomial based multi-

cast authenticator [21], which is generalized by Safavi-Naini and Wang [71]. Canetti et al. propose

an MMAC made by concatenating bits of multiple MACs [11]. All MMACs involve communica-

tion overhead proportional to the number of node compromises that the scheme tolerates. Boneh

et al. show that this overhead is a lower bound for all MMAC schemes which do not involve digital

signature properties [7]. Stream signatures involve amortizing the cost of a signature over a large

number of packets [30, 77]. These approaches either require the sender to know the data stream be-

forehand or use expensive one-time signatures. Zhu et al. implement a variant of the multiple-MAC

approach, essentially requiring t individual MACs to protect against up to t malicious nodes [85].

Stream signatures involve amortizing the cost of a signature over a large number of packets [30,

65, 62, 77]. These approaches either require the sender to know the data stream beforehand or use

one-time signatures that are expensive to communicate, or require the receiver to buffer a large

number of packets before it can reconstruct the authenticator, and are hence more limited in their

applicability than general broadcast authentication techniques.

In the field of efficiently building and using hash trees, Ralph Merkle first described the use

of a hash tree as a batch authenticator for multiple values [60]. In this original application, the

hash tree is used for a series of one-time signatures by releasing authentication paths for each of its

leaves in order. Subsequent work on hash trees have concentrated on optimizing this left-to-right

traversal process for the signer. Examples of such optimizations include work by Buchmann et al.

2.2. SECURE AGGREGATION 9

[8], Berman et al. [6], Michael Szydlo [72], and Jakobsson et al. [42]. However, as always, the

overhead of using one-time signatures in this application is extremely high.

To provide resistance against computational DoS attacks for signature-based broadcast au-

thentication in sensor networks, Ning et al. propose several mechanisms [22, 64]. Fortunately,

our approaches for authentication and signature are inherently robust against computational DoS

attacks.

Relatively little work has been dedicated to the important problem of performing public key

management in sensor networks. Ning et al. propose to use hash trees for authenticating node

certificates [25]. However, in this work the hash trees are assumed to be preloaded as part of the

initial bootstrapping; unlike our Credential Dissemination functionality of Chapter 6, this method

cannot be used to efficiently generate and disseminate new credentials on-the-fly.

In the area of efficient sensor network signatures, most work focuses on various optimizations

of Elliptic Curve Cryptography to make public key cryptography feasible on resource-constrained

nodes. Examples of such work include work by Liu and Ning [50], Malan et al. [57], Gupta et al. [37],

and Gaubatz et al. [29]. All these efforts require increased computation latency and code overhead

in their implementations of public-key cryptography. In contrast, we propose a novel approach

that enables a signature operation based on purely symmetric functions without using one-time

signatures, by only trusting the base station.

2.2 Secure Aggregation

Researchers have investigated resilient aggregation algorithms to provide increased likelihood of

accurate results in environments prone to message loss or node failures. This class of algorithms

includes work by Gupta et al. [36], Nath et al. [63] and Manjhi et al. [58]. However, this family

of work only addresses omission of data and does not address the possibility of malicious data

manipulation or injection.

A number of aggregation algorithms have been proposed to ensure secrecy of the data against

intermediate aggregators. Such algorithms have been proposed by Girao et al. [32], Castelluccia

et al. [13], and Cam et al. [9]. Hu and Evans [39] propose securing in-network aggregation against

10 CHAPTER 2. RELATED WORK

a single Byzantine adversary by requiring aggregator nodes to forward their inputs to their par-

ent nodes in the aggregation tree. Jadia and Mathuria [41] extend the Hu and Evans approach

by incorporating privacy, but also considered only a single malicious node. While secrecy is an

important security property, in this dissertation we focus on the orthogonal problem of providing

integrity for the data. None of the schemes described are able to provide both secrecy and integrity

simultaneously.

Several secure aggregation algorithms have been proposed for the single-aggregator model. Przy-

datek et al. [69] proposed Secure Information Aggregation (SIA) for this topology. Also for the

single-aggregator case, Du et al. [24] propose using multiple witness nodes as additional aggregators

to verify the integrity of the aggregator’s result. Mahimkar and Rappaport [56] also propose an

aggregation-verification scheme for the single-aggregator model using a threshold signature scheme

to ensure that at least t of the nodes agree with the aggregation result. Yang et al. [79] describe

a probabilistic aggregation algorithm which subdivides an aggregation tree into subtrees, each of

which reports their aggregates directly to the base station. Outliers among the subtrees are then

probed for inconsistencies. In contrast to this family of work, our work presents an approach for

the more general multi-aggregator case.

Wagner [74] addressed the issue of measuring and bounding malicious nodes’ contribution to

the final aggregation result. The paper measures how much damage an attacker can inflict by

taking control of a number of nodes and using them solely to inject erroneous data values, without

manipulating the aggregate computation. Our work focuses on the complementary problem of

ensuring that the attacker truly is restricted only to this form of attack; hence in essence Wagner’s

work informs our work by quanitifying the remaining amount of damage that can be inflicted in

the presence of an algorithm ensuring that intermediate computations are performed correctly.

Yu proposes sampling techniques to ensure that the computed aggregate tolerates a number of

malicious nodes [83]. Like all sampling techniques (such as those proposed by Przydatek et al. [69]),

there is a chance of error for the computed result, and the communication costs of the protocol

increase for lower error parameters. In comparison, the protocols that we propose are not prob-

abilistic and have no chance of error, effectively restricting the adversary to the tightest bounds

possible without assuming any prior distribution on the data.

2.3. SECURE DISTRIBUTED COMPUTATION 11

Manulis and Schwenk provide a rigorous security analysis of our hash tree based framework, for

general aggregation computations but for the single aggregator case [59].

2.3 Secure Distributed Computation

The security community has visited the idea of secure distributed computation mainly from the

problem definition of secure multiparty computation [34, 18, 70, 10, 12, 26]. This problem is distinct

from the reliable distributed computation problem we propose in this dissertation mainly because

we drop the secrecy requirement and further assume the existence of a trusted querier; also none

of the SMC protocols are able to function in arbitrary network topologies under the sublinear

congestion constraint that we propose.

2.4 Distributed Algorithms

The majority of work in byzantine-resilient computation in distributed algorithms has focused on

byzantine agreement in fully-connected networks [27, 2]. The majority of these algorithms require

Ω(n) message complexity from each node.

A substantial body of work exists for resilient computation on networks of bounded degree [73,

5, 3, 49, 84]; more recently King et al. describe protocols that require polylog message complexity

at each node, where each node has polylog degree [46, 47]. However the majority of this work refers

to network designs where the bounded degree topology can be selected by the algorithm; typically

this topology is constructed in a very specific manner to create a graph with good expansion

properties. These algorithms are thus appropriate for parallel computer systems but unsuitable for

most wireless networks where the topology is not under the arbitrary control of the algorithm.

A brief sampling of the very wide field of literature in byzantine-resilient systems follows. Wang

et al. describe a method for byzantine agreement in a general network that is not fully connected [75].

Hildrum and Kubiatowicz describe a method for making peer-to-peer data structures resilient

against limited (non-byzantine) failures [38]. Wang et al. [76] and Drabkin et al [23] and Cheng

et al. [20] describe methods for byzantine agreement in adhoc networks. Georgiou et al describe

a method for reliable gossip with crash failures [31]. All these methods, as with all literature

12 CHAPTER 2. RELATED WORK

in distributed algorithms, focuses on the much more difficult problem scenario where there is no

reliable trusted authority. As such, not only are their overheads significantly higher for actual

computations, but the properties achieved are much more basic: for example, a large body of work

exists on the single problem of agreement, which in the presence of a trusted authority becomes

trivially reducible to broadcast authentication (all nodes simply agree on what the trusted authority

says).

Giridhar and Kumar considered the information communication complexity of general function

computation in sensor networks without failures [33]. However, this work only addresses commu-

nications between two nodes rather than network-wide computations.

2.5 Rate Limiting in Wireless Networks

There are two aspects to packet injection attacks in a sensor network environment: in a data-

collection network such as a sensor network, a compromised node may send out false data to

prevent correct functioning of the network, or it may inject a large number of packets to crowd

out legitimate traffic or cause legitimate nodes to exhaust their battery. Previous solutions detect

specific spurious packets containing spurious information, for example work by Ye et al. [82] and

Zhu et al. [85]. This family of work focuses on early detection of false injected packets such that

energy is not expended in forwarding them. However, the need to authenticate the data in each

packet require that each event be sensed by multiple nodes that can corroborate each other before

the packets are forwarded. Hence, the techniques only apply to event reports which are sensed by

multiple nodes, which other traffic can still be injected into the network.

In contrast, we are interested in arbitrary data injection attacks where the network traffic is not

restricted to specifically formatted event reports. Wood et al. [78] and Karlof et al. [43] summarize

such attacks in sensor network environments in their survey paper, however, besides our approach

to this problem there have been no publications on general rate-limiting or injection detection that

we know of.

Chapter 3

Thesis, Problem Statements and

Assumptions

3.1 General Thesis

We hypothesise that the availability of a trusted authority with full pre-knowledge of the network

topology allows for the design of highly efficient and general security primitives for communication

and computation in structured networks such as sensor networks, ad-hoc networks and peer-to-peer

networks.

For brevity, in the remainder of the dissertation we will refer to the trusted authority as the

“base station”, which is the device in the wireless network most suited for this role. In actual

implementation, the trusted authority may in fact be one or more remote machines on a separate

network or on the Internet.

Given the presence of the base station, there are three general classes of communication patterns

(and associated patterns of computation) in the network: from the base station to the nodes, from

the nodes to the base station, and from node to node. To support our thesis hypothesis, we

will show secure and efficient algorithms for all the above forms of communication, encompassing

several general and common forms of computation and communication authentication with common

applications in actual sensor networks.

13

14 CHAPTER 3. THESIS, PROBLEM STATEMENTS AND ASSUMPTIONS

For base station to node communication, we describe a new construction for broadcast authen-

tication. The new algorithm does not require public key cryptography and has several important

advantages over existing protocols: unlike TESLA [66], it does not require time synchronization;

unlike the Guy Fawkes schemes [1], it can recover from a small number of receivers not receiving

or not acknowledging the original broadcast. We secure two forms of node-to-node authentication:

first, we show a protocol for credential dissemination, or for authenticating properties of a node

that are approved by the central authority (such as public keys, priority levels, or access privileges),

and a protocol for node-to-node signatures allowing nodes to authenticate messages to each other

with the non-repudiation property. Each of these primitives induces O(log n) communication con-

gestion where n is the number of nodes in the network, and are secure against arbitrary coalitions

of malicious nodes.

In terms of securing mass node-to-authority communication, we examine the problem of secure

tree computation, of which data aggregation is the primary application. We show secure formu-

lation for computing the SUM function with O(log n) congestion, which we can generalize to tree

computations over arbitrary continuous real-valued functions. The generalization requires O(hd)

congestion where h is the depth of the topology (distance of the farthest node from the base station)

and d is the maximum degree of a node in the topology. In the case where the subfunctions are

identical, associative, and commutative, we can apply an optimization from the SUM secure ag-

gregation protocol to improve congestion to O(log n). Finally, we show a construction for securing

fully arbitrary tree computations against up to k adversaries with O(3αk(d + 1) + βhd) congestion

where α and β are bounds on the communication complexity of the inputs and intermediate results

of the subfunction computations, respectively.

To demonstrate the application of these primitives in a higher-level application, we show how

these primitives can be applied to Rate Limiting, where we bound the ability of an adversary to

send large numbers of packets and overwhelming the system.

Finally, we show how topology knowlege in common special-case topologies such as a linear

topology or a fully-connected topology yields significant latency speedups in the broadcast authen-

tication schemes we have designed.

3.2. PROBLEM MODEL 15

3.2 Problem Model

3.2.1 Network Assumptions

We assume a static multihop network with a set S = {s1, . . . , sn} of n sensor nodes including a single

trusted base station R. We assume that communication relationships can be modeled as a graph

with a (simple) edge connecting any two nodes that can communicate. All wireless communications

are node-to-node and we do not consider local wireless broadcast communications in this work.

This is for two reasons: first, the availability local broadcast does not significantly change the

congestion of our algorithms; second, in all our applications we implicitly require receiving nodes

to perform acknowledgements and sending nodes to perform retransmissions if acknowledgements

are not received. This eliminates any advantage in using local broadcast communications.

We assume that the base station knows the total number of sensor nodes n. The network is

organised in a tree topology, with the base station at the root. The default assumption is that the

base station also knows the network topology (e.g., which nodes are neighbors of each other); in

some cases we do not need this assumption and we will note this in the text.

3.2.2 Security Infrastructure

We assume that each sensor node has a unique identifier s and shares a unique secret symmetric

key Ks with the querier. We assume the sensor nodes have the ability to perform symmetric-

key encryption and decryption as well as computations of a collision-resistant cryptographic hash

function H.

3.2.3 Attacker Model

We assume that the attacker is in complete control of an arbitrary number of sensor nodes, including

knowledge of all their secret keys. The attacker has a network-wide presence and can record and

inject messages at will.

16 CHAPTER 3. THESIS, PROBLEM STATEMENTS AND ASSUMPTIONS

3.2.4 Problem Metrics

As a metric for communication overhead, we consider node congestion, which is the worst case

communication load on any single sensor node during the algorithm. Congestion is a commonly

used metric in ad-hoc networks since it measures how quickly the heaviest-loaded nodes will exhaust

their batteries [55, 35]. Since the heaviest-loaded nodes are typically the nodes which are most

essential to the connectivity of the network (e.g., the nodes closest to the base station), their failure

may cause the network to partition even though other sensor nodes in the network may still have

high battery levels. A lower communication load on the heaviest-loaded nodes is thus desirable

even if the trade-off is a larger amount of communication in the network as a whole.

Chapter 4

A Protocol for Hash Tree

Construction

The basic building block we will use in most of the algorithms in this dissertation is to construct a

distributed cryptographic hash tree over the network. The hash tree will be used as a commitment

and authentication structure in the subsequent protocols. In this chapter, we describe how to

efficiently generate and use these hash trees.

4.1 Background: Hash Trees

A hash tree is constructed over a set of leaf values by repeatedly generating parent vertices to

unify multiple subtrees. For subtrees with root vertices c1, c2, . . . , cm respectively, a parent vertex

is generated using the rule p = H [c1‖c2‖ · · · ‖cm] where H is a collision-resistant hash function.

Figure 4.1: Shaded nodes: Authentication path of u; Bolded nodes: off-path vertices of u. Together
they form an authentication subtree for u.

17

18 CHAPTER 4. A PROTOCOL FOR HASH TREE CONSTRUCTION

This process is repeated until all the vertices form a single tree. Figure 4.1 shows a hash tree; each

arrow indicates a hash dependency of a parent vertex on its (two) children.

Given the root vertex r of a hash tree, we can verify the inclusion of a given leaf value u by

recomputing the path from u to r, or its authentication path. The authentication path can be

computed from the siblings of each vertex on the path from u to r, or the off-path vertices of

u. This is highlighted in Figure 4.1. The graph induced by the authentication path vertices and

the off-path vertices is an authenthentication subtree consisting of all nodes from u to r and their

siblings, as well as an encoding of the left-to-right order of each set of siblings.

In subsequent sections, we will use the following useful properties of a hash tree:

1. The root vertex acts as a concise commitment to the structure of the tree and the contents of

all tree vertices. It is computationally infeasible to find two distinct trees with the same root

vertex values; the hardness of this problem is at least as great as finding a hash collision on

the hash function (i.e., finding a hash collision is reducible to finding two distinct hash trees

with the same root vertex value).

2. The root vertex can act as an aggregate authenticator (e.g., signature or MAC) if the leaf

vertices consist of unforgeable authenticators. Since the hash function is collision resistant,

the adversary cannot predict the root vertex of a tree with unknown values at the leaves;

also, if the adversary is forced to commit to a root vertex value r first, the leaf vertices can

subsequently be revealed; due to the one-wayness of the hash function, it remains infeasible for

the adversary to determine valid authentication paths for any legitimate leaf values released

after the commitment to r.

4.2 The HT Protocol

In this section we describe the HT protocol for computing a hash tree in a distributed manner

over a tree network. We first describe the construction of a hash tree that follows the topology of a

tree network; we discuss optimizations in subsequent sections. Let each sensor node i be associated

with an arbitrary bit-string Li. We desire a protocol to construct a hash tree containing all the Li

4.2. THE HT PROTOCOL 19

HT Functionality

Inputs: (from each sensor node i)
String or value Li

Computes:
Tree via the following:

Leaf vertex ui (one per node i): 〈0‖Li〉
Internal vertex u0 with child vertices u1, . . . , uk:
〈H[1‖u1‖ · · · ‖uk]〉

Outputs:
To Base Station: Hash tree root vertex r
To each sensor node i: Off path vertices for ui

Table 4.1: Definition of the HT Functionality

as hash inputs to its leaf vertices (defined as ui = H [0‖Li]), such that the base station receives the

root r of the hash tree while each node i receives all the off-path vertices between ui and r (thus

allowing i to recompute r). Note that the HT functionality is only a building block and by itself

is not necessarily secure; for example, the adversary could cause the computation of an incorrect

hash tree, or disseminate false verification paths to the nodes. However, the idea is that such

inconsistencies can be detected subsequently by other protocols that build on the HT primitive.

Table 4.1 summarizes the functionality that we wish to implement. The protocol completes in two

phases: hash tree construction and authentication-path dissemination.

4.2.1 Hash Tree Construction

The hash tree is constructed from the bottom up in a distributed fashion, with new internal vertices

added by each internal node in the network topology. The leaf vertex of the hash tree for a node

with ID i is composed of the hash of a bit 0 identifying this as a leaf vertex, concatenated with the

input bit-string Li:

vi = 〈H [0‖Li]〉

For example, in Figure 4.2, sensor node G constructs a leaf vertex consisting of its input value LG

(e.g., a sensor reading) and its node ID G. Each leaf node in the network topology transmits its

leaf vertex to its parent (e.g., G sends its leaf vertex to F).

20 CHAPTER 4. A PROTOCOL FOR HASH TREE CONSTRUCTION

G0 = 〈H [0‖LG]〉

F1 = 〈H [1‖F0‖G0]〉

C1 = 〈H [1‖C0‖E0‖F1]〉

A1 = 〈H [1‖A0‖B1‖C1‖D0]〉

R = 〈H [1‖H0‖A1‖I0]〉

Figure 4.2: Basic hash tree, showing derivations of some of the vertices. For each sensor node X,
X0 is its leaf vertex, while X1 is the internal vertex On the right we list the labels of the vertices
on the path of node G to the root.

Each internal (non-leaf) sensor node i in the topology receives from each of its children a hash

tree vertex. The parent node i then generates its own leaf vertex, and creates a new parent over

its leaf vertex and the vertices supplied by its children as follows:

ui = 〈H [1‖yi‖u1‖u2‖ · · · ‖uk]〉

Where ui is an internal vertex created by node i, and hash tree vertices u1, · · · , uk are received

from the children of i (or generated by i itself). The leading 1 bit distinguishes the hash inputs that

generate an internal vertex from the hash computation that generates leaf vertices (which contain

a leading 0 bit).

For example, in Figure 4.2, sensor node A receives internal vertices B1 and C1 and the leaf

vertex D0 as well as its own leaf vertex A0. Node A then creates a new parent vertex by computing

a hash over 1‖A0‖B1‖C1‖D0. The result is a new internal vertex in the hash tree which is the

parent of all the vertices received by A. Once each node i has computed all its internal hash tree

vertices it transmits them to its parent, which will then construct its own internal vertex as the

parent of all the vertices it receives, and so on. This also occurs at the base station, which computes

the root vertex r of the hash tree.

4.3. OPTIMIZATIONS TO THE HT PROTOCOL 21

4.2.2 Authentication Path Dissemination

Once the hash tree is constructed, and the root vertex r is disseminated to all nodes, each node

must check that its leaf vertex is included in the hash tree rooted at r. Specifically, each node must

recompute the sequence of hash tree vertices between its leaf vertex and the root. For example,

node G in Figure 4.2 must recompute the vertices F1, C1, A1 and R1. To perform this series of

computations, each node must receive all the off-path vertices of its leaf vertex. In Figure 4.2

this means that node G must receive all the child vertices of F1, C1, A1 and R1 respectively; this

corresponds to the set {F0, E0, C0, B1, A0, D0, H0, I0}. To facilitate this verification, each internal

node (including the base station) broadcasts the set of hash-tree vertices it received to all the nodes

in its subtree. For example, node A would broadcast the vertices A0, B1, C1, D0 to all the vertices

in the subtree rooted at A on Figure 4.2. This allows each node i in the network to receive the set

of off-path vertices of ui.

Note that Definition 4.1 only requires that the HT algorithm provide the correct authentication

paths for each node in the absence of malicious interference. For example, the adversary could

cause the construction of an incorrect hash tree, or the dissemination of false verification paths

to legitimate nodes. In subsequent chapters we will see how such attacks can be detected in a

straightforward way by the protocols that build on the HT primitive.

4.3 Optimizations to the HT Protocol

Consider the congestion on the naive scheme. Let h be the height of the hash tree and d be the

maximum degree of any node inside the tree. Each leaf vertex has O(hd) off-path vertices, and it

needs to receive all their labels to verify its contribution to the aggregate, thus leading to O(hd)

congestion at the leaves of the commitment tree. The height h of the aggregation tree depends on

the diameter (in number of hops) of the network.

We present a simple optimization to improve the congestion cost. The main observation is

that, since the aggregation trees are a subgraph of the network topology, they may be arbitrarily

unbalanced. Hence, if we decouple the structure of the commitment tree from the structure of the

aggregation tree, then the commitment tree could be perfectly balanced.

22 CHAPTER 4. A PROTOCOL FOR HASH TREE CONSTRUCTION

A0 = 〈H [0‖LA]〉
D0 = 〈H [0‖LD]〉

K0 = 〈H [0‖LK]〉

C2 = 〈H [1‖F1‖C1]〉
B1 = 〈H [1‖B0‖J0]〉

(a) Inputs: A generates A0, and receives D0 from D, C2 from C, and (B1, K0) from B. We assume that A is aware
of the size of the subtree at each received hash forest vertex. Each dashed-line box shows the commitment forest
received from a given sensor node. The solid-line box shows the vertex labels, each solid-line box below shows the
labels of the new vertices.

A1 = 〈H [1‖A0‖D0]〉

(b) First merge: Vertex A1 created

A2 = 〈H [1‖A1‖B1]〉

(c) Second merge: Vertex A2 created

A3 = 〈H [1‖A2‖C2]〉

(d) Final merge: Vertex A3 created. A3 and K0 are sent to the parent of A in the aggregation tree (not shown: in
the transmission, these vertices are labelled with their respective sizes, i.e., A3 is the root of a subtree of height 3,
and K0 is a leaf)

Figure 4.3: Process of node A (from Figure 4.2) deriving its commitment forest from the commit-
ment forests received from its children.

4.3. OPTIMIZATIONS TO THE HT PROTOCOL 23

In the basic hash tree construction, each sensor node passes to its parent a single message

containing the label of the root vertex of its subtree Ts. Instead, now let each sensor node now

pass on the labels of the root vertices of a set of hash subtrees F = {T1, . . . , Tq}. We call this set a

hash forest, and we enforce the condition that the trees in the forest must be complete binary trees,

and no two trees have the same height. These constraints are enforced by continually combining

equal-height trees into complete binary trees of greater height. For a set of n leaves, there are

always less than log n trees in the forest, and the tallest tree in the forest has height at most log n.

When a sensor node s receives a hash forest from each of its q children, it must combine the

q hash forests F1, . . . , Fq. We let the intermediate result be F = F1 ∪ · · · ∪ Fq, and repeat the

following until no two trees are the same height in F : Let h be the smallest height such that more

than one tree in F has height h. Find two trees T1 and T2 of height h in F , and merge them into

a tree of height h + 1 by creating a new vertex that is the parent of both the roots of T1 and T2.

This process terminates in O(log n) steps since each step reduces the number of trees in the forest

by one, and there are at most q log n + 1 trees in the forest. Hence, each sensor node creates at

most O(log n) vertices in the hash forest. An example of ths process is shown in Figure 4.3.

Once the base station has received all the hash forests from its immediate children, it then

merges them all into a single hash tree by creating parent vertices (possibly over subtrees of different

height). The final balanced tree now has a height of h = ⌈log n⌉ and a degree of d = 2. Since

the congestion cost of disseminating verification paths for each vertex (internal and external) is

O(hd) = O(log n), and each sensor node is responsible for creating O(log n) vertices in the hash

tree, the final congestion via this method is O(log2 n).

Frikken and Dougherty [28] propose an improved optimisation. They observe that, while each

node is responsible for creating O(log n) hash tree vertices, if these vertices are all arranged along

a single common path to the root, then they will share a common verification path, thus avoiding

the extra O(log n) multiplicative factor. This rearrangement was induced by introducing a small

number of “dummy”vertices. It was shown that the number of such dummy vertices needed was

small (relative to n) and the resultant trees still have a height bound of O(log n). This results in

the asymptotically optimal congestion bound of O(log n).

24 CHAPTER 4. A PROTOCOL FOR HASH TREE CONSTRUCTION

4.4 Network-wide Aggregated Acknowledgement

The distributed hash tree construction mechanism provides an efficient way to construct hash trees

and send authentication paths to the leaves; however this presents only a single-direction mode of

authenticated communication in the topology (from the base station to the nodes). In order for all

nodes to efficiently communicate back to the base station without causing Ω(n) congestion near the

base station, we describe a novel acknowledgement primitive that is used by many of the protocols

that use the HT protocol in subsequent chapters.

We desire an efficient protocol to allow every node in the network to respond with some kind of

authentic confirmation message to the base station, typically to acknowledge the reception of a valid

authentication path. The straightforward method is to have each sensor node send a message to the

base station containing some previously agreed-upon confirmation code, e.g., Ai = PRFK′

i
(N‖OK)

where K ′
i is a key shared with the base station used only for this purpose (it can be generated

by hashing a master key Ki shared with the base station), N is a nonce or sequence number to

prevent replay, and OK represents the acknowledgement message. Since there is one such message

per node, sending all the messages to the base station directly would cause high congestion near the

base station. In the case where we are only interested in whether or not the entire network replied

with an affirmative confirmation, and not the exact set of nodes which responded, we can aggregate

these confirmation messages using XOR: each internal node in the topology waits to receive the

confirmation messages from each of its children, then computes the XOR of all received messages

with its own confirmation message and forwards the final result to its own parent. If all nodes

successfully verified the aggregation process, then the final confirmation value transmitted to the

base station is the XOR of all confirmation messages, i.e., PRFK′

1
(N‖OK)⊕· · ·⊕PRFK′

n
(N‖OK).

Since the base station has knowledge of all the secret keys used in the construction of this aggregate

confirmation message, it can reconstruct what it should expect to receive if every node did indeed

reply with a confirmation. If the results do not match, then we can infer that some node did

not correctly respond with its confirmation message. We first presented this kind of aggregate

confirmation code as part of the secure hierarchical aggregation algorithm [17]; it was subsequently

analyzed in a more general and formal context by Katz and Lindell [44].

4.4. NETWORK-WIDE AGGREGATED ACKNOWLEDGEMENT 25

A straightforward generalization of this primitive allows confirmations of specific values rather

than just binary acknowledgements. For example, if we desire to confirm that each node i received

the same broadcast message M , then the confirmation code for node i could be Mi = PRFK′

i
(N‖M).

4.4.1 Network-wide Confirmations on a Computed Value

This process of network-wide confirmation can be generalized to ensure that all nodes agree upon

a specific computed value. For example, if we desire to confirm that each node i performs some

computation with the expected result ri (where ri is known to the base station), then the confir-

mation code for node i could be Mi = PRFKi
(N‖ri). This allows the base station to implicitly

confirm that each node has computed their respective correct results ri.

