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Abstract
In this thesis I present algorithms for the analysis of microarray expression

data from multiple species. These algorithms are used to identify core genes in
two biological systems, the cell cycle and the immune response.

With data generated from high throughput biological experiments, it is now
becoming possible to study organisms at the systems level. One of the first ques-
tions facing researchers is the identification of the core components of biological
subsystems within an organism. This task is made difficult by the high levels of
experimental and biological noise associated with these experiments. To address
these problems I introduce a new computational framework for combining data
from multiple species, for both improving prediction accuracy and identifyingim-
portant subsets of genes involved in a given system. The computational framework
is based on Markov random fields which allow the integration of microarray and
sequence data from multiple species. Applying this framework to study cell cycle
regulated genes, I have identified genes representing the core machinery of the cell
cycle. These findings are supported by both complementary high-throughput data
and motif analysis. In addition, I apply this computational framework to study im-
mune response in human and mouse. I show that by using Gaussian randomfields
instead of discrete Markov random fields we are able to achieve better accuracy in
predicting immune response genes. Finally, we identify a list of immune response
genes that are conserved between cell types and species for furtherexperimental
study.
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Chapter 1

Introduction

1.1 Background

1.1.1 Systems Biology and Conservation in Biological Systems

With data generated from high throughput biological experiments, it is now be-
coming possible to study organisms at the systems level. Systems biology studies
the dynamics and interactions between the components of a biological system. One
of the first questions facing researchers is to identify the components, orbiological
subsystems, within an organism.

One important approach for this task is to identify conserved genes between
species related at suitable evolutionary distance. Under evolutionary selection pres-
sure, proteins essential for survival are more likely to stay the same or similar to
their ancestors. In fact, comparative studies of eukaryotic species have revealed
conservation at multiple levels, despite the fact that they were separated byspeci-
ation events millions of years ago [Holm and Sander, 1996, Hardie et al., 1998].
For example, the control mechanism regulating the onset of mitosis is common to
all eukaryote cells [Nurse, 1990].

Proteins and RNAs (including miRNA, siRNA, etc) are the two major workhorses
in the cell. Our discussion will focus on proteins, but in principle it is also applica-
ble to RNAs. The function of a protein is determined by its structure, which is in
turn determined by its amino acid or nucleic acid sequence. Currently, it is much
more expensive and time-consuming to determine the structure than the sequence
of a new protein, and it is very hard to computationally predict structures based on
sequences. Therefore, when researchers want to study the functions of unknown
proteins, they often have to rely on sequences directly.

Functional annotation of proteins can serve as an example. When people find
a new protein and want to determine its function, they can look for known proteins
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2 Chapter 1. Introduction

with similar sequences and hypothesize that they have the same function [Bork
et al., 1998, Wilson et al., 2000]. In practice, sequence similarity is usually afairly
good indicator of structural and functional conservation, but there are also coun-
terexamples where proteins with similar structures have low sequence similarity
[Holm and Sander, 1996].

In addition to sequences that encode proteins, non-coding sequencesare also
found to be conserved between some species [Duret et al., 1993, Dubchak et al.,
2000, Kellis et al., 2003, Xie et al., 2005]. Parts of the non-coding regions, e.g.
cis-regulatory sequences, are believed to play an important role in transcriptional
regulation, so the conservation of non-coding sequences may imply the conserva-
tion of interaction networks between species.

1.1.2 DNA Microarrays

A DNA microarray is an array of short single stranded DNA segments (“probes”)
printed densely on a solid surface, e.g. glass or plastic [Schena et al., 1995]. It can
be used to analyze the gene expression profiles for thousands of genes simultane-
ously. Due to its small format and high density, a few microliters are enough for
detection of target genes [Schena et al., 1995].

Microarray technology is based on the complementarity property of DNA and
RNA molecules. In short, DNA or RNA sequences are made up of four types of
bases, and two of them are complementary to the other two, i.e. they are able to
match and bind to each other. Therefore it is possible to identify a target gene
transcript using a “probe” sequence complementary to the target. By attaching
thousands of well-designed probe sequences on a microarray and matching them
to the gene transcripts in a sample, we are able to identify all the genes expressed
in the sample.

To make microarrays work, we need a way to quantify how much DNA is
bound to each probe. This is done by tagging all the DNA in the sample by flu-
orescent material. After hybridization, a process to match sample DNA with the
probes, unmatched DNA is removed and the matched DNA can be quantified by
measuring the intensity of fluorescence.

