
The Butterfly Model: Theoretical Foundations

Michelle Goodstein Evangelos Vlachos
Shimin Chen Phillip Gibbons Michael Kozuch

Todd Mowry
February 12, 2009
CMU-CS-08-170

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research is supported by grants from the National Science Foundation and by Intel Research Pittsburgh. The
views and conclusions contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of Intel, the NSF or the US government.



Keywords: dynamic progam monitoring, dataflow analysis



Abstract

Dynamic program monitoring is an effective technique for detecting bugs and security attacks in
running applications. Because of the industry-wide shift to multicore chips, program monitoring
tools must be extended to monitor parallel programs. Parallel programs introduce a new challenge
for monitoring tools: inter-thread dependences. Existing tools assume sequential consistency and
often slow down the monitored program by orders of magnitude. In this paper, we present a novel
approach that avoids these pitfalls by not relying on detailed inter-thread dependences. Instead,
we assume only that events in the distant past on other threads have become visible; we make
no assumptions on the relative ordering of more recent events on other threads. To overcome the
potential state explosion of considering all the possible orderings among recent events, we adapt
two techniques from static dataflow analysis, reaching definitions and reaching expressions, to this
new domain of dynamic parallel monitoring. Significant modifications to these techniques are
proposed to ensure the correctness and efficiency of our approach. We prove that our approach is
accurate, and sacrifices precision only due to the lack of a a relative ordering among recent events.
Finally, we show how our adapted analysis can be used in two popular memory and security tools.





1 Introduction

Despite the best efforts of programmers and programming systems researchers, software bugs con-
tinue to be problematic. To help address this problem, a number of tools have been developed over
the years that performstatic [4, 10, 12],dynamic[3, 11, 18, 22, 27], orpost-mortem[19, 29]
analysis to diagnose bugs. While these different classes of tools are generally complementary, our
focus in this paper is ondynamictools, which we refer to as“lifeguards” (since they watch over a
program as it executes to make sure that it is safe). To avoid the need for source code access, life-
guards are typically implemented using either a dynamic binary instrumentation framework (e.g.,
Valgrind [22], Pin [18], DynamoRio [3], etc.) or with hardware-assisted logging [5]. Lifeguards
maintain shadow state to track a particular aspect of correctness as a program executes, such as its
memory [21], security [23], or concurrency [27] behaviors.

As we look to the future, the industry-wide shift from increasing processor clock rates to in-
creasing the number of processors integrated onto “multicore” chips suggests thatparallel pro-
grammingwill become far more commonplace and important. As difficult as it is to write a bug-
free sequential program, it is even more challenging to avoid bugs in parallel software, given the
many opportunities for non-intuitive interactions between threads. Hence we would expect bug-
finding tools such as lifeguards to become increasingly valuable as more programmers wrestle with
parallel programming. Unfortunately, the way that lifeguards have been written to date does not
extend naturally to parallel software due to a key stumbling block:inter-thread data dependences.

Figure 1: Intra-thread dependences (solid arrows) and inter-thread dependences (dashed arrows).
We study the setting in which lifeguards operate without knowing the inter-thread dependences.

1.1 Key Challenge: Inter-Thread Data Dependences

As we will discuss in greater detail later in Section 2, lifeguards typically operate on shadow state
which they associate with every active memory location in the program (including the heap, reg-
isters, stack, etc.). As the monitored application executes, the lifeguard follows along, instruction-
by-instruction, performing an analogous operation to update the corresponding shadow state. For
example, when a lifeguard that is tracking the flow of data that has been “tainted” by external pro-
gram inputs [23] encounters an instruction such as “A = B + C”, the lifeguard will look up the
boolean tainted status for locationsB andC, ORthese values together, and store the result in the
shadow state forA.

1



When monitoring a single-threaded application, it is straightforward to think of the lifeguard
as a finite state machine that is driven by the dynamic sequence of instructions from the monitored
application. The order of events in this input stream is important. For single-threaded applications,
it is simply the dynamic order in which the thread executes, since this will preserve all intra-thread
data dependences in the lifeguard analysis. For parallel applications with a shared address space,
however, the potential for data dependences across threads complicates the ordering.

How do we deal with inter-thread data dependences? One approach that might sound appealing
would be to capture a single serialized ordering that corresponded to the interleaving of events in
the application, and feed the instructions to the lifeguard in that order. In Figure 1, for example, any
topological sort of the graph would suffice. Unfortunately, this approach has two problems. First,
it is impractical to capture such an ordering on most machines: a serialized interleaving across
threads is only guaranteed to exist if the machine’s memory consistency model [1] is sequential
consistency [9], which is not the case for the vast majority of commercial machines. Even if a
machine is sequentially consistent, the serializable order is merely a hypothetical order: the actual
memory system processes requests out-of-order, and it simply provides the illusion of serializabil-
ity. Hence reconstructing a serialized ordering by observing the actual machine behavior requires
non-trivial modifications to the memory system hardware [19, 29]. The second problem is that
even if a serialized ordering could be captured, we would not want the lifeguard to process this
merged stream of instructions sequentially for performance reasons; in order to keep up with the
parallel application, the lifeguard also needs to run in parallel.

On the other hand, if we do not capture a serialized ordering and therefore have only par-
tial ordering information regarding inter-thread data dependences, this implies that multiple event
orderings are possible, and the lifeguard will need to reason about this set of possibilities. For
example, if the dashed dependence arcs in Figure 1 cannot be captured, then the lifeguard would
need to consider the possibilities that “a = a+1 ” in T HREAD 2 occurred before, after, or concur-
rent with “a = b ” in T HREAD 1. While this approach more faithfully captures the behavior of
non-sequentially-consistent machines, it unfortunately leads to a potential state space explosion,
which may cause the lifeguard to run prohibitively slowly.

1.2 Our Approach: Tolerate Windows of Uncertainty Through a Modified
Form of Dataflow Analysis

To tolerate the lack of total ordering information across threads that occurs in today’s machines
while avoiding the state space explosion problem, we have developed a new framework for per-
forming lifeguard analysis which automatically reasons about bounded windows of uncertainty
using an approach inspired byinterval analysis[28]. Unlike traditional dataflow analysis, which
performs static analysis on control flow graphs, our approach analyzesdynamictraces of instruc-
tions on different threads. Given the finite buffering of instructions and memory accesses in mod-
ern pipelines, we know that instructions that executed in the distant past on other threads must
have committed by now, but the relative ordering between an instruction on a given thread and
instructions from either the near past or near future on other threads is unknown. For example, in
Figure 1, we do not know the relative ordering of events between these portions of the traces from

2



the two threads (i.e. the dashed arcs are missing) because they occur close together in time. We
efficiently summarize the net effects of these windows of uncertainty across the dynamic traces
from concurrently-executing threads using a modified Kleene closure operation.

1.3 Related Work

Several researchers have proposed adaptations of reaching definitions and other dataflow analysis
techniques to parallel architectures and programming languages [17, 26, 13, 16]. These adapta-
tions often involve adapting a control flow graph to reflect explicit programmer annotated parallel
functions and can be limited in the memory models they support [16]; some assume no shared
variables [17], while others support only restricted classes of programs or memory models, such
as deterministic or data-race-free programs, otherwise requiring a sequentially consistent memory
model or a copy-in/copy-out semantics [26, 13]. Knoopet al. introduce a framework that gener-
alizes sequential static unidirectional bit-vector analyses to work with explicitly annotated parallel
regions [15]. Chughet al. [6] propose a framework which first generates a static non-null analysis
and later uses data race detection to kill facts that parallelism no longer guarantees to be true.

Most of these proposals assume the dataflow analysis is being conducted on a static compile-
time representation of the application. Chughet al. [6] demonstrate that while their analysis may
be conservative, it remains correct; we will make similar determinations in our work.