26 CHAPTER 4. A PROTOCOL FOR HASH TREE CONSTRUCTION

Chapter 5

Authenticated Broadcast

In this chapter we show how the HT functionality presented in Chapter4 can be used to generate

an authenticated broadcast primitive. Specifically, this primitive enables the base station to send

an authenticated broadcast message M such that all nodes can verify that M truly originated from

the base station.

5.1 Problem Statement and Assumptions

The Broadcast Authentication functionality can be informally described as follows: the base station

constructs a message M , which is disseminated to all nodes in the network. Each node accepts

M only if M is a legitimate message from the base station. Our goal is to achieve existential

unforgeability under adaptive chosen-message attack: in other words, the adversary is allowed to

cause the protocol to execute for a polynomial number of messages M1, . . . , Mk chosen adaptively

by the adversary; if the adversary is subsequently able to cause some legitimate node v to accept

any M ′ which was not in M1, . . . , Mk and was never sent by the base station, then the adversary is

said to have successfully attacked the protocol. In a secure broadcast authentication scheme, the

chances of success should be negligible in the security parameter.

In this chapter, in addition to the assumptions of Section 3.2, we require the additional prior

assumption that the network topology is static and known to the base station.

27

28 CHAPTER 5. AUTHENTICATED BROADCAST

(a) Using unicast (b) Using the HT functionality

Figure 5.1: Disseminating per node MACs: Naive method and HT method

5.2 Using HT for Broadcast Authentication

Before describing the details of the algorithm, we first describe the intuition behind the approach.

Consider a base station which shares a unique secret key Ki with each sensor node i. To authenticate

message M to node i, the base station can attach a message authentication code (MAC) using the

key they share, e.g., MACKi
(N‖M) (the nonce / sequence number N is used to prevent replay of

M in the future: we assume the nodes keep track of which nonces have been used, and nonces have

a fixed length). However, since each MAC for each sensor node uses a different key, unicasting

a different MAC to each node in the network is very inefficient, incurring O(n) congestion in the

worst case (see Figure 5.1(a)).

Instead of using a separate unicast of a MAC to each node, we can use a hash tree to “batch”

the entire set of authenticators into a single structure. Specifically, construct a hash tree whose set

of leaves is the set of MACs of M , one for each receiver node, where each MAC is computed using

the key shared with the base station and the receiver node. In this application we use a keyed PRF

as a MAC, hence the set of batched PRF values would be {PRFK1
(N‖M), . . . , PRFKn

(N‖M)}.
Let the root vertex of the hash tree be r. Then, for each node i, assuming that node i itself has

never divulged the value of PRFKi
(N‖M) in the past, exhibiting the value r suffices as proof of the

ability to independently compute PRFKi
(N‖M) since r was computed via a sequence of collision-

resistant hash functions evaluated with PRFKi
(N‖M) as an input. In other words, we can show

that it is computationally infeasible for an adversary that does not know Ki or PRFKi
(N‖M) to

produce a new pair M ′, r′, N ′ in such a way that H [0‖PRFKi
(N ′‖M ′)] is a leaf vertex in some hash

5.2. USING HT FOR BROADCAST AUTHENTICATION 29

tree with root r′. Note that in such a construction, each node only needs to verify the inclusion

of its own PRF value as an input to a leaf in the hash tree; the PRF values of other nodes are

irrelevant.

The HT functionality is well-suited for efficiently generating and disseminating exactly such a

hash tree. The details are shown in Figure 5.1(b). We assume that the base station is a priori

aware of the specific method used by HT to construct the hash tree, i.e., given the list of leaf data

values, the base station is able to replicate the hash tree constructed by HT .

To construct an authentication tag for a message M , the base station internally replicates the

hash-tree construction of HT using the leaf values {PRFK1
(N‖M), . . . , PRFKn

(N‖M)} where

Ki is the key shared with node i and N is a nonce that is never re-used. Once the root r of the

hash tree is computed, the base station can then broadcast the triplet (M, r, N). To authenticate

M , each node first checks that it has never seen N before, then performs the HT protocol using

PRFKi
(N‖M) as the input Li to its hash tree leaf value ui = H [0‖Li]. The network recomputes

the hash tree via the HT protocol and releases the relevant verification information to each node

i allowing it to verify that ui is indeed a leaf of the hash tree with root r. If the node successfully

verifies this then it can accept M as authentic.

Algorithm 1 Authenticated Broadcast using HT Functionality

Require: Nonce N not previously used; Message M
1: Base station simulates the operation of HT on the leaf vertex definitions Li = PRFKi

(N‖M),
computes root vertex r.

2: Base station broadcasts (M, r, N).
3: Each node i checks that N was not previously seen; if so, stop.
4: Otherwise, release Li = PRFKi

(N‖M).
5: Nodes collaborate to implement HT functionality, recomputing the hash tree with root r.
6: As per HT functionality, verification paths are disseminated back to the nodes after hash tree

is computed.
7: Each node i verifies that ui = H [0‖Li] is a leaf vertex in hash tree with root r, with correct

authentication path shape.
8: If verification successful, node i accepts M .
9: (Optional) Base station can request a network-wide ACK by implementing verification confir-

mation functionality over confirmation messages Ci = PRFK′

i
(M‖r‖N‖ACK) where ACK is a

unique identifier indicate broadcast authentication success.

30 CHAPTER 5. AUTHENTICATED BROADCAST

5.3 Security Analysis

It is computationally infeasible for an adversary to produce a triplet (M ′, r′, N ′) that correctly

verifies for any legitimate node i in the network. This is because, assuming the adversary does not

know PRFKi
(N ′‖M ′) (since the evaluation results of the PRF are unpredictable if Ki is unknown

to the adversary), the adversary is computationally unlikely to be able to (a priori) deduce an r′

that it knows can be the root of a hash tree containing PRFKi
(N ′‖M ′). Even though the value

PRFKi
(N ′‖M ′) is subsequently released, since the adversary must commit to r′ before learning

PRFKi
(N ′‖M ′), the adversary cannot (with non-negligible probability) find an authentication path

linking PRFKi
(N ′‖M ′) to r′ unless it can also break the collision resistance of the hash function.

Under this basic idea, we can produce two formal proofs of security for the broadcast authentication

protocol. The two proofs use different assumptions: the first proof assumes that the hash function

is a good simulation of a random oracle; the second proof only requires that the hash function

be collision-resistant, but requires a further assumption that the shape of authentication paths for

each node are known to the respective nodes.

5.3.1 A Proof under the Random Oracle Model

We consider the following adversary-vs-challenger security game (Game 0) for the protocol. Follow-

ing standard cryptographic analysis, we condense the nonce and message into the same bitstring M ;

the adversary’s task is to find some bitstring M not previously authenticated by the base station

and convince a legitimate node to accept M as authentic.

• The protocol is initialized as normal for n nodes and all receiver nodes are given their respec-

tive keys.

• The adversary selects a target receiver i. The challenger provides the adversary with the keys

and states of all receivers that are not i.

• The adversary is allowed to send adaptive queries Mi to the challenger which responds with

Tj = PRFKi
(Mj) for j = 1, . . . , q.

• The adversary now sends M, r to the challenger where M 6= Mj for j = 1, . . . , q.

5.3. SECURITY ANALYSIS 31

• The challenger responds with PRFKi
(M)

• The adversary now sends Pi which is an authentication path taking PRFKi
(M) to r

• The adversary wins if Pi takes PRFKi
(M) to its preselected vertex value r.

We first analyze the security of a related game (Game 1) where each PRFKi
is replaced with

a random function fi. If we assume that authentication paths must of of a fixed shape for each

node i, the security of Game 1 can be proven using a reduction to attacking the collision resistance

of the hash function h: this proof is shown in the subsequent Section 5.3.2. We present a shorter

proof of a weaker security property that does not assume knowledge of authentication path shape;

we show that Game 1 is secure if the hash function h : R×R→ R is replaced by a random oracle.

We can show that the protocol is as secure as other protocols in the random oracle model, i.e., any

feasible attack on the protocol must involve finding some feasible exploit of the internal structure

of the hash computation.

Let q1 be the number of random oracle queries made by the adversary before learning fi(M)

(which is the Game 1 counterpart of PRFKi
(M) in Game 0). With probability at least 1− 2q1/|R|

the adversary has never queried the random oracle on fi(M) as a left or right input. In this case,

adversary has no relevant information that can help to find an oracle queries with fi(M) as an

input and outputting a specific target value. Let q2 be the number of random oracle queries made

by the adversary after learning fi(M). Now the adversary must find a sequence of oracle queries

with fi(M) as an input and ending in r. The only way to search for such a sequence is to iterate

the oracle on fi(M) to find some path starting with fi(M) that overlaps with a known path ending

in r. Since the hash function takes two arguments, there are at most 2q1 values that are known

partial pre-images of r (this upper bound occurs in the unlikely worst-case scenario where every

one of the first q1 queries to the random oracle happened to result in r). If, by iterating the oracle

on values derived from fi(M), the adversary lands on any of these 2q1 values, then it has derived an

authentication path from fi(M) to r. Each time the adversary queries the oracle, there is a 2q1/|R|
chance of successfully landing on a preimage of r. By the union bound the chances of success after

q2 queries is at most 2q1q2/|R|. Summing over these events, the probability of success is at most

2q1(1 + q2)/|R| which is negligible for q1, q2 polynomial in the security parameter log |R|.

32 CHAPTER 5. AUTHENTICATED BROADCAST

It remains to show that converting from Game 1 to Game 0 confers an additional advantage

no more than the distinguishability advantage ǫF of the PRF. We prove this in the usual way by

constructing a distinguisher D for PRFKi
and random function fi from an adversary A for Game

0. Given oracle access to a function F , we implement Game 0 substituting F for PRFKi
; hence

if F is pseudorandom then the game is equivalent to Game 0, if F is a random function then it

is equivalent to Game 1. The distinguisher D runs adversary A on the game; and outputs 1 if A

succeeds and 0 otherwise. If adversary A has a significantly different chance of success in game

0 vs game 1 then D has a significant chance of distinguishing the PRF from a random function;

hence the advantage of A in Game 0 must be no more than ǫF higher than the advantage bound

on adversaries in Game 1.

One implication of this security proof is that |R| must be sufficiently large that 2q1q2/|R| is

neglible; typical values used to ensure collision-resistance against brute force search suffices for this.

5.3.2 A Proof assuming Hash Function Collision Resistance

We present another security proof that makes a weaker assumption on the properties of the hash

function but a stronger assumption on the preloaded information on each node. We show that if

the hash function is collision resistant, and each node knows the logical shape of its authentication

path, then the broadcast authentication scheme is secure. The shape of an authentication path

of a node u is defined as an unambiguous encoding of the topology of the authentication path

from the leaf vertex Lu of u up to the root of the hash tree. It can be encoded as a sequence

of numbers indicating which edge is taken on the path from the root to the leaf. For example,

in the authentication path shown in Figure 4.1, the shape of the path to u can be encoded as

“left,right,left” in a binary tree, or “1 of 2, 2 of 2, 1 of 2” in a more general tree. The notion is

that each path shape specifies unambiguously a vertex in the hash tree.

We use a different proof for the security of Game 1 in the proof of Section 5.3.1. We show any

adversary that can win Game 1 with non-negligble probability can be used as subroutine to break

the collision resistance of H with non-negligible probability.

Let A be a adversary attacking Game 1. We assume that A is deterministic, i.e., for any random

choices made by A, it takes as its source of randomness an input of some sequence of random bits

5.3. SECURITY ANALYSIS 33

R. We further assume that A can be reset, i.e., returned to the initial state in which it started the

Game, including all memory and state variables. Let the probability of A winning Game 1 be ǫA.

We construct an adversary B for attacking the collision resistance of the hash function H which

produces a hash collision with probability at least ǫ2A − 2−k where k is the security parameter (the

number of bits of each value output by the random function f).

Adversary B takes as input the hash function H and proceeds as follows. It generates a

(correctly randomized) random string of bits R for use as input to A. Adversary B then simulates

the challenger in Game 1 to adversary A, using the hash function H as normal. It makes note of the

random value y1 produced in step 5 of Game 0. If A does not win the game, B aborts with failure.

Otherwise, B resets A and re-runs the experiment of Game 1 with exactly the same parameters

(including the same random string R) except that in step 5 the random value is reselected at

random, resulting in a value y2 (which is distinct from y1 with high probability 1− 2−k). Since A

is deterministic and the inputs to A are identical before step 5, A will produce the same guess for

the root vertex of the hash tree r. If A again wins the game in the second round, B inspects the

sequence of hashes that take y1 to r in the first iteration of the game and the sequence of hashes that

take y2 to r in the second iteration of the game. If y2 6= y1, then we know two identically-structured

hash sequences take distinct inputs y1, y2 to the identical result r; this must imply a hash collision

at the first point where the two authentication paths result in identical values. If such a collision

is found the B reports success in breaking the collision resistance of H.

It remains to show that the probability of both experiments succeeding is substantial. While

each experiment is a legitimate run of Game 1 and must result in success for A with probability

at least ǫA, it is unclear if the correlation between the two experiments can negatively affect the

chances of both games being successful. Let X be the space of random coin flips of B during the

simulation of Game 1, prior to Step 5 and let Y be the space from which y1 and y2 are uniformly

selected at random; in this case Y = 0, 1k since the random function produces a random value of

k bits. Let I(x, y), x ∈ X, y ∈ Y be 1 if adversary A succeeds given that B makes the coin flips

represented by x and produces the challenge y in step 5; let it be 0 if A fails. Since A wins with

34 CHAPTER 5. AUTHENTICATED BROADCAST

probability at least ǫA over a random choice of x and y, we have that:

X
∑

x

Y
∑

y

Pr[x]Pr[y]I(x, y) ≥ ǫA

Equivalently, we can say that E[J(x)] ≥ ǫA where J(x) =
∑Y

y Pr[y]I(x, y) and the expectation is

taken over all x ∈ X. Let W be the event that both experiments succeed.

Pr[W] =
X

∑

x

Y
∑

y1

Y
∑

y2

Pr[x]Pr[y1]Pr[y2]I(x, y1)I(x, y2)

=
X

∑

x

Pr[x]

[

Y
∑

y1

Pr[y1]I(x, y1)
Y

∑

y2

Pr[y2]I(x, y2)

]

=
X

∑

x

Pr[x]

[

Y
∑

y

Pr[y]I(x, y)

]2

= E
[

J(x)2
]

Now by definition Var[J(x)] = E
[

J(x)2
]

−E[J(x)]2, and Var[J(x)] ≥ 0. Hence:

Pr[W] = E
[

J(x)2
]

= Var[J(x)] + E[J(x)]2

≥ E[J(x)]2

≥ ǫ2A

Hence the chances of both experiments succeeding is at least ǫ2A. We only have a collision if the

5.4. NONCE IMPLEMENTATION DETAILS 35

values chosen at step 5 were not the same, hence:

Pr[W] = Pr[W ∩ y1 6= y2] + Pr[W ∩ y1 = y2]

Pr[W ∩ y1 6= y2] = Pr[W]−Pr[W ∩ y1 = y2]

≥ Pr[W]−Pr[y1 6= y2]

≥ ǫ2A −
1

2k

Hence the probability of adversary B successfully deriving a hash collision is at least ǫ2A − 2−k. If

the hash function advantage bound for collision resistance is at least ǫH then we have ǫH ≥ ǫ2A−2−k

or ǫA ≤
√

ǫH + 2−k which bounds the advantage of adversary A to be negligible in the security

parameter. Similar to the proof in Section 5.3.1 we can then convert Game 1 to the original Game

0 with an additive factor of ǫF which is the distinguishability advantage bound of the PRF, yielding

a final advantage bound for the protocol of
√

ǫH + 2−k + ǫF .

5.4 Nonce Implementation Details

A potential implementation pitfall exists. Once a triple (M ′, r′, N ′) with a valid nonce N ′ is

received by node i, the node will release PRFKi
(N ′‖M ′) to allow the rest of the network to perform

distributed verification. The release of this value potentially allows an adversary to now compute

some new r′′ such that (M ′, r′′, N ′) will verify correctly and be accepted by node i. Hence it is

important that a nonce must never be re-used for the same key, e.g., they could be increasing

sequence numbers.

Keeping track of which nonces have been used introduces a new problem. Since we have to

remember which nonces have been used, random nonces are impractical. Suppose we use increasing

sequence numbers, and nodes keep track of the largest sequence number they have seen. Hence, a

node will only release its PRF value for triples with sequence numbers larger than the largest one

yet seen. This introduces a long-term denial of service attack where the adversary can shut down

a node for an extended period of time with a single spurious triple containing a large sequence

36 CHAPTER 5. AUTHENTICATED BROADCAST

number. To address this issue, we propose replacing the sequence number with a hash chain. A

hash chain is constructed by repeatedly evaluating a pre-image resistant hash function h on some

(random) initial value. The final result (or “anchor value”) is preloaded on the nodes and the base

station uses the pre-image of the last-used value as the nonce for the next broadcast. For example,

if the last known value of the hash chain was hm(IV), then the next broadcast would use hm−1(IV)

as the nonce. When a node receives a new nonce N ′, it verifies that N ′ is a precursor to the most

recently received (and authenticated) nonce N on the hash chain, i.e., hi(N ′) = N for some i

bounded by a fixed k of number of hash applications. This prevents an adversary from performing

sequence number exhaustion denial of service attacks since it would have to reverse the hash chain

computation to get an acceptable pre-image. The hash computations do present an additional

minor opportunity for a computational DoS (by flooding a node with multiple messages containing

invalid nonces, each of which must be checked to show it does not belong on the hash chain);

however since hash computations are efficient and the maximum number of hash computations per

message is bounded by some parameter k, such attacks cannot cause persistent outages. New nodes

entering the network can be sent their hash chain anchors via unicast: this is a one-time operation

and does not increase the congestion complexity of the protocol.

Since the hash chain is generated at the resource-rich base station (not on the nodes), it can

potentially be extremely long. When the base station wishes to generate a new hash chain, the

new anchor value can be efficiently broadcast to the nodes in the network using the remaining

values on the old hash chain. This renewal process is subject to disruption by adversary nodes in

the usual way (e.g., by releasing spurious leaf values to cause the hash tree authentication step to

fail). Hence, if hash chain renewal is performed too late (e.g., when the old hash chain only has a

few values remaining), then, if the renewal broadcasts are disrupted by the adversary, legitimate

nodes may not receive the new anchors. In this case the entire protocol must be reinitialized via

an expensive unicast from the base station to each node. To remedy this, hash chain renewals can

be performed early, when there is a sufficient number of remaining hash values such that a short

period of disruption attacks by an adversary does not result in exhaustion of the values in the

old hash chain. A continuous DoS by a stubborn adversary in every round of broadcasts can still

incapacitate the broadcast mechanism; as discussed in Section 3.2 we assume that such persistent

5.5. DISCUSSION AND ANALYSIS 37

adversarial behavior can be addressed out-of-band.

5.5 Discussion and Analysis

Like all protocols in this dissertation, the overhead of this protocol is a bound of O(log n) congestion

on all links in the network.

The algorithm is highly efficient in both communication and storage and has a clear advantage

over Multi-MACs and One-time signatures, both of which can be prohibitively large in size. Further-

more, it does not require public key cryptography which avoids the issues of having to implement

public key cryptography on resource-limited nodes or opening a vulnerability to resource-draining

public-key verification attacks.

In comparison with TESLA [66], our scheme does not require time synchronization. This

avoids the necessity for accuracy in the internal clocks on sensor nodes or for the need to perform

periodic secure time synchronization across the entire network, which would be yet another source

of communication overhead.

In comparison with Guy-Fawkes schemes, our scheme has the advantage of being able to recover

from partial reception. In the Guy Fawkes scheme, the broadcast message M is first disseminated

with MACK(M); the sender then receives acknowledgements from all receivers, and once the ac-

knowledgements are all received, then the key to the MAC K is disseminated to all receivers. The

key K is part of a hash chain and is hence self-authenticating; after receivers have obtained K, they

can then use it to verify the MAC. One disadvantage of delayed key dissemination is that as long

as a single receiver has not acknowledged reception of the broadcast message, the key cannot be

safely disclosed, since it may be used to forge a MAC that will be accepted by any receivers which

did not receive the original message. For example, if node i did not receive the original broadcast

message but the sender prematurely disseminates K, the adversary can then use K to construct

a forged message M ′ with a correct MACK(M ′) that will be accepted by node i. Hence, if any

receiver does not respond with a positive acknowledgement, the Guy Fawkes scheme terminates

without any form of recovery; a second round of network-wide broadcasts must then be made. In

contrast, with the HT -based scheme, suppose some node i could not receive the initial broadcast.

38 CHAPTER 5. AUTHENTICATED BROADCAST

The parent node j of i could note that i did not acknowledge the reception of the broadcast and

inform the base station. The base station can then selectively repair the protocol by just sending

the relevant value of PRFKi
(N‖M) to j. This allows j to effectively complete the protocol on

behalf of node i, rebuilding the hash tree such that the rest of the network can authenticate M .

This repair operation involves just a single unicast, and does not affect the security of the protocol,

because unlike in the Guy Fawkes case, the single value PRFKi
(N‖M) is not useful for computing

the PRF value on another forged message M ′. In particular if i eventually manages to restore its

connectivity, it can do so simply by verifying the known value of PRFKi
(N‖M). In this example

we discussed only repairing the protocol for a single unreachable node i; clearly this is directly

generalizable to any subset S of unreachable nodes with an increase in communication congestion

of |S| PRF values.

Chapter 6

Credential Dissemination

With the authenticated broadcast primitive described in Section 5, we now have the ability to

create and disseminate hash trees with root vertices that are authenticated by the base station.

One application of this is to use a single authenticated value (i.e., the root vertex of a hash tree)

to attest to the integrity of many different leaf values. In this section we consider the problem of

authentically binding information to specific nodes using this structure.

6.1 Problem Statement and Assumptions

Similar to the assumptions in Section 5, we assume the base station has full pre-knowledge of the

topology of the network.

The general formulation of the credential dissemination problem is as follows: suppose that each

node i has a label Li which is known both to itself and to the base station. Our goal is to enable

i to prove to an arbitrary node j that the label Li is legitimate, e.g., it was approved by the base

station and not fabricated by an adversary (which could be controlling node i itself). Intuitively,

we can think of the problem as issuing credentials Li to each node i such that the credentials are

existentially unforgeable under adaptive chosen-credential attack by an adversary. That is, the

adversary is given k rounds where it runs the protocol to attach arbitrary credentials to each node

(k is polynomial in the security parameter); subsequently, the adversary attempts to produce a

forged credential L′
i for node i (which may be malicious) to a legitimate node j, where L′

i was never

39

40 CHAPTER 6. CREDENTIAL DISSEMINATION

issued to i in the query phase. If node j accepts the credential, then the adversary has successfully

broken the credential scheme; for the scheme to be secure the probability of this successful attack

should be negligible in the security parameter.

The general information-binding problem described above is analogous to the task of efficiently

issuing credentials to large set of principals. Public key management is an important application

of this functionality.

6.1.1 The Public Key Management Problem

Public key management is one of the most important applications of the information-binding func-

tionality. With continued improvements in the performance of elliptic curve algorithms, public

key cryptography hardware and software are becoming increasingly feasible for low cost sensor

nodes. However, at the moment it is still unclear how to manage public keys in a sensor network.

There are two major problems with deploying asymmetric key cryptography related to public key

management.

Public key authentication. To prevent node-in-the-middle attacks, sensor nodes should not

accept public keys from any other sensor node except those with which it knows it should associate.

The standard method of implementing this is with a PKI, i.e., all public keys are certified (signed)

by a central authority (e.g., the trusted base station). This is subject to a battery-exhaustion

denial of service attack from an outsider who can bombard a legitimate node with thousands of

false public key certificates. This problem is particularly serious in sensor networks due to the

resource constraints of sensor nodes.

Public key revocation. As nodes die or are revoked from the network, their old public keys

must be invalidated. The simplest approach is a centralized approach: for each public key that a

node receives, the node must communicate with the base station to verify the current status of the

newly received public key. This is expensive in communication overhead and does not scale to large

networks. The standard distributed method for public key revocation is either for a node to keep

extensive certificate revocation lists (CRLs), or for authority signatures on public key certificates

to periodically time out. Neither approach is practical for sensor networks. CRLs are impractical

because sensor nodes cannot spare the RAM to exhaustively remember the identities of every dead

6.2. USING HT FOR CREDENTIAL DISSEMINATION 41

node. Certificate timeouts are also impractical since periodically unicasting a newly signed public

key certificate to every node in the network is prohibitively expensive.

6.2 Using HT for Credential Dissemination

We show that any form of credential binding and dissemination can be performed similarly to the

process described in Section 5. We focus on public key dissemination as a concrete case of this

functionality; in general this functionality can be used to bind and distribute any label to each

sensor node.

We use the HT functionality with leaf vertex values Li = (PKi, i, T) where PKi is the public

key of node i (which is known to both node i and the base station), and T is a sequence number

or timestamp which guarantees the freshness of the certificate. Similarly to Section 5, we assume

that the topology is static and the hash tree formation/dissemination algorithm HT is known to

the base station. Hence, the base station can, internally (i.e., without communicating with any

nodes), construct a hash tree with each of the Li as the leaves in an identical manner to the HT

functionality. The root r of this hash tree is then disseminated to the network using authenticated

broadcast. The method of Section 5 may be used for the authenticated broadcast. Depending on

the freshness method used, T may also be included in the authenticated broadcast (to invalidate

any old certificates). To prevent desynchronization, a network-wide acknowledgement of reception

of this broadcast is performed using the process described in Section 4.4. This ensures that all

nodes receive the most up-to-date root vertex r. Subsequently, each node releases its Li. Using

these as inputs to the leaf vertices, the HT functionality generates a hash tree with the same

root vertex r as was broadcast by the base station, and disseminates sufficient information to each

node to allow it to reconstruct the sequence of hashes leading from Li to r. Once each node has

successfully performed verification, then it can retain the information it used in verification for use

as a proof of validity to any other node in the network which also remembers or can verify that

r is a valid root vertex from the base station. To ensure that all nodes receive their respective

proofs of validity for their labels, one final round of the network-wide confirmation functionality is

performed. The algorithm is summarized in Algorithm 2. Note that Li can in fact be constructed

42 CHAPTER 6. CREDENTIAL DISSEMINATION

Figure 6.1: Use of HT as a Public Key distribution primitive

arbitrarily and hence the protocol supports the dissemination of arbitrary credentials, not just

public key certificates.

6.2.1 Composition with Authenticated Broadcast of Chapter 5

If we desire to use the method of Section 5 for the authenticated broadcast portion of this protocol,

the two protocols can be merged in a straightforward way to reduce the number of rounds of

communication.

A direct composition of the method for authenticated broadcast of Chapter 5 with the credential

dissemination protocol of Section 6 is as follows: First compute the credential hash tree Tc over leaf

vertex values Li to determine the root vertex rc of the credential tree, then invoke the broadcast

authentication method of Chapter 5 with M = rc. This involves computing a second hash tree Tb

over PRFKi
(rc‖N) and disseminating and checking authentication paths in Tb.