There are two major types of microarrays, one is spotted microarrays [Schena
et al., 1995], and the other is oligonucleotide microarrays [Lockhart et al., 1996].
In spotted microarrays, two samples to be compared are labeled with two different
fluorophores. They are mixed and hybridized to a single microarray and the ratio
of fluorescent intensity is used to quantify the change of gene expression levels. It
is easy to observe up- or down-regulation using spotted microarrays, but it’s hard
to know the absolute levels. The second type of microarrays usually requires only
one DNA sample and is calibrated by control probes on the microarrays. Therefore
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(a)

(b)

Figure 1.1: (a): A schematic diagram for spotted microarrays. (b): a scanned
microarray image. (Source: Wikipedia).



4 Chapter 1. Introduction

multiple microarrays are needed for cross sample comparison, but it is possible to
observe absolute expression values.

1.1.3 Potential of Data Integration

Following the completion of genome sequencing projects for multiple model species
[Goffeau et al., 1996, Arabidopsis Genome Initiative, 2000, Adams et al.,2000,
Venter et al., 2001, Waterston et al., 2002, Stein et al., 2003], it is possibleto
carry out comparative studies at the whole genome scale [Ureta-Vidal etal., 2003].
The major principle of comparative genomics is as follows: common traits of two
organisms are the result of functionally conserved proteins or RNAs, which are en-
coded by DNA sequences conserved between the species since their last common
ancestor. Conversely, proteins and RNAs responsible for species specific traits are
encoded by divergent DNA sequences [Hardison, 2003].

Comparative genomics has shown to be a very promising field and sequence
comparison has become a standard tool when looking for homology betweengenes.
In many applications, the BLAST algorithm [Altschul et al., 1990, 1997] is used to
search for sequence similarity, and a cut-off score is used to determine thehomol-
ogy relations.

However, there is an inherent limitation to sequence-based methods. Sequences
only provide static information about the organisms, while in many cases what we
want to understand is the dynamic aspects of the proteins. We argue that it isbene-
ficial to integrate static information with data measuring dynamic properties of the
biological system. For example, gene expression microarrays are able to measure
the expression level of all genes in a cell at a given time point. Using multiple
microarrays at different time points, we can obtain expression time series for every
gene in the genome (Figure 1.2). This information is very useful for understanding
changes of biological systems over time [Wodicka et al., 1997, Brown and Bot-
stein, 1999, Debouck and Goodfellow, 1999], and is complementary to the static
information from sequences.

On the other hand, data produced from dynamic experiments are often con-
founded by a number of factors. For example, measurement of gene expression is
affected by both biological noise and technical noise. The former may be due to
the intrinsic property of gene expression networks [Rao et al., 2002], variation of
the global pool of house keeping genes, and fluctuations in environmental condi-
tions that affect all genes [Pedraza and van Oudenaarden, 2005].The latter may be
caused by fluctuations in probe, target and array preparation, in the hybridization
process, and effects resulting from image processing [Schuchhardtet al., 2000].
As a result, gene expression is best modeled by random variables. Furthermore, if
we assume homologous genes are more likely to have similar expression profiles,
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Figure 1.2: (a) Gene expression time series for two budding yeast cyclinggenes,
MCM6 and CDC20 in a block-release experiment. (b) Gene expression time series
in block-release experiment for human cycling genes Mcm6 and Cdc20, which are
homologous to the two genes in (a). The cell cycle period is approximately 80
minutes in (a) and 15 hours in (b). (Data from Spellman et al. [1998] and Whitfield
et al. [2002]).



6 Chapter 1. Introduction

we may be able to take advantage of correlation between expression of homologs,
and integrate measurements from different species to derive more accurate results.
In this case, static sequence data are able to complement noisy dynamic measure-
ments, enabling us to better interpret experimental observations. For example, Fig-
ure 1.2 shows the time series for two budding yeast genes, MCM6 and CDC20, and
two homologous human genes, Mcm6 and Cdc20. By examining the time series, it
is obvious that budding yeast CDC20 and MCM6 are periodically expressed. Hu-
man Cdc20 is also periodically expressed, although with less amplitude or more
fluctuation. However, it is much harder to tell whether human Mcm6 is cycling
or not. But if we know these genes are homologous to each other, it will boost
our confidence that Mcm6 is also a cycling gene. Indeed, human Mcm6 encodes
a protein involved in DNA replication, and its expression is regulated by the cell
cycle [Dalton and Whitbread, 1995].