1.4 Contributions

This paper makes the following research contributions:

• We propose the “butterfly model” with its bounded regions of uncertainty as a framework
for performing dynamic program monitoring.

• We develop a generic framework for performing forward dataflow analysis problems within
the butterfly model, as illustrated by reaching definitions and reaching expressions.

• We apply this framework to two lifeguards (ADDRCHECK and TAINT CHECK) to show the
applicability of our approach.

2 Background: Dynamic Parallel Monitoring

An important technique for improving software reliability and security, program monitoring per-
forms on-the-fly checking during the execution of applications. Program monitoring tools (a.k.a.
lifeguards) can be categorized according to the granularity of application events that they care
about, from system-call-level [14, 24] to instruction-level [23, 21, 22, 27]. Compared to the for-
mer, the latter can obtain highly detailed dynamic information, such as memory references, for
detecting bugs more accurately and timely. However, such fine-grained monitoring presents great
challenges for system support. This paper focuses on instruction-level lifeguards, although the
results readily extend to coarser-grained settings as well.

3



Lifeguards. Although different instruction-level lifeguards perform different checking, they share
three common characteristics [5]: (i) maintaining (separate) fine-grained state information (called
metadata) for every memory location in the application’s address space; (ii) updating the metadata
as a result of certain events; and (iii) checking invariants on the metadata in response to certain
events. We describe two representative lifeguards in the following:

• ADDRCHECK [20]: ADDRCHECK is a memory-checking lifeguard. By monitoring memory
allocation calls such asmalloc andfree , it maintains the allocation information for each
byte in the application’s address space. Then, ADDRCHECK verifies whether every mem-
ory reference visits an allocated region of memory by reading the corresponding allocation
information.

• TAINT CHECK [23]: TAINT CHECK is a security-checking lifeguard for detecting overwrite-
based security exploits (e.g., buffer overflows or printf format string vulnerabilities). It main-
tains metadata for every location in the application’s address space, indicating whether the
location is tainted. After a system call that receives data from network or from an un-
trusted disk file, the memory locations storing the untrusted data are all marked as tainted.
TAINT CHECK monitors the inheritance of the tainted state: For every application instruction,
it computes a logicalORof the tainted information of all the sources to obtain the tainted
information of the destination of the instruction. TAINT CHECK raises an error if tainted data
is used in jump target addresses (to change the control flow), format strings, or other critical
ways.

General-Purpose Lifeguard Infrastructure. Existing general-purpose support for running life-
guards can be divided into two types depending on whether lifeguards share the same processing
cores as the monitored application or lifeguards run on separate cores. In the first design, lifeguard
code is inserted in between application instructions using dynamic binary instrumentation in soft-
ware [3, 18, 22] or micro-code editting in hardware [8]. Lifeguard functionality is performed as the
modified application code executes. In contrast, the second design offloads lifeguard functionality
to separate cores. An execution trace (or log) of the application is captured at the core running the
application through hardware, and shipped (via the last-level on-chip cache) to the core running
the lifeguard for monitoring purposes [5].

We observe that lifeguards see a simple sequence of application events1 regardless of whether
the lifeguard infrastructure design is same-core or separate-core; the event sequence is consumed
on-the-fly in the same-core design, while the trace (log) maintains any portion of the event se-
quence that has been collected, but not yet consumed, in the separate-core design. This obser-
vation suggests the application event sequence as the basic model for monitoring support. Using
this model, we are able to abstract away unnecessary details of the monitoring infrastructure and
provide a general solution that may be applied to a variety of implementations.

Most previous works studied sequential application monitoring. (A notable exception is [7],
which assumes transactional memory support.) However, in the multicore era, applications in-
creasingly involve parallel execution; therefore, monitoring support for multithreaded applications

1We will only monitor user level instructions; system level instructions are beyond our scope.

4



is desirable. Unfortunately, adapting existing sequential designs to handle parallel applications is
non-trivial, as discussed in Section 1. This paper proposes a solution that does not require extensive
hardware dependence-tracking mechanisms.

To begin, we extend the model of monitoring support to include multiple event sequences: one
per application thread. Each sequence is processed by its own lifeguard thread, which may be the
same thread as the one generating the sequence. As in the separate-core design, we will permit
the lifeguard analysis to lag behind the application execution somewhat, and rely on existing tech-
niques [5] to ensure that no real damage occurs during this (short) window.2 Note that, as discussed
in Section 1, the event sequences do not contain detailed fine-grain inter-thread dependences infor-
mation.

3 Challenges in Adapting Dataflow Analysis to Parallel Moni-
toring

In the absence of detailed fine-grain inter-thread dependence information, there are many possible
interleavings of the event sequences lifeguards see.3 Our approach is to adapt dataflow analysis,
traditionally run statically at compile-time, as a dynamic run-time tool that enables us to reason
about possible interleavings of different threads’ executed instructions.

In this section, we will motivate our design decisions, showing how simpler constructions are
either too inefficient, too imprecise, or both. Throughout this section and through Section 4.3, we
will assume a sequentially consistent machine. This will be relaxed in Section 4.4.

Our first attempt at modeling a lack of fine-grain interthread dependence information was to as-
sume no ordering information whatsoever between threads, even at a coarse granularity. The most
natural abstraction was a control flow graph (CFG). A control flow graph expresses relationships
between basic blocks within a program, but does not necessarily guarantee a particular ordering
between blocks; it also is the data structure dataflow analysis requires.

A dynamic trace of events is similar to a program; instead of a language, we have assembly.
Unlike programs, these sequences of events are linear and have no aliasing issues. However, we can
use directed arcs from an instructioni to an instructionj to indicate thatj is a potential immediate
successor ofi.

Because there is arbitrary interleaving among instructions executed by different threads, we
must make nodes out of individual instructions rather than basic blocks. We place directed arcs
in both directions between any two instructions that could execute in parallel, and a directed arc
between instructionsi andi+1 in the same thread, indicating that the trace is followed sequentially.
This yields a graph that at first glance resembled a control flow graph; it seemed that enough of the
structure would be similar to apply dataflow analysis.

Figure 2(a) shows a very simple code example of two threads modifying three variables. Even

2A lifeguard thread raising an error may interrupt the application to take corrective action [25]. Some delay between
application error and application interrupt is unavoidable, due to the lag in interrupting all the application threads.

3Even on the simplest sequentially consistent machine, lifeguards do not see a single precise ordering of all appli-
cation events.

5



with only three total instructions, we still require several arcs to reflect all the possible concurrency,
shown in Figure 2(b). This may look like manageable ; unfortunately, adding arcs over an entire
dynamic runlength leads to an explosion in arcs and space necessary to keep this graph in memory.
Figure 3 shows how quickly the number of arcs increases with only four threads, each executing
two instructions. Fort threads withn instructions each executing concurrently, there areO(tn)
edges due to the sequential nature of execution within a thread andO(n2t) edges due to potential
concurrency: each node in thread “j has edges to all nodes in all other threads, which isO(nt) and
there aren instructions per thread.

(a)
(b)

Figure 2: Two threads modifying three shared memory locations, shown (a) as traces and (b) in
a CFG. Throughout this paper, concurrent blocks of instructions appear in rectangles with solid
borders and single instructions appear as hexagons with dashed borders.

Figure 3: CFG of 4 threads with 2 instructions each.

Unlike a control flow graph, whose size is bounded by the actual program, the dynamic run-
length of a program is unbounded and potentially infinite in size if the program never halts. Since
the halting problem is undecidable, analysis could not be completed until the program actually
ended, because only then would the actual graph be known. This model of parallel computation
quickly becomes intractable.