The direct composition method involves two trees Tc and Tb, one for credentials and one to

authenticate the root of the credential tree, and involves multiple runs of the HT protocol (once for

each tree). We make the observation that in fact the functionality of the two trees can be combined

into a single tree T . The crucial observation is the following generalization of the security argument

for the broadcast authentication protocol of Chapter 5:

Theorem 1. If the HT protocol is performed on leaf values consisting of the evaluation of a keyed

pseudorandom function on an input that contains a fixed length non-repeated nonce field as a prefix,

6.2. USING HT FOR CREDENTIAL DISSEMINATION 43

Algorithm 2 Public Key Dissemination using HT Functionality

Require: Certificate expiry time T ; Public keys PKi for each node i (known to BS and node i).
1: Base station simulates the operation of HT on the leaf vertex definitions Li = (PKi, i, T),

computes root vertex r.
2: Base station authentically broadcasts (r, T).
3: Each node, on reception, discards old root vertex and updates its current root vertex to r.
4: Verification confirmation functionality is used to ensure all nodes received the broadcast. If

not, stop.
5: Each node releases Li = (PKi, i, T).
6: Nodes collaborate to implement HT functionality, recomputing the hash tree with root r.
7: As per HT functionality, verification paths Pi are disseminated back to the nodes after hash

tree is computed.
8: Each node i verifies that ui = H [0‖Li] is a leaf vertex in the hash tree with root r.
9: Verification confirmation functionality used to check that all nodes received their correct veri-

fication paths successfully. If not, stop.

Public Key Authentication Procedure:

1: When node i declares its public key certificate Li = (PKi, i, T) to another node j, node i
authenticates Li by including the information to recompute verification path Pi.

2: Node j can authenticate that PKi is a valid key by recomputing the path Pi and checking that
it terminates in the most recent root vertex r.

then the root r of the hash tree constructed by the HT protocol is self-authenticating to receiver i if

it is sent to receiver i before i releases its leaf value. Self-authentication of r refers to the property

that it is hard for an adversary to find some r′ such that it can provide an authentication path for

a legitimate node taking its leaf value to r′.

Proof. We can in fact prove this directly using a minor modification of any of the proofs for

the broadcast authentication protocol in Chapter 5, i.e., by just slightly modifying the games in

Section 5.3.1 or Section 5.3.2 to prove the authenticity of the hash tree root r instead of the

broadcast message M . For brevity, here we present an argument that the security of the broadcast

protocol implies the theorem. We use the standard technique of first replacing the PRF with a

random function. Let A be an adversary that can break the self-authentication property of the

theorem, i.e., it can first choose some r′ so that upon being given a random value vi, it can then

find an authentication path taking vi to r′ within polynomial time with probability ǫ. Then we

construct an adversary B for the broadcast authentication scheme in the natural way: first B picks

an arbitrary message M ′ for forgery. Then B calls A to receive get its guess for the hash tree root

44 CHAPTER 6. CREDENTIAL DISSEMINATION

r′; then it queries its target node on M ′ to get the random value vi = PRFKi
(N‖M ′). This value vi

is then given to A which provides an authentication path taking vi to r′ with probability ǫ. Then B

gives the authentication path is then given to the target node i which will accept, thus the attack

succeeds with probability ǫ.

Note that the theorem is just a more general (i.e., weaker) form of the security theorem for the

broadcast authentication scheme, since if the theorem is not true then we can achieve arbitrary

message forgery for the broadcast authentication scheme and not just existential forgery.

We can now present the modification of the credential dissemination algorithm of Section 6.2 to

eliminate the need for an explicit round of broadcast authentication. We simply alter the definition

of the leaves of the hash tree. In the original definition of Section 4.2.1, the hash tree leaves were

defined as:

vi = 〈H [0‖Li]〉

Where Li were arbitrary bit strings. For the broadcast authentication application of Chapter 5,

each Li was a keyed PRF evaluation:

vi = 〈H [0‖PRFKi
(N‖M)]〉

We thus extend the definition to arbitrary bit strings Li for each node:

vi = 〈H [0‖PRFKi
(N‖Li)]〉

Where N is a non-reusable nonce. To prevent the adversary from flooding the network with

invalid nonces, the hash chain method of Section 5.4 may be used. This change removes the need

to distribute r using authenticated broadcast; unsecured broadcast will suffice. The rest of the

algorithm remains the same.

6.3. SECURITY ANALYSIS 45

6.3 Security Analysis

The protocol involves the dissemination of a hash tree throughout the network with an authenticated

root hash value. Correctness thus follows from the observation that, for each hash tree T with a

root hash value r, it is computationally infeasible for an adversary to find another hash tree T ′ 6= T

that also has root hash value r. If the protocol is completed successfully, then every unrevoked node

will have received its certificate and can compute the sequence of hashes to the publicly-known root

r; revoked nodes are not part of the tree and cannot produce any sequence of hashes to r.

A more rigorous proof follows. We show that a successfully forged credential must involve either

a forged root vertex r′ (thus breaking the broadcast authentication of r), or else the adversary can

derive a collision on the hash function H. We define the existential credential forgery game as

follows: For query rounds j = 1, . . . , k, the adversary can select arbitrary labels Li,j for each node

i = 1, . . . , n. The challenger responds by disseminating these Li,j as credentials, i.e., it constructs

a tree Tj with root vertex rj , sends rj to all nodes using authenticated broadcast, and sends out

Li,j to node i along with its authentication subtree Ti,j . We assume the adversary also receives all

these communications. After the query rounds are complete, the adversary can attempt to forge a

credential L′ (for an arbitrary node) where L′ was not in any of the previous queries, i.e., L′ 6= Li,j .

If the adversary can induce any of the nodes to accept this credential then it wins the forgery game.

Suppose the adversary did not forge a root vertex r′. Then the forged credential L′ has an

authentication subtree T ′ to a legitimate root vertex r. Since r is legitimate, there must be some

legitimate hash tree T with r as the root which does not have L′ as a leaf that was constructed

in one of the query rounds; the adversary thus knows this entire tree T . We show an adversary

B attacking the collision resistance of H. Adversary B performs a traversal of the vertices in the

authentication path in T ′, starting at the root r and proceeding with increasing depth. Let the

vertex v′j on the authentication path at depth j, and vj be the corresponding vertex at the same

position in T . At the beginning of the iteration for depth j (starting at depth 0), we have that

v′j = vj (at depth 0, they are both identically r). We have three cases. If both vertices are leaf

vertices, v′j = H [0‖L′] and vj = H [0‖L] where L 6= L′ since T does not contain L′ as a leaf. Hence

we have found a hash collision. If one of vj , v
′
j is an internal vertex and the other is a leaf vertex,

46 CHAPTER 6. CREDENTIAL DISSEMINATION

then the internal vertex is computed from H [1‖ · · ·] but the leaf vertex is computed from a hash

computed over a different value: H [0‖ · · ·], since vj = v′j this implies a hash collision. If both

vertices are internal vertices in T and T ′, we can compare the child vertices of v′j in T ′ to the child

vertices of v′j in T . If they are different in any way, then we have found a hash collision. If they

are the same, then we continue on the to next depth down. If B cannot find any collisions in the

entire traversal then T ′ ⊆ T , implying that L′ was a leaf in T which is a contradiction.

Hence, if the adversary’s advantage in attacking the broadcast authentication is at most ǫBA,

and the adversary’s advantage in attacking the collision resistance of H is at most ǫCR, then the

advantage of the adversary in generating a forged credential is at most ǫBA + ǫCR.

6.4 Performance Analysis

The public key dissemination method described in this section incurs O(log n) congestion overhead,

and can be used to either refresh keys periodically or as needed to revoke old keys. The HT method

of public key management has two advantages over conventional mechanisms:

1. The certificate-verification attack is negated because authenticating a public key only requires

O(log n) hash function evaluations, which is significantly faster than a public key signature

verification for any network of reasonable size.

2. Public key revocation is greatly simplified: each time a node is revoked, the base station

reforms the topology around the revoked node (via a series of authenticated unicasts to the

nodes affected by the change) and then repeats the public key binding algorithm for a total of

O(log n) congestion overhead. Given that node revocations are infrequent occurrences, this

is a significantly lower overhead than periodically unicasting newly signed certificates to each

node, and also does not require the use of node revocation lists.

3. Instead of explicit revocation, if we assume loose time synchronization, we can efficiently

deploy time-limited certificates in the network. Suppose we wish each public key certificate

to be valid for at most T time periods; then every T time periods the network can repeat

the public key binding algorithm for just O(log n) congestion overhead instead of having to

6.5. FURTHER APPLICATIONS 47

re-distribute new certificates to every node in the network.

One potential drawback of using the HT functionality in this manner is its vulnerability to denial

of service attacks. Specifically, a malicious node in the algorithm can sabotage the hash tree

dissemination process causing the verification of legitimate nodes to fail. However, such an attack

is much less severe than the certificate-revocation attack because: (a) it is easily detectable (via

the verification confirmation functionality in the algorithm) and, once detected, countermeasures

can then be taken to locate and revoke the malicious node; (b) the attacker can only disrupt one

round of the algorithm per attack, with no lasting impact on the network, instead of being able to

completely drain the physical battery reserves of a given node; (c) the attacker can only perform the

attack from inside the network using a compromised node instead of being able to freely perform

the attack from an external device outside of the network.

Hence, using the information-binding functionality in this manner to perform public key man-

agement addresses a difficult problem in a highly efficient manner.

6.5 Further Applications

Public key management is only one example of the usefulness of the HT structure in authoritatively

binding information to a specific node. In general, the same algorithm can be applied to create

a publicly verifiable attestation to the veracity of any deterministic node property. We call the

general property the “information-binding functionality”. We include a short list of some briefly

described examples to highlight its generality and usefulness.

Network access prioritization. In certain applications, nodes with tighter requirements on

latency or bandwidth may need prioritized access to the network. For example, more aggressive

MAC layer access, or prioritized traffic queues. The information binding functionality can be

used to efficiently bind priority levels to nodes such that any neighbor node can readily verify the

authorized priority level of a node.

Local topology control. The only topology that is required to be static for the purposes of

applying the HT functionality is the aggregation tree structure; nodes may be free to associate

with other nodes within their immediate neighborhood to exchange sensed information or for coor-

48 CHAPTER 6. CREDENTIAL DISSEMINATION

dination functions such as sleep scheduling. Topology control may be necessary in such situations

to prevent a given node from associating with nodes outside of its designated neighbor set. This

can be implemented with an authorized neighbor list bound to each node.

Node type credentials. Nodes should not be able to masquerade as entities that they are not.

For example, a light switch should not be allowed to claim that it is a fire alarm. Credentials

binding nodes to their roles can be used to prevent this kind of unauthorized claims by malicious

nodes.

Coordination schedules. Deterministic schedules can be bound to nodes. For example, to ensure

a fair rotation as cluster head node, to ensure sensor coverage in sleep scheduling, and to ensure

uniform power consumption. Publicly verifiable bindings of specific schedules to nodes can allow

local groups to work out fair schedules without fear of cheating. For example, if a deterministic

random sequence is bound to each node, this can be used to arbitrate which node gets to be cluster

head at any given time.

Chapter 7

Node-to-Node Signatures

The HT functionality can be further applied to create a node-to-node signature scheme requiring

only each node to share a secret key with the (universally trusted) base station. A node-to-

node signature scheme allows any node u to create arbitrary messages which will be recognised as

authentically from u by any other node v in the network, even if v had no prior contact with u.

Consider the following simple solution: for each node i, the node sends its message Li (au-

thentically, using the secret key shared with the base station) to the base station. When node i

wants to prove the authenticity of Li to another node j, it just instructs j to check with the base

station. Since the base station is completely trusted to tell the truth, we achieve all the proper-

ties we require. Unfortunately having every authentication go directly through the base station is

prohibitively expensive in terms communication congestion.

Our observation is that, through the use of a hash tree, the base station can efficiently “batch

authenticate” the origin of an entire set of messages L1, . . . , Ln by just authenticating the root

vertex r of the hash tree constructed over these messages. The verification path of each Li to the

root vertex r then acts as a proof of authenticity which can be verified by any node that also knows

the veracity of the root vertex r.

We will follow a similar protocol to that of Chapter 6, but with the per-node labels Li now

independently chosen by the nodes instead of selected by the base station. Since the base station

now cannot precompute a hash tree over the relevant labels Li, we let the network perform this

49

50 CHAPTER 7. NODE-TO-NODE SIGNATURES

computation; to verify that the computation was correct, we must allow for each node to inde-

pendently check its own label in the computed hash tree. Once this check is completed, we can

then use the network-wide acknowledgement primitive (Section 4.4) to confirm this to the base

station, which will the release an authentication of the computed hash tree root r. This allows the

respective Li to be authenticated just by producing their respective verification paths in the hash

tree.

7.1 Problem Statement and Assumptions

Similar to the assumptions in Section 5, we assume the base station has full pre-knowledge of the

topology of the network.

The Node-to-Node signature problem is defined as follows: suppose each node i in the network

has a message Li (where Li could be arbitrarily chosen by i itself, with the base station unaware

of this choice). We wish to provide the capability for each node i to create a single tag (signature)

indicating that i was responsible for Li. This signature should be verifiable by any other node in

the network, i.e., it should have the non-repudiation property (given the signature as evidence, i

cannot deny that it was responsible for Li).

Furthermore, the signature scheme should be existentially unforgeable under an adaptive chosen-

message attack; i.e., the adversary is first given oracle access to the protocol for generating signa-

tures for a set of node-message pairs, and then is challenged to find some node-message pair i, m

that was not previously queried, where i is legitimate, such that some legitimate node j will accept

that m was from i.

7.2 Using HT for Node-to-Node Signatures

Before the algorithm can be executed, we must first bind each node identity to a specific verification

path of the hash tree. We assume that the node topology is static and known to the base station.

For a given HT algorithm operating on a fixed topology, assuming that each node contributes

exactly one vertex to the hash tree, each node must have a fixed path from its vertex to the root

of the hash tree constructed by HT . The base station can compute this verification path from

7.2. USING HT FOR NODE-TO-NODE SIGNATURES 51

its knowledge of the topology and the HT algorithm, and can thus bind the path to the node

identity using the protocol of Section 6. Note that this path is constant regardless of the data

value contributed by the node to the HT functionality; in a network with (mostly) fixed topology

this binding only needs to be performed each time the topology changes. We assume that each

topological binding b has an identifier sb (e.g., a sequence number that increases by one each time

the topology changes and a new binding is issued to the nodes). This identifier is embedded into

the binding of nodes to paths; specifically, in binding b for each node with identifier IDi, we bind

the tuple 〈sb, Pi, IDi〉 indicating that in the topological binding sb, node IDi has path Pi.

As mentioned, the intuition behind the algorithm is that the base station performs a “batch

authentication.” The algorithm proceeds in the following steps: (1) HT constructs a hash tree over

the set of values to be authenticated; (2) each node i checks that Li is in the correct position in the

hash tree and (3) the base station confirms this to all nodes using an additional self-authenticating

broadcast.

We make the standard assumption that the messages Li have some property that makes them

useless for replay (e.g., timestamp, or sequence number, or application-level message idempotency).

The details of the algorithm are as follows: each sensor node i inputs its Li to the HT protocol,

which then constructs the hash tree in the usual way. The root r of this hash tree is reported

to the base station. The base station then authentically broadcasts to all nodes the message

〈r, sb, H [N ′]〉 where sb is the identifier for the current topological binding, N ′ is a randomly chosen

nonce and H [·] is a pre-image resistant hash function. Note that the method of Section 5 can

be used for the authenticated broadcast. The HT functionality provides the requisite information

such that each node can perform distributed verification (i.e., each node i recomputes the hash tree

vertices from its leaf vertex Li to the authenticated root vertex r). An important additional step

is performed during this verification: each node i must check that the verification path computed

in this process is exactly the authenticated verification path Pi that is bound to its ID prior

to the algorithm. Verification confirmations are collected from all nodes with the verification

confirmation message from node i being PRFK′

i
(r‖sb‖H [N ′]‖OK). If the base station determines

that all distributed verification has succeeded, then it broadcasts the value N ′ (this message is

self-authenticating since H [N ′] was part of an earlier authenticated broadcast). This means that r

52 CHAPTER 7. NODE-TO-NODE SIGNATURES

should be considered valid and can be used to verify the authenticity of messages from other nodes.

Once the value N ′ is received by a node, a final round of verification confirmations is performed

using PRFK′

i
(r‖sb‖N ′‖OK) as the confirmation message.

After this process, a node i can authenticate its message Li to node j as follows. As a signature

over Li, Node i transmits to node j all the verifying information it used in the distributed verification

step it performed (i.e., j gets enough information to reconstruct the path from Li to r). Node i

also transmits the binding of its verification path to its identity (for the topological binding with

identifier sb). Upon reception, Node j checks that the value r is a valid root vertex, i.e., in some

earlier phase, the hash pre-image N ′ was released by the base station indicating that all nodes

(including i) must have successfully completed distributed verification over r prior to this. Node

j also checks that when r was broadcast by the base station, the topological binding identifier

associated with r is sb. Node j then verifies Li using the information provided by Node i, confirming

that the verification path is indeed the one bound to node i’s identity (in the topological binding

sb) and that the final root vertex computed is r. If the checks complete successfully then Node j

knows that Li must have been originated from node i. Since the verification process is identical for

all nodes, node j can retain all the verification information it used and use it to prove the origin

of Li to any third-party node j′. This shows the non-repudiable quality of the signature, i.e., once

i proves to j that it originated Li, it cannot retract that claim since the proof that j now holds is

publicly verifiable. The algorithm is summarized in Algorithm 3.

Note that we are unable to apply the arguments of Section 6.2.1 for making the hash tree root

self-authenticating in this case, because the root value r is only computed after nodes have revealed

their leaf values.

7.3 Security Analysis

A proof sketch of unforgeability follows. Suppose that an adversary was able to present to some

node j a successfully forged message L′
i 6= Li purportedly from some legitimate node i. Let r be the

hash tree root computed by j. Since j accepted the message authentication, it must have received

N ′, 〈r, sb, H [N ′]〉 in a prior authenticated broadcast; if the adversary did not successfully forge

7.3. SECURITY ANALYSIS 53

Algorithm 3 Signature Scheme using HT Functionality

Require: Replay-resistant messages Li for each node i
Require: Each node i bound to a fixed verification path topology with a proof P ′

i and a binding
identifier sb (See Section 6)

1: Each node releases Li.
2: Nodes collaborate to implement HT functionality, recomputing the hash tree with root vertex

r.
3: Root vertex r is reported to the base station. Base station picks a random N ′ and disseminates

(r, sb, H [N ′]) using authenticated broadcast
4: As per HT functionality, verification paths Pi are disseminated back to the nodes after hash

tree is computed.
5: Each node i verifies that ui = H [0‖Li] is a leaf vertex in the hash tree with root r via its fixed,

known verification path.
6: Verification confirmation functionality (with Ci = PRFK′

i
(r‖sb‖H [N ′]‖OK)) used to check that

all nodes succeeded in verification. If not, stop.
7: Base station broadcasts N ′

8: Upon reception of N ′, nodes store r as being usable for authentication.
9: Verification confirmation functionality (with Ci = PRFK′

i
(r‖sb‖N ′‖OK)) is used to ensure all

nodes received the broadcast. If not, stop.

Message Authentication Procedure:

Require: Sender i, Receiver j, Message Li

1: Node i transmits Li, r along with information to recompute its verification path Pi and proof
of correct path topology P ′

i .
2: Node j checks that r is a valid root vertex, recalls the topological binding identifier sb that

was associated with r, then verifies that Li is a descendant of r in the position expected of i as
established by P ′

i for binding identifier sb.

54 CHAPTER 7. NODE-TO-NODE SIGNATURES

this broadcast message then it is from the base station. The base station would only release this

broadcast if the authenticated acknowledgement phase completed successfully; unless the adversary

successfully attacked the authenticated acknowledgement primitive, this implies that node i has

successfully verified the inclusion of Li in the hash tree with root vertex r, in the location bound

to its ID in the topological binding sb. Assuming that the topological binding is authentic, L′
i 6= Li

implies a hash collision somewhere in the verification path that j computed and the verification

path that i computed (the reasoning is similar to the argument presented in Section 6.3). In sum-

mary, the adversary has to break the broadcast authentication protocol, the aggregated authentic

acknowledgement protocol, the credential binding protocol, or the collision resistance of the hash

function. Let the advantage bounds for the adversary in attacking the broadcast authentication

protocol, aggregate authenticated acknowledgement, and hash collision resistance be ǫBA, ǫAAA and

ǫCR respectively. Then, substituting the result from Section 6.3, the advantage of the adversary in

forging a node-to-node signature is no more than 2ǫBA + ǫAAA + 2ǫCR.

7.4 Performance Analysis

The authentication primitive described in this section allows the protocol designer to build protocols

where nodes can construct messages that can be origin-authenticated by any other node in the

network. Previously, the only known method for such a capability involves the use of public-key

cryptography; our scheme uses only symmetric key cryptography. More significantly, the protocol

does not involve any kind of prior key establishment algorithm to provide this authenticity: each

node only needs a single unique key shared with the base station.

We note that not only does the authentication structure give unforgeability (i.e., integrity and

source verification) properties, it also has the property of non-repudiation in the sense that once a

message with an authentic tag of this form is released, the originating node cannot plausibly deny

that it was responsible for creating the message (assuming the base station is not compromised).

This makes this authentication structure somewhat more useful than, for example, a MAC using

a shared secret key between two nodes (where the originating node can always claim that the

verifying node was the one which actually originated the message). Based on this property, it is

7.5. APPLICATIONS OF NODE-TO-NODE SIGNATURES 55

clear that such tags can be used to create publicly-verifiable commitments; such commitments can

be used, for example, to expose nodes which attempt to cheat in a protocol.

The overhead of the scheme is a signature of length O(log n), the generation of which causes

O(log n) congestion in the network.

7.5 Applications of Node-to-Node Signatures

The use of node-to-node authenticated broadcast in constructing general resilient applications are

too numerous to discuss in detail. Some examples include: allowing node cluster heads to authen-

tically broadcast schedules to their children; authenticated broadcasts of node power levels (e.g.,

for traffic shaping); authenticated routing distance metrics (for secure routing). In this section we

briefly focus on some examples of uses of the authentication primitive in constructing other basic

security protocols.

Multi-message Signatures

A basic limitation of this HT -based signature scheme is that nodes must generate signatures in

coordinated network-wide phases; each phase allows each node to generate an authenticator for an

arbitrary message Li. In the case where a node has several messages M1, . . . , Mk that it may wish

to authenticate in a given phase, it could generate a hash tree over these k messages and set Li

to be the root of the tree. Then each message Mi could be individually authenticated by showing

that Mi is a leaf in the hash tree rooted at Li. Clearly, the messages M1, . . . , Mk must be fixed

prior to executing the network-wide phase and cannot be changed once Li has been signed. For a

more flexible signature method, we can assign each Mi as the “public key” of a one-time signature

(such as Merkle-Winternitz signatures [61]). The nodes may then use these authenticated one-

time public keys to sign up to k fixed-length messages at any time without needing network-wide

coordination. If loose time synchronization is available, then broadcast authentication techniques

like µTesla are more efficient and can effectively authenticate a much larger number of messages

without byte-length constraints. We describe the details below.

56 CHAPTER 7. NODE-TO-NODE SIGNATURES

Initializing Hash Chains for µTesla.

The HT -based signature primitive described in this section complements nicely with the µTesla

broadcast authentication scheme described by Perrig et al. [68]. When the HT -based signature

scheme is used to bootstrap µTesla, the two schemes cover each other’s weaknesses. The HT -based

signature has the following weaknesses: (1) inflexibility: it requires the entire network to participate

in signing one message from each node; (2) long signatures: each signature carries O(log n) hash

values of authenticating information. The µTesla scheme does not suffer either of these weaknesses

but instead has the drawback of being troublesome to bootstrap: it requires a per-source hash chain

“anchor” value to be somehow loaded onto every verifying node. Due to these issues, µTesla is

typically only used for authentication from base station to node. The HT -based signature scheme

enables node-to-node use of µTesla, because it provides an easy way to reload hash chain anchors

onto the receiving nodes. When used in this fashion the drawbacks of HT -based signatures are

minimized since, due to the time-synchronized nature of µTesla, all nodes need to refresh their hash

chain anchors at approximately the same time. Once the hash chain anchors are initialized on the

receiver nodes, the more efficient and flexible µTesla can be used for broadcast authentication.

Distributed Node Revocation.

One application of this authentication primitive is in the distributed revocation protocol of Chan

et al. [14]. In that protocol, when one node u detects another node v to be acting maliciously, a

local broadcast (i.e., a broadcast transmission to all nodes in the neighborhood of v) is used to

issue “revocation votes” against the detected node, such that if enough neighbors vote indicating

they believe v to be malicious then v is ejected from the network. The original protocol required

the use of deterministic key establishment schemes (e.g.,the random pairwise scheme [16]). In such

key distribution schemes, for each node v, there exists a fixed set of nodes Sv each of which shares a

preloaded key with v. In the revocation scheme, each of the nodes in Sv is thus given a revocation

vote against node v and these votes are authenticated using a hash-tree mechanism with the votes

as the leaves. Since each of these votes (and their authenticating information) needs to be stored

on the node, this yields a massive memory overhead: each node must store around |Sv| revocation

votes each of which requires O(log |Sv|) authentication information; since |Sv| = O(n), this means

7.5. APPLICATIONS OF NODE-TO-NODE SIGNATURES 57

O(n log n) 128-bit hash values must be a-priori loaded onto each sensor node. Furthermore, since

the nodes that share a pairwise keys with a given node are a subset of the neighbors of a given node,

only a small subset of a given node’s neighbors can issue a revocation vote against it. With the use

of the HT -based signature scheme, distributed revocation can now work independently of the key

distribution scheme, because any node u can issue a signed message voting for the revocation of

any other node v. This signature can be verified by any other node without needing any additional

preloaded information except for the single key that node shares with the base station. Specifically,

each node can create a message voting for the revocation of each of its neighbors in the network,

and authenticate each of them in a single pass of the HT -based signature protocol using the multi-

message signature of Section 7.5. This reduces the storage overhead of the scheme to O(log n + δ)

for a node with δ neighbors. This greatly increases the practicality of distributed node revocation.

58 CHAPTER 7. NODE-TO-NODE SIGNATURES

Chapter 8

Secure Data Aggregation

The problem of secure data aggregation is motivated by the particular problem of securely and

efficiently performing aggregate queries (such as median, sum and average) on sensor networks.

In-network data aggregation is an efficient primitive for reducing the total message complexity of

aggregate sensor queries. For example, in-network aggregation of the sum function is performed by

having each intermediate node forward a single message containing the sum of the sensor readings

of all the nodes downstream from it, rather than forwarding each downstream message one-by-one

to the base station. The energy savings of performing in-network aggregation have been shown to

be significant and are crucial for energy-constrained sensor networks [81, 40, 54].

In this section we explore the general problem of securing in-network computation. Informally,

we consider a computation which takes as inputs various unknown sensor readings in the network

and outputs a result to the base station. This distributed computation is performed in-network,

by having sensor nodes compute and exchange intermediate results with each other before the

final result is passed to the base-station. Given that a number of nodes in the network may be

maliciously modifying the intermediate results of certain subcomputations, we would like to bound

the amount of deviation that can be caused from the correct result which would have been returned

if all nodes had acted honestly.

59

60 CHAPTER 8. SECURE DATA AGGREGATION

Figure 8.1: Standard tree-based SUM aggregation as described in TAG. Numbers next to nodes
represent data/readings; Numbers and sums on edges represent intermediate sums sent from nodes
to parents.

8.1 Problem Statement and Assumptions

For this chapter, we will only consider real-valued converging tree computations, i.e., computations

over a tree topology, rooted at the base station, where each node produces only one intermediate

result, which is sent to its parent. An example of such a tree computation is computing a sum over

all the sensor readings in the network.