1.2 Gene Expression Programs

There are many biological processes within a living cell. In order to maintain
a healthy state, all these activities must be regulated at multiple levels, e.g. the
transcription, transportation, and degradation of proteins. Transcription of genes,
or gene expression, is the first stage of protein assembly, and is highly regulated
in all species. In fact, if the principle of parsimony is applicable here, then the
regulation of protein assembly should happen at the earliest possible stage, because
it can save energy and nutrients which may be vital for the survival in extreme
conditions. On the other hand, there is also the need to be able to respond in
time to environmental changes, and it may require the regulation of some genesto
happen in later stages.

1.2.1 Cell Cycle

The cell cycle, the process in which cells divide, is the most basic process inall
cellular organisms. A cell dies if the cell cycle goes wrong and it cannot replicate
itself. In higher eukaryotes, cells become cancerous when they lose control and
keep dividing. Many genes related to the cell cycle are regulated in a periodic
way, and it is likely that they are periodically expressed, peaking at the stage where
required.

To identify periodically expressed genes, cells in a population are first arrested
at the same stage of the cell cycle. After released from arrest, the now synchronized
cells are profiled by microarray experiments at multiple time points. By examining
the expression time series, it is possible to identify genes whose expressionlevel
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changes with the cell cycle. However, there are borderline cases where it is hard to
decide whether a gene is cycling or not (Figure 1.2 (b)). By combining sequence
homology and cycling expression, we may be able to recover a more coherent set
of cycling genes.

Some of the cycling genes are conserved across species during evolution. By
comparing lists of cycling genes from several species, including yeast, plants, and
humans, we can derive a core set of cycling genes, as well as cycling genes specific
to a single species. It is very likely these core cycling genes make up an essential
part of the cell cycle machinery, while species-specific cycling genes are responsi-
ble for other recurrent activities developed only in that species.

1.2.2 Immune Response

The immune system is developed in higher eukaryotes to protect the host from
pathogens. There are many types of immune cells, including specialized cells
that are capable of recognizing and responding to alien substances. For example,
macrophages can engulf and digest alien particles, a process called phagocytosis.
Dendritic cells are another type of immune cells that can process antigens and
present fragments to “train” and activate other cells (T cells and B cells) in the
immune system. Dendritic cells are very important for the host to develop antigen
specific immunity.

Upon contact with infectious agents, receptor proteins in immune cells are acti-
vated, and they in turn activate related pathways leading to proper response to pro-
tect the host. Toll-like receptors (TLRs) are one of such receptors andare highly
conserved between species [Lemaitre et al., 2003, Beutler, 2004]. There are several
types of TLRs, leading to different pathways. To better understanding the molec-
ular mechanism of the immune response, one important challenge is to identify
genes participating in these pathways. Because genes that are differentially ex-
pressed after infection are very likely to play a role in the immune response, itis
useful to first identify these genes.

Genes in immune response are constantly under negative selection pressure, so
they tend to be more conserved. Therefore by incorporating sequenceinformation,
we will be able to better identify essential genes in the immune response pathways.

In contrast to the cell cycle expression program, which is probably common
to all type of cells in an organism, the expression program in immune cells varies
between different infectious agents. Moreover, there are multiple types of immune
cells, and they have different responses to the same infectious agent.
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1.3 Functional Analysis of Gene Expression Programs

As biological knowledge is being accumulated, it is desirable to have a convenient
way to incorporate it into the analysis of new biological findings. Functional an-
notation projects, such as Gene Ontology (GO) [Ashburner et al., 2000], provide a
controlled vocabulary that can be used to describe the properties of genes. Using
the vocabulary, people can summarize known information about genes andstore
the annotations into databases, which can be used for future analysis.

When studying gene expression programs, it is often the case that a subset
of genes are observed to be significantly different from the rest, e.g. being in-
duced, repressed, or in general differentially expressed. It is very useful if one can
quickly characterize the gene set based on existing knowledge, if it contains genes
that have already been studied. This can also be used for functional assignment
for unknown genes [Zhou et al., 2002]. One approach is to look for functional
annotations that are “enriched” in the set of observed genes. These “enriched” an-
notations can be regarded as a qualitative summary of the experimental outcome.
This type of enrichment analysis is also helpful for other computational analysis of
gene expression programs, where it can provide quick feedback by summarizing
the computational results.

1.4 Graphical Models for Data Integration and Functional
Analysis

Probabilistic graphical models have been proposed to deal with many large scale
statistical learning and inference problems. In a graphical model, randomvariables
are represented by nodes, and the dependency structure is represented by edges
between nodes. The main idea of graphical models is to capture the conditional
independencies between random variables, and it gives rise to many efficient algo-
rithms for learning and inference.