Another problem with this approach is that it can lead to conclusions based on impossible paths.
Recall the TAINT CHECK lifeguard described in Section 2. Suppose we were interested in running
the TAINT CHECK lifeguard on the code in Figure 2(b), wherebuf has been tainted from a prior
system call. Instruction 2 in Thread 1 taintsc . Instructions (1) and (i) propagate taint from the
source to their destination. According to the graph, it is valid for instruction (i) to be the immediate
successor of instruction (2), implying there is a way fora to be tainted by inheriting taint fromc at
instruction (2). Likewise, it is valid for instruction (1) to be the immediate successor of instruction
(i), implying b is tainted due toa being tainted. However, for all three memory locations to

6



Figure 4: Two threads concurrently updating variablesa,b andc

be tainted, we must have (2) execute before (i), and (i) before (1)–contradicting the sequential
consistency assumption.

We then attempted to refine our model, taking advantage of the finite amount of buffering
available to current processors. Modern processors can only have a constant amount of pending
instructions, typically on the order of the size of their reorder and/or store buffer, and instruction
execution latency is bounded by memory access time. Combining a bounded number of instruc-
tions in flight and a bounded execution time per instruction, we can calculate that after a sufficiently
long period of time, two instructions in different threads could not have executed concurrently; one
must have executedstrictly beforethe other.

Using this intuition, we could modify our CFG-like approach to only draw edges between
individual instructions which are potentially concurrent. Unfortunately, we can still conclude that
an instruction at the end of the program taints the destination of the first instruction in Thread
1, by zig-zagging up between from the bottom of the graph to the top. This is possible even
if each instruction only has edges to three other instructions in the other thread, as depicted in
Figure 4. Because there are still paths from the end of a thread’s execution to its beginning, we can
potentially conclude that every address is tainted for almost the entire execution based on a single
taint occurring at the very end.

This led us to consider restricting our dataflow analysis to only a sliding window of instructions
at a time, ultimately culminating in a framework called theButterfly Model .

4 The Butterfly Model

In this section, we introduce a new model of parallel program execution, termed the butterfly
model. The butterfly model formalizes what it means for one instruction to become globally visi-
blestrictly beforeanother instruction, and shows how to group instructions into meaningful sliding
windows to avoid the problems described in Section 3. Finally, we provide a graphical formal-
ization which is suitable for adapting dataflow analysis to perform dynamic parallel application
monitoring.

7



4.1 Mechanics

We rely on a regular signal, orheartbeat, to be reliably delivered to all cores. For lifeguards using
DBI to monitor programs, this could be implemented using a token ring; it can also be implemented
using a simple piece of hardware that regularly sends a signal to all cores. We will not assume that a
heartbeat arrives simultaneously at all cores, only requiring that all cores are guaranteed to receive
the signal. We will use this mechanism to break logs intoepochs.

By making sure that the frequency of heartbeat accounts for reception of the heartbeat, memory
latency for instructions involving reads or writes, and time for all instructions in the reorder and
store buffers to become globally visible, we can guaranteenon-adjacentepochs, or epochs that
do not share a heartbeat boundary, have strict happens-before relationships. On the other hand,
due to the latency in receiving a heartbeat, we will consider instructions inadjacentepochs, or
epochs which share a heartbeat boundary, to bepotentially concurrentwhen they are not in the
same thread.

An epoch contains ablock in each thread, where a block is a series of consecutive instructions,
and each block represents approximately the same number of cycles. Note that a block in our model
is not equivalent to a standard basic block. As an example, the code in Figure 5(a) transforms into
a few basic blocks, illustrated as a CFG in Figure 5(b), whereas Figure 5(c) shows blocks in our
model.

(a) code example

(b) control flow graph (c) butterfly blocks

Figure 5: Unlike a basic block, a butterfly block is a sequence of dynamic application events.

The epoch boundaries across threads are not precisely synchronized, and correspond to recep-
tion of heartbeats. Our model, illustrated in Figure 6, incorporates possible delays in receiving the
heartbeat into its design.

Formally, given an epoch IDl and a thread IDt, a block is uniquely defined by the tuple(l, t).
A particular instruction can be specified by(l, t, i), wherei is an offset from the start of block(l, t).

The butterfly model has three main assumptions. Our first assumption will be that instructions
within a thread are sequentially ordered, continuing our sequential consistency assumption from
Section 2; we will later relax this assumption.

Our second assumption is that all instructions in epochl execute before any instructions in

8



Figure 6: A particular block is specified by an epoch idl and thread idt. In reality, epoch bound-
aries will be staggered and blocks will be of different sizes.

epochl + 2, implying that any instructions in epochl executes strictly after all instructions in
epochl−2. Finally, instructions in block(l, t) can interleave arbitrarily with instructions in blocks
of the form(l − 1, t′), (l, t′), and(l + 1, t′) wheret′ 6= t. The final two assumptions of this model
handle delays in receiving a heartbeat. If an instantaneous heartbeat would have placed instruction
j in epochl, our model will require that instructionj instead will always be in either epochl − 1,
l or l + 1.

The butterfly model formalizes the intuition that it may be difficult to observe orderings of
nearby operations but easier to observe orderings of far apart instructions. We now motivate the
termbutterfly , which takes as parameter a block(l, t). We call block(l, t) thebody of the butterfly,
(l − 1, t) theheadof the butterfly and(l + 1, t) thetail of the butterfly. The head always executes
before the body, which executes before the tail. Relative to the body, for all threadst′ 6= t, blocks
(l− 1, t′), (l, t′) and(l + 1, t′) are in thewingsof the block(l, t)’s butterfly. Figure 7(a) illustrates
these definitions.

4.2 Butterfly Framework

As described, the butterfly model resembles a graph of parallel execution, where directed edges
indicate that instructioni can be the direct predecessor of instructionj. Figure 7(b) illustrates this
from the perspective of a block in Thread 1, epochl.

Block (l, 1) has edges with arrows on both ends between its instructions and instruction in
epochsl− 1 throughl +1 of thread 2. There is only one arrow from epochsl− 2 and one to epoch
l + 2, indicating that the first instruction of(l, 1) can immediately follow the last instruction of
(2, l − 2), and the last instruction of(l, 1) can be followed immediately by the first instruction of
(2, l + 2). This graph contains many edges, even though they are bounded. While we still wish to
adapt dataflow analysis techniques, we will make the final observation that behaving conservatively
can retain accuracy, allow us to retain the flavor of dataflow analysis, but not require multiple
iterations. In fact, we will show that with only two passes over each block, we can reach an
accurate conclusion about the metadata state.

9



(a)

(b)

Figure 7: Potential concurrency in the butterfly model, shown at the (a) block and (b) instruction
levels

In the butterfly model, there is only a bounded degree of arbitrary interleaving; dataflow analy-
sis makes sense on subgraphs of three contiguous epochs only. Since the framework we propose
only considers three epochs at a time, we introduce state, not normally necessary in dataflow prob-
lems. We will callStrongly Ordered State(SOS) the state resulting from events that are known
to have already occurred, i.e., state resulting from instructionsexecuted at least two epochs prior.
This state is globally shared. For each block(l, t) there is also a concept ofLocal Strongly Or-
dered Stateor LSOS which is the SOS modified to take into account that all instructions in the
head of the butterfly have already executed as well.

4.3 A Two Pass Algorithm

We develop a two pass algorithm inspired by dataflow analysis. In the first stage, we perform
dataflow analysis using locally available state, eagerly perform any lifeguard required checks, and
produce a summary of lifeguard-relevant events. Checks performed at this stage are preliminary;
any errors detected are real, but not all errors will be detected in this stage. This is considered the
first pass. In the second stage of the algorithm, the threads compute the meet of all summaries
produced in the wings.4

In the third stage, we repeat our dataflow analysis, this time incorporating state from the wings.
This is considered the second pass; in this pass, we repeat the checking algorithm. In the fourth
and final stage, the threads agree on an accurate summarization of the entire epoch’s activity, and
an update to the SOS is computed.

The lifeguard writer specifies the events the dataflow analysis will track, the meet operation,
the metadata format, and the checking algorithm. Examples will be given in Section 6.