We first introduce the problem statement for real-valued aggregates such as SUM, and later

modify this to address more general computations. Each node that is a leaf in the tree topology

reports its input value (e.g., a sensor reading) to its parent. Once an internal node has received

data from each of its children, it evaluates the intermediate aggregation operator over this data and

its own reading. In the case of the summation aggregation, the intermediate aggregation operator

is addition, i.e., an intermediate sum of the data received from each of the node’s children and the

node’s own reading is performed. The result of the intermediate aggregation operation is reported

to the node’s parent, which then repeats the process until the final sum is computed at the base

station. An example of this process is shown on Figure 8.1.

Each sensor node si reports a data value ai. We assume that the data value is a non-negative

bounded real value ai ∈ [0, r] for some maximum allowed data value r. We assume that the value

has a constant size representation. The objective of the aggregation process is to compute some

function f over all the data values, i.e., f(a1, . . . , an). Note that for the sum aggregate, the case

8.2. SECURE SUM AGGREGATION 61

where data values are in a range [r1, r2] (where r1, r2 can be negative) is reducible to this case by

setting r = r2 − r1 and add nr1 to the aggregation result.

Definition 2. Ainput value injection attack occurs when an attacker modifies only the data

readings reported by the nodes under its direct control, under the constraint that only legal readings

in [0, r] are reported. For all other parts of the protocol, nodes under attacker control behave

honestly, i.e., they adhere strictly to the algorithm definition.

Without domain knowledge about what constitutes an anomalous sensor reading, it is impossible

to detect a direct input value injection attack, since they are indistinguishable from legitimate

sensor readings [69, 79]. Hence, if a secure aggregation scheme does not make assumptions on the

distribution of data values, it cannot limit the adversary’s capability to perform direct input value

injection. Under such conditions we can thus define an maximum level of aggregation security as

follows.

Definition 3. An aggregation algorithm provides input-value-injection-equivalent integrity

if, by tampering with the aggregation process, an adversary is unable to induce the querier to accept

any aggregation result which is not already achievable by a direct input value injection attack.

This definition provides a soundness property for accepted aggregation results; a corresponding

completeness property simply states that if the sensors each report legitimate readings, and the

algorithm proceeds correctly (i.e., as defined, without random or byzantine failures in processing

or communication) in all nodes, then the querier should accept the final result.

8.2 Secure SUM Aggregation

We now address the secure computation of the sum of all inputs of the nodes in the network. Note

that, unlike the preceding chapters, we do not require pre-knowledge of the network topology for

the SUM algorithm to function.

The basic idea behind the secure SUM aggregation protocol is to perform three steps: first,

we use the HT structure of Chapter 4.2 (with some modifications) to commit to all the aggrega-

tion operations that occured in the network; second, we use these commitments to prove to each

62 CHAPTER 8. SECURE DATA AGGREGATION

legitimate node that every computation that is dependent on the input supplied by the node is

computed correctly; finally, we ensure that every node successfully validates the computations that

are dependent on their inputs and confirm this using the network-wide confirmation protocol of

Section 4.4.

8.2.1 Lower-bounding the SUM Protocol

We first show a construction for lower-bounding the reported aggregate result, i.e., we detect ag-

gregate results that are less than the total sum of all the values input by the legitimate nodes.

Subsequently, we will show that, given some reasonable assumptions, upper-bounding the aggre-

gate is reducible to the lower-bounding problem, resulting in full input-value-injection-equivalent

integrity. First, we focus on the lower-bounding problem.

We use a natural generalization of the HT functionality that uses the internal vertices of the

hash tree to commit to the intermediate aggregation operations. We define a sum hash tree in an

equivalent way to the hash tree construction described in Section 4.2. We now incorporate the

computation results into the hash tree vertices. In the basic hash tree, we defined parent vertices

as the hash computed over all the child vertices, i.e., p = H [c1‖c2‖ · · · ‖cm]. In a sum hash tree,

each vertex v additionally contains the sum of all the leaf values in the subtree rooted at v.

Specifically, leaf vertices remain mostly unchanged, containing the ID i of the sensor node and

its input to the aggregation, vi:

ui = 〈vi, H [i, vi]〉

Each internal vertex in the sum hash tree contains a value vu in addition to the standard crypto-

graphic hash information:

〈vu, H [c1‖c2‖ · · · ‖cm]〉

In the above, c1, c2, . . . , cm are the child vertices of the node, and vu is the sum of the values in

these child vertices, i.e., vu = vc1 + vc2 + · · ·+ vcm . It is clear from this construction that the value

of each internal node is the sum of the values at the leaves of the subtree rooted at the node; in

particular when the base station receives or computes the root vertex of the summation hash tree,

then it will obtain the sum of all inputs of the sensor nodes in the network. Furthermore, the sum

8.2. SECURE SUM AGGREGATION 63

hash tree retains all the integrity properties of a hash tree. In particular it is hard to find two trees

with the same root vertex r.

We can use the sum hash tree to provide a lower bound for the sum aggregate as follows. At

the start of the algorithm, nodes execute the HT protocol with the above modifications to create

a sum hash tree, the root of which is reported to the base station. As a result of the HT protocol,

each sensor node also receives a verification path from its input value to the root. The base station

distributes the root vertex r that it received to the rest of the network (this broadcast need not be

authenticated). Now, each sensor node recomputes all the sum hash tree vertices between its leaf

vertex and the received root vertex r. The basic idea is that if any (deliberate or malicious) errors

were committed in the process of building the sum hash tree, causing some internal vertex u to not

contain the sum of the values of its children, this will result in an inconsistent root vertex to be

computed by any legitimate sensor node in the subtree rooted at u. The nodes use the network-wide

confirmation functionality of Section 4.4 to inform the server of the correctness of the verification

computation. If all sensor nodes successfully perform verification, then each node will release the

confirmation message Mi = PRFKi
(N‖r) (where N is a freshness nonce associated with this run of

the protocol). If the base station receives the XOR of all these confirmation messages as expected,

then it accepts the aggregation result. If any sensor node fails its verification then it will compute a

different root r′ of the hash tree resulting in a different confirmation message Mi = PRFKi
(N‖r′).

This will cause the aggregated confirmation message to be different from what the base station

expects and so the base station will reject the result.

8.2.2 Analysis of the Lower Bound Property

We present an informal argument for the security of the protocol. Elaboration of these arguments

into formal reductions of cryptographic hardness is straightforward. All theorems below are stated

using standard crpytographic hardness assumptions and assuming an adversary with polynomially

bounded computing power; for brevity, these assumptions are omitted from the actual theorem

statements.

We assume that the adversary is able to freely choose any arbitrary topology and set of labels

for the final sum hash tree. We then show that any such tree which passes all the verification

64 CHAPTER 8. SECURE DATA AGGREGATION

tests must be have input-value-injection-equivalent integrity. First, we define the notion of an

inconsistency, or evidence of tampering, at a given node in the commitment forest.

Definition 4. Let t = 〈vt, Ht〉 be an internal vertex in a commitment forest. Let its two children

be u1 = 〈v1, H1〉 and u2 = 〈v2, H2〉. There is an inconsistency at vertex t in a commitment tree

if vt 6= v1 + v2 or any of {v1, v2} is negative.

Informally, an inconsistency occurs at t if the sums don’t add up at t, or if any of the inputs to

t are negative. Intuitively, if there are no inconsistencies on a path from a vertex to the root of the

sum hash tree, then the aggregate value along the path should be non-decreasing towards the root.

Definition 5. Call a leaf-vertex u accounted-for in r if there is no inconsistency at any vertex

on the path from the leaf-vertex u to the root r of the sum hash tree, including at the root vertex.

Lemma 6. Suppose there is a set of accounted-for leaf-vertices with distinct labels u1, . . . , um and

committed data values v1, . . . , vm in the sum hash tree. Then, either we can show a hash collision

for H, or the final aggregation value at the root vertex is at least
∑m

i=1 vi.

Lemma 6 can be rigorously proven using induction on the height of the subtrees in the forest.

Here we present a more intuitive argument.

Proof. (Sketch) We show the result for m = 2; a similar reasoning applies for arbitrary m. By

assumption, u1 (resp. u2) is accounted-for in a hash tree T1 (resp. T2) with root vr. Let the path

from u1 to vr in T1 be P1. Let the path from u2 to vr in T2 be P2. Since both P1 and P2 end in vr,

there exists a longest suffix Pa that belongs in both P1 and P2 and ends in vr. Since u1 6= u2, Pa

is shorter than either P1 or P2. Let the first vertex in Pa be t, and let its predecessor in P1 be c1,

and its predecessor in P2 be c2. By definition of Pa, c1 6= c2. Let the ordered set of children of t in

T1 be C1, and the ordered set of the children of t in T2 be C2. Since t is generated by computing a

hash on C1 (or C2), if C1 6= C2 then we have a hash collision on H. Otherwise, let C1 = C2 = C.

Since c1 6= c2, c1 and c2 are distinct vertices in C. The value of c1 must be at least v1 since there

are no inconsistencies on the path between u1 and t. Similarly the value of c2 is at least v2. Since

there was no inconsistency at t, vertex t must have aggregation value at least v1 + v2. Since there

are no inconsistencies on the path from t to the root of the commitment tree, the root also must

8.2. SECURE SUM AGGREGATION 65

have aggregation value at least v1 + v2. Negative root aggregate values are detected by the querier

at the end of the aggregate-commit phase, so the total sum of the aggregate values of the roots of

all the trees is thus at least v1 + v2.

8.2.3 Reducing Upper Bounds to Lower Bounds

The protocol of Section 8.2.1 ensures that the reported aggregate is no lower than the sum of all the

values reported by the legitimate nodes. Recall that sensor node values are bounded by [0, r]. We

re-use the lower bound functionality to create a corresponding upper bound. The basic intuition is

that, for a computation which produces results in a bounded range (in this case, the sum aggregate

should always be between 0 and nr), then applying an upper bound is equivalent to applying a

lower bound “from the top” of the range.

Let the complement vi of a value vi be defined as vi
def
= r−vi. Using the protocol of Section 8.2.1

we simultaneously compute both the sum of all values S =
∑n

i=1 vi as well as the sum of the

complements of all values S =
∑n

i=1 vi. Specifically, we modify the sum hash tree to also keep

track of the complement sum. Leaf vertices are thus defined as:

〈vi, vi, i〉

Each internal vertex in the sum hash tree contains a value vu in addition to the standard crypto-

graphic hash information:

u = 〈vu, vu, H [c1‖c2‖ · · · ‖cm]〉

Where, c1, c2, . . . , cm are the child vertices of the node u, and vu = vc1 + vc2 + · · · + vcm and

vu = vc1 + vc2 + · · ·+ vcm .

At the end of the aggregation process, the base station checks the constraint that the aggregated

sum of all the complement values is the complement of the aggregated sum over the normal values,

i.e., S + S = nr. If this constraint does not hold then the result is rejected.

Theorem 7. Let the final sum aggregate received by the querier be S. If the querier accepts S,

then SL ≤ S ≤ (SL + µr) where SL is the sum of the data values of all the legitimate nodes, µ is

66 CHAPTER 8. SECURE DATA AGGREGATION

the total number of malicious nodes, and r is the upper bound on the range of allowable values on

each node.

Proof. Suppose the querier accepts the sum result S. Let the complement sum received by the

querier be S. The querier accepts S only if S+S = nr and the leaf vertices of each legitimate sensor

node are accounted-for. The set of labels of the leaf vertices of the legitimate nodes is distinct since

the labels contain the (unique) node ID of each legitimate node. Since all the leaf vertices of the

legitimate sensor nodes are distinct and accounted-for, by Theorem 6, S ≥ SL where SL is the sum

of the data values of all the legitimate nodes. Furthermore, S ≥ SL, where SL is the sum of the

complements of the data values of all the legitimate nodes. Let L be the set of legitimate sensor

nodes, with |L| = l. Observe that SL =
∑

i∈L r − ai = lr − SL = (n− µ)r − SL = nr − (SL + µr).

We have that S + S = nr and S ≥ nr − (SL + µr). Substituting, S = nr − S ≤ SL + µr. Hence,

SL ≤ S ≤ (SL + µr).

Note that nowhere was it assumed that the malicious nodes were constrained to reporting data

values between [0, r]: in fact it is possible to have malicious nodes with data values above r or

below 0 without risking detection as long as SL ≤ S ≤ (SL + µr).

Theorem 8. The sum algorithm provides input-value-injection-equivalent integrity.

Proof. Let the sum of the data values of all the legitimate nodes be SL. Consider an adversary

with µ malicious nodes which only performs direct input-value injection attacks. Recall that in a

direct input-value injection attack, an adversary only causes the nodes under its control to each

report a data value within the legal range [0, r]. The lowest result the adversary can induce is by

setting all its malicious nodes to have data value 0; in this case the computed aggregate is SL.

The highest result the adversary can induce is by setting all µ nodes under its control to yield the

highest value r. In this case the computed aggregate is SL + µr. Since we assume that the set of

legal inputs for a single node can be any number between [0, r], any aggregation value between SL

and SL + µr is also achievable by direct input-value injection. The bound proven in Theorem 7

falls exactly on the range of possible results achievable by direct input-value injection, hence the

algorithm is input-value-injection-equivalent by Definition 3.

8.2. SECURE SUM AGGREGATION 67

8.2.4 Building Other Aggregation Functions from SUM

In this section we briefly discuss how to use the sum algorithm as a primitive for the count,

average and Φ-quantile aggregates. Note that in the subsequent section (Section 8.3) we will

describe how to generalize the secure aggregation primitive for SUM to more general function

classes.

The Count Aggregate

The query count is generally used to determine the total number of nodes in the network with

some property; without loss of generality it can be considered a sum aggregation where all the

nodes have value either 1 (the node has the property) or 0 (otherwise). More formally, each sensor

node s has a data value as ∈ {0, 1}, and we wish to compute f(a1, . . . , an) = a1 + a2 + · · · + an.

Since count is a special case of sum, we can use the basic algorithm for sum without modification.

The Average Aggregate

The average aggregate can be computed by first computing the sum of data values over the nodes

of interest, and then the count of the number of nodes of interest, and then dividing the sum by

the count.

The Φ-Quantile Aggregate

In the Φ-quantile aggregate, we wish to find the value that is in the Φn-th position in the sorted

list of data values. For example, the median is a special case where Φ = 0.5. Without loss of

generality we can assume that all the data values are distinct; ties can be broken using unique node

IDs.

If we wished to verify the correctness of a proposed Φ-quantile q, we can perform a count

computation where each node s presents a value a′s = 1 if its data value as ≤ q and presents a′s = 0

otherwise. If q is the Φ-quantile, then the computed sum should be equal to Φn. Hence, we can use

any insecure approximate Φ-quantile aggregation scheme to compute a proposed Φ-quantile, and

then securely test to see if the result truly is within the approximation bounds of the Φ-quantile

algorithm.

68 CHAPTER 8. SECURE DATA AGGREGATION

8.3 Generalizing the Algorithm for One-pass, One-output Func-

tions

Given the algorithm for sum as described in the prior sections, we can consider how the approach

of commitment and distributed verification is applicable for general functions. This will allow us to

better understand the capabilities and limitations of the core functionalities behind the algorithm.

8.3.1 The Generalized Algorithm

We consider the case where, in the aggregation tree, each node i computes the scalar result of

some subfunction fi over each of the scalar values reported by its children. As a first sketch, we

show a possible approach to the problem given some very strong assumptions. We assume that

each node knows the computations which are affected by its own inputs. Specifically, it knows all

the intermediate subfunctions for all the nodes between itself and the root node (e.g., additions,

multiplications, etc). It does not know the exact intermediate inputs to these computations (except

for its own inputs); however it knows the exact set of possible (input-value-injection-equivalent)

legal values each of these inputs can take. More precisely, the legal set of values for a function

subtree is the set of values achievable by at the root of the subtree by setting legitimate values at

the leaves.

Definition 9. Let T be a function (sub)tree rooted at vT where each vertex represents a (scalar)

function computation over (scalar) inputs provided by its child vertices, the result of which is pro-

vided to the node’s parent. The tree thus represents a function computation over the inputs at the

leaf vertices; let this function be fT . Let each of the k leaf vertices l1, . . . , lk be associated with some

set of legal values S1, . . . Sk respectively.

If T is a single leaf vertex then let the legal set of T just be the set of legal inputs at the

vertex, i.e.,, S1. Otherwise, we can define the legal set of T to be {x : x = fT (s1, . . . , sk) for

s1 ∈ S1, . . . , sk ∈ Sk}.

Figure 8.2 shows an example of the kind of knowledge possessed by a given sensor node in the

network.

8.3. GENERALIZING THE ALGORITHM FOR ONE-PASS, ONE-OUTPUT FUNCTIONS 69

Figure 8.2: Example for general computations. Assume all ranges are in the reals. Node A knows
that, in the computation, its input a is first summed with some value in [1, 23] and then this result
is multiplied with a value in {0, 3, 5} and then finally the result of that is the first argument in the
(known) function f where the other argument is a value in [−4, 56].

We consider the straightforward method for applying the commitment-verification approach.

We consider a simple extension of the sum hash tree to a more general function hash tree. The

structural definition of the vertices remains identical as for the sum hash tree. Specifically, the

vertex templates remain unchanged. For a leaf vertex containing the value vi, we have:

〈vi, H [i, vi]〉

For an internal vertex, we have:

〈vu, H [c1‖c2‖ · · · ‖cm]〉

In the above, c1, c2, . . . , cm are the child vertices of the node. In the sum hash tree, vu is the sum

of the values in these child vertices, i.e., vu = vc1 + vc2 + · · ·+ vcm . For the function hash tree, we

generalize this to vu = fu(vc1 , vc2 , . . . , vcm), where fu is the function that is evaluated at vertex u.

The protocol proceeds similarly to the process described in Section 4.2.1 (the sum algorithm

without hash-tree restructuring operations). The leaf sensor nodes in the network topology report

their respective hash tree vertices to their parents; internal sensor nodes then compute their re-

spective internal hash tree vertices for the function hash tree based on the function fu that they

are respectively supposed to compute. The root of the function hash tree (containing the result

of the network-wide computation) is passed on (or computed by) the base station; subsequently,

70 CHAPTER 8. SECURE DATA AGGREGATION

nodes disseminate the information between their children such that each node receives its verifica-

tion path between its leaf vertex and the root of the hash tree (i.e., all off-path vertices for their

respective leaf nodes). Each individual node is then responsible for verifying the computations that

occurred between itself and the root. It does this in the natural way by checking two conditions for

each node on the path: first, all the inputs to the computation must lie within the set of a-priori-

known legal possible values for the results of the intermediate computations resulting from each

of the off-path subtrees; secondly, given the committed inputs and outputs, the computation must

evaluate correctly at each node (i.e., the outputs are consistent with the computations evaluated

on the inputs and results of each node on the path are correctly reported to that node’s parent,

and so on). Once the verification computations are complete, a network-wide confirmation phase is

executed where each node returns a confirmation code based on the root vertex of the function hash

tree that it computed (i.e., Mi = MACKi
(N ||r)). If all verifications passed correctly then the base

station should receive the XOR of all the above messages; if any verification was incorrect then the

aggregated confirmation code will not match what the base station expects and the base station

should then reject the reported result. Note that, like the secure SUM algorithm of Section 8.2,

there is no requirement for authenticated broadcast in this protocol.

8.3.2 Correctness of the General Algorithm

We can show that the algorithm provides input-value-injection equivalent integrity. Suppose ev-

ery legitimate node correctly performs its verification. Then, each node traces a path of verified

computation from itself to the root. Since the adversary must commit to exactly one commitment

tree per query (i.e., the tree whose root vertex is reported to the base station), each of these paths

are distinct and the union of these verified paths also forms a verified subgraph H which is also a

tree, the structure of which is fixed by the (a-priori known) sequence of computations from each

node to the root. The adversary is free to select the rest of the commitment tree G as long as it

(a) contains H as a subgraph and (b) for any node v in G−H that has a node in H as a parent, v

must report a value that lies within the legal set for the (correct) subtree rooted at v. In this sense,

v is constrained to behave correctly: since only values in the legal set for v can be injected without

detection, and, in the correct function computation tree, v is the root of a subtree consisting of

8.3. GENERALIZING THE ALGORITHM FOR ONE-PASS, ONE-OUTPUT FUNCTIONS 71

Figure 8.3: Example showing how the commitment tree ensures security.

inputs from only adversary-controlled nodes, any input that the adversary successfully injects at v

is achievable simply reporting particular selected values for inputs contributed by nodes under its

direct control. This implies input-value-injection-equivalent integrity.

A visual representation of this is shown in Fig 8.3. A, B, C are the only legitimate nodes. Since

each of these nodes knows the computations between themselves and the root, the commitment tree

must contain these correct paths to the root. The adversary is free to choose the structure of the

subtrees W and Y subject to the respective constraints of [3, 10] for the intermediate result from

W and {0, 1} for the intermediate result from Y ; these constraints are assumed to be known to the

legitimate nodes and checked in the verification process. Manipulation of the computations in W

or Y cannot improve the adversary’s ability to alter the computation result, since in the correct

computation tree W and Y consist wholly of malicious nodes. Hence, by only altering the input

data values of malicious nodes and not changing the correctness of the in-network computation,

the adversary could already achieve any value in [3, 10] for the intermediate result from W and

likewise either 0 or 1 for the intermediate result from Y .

Note that in this case the congestion complexity of the protocol is determined by the structure

of the computation tree and network topology; for the basic case where each sensor node computes

a function over the results of its children, the congestion cost is O(hd) where h is the height and d

is the maximum degree of the network tree topology.

In the special case of computations where each subfunction is identical, associative, and com-

mutative, the structural optimizations of Section 8.2 may be applied directly without change to

72 CHAPTER 8. SECURE DATA AGGREGATION

balance the computation/hash tree. In this case, the congestion is identical to the case of the SUM

algorithm, i.e., O(log n).

8.3.3 Making the General Algorithm Practical

The general algorithm of Section 8.3.1 requires two strong assumptions: each sensor node must

know the set of computations between itself and the root, and it must also know the legal sets of all

inputs to these computations. In this section we discuss several restrictions and methods to make

these assumptions more practical.

Representation Size of Legal Sets and Functions

For the algorithm to be practical, the descriptions of both the functions and the legal sets must be

relatively compact. This excludes arbitrary general functions from being practical in the framework.

The functions computed at each node cannot be large multidimensional tables containing arbitrary

values. In the most general case, each combination of legal input values at the leaves of a subtree

results in a distinct, arbitrary result in the legal set of the subtree; this also results in a large table

that grows exponentially with the number of leaf vertices in a subtree. Furthermore, the sensor

nodes must have some authenticated way to access this information.

We consider a specific case of functions and values that retains much of the intuitive expressive-

ness of numeric computation on a tree while being a good practical fit for the framework described

in Section 8.3.1. We consider the set of functions which will allow us to use simple range notation

to describe the legal sets in the computation tree. First, assume that the legal set for each input

value is some continuous range on the real numbers. In practice, this is impossible since it would

require an infinite amount of precision in the representation of these numbers; we discuss these

practical considerations later in Section 8.3.4.

In order for the legal sets of each sub-computation to also be a range on the reals, it is sufficient

that each subfunction in the function tree be continuous. The inductive reasoning is based on the

intermediate value theorem, i.e., for a continuous multivariate function f : R
n → R defined for a

continuous domain in R
n, the image set of f must also be continuous. Since the legal sets of the

leaf values are continuous range on R, we can repeatedly apply the intermediate value theorem to

8.3. GENERALIZING THE ALGORITHM FOR ONE-PASS, ONE-OUTPUT FUNCTIONS 73

show that the legal set of any subtree must also be a continuous range in R.

We provide a constructive proof in the form of an algorithm for deriving the legal sets of each

vertex in the computation tree. As the base case, let the legal set of each leaf vertex i in the

computation tree be a continuous range Si. Repeat the following until all the legal sets of all the

vertices in the computation tree have been derived. For a vertex u computing a continuous function

fu with children c1, . . . , ck all with known legal sets S1, . . . , Sk, let a (resp. b) be the minimum

(resp. maximum) value of fu over the domain S1×S2×· · ·×Sk. This maximum and minimum can

be found by evaluating fu at stationary and boundary points in the domain in the usual manner.

Then, the legal set of u is [a, b] since the intermediate value theorem ensures us that for any c ∈ [a, b]

we can find some s1 ∈ S1, . . . sk ∈ Sk such that fu(s1, . . . , sk) = c.

The fact that all legal sets are continuous ranges ensures us that legal sets can be concisely

communicated and stored. We assume that the subfunctions in the computation tree are also

describable in a concise manner, i.e., we can consider simple algebraic functions such as short

polynomials. As a further example, the implementer could exclude very long polynomials unless

there is a concise rule which generates the coefficients of the polynomial.

Disseminating the Functions and Legal Sets

Given that both functions and legal sets can be stored and communicated in a concise way (e.g., a

small constant number of bits), the problem remains of exactly how to bootstrap this information.

If the topology and the computation is static, then this information can be stored statically on the

sensor nodes; however if changes occur in the topology or the computation structure then these

updates need to be efficiently and authentically disseminated from the central coordinating base

station to the sensor nodes. The straightforward approach is to unicast this information to each

individual sensor node from the base station. However, this incurs significant congestion since one

of these notices must be sent each time the parameters of the problem changes (e.g., if a new,

different computation is required, or if the legal sets of any input values change, or if the topology

if the network changes).

An alternative to unicast is to use the information binding/credential dissemination primitive

of Section 6. This assumes that the sensor nodes themselves know (or are instructed) when their

74 CHAPTER 8. SECURE DATA AGGREGATION

own subfunctions or legal sets change, and the schedule for these changes is known by the base

station. For example, if nodes change their computations as directed by the base station, or if the

network topology changes due to additional node installations.

The protocol is a straightforward extension of the information binding/credential dissemination

primitive of Section 6. We define a hash tree augmented with the function descriptions and legal

sets of each vertex; this hash tree construction is identical to the sum hash tree construction, except

that the various vi in each vertex now instead describe the function computed at that vertex and

the legal set of that vertex. The base station then uses its knowledge of the topology, functions

and the legal sets in the network to construct a hash tree, the root of which is broadcast to the

network. The network then collaborates to reconstruct the hash tree, disseminating verification

paths to each sensor node. The verification path for each leaf vertex contains the hash tree vertices

which describe the functions and legal sets of each vertex (and all its siblings) on the computation

path from the vertex to the root, thus containing all the necessary information needed to enable the

algorithm of Section 8.3.1. The congestion cost of this information dissemination phase is identical

to the overall congestion of the generalized tree computation algorithm itself, i.e., O(hd).

8.3.4 Accuracy of Representation

The input-value-injection-equivalent correctness of the general protocol holds under the assumption

that the legal sets of inputs are continuous ranges in R. In practice, when the accuracy of represen-

tation of numbers is limited, this may cause the strict definition of input-value-injection-equivalent

integrity not to hold for the algorithm. For example, consider the “square” operation which takes

a single value and returns the square. Let the legal set of inputs to this operation be [0, 2]. Then

the legal set of this computation should be [0, 4]. The input-value-injection-equivalent correctness

property tells us that for any output in a ∈ [0, 4], we can choose some input b ∈ [0, 2] such that

b2 = a; this is obviously true from the intermediate value theorem. Now suppose the input is

represented using standard floating point notation with a fixed number of bits (while the output

still retains infinite precision), and consider the output a = 2. Clearly, this is in the legal set, but

we cannot find a precise floating point representation for
√

2 in the input. This seems to imply

that the input-value-injection-equivalent property does not hold, because the function computation

8.3. GENERALIZING THE ALGORITHM FOR ONE-PASS, ONE-OUTPUT FUNCTIONS 75

could potentially output 2, and have this result accepted, when no floating-point input value could

have caused this precise output in practice.