There are two major classes of graphical models. One class is directed models,
or Bayes Networks, and the other is undirected models, or Markov random fields.
In a directed model, nodes are connected by directed edges, and the conditional
probability is encoded directly on the edges. Figure 1.3 (a) shows a simple directed
model.

In a undirected model, we define potential functions on cliques of the graph,
and the joint probability is expressed by the product of potential function divided by
a normalization constant. Figure 1.3 (b) shows an example of a simple undirected
model of three nodes.

There exist efficient algorithms to estimate parameters from data, and compute



1.5. Previous Work 9

(a) (b)

Figure 1.3:Two types of graphical models. (a) is a directed model of three nodes, in which
Y andZ are conditionally independent givenX. Conditional probabilityP (Y |X) and

P (Z|X) are defined on edge
−→

XY and
−→

XZ. (b) is an undirected model of three nodes, in
which we definepotential functionsψ1(Y,Z),ψ2(Z,X), andψ3(X,Y ) on the three edges.
The joint probability is represented by the product of all potential functions:P (X,Y,Z) ∝
ψ1(Y,Z)ψ2(Z,X)ψ3(X,Y ).

the posterior of random variables given the data the estimated parameters, making
it feasible for dealing with large datasets of thousands of variables.

Our basic idea for integrating data is to use correlation information from se-
quence similarity to “connect” genes and the experimental observations into a
graph. Since the relation of sequence similarity has no direction, it is naturalto
apply undirected models to this problem. In the simplest form, we use nodes to
represent the functional label of genes, e.g. whether a gene is a cell cycle regu-
lated gene. We use potential functions on edges to model correlation information
from sequence homology, and use node potential to model information fromother
experiments, e.g. microarray measurements.

For the functional analysis problem, we are going to adopt a view where the
observed gene set is “generated” from latent biological processes.The goal is
then to identify these latent processes. In this case, a directed graphicalmodel is
more suitable because it is straight-forward to represent the generativeprocess by
directed relations.

1.5 Previous Work

There are a number of previous papers on combining sequence and expression
data to study similarities in expression between different species. For example,
Bergmann et al. [2004] clustered data from six different species to identify modules
of genes that are co-expressed. Stuart et al. [2003] identified ‘metagenes’, a group
of homologous genes from four different species (one gene from each species),
and then used correlation coefficients to link metagenes forming a co-expression
network.
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Our approach differs from these papers in several important aspects. First, un-
like prior work that relied on clustering to identify groups of co-expressed genes
under a wide range of conditions, our approach uses aclassificationframework to
achieve a different goal: identifying a set of conserved systems genes. Second,
prior work only looked at pairwise expression similarities, whereas our algorithm
utilizes the complete graph topology to propagate information. Finally, previous
papers used sequence similarity as a binary value (similar or not). In contrast, our
framework uses the extent of this similarity to determine edge weights. The higher
the similarity the greater the importance of neighboring genes for determining the
final label assignment. More specific studies have been carried out forsome bio-
logical systems and we expand on those in the relevant chapters.

Enrichment analysis has become an increasingly popular method for analyzing
gene sets. Perhaps the most commonly used method of GO enrichment analysisis
based on computing a p-value using the hypergeometric distribution (the hypergeo-
metric method or the “Classic” method). Although it is widely used, there still exist
some unsolved challenges. For example, the functional categories in GeneOntol-
ogy are organized into a hierarchical structure, while the hypergeometricmethod
assumes they are independent. This assumption leads to underestimation of p-
values and the hypergeometric method often returns very redundant results. There
are a number of efforts that try to address this problem Grossmann et al. [2006],
Alexa et al. [2006]. In my thesis, I am going to introduce a new method that explic-
itly takes into account the hierarchical structure of GO, and dramatically improves
on existing methods.

1.6 Contribution

In my thesis, I propose a new framework to integrate sequence and microarray data,
and use it to identify genes in the two expression programs, the cell cycle and the
immune response.

The major contribution of this thesis is a principled framework for integrating
high-throughput biological datasets. It allows combining correlated datasets across
different species and/or cell types for more accurate analysis of geneexpression
programs. In addition, this thesis presents a generative model for functional analy-
sis of gene expression programs.