4As a performance optimization, this can be done using a combining tree and utilizingO(log t) meet operations
over summaries

10



4.4 Relaxed Memory Models

Relaxed memory models can actually be sufficient for our purposes as long as sequences of as-
signments causingx to inherit state fromy are respected. Completely independent instructions
can be reordered and tolerated, because our operations are on sets; set union and intersection are
both commutative operations, and set difference only becomes a problem if we change metadata
before an instruction was able to read it, which will not happen if we do not reorder dependent
instructions. The butterfly model preserves intra-thread dependences, but does not have access to
inter-thread dependences. An example was shown in Figure 1; arcs that serialize reads and writes
across multiple threads are not preserved in the butterfly model.

However, for lifeguards like TAINT CHECK, a sequence of assignments causingx to inherit
from y can exist, but depend on an assignment occurring in the wings; in Figure 2(b), executing
(2) before (i) before (1) is legal on some relaxed memory models [1]. For these specific cases, we
will have to choose between requiring sequential consistency or further relaxing the checking al-
gorithm. If we do not have sequential consistency, then we must assume the processor is arbitrarily
reordering instructions, only honoring intra-thread dependences. This is discussed in Section 6.2.

5 Dynamic Parallel Dataflow Analysis

This section presents our adaptation of dataflow analysis to dynamic program monitoring in the
butterfly model. Specifically, we adapt reaching definitions and reaching expressions [2], two
simple forward dataflow analysis problems that exhibit a generate/propagate structure common to
many other dataflow analysis problems. Previous studies [31, 30, 5] have shown that this structure
is a common structure for lifeguards, including lifeguards that check for security exploits, memory
bugs, and data races.

We show how reaching definitions and reaching expressions can be formulated as generic life-
guards in the butterfly model. In standard dataflow analysis, there are equations for calculating IN,
OUT, GEN and KILL ; our approach extends beyond these four, as discussed below. In our setting,
the lifeguard’s stored metadata tracks definitions or expressions, respectively, that are known to
have reached epochl. While the generic lifeguards do not define specific checks, their IN and OUT

calculations provide the information useful for a variety of checks. Later in Section 6 we will show
how our generic lifeguards can be instantiated as ADDRCHECK and TAINT CHECK lifeguards.

The key to our efficient analysis is that we formulate the analysis equations to fit the butterfly
assumptions, as follows:

• We perform our analysis over a sliding window of 3 epochs rather than the entire execution
trace—motivated by the fact that events in epochl can only interleave with events froml−1,
l, or l + 1. This not only enables our analysis to proceed as the application executes, it also
bounds the complexity of our analysis.

• We deviate from the normalO(n2) iterative convergence of the standard analysis, requiring
only two passes over each epoch. The time spent per pass is proportional to the complexity
of the checking algorithm provided by the lifeguard writer.

11



• We introduce state (SOS) that summarizes the effects of instructions in the distant past (i.e.,
all instructions prior to the current sliding window). This compensates for the loss of iterative
convergence, and enables using a sliding window model without sacrificing accuracy.

• The symmetric treatment of the instructions/blocks in the wings means we can efficiently
capture the effects of all the instructions in the wings. To do so, we add four new primitives:
GEN-SIDE-IN, GEN-SIDE-OUT, K ILL -SIDE-IN and KILL -SIDE-OUT, as defined below.

In the following sections, GENl,t,i, K ILL l,t,i, GENl,t and KILL l,t refer to their sequential formula-
tions, either over a single instruction(l, t, i) or an entire block(l, t). GEN-SIDE-OUTl,t will calcu-
late the elements block(l, t) generated which are visible when(l, t) is in the wings of a butterfly
for block (l′, t′). Likewise, KILL -SIDE-OUTl,t calculates the elements block(l, t) kills which are
visible when(l, t) is in the wings for block(l′, t′). GEN-SIDE-INl′,t′ and KILL -SIDE-INl′,t′ com-
bine the GEN-SIDE-OUT and KILL -SIDE-OUT, respectively, of all blocks in the wings of block
(l′, t′). The strongly ordered state SOSl, parameterized by an epochl, will contain any definitions
no later than epochl − 2 that could reach epochl.

Processing a Level.To motivate our work, we examine Figure 8. First, we note that for any
sliding window of size 3, the strongly ordered states SOSl−1, SOSl and SOSl+1, which summarize
execution through epochsl − 3, l − 2, andl − 1, respectively, are available after the lifeguard has
consumed events throughl − 1. This is due to initializiation; the very first butterfly uses only
epochs0 and1. After concluding all butterflies with bodies in epoch0, we have SOS2 as well.
From then on, we inductively have the correct SOS for each epoch in the butterfly.

Now consider Figure 8(a). The LSOS is available for block(l, 2) because the head is available
and so is SOSl. We can eagerly perform checks, and discover that block(l, 2) kills expression
a-b through a redefinition ofb. The epoch’s summary need only be generated once (in reaching
expressions, the summary contains the killed expressions), we do not need to regenerate the sum-
mary as the block changes position in the sliding window. So after the first butterfly, we are only
performing a first pass on the newest epoch under consideration; the summaries for older blocks
have already been completed.

Using that information, we now examine Figure 8(b). This shows the entire butterfly centered
around block(l, 2). As part of the second stage, summaries from all blocks in the wings are first
collected and combined (represented by the central circle), producing one summary for the entire
wings (in reaching expressions, this is KILL -SIDE-INl,2). Finally, (l, 2) can repeat its checking
algorithm, noting that it is not the only block to killa-b . Once the second pass is over, the final
stage creates an epoch summary.

In the example, epochl witnesses the killing of expressiona-b , as well as the generation of
expressiona+b . Any ordering of instructions in epochsl − 1 and l (empty blocks contain no
instructions) yieldsa+ b defined at the end. Hence,a+b is added to SOSl+2, anda-b is removed.

Every definition within the block is first inserted into a common summary. These summaries
are then combined into a wing summary–a different summary for each block. The summaries
immediately below the first pass blocks represent GEN-SIDE-OUT, whereas the wing summaries
are actually the GEN-SIDE-IN. In general with many threads, there would be many more
GEN-SIDE-OUTs combining to form the GEN-SIDE-IN. Finally, the second pass is repeated; in

12



both passes, a copy of the LSOS is available, but in the second pass, the blocks also have access
to the wing summary. Figure 8 does not illustrate the steps of summarizing an entire epoch, and
finally updating the SOS.

Note that a single writer corresponds to each of the data structures (one of the threads can be
nominated to act as master for global objects such as the SOS), and objects are not modified after
being released for reading. Hence, synchronizing accesses to the lifeguard metadata is unnecessary.

(a) 1st pass: Compute
K ILL -SIDE-OUT(KSO)

(b) 2nd pass: Aggregate KSOs
from the wings, combine into

K ILL -SIDE-IN(KSI)
and rerun checks.

Figure 8: Computing KILL -SIDE-OUT and KILL -SIDE-IN in reaching expressions. Boxes with
beveled edges are summaries.

5.1 Dynamic Parallel Reaching Definitions

Generating a definition in the butterfly model is global; a definition in block(l, t) is visible to any
block (l′, t′) in its wings, and vice versa. Conversely, killing a definition in the butterfly model is
inherently local; it only kills the definition at a particular point in that block, making no guarantee
about whether the definition can still reach by a different interleaving or even a later redefinition in
the same block. For this reason, we conservatively set KILL -SIDE-OUTl,t = K ILL -SIDE-INl,t =
∅, and do not rely on these primitives.