We make the argument that allowing unachievable results within a legal set are not actual

flaws in the practical usefulness of the protocol, but rather artifacts resulting from an over-strict

definition of correctness. In the previous example, the “attack” was more based on the inability

of the input to accurately represent
√

2 than the fact that the output of 2 in the computation of

f : [0, 2]→ [0, 4], f(x) = x2 is itself a vulnerability.

In light of this, we relax the definition of input-value-injection-equivalence to allow for correct-

ness to be defined by policy rather than derived from specific function.

Definition 10. Let f be a function computed on a set of inputs x1, . . . , xn. In a computational

system implementing f , the legal set of an input is the set of allowable values that it can take (as

decided by the policy of the implementor or network supervisor). Let the legal sets of each input be

S1, . . . Sn. A protocol implements f with policy-compliant input-value-injection-equivalent

integrity if, by tampering with the aggregation process, an adversary is unable to induce the querier

to accept any computation result which is not in the image set of f on the domain S1 × · · ·Sn.

Essentially, this means that the protocol only accepts computation results y for which there

exists some x1 ∈ S1, . . . , xn ∈ Sn (i.e., some set of inputs which are “policy compliant”), such that

f(x1, . . . , xn) = y. This is a purely policy-based definition which allows y to be accepted even

if some xi cannot be represented in the computer system precisely. The idea is that we do not

consider this to be an attack since we have explicitly allowed for this in our policy specification for

Si.

8.3.5 Continuous Function Computation in a Tree: Result

In summary, as the result of combining Sections 8.3.1, 8.3.3 and 8.3.3, we now have a protocol for

providing policy-compliant input-value-injection-equivalent integrity for evaluating any computa-

tion tree comprising of continuous multivariate subfunctions (which have short descriptions) on the

real numbers, (i.e., fi : R
di → R for each computation tree vertex i). The legal sets for the inputs to

this computation tree are intervals in R. The overall congestion of the setup and the protocol itself

76 CHAPTER 8. SECURE DATA AGGREGATION

is O(hd). To the best of our knowledge, this is the first protocol ensuring computation integrity

for arbitrary functions over a network, with a reasonable congestion bound.

8.4 Input Verification

The main limitations of the general techniques presented in Section 8.3.1 are due to the difficulty of

accurately representing the legal sets of large subtrees. Hence, they are restricted to tree computa-

tions on subfunctions for which legal sets can be concisely represented, e.g., continuous functions.

In the case of truly general functions, the legal set of a subtree can potentially be as large as the

cross product of the legal sets of all the inputs to the subcomputation performed in a subtree. In

such cases, rather than attempting to represent the legal set of a subcomputation, we can instead

directly audit the inputs to the subcomputation; if all inputs are in their respective (small) legal

sets, and the computation result is correct, then the result must also be legal.

8.4.1 Exhaustive Input Verification

The most straightforward method of performing this kind of verification for each node to replicate

the computation of the entire network. To start, assume that each node contributes a single input

value to the computation, and each internal node in the network computes a single subfunction

over its input value and the intermediate results of all its children. Furthermore, assume that the

legal sets of inputs of each node can be represented in a (small) constant amount of space.

The exhaustive input verification algorithm then proceeds as follows. We use the credential

dissemination protocol of Section 6 to bind the legal sets and subfunction descriptions of every

node in the network, and disseminate this information to all nodes in the network. Each node now

has centrally-authenticated knowledge of the computations and legal sets in the entire network.

Now we use the node-to-node signature algorithm of Section 7 to authentically disseminate the

inputs of each node to every other node. Note that the signature functionality forces each node to

commit to exactly one value of their input value for each run of the secure computation protocol;

furthermore, since these values are signed, no malicious node can alter the input value of a legitimate

node. This implies that all legitimate nodes have a consistent and authentic view of the structure of

8.4. INPUT VERIFICATION 77

the computation in terms of subcomputations, inputs and legal sets of inputs. From this consistent

picture it is a simple matter for each node to check that each input value is in its respective legal

set, and then repeat the computations performed in the entire network to compute the final result

R. Once the computation is complete, the nodes then use the network-wide confirmation protocol

of Section 4.4 to confirm the value of R. The querier then checks the confirmation code to confirm

that every node did indeed compute the same value R, and if so, it accepts R as correct and

authentic.

The correctness of the protocol follows from the correctness of the subprotocols used; in effect

we have put the pieces together in the natural way to construct an authenticated bulletin board

of input values along with a correct copy of all computations and legal sets to every node. Each

legitimate node can thus only compute a correct, consistent final result R or abort. The overheads

of this exhaustive verification protocol are O(n) communication and storage since every node needs

to receive values from every other node and reconstruct several hash trees each built over n leaves.

This makes it infeasible for networks where reducing node-to-node communications is the main goal.

On the other hand, the congestion at the querier is only O(1) since it only needs the result R, and

the aggregated confirmation code confirming R, and a fixed number of runs of the subprotocols for

credential dissemination and node-to-node signatures, each of which involves the communication

of only a single hash value. This makes exhaustive input verification useful for networks where

reducing querier-to-node communications is the primary metric.

8.4.2 Cluster-based Computation Verification

In Section 8.3.1, we noted that for a general one-pass function, the main complication in applying

the hash-tree-based framework was in representing the legal sets of large subtrees. While we showed

a promising approach for continuous real-valued multivariate functions, there is a still a large gap

between this family of functions and truly general one-pass functions. In this section we show

that if we can assume a fixed upper bound k on the number of malicious nodes, we can use input

verification to ensure the authenticity of results of general one-pass functions.

We consider network computations where each node (internal or leaf) contributes exactly one

input value to the computation. The idea is that the complexity of the legal sets of large subtrees

78 CHAPTER 8. SECURE DATA AGGREGATION

arise directly from their size; a large subtree may contain a subfunction over a large number

of inputs, and each combination of legal inputs may potentially produce a different legal result.

However, in the hash-tree framework, we only have to worry about checking the legal sets of subtrees

that are wholly malicious (see the analysis in Section 8.3.2). Hence, if we know that there are no

more than k malicious nodes in the network, then we do not need to check the intermediate results

of any subtree with > k inputs. On the other hand, subtrees with ≤ k inputs are quite small and

each of these at most k inputs can be checked for legality directly in a process similar to exhaustive

verification (Section 8.4.1. Indeed, if we group these small subtrees into clusters of size at least

k + 1, we can be assured that each of these clusters contains at least one legitimate node. By

requiring all nodes in each cluster to verify each other, this ensures that every input is verified

by at least one legitimate node and correctness follows in a similar argument to that provided in

Section 8.3.2. In fact, this process can be considered a generalization of Section 8.4.1 parameterized

with k being the number of assumed malicious nodes in the network.

The algorithm is described in more detail as follows. We assume that the adversary has com-

promised at most k nodes. We assume that the legal set of a single input is representable in size

α where α can be a function of n; for ease of exposition we can assume α to be a constant (to be

practical, α must be sublinear in n). We no longer restrict the range of each subfunction to be in

R but simply require it to be representable in size β or less, where β is a function of n. Similarly

to α, for the protocol to be practical, β should be sublinear in n.

Define the size of a subtree in the network computation as the number of input values for the

subcomputation of the subtree; since each node must contribute exactly one input value, this is

equivalently the number of nodes in the subtree rooted at the node responsibe for this particular

subcomputation, in the network topology.

As a subprotocol, we use the information-dissemination functionality of Section 6 to authen-

tically compute the size of each subtree in the network. The procedure where each internal node

learns the size of its own subtree is identical to a SUM computation where each node contributes

an input value of 1; since the trusted base station knows the exact topology of the network, it can

then confirm this computation for every node in the network using the information dissemination

functionality in Section 6. Let v be an internal node in the network topology, with parent node u.

8.4. INPUT VERIFICATION 79

The size of the subtree rooted at v is disseminated to all nodes that are descendants of u. At the

end of this process, each node x in the topology knows the (authentic) size of all subtrees rooted at

all nodes that are children of any node between x and the root (base station). This process causes

at most O(hd) congestion; the analysis is identical to that in Section 8.3.3.

Once the size of each subtree is known we can then decompose the entire network tree into

“small” subtrees of size at most k which are joined via the internal nodes which are roots of the

“large” subtrees of size > k. The original tree topology can thus be visualized as a “backbone”

tree consisting of internal nodes which are the roots of the large (> k) subtrees; off this backbone

hangs the small subtrees of k or less nodes. We can further break up the backbone tree into paths

by assigning each parent node in the backbone to the leftmost path among its children. When this

is done, the network is partitioned into distinct paths from which hang small subtrees of size k or

less: we call each such path a clustering-path. Since every node knows the size of all subtrees off

the path from itself to the root, every node in the network is also aware of the topology of its own

clustering-path. An example partition is illustrated in Figure 8.4.

For each clustering-path, we then further group the small subtrees into clusters of size at least

k + 1. This ensures that each cluster contains at least one legitimate node. A straightforward way

to assign clusters is to iterate across the subtrees left-to-right starting from the top of the clustering

path, adding each subtree to the current cluster until it is larger than k, and starting a new cluster

as needed. This creates clusters of size at most 2k, except for the last cluster which contains any

remainder subtrees and may be of size of up 3k. This method is illustrated in Figure 8.5. For

a given method of clustering the subtrees, it is straightforward for each node to determine the

division of clusters in its own clustering-path.

Once the clusters have been determined, the protocol proceeds in two phases: first, exhaustive

input verification is performed within each cluster. This process is identical to the exhaustive input

verification of Section 8.4.1; each node in the cluster disseminates its input value and function com-

putation to all other nodes in the same cluster. The credential dissemination method of Section 6

ensures that all nodes of the cluster can verify the inputs and computations performed in every

other node in the cluster. Once exhaustive intra-cluster verification has been completed, nodes may

then perform computation verification for their own respective computation paths from their input

80 CHAPTER 8. SECURE DATA AGGREGATION

Figure 8.4: Partitioning the network into clustering-paths, or paths of small subtrees. Each triangle
is a subtree of size k or less; distinct cluster-paths in the partition are highlighted with different
colors.

8.4. INPUT VERIFICATION 81

Figure 8.5: Partitioning a clustering-path into clusters of size at least k +1. In this example, k = 4

82 CHAPTER 8. SECURE DATA AGGREGATION

up to the root of the tree containing the final computation result. This process is similar to that

in Section 8.3.1, except that legal sets of intermediate results do not need to be checked; each node

only needs to ensure that all the intermediate computations between its own input and the final

result are performed correctly. Finally, if all nodes were successful in their respective verifications,

a network-wide acknowledgement is used to confirm this to the base station.

The correctness of the cluster-based scheme follow directly from the correctness of exhaustive

verification (Section 8.4.1) combined with computation verification (Section 8.3.1). Specifically,

as noted in Section 8.3.2, given computation verification is performed successfully, the only way

for an adversary to cheat the computation is to forge an intermediate result from some subtree

T consisting of wholly malicious nodes. By assumption, this subtree T does not have more than

k nodes, and is thus contained in one of the subtrees in the clustering-paths decomposition; in

particular all the nodes of T are in some cluster of size > k. This means that the computations and

inputs of T must be exhaustively verified by some legitimate node; hence the adversary is unable

to cheat in T , and the security property holds.

The cluster-based verification protocol induces additional overhead for the exhaustive input

verification of each cluster; it is not hard to see that each edge in the network topology carries spans

at most one cluster and is thus responsible for at most the traffic of one cluster in the exhaustive

input verification phase. Since the largest cluster is of size at most 3k, this yields an edge congestion

of O(3αk) for the exhaustive input verification phase. Since each node is adjacent to at most d + 1

edges (where d is the maximum fan-out or number of children for each internal node), this yields

a node congestion of O(3αk(d + 1)). Combining this with the O(βhd) overhead of verifying the

results along the computation path, the final congestion overhead is O(3αk(d + 1) + βhd). While

this congestion is unattractive for networks that have to tolerate large numbers of compromised

nodes, this protocol is nonetheless useful because it is the only known efficient protocol for ensuring

the correct computation of any one-pass function.

Chapter 9

Rate-Limiting Using the HT

Framework

We consider the problem of traffic volume attacks, an attack in wireless networks where malicious

nodes inject spurious traffic to drain the resources of legitimate nodes in the network. More insid-

iously, the adversary could send large volumes of data down specific links or paths, crowding out

legitimate data.

In this section, we describe a countermeasure against a packet-injection attacker by leveraging

the HT framework. Our approach is to perform communications in epochs. Within each epoch,

each node is allotted a fixed maximum rate of message origination. This is the upper bound on the

amount of data origination that we wish to enforce at each node in the network, and is selected

by the operator of the network as an input to the algorithm (note that different nodes may have

different bounds). When each epoch is complete, the base station then audits the total amount of

communications originated by each node in the network. Any node that exceeds its allotted rate

will be unable to pass the audit and will have to pay a penalty; typically this means some set of

malicious edges or nodes will be revoked. The mechanism for the audit will be similar to the SUM

secure aggregation operation of Section 8.2.

83

84 CHAPTER 9. RATE-LIMITING USING THE HT FRAMEWORK

9.1 Problem Definition

Informally, we wish to detect if the adversary has caused a large amount of traffic to be forwarded

by legitimate nodes in the network. We define the problem formally as follows.

We associate with each node a, a maximum data origination rate Ra which represents its

per-epoch origination bandwith allotment. In a given epoch, each link e in the topology carries

some amount of traffic destined for the base station. Let be denote the total amount of traffic

that traversed link e within the epoch. Visualising the set of be as weights on edges, the weight

assignment for a given epoch is called the communication pattern of the epoch:

Definition 11. A communication pattern is an assignment of some traffic volume be for each

link e in the network.

We assume that all traffic in the sensor network involves flows from individual nodes to the

base station (i.e., all traffic only travels towards the base station). A communication pattern where

every node conforms to its rate limits is called “well-behaved”, defined as follows:

Definition 12. A well-behaved communication pattern is a communication pattern in which,

for every node a in the network, the total amount of outgoing traffic is no more than the sum of

the total amount of incoming traffic and the node’s maximum data origination rate Ra.

Also note that the definition allows for nodes to have less outgoing traffic than incoming traffic,

reflecting some packet loss at that node. Intuitively, we would like to allow only well-behaved

communication patterns in each epoch; however such a security definition is too strict. For example,

if two malicious neighboring nodes send an illegally large volume of traffic to each other, this traffic

is invisible to the legitimate nodes in the network and yet the communication pattern would violate

the “well-behaved” constraint. Hence we offer a more functional definition in terms of only what

is visible to the legitimate nodes.

Definition 13. The view of the legitimate nodes is an assignment of some traffic volume be for

each link e in the network which is adjacent to a legitimate node.

Since the view only assigns weights to a subset of the links in the network, we can consider if it

9.2. NAIVE APPROACH: DIRECT AUDIT 85

is in fact possible to assign weights to the remaining links such that no node in the network exceeds

its allotted rate. We formalise this approach as follows:

Definition 14. For a given view W , let F be any communication pattern which assigns the same

weight as W to all edges in W . Then F is a completion of W . A permissible view W is one

where there exists some well-behaved communication pattern which is a completion for W .

For a given epoch, if the view is permissible, then the existence of the well-behaved completion

implies that exists some way for this view to have occured legitimately. In other words, the

adversary could have achieved this amount of traffic on the legitimate nodes simply by obeying the

rate limits on the nodes under its control. On the other hand, if the view is not permissible, then

any communication pattern C which results in the view V must not be well-behaved: in particular,

there must always be at least one node in the network which exceeds its maximum allowed data

origination rate. Hence, we can say that the network is under data origination attack if and only

if the view of the legitimate nodes is not permissible.

9.2 Naive Approach: Direct Audit

Based on the problem definition, the most direct method for determining if the view of the legitimate

nodes is permissible is to check the amount of traffic across every link in the network. The base

station can then directly check if the reported traffic weights reflect a well-behaved communication

pattern.

The details of this direct audit process is as follows. At the end of each epoch, the base

station broadcasts an end-of-epoch message containing the epoch identifier Ne. Every node a then

composes a traffic report Da of the total communications it has performed over the epoch on each

of its incident links. The message is encrypted and authenticated using the secret key Ka that a

shares with the base station.

The data portion of the report of node a is composed as follows, where bci
is the amount of

traffic received from child ci, and bpi
is the amount of traffic sent to parent pi, and Mci

is the report

86 CHAPTER 9. RATE-LIMITING USING THE HT FRAMEWORK

message received from child ci.

Da = (Ne, IDa, Incoming:(c1, bc1), . . . , (ck, bck
),

Outgoing:, (p1, bp1
), . . . , (pq, bpq))

This message is encrypted and authenticated using the unique secret key shared between the node

and the base station.

Once all the traffic reports are received, the base station can then take the union of the reports

to find the communication pattern. To resolve conflicting reports on the amount of traffic on a

given link, we note that if link-layer encryption and authentication is implemented, an adversary

cannot inject messages between legitimate nodes. Hence, for any link e from node c to node p, the

downstream node must have received no more messages than was sent by the upstream node. The

base station checks that the respective traffic reports reflect this fact, then assigns the traffic weight

reported by p to the link. When each edge has been labelled with a traffic weight, the base station

checks the well-behavedness property of the overall communication pattern C ′: specifically, for each

node i, the amount of outgoing traffic from i must be no more than its maximum origination rate

Ri more than the total amount of incoming traffic to i.

Theorem 15. If C ′ is well-behaved, then the view of the legitimate nodes is permissible.

Essentially, C ′ assigns the same traffic weight as the legitimate nodes to all edges in the legit-

imate view except it may assign smaller weights on outgoing edges from legitimate nodes. This

discrepancy does not help the adversary exceed its rate.

If each of these checks pass, then the base station determines there was no packet-origination

attack in this epoch. Otherwise the base station concludes that an adversary is present and takes

appropriate remedial action as described in Section 9.2.1.

If reports from all the nodes are received by the base station, correctness is immediate. Suppose

the data received by the base station passes all the checks, i.e., the views of each node is mutually

consistent with that of the other nodes, and the overall communication pattern formed from the

union of these views is well-behaved. Since the adversary is unable to falsify reports from legitimate

nodes, the final communication pattern must be consistent with (i.e., it is a completion of) the view

9.2. NAIVE APPROACH: DIRECT AUDIT 87

of the legitimate nodes. Since the final communication pattern is well-behaved, by definition the

view of the legitimate nodes must be permissible.

By the contrapositive of this argument, if an adversary induces a communication pattern causing

a non-permissible view at the legitimate nodes, then regardless of what the malicious nodes report,

the final communication pattern assembled by the base station is not well-behaved and so will not

pass the check.

9.2.1 Locating an Adversary

In the case of a failed audit, we would like to be able to locate at least one link or one node

under adversarial control and revoke it, thus applying some kind of penalty to the adversary for

the attack. Thus, if the adversary persists in performing such attacks, eventually all its points of

presence in the network will be located and revoked.

The detection mechanism of Section 9.2 ensures that if an adversary performs an attack in an

epoch, it cannot pass the requisite checks. However, rather than incriminate itself by revealing that

one of its nodes is not obeying its rate limit, the adversary can simply refuse to respond to the

audit. More importantly, it can choose to selectively drop the reports of various legitimate nodes,

thus denying the base station any information which can be used to locate the adversary’s point of

presence in the network.

We modify the protocol to prevent arbitrary dropping of traffic reports. First, we select a subset

of the network’s edges that form a spanning tree directed towards the root (the base station). We

assume that certain relevant details of the topology of the spanning tree are known to the nodes;

in particular, each node is aware of its set of children in the spanning tree, and also the size of the

subtrees associated with each child. Since this spanning tree is largely static, such details could be

sent from the base station to each node on the initialisation of the network, and changes can be

disseminated efficiently using authenticated broadcast to the affected subtrees.

When a node a receives the end-of-epoch message, it waits to receive traffic report messages

from its children. The receiving node a checks the traffic reports for size (the report from a child

ci should be at most proportional in size to the number of nodes in subtree rooted at the ci). If

the traffic report is too large, a refuses to accept the message. This prevents the adversary from

88 CHAPTER 9. RATE-LIMITING USING THE HT FRAMEWORK

using the audit phase as an opportunity to flood the network with a large volume of traffic. Once

a has received the reports from all its children, it then concatenates all the received information

with its own traffic report into a single message, which secured with the MAC using the key Ka

shared between a and the base station. This message is then sent to the parent of a which then

repeats the process. Formally, this process is described as follows, where c′i, . . . , c
′
r are the children

of a in the spanning tree and Da is the traffic report of node a:

M ′
a = Da||Mc′

1
|| · · · ||Mc′r

, Ma = M ′
a||MACKa

(M ′
a)

This method of repeated encapsulation ensures that a malicious adversary cannot selectively drop

the reports of nodes at arbitrary points in the network. The adversary can only drop the messages

of an entire subtree in the spanning tree; furthermore it can only do this if it controls the link

between the root of the subtree and its parent (for example, one of the two endpoints of the link

may be malicious). Hence, by observing which subtrees did not successfully transmit their traffic

reports, the base station can determine which communication links are under adversary control.

The base station may then revoke these links in a subsequent epoch.

Specifically, in a given epoch where the audit fails, the base station revokes any link e between

parent node p and child node c if (a) p claims to have received more messages than c claims to have

sent out or (b) e was a spanning tree edge and no traffic report was received from c. We assume

that during the audit phase we can allow for a sufficiently large number of retransmission attempts

such that a link between two legitimate nodes should eventually succeed in delivering the message

in the absence of adversarial interference.

Links may be revoked by having the base station unicast specific revocation instructions to the

affected nodes; these messages will be encrypted and authenticated using the key shared between

the respective nodes and the base station. The revocation instructions will also have to include

updates to the structure of the new spanning tree if a spanning tree edge was revoked.

9.3. DISTRIBUTED DETECTION 89

9.2.2 Bounds on Adversarial Injection Capabilities

We have established that if the network passes a full audit, then the adversary cannot have per-

formed an attack in that epoch. It remains to show that if the adversary decides to take an oppor-

tunity to perform an attack (and thus deliberately fail the audit), the total amount of damage can

be bounded.

We label each communication link in the network with a capacity, which represents the maximum

amount of data that can be sent over that link in an epoch. Each parent node is aware of the capacity

of each of its incoming links; any data in excess of this rate is discarded by the parent.

Based on this capacity, a set of adversary nodes can inject at most some volume of data F into

the network. Each time the adversary fails the audit, it can inject at most F data but loses one of

the edges under its influence. Hence if Em is the set of all edges incident to any malicious node then

the total amount of extra data that can be injected in a series of failed audits is at most |Em|F .

9.3 Distributed Detection

The detection algorithm of Section 9.2 allows us to determine if the view of the legitimate nodes

is not permissible, but it requires the transmission of n traffic reports to the base station causing

O(n) congestion at the nodes closest to the base station even when no traffic injection attack is

taking place. We describe a method for detecting non-permissible views with O(dna) congestion

and memory overhead (where d is the maximum indegree in the network and na is the maximum

number of ancestors for any node).

Our algorithm is motivated by the observation that the problem of auditing incoming and

outgoing traffic is closely related to the problem of secure SUM aggregation. Hence, we can use the

HT framework of Chapter 4.2 to perform distributed audit for rate monitoring.

Two important complications arise making the adaptation non-trivial. First, in the SUM ag-

gregation problem, only the final sum computed at the base station needs to be correct; however

for the rate monitoring problem the subsums at every intermediate node must also be correct. We

address this in a similar way to the generalized secure aggregation algorithm of Section 8.3: we use

the credential dissemination function of Chapter 6 to make the capacity of the links incident to each

90 CHAPTER 9. RATE-LIMITING USING THE HT FRAMEWORK

node (correctly) known to all its children; effectively allowing us to perform the rate consistency

check at every node instead of just at the base station. The second complication is that, in the

SUM aggregation problem, aggregation is performed with respect to a spanning tree; on the other

hand rate monitoring needs to consider the topology of the entire DAG network since traffic can

flow along any edge. To address this problem we require each node to check the consistency of the

operations at each one of its parents rather than just a single path. Hence, we need to modify the

HT protocol to not build a hash tree but rather a hash DAG (directed acyclic graph).

9.3.1 Assumptions

To provide the properties that are necessary for the correctness of the distributed audit scheme,

we make two additional assumptions, as follows:

Every node knows the full details of the topology between itself and the base station.

Specifically, for a node x, let Ax denote the set of nodes on any path between x and the base

station. We will call Ax the set of all ancestors of x. For any node a ∈ Ax, the node x knows

every edge incident to a as well as its associated capacity. Furthermore x knows the rate limit Ra

of a. This information can be distributed in a direct application of the credential dissemination

functionality described in Chapter 6. The credentials of various nodes along a single path share

a common verification paths in the hash DAG used by the credential dissemination functionality.

Hence, the total amount of congestion caused by this phase is O(dna) (where d is the maximum

indegree in the network and na is the maximum number of ancestors for any node).

Capacities are assigned conservatively. In a distributed audit setting, malicious nodes without

legitimate descendants are never audited. To prevent them from exceeding their rate limits, we need

to directly restrict their ability to inject data by not providing them with edges of large capacity

into the network (this is similar to the generalization for secure function computation presented in

Section 8.3). Specifically, we require that, for each node, the total capacity on its outgoing edges

should be no more than the total capacity on its incoming edges, plus the origination rate of the

node itself. For example, if a node has two incoming edges with capacities of 2 and 3, and it has an

allowed origination rate of 1, then its total outgoing capacity should be no more than 2+3+1=6.

9.3. DISTRIBUTED DETECTION 91

Figure 9.1: Topological Hash DAG

9.3.2 Algorithm Overview

The distributed audit algorithm is related to the secure SUM algorithm of Section 8.2. Specifically,

it proceeds in three phases: commitment, verification and confirmation. We describe each in turn.

Commitment phase. In the first phase of the algorithm, each node commits to the details of

its own traffic report. The commitment structure is constructed such that each node can only

commit to a single traffic report; hence a malicious node is unable to selectively reveal different

traffic reports to different nodes in the hope of evading detection.

The commitment structure is a topological hash DAG, which is a natural generalisation of a

hash tree. Consider a network topology in the form of a directed acyclic graph (DAG) with a single

sink (i.e., the base station) which we call the root. Suppose each node x is associated with some

(not necessarily distinct) label vx (in our algorithm, the label vx represents the traffic report of

node x). An example of this network topology is shown in Figure 9.1.

It is straightforward to modify the HT protocol to construct a DAG instead of a tree. The

topologicial hash DAG is constructed recursively. An example is shown in Figure 9.1. First the

nodes in the network which have no children set Mx = H [x||vx] and report their respective Mx to

all of their parents. Internal nodes then compute hash values recursively. In the following formula,

92 CHAPTER 9. RATE-LIMITING USING THE HT FRAMEWORK

a is the internal node computing its value, and it has children c1, . . . , ck in order of increasing ID.

Ma = H [a||va||c1||Mc1 || · · · ||ck||Mck
]

The root value Mr is computed in the same way. Considering Figure 9.1, note that the structure of

the hash DAG follows the network topology exactly. For a given Mr, it is computationally infeasible

for an adversary to find another topology or assignment of values to node labels that will create a

hash DAG with the same Mr.

Mr is sent by the base station to the entire network using authenticated broadcast. Nodes

then relay the necessary information for each other to verify their presence in the topological hash

DAG. Specifically, each node a sends all the hash inputs needed for the computation of Ma to all

of its descendants. Each node thus receives the inputs to the hash computation for each one of its

ancestors. The dissemination process causes O(Na) congestion on the links of the network where

Na is the number of ancestor nodes for the node with the greatest number of ancestors.

Note that an adversary is unable to perform additional data injection while the hash inputs are

being disseminated. This is because each node, knowing the exact downstream topology of itself

and its parent nodes, is able to calculate the exact size of the data it is expecting to receive. Any

additional data is simply dropped.