I believe the algorithms and methods introduced in this thesis will help re-
searchers better utilize the rich information in the ever-growing amount of high-
throughput datasets. I also believe generative models can be a powerful tool for
solving other problems in the analysis of biological data, especially when more
knowledge of the underlying biological mechanisms becomes available.
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1.7 Organization

This thesis develops probabilistic models in a framework that combines multi-
species microarray data and applies the models to two gene expression programs.
Because the analysis of gene expression programs usually results in gene sets, we
first develop a tool for functional analysis of gene sets in Chapter 2, which we will
use in the subsequent chapters. In Chapter 3, we develop a probabilisticmodel
to combine gene expression time series and protein sequence data and applyit to
identify a core set of cell cycle genes. In Chapter 4, we develop an improved model
to combine gene expression data and sequence data, and apply it to identifyinnate
immune response genes conserved between two cell types and/or in human and
mouse. The last chapter outlines potential application of the framework we have
developed to other areas.
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Chapter 2

A Generative Model for Gene
Function Enrichment Analysis

While the main goal of this thesis is to develop models for analysis of multi-species
microarray data, in this chapter we first develop a tool, which we will use in the
following chapters to analyze functional enrichment in various gene sets identified
by our models. Unlike other existing tools for the same task, in many cases our tool
is able to characterize the functionality of a gene set with much less redundancy. In
the following sections, we will introduce the probabilistic model for our tool, and
compare its performance with several other methods.

2.1 Introduction

High-throughput experiments in molecular biology are generating large quantities
of data, which enable researchers to study biological systems, such as gene expres-
sion programs. In many cases these datasets are in the form of lists of genes. For
example, it can be a set of differentially expressed genes, or the targetsof a tran-
scription factor. However, due to the size of the lists it is often difficult to manually
inspect them to functionally characterize the experimental outcome. To overcome
this challenge, researchers increasingly rely on computational analysis using cu-
rated databases of functional annotations. These include the Gene Ontology (GO)
[Ashburner et al., 2000] and the MIPS [Mewes et al., 2002] database,among oth-
ers. In these databases genes are annotated by standardized terms, summarizing
existing knowledge of the genes. For example, in Gene Ontology categoriesare
used to indicate a gene’s known functions or related biological processes.

While using curated functional databases to analyze high-throughput exper-
iments has led to some success, there are many problems remain to be solved.

13
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One challenge is multiple hypotheses testing, because GO contains thousand of
categories which are all tested for enrichment for the same gene set [Ernst and
Bar-Joseph, 2006]. Another challenge lies in the fact that the categories to which
genes are assigned are not independent, making it hard to determine if a set of
identified significant categories are indeed different functional outcomes, or rather
a redundant view of the same biological process. For example, GO categories are
organized into a hierarchy with more general categories close to the root and more
specific categories at the bottom. Genes annotated by a specific term are implic-
itly annotated to all parent terms, resulting in highly overlapping categories. In
addition, many genes are assigned to multiple categories that do not share a di-
rected path in the GO hierarchy, resulting in overlapping categories that cannot be
detected using the hierarchical structure. In both cases, the dependency between
categories make it hard to identify the most informative functional annotations.
In fact, when using GO to compute hypergeometric p-values, which is the most
common method used [Fischer et al., 2006], researchers often recoverseveral re-
dundant categories as the top hits (see Table 2.2) which both mask other important
categories and make it hard to determine the most relevant category.

2.2 Prior Work

The problems caused by dependency of the GO categories have been recognized
and a few methods were developed to address them. One of the first attempts
was the use of ‘GO Slim’ (http://www.geneontology.org/GO.slims.shtml), a leaner
version of GO containing a manually picked small set of categories (130 of the
current∼ 24, 000 categories in GO) with a small overlap between them. While
useful, this method only retains the general categories and does not provide more
specific ones which are often most interesting to biologists. Other attempts were
proposed by a few recent papers. Grossmann et al. [2006] adjust the p-value for a
specific category by taking into account the immediately more general terms (the
parents). This can often lead to the removal of false positives, since someof the
more specific categories are eliminated if their parent category is determined tobe
significant. Alexa et al. [2006] proposed two algorithms to correct the p-values
for a specific GO term. The first algorithm, ‘Elim’, tests the enrichment of each
GO category in a gene set by examining the GO hierarchy in a bottom-up order.
Once a GO category is determined to be significant, all genes associated with it
are removed in the following analysis of its ancestral (more general) categories.
The other algorithm, ‘Weight’, uses a similar strategy but rather than completely
removing genes in significant categories it down-weights them for the remaining
categories.
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2.3 Our Method: Probabilistic Generative Model

While these methods are more powerful, they only utilize local information in the
graph structure (parent-child or bottom-up). Thus, they cannot account for longer
range relationships and global dependencies such as highly overlapping categories
that do not share a directed path. In addition, all the above-mentioned methods
return a (sometimes long) list of GO categories with their p-values requiring the
user to select a cutoff in order to further analyze the resulting list.