5.1.1 Generating and Killing Across An Epoch

The concept of an epoch does not exist in standard reaching definitions. We will propose exten-
sions to generating and killing that allow us to summarize the actions of all blocks in a particular
epochl. These definitions will allow us to define reaching an entire epochl to mean that there is

13



some interleaving of all instructions in the firstl epochs such that running a sequential reaching
definitions analysis will conclude thatdk reaches. We calculate:

GENl =
⋃

t GENl,t

K ILL l =
⋃

t(K ILL l,t ∩(
⋃

t′ 6=t K ILL (l−1,l),t′ ∪NOT-GEN(l−1,l),t′))

where KILL (l−1,l),t = (K ILL l−1,t − GENl,t)∪K ILL l,t

NOT-GEN(l−1,l),t = {dk|dk /∈ GENl−1,t ∧ dk /∈ GENl,t}

To prove that these formulations are correct, we introduce the concept of avalid ordering
Ok, which is a total sequential ordering of all the instructions in the firstk epochs, where the
ordering respects the assumptions of the butterfly model. We observe that the set of valid orderings
is a superset of the possible application orderings: Nearly all machines support at least cache
coherency, which creates a globally consistent total order among conflicting accesses to the same
location. Because our analysis considers each definition event independently, our approach is
accurate (as argued in Section 4.4), even for relaxed memory models. We will not claim that we
can construct an ordering for multiple locations simultaneously. We expect to conclude that two
instructionsdk anddj both reach the end of epochl even if the program semantics state exactly
one ofdk anddj will reach that far. We use valid orderings as a conservative approximation of
what orderings a given thread could have observed. We will define the set GEN(Ok) to be the set
of definitions that, if we were to execute all instructions in orderOk, would be defined at the end
of Ok.

Theorem 1. If dk ∈ GENl then there exists a valid orderingOl suchdk ∈ GEN(Ol).

Proof. If dk ∈ GENl, then there is some block(l, t) such thatdk ∈ GENl,t, implying there exists
some indexi such thatdk ∈ GENl,t,i ∧ ∀j > i, dk /∈ K ILL l,t,j. ThenOl is any valid ordering where
all instructions in block(l, t) execute last.

Theorem 2. If dk ∈ K ILL l then under all valid orderingsOl, dk /∈ GEN(Ol).

Proof By Contradiction.Supposedk ∈ K ILL l but there exists some orderingOl such thatdk ∈
GEN(Ol).There are two cases:

Case 1: There is some instruction in epochl or l − 1 in threadt which generatesdk and no
later instruction in threadt kills dk. This violates the assumption that every thread either killsdk

in epochl or l − 1 without subsequently regenerating, or else refrains from generatingdk in those
epochs.⇒⇐

Case 2: No instruction in epochl or epochl − 1 generatesdk.
If no instruction in epochl or l− 1 generatesdk, thendk must be killed inOl, since there exists

at least one block such thatdk ∈ K ILL l,t and the instruction which killsdk must occur strictly after
any instruction that generatesdk.⇒⇐

Both cases violate the assumption thatdk ∈ K ILL l.

14



5.1.2 Updating State

Any definition dk ∈ SOSl was generated by an instruction that came strictly earlier than any
instruction in epochl. We say thatdk ∈ GEN(Ol) if a sequential analysis onOl concludes thatdk

reaches the end ofOl. We will require the following invariant:

dk ∈ SOSl if and only if ∃Ol−2 s.t.dk ∈ GEN(Ol−2)

The SOS update rule becomes:

SOSl := GENl−2 ∪(SOSl−1 − K ILL l−2) ∀l ≥ 2
SOS0 = SOS1 = ∅

Theorem 3. SOSl := GENl−2 ∪(SOSl−1 − K ILL l−2) achieves the invariant.

Proof. Base cases: SOS0 = SOS1 = ∅. According to the invariant, SOS2 = GEN(O0) = GEN0.
Any definitiondk ∈ SOS2 must be generated by some instruction(0, t, i) in block (0, t), implying
it is in GEN0. For any definitiondk ∈ GEN0, we could find one block(0, t) such thatdk ∈ GEN0,t

and execute all instructions in this block last inO0 and the ordering would still be valid, so the
invariant is satisfied.

Then,dk ∈ GEN(O0), so we satisfy the invariant. Since we can construct a valid ordering for
all dk ∈ GEN0, SOS2 = GEN0. SinceSOS1 = ∅, (SOS1 − K ILL 0) = ∅⇒ GEN0 ∪∅ = GEN0.
Inductive hypothesis: If s ≤ l, SOSs := GENs−2 ∪(SOSs−1 − K ILL s−2) achieves the invariant.
Inductive step: Consider the SOS for epochl + 1. It must include everything generated by epoch
l − 1, which is GENl−1. Now, we must consider how many definitionsdk ∈ SOSl ∧ dk /∈
SOSl+1, which are precisely those definitionsdk such that for all valid orderings, epochl − 1
kills dk. This is exactly what KILL l−1 calculates; the elements of KILL l−1 are precisely those that
should be removed from the SOSl when creating SOSl+1. This yields the equation: SOSl+1 =
GENl−1

⋃
(SOSl − K ILL l−1).

The Local Strongly Ordered State for a block(l, t), denoted LSOSl,t, represents the SOSl

augmented to include instructions in the head that were already processed. We have:

LSOSl,t = GENl−1,t ∪(SOSl − K ILL l−1,t)∪
{dk|∃t′ 6= t s.t.dk ∈ GENl−2,t′ ∧ dk ∈ K ILL l−1,t ∧ dk ∈ SOSl}

The invariant required for the LSOS is:

dk ∈ LSOSl,t iff ∃ valid orderingO of instructions in epochs[0, l − 2] and block
(l − 1, t) s.t.dk ∈ GEN(O)

A similar proof to Theorem 3 shows this update rule achieves its invariant. Let LSOSl,t,k

denote the updated version of the LSOS afterk instructions have executed.

LSOSl,t,k =

{
LSOSl,t if k = 0

GENl,t,k−1 ∪(LSOSl,t,k−1 − K ILL l,t,k−1) otherwise
This is essentially the standard OUT = GEN∪(IN − K ILL ) formula, with LSOSl,t,k−1 acting

as IN and LSOSl,t,k as OUT.

15



5.1.3 Calculating In and Out

Let INl,t,0 = INl,t represent the set of definitions that could possibly reach the beginning of block
(l, t). INl,t should be the union of the set of valid definitions of all possible interleavings that could
execute before instruction(l, t, 0) executes. Let INl,t,i be the set of inputs that reach instruction
(l, t, i). OUTl,t,i and OUTl,t are the sets of definitions that are still defined after executing instruc-
tion (l, t, i) or block(l, t), respectively. Then:

INl,t = GEN-SIDE-INl,t

⋃
LSOSl,t INl,t,i = GEN-SIDE-INl,t ∪ LSOSl,t,i

OUTl,t,i = GENl,t,i

⋃
(INl,t,i − K ILL l,t,i)

OUTl,t = GENl,t

⋃
(INl,t − K ILL l,t)

Using reaching definitions as a lifeguard, we have now shown how to compute the checks–essentially,
the OUT computation.

5.1.4 Applying the Two-Pass Algorithm

We can now set our parameters for the two-pass algorithm proposed in Section 4.3. For part
one, our local computations are GENl,t, K ILL l,t and LSOSl,t. These are used for our checking
algorithm. The summary information is GEN-SIDE-OUTl,t. For the second stage,u is∪, calculated
over the GEN-SIDE-OUT from the wings, to get GEN-SIDE-INl,t. We then use GEN-SIDE-INl,t to
perform our second round of checks. Finally, we use GENl and KILL l to update the SOS.

5.2 Dynamic Parallel Reaching Expressions

Expressions only reach a block if no path to a block(l, t) kills expressione. If every path to a block
has the expression survive, then there is no need to recompute the expression. However, if any path
kills e, then there is no guarantee thate is precomputed and we must recompute it in block(l, t).
With reaching definitions,dk reaches a particular pointp if in at least one valid orderingdk reaches
p; in reaching expressions,ek only reachesp if along all valid orderingsek reachesp. This gives
some intuition that KILL in reaching expressions will behave like GEN in reaching definitions, and
likewise GEN in reaching expressions behaves like KILL in reaching definitions.