Verification Phase. Once a node x has received the inputs to the hash computations of each of its

ancestors, it may perform verification to ensure that none of its ancestors exceeded their respective

rates. First, node x repeats the relevant computations to verify that the received values do indeed

result in the correct Mr after repeated hashing, and the reconstructed structure of the downstream

traffic reports exactly matches the known downstream topology of x. Once x is certain that the

received data was indeed the same values that resulted in the commitment Mr, it then checks the

consistency of the traffic reports of each ancestor node a. Specifically, x checks that (a) no node

exceeded the capacity on its links; (b) for any link e = (c → p), the downstream node p does not

report that more packets were received than the upstream node c claimed to have sent; and (c)

none of the traffic reports show an ancestor node originated more than its allowed rate of traffic in

an epoch. Node x only passes the verification process if all of the above conditions are met.

9.3. DISTRIBUTED DETECTION 93

Confirmation phase. In the final phase all nodes proceed to notify the base station of their

respective successes in verification. We use the network-wide acknowledgement functionality of

Section 4.4. If the acknowledgement is received successfully, then all nodes have obeyed their

traffic limits; if not, then an adversary is present somewhere in the network. The base station then

runs the detection protocol of Section 9.2.1 to identify some edge of the adversary to revoke.

9.3.3 Correctness

We show that, if all the legitimate nodes successfully perform distributed verification, then the

view of the legitimate nodes must be permissible. For the remainder of this subsection, assume

that every legitimate node has successfully performed distributed verification; our goal is to exhibit

a well-behaved communication pattern as a completion to the view of the legitimate nodes.

Lemma 16. Let a be any common ancestor of any two legitimate nodes i, j. Then it must provide

the same traffic report to both i and j.

Proof. The constructed hash DAG commits to exactly one traffic report per vertex position. Since

each node is associated with a given fixed hash tree position which corresponds to its position in

the network topology (via the credential dissemination protocol), the adversary can only create one

traffic report per node. This property is related to the non-repudiation property of node-to-node

signatures (see Chapter 7).

Lemma 17. Consider a DAG network where edge capacities are assigned conservatively, Consider

a set of nodes U = {v1, . . . , vk}. Let S(U) be the set of U and all descendant vertices of any vertex

in U . Then, for any assignment of (traffic) weights on the outgoing edges of S(U) that respect the

capacities of those edges, there exists an assignment of traffic weights on the internal edges of S(U)

which respects edge capacities such that no node in S(U) exceeds its allotted origination rate limit.

Proof. (Sketch) This is a restatement of the principle of conservative capacity assignment. It is

easy to see that if capacities are assigned conservatively then the outgoing rate limit at a given

internal node v is no more than the sum of the origination rate limits of all descendants of v plus

the origination rate limit of v itself. Hence, if v is obeying its rate limit, then there exists an legal

94 CHAPTER 9. RATE-LIMITING USING THE HT FRAMEWORK

assignment of origination rates to v and all nodes that are descendants of v. The lemma generalizes

this to a arbitrary sets of nodes v.

Theorem 18. If all legitimate nodes pass the distributed verification, then the view of the legitimate

nodes must be permissible.

Proof. (Sketch) Let the set of all legitimate nodes be L. Let A(L) be the set which includes L

and all ancestors of the nodes in L. By Lemma 16, every node in A(L) reports the same traffic

report to all its legitimate descendants. All the origination rates reported by any node in A(L) are

within the allotted bounds since some legitimate node must have checked it. As for the remaining

nodes, Lemma 17 ensures they do not exceed their respective rates. This implies a well-behaved

communication pattern that is a completion of the legitimate view.

Theorem 19. The distributed audit protocol induces O(dna) congestion and requires O(dna) mem-

ory overhead on sensor nodes, where d is the maximum indegree in the network and na is the

maximum number of ancestors of any node.

Proof. The O(dna) memory overhead arises from the necessity of each node knowing its entire

downstream topology. For the congestion bound, the commitment phase causes O(d) congestion

while the verification phase causes O(dna) congestion due to the fact that the hash computations

from each ancestor are of size O(d) and O(na) of them must reach the nodes with the greatest

number of ancestors. The final confirmation phase causes O(1) congestion.

Chapter 10

Low Latency Broadcast

Authentication

Topology knowledge can not only yield efficient new protocols for various applications, but can also

be applied to enable speedups of these protocols for known special-case topologies. In this chapter

we examine latency optimizations for the broadcast authentication protocol of Section 5 as well as

for a family of schemes known as hash-chain-keyed broadcast authentication protocols.

Latency is of particular importance in delay-sensitive applications such as alarms, node revoca-

tion, and time synchronization. We examine specific optimizations for latency and communication

congestion in two specific topologies: linear and fully-connected. The linear topology occurs fre-

quently in wireless networks both directly in such examples as networks deployed along corridors

and roadways and indirectly as a multi-hop routing path between a sender and receiver. The fully

connected topology occurs less frequently in our standard application scenario of sensor networks,

but it often occurs in Internet-scale distributed systems such as grid computing and peer-to-peer

networks, where any node can communicate (via the Internet) with any other node. We also provide

a latency lower bound for broadcast authentication in trees without time synchronization.

95

96 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

10.1 Problem Definition

Consider a network consisting of a sender node s and n receiver/destination nodes d1, . . . , dn. The

network topology is represented by an undirected graph G = (V, E) where V = {s, d1, . . . dn} and

an edge connects any two nodes that can communicate (all communication links are bidirectional).

All communication occurs along these edges, i.e., all messages are point-to-point between adjacent

nodes in the graph. Each receiver knows the value n and its particular index in the enumeration

of the receivers (i.e., node d1 knows that its index is 1, node d2 knows that its index is 2, and so

on). Likewise, the sender s knows the entire topology G. The sender s shares a unique secret key

Ki with each receiver node di. The nodes have no capability for public key cryptography and are

reliant on symmetric-key cryptography.

In the broadcast authentication problem, the sender s wishes to send a message M to all

receivers such that each receiver can check that the message is authentic, i.e., M was truly sent

by s. Some arbitrary unknown subset of the receivers may be arbitrarily malicious, i.e., they are

colluding byzantine nodes under control of a single adversary. The goal of the adversary is to cause

some legitimate receiver to accept some forged M ′ that was never sent by the sender s. We do not

consider denial-of-service attacks (where a legitimate message M that is sent by s is rejected by a

legitimate node due to the actions of the adversary). For brevity, we also ignore replay attacks in

the discussion; we use the standard assumption that each message contains the necessary sequence

numbers or time stamps to make replay attacks ineffective.

We consider two metrics for this problem. The first metric is communication congestion cost.

Let c(v) be the total amount of communications (transmission or reception) in the entire protocol

performed by the node v. Then the congestion of the protocol is maxv∈V c(v), i.e., the greatest

amount of communications performed by any single node.

The second metric is the latency of the protocol, defined as the time between when the sender s

initiates the protocol (by sending the first message) and the latest time at which any receiver node

authenticates the message. Since we are concerned only with correct authentication and not denial

of service, we measure only honest latency, i.e., we assume that the adversary does not perform

attacks specifically aimed at increasing the latency of the protocol by such actions as delaying

10.1. PROBLEM DEFINITION 97

Figure 10.1: Hash chain

messages or failing to respond as expected. To estimate latency, we divide time into steps. In

each time step, every node is allowed to exchange information (both ways) from only one other

node. The amount of information exchanged in each time step is not limited by this definition;

however, to achieve a good communication congestion bound, a protocol typically can only send a

small amount of information in each time step. Time steps are simply an estimate of latency and

not a synchronization assumption, i.e., nodes are not globally synchronized to uniform time step

boundaries.

Conceptually, it can be easier to think of all nodes performing the protocol in lock-step, with

all nodes switching connection partners simultaneously at each time step boundary: for clarity,

this is how we will describe our protocols; however no global synchronization is necessary for these

protocols. Nodes can attempt to establish connections as soon as they are able to do so in the

protocol; if their partner is not ready (e.g., it is busy with an existing connection, or waiting on

a dependency), then this connection attempt will fail or block until the partner node is ready to

connect. In general the notion of “time steps” should be considered more as a measure of latency

than a form of protocol synchronization.

10.1.1 Background: Hash Chain Broadcast Authentication

Hash chains are used for broadcast authentication in such protocols as the Guy Fawkes schemes (an

example of which is the Chained Stream Authentication algorithm or CSA) [4] and in TESLA [66].

The basic structure of these algorithms are similar and can be sketched as follows.

On initialization, the sender generates a hash chain of some predetermined length k by randomly

selecting a secret seed value hk and then iterating a pre-image resistant hash function H to generate

a chain of k values such that hi−1 = H [hi] for i = k − 1, k − 2, . . . , 0. Figure 10.1 shows a hash

chain. Receivers are loaded with the final hash chain value h0 during initialization.

To authenticate the ith message mi, the sender broadcasts (mi, MAChi
(mi)). Once all receivers

98 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

Figure 10.2: Linear Topology with 8 receivers

have received MAChi
(mi), the sender broadcasts hi. Receivers can check that H [hi] = hi−1 and

also that the MAC is correct given mi and hi. If so, they accept the message.

The hash chain value hi is released only after all receivers have stopped accepting candidates

for MAChi
(mi). The protocol thus temporally separates MAC generation from MAC verification

by releasing hi for verification only after it becomes useless for MAC generation. To achieve

this separation, TESLA uses loose time synchronization which implies additional assumptions and

protocol overheads, while CSA/Guy Fawkes uses explicit acknowledgments which are expensive in

terms of communication overhead. In Section 10.2.2 we describe several optimizations to speed up

and to reduce the communication overhead of explicit acknowledgments.

10.2 Linear Topology

We now examine optimizations of the hash tree and hash chain protocols for the linear network

topology. In the linear topology, G is a single path starting at s and ending at dn, in the sequence

(s, d1, d2, . . . , dn). In this topology, since the nth receiver is n hops away from the sender, any

protocol for disseminating M must take at least n time steps. Figure 10.2 shows an example of the

linear topology for 8 receivers.

There are numerous applications of broadcast authentication in a linear topology. For example,

wireless networks deployed in a linear environment naturally assume a linear topology. Examples

of such networks include sensor and wireless networks deployed along corridors, roadways, tunnels

and pipelines. In such environments, all applications involving broadcast or multicast would benefit

from our optimizations. These may include data query messages, control messages (e.g. turn on

all the lights, or temporarily shut down all sensors), and coordination messages (e.g., disseminate

new global sleep/wake schedules, or open the network to allow new nodes to join).

General sensor networks are often logically arranged in a tree with the base station at the

root [54]. Paths naturally occur in tree topologies as the subgraph of all the nodes between the

10.2. LINEAR TOPOLOGY 99

root and any leaf. Hence our algorithms are useful for securing broadcast communications to all

nodes along any root-leaf path. A specific example of such communications include node join/leave

notifications. In the event of a new node joining a tree topology as a leaf, all its ancestors up

to the root may need to be authentically notified of the change in membership of their respective

subtrees; the notification would take the form of a broadcast along a linear topology from the base

station to all affected ancestors. A similar argument applies for nodes leaving the topology and

reorganizations of the tree due to node redeployments.

More generally, the linear topology also occurs as a routing path between any two endpoints.

Broadcast authentication on the routing path can then be used for functions related to route

maintenance and data transport. For example, endpoints may wish to inform forwarders that they

are still actively using this routing path, or to request a certain traffic rate on the route. Endpoints

may also send out authenticated packet loss statistics to help forwarders determine if they are

responsible for packet dropping bottlenecks. In scenarios where a group key is shared between all

nodes on the path (e.g., for the purposes of preventing injection of packets from nodes outside of

the forwarding path), authenticated broadcast may be used to maintain consistency in sequence

numbers or to update the path key periodically to prevent key overuse.

10.2.1 Hash Tree Based Schemes

In the basic hash tree based scheme of Chapter 5, the protocol proceeds in three passes. The first

pass consists of a broadcast message front expanding outwards from the sender; this disseminates

the message M and the hash tree root r to all nodes. The second pass is a convergecast message front

starting at the leaves of the network topology and converging towards the sender; this allows internal

nodes in the topology to compute internal hash tree vertices. The third front is another outgoing

message front from the sender and facilitates the dissemination of the computed internal hash tree

vertices to the rest of the network for the reconstruction of each node’s respective authentication

paths.

A naive implementation of the basic protocol on a linear topology will result in a latency of

3n as each of the three passes takes n hops to reach the farthest node from the sender and vice-

versa. The communication congestion of the basic protocol is O(log n) hash values. We show an

100 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

optimization that reduces the latency to 2n with ⌈log n⌉+ 1 congestion and a further optimization

that with optimal n latency with 2⌈log n⌉+ 1 congestion overhead.

Optimization for 2n latency

The first optimization is based on the following observation: as soon as (M, r) is received by a node

i, the value of PRFKi
(M) can immediately be released to the (untrusted) network to facilitate the

derivation of authentication paths for other nodes. In other words, each node can individually start

to reconstruct the hash tree as soon as it has received the payload message M and does not have to

wait for other nodes to also receive M . This allows us to “piggy-back” the dissemination of (M, r)

onto the two passes that reconstruct the hash tree, thus reducing latency to 2n.

The optimization is as follows. For a linear topology of n receivers numbered 1, . . . , n with node

1 being closest to the sender, the hash tree is constructed with leaf vertices, from left to right,

(v1, . . . , vn), with vi = PRFKi
(M) where Ki is the key shared between the sender and the ith

receiver. We define the left off-path vertices Li for a hash tree leaf vi as the set of all sibling vertices

that are to the left of the path from i to the root vertex r; similarly the right off-path vertices Ri of

vi is the set of all sibling vertices that are to the right of the path. For example, in Figure 10.3, the

left off-path vertices of vertex 4 are vertices 3 and 9; similarly, there is one right off-path vertex,

14. Given vi, Li and Ri, the authentication path from vi to the root can be computed.

We note that Li+1 can be easily computed from Li and vi. This is done in the natural way

by adding vi to Li and repeatedly computing hash tree vertices as far up the authentication path

of vi as possible. This yields the deepest left-child in the authentication path of vi. For example,

in Figure 4, given L4 (vertices 3,9) and vertex 4, we can first compute vertex 10 and then vertex

13, which is the first left-child in the authentication path (4, 10, 13, 15). Vertex 13 is exactly the

left off-path vertex of vertex 5. More generally, let h be the height of the hash tree. If Li has no

vertex at maximum depth h, then we can just add vi to Li and obtain Li+1. Otherwise, let k be

the deepest level of the hash tree which has no vertices in Li. Then Li has vertices at all depths

from k + 1 to h. Let them be uk+1, uk+2, . . . , uh respectively. Now Li+1 has a vertex uk at level

k: this vertex is root of the largest subtree that contains vi as the right-most child, i.e., it is the

10.2. LINEAR TOPOLOGY 101

deepest left-child in the authentication path of vi. It can be computed as:

uk = H [uk+1‖H [uk+2‖ · · ·H [uh−1‖H [uh‖vi]] · · ·]]

All vertices of Li+1 at depths less than k are exactly the same as those at the same depth in Li. A

symmetrical reasoning applies to computing Ri−1 from Ri and vi. The algorithm thus completes

in two passes: in the outgoing pass, nodes compute left off-path vertices for their downstream

neighbors; in the incoming pass, nodes compute right off-path vertices for their upstream neighbors.

The message and authenticator (M, r) are piggybacked onto the outgoing pass. The algorithm is

shown in Algorithm 4; an example is illustrated in Figure 10.3.

Algorithm 4 Hash Tree Protocol with 2n Latency

Sender s sends (M, r) to d1

for i = 1 to n do
If Node di has seen M before, abort.
Node di computes Li+1 from Li and vi = PRFKi

(M)
Node di sends (M, r), Li+1 downstream to Node di+1

end for
for i = n down to 1 do

Node di computes Ri−1 from Ri and vi = PRFKi
(M)

Node di sends Ri−1 upstream to Node di−1

end for

The communication congestion of this protocol is at most ⌈log n⌉ + 1 hash tree vertices. The

nodes with the most number of transmissions are the two inner vertices of every subtree of 4 leaves.

The latency of the protocol is exactly 2n time steps since the protocol proceeds in two complete

passes of the linear topology and the second pass can only start after the first pass is completed.

Optimization for n latency

The optimization of Section 10.2.1 reduced the number of passes of the broadcast authentication

protocol from three passes down to two. We now present an additional optimization which reduces

the latency of the algorithm to the equivalent of a single pass, i.e., n time steps. This optimization

makes the protocol optimally fast, since all broadcast protocols on the linear topology require at

least n time steps.

102 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

Figure 10.3: Example of Algorithm 1 with 8 nodes. Numbers indicate transmitted hash tree
vertices.

The optimization is parameterizable to trade off latency and congestion, and is applicable to

all 2-pass authentication protocols. The intuition is that we can perform a variant of divide-and-

conquer on the receiver set. We observe that a 2-pass protocol takes 2n − 1 latency due to the

round-trip time from the sender to the farthest receiver and back. To reduce the size of this round-

trip, we can partition the set of n receivers into two contiguous subsets R1 and R2. The first subset

R1 contains the first m receivers {r1, . . . , rm} (for some selected value of m) and R2 contains the

rest of the receivers {rm+1, . . . , rn}. We then run the protocol separately for each subset. The

sender computes different authenticators T1, T2 for each receiver subset R1, R2. Receiver subset R1

performs the protocol using T1, and forwards T2 to R2 as part of its own outgoing pass; once the

last node rm receives T2, it is immediately forwarded to rm+1 in the next time step to allow R2

to perform the protocol in a timely fashion. Receiver subset R1 will take 2m latency: 2(m − 1)

time steps to pass messages within the receiver set and an extra time step to receive the first

message from s and another for rm to forward T2 to R2. Receiver subset R2 will take no more than

2(n−m)+m = 2n−m latency since it has n−m receivers and needs m time steps before it receives

T2 forwarded across the m nodes of set R1. Setting m = 2
3n causes both subsets to complete at the

same time (4
3n time steps) and minimizes the worst case latency.

10.2. LINEAR TOPOLOGY 103

Figure 10.4: Latency optimization for 2-pass protocols

Figure 10.4 shows how partitioning the receiver set yields lower overall latency. The more

subsets we use, the lower the latency, at the cost of greater congestion due to the larger num-

ber of authenticators that have to be forwarded to the respective receiver groups. For k subsets

R1, R2, . . . , Rk, worst case latency is minimized by having each successive receiver subset be half

the size of the previous subset, i.e., |Ri+1| = 1
2 |Ri| for i = 1, . . . , n − 1, with the smallest subset

having n/(2k − 1) receivers. This results in an overall latency of approximately n + n/(2k − 1) + 1

time steps. For values of n which are not divisible by 2k − 1, we need to round down the subset

boundaries to the next largest integer value. This may introduce up to one extra time step in each

subset. Hence the latency is bounded by n + n/(2k − 1) + 1 time steps.

Each receiver subset Ri must receive a separate authenticator Ti to execute its respective au-

thentication protocol; these authenticators must be forwarded through the first group R1, adding

to its congestion. In the hash tree based protocol, the sender sends one hash tree vertex to each

receiver group; this causes an increase in communication congestion of k hash values for the nodes

in the first receiver group, thus we have a bound of log n + k hash values on the communication

congestion.

Since the optimization achieves n + n/(2k − 1) + 1 latency for k subsets, setting k = log n

suffices to achieve a latency of at most n + 3. To achieve optimal n latency, we can use a slightly

104 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

different way of partitioning the receiver subsets as follows. Let |Rk| = |Rk−1| = 1, and each

preceeding subset double in size, e.g., |Rk−2| = 2, |Rk−3| = 4, and so on until R1 contains the

remaining receivers. For example, a receiver set of size n = 35 can be divided into 7 subsets of

size 3, 16, 8, 4, 2, 1, 1 respectively. It can be seen that, except possibly for R1 (which may complete

early if n is not a power of 2), all subsets complete their respective protocols at the same time:

after n time steps. This method of partitioning yields ⌈log n⌉ + 1 subsets and involves a total of

2⌈log n⌉+ 1 congestion in the hash tree protocol.

10.2.2 Hash Chain Based Schemes

As described in Section 10.1.1, in hash chain based schemes, to authenticate the ith message mi, the

sender first broadcasts (mi, MAChi
(mi)) where hi is the ith hash chain value. Once the sender has

ensured that all receivers have received MAChi
(mi), then the sender broadcasts hi; receivers then

check hi against known values of the hash chain to verify hi and verify the MAC to authenticate

the message.

The main property that distinguishes different protocols is how to achieve temporal separation

between MAC reception and MAC verification. In TESLA, the temporal separation is implicit by

assuming that nodes are loosely time synchronized, and hence are aware of when a given MAC is

no longer “fresh” and acceptable. Time synchronization may not be desirable for networks with

high clock drift and where receivers may undergo long periods of sleep where desynchronization

might occur; the resynchronization protocol itself must also be secure which raises another set

of overheads and problems. In the Guy Fawkes/CSA protocol, temporal separation is provided

through explicit coordination; each receiver uses a similar hash chain based protocol to return

authenticated acknowledgements back to the sender to indicate that they have received the message.

This causes the protocol to take three passes through the network.

We address efficient mechanisms for explicit coordination improving upon the properties of

CSA. As a preliminary discussion, we first describe an application of a known construction [17,

15, 44]for authenticated acknowledgements that reduces the congestion overhead of the second

phase (authenticated acknowledgement) to a constant; this has better properties than a previously-

described authenticated acknowledgement construction described by Yao et al. [80]. Building on

10.2. LINEAR TOPOLOGY 105

this, we then introduce an optimization which reduces the number of passes of the protocol from 3

to 2 passes.

Efficient Acknowledgements

In CSA, each receiver transmits a separate ACK message back to the sender. This causes n mes-

sages in total to be received by the sender, thus the communication congestion of the scheme is n

cryptographic values. Yao et al. improve this for tree-based networks by proposing the construction

of an authenticated aggregate acknowledgement via construction of a hash tree over the acknowl-

edgements [80]. In their scheme, internal nodes in the tree topology wait to receive all (aggregated)

acknowledgements from their children; they then compute a hash over these values and their own

acknowledgement and forward the result to their respective parents. This approach reduces conges-

tion to a single hash value but has some drawbacks: first, internal nodes must buffer all aggregated

acknowledgements from their children before computing their own aggregated acknowledgement;

second, the sender must know the exact topology of the tree to verify the aggregated acknowledge-

ment (instead of just the receiver set). We note that if the hash function is instead replaced with

the XOR-based construction of Section 4.4, all the security properties remain intact but the above

disadvantages are removed: for example, in the linear topology, the sender does not need to know

the sequence of receivers in the topology.

Construct a hash chain h0, . . . , hm. Define each use of a given hash chain value as a message

stage. Hence, there can be up to m stages, after which the protocol must be re-initialized. Assume

that all nodes have received the previous value hj−1 on the previous stage and are waiting for the

jth stage message Mj (in general, knowing any previous value hk for k < j will suffice [1, 66]). The

sender computes Tj = MAChj
(Mj‖Nj) as the authenticator (where Nj is a non-repeated nonce

that includes an unambiguous encoding of the value of the stage j; for example, we can let Nj = j

in a fixed-length encoding). The sender then disseminates (Mj , Nj , Tj) to the network. Note that

Mj , Nj , Tj should each have some fixed length. Once each receiver di has received the message tuple,

it extracts the value of j from Nj , and checks that j is larger than the latest stage number that di

has seen so far, and if so, di releases PRFKi
(Mj‖Nj‖Tj) to the network. The acknowledgements

occur in reverse order of reception of the broadcast in the first pass, i.e., starting from receiver rn

106 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

and proceed towards the sender. Each receiver di computes the XOR of its own PRF value with

all the PRF values of the receivers di+1, . . . , dn. Finally, the sender receives:

Aj =
n

⊕

i=1

PRFKi
(Mj‖Nj‖Tj)

The sender can verify that the result was indeed composed of the XOR of all the respective PRFs

of each receiver (since it has all the keys). At this point the sender may release the hash chain value

hj . Receivers verify that H [hj] = hj−1 and that Tj = MAChj
(Mj‖Nj). If so, then they accept Mj .

The algorithm for the linear topology is shown in pseudo-code in Algorithm 5.

Algorithm 5 Hash Chain Protocol with O(1) congestion

Require: Hash chain h0, . . . , hm

Mj = jth Message ; Nj = jth Nonce
s computes: Tj ← MAChj

(Mj‖Nj)
s multihop broadcasts (Mj , Nj , Tj) to all receivers
Aj ← 0
for i = n down to 1 do

If di has already processed stage j or later, abort
di computes: Aj ← Aj ⊕ PRFKi

(Mj‖Nj‖Tj)
di sends Aj to di−1 (or to s if i = 1)

end for
s checks: Aj =

⊕n
i=1 PRFKi

(Mj‖Nj‖Tj)
s multihop broadcasts hj to all receivers
for i = 1 to n do

di checks that H [hj] = hj−1

di checks Tj = MAChj
(Mj‖Nj); if success, accept Mj .

di forwards hj to di+1

end for

The security of the algorithm follows from the temporal separation of MAC reception with

MAC verification. By the correctness of the subprotocol involving authenticated aggregated ac-

knowledgements, the hash chain value hj is released only after all nodes have received a message

containing Nj . Since each node stops accepting messages from stage j or earlier as soon as it

receives a candidate for stage j, when hj is released, it is not useful for creating a new forged MAC

for period j; deriving earlier keys from hj is likewise not useful since all receivers have stopped

accepting messages from those periods.

10.2. LINEAR TOPOLOGY 107

An adversary may launch a persistent denial of service attack by disseminating a message tuple

claiming to be from the latest possible stage (e.g., stage m). Even though this message tuple will be

correctly rejected by all receivers, the receivers will now stop responding to all legitimate messages

(since they appear to be from stages prior to m). A method to prevent this attack is to let Nj also

be derived from a hash chain such that H [Nj] = Nj−1. All receivers are additionally required to

check the validity of this hash chain relationship when receiving a message tuple. Since the attacker

cannot invert the hash function, it cannot derive message tuples claiming to be from a stage later

than the most current stage at the sender.

If the protocol is implemented for a receiver group with changing membership, it is important

that new members be correctly initialized with the correct j such that they do not erroneously

accept broadcast messages secured by MACs for which the hash chain keys have already been

exposed.

This description of the hash chain keyed authentication code protocol requires 3 passes between

the sender and the network and thus has a latency bound of 3n for the linear topology. In a

general, for any topology, the unoptimized protocol requires 3d time steps where d is the greatest

hop distance of any node to the sender. In the next section we show how to improve this.

Optimization for latency

In the original 3-pass protocol, the third pass where hj is disseminated starts only after the reception

of the aggregated acknowledgement Aj by the sender. This allows the sender to verify Aj before

releasing hj . However, passing Aj back to the sender, and then passing hj out to all receivers,

involves a round-trip between the sender and the farthest node and is thus time-consuming. We

can optimize this two-step process by having the sender include an encrypted version of hj in

the outgoing message such that only a successful computation of Aj can reveal it. Specifically, the

sender computes Aj =
⊕n

i=1 PRFKi
(Mj‖Nj‖Tj) and includes Ej = EAj

(hj) in the broadcast, where

EK(X) denotes the encryption of string X with key K. In this way, any node that successfully

computes Aj can immediately decrypt Ej to receive hj . This avoids the need for a third pass where

hj is disseminated in the network.

In general E can be any encryption function (e.g., AES), but since each Aj is used as a key

108 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

to encrypt only one fixed-length plaintext hj , if we set the PRF length and the hash length to be

equal, we can simply use Aj as a pseudorandom masking factor for hj as follows:

Ej =

[

n
⊕

i=1

MACKi
(Mj‖Nj‖Tj)

]

⊕ hj

From this construction, it is clear that if even one PRF value is unknown, the adversary finds it

infeasible to recover any bits of hj from Ej . Hence, the adversary can only feasibly recover hj after

all legitimate nodes have released their PRF acknowledgement values for stage j. At this point

hj is useless for forging messages for stage j since all legitimate nodes will ignore any messages

claiming to be from stage j. Hence the security of the scheme holds (a sketch of this proof is in

Appendix 10.2.2). The modified protocol is described in pseudocode in Algorithm 6.