Our approach is different. From a biological point of view, one of the goals of
using functional databases is to identify a set of biological processes related to the
specific study. Thus, it would be natural to use a generative model to globally iden-
tify the set of significant GO categories and processes that ‘generated’ the observed
list. Our goal is to identify a (preferably small) set of categories that together ac-
count for the set of genes observed. Since many experiments study complicated
responses involving several processes, the categories can come from different lo-
cations and levels in the hierarchy. However, highly overlapping categories will
not be selected since one of them is often enough to explain the subset of the genes
belonging to these categories.

We applied our method, which we term GenGO (GENerative GO analysis), to
analyzing the GO hierarchy for yeast and humans. We used a controlled analysis
(in which subsets of categories are selected and the goal is to recover the(hid-
den) categories), microarray expression data and ChIP-chip data forboth species.
GenGO was able to drastically reduce the false positive rates, even after statistical
correction. As we show, GenGO consistently outperforms both the originalhyper-
geometric method and the methods considering only local structural dependencies,
in some cases dramatically so.

2.4 The Activation Graph for GO Categories

We developed a generative model to identify a subset of active GO categories.
When designing the method we placed special emphasis on simplicity and speed.
GO analysis is often an interactive process in which users change their lists, or
analyze multiple lists (for example different gene clusters or different targets of
transcription factors). Thus for a method to be successful it should be computable
in a reasonable time to allow interactive analysis.

To explain our method, one can think of this problem in terms of a bi-partite
graph representing the relationships between GO categories and genes (Figure 2.1).
Nodes on the left side of the graph represent GO categories and nodeson the right
represent all genes annotated in that species. We connect a gene node with a GO
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node by an edge if and only if the gene is annotated to belong to that GO category.
We denote genes that were identified in the experiment as ‘ON’ or active and genes
that were not identified as ‘OFF’ or inactive. Similarly, when a biological process
(corresponding to a specific GO category) is active, we represent it by setting its
GO node to ‘ON’ and when it is inactive, we set its state to ‘OFF’.

Figure 2.1: Construction of an activation graph. Left: A diagram showinga GO
hierarchy of four categories and the five genes annotated by these categories (letters
in each rectangle). Because of the true path rule, each gene annotated by a category
in the GO hierarchy is also annotated by all its parent categories. Right: The
activation graph corresponding to this GO hierarchy when observing three of the
genes (A,B,C). In this graph, we connect a gene node with a GO node if and only if
the gene is annotated by that GO category. For this set of genes the activecategory
is determined to be the orange category. Note that due to noise there is a genethat
is selected even though it does not belong to the active category (A). Noise is also
responsible for the fact that a gene belonging to the active category is not selected
(D).

To find this set we define a probabilistic model on the activation graph (contain-
ing both gene and GO nodes). The model accounts for noise in the experimental
and GO data. We develop an algorithm that identifies active GO categories by
maximizing the likelihood of this model conditioned on the set of active genes.
The final outcome is a small subset of active GO nodes that together explains the
set of active genes. We describe the model in details in the following sections.
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2.5 Probabilistic Model for Activation Graphs

We assume a generative model for gene activation. In this model we first select
a subset of GO categories and activate all genes in these categories. Next, a ran-
dom process (representing noise, errors in GO assignments and partialknowledge)
inactivates, with probability1 − p, genes in each of the selected categories and
activates, with probabilityq, genes in categories that were not selected leading to
the observed gene set. Given a list of active (selected) genes and a set of active GO
categories, we can define the following sets

• Ag active gene nodes connected to at least one active GO node

• An active gene nodes not connected to any active GO nodes

• I inactive gene nodes

• Sg edges connecting nodes inI with active GO nodes

• Sn edges connecting nodes inI with inactive GO nodes

Using these symbols we define the following log-likelihood function which we
would like to maximize:

L(C|p, q,G) = |Ag| log p+ |An| log q + |Sg| log(1− p) + |Sn| log(1− q)− α|C|
(2.1)

whereG is the set of active (selected) gene nodes (the input),C is the set of active
GO nodes, and|X| represents the size of theX group (Ag, An etc.). This func-
tion captures our generative model. With probabilityp genes belonging to active
categories would remain active (Ag). With probabilityq genes that do not belong
to any active category would be activated (An). Similarly, with probability1 − p
genes in active categories will become inactive (Sg) and with probability1 − q
genes in inactive categories will remain inactive (Sn). The last term in the likeli-
hood function penalizes the size of the set of active GO categories (|C|) so that the
model will prefer a smaller set of categories when explaining the selected set of
genes. The hyperparameterα is a positive number controlling the penalization.