We will again let GENl,t,i represent the set of expressions generated by instruction(l, t, i) and
K ILL l,t,i represent the set of definitions killed by instruction(l, t, i). GENl,t,i = {ek} if and only
if instruction (l, t, i) generates expressionek, and is empty otherwise. Let KILL l,t,i be the set of
expressions killed by instructioni in threadt and epochl. We calculate GENl,t and KILL l,t as
usual.

Let KILL -SIDE-OUTl,t represent the set of killed expressions a block(l, t) exposes to another
block (l′, t′) anytime it is in the wings of a butterfly with body(l′, t′). Because the body of the
butterfly can execute anywhere in relation to its wings, we must take the union of the KILL l,t,i. Let
K ILL -SIDE-INl,t represent the set of expressions visible to block(l, t) that are killed by the wings.

K ILL -SIDE-OUTl,t =
⋃

i K ILL l,t,i

K ILL -SIDE-INl,t =
⋃

l−1≤l′≤l+1

⋃
t′ 6=t K ILL -SIDE-OUTl′,t′

16



In reaching expressions, GEN-SIDE-IN = GEN-SIDE-OUT = ∅ for the same reason that KILL -SIDE-OUT =
∅ in reaching definitions; no block has enough information to know that every path to a particular
execution point has generated a particular expression.

The properties we desire for GENl and KILL l are roughly the opposite of those from reaching
definitions.

K ILL l =
⋃

t K ILL l,t

GENl =
⋃

t(GENl,t ∩(
⋃

t′ 6=t GEN(l−1,l),t′ ∪NOT-K ILL (l−1,l),t′))
where GEN(l−1,l),t = (GENl−1,t − K ILL l,t)∪GENl,t

NOT-K ILL (l−1,l),t = {ek|ek /∈ K ILL l−1,t ∧ ek /∈ K ILL l,t}

The proof that KILL l is correct is analogous to the proof that GENl is correct in reaching
definitions; and likewise the GENl proof corresponds to the KILL l proof in reaching definitions.

5.2.1 Updating State

The SOS has the same equation and update rule. The LSOS has a slightly different form, reflecting
the different roles GEN and KILL play. In the reaching expressions environment, an expression
only reaches an instruction(l, t, i) if it has been defined along all paths. So, ifek ∈ SOS∧ ek /∈
K ILL l−1,t, thenek ∈ LSOSl,t sinceek is calculated along all paths. However, ifek ∈ K ILL l−1,t

then at least one path exists where the expression is not defined. Ifek /∈ SOS, the only way that
ek ∈ LSOSl,t is if it is defined by the head (ek ∈ GENl−1,t) and no other threadt′ ever kills ek

in epochl − 1; otherwise, since the head can interleave with epochl − 2, there is a possible path
whereek is killed before the body executes. This leads to:

LSOSl,t =
(

GENl−1,t −
⋃

t′ 6=t K ILL l−2,t′

)
∪

(SOS− K ILL l−1,t)

LSOSl,t,k has the same update rule as in reaching definitions.

5.2.2 Calculating In and Out

Let INl,t,i be the set of inputs that reach instructioni in threadt and epochl. Let INl,t,0 = INl,t

represent the set of expressions that could possibly reach the beginning of block(l, t).INl,t should
be the intersection of the set of valid expressions of all possible interleavings that could execute
before instruction(l, t, 0) executes.

INl,t = LSOSl,t − K ILL -SIDE-INl,t

INl,t,i = LSOSl,t,i − K ILL -SIDE-INl,t

Let OUTl,t,i be the set of expressions that are still defined after executing instructioni in thread
t and epochl, and OUTl,t represent the set of expressions still defined after all instructions in the
block have executed. Then:

OUTl,t,i = GENl,t,i

⋃
(INl,t,i − K ILL l,t,i)

OUTl,t = GENl,t

⋃
(INl,t − K ILL l,t)

17



5.2.3 Applying the Two-Pass Algorithm

Parameters for the Two-Pass Algorithm are similar to those in Section 5.1.4. We again calcu-
late GENl,t, K ILL l,t and LSOSl,t, but now the summary information is KILL -SIDE-OUTl,t. The
second stage uses∪ for u but calculates over all the KILL -SIDE-OUTl′,t′ in the wings, to get
K ILL -SIDE-INl,t, which is then used to perform our second round of checks. Finally, we use GENl

and KILL l to update the SOS.

6 Lifeguard Analysis in the Butterfly Model

Now that we have shown how the butterfly model can be applied to basic dataflow analysis, we
extend it to two lifeguards. For each of these lifeguards, we will show that we lose some preci-
sion but no accuracy; compared against any valid ordering, we will catch all errors present in the
valid ordering but potentially flag some false positives. Our main contribution will be accurate,
parallel adaptations of ADDRCHECK and TAINT CHECK which do not need access to inter-thread
dependences. For each lifeguard, we also show how to update metadata using dataflow analysis.

6.1 AddrCheck

ADDRCHECK[20], as described in Section 2, checks accesses, allocations and deallocations as
a program runs to make sure they are safe. In the sequential version, this is straightforward;
writing to unallocated memory is an error. In the butterfly model, one thread can allocate memory
before another writes, but if these operations are in adjacent epochs, the operations are potentially
concurrent.

We describe ADDRCHECK as an adaptation of reaching expressions, associating allocations
with GEN and deallocations with KILL . We chose reaching expressions because we want to guar-
antee accuracy; for all valid orderings, we want to know whether an access to memory location
m is always an access to allocated memory. We modify GENl,t,i = {m} if and only if instruction
(l, t, i) allocates memory locationm and otherwise∅. Likewise, KILL l,t,i = {m} if and only if
instruction(l, t, i) deallocates memory locationm and otherwise∅. GENl,t, K ILL l,t, GENl, K ILL l,
SOS and LSOS all retain the same equations and update rules.

Checking Algorithm

Our checking algorithm needs to be more sophisticated than reaching expressions’ use of IN and
OUT. A naive calculation would not detect that a location had been freed twice, since set difference
does not enforce thatB ⊆ A before performingA− B. Modifying the checks is straightforward,
though. In the first pass, we check that any address being deallocated or accessed is in our LSOS.
We check an address being malloced is not in our LSOS. If we violate either of these conditions,
we report an error.

We produce a summarysl,t = (GENl,t, K ILL l,t, ACCESSl,t), where ACCESSl,t contains all ad-
dresses that block(l, t) accessed. When we combine the SIDE-IN, we produce

Sl,t = (
⋃

wings GENl′,t′ ,
⋃

wings K ILL l′,t′ ,
⋃

wings ACCESSl′,t′).

18



In the second pass, we want to ensure that allocations and deallocations wereisolatedfrom any
other concurrent thread. To do so, we perform the following operation, wheresl,t is abbreviates
andSl,t is abbreviatedS:

(s.GENl,t ∪ s.K ILL l,t)
⋂

(S.GENl,t ∪S.K ILL l,t ∪)
⋃

(s.ACCESSl,t
⋂

(S.GENl,t ∪S.K ILL l,t))
⋃

(S.ACCESSl,t
⋂

(s.GENl,t ∪ s.K ILL l,t))

Theorem 4. Given a particular division of instructions into epochs, any error detected byAD-
DRCHECK on a valid ordering will also be flagged in the butterfly model.

Proof. We consider memory locationx, and show that if a valid ordering could lead to an error in
a sequentially consistent model, it will also be reported as an error in the butterfly model.

If instructioni on threadt is executed before instructionj on threadt′ in a valid ordering, then
eitheri will occur at least one epoch beforej and will be ordered in the model, ori andj will occur
in adjacent epochs and appear possibly concurrent. Wheneveri andj are separated by at least one
epoch, then the original ADDRCHECKand our modified version come to the same conclusion.
However, wheni andj are within the same butterfly, then we cannot tell whether the error actually
manifested, and instead report apotentially concurrent error. By treating all potentially concurrent
errors as true errors, we catch every error that would be reported for any valid ordering.