Algorithm 6 Hash Chain Protocol with 2 passes

Require: Hash chain h0, . . . , hm

Mj = jth Message ; Nj = jth Nonce
s computes: Tj = MAChj

(Mj‖Nj)
s computes: Ej =

⊕n
i=1 PRFKi

(Mj‖Nj‖Tj)⊕ hj

Aj ← 0
s sends (Mj , Nj , Tj , Ej , Aj) to d1:
for i = 1 to n do

If di has already processed stage j or later, abort
di computes: Aj ← Aj ⊕ PRFKi

(Mj‖Nj‖Tj)
di forwards (Mj , Nj , Tj , Ej , Aj) to di+1

end for
dn computes: hj ← Aj ⊕ Ej

for i = n downto 1 do
di checks Tj = MAChj

(Mj‖Nj); if success, accept Mj .
di forwards hj to di−1

end for

The resultant protocol terminates in 2 passes and thus results in a latency of 2n for a linear

topology. The communication overhead increases by one for the additional encrypted value, hence

6 cryptographic values are sent by each receiver in the network.

More importantly, since this protocol is now a 2-pass protocol, the speedup tradeoffs of Sec-

tion 10.2.1 apply directly. For example, it is possible to speed up the latency to 4
3n by splitting

10.2. LINEAR TOPOLOGY 109

the receiver set into two receiver subsets each with an separate tag and hash chain value, thus

raising the communication overhead to 7 cryptographic values transmitted per node. In general,

n+n/(2k−1)+1 latency is achievable with k subsets implying a communication overhead of 2k+4

cryptographic values. Optimal n latency is achievable with k = ⌈log n⌉+1 receiver sets, at the cost

of 2⌈log n⌉+ 6 communication congestion.

Security Proof for 2-Pass Hash Chain Scheme

The security proofs of TESLA and CSA can be found in their respective papers[66, 4]. In the

unoptimized three-phase hash chain protocol, the message and tag are broadcast, then authenti-

cated acknowledgements are received, and finally the hash chain value is released. This sequence

of events is functionally identical to TESLA and CSA except with the addition of the use of ag-

gregated authenticated acknowledgements, the correctness of which was shown by Chan et al and

Katz et al [17, 44]. We sketch a proof of the security of our optimization where the hash value is

encrypted using the aggregated PRFs of each receiver, i.e.,

Ej =

[

n
⊕

i=1

MACKi
(Mj‖Nj‖Tj)

]

⊕ hj

We define the attacker-challenger Game 0 for the optimized scheme as follows. The game is de-

scribed for i 6= n; the case where i = n is straightforward and omitted for brevity.

• The protocol is initialized as normal for n nodes and all receiver nodes are given their respec-

tive keys.

• The adversary selects a target receiver i. The challenger provides the adversary with the keys

and states of all receivers that are not i.

• The adversary sends q − 1 adaptive queries Mj to the challenger which responds by running

the protocol as normal, i.e., the sender sends out correctly computed tuples (Mj , Nj , Tj , Ej)

as per the protocol, using successive pre-images hj on the hash chain for each successive j;

receiver i also behaves correctly by producing PRFKi
(Mj) on reception of each tuple. The

number of queries is selected by the adversary.

110 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

• The qth query is an attack query. The adversary sends Mq to the challenger and receives

(Mq, Nq, Tq, Eq).

• The adversary then chooses M ′
q 6= Mj for j = 1, . . . , q. It constructs (M ′

q, N
′
q, T

′
q, E

′
q) which

is sent to the challenger.

• The challenger implements the response of receiver i which gives PRFKi
(M ′

q) to the adversary.

• The adversary then produces h′
q to the challenger. The challenger simulates the operation of

receiver i in verifying T ′
q. If it accepts, then the adversary wins.

We first analyze Game 1 which is identical to Game 0 except we replace each PRFKi
with

a random function fi. In game 1, if fi(Mj‖Nj‖Tj) is not known, then Ej leaks no information

about hj . Given a game for the unoptimized scheme, and an attacker A for game 1, we construct

an attacker B that simulates the optimized Game 1 for attacker A thus using it to attack the

unoptimized scheme. Attacker B answers attacker A’s queries Mj by forwarding the queries to its

challenger, thus receiving (Mj , Nj , Tj). It completes the response by picking each Ej as a random

bitstring of the required length. When receiver i is given message Mj by attacker A, then attacker

B also allows its own receiver i to receive Mj and respond with its authenticated acknowledgement.

This allows that round of the protocol to complete, thus sender in the unoptimized scheme releases

the hash chain value hj . Using this value, attacker B can then reconstruct fi(Mj‖Nj‖Tj) = Ej⊕hj

and release it to attacker A. The attack query of attacker A is simulated in an identical fashion,

except that attacker B discards the values of E′
q provided by attacker A, and forwards the h′

q

provided by attacker A to its own challenger. Clearly, the simulation implemented by attacker B

is identical to Game 1. Furthermore, if attacker A succeeds in Game 1, then attacker B succeeds

in attacking the unoptimized protocol. Hence Game 1 is at least as secure as the unoptimized

protocol, which is as secure as TESLA and CSA.

It remains to show that converting from Game 1 to Game 0 confers an additional advantage

no more than the distinguishability advantage ǫ of the PRF. We prove this in the usual way by

constructing a distinguisher D for PRFKi
and random function fi from an adversary A for Game

0. Given oracle access to a function F , we implement Game 0 substituting F for PRFKi
; hence

10.3. FULLY CONNECTED TOPOLOGY 111

Figure 10.5: Fully-connected Topology

if F is pseudorandom then the game is equivalent to Game 0, if F is a random function then it

is equivalent to Game 1. The distinguisher D runs adversary A on the game; and outputs 1 if A

succeeds and 0 otherwise. If adversary A has a significantly different chance of success in game

0 vs game 1 then D has a significant chance of distinguishing the PRF from a random function;

hence the advantage of A in Game 0 must be no more than ǫ higher than the advantage bound on

adversaries in Game 1.

10.3 Fully Connected Topology

We now examine bounds and optimizations for the fully connected topology. In the fully connected

topology, G is the complete graph of n + 1 vertices (including the sender s and the n receivers).

Figure 10.5 shows an example of the fully-connected topology for 5 receivers. Fully-connected

topologies are important in both theory and practice. In terms of theoretical importance, latency

lower bounds proven on fully connected topologies apply to all topologies. Since any graph G

of n nodes is a subgraph of Kn, any algorithm for G is also an algorithm for Kn; hence if we

can show that no algorithm can be faster than f(n) on the complete graph Kn, the bound also

applies directly to arbitrary topologies. In terms of practical importance, fully-connected topologies

occur whenever a network of nodes can achieve any-to-any addressability; this commonly occurs on

Internet-based distributed systems such as peer-to-peer networks and grid computing. Although

our algorithms assume uniform latency between any two nodes, this does not hinder the practical

applicability of our algorithms. Our constructions specifically target resource-limited applications

by not using asymmetric cryptography; such applications are unlikely to perform exhaustive latency

112 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

Figure 10.6: Maximum Dissemination Tree

measurements between pairs of nodes. In the absence of latency estimates, a reasonable course of

action is to minimize the total number of connections made to other hosts in the course of the

protocol. This also allows the protocol to bound the worst case protocol execution time as the

number of time steps incurred multiplied by the worst case connection latency between hosts.

10.3.1 Doubling Broadcast / Maximum Dissemination Trees

As a preliminary, we first consider the problem of disseminating a message M from one node to as

many other nodes as possible within t time steps. A straightforward approach is doubling broadcast :

in each time step, every node which has knowledge of M communicates it to a different node that

has not yet received M . An inductive reasoning on t shows that this schedule reaches the maximum

number of nodes for each t ≥ 0; since each node can only communicate with one other node in each

time step, the number of nodes that have received M can at most double at each time step. Thus,

after t time steps, up to 2t nodes have received M . Figure 10.6 shows this process; the numbers

in the circled nodes indicate in which time step the node first receives the message. We define the

communication pattern caused by this optimal dissemination schedule the maximum dissemination

tree. A consequence of this schedule being optimally fast is that any dissemination of a message

from one node to n nodes must take at least ⌈log2(n)⌉ time steps on any topology.

10.3.2 Hash Tree Based Schemes

The hash tree based broadcast authentication scheme of Chapter 5 takes three message passes

to and from the sender to the rest of the network. This implies a 3 log n latency for a naive

10.3. FULLY CONNECTED TOPOLOGY 113

Algorithm 7 Doubling Broadcast (for n = 2k nodes)

Require: Message M for broadcast from d0

for h = 0 to k − 1 do
{The next loop happens simultaneously for all i}
for i = 0 to 2h do

di sends M to di+2h

end for
end for

implementation of the algorithm in a fully connected topology. As an improvement, we present a

schedule which allows 2 log n time steps. We first describe an algorithm for the case where n is a

power of 2, i.e., the hash tree is a perfect binary hash tree.

The protocol proceeds in two phases. In the first phase, the sender computes the hash tree

root r for the message M using the HT construction of Chapter 4.2. Then the message tuple

(M, r) is disseminated using the repeated doubling broadcast method of Algorithm 7. This takes

1+log n time steps: one time step for the sender to send the message to the first receiver, and log n

time steps for the receivers to disseminate the message. In the second phase, nodes collaborate to

reconstruct authentication paths. This phase of messages is illustrated in Figure 10.7. There are

two time-steps of message exchanges for each level of the hash tree, starting from the leaves. At

each level j, every node exchanges the hash tree vertex at level j on its authentication path with

that of its counterpart in the neighboring subtree at level j. This allows it to compute the next

higher hash tree vertex (at level h − 1) on its authentication path and thus repeat the process in

the next time step. Within 2⌈log n⌉ time steps all nodes will have computed their authentication

paths to the root. This process is shown in Algorithm 8. The communication pattern is similar to

all-to-all broadcast on a hypercube.

It remains to address the case where n is not a power of 2. In this case, we can partition

the receiver set into up to log n subsets where each subset is a distinct power of 2. The subsets

correspond to the binary representation of n, e.g., for n = 13, we have subsets of size 8, 4 and

1. The protocol then runs, in parallel, one completely separate instance of the protocol for each

subset. Since the sender can only start one instance of the protocol in each time step, it starts the

protocol for the largest subset first, then it starts the protocol for the second largest subset in the

114 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

Figure 10.7: Path Reconstruction Phase

Algorithm 8 Hash Tree Scheme with 2 log n latency

s sends (M, r) to all receivers using Algorithm 7
If any receiver di has seen M before, abort
Otherwise, di sets vi[0]← PRFKi

(M)
for h = 0 to (log n)− 1 do

for i = 1 to n do
j ← ((i− 1)⊕ 2h) + 1
di sends to dj : vi[h]
di receives from dj : vj [h]
if i < j do vi[h + 1]← H [vi[h]‖vj [h]]
if i > j do vi[h + 1]← H [vj [h]‖vi[h]]

end for
end for
Each di checks authentication path in vi.

10.3. FULLY CONNECTED TOPOLOGY 115

next time step, and so on. Even with this head start, the largest subset has the largest hash tree

and will be the last subset to complete verification; it has 2⌊log n⌋ nodes and thus takes 1+2⌊log n⌋,
or fewer than 2⌈log n⌉ time steps to complete verification.

The communication congestion overhead for this scheme is at most 3⌈log n⌉ values: 2⌈log n⌉ for

the dissemination of the tuple (M, r), and ⌈log n⌉ for the authentication path.

10.3.3 Hash Chain Based Schemes

One of the main advantages of the hash chain family of authentication schemes over the hash

tree scheme is that authentication is based on a single value hj rather than a log n size path in

a hash tree. We show how to use this property to achieve a constant communication congestion

authentication protocol for the fully connected topology albeit with somewhat higher latency.

The doubling broadcast (Algorithm 7) requires log n congestion at the first node to achieve log n

latency; hence we must consider a different schedule for constant-congestion broadcast. We define

a Fibonacci Tree T over the topology, rooted at s, and use it for both broadcast dissemination

and acknowledgement aggregation. A Fibonacci tree of height h is defined recursively as a binary

tree with a root vertex r which has, as a left subtree, a Fibonacci tree of height h − 1, and as a

right subtree, a Fibonacci tree of height h − 2. For base cases, Fibonacci trees of height 0 and

1 are defined as the single vertex and the a root vertex with a single left-child respectively. A

(complete) Fibonacci tree of height h has F (h + 3) − 1 nodes where F (x) is the xth Fibonacci

number. We assume that each receiver knows its position in the tree T . For brevity we only

describe the algorithm where the Fibonacci tree embeds directly in Kn, i.e., for n = F (h + 3)− 1;

the case for arbitrary n can be easily generalized by setting h be the smallest integer such that

n ≤ F (h + 3)− 1.

When using the Fibonacci tree for broadcast, each internal node disseminates the message first

to its left child, and then to its right child. When performing a convergecast, the opposite happens,

i.e., first the right child sends a message to the parent, and then the left. This timing requirement

need not be explicit since each node can simply respond to its parent as soon as all its children have

responded; the structure of the Fibonacci tree ensures that typically no two children will respond

to the same parent at the same time.

116 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

The 3-pass protocol of Section 10.2.2 can thus be implemented in the straightforward way on the

Fibonacci Tree subgraph of Kn. For the jth message, the sender first broadcasts (Mj , Nj , Tj) on the

Fibonacci Tree; then all nodes perform a convergecast on the same tree, aggregating authenticated

acknowledgements (PRFKi
(Mj , Nj , Tj)) of the reception of this message using XOR. Finally the

sender checks the aggregated ACKs and then broadcasts hj on the Fibonacci tree. The result is

three traversals of the Fibonacci Tree. The algorithm is shown in Algorithm 9.

Algorithm 9 Hash Chain Protocol with 4.32 log n latency

Require: Public embedding of Fibonacci Tree T on Kn

Require: Hash chain h0, . . . , hm

Mj = jth Message ; Nj = jth Nonce
s computes: Tj = MAChj

(Mj‖Nj)
s broadcasts (Mj , Nj , Tj) along T
repeat

for all di that have received messages from all their children (if any) do
If di has already processed stage j or later, abort
Let vl (resp. vr) be the message from the left (resp. right) child. If there is no such child
then let vl (resp. vr) = 0.
di sends to its parent: vl ⊕ vr ⊕ PRFKi

(Mj‖Nj‖Tj)
end for

until s has received messages from all its children
s checks: Aj =

⊕n
i=1 PRFKi

(Mj‖Nj‖Tj).
If so, s broadcasts hj along T
Each receiver di authenticates Mj with hj , Tj .

From Binet’s formula we can derive a bound on the height h of a Fibonacci tree that contains

at least n vertices as h ≤ ⌈logφ

√
5n⌉ − 2. From this we can estimate the height bound of a

Fibonacci tree with at least n nodes as no more than ⌈1.44 log n− 0.328⌉. The algorithm performs

three passes along the tree, hence, the total latency is 3⌈1.44 log n−0.328⌉ < 3(1.44 log n+0.672) =

4.32 log n+2.016 time steps. The total transmission congestion is 9 cryptographic values (including

M) per node.

10.4 Congestion-Latency Lower Bounds

Several of our schemes for the linear topology are latency-optimal: they take n rounds, which is the

lower bound on the time for message dissemination. It is less clear what lower bounds exist for the

10.4. CONGESTION-LATENCY LOWER BOUNDS 117

fully connected topology. The requirements for message dissemination (log n rounds for doubling

broadcast) provide a loose bound, which can be achieved by attaching a digital signature to every

message. However digital signatures represent a fundamentally harder problem than authentication,

being both more computationally expensive and providing additional unnecessary properties such

as non-repudiation. Therefore, we investigate what bounds can be derived for protocols which do

not involve the digital signature problem.

We prove that any network broadcast authentication protocol that completes in at most (2 −
ρ) log n time steps (for ρ > 0) must imply a digital signature or have communication overhead at

least proportional to nρ. By implication, any protocol that completes in time asymptotically less

than 2 log n cannot have communication complexity polylogarithmic in n unless it also provides

signature properties (i.e., it solves a fundamentally harder problem).

We build on the result of Boneh, Durfee and Franklin [7] which showed that any multicast MAC

(or MMAC) for n receivers must either imply a digital signature or have overhead proportional

to n. An MMAC is defined by three algorithms key-gen, mac-gen, mac-ver. Algorithm key-gen

takes a security parameter s and a number of receivers n and generates the sender key sk and

receiver keys rk1, . . . , rkn for each receiver d1, . . . , dn. Algorithm mac-gen takes a payload message

M and a sender key sk returns a fixed-length tag T = mac-gen(M, sk). Algorithm mac-ver takes a

payload message M , a tag T , and a receiver key K and returns a bit indicating whether the tag T

verified correctly for payload message M , under the constraint that correctly generated tags from

the sender always verify successfully for all receivers, i.e., mac-ver(M, mac-gen(M, sk), rki) = ’yes’

for all i = 1, . . . , n.

MMACs are static codes; in this sense they can be considered a special case of the set of

broadcast authentication protocols under the restriction that the sender only produces a single,

fixed-length tag T for all receivers. Each receiver must then perform verification by inspection of T

without interacting with the sender or other receivers. General broadcast authentication protocols,

on the other hand, allow the sender to send different protocol messages to different receivers,

which can perform rounds of interaction with each other or the sender to determine if the payload

is legitimate. Boneh, Durfee and Franklin’s result holds only for MMACs and do not apply to

broadcast authentication protocols in general. We extend their result to show that if a broadcast

118 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

authentication protocol is fast, then it implies an MMAC. The basic idea is that if the protocol is

fast, then there must exist a (large) set of receivers that did not interact with each other in the

protocol; in the absence of interaction between receivers, a broadcast authentication protocol can

be reduced to an MMAC.

The details of the proof are as follows. To begin with, assume that all receivers are deterministic,

i.e., they do not perform any purely random coin tosses during the protocol, although they may

simulate this with pseudorandom values generated from a preloaded seed. We assume that the

communication pattern is static for each execution of the protocol, i.e., the set of nodes that

communicate with each other in each round is fixed regardless of the message or tag originated by

the sender. These assumptions are consistent with all known broadcast authentication protocols

in the literature. We do not count setup overhead (such as key establishment, etc) in the rounds

of the protocol; thus we can assume that no receiver starts the protocol until it receives a message

that contains information from the sender.

The proof involves a reduction from a fast broadcast authentication protocol to an MMAC;

we define the security games for each class of problems as follows. For the MMAC security game:

(1) The adversary adaptively selects a proper subset SA of S for compromise, and the challenger

provides A with all secret information known by these receivers as they are selected; the adversary

can expand her choice of SA based on this information. (2) The adversary can query the challenger

to provide valid MMACs for some adaptively chosen M1, . . . , Mq. (3) The adversary constructs a

forged data-message M ′ 6= Mi for all i, . . . , q and a tag T ′. The adversary wins the game if some

receiver in S − SA accepts message M ′. We say the MMAC is ǫ-secure if the probability of any

adversary winning is at most ǫ.

The security game for existential forgery on the broadcast authentication protocol is similarly

structured: (1) The adversary adaptively selects a subset of receivers C for compromise, and the

challenger provides all secret information known by these receivers. (2) The adversary can query

the challenger to execute the authentication protocol for some adaptively chosen M1, . . . , Mq. (3)

The adversary constructs a forged data-message M ′ 6= Mi for all i, . . . , q, and sends a (polynomi-

ally bounded) series of messages to some receivers not in C. The adversary wins if any of these

uncompromised receivers accept M ′ because of these messages. We say the protocol is ǫ-secure if

10.4. CONGESTION-LATENCY LOWER BOUNDS 119

the probability of any adversary winning is at most ǫ.

The construction of a MMAC from a broadcast protocol is based on finding a set of nodes that

do not interact directly or indirectly in the protocol. More formally:

Definition 20. For a given sequence of messages in a protocol, Node A is an upstream node of

node B if A could have sent any information to Node B in the protocol. Let B be a downstream

node of node A iff node A is upstream of B.

More precisely, A is upstream of B if there exists a sequence of nodes X1, . . . , Xk and messages

m1, . . . , mk in successive (not necessarily consecutive) time steps that start with A and end with

B (e.g., A→ X1 : m1, X1 → X2 : m2, . . ., Xk → B : mk in successive time steps).

Theorem 21. Let P be a broadcast authentication protocol that is ǫ-secure against arbitrary coali-

tions of receivers that has congestion at least c(n) bits. Let S be a subset of m receivers in the

protocol P such that no two members of S are upstream (or downstream) of each other. Then there

exists an MMAC for m receivers with tag length at least c(n) bits that is also ǫ-secure.

Proof. We can construct a MMAC for receivers s1, . . . , sm in S by defining the three subroutines

key-gen,mac-gen and mac-ver in terms of the broadcast authentication protocol P . Let key-gen be

defined as follows: for each receiver si in S, let rki be the receiver key of si in P ; let the information

sk known to the sender be all the information known by all principals in the broadcast protocol.

This allows the sender to fully simulate the execution of any run of the protocol; in particular it

can predict a-priori the set of messages it will send in any run of the protocol for a given message

M . Hence, let the tag T generated by mac-gen(M, sk) be the ordered set of all messages sent by

the sender for a given broadcast of message M . We define mac-ver(M, T, rki) such that it simulates

the operation of P to the point of verification by receiver si. Let RS be the set of all nodes that are

upstream of any node in S. By definition of S, RS ∩S = ∅. Encode (publicly) inside mac-ver all the

protocol information associated with the nodes in RS (including their receiver keys). By definition

of RS , this information allows any MMAC receiver si to accurately simulate the entire broadcast

protocol from the point of view of node si in the broadcast protocol; in other words, all messages

sent and received by node si in the broadcast protocol can be generated from this information by

MMAC receiver si. We can thus define mac-ver(M, T, rki) to return ’yes’ if si accepts the payload

120 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

M in the simulation of the protocol P where the sender sends the messages encoded in T , and ’no’

if si does not accept M .

Since the protocol P has at most c(n) bits of congestion, the tag T is no more than c(n) bits

since it consists of all messages from a single node (the sender). It remains to show that the MMAC

construction is at least as secure as P .

Let adversary A be an adversary for the MMAC game that wins with probability ǫ. We define

Adversary B for attacking the broadcast authentication protocol that runs A as a subroutine.

Adversary B first compromises RS , the set of all nodes upstream of S. From this, B constructs

the key-gen,mac-gen and mac-ver for the MMAC, which is fed to A. Now A adaptively selects

some set SA for compromise; these nodes are also adaptively compromised by B in the broadcast

authentication protocol. By definition of S, RS ∩ S = ∅, so the set S − SA remain uncompromised

for both adversaries. During the chosen message attack phase, queries of A are forwarded to B’s

challenger, and the corresponding MMACs are reconstructed by inspection of the sender’s messages

for Mi. Now when attacker A produces M ′ and T ′, since Adversary B has compromised all receivers

upstream of S, it can use this information as a script to (interactively and independently) simulate

the protocol P to each member of S. Since mac-ver(M ′, T ′, rki) succeeds with at least ǫ probability

for some receiver in S − SA, by construction, the chance of Adversary B successfully causing a

receiver in S − SA to accept the forged broadcast message M ′ is also ǫ.

Lemma 22. In any broadcast authentication protocol, for any topology, at least n/2 nodes start

executing the protocol only after ⌊logn⌋ time steps.

Proof. The doubling broadcast of Sec. 10.3.1) is the fastest rate at which information can spread in

the network. At time step ⌊log n⌋− 1, no more than 2⌊log n⌋−1 ≤ n/2 nodes have received their first

message of the protocol; the remaining nodes must start the protocol after ⌊log n⌋ time steps.

Lemma 23. Let G be a network topology and L ⊆ V be a subset of the nodes in G. Let U(v, t)

be an upper bound on the number of nodes in L that can receive information from a node v ∈ L

within t time steps. Then U(v, t) is also an upper bound on the number of nodes in L that can send

information to v within t time steps in the topology.

10.4. CONGESTION-LATENCY LOWER BOUNDS 121

Proof. Any schedule for converge-casting information to v can be converted to a schedule for dis-

seminating information from v (and vice-versa) by reversing the schedule chronologically and re-

versing the direction of all communications. This establishes a one-to-one correspondence between

schedules that disseminate information and schedules that collect information. Hence, in a fixed

topology, the maximum possible number of upstream and downstream nodes from a given node v

are the same.

Lemma 24. If a broadcast authentication protocol takes no more than (2 − ρ)⌊log n⌋ time steps,

then there exists a set S of at least 1
4nρ receivers that are not mutually upstream or downstream of

each other.

Proof. Let L be the set of receivers which started the protocol after time step ⌊log n⌋. By Lemma 22,

|L| ≥ n/2. The nodes in L only have (1 − ρ)⌊log n⌋ time steps remaining in which to exchange

information. By the doubling broadcast of Section 10.3.1, any node in L can reach at most

2(1−ρ) log n ≤ n1−ρ other members of L within that time; by Lemma 23, likewise less than n1−ρ

of the other nodes in L can be upstream nodes of li. Hence, we can construct S as follows: starting

with empty S, select any node li in L; remove it from L and add it to S; also remove all nodes in

L that are upstream or downstream of li. After each selection, the size of L decreases by less than

2n1−ρ nodes. Hence, we can perform such a selection at least 1
2n/2n1−ρ = 1

4nρ times. The resultant

S has at least 1
4nρ nodes each of which are neither upstream nor downstream of each other.

Theorem 25. Any deterministic ǫ-secure broadcast protocol taking at most (2 − ρ)⌊log n⌋ time

steps either implies an (ǫ + 1/2m)-secure signature mechanism or requires at least 1
4nρ −m bits of

congestion where m is a constant security parameter (e.g., 128).

Proof. By Lemmas 24 and 21, any deterministic ǫ-secure broadcast protocol taking at most (2 −
ρ)⌊log n⌋ time steps implies an ǫ-secure MMAC for 1

4nρ receivers with tag length equal to the

congestion at the sender. Boneh, Durfee and Franklin showed that an ǫ-secure MMAC for q

receivers with tag length no more than q−m bits implies an (ǫ+1/2m)-secure signature scheme [7].

Setting q = 1
4nρ, the result follows.

More significantly, this implies that no deterministic broadcast protocol can take asymptotically

122 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

less than 2 log n time steps while achieving congestion complexity polylogarithmic in n. This means

that the hash tree based algorithm of Section 10.3.2 achieving 2 log n time steps is optimally fast for

protocols with polylogarithmic congestion complexity; in other words the existence of the algorithm

of Section 10.3.2 shows that bound we have proved is tight. As noted earlier in the beginning of

Section 10.3, this lower bound holds for all topologies.

10.5 Extending the Lower Bound to Tree Topologies

The method of proving the latency lower bound of 2 log n for arbitrary topologies can be extended

to trees. The proof for trees follows the same structure as the proof for fully connected topologies

(Section 10.4). The key insight is that while information spreads at the rate of 2t in fully-connected

topologies, we can show that it must spread at a slower rate from maximum-depth leaf nodes in

trees. Specifically, we prove the following lemma:

Lemma 26. Let v be a vertex at the greatest depth in an arbitrary tree topology with a designated

root r. The number of nodes that can be reached from v within t time steps is no more than φt+3/
√

5,

where φ is the golden ratio (1.618).