The above likelihood model is a function of the selected set of active GO cat-
egories (denoted byC). In the next section we present an algorithm for finding
such a set that maximizes this likelihood. We also present a method for optimiz-
ing the values for the noise parametersp andq. Once the algorithm terminates we
compute a p-value score for each of the selected categories using hypergeometric
distribution and return an ordered list of selected categories to the user.
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2.5.1 Optimization by Greedy Search

Given an input list of active genes from an experiment, we would like to determine
a set of active GO categories (C) that maximizes the likelihood function (Eq 2.1).
This is an NP-hard problem (e.g. it can be shown that the Maximal Set Cover prob-
lem can be reduced to it). Thus, we use a simple and fast greedy search algorithm
to look for a local maximum of the likelihood function.

The algorithm is as follows (p andq are fixed in this part; they can either be
optimized in an outer loop as we discuss below or set by the user in advance.).

Algorithm 1 (Find the best GO set for given parameters)

1. InitializeC0 to be the empty set

2. At iterationi, we consider all possible one-step changes of the current set of
active GO categories (Ci), and compare the likelihood of the resulting sets.
Let

ti1 = argmaxt∈Ci
L(Ci\{t}) andti2 = argmaxt∈T\Ci

L(Ci ∪ {t}),

whereT is the set of all GO categories. Thus among all possible reduc-
tions ofCi, C

−
i = Ci\{t

i
1} has the highest likelihood. Similarly, among all

possible expansions ofCi, C
+
i = Ci ∪ {t

i
1} has the highest likelihood.

3. If the likelihood ofC−
i is higher than that of bothC+

i andCi, letCi+1 = C−
i

and go to step 2.

4. If the likelihood ofC+
i is higher than the likelihood ofCi, let Ci+1 = C+

i

and go to step 2. Otherwise go to the next step.

5. returnC.

It is important to note that including more GO categories will not necessarily
lead to improved likelihood and thus the algorithm above does not overfit the data.
The reason is that there is an associated penalty if the category added includes
genes that were not selected. Adding a category for which many of its genes were
not selected or if they were selected they are already explained by other selected
categories will usually lead to reduction in the likelihood.

Once the algorithm terminates, we use the set of active categories as the final
result. For these categories we compute a p-value using the hypergeometricdis-
tribution and return the list, ordered by the p-value significance score, to the user.
Corrected p-values can also be computed either by using the Bonferronicorrection
or by carrying out randomization tests [Ernst and Bar-Joseph, 2006].
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2.5.2 Optimizing Parameters

There are two parameters in our model,p andq. p is the probability that an active
GO node will activate a gene belonging to that GO category and q is the proba-
bility that a gene node becomes active without being activated by any GO node.
A higherp means a higher participation rate of the related genes in the biological
process, and/or less uncertainty in the activation relation between a GO node and
the related go nodes. A higherq means a larger portion of the genes are allowed
to be explained by background noise or errors in the current ontology. pand q can
be set manually according to the estimation of noise level. These two parameters
can also be optimized by maximizing the log likelihood defined previously. The
algorithm is as follows:

Algorithm 2 (Find the best GO set by learning parametersp andq)

1. Initialization. Setp0 = 0.5, q0 = |G|/|R|, whereG is the set of active genes,
andR is the reference set.

2. Carry out steps in Algorithm 1, usingpi andqi.

3. Based the solution found in the previous step, we compute the maximum
likelihood estimation ofp andq:

pi+1 =
|Ag|

|Ag|+ |Sg|

qi+1 =
|An|

|An|+ |Sn|

4. if max(|pi+1 − pi|, |qi+1 − qi|) ≥ ε , go to step 2, otherwise stop. (ε is a
small positive number to control convergence.)

Because both steps in Algorithm 1 and 2 only increase the likelihood, the algorithm
above is guaranteed to converge to a local maximum.

The hyperparameterα can be chosen by experiments and we found it generally
works well when settingα = 3.0.

GO annotation data. Gene ontology files (release 2007-06) were downloaded
from the Gene Ontology website (ftp://ftp.geneontology.org/). GO
annotations for humans and yeast were extracted from the Gene2GO database,
which was downloaded from the NCBI website (ftp://ftp.ncbi.nlm.nih.
gov/) on Jun 26, 2007. GO categories were filtered such that only those with at
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least 5 genes would be used. In this study, we focused on the Biological Pro-
cess categories, but our methodology is also applicable to Cellular Component and
Molecular Function categories.