6.2 TaintCheck

As described in Section 2 TAINT CHECK[23]tracks the propagation of taint through a program’s
execution; if one of the two sources is tainted, then the destination is considered tainted. When
extending TAINT CHECK to work in the butterfly model, we extend this conservative assumption; if
a valid orderingO that causes some addressm, to appear tainted at instruction(l, t, i), we conclude
that(l, t, i) taintsm even if it does not taintm under any other valid ordering. We modify reaching
definitions to accomodate TAINT CHECK.

Unfortunately, adapting TAINT CHECK to the butterfly model is not as simple as modifying
ADDRCHECK in Section 6.1. TAINT CHECK has an additional method of tracking information
calledinheritance. Consider a simple assignmenta:=b+1 . If we already know thatb is tainted,
thena is tainted via propagation, and can be calculated using IN and OUT. If b is a shared global
variable whose taint status is unknown to the thread executing this instruction, thena inherits the
same taint status asb.

In order to efficiently compute taint status while handling inheritance, we will use a SSA-
like scheme that assigns unique tuple(l, t, i) instead of integers. We also define a functionloc()
which given a SSA numbering(l, t, i) returnsx, wherex is the location being written by instruction
(l, t, i). Our metadata are transfer functions between SSA-numbered variables and their taint status,
with⊥ as taint and> as untaint. The SOS will only contain addresses believed to be tainted. Then:

GENl,t,i =


(xl,t,i ← ⊥) if (l, t, i) ≡ taint (x)

(xl,t,i ← >) if (l, t, i) ≡ untaint (x)

(xl,t,i ← {a}) if (l, t, i) ≡ x := unop (a)

(xl,t,i ← {a, b}) if (l, t, i) ≡ x := binop (a, b)

19



If we know that the last write toa was⊥ in a block, we can short-circuit theunop and binop
calculations, concluding(xl,t,i ← ⊥). This resembles propagation in reaching definitions.

Let S be the set{>,⊥, {a}, {a, b}|∃a, b memory locations}. In other words,S represents the
set of all possible right-hand values in our mapping. We define the set KILL l,t,i = {(xl,t,j ← s)|s ∈
S, j < i, andloc (l, t, j) = loc (l, t, i)}. In TAINT CHECK , GEN-SIDE-OUTl,t, K ILL -SIDE-OUTl,t,
GEN-SIDE-INl,t, K ILL -SIDE-INl,t, GENl,t and KILL l,t all function identically as in reaching defin-
itions.

Checking Algorithm

The main difference between TAINT CHECK and reaching definitions is the checking algorithm.
Like ADDRCHECK , TAINT CHECK requires more than IN or OUT can provide.

Given a function(x ← s), a locationyl,t,i is aparent of x if ∃zl′,t′,i′ ∈ s s.t. loc (l, t, i) =
loc (l′, t′, i′). We will say instruction(l, t, i) occursstrictly before instruction(l′, t′, i′), if one of
three conditions hold. First, ifl ≤ l′ − 2. The other two cases only apply if the memory model is
sequentially consistent. Ifl = l′, t = t′ andi < i′, or if t = t′ andl < l′, then(l, t, i) occurs strictly
before(l′, t′, i′). We denote this as(l, t, i) < (l′, t′, i′).

We define a function Check, in Algorithm 1 which takes a particular transfer function of the
form (xl,t,i ← s) and a set of transfer functionsT .

Algorithm 1 TAINT CHECK Check Algorithm
Input: (xl,t,i ← s), T
Extracts the list of parents ofxl,t,i: {y0, y1, . . . , yk} using theloc function
for all yj a parent ofxl,t,i do

Search for rules of the form(yj ← s′) ∈ T
Replacesyj with all the parents ofyj in s′, subject to a termination condition
if any parent ofyj is⊥ then

Terminate with the rule(xl,t,i ← ⊥).
else ifany parent ofyj is> then

Drop it from the list of parents, and continue
Postcondition: Either(xl,t,i ← s) converges to(xl,t,i ← ⊥), ors becomes empty. Ifs is empty,
conclude(xl,t,i ← >).

As discussed in Section 4.4, TAINT CHECK requires a guarantee of either sequential consis-
tency, or a conservative, relaxed checking termination condition. If we have sequential consistency,
then it makes sense to enforce sequential execution within each thread. To do so, we associate a
t counters of the form(l, t, i) with each parent. We only allow a replacement for a parenty with
zl′,t′,i′ if (l′, t′, i′) occurs strictly before the counter at positiont′ associated withy. If so, we update
the counter to reflect the new(l′, t′, i′) value, and continue. Ify is replaced with multiple predeces-
sors, we follow the same procedure for each predecessor. This forces the ordering of instructions
implied by the check algorithm to always be in sequential order when restricted to a particular
threadt.

20



If we do not have sequential consistency, we must relax the checking termination condition
while still maintaining accuracy. By disallowing a parent to eventually be replaced by itself we
will prevent infinite loops, since there are only a bounded number of potential parents; it will
not guarantee that the ordering which taints memory locationm actually is valid. This resembles
iteration as performed in dataflow analysis to resolve loops.

Theorem 5. If check returns>, then there is no valid ordering of the firstl + 1 epochs such thatx
is⊥ at instruction(l, t, i).

Proof. We will restrict our analysis to the sequentially consistent termination condition. Suppose
there was a valid ordering of the firstl + 1 epochs such thatx ← ⊥ at instruction(l, t, i). That
implies there exists a sequence ofk+1 transfer functionŝf such the associated instructions in order
would taintx. Restrictingf̂ to functions from a particular threadt will produce a subsequence,
potentially empty, that is still ordered. This would be a legitimate sequence of parents to follow,
so we would conclude(x← ⊥).

False Dependencies:.Suppose we are trying to resolve(a2,2,1 ← b), and in the wings of the
butterfly are transfer functions(b1,3,1 ← r) and(r3,1,1 ← ⊥). Under all the proposed termination
conditions, it is still possible to conclude instruction(a ← ⊥). However, for(a ← ⊥) to occur,
then instruction(3, 1, 1) must execute before instruction(1, 3, 1), a direct violation of our butterfly
assumptions.

To reduce the number of false positives, the resolution of checks takes place in two phases. In
the first phase, a block(l, t) can use any transfer function from epochsl−1 or l to resolve a check.
In the second phase, only transfer functions froml + 1 and l can be used to resolve a check. If
in the first phase, we conclude⊥ for a locationx, that location remains⊥ throughout the second
phase.

Lemma 1. If there exists a valid orderingO among 3 consecutive epochs such thatx is tainted
then
(1) x is tainted via an interleaving of the first 2 epochs;
(2) x is tainted via an interleaving of the last 2 epochs; or
(3) there exist a predecessory of x such thaty is tainted in the first two epochs and there exists a
path fromx to y in the last two epochs using only transfer functions from the last two epochs.

Proof. A valid ordering of 3 epochs that taintsx might taintx when restricted only to (1) the first
two epochs, or (2) restricted only to the last 2 epochs. The final case is when it needs all three
epochs to taintx. In this case, there can be no interleaving between the first and third epochs, since
all instructions in the first epoch must commit before any instructions in the third epoch begin.
As the first epoch cannot taintx directly and neither can the third epoch (this would put us into
cases 1 or 2) then it must be the case that some predecessor ofx is tainted by an interleaving of the
first epoch with some of the second epoch, and then that there is a valid interleaving between the
remaining instructions in the second epoch with the third epoch such thatx inherits fromy. This
is precisely (3).