Proof. We consider the set of all nodes reachable from each node at each depth from u to the

root. We define a term T (t, h) as the size of the h height-bounded maximum dissemination tree (see

Section 10.3.1, Figure 10.6) of t time steps. This can be defined as the maximum size of the set of

nodes reached from a single node v0 given t time steps such that no node is more than h hops away

from v0. This can be obtained from the maximum dissemination tree T (t) by truncating off all

levels with depth greater than h. We observe that T (t, h) = T (t−1, h)+T (t−1, h−1). This follows

from the observation that in the first time step, the original node v0 can send to at most one other

node v1; in the remaining t−1 time steps, each of these two nodes then continue disseminating into

their respective subtrees, except that the height bound of the maximum dissemination tree rooted

at v1 is one less than the original height bound h. This reasoning is shown in Figure 10.8. For base

cases, we note that, for any x, T (x, 0) = 1 (a height bound of 0 does not allow the original node to

disseminate to any other node) and T (0, x) = 1 (with 0 time steps, no dissemination takes place).

10.5. EXTENDING THE LOWER BOUND TO TREE TOPOLOGIES 123

Figure 10.8: Recursive structure of T (t, h)

Figure 10.9: Nodes reachable from u

124 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

We can now consider the maximum number of nodes reachable from a max-depth leaf vertex

u within t time steps. The argument is illustrated in Figure 10.9. The figure shows the nodes

between u and the root r. The node ui is i levels above u. It can be reached no earlier than at time

step i. Thus, ui has t− i time steps remaining to disseminate into its subtree. Since u is a node at

maximum depth in the tree, the subtree rooted at ui has a height bound of i. Hence, the maximum

number of nodes reached from ui is T (t−i, i). A bound on the total number of nodes reachable from

u in time t is thus F (t) =
∑t

i=0 T (t−i, i). Using the recurrence T (t, h) = T (t−1, h)+T (t−1, h−1)

we can expand F (t) as follows:

F (t) =
t

∑

i=0

T (t− i, i)

= T (t, 0) +
t−1
∑

i=1

T (t− i, i) + T (0, t)

= 1 +
t−1
∑

i=1

[T (t− i− 1, i) + T (t− i− 1, i− 1)] + 1

= T (t− 1, 0) +
t−1
∑

i=1

T (t− 1− i, i) +
t−1
∑

i=1

T (t− 2− (i− 1), i− 1) + 1

=

t−1
∑

i=0

T (t− 1− i, i) +

t−2
∑

j=0

T (t− 2− j, j) + 1

= F (t− 1) + F (t− 2) + 1

By substituting F ′(t) = F (t)+ 1, we can see that F ′(t) = F ′(t− 1)+F ′(t− 2) yielding a Fibonacci

series. From the base cases F (0) = 1, F (1) = 2 we can show F (t) = Fib(t + 3)− 1 where Fib(x) is

the xth number in the standard Fibonacci series. From Binet’s formula Fib(x) = round(φx/
√

5),

we have F (t) < φt+3/
√

5.

Lemma 27. If a broadcast authentication protocol on a tree topology takes no more than (2.44 −
ρ) log n−2.33 time steps, then there exists a set S of at least 1

4n0.694ρ receivers that are not mutually

upstream or downstream of each other.

Proof. Let L be the set of receivers which started the protocol after time step log n − 1. By

10.5. EXTENDING THE LOWER BOUND TO TREE TOPOLOGIES 125

Lemma 22, |L| ≥ n/2. After these first log n− 1 time steps, there are (1.44− ρ) log n− 1.33 steps

remaining. Consider the maximum-depth node u in L relative to the sender at the root of the tree

topology. We can bound the number of members of L reachable by u in the remaining time by

Lemma 26 because any nodes that are at a greater depth than u in the tree are all not in L and are

hence irrelevant to the count. Let t be the time needed for u to reach up to n receivers. We can

set φt+3/
√

5 = n, and solve t = logφ n + (logφ

√
5− 3)= 1.44 log n− 1.33. Hence, in the remaining

time steps, u can reach at most φ(1.44−ρ) log n+1.67/
√

5 ≤ n1−0.694ρ total members of L (including u

itself); by Lemma 23, likewise less than n1−0.694ρ of the other nodes in L can be upstream nodes

of li. Hence, we can construct S as follows: starting with empty S, select a node li that is at the

greatest depth in the tree among all the nodes in L; remove it from L and add it to S; also remove

all nodes in L that are upstream or downstream of li. Repeat until L is empty. After each selection,

the size of L decreases by no more than 2n1−0.694ρ nodes. Hence, we can perform such a selection

at least 1
2n/2n1−0.694ρ = 1

4n0.694ρ times. The resultant S has at least 1
4n0.694ρ nodes each of which

are neither upstream nor downstream of each other.

Theorem 28. Any deterministic ǫ-secure broadcast protocol on a tree topology taking at most

(2.44−ρ) log n−2.33 time steps either implies an (ǫ+1/2m)-secure signature mechanism or requires

at least 1
4n0.694ρ −m bits of congestion where m is a constant security parameter (e.g., 128).

Proof. Identical to the proof of Theorem 25, except using Lemma 27 instead of Lemma 24.

Theorem 28 implies that any scheme with at most (2.44−ρ) log n−2.33 time steps must involve

either a signature scheme or a non-polylog amount of congestion. In particular this rules out the

possibility of strictly 2-pass schemes with polylog congestion. From the discussion at the beginning

of Section 10.3.2, we note that a 3-pass broadcast authentication protocol can be as fast as 3 log n

time steps; we conjecture that the small gap factor between 2.44 and 3 seems to indicate that the

current 3-pass schemes are likely latency-optimal in terms of the factors of log n.

126 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

10.6 Low Latency Authenticated Broadcast: Results

A summary of the results of this Chapter is presented in Table 10.1. The new protocols avoid the

high computational overhead of digital signatures and the high communication overhead of one-time

signatures and multi-receiver MACs and the time synchronization needed by TESLA. In terms of

latency and communication congestion, our protocols provide points in the design space that are

not achievable by previously published protocols. In particular, for the linear topology, the hash

tree scheme achieves the fastest possible latency n with only O(log n) congestion; the hash chain

scheme achieves constant congestion with only 2n latency. For the fully connected topology, the

hash tree scheme takes at most 2⌈log n⌉ latency with only O(log n) congestion; since we also show

that this is the fastest possible latency achievable for schemes with polylogarithmic congestion,

this also functions as an existence proof that the 2 log n bound is tight. We also show previously

uninvestigated latency bounds for symmetric-key-based broadcast authentication in fully connected

and tree topologies. We show a tight latency bound of 2 log n time steps for broadcast authentica-

tion schemes with polylogarithmic congestion in any topology and another latency lower bound of

2.44 log n−2.33 time steps for trees. These lower bounds show the fundamental latency limitations

of broadcast authentication protocols, and can inform the design constraints of new authentication

protocols in networks; for example, the 2.44 log n− 2.33 time bound shows it is impossible for any

polylog-congestion broadcast authentication protocol to make (asymptotically) only two or less

passes up and down the height of a tree. The new bounds also significantly extend the relevance

of the result on multicast message authentication by Boneh, Durfee and Franklin [7]. The previous

result applied only to static authentication codes and did not address protocols involving multiple

interactions between receiver/sender nodes, which are in fact the primary methods of multicast

message authentication in practice. In our new latency lower bounds, we greatly improve the rele-

vance of this result by showing how it can be extended to apply to general authentication protocols

by considering the time dimension. This significantly expands the existing level of understanding

about the fundamental limits in signature-free multicast authentication.

10.6. LOW LATENCY AUTHENTICATED BROADCAST: RESULTS 127

Latency Congestion

Linear Topology
Unsecured Broadcast n 1
HT (Sec.10.2.1) 2n ⌈log n⌉+ 1
HT, k subsets (Sec.10.2.1) n + n

(2k−1)
+ 1 ⌈log n⌉+ k

HT, ⌈log n⌉+ 1 subsets n 2⌈log n⌉+ 1
HC, 3-pass (Sec.10.2.2) 3n 5
HC, 2-pass (Sec.10.2.2) 2n 6
HC, k subsets (Sec.10.2.2) n + n

(2k−1)
+ 1 2k + 4

HC, ⌈log n⌉+ 1 subsets n 2⌈log n⌉+ 6

Tree Topology
Lower Bound (Sec.10.5) (2.44− ρ) log n− 2.33 Ω(n0.694ρ)

Full Topology
Lower Bound (Sec.10.4) (2− ρ) log n Ω(nρ)
HT (Sec.10.3.2) 2⌈log n⌉ 3⌈log n⌉
HC (Sec.10.3.3) 4.32 log n + 2 9

Table 10.1: Latency and congestion bounds of our protocols. HT: Hash Tree based scheme; HC:
Hash Chain based scheme.

128 CHAPTER 10. LOW LATENCY BROADCAST AUTHENTICATION

Chapter 11

Summary and Conclusion

In this dissertation we show how the existence of a trusted authority combined with topology

knowledge can be used to derive efficient and secure algorithms for communication and computa-

tion. Using an approach based on the distributed construction and dissemination of hash trees, we

demonstrated new efficient primitives for general communications and computation problems such

as authenticated broadcast, information binding, node-to-node signatures, and SUM data aggrega-

tion. All these primitives incur O(log n) overhead and only require that the base station shares a

unique pairwise key with each sensor node, and are secure against arbitrary fractions of adversarial

node compromise.

In addition, we describe a further extension of these techniques to implement a secure algorithm

for performing computations on a tree for arbitrary continuous functions. This algorithm incurs

congestion O(hd) where h is the height and d is the degree of the computation tree. To the best of

our knowledge, this is the first practical algorithm for ensuring the integrity for an entire general

class of computations (rather than for a fixed functional primitive like SUM).

As a further extension, we also describe a protocol for the computation of arbitrary fan-in

function computations where the range of each subfunction need not be continuous (or indeed even

in R). The only limitation on the type of function is that the legality of each input value should be

checkable against a description of size α, and the output of each subfunction must be of size at most

β, where α and β can be functions of n. This scheme is secure against up to k adversarial nodes

129

130 CHAPTER 11. SUMMARY AND CONCLUSION

(where k is a tunable parameter). The congestion overhead of the scheme is O(3αk(d + 1) + βhd).

This is the only known protocol in the literature that provides security against completely arbitrary

function computations and still ensures sub-linear congestion on a tree topology.

As an application of our primitives, we describe a scheme for detecting and enforcing message

origination rates in structured networks. The rate-limiting protocol induces O(dna) congestion

and requires O(dna) memory overhead on sensor nodes, where d is the maximum indegree in the

network and na is the maximum number of ancestors of any node, and is the only known rate-

limiting protocol in the literature.

Finally, we describe optimizations for our hash-tree-based broadcast authentication scheme

and the well-known hash-chain-based broadcast authentication protocol family that leverage the

trusted authority and the known topology to reduce the latency of these protocols several-fold in

certain special-case topologies. Our optimizations provide points in the design space that are not

achievable by previously published protocols. These results are shown in Table 10.1. In particular,

for the linear topology, our optimizations for the hash tree scheme achieves the fastest possible

latency n with only O(log n) congestion; our optimizations for the hash chain scheme achieves

constant congestion with only 2n latency. For the fully connected topology, our optimizations for

the hash tree scheme takes at most 2⌈log n⌉ latency with only O(log n) congestion; we prove that it

is impossible to achieve lower latency than 2 log n without an asymptotic increase in congestion. We

also present an efficient schedule for three-pass hash-chain protocols on the fully-connected topology

taking 4.32 log n latency with constant congestion. Finally, we show an asymtotic 2.44 log n time

steps lower bound for trees.

In summary, our results highlight the fact that leveraging the existence of a trusted authority and

the pre-knowledge of network topology yields extremely efficient and general secure algorithms that

outperform existing algorithms with weaker assumptions. Since these properties are fundamental

properties of structured networks with a single “owner” such as sensor networks and peer-to-peer

networks, they represent a large and important practical application area. Our algorithms and

analytical results bridge the gap between the theoretical work in secure multiparty computation

and byzantine-resilient distributed algorithms, which have yielded highly powerful and general

algorithms but unfortunately have impractically high communication overheads for the specific

131

problems of computation and communication examined in this dissertation; and the work in ad-hoc

networks which have produced many practically useful algorithms (such as techniques for secure

routing, time synchronization and localization) but which have not addressed the fundamental

general problems of in-network communication and computation.

Our results seem to indicate that security in structured networks with a trusted authority

may be fundamentally easier than in general networks. It is our hope that further exploration

of this unique security model can yield additional fundamental insights into the nature of secure

computation on network models that closely resemble real-world applications.

132 CHAPTER 11. SUMMARY AND CONCLUSION

Bibliography

[1] R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Manifavas, and R. Needham. A new family

of authentication protocols. SIGOPS Oper. Syst. Rev., 32(4):9–20, 1998.

[2] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzantine agreement in the full-information

model in o(log n) rounds. In Proceedings of the ACM Symposium on Theory of Computing,

pages 179–186, 2006.

[3] M. Ben-Or and D. Ron. Agreement in the presence of faults, on networks of bounded degree.

Inf. Process. Lett, 57(6):329–334, 1996.

[4] F. Bergadano, D. Cavagnino, and B. Crispo. Chained stream authentication. In Proceedings

of the International Workshop on Selected Areas in Cryptography, pages 144 – 157, 2001.

[5] P. Berman and J. Garay. Fast consensus in networks of bounded degree. Distributed Computing,

7(2):67–73, 1993.

[6] P. Berman, M. Karpinski, and Y. Nekrich. Optimal trade-off for merkle tree traversal. Theor.

Comput. Sci., 372(1):26–36, 2007.

[7] D. Boneh, G. Durfee, and M. Franklin. Lower bounds for multicast message authentication. In

Proceedings of the International Conference on the Theory and Application of Cryptographic

Techniques (EUROCRYPT), pages 437–452, 2001.

[8] J. Buchmann, E. Dahmen, and M. Schneider. Merkle tree traversal revisited. In Proceedings

of the 2nd International Workshop on Post-Quantum Cryptography, pages 63–78, 2008.

[9] H. Cam, S. Ozdemir, P. Nair, D. Muthuavinashiappan, and H. O. Sanli. Energy-efficient secure

pattern based data aggregation for wireless sensor networks. Computer Communications,

29(4):446–455, 2006.

[10] R. Canetti. Universally composable security: a new paradigm for cryptographic protocols.

In Proceedings of the 42nd IEEE Symposium on the Foundations of Computer Science, pages

133

134 BIBLIOGRAPHY

136–145, 2001.

[11] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security:

a taxonomy and some efficient constructions. In Proceedings of the Conference of the IEEE

Computer and Communications Societies, volume 2, pages 708–716, 1999.

[12] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and

multi-party secure computation. In Proceedings of the ACM Symposium on Theory of Com-

puting, pages 494 – 503, 2002.

[13] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of encrypted data in

wireless sensor networks. In Proceedings of The Second Annual International Conference on

Mobile and Ubiquitous Systems, pages 109– 117, 2005.

[14] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan. On the distribution and revocation of

cryptographic keys in sensor networks. IEEE Transactions on Dependable and Secure Com-

puting, 2(3):233–247, 2005.

[15] H. Chan and A. Perrig. Efficient security primitives derived from a secure aggregation al-

gorithm. In Proceedings of the 15th ACM Conference on Computer and Communications

Security, pages 521–534, 2008.

[16] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks.

In Proceedings of the IEEE Symposium on Security and Privacy, pages 197–215, 2003.

[17] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-network aggregation for sensor net-

works. In Proceedings of the ACM Conference on Computer and Communications Security,

pages 278–287, 2006.

[18] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. In

Proceedings of the ACM Symposium on Theory of Computing, pages 11–19, 1988.

[19] Y. Chen, I. Lin, C. Lei, and Y. Liao. Broadcast authentication in sensor networks using com-

pressed bloom filters. In Proceedings of the International Conference on Distributed Computing

in Sensor Systems, pages 99–111, 2008.

[20] Cheng, Wang, and Liang. Zone-oriented byzantine agreement on zone-based wireless ad-

hoc network. In Proceedings of the Second International Conference on High Performance

Computing and Communications, pages 853–862, 2006.

[21] Y. Desmedt, Y. Frankel, and M. Yung. Multi-receiver/multi-sender network security: efficient

BIBLIOGRAPHY 135

authenticated multicast/feedback. In Proceedings of the Eleventh Annual Joint Conference of

the IEEE Computer and Communications Societies, volume 3, pages 2045 – 2054, 1992.

[22] Q. Dong, D. Liu, and P. Ning. Pre-authentication filters: Providing DoS resistance for

signature-based broadcast authentication in wireless sensor networks. In Proceedings of ACM

Conference on Wireless Network Security, pages 2–12, 2008.

[23] V. Drabkin, R. Friedman, and M. Segal. Efficient byzantine broadcast in wireless ad-hoc

networks. In Proceedings of the International Conference on Dependable Systems and Networks,

pages 160–169, 2005.

[24] W. Du, J. Deng, Y. Han, and P. K. Varshney. A witness-based approach for data fusion

assurance in wireless sensor networks. In Proceedings of the IEEE Global Telecommunications

Conference, volume 3, pages 1435– 1439, 2003.

[25] W. Du, R. Wang, , and P. Ning. An efficient scheme for authenticating public keys in sensor

networks. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking

and computing, pages 58 – 67, 2005.

[26] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N. Wright. Secure

multiparty computation of approximations. ACM Trans. Algorithms, 2(3):435 – 472, 2006.

[27] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine agree-

ment. SIAM J. Comput, 26(4):873 – 933, 1997.

[28] K. B. Frikken and J. A. Dougherty. An efficient integrity-preserving scheme for hierarchical

sensor aggregation. In Proceedings of the first ACM conference on Wireless network security,

pages 68–76, 2008.

[29] G. Gaubatz, J. Kaps, and B. Sunar. Public key cryptography in sensor networks - revisited.

In Proceedings of the European Workshop on Security in Ad-Hoc and Sensor Networks, pages

2–18, 2004.

[30] R. Gennaro and P. Rohatgi. How to sign digital streams. In Proceedings of the 17th Annual

International Cryptology Conference on Advances in Cryptology, pages 180 – 197, 1997.

[31] C. Georgiou, D. R. Kowalski, and A. A. Shvartsman. Efficient gossip and robust distributed

computation. Theoretical Computer Science, 347(1):130 – 166, 2005.

[32] J. Girao, M. Schneider, and D. Westhoff. CDA: Concealed data aggregation for reverse multi-

cast traffic in wireless sensor networks. In Proceedings of the IEEE International Conference

136 BIBLIOGRAPHY

on Communications, volume 5, pages 3044– 3049, 2005.

[33] A. Giridhar and P. R. Kumar. Towards a theory of in-network computation in wireless sensor

networks. IEEE Communications Magazine, 44(4):98– 107, 2006.

[34] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness

theorem for protocols with honest majority. In Proceedings of the ACM Symposium on Theory

of Computing, pages 218–229, 1987.

[35] M. B. Greenwald and S. Khanna. Power-conserving computation of order-statistics over sensor

networks. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, pages 275 – 285, 2004.

[36] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-tolerant aggregation in large

process groups. In Proceedings of the International Conference on Dependable Systems and

Networks, pages 433 – 442, 2001.

[37] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C. Shantz. Sizzle: A

standards-based end-to-end security architecture for the embedded internet. In Proceedings of

the Third IEEE International Conference on Pervasive Computing and Communication, pages

247 – 256, 2005.

[38] K. Hildrum and J. Kubiatowicz. Asymptotically efficient approaches to fault-tolerance in

peer-to-peer networks. In Proceedings of the 17th International Symposium on Distributed

Computing, pages 321–336, 2003.

[39] L. Hu and D. Evans. Secure aggregation for wireless networks. In Proceedings of the Symposium

on Applications and the Internet, pages 384– 391, 2003.

[40] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network density

on data aggregation in wireless sensor networks. In Proceedings of the 22nd International

Conference on Distributed Computing Systems, pages 457– 458, 2002.

[41] P. Jadia and A. Mathuria. Efficient secure aggregation in sensor networks. In Proceedings of

the 11th International Conference on High Performance Computing, pages 40–49, 2004.

[42] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Fractal merkle tree representation and

traversal. In Proceedings of the Cryptographers Track at the RSA Conference (CT-RSA), pages

314–326, 2003.

[43] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and counter-

BIBLIOGRAPHY 137

measures. In Proceedings of First IEEE International Workshop on Sensor Network Protocols

and Applications, pages 293–315, 2003.

[44] J. Katz and A. Lindell. Aggregate message authentication codes. In Proceedings of The

Cryptographers Track at the RSA Conference (CT-RSA), pages 155–169, 2008.

[45] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (S-BGP). IEEE Journal on

Selected Areas in Communications, 18(4):582–592, 2000.

[46] V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable leader election. In Proceedings of the

Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 990 – 999, 2006.

[47] V. King, J. Saia, V. Sanwalani, and E. Vee. Towards secure and scalable computation in

peer-to-peer networks. In Proceedings of the 47th Annual IEEE Symposium on Foundations

of Computer Science, pages 87–98, 2006.

[48] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions

on Programming Languages and Systems, 4(3):382 – 401, 1982.

[49] F. T. Leighton, B. M. Maggs, and R. K. Sitaraman. On the fault tolerance of some popular

bounded-degree networks. SIAM J. Comput, 27(5):1303 – 1333, 1998.

[50] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve cryptography in wireless

sensor networks. In Proceedings of the 7th International Conference on Information Processing

in Sensor Networks, pages 245–256, 2008.

[51] D. Liu and P. Ning. Multi-level uTESLA: Broadcast authentication for distributed sensor

networks. ACM Transactions in Embedded Computing Systems, 3(4):800 – 836, 2004.

[52] B. Lu and U. Pooch. A lightweight authentication protocol for mobile ad-hoc networks. In Pro-

ceedings of the International Conference on Information Technology: Coding and Computing,

volume 2, pages 546 – 551, 2005.

[53] M. Luk, A. Perrig, and B. Whillock. Seven cardinal properties of sensor network broadcast

authentication. In Proceedings of ACM Workshop on Security of Ad Hoc and Sensor Networks,

pages 147 – 156, 2006.

[54] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a tiny aggregation service

for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131 – 146, 2002.

[55] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional

query processor for sensor networks. In Proceedings of the ACM International Conference on

138 BIBLIOGRAPHY

Management of Data, pages 491 – 502, 2003.

[56] A. Mahimkar and T. Rappaport. SecureDAV: A secure data aggregation and verification pro-

tocol for sensor networks. In Proceedings of the IEEE Global Telecommunications Conference,

volume 4, pages 2175– 2179, 2004.

[57] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure for key distribution in TinyOS

based on elliptic curve cryptography. In Proceedings of IEEE Conference on Sensor and Ad

hoc Communications and Networks, pages 71– 80, 2004.

[58] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and deltas: efficient and robust aggre-

gation in sensor network streams. In Proceedings of the ACM International Conference on

Management of Data, pages 287 – 298, 2005.

[59] M. Manulis and J. Schwenk. Provably secure framework for information aggregation in sensor

networks. In Proceedings of the International Conference on Computational Science and Its

Applications, pages 603–621, 2007.

[60] R. Merkle. Secrecy, authentication, and public key systems. PhD thesis, Stanford University,

1979.

[61] R. C. Merkle. A digital signature based on a conventional encryption function. In Proceedings

of the Conference on the Theory and Applications of Cryptographic Techniques on Advances

in Cryptology, pages 369 – 378, 1988.

[62] S. Miner and J. Staddon. Graph-based authentication of digital streams. In Proceedings of the

IEEE Symposium on Security and Privacy, page 232, 2001.

[63] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggre-

gation in sensor networks. In Proceedings of the 2nd International Conference on Embedded

Networked Sensor Systems, pages 250 – 262, 2004.

[64] P. Ning, A. Liu, and W. Du. Mitigating DoS attacks against broadcast authentication in

wireless sensor networks. ACM Transactions on Sensor Networks, 4(1):1–35, 2008.

[65] J. M. Park, E. Chong, and H. Siegel. Efficient multicast packet authentication using signature

amortization. In Proceedings of the IEEE Symposium on Security and Privacy, pages 227–

240, 2002.

[66] A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient authentication and signing of multicast

streams over lossy channels. In Proceedings of the IEEE Symposium on Security and Privacy,

BIBLIOGRAPHY 139

pages 56–73, 2000.

[67] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The tesla broadcast authentication protocol.

RSA CryptoBytes, 5(Summer), 2002.

[68] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS: Security protocols for

sensor networks. Wirel. Netw., 8(5):521–534, 2002.

[69] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in sensor networks.

In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems,

pages 255 – 265, 2003.

[70] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest

majority. In Proceedings of the ACM Symposium on Theory of Computing, pages 73 – 85,

1989.

[71] R. Safavi-Naini and H. Wang. New results on multi-receiver authentication codes. In Proceed-

ings of the International Conference on the Theory and Application of Cryptographic Tech-

niques (EUROCRYPT), pages 527–541, 1998.

[72] M. Szydlo. Merkle tree traversal in log space and time. In Proceedings of the International

Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),

pages 541–554, 2004.

[73] E. Upfal. Tolerating linear number of faults in networks of bounded degree. In Proceedings of

the ACM Symposium on Principles of Distributed Computing, pages 541–554, 1992.

[74] D. Wagner. Resilient aggregation in sensor networks. In Proceedings of the 2nd ACM Workshop

on Security of Ad-hoc and Sensor Networks, pages 78 – 87, 2004.

[75] S. Wang, Y. Chin, and K. Yan. Byzantine agreement in a generalized connected network.

IEEE Transactions on Parallel and Distributed Systems, 6(4):420–427, 1995.

[76] S. Wang, W. Yang, and C. Cheng. Byzantine agreement on mobile ad-hoc network. In Pro-

ceedings of the IEEE International Conference on Networking, Sensing and Control, volume 1,

pages 52–57, 2004.

[77] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts. IEEE/ACM Trans.

Netw., 7(4):502–513, 1999.

[78] A. Wood and J. Stankovic. Denial of service in sensor networks. IEEE Computer, pages 54–62,

2002.

140 BIBLIOGRAPHY

[79] Y. Yang, X. Wang, S. Zhu, and G. Cao. Sdap: a secure hop-by-hop data aggregation protocol

for sensor networks. In Proceedings of the 7th ACM International Symposium on Mobile Ad-hoc

Networking and Computing, pages 356–367, 2006.

[80] T. Yao, S. Fukunaga, and T. Nakai. Reliable broadcast message authentication in wireless

sensor networks. In Proceedings of the Workshops on Emerging Directions in Embedded and

Ubiquitous Computing, pages 271–280, 2006.

[81] Y. Yao and J. Gehrke. The COUGAR approach to in-network query processing in sensor

networks. SIGMOD Rec., 31(3):9–18, 2002.

[82] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false data in sensor

networks. IEEE Journal on Selected Areas in Communication, 23(4):839– 850, 2004.

[83] H. Yu. Secure and highly-available aggregation queries in large-scale sensor networks via set

sampling. In Proceedings of the Eighth International Symposium on Information Processing in

Sensor Networks, pages 1–12, 2009.

[84] L. Zhang. Fault tolerant networks with small degree. In Proceedings of the ACM Symposium

on Parallel Algorithms and Architectures, pages 64–69, 2000.

[85] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication scheme

for filtering false data in sensor networks. In Proceedings of the IEEE Symposium on Security

and Privacy, pages 259–271, 2004.

[86] S. Zhu, S. Xu, S. Setia, and S. Jajodia. LHAP: a lightweight hop-by-hop authentication pro-

tocol for ad-hoc networks. In Proceedings of the 23rd International Conference on Distributed

Computing Systems, pages 749– 755, 2003.

[87] Zigbee Alliance. Zigbee specification document 053474r17, 2008.