21



6.2.1 SOS and LSOS

Instead of transfer functions the SOS and LSOS will track locations believed to be tainted. Once
again, TAINT CHECK is slightly more complicated than reaching definitions. We can conclude that
a variable is tainted in epochl based on an interleaving with epochl + 1. Consider Figure 9. If we
do not commita to the SOS before beginning a butterfly for block(j +2, 2) we may conclude that
d is untainted, even though there is a path whered is tainted. If we considera to be tainted before
beginning epochj + 2, though, there is no guarantee the instruction which taintsa has actually
already executed. However, considering an address to be tainted early is accurate yet imprecise,
and so we choose accuracy over precision.

Figure 9: Updating SOS is nontrivial for Taintcheck. By the end of epochj+1, a has been tainted,
but the SOS might need to be updated before blocks in epochj + 2 begin butterfly analysis.

Define the function LASTCHECK(x, l, t) to be the last check of locationx resolved while
checking block(l, t). This is not the same as recomputing a check ofx at the end of the block.
Rather, it is similar to computing the difference between the LSOS at the end of the block and the
LSOS at the beginning. Ifx was assigned to in block(l, t), then LASTCHECK(x, l, t) will return>
or⊥; otherwise, it returns∅. We can extend this definition to LASTCHECK(x, (l − 1, l), t) which
will tell us whether the last check spanning two epochsl − 1 andl tainted, untainted, or merely
propagatedx. In our SOS, we will track only those variablesx we believe are tainted, and will use
LASTCHECK to do so. We define

GENl =
⋃

t{x|LASTCHECK(x, l, t) = ⊥}
K ILL l =

⋃
t{x|LASTCHECK(x, l, t) = > ∧ (∀t′ 6= t, LASTCHECK(x, (l − 1, l), t) =

> ∨ LASTCHECK(x, (l − 1, l), t) = ∅)}

This is an almost identical formulation to reaching definitions; the difference is that we use
LASTCHECK to change our metadata format from transfer functions to tainted addresses.

SOSl := GENl−2 ∪(SOSl−1 − K ILL l−2) ∀l ≥ 2
SOS0 = SOS1 = ∅

LSOSl,t = GENl−1,t ∪(SOSl − K ILL l−1,t)∪
{dk|∃t′ 6= t s.t.dk ∈ GENl−2,t′ ∧ dk ∈ K ILL l−1,t ∧ dk ∈ SOSl}

22



We will claim the following conditions hold for the SOS:

Condition 1. If there exists a valid orderingOs of the firstl − 2 epochs such thatx is tainted in
Os thenx ∈ SOSl−2.

Condition 2. If x ∈ SOSl−2, then there exists at least one threadt s.t. t assigns tox and believes
a valid ordering of the firstl − 2 epochs exists that taintsx.

The first condition is identical to reaching definitions. The second condition addresses impre-
cision due to our reliance on the checking algorithm. Analogous conditions hold for the LSOS.

7 Conclusions

In this paper, we presented a new approach for dynamic, parallel program monitoring without re-
lying on inter-thread dependences, called the butterfly model. Requiring only a simple heartbeat
mechanism, this model supports sophisticated analysis of multithreaded programs. We demon-
strated how to adapt dataflow analysis techniques, traditionally used statically at compile time, to
dynamically compute reaching definitions and reaching expressions over an execution trace using
the butterfly model. Finally, we showed how to express two lifeguards in terms of reaching expres-
sions and reaching definitions, providing new methods of dynamic parallel program monitoring.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.Computer,

29(12):66–76, 1996.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.Reading, Mass, 1986.

[3] Derek Bruening.Efficient, Transparent, and Comprehensive Runtime Code Manipulation. PhD thesis, MIT,
2004.

[4] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for finding dynamic programming
errors.SPE, 30(7), 2000.

[5] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B. Gibbons, Todd C. Mowry, Vijaya
Ramachandran, Olatunji Ruwase, Michael Ryan, and Evangelos Vlachos. Flexible Hardware Acceleration for
Instruction-grain Program Monitoring. InISCA, 2008.

[6] R. Chugh, J.W. Voung, R. Jhala, and S. Lerner. Dataflow analysis for concurrent programs using datarace
detection. InPLDI, 2008.

[7] Jaewoong Chung, Michael Dalton, Hari Kannan, and Christos Kozyrakis. Thread-safe dynamic binary translation
using transactional memory. InHPCS, Feb 2008.

[8] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A programmable macro engine for customizing applications. In
ISCA, 2003.

[9] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors. InISCA, 1986.

23



[10] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. InOSDI, 2000.

[11] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely
program invariants to support program evolution.IEEE Transactions on Software Engineering, 27(2), 2001.

[12] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended static checking for Java. InPLDI, 2002.

[13] D. Grunwald and H. Srinivasan. Data flow equations for explicitly parallel programs. InPPOPP, 1993.

[14] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion detection using sequences of system calls.
Journal of Computer Security, 6(3):151–180, 1998.

[15] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: efficient and optimal bitvector analyses for parallel
programs.TOPLAS, 18(3):268–299, 1996.

[16] Jens Krinke. Static slicing of threaded programs. InACM SIGPLAN Notices, 1998.

[17] D. Long and L.A. Clarke. Data flow analysis of concurrent systems that use the rendezvous model of synchro-
nization. InProceedings of the Symposium on Testing, Analysis, and Verification, 1991.

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: Building customized program analysis tools with dynamic instru-
mentation. InPLDI, 2005.

[19] Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Continuously recording program execution for
deterministic replay debugging. InISCA, 2005.

[20] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation. PhD thesis, U. Cambridge, 2004.
http://valgrind.org.

[21] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework.Electronic Notes in
Theoretical Computer Science, 89(2), 2003.

[22] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic binary instrumenta-
tion. In PLDI, 2007.

[23] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. InNDSS, 2005.

[24] Niels Provos. Improving host security with system call policies. InUSENIX Security, 2003.

[25] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: treating bugs as allergies - a safe
method to survive software failures. InSOSP, 2005.

[26] V. Sarkar. Analysis and Optimization of Explicitly Parallel Programs Using the Parallel Program Graph Repre-
sentation.Lecture Notes in Computer Science, pages 94–113, 1998.

[27] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. Eraser: A dynamic
race detector for multi-threaded programs.ACM TOCS, 15(4), 1997.

[28] Robert Endre Tarjan. Fast algorithms for solving path problems.J. ACM, 28(3):594–614, 1981.

[29] Min Xu, Rastislav Bodik, and Mark D. Hill. A regulated transitive reduction (rtr) for longer memory race
recording. InASPLOS, 2006.

24



[30] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted lockset-based race detection. InHPCA-13,
2007.

[31] Yuanyuan Zhou, Pin Zhou, Feng Qin, Wei Liu, and Josep Torrellas. Efficient and flexible architectural support
for dynamic monitoring.ACM TACO, 2(1), 2005.

25


	1 Introduction
	1.1 Key Challenge: Inter-Thread Data Dependences
	1.2 Our Approach: Tolerate Windows of Uncertainty Through a Modified Form of Dataflow Analysis
	1.3 Related Work
	1.4 Contributions

	2 Background: Dynamic Parallel Monitoring
	3 Challenges in Adapting Dataflow Analysis to Parallel Monitoring
	4 The Butterfly Model
	4.1 Mechanics
	4.2 Butterfly Framework
	4.3 A Two Pass Algorithm
	4.4 Relaxed Memory Models

	5 Dynamic Parallel Dataflow Analysis
	5.1 Dynamic Parallel Reaching Definitions
	5.1.1 Generating and Killing Across An Epoch
	5.1.2 Updating State
	5.1.3 Calculating In and Out
	5.1.4 Applying the Two-Pass Algorithm

	5.2 Dynamic Parallel Reaching Expressions
	5.2.1 Updating State
	5.2.2 Calculating In and Out
	5.2.3 Applying the Two-Pass Algorithm


	6 Lifeguard Analysis in the Butterfly Model
	6.1 AddrCheck
	6.2 TaintCheck
	6.2.1 SOS and LSOS


	7 Conclusions