Precision/Recall curves.Precision/Recall plots were done using the ROCR
package in R (http://www.r-project.org/). Each point in the preci-
sion/Recall curve corresponds to a score (or p-value) cutoff. The precision and
the recall are defined as follows

Precision= TP/(TP+ FP)Recall= TP/(TP+ FN),

where TP is the number of true positives (true active categories below the cutoff),
FP is the number of false positives (inactive categories below the cutoff),and FN
is the number of false negatives (true active categories above the cutoff).

Precision/recall curves are more informative than Receiver Operating Charac-
teristic (ROC) curves when working with highly skewed datasets [Davis andGoad-
rich, 2006]. This is exactly the case when working with GO enrichment analysis in
which the vast majority of categories are not expected to be enriched for any one
dataset.

Comparison. For comparison with the Classic method we used the hypergeo-
metric p-value analysis from STEM [Ernst and Bar-Joseph, 2006]. Weused the
Parent-Child method implemented by Ontologizer (http://www.charite.
de/ch/medgen/ontologizer/recomb06/index.html), and the Weight
and Elim methods implemented in the topGO package (release 1.2.1) in R (release
2.5.1). For both Classic and Parent-Child methods, p-values are computed with
Bonferroni correction, which is a commonly used method for multiple testing cor-
rection.

In every GO analysis task we performed for a species, we used the wholeset
of annotated genes as the reference set. To generate the precision/recall curve for
a method in a specific experiment, we followed the strategy in Grossmann et al.
[2006] and accumulated all p-values from100 random gene sets.

Ranking induced genes in amino acid starvation.For each yeast gene in the
amino acid starvation experiment, we looked at its second highest expression level
throughout the whole time series, and ranked all genes according by this value.

2.6 Results

2.6.1 Comparison by Selecting a Subset of Categories

We first tested our method (GenGO) using GO data for yeast and humans. We
followed the same procedures in Grossmann et al. [2006] and Alexa et al.[2006]
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for objective comparison of different GO analysis methods. For each species,1,
2, or 5 GO categories were randomly selected as ‘active’, and a subset of genes
associated with each active category were randomly picked (90% or 50% of genes
in each of the selected categories). In addition, we randomly selected1% or 15%
of the remaining genes (from inactive categories) and combined the two setsfrom
active and non-active categories to form the input to the GO analysis. Dueto the
large run time of some of the methods we were comparing to (Elim and Weight),
for each experiment,100 random sets were generated using the same parameters.

We used precision/recall curves to compare GenGO with four other methods
(Materials and Methods). These included ‘Classic’ (hypergeometric test)and the
three other methods listed above. The results are plotted in Figures 2.2 (yeast)
and 2.3 (human). For all settings, the performance of GenGO dominates all other
methods. When the noise level is low, the performance of GenGO is close to
optimal (left columns in Figures 2.2 and 2.3). When the noise level is high, the
performance drops for all methods, though GenGO is still the best. Even withhigh
noise and multiple categories (as is the case for most real experiments) GenGO
can achieve80% precision for high recall levels (60%-80%). As for the other
methods, in most cases ‘Weight’ is the second best and ‘Classic’ is usually the
worst, indicating that all methods previously proposed for the task indeed improve
upon the standard usage of GO.

Note that while the precision usually drops as the recall increases, there could
be cases where the precision actually improves even though recall is increasing.
For example, in Figure 2.2(a) the ‘GenGO’ method correctly assigns the lowest
p-values to some of the selected categories, which results in a very high precision
rate at low recall rates. However, when the recall increases to0.1, due to some
non-selected categories that are (incorrectly) assigned a low p-value,the precision
drops to0.9. As the recall continues to increase, the precision increases again
because the method recovers the rest of the selected categories without picking up
much non-selected categories.

2.6.2 Analysis of Noise Datasets

To test the ability of GenGO to overcome the multiple hypothesis testing problem,
5% and10% of all human genes were randomly selected as a test set, and the five
algorithms were run to identify significant categories. The procedure wasrepeated
100 times, and the percentages of sets without any significant GO categories (p-
value< 0.001 with Bonferroni correction where applicable) are listed for each of
the methods in Table 2.1. Even after correction the Classic method, which is the
most commonly used, identified significant categories in all experiments. When
10% of genes were selected at random, all methods, except for GenGO identified
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Figure 2.2: Comparison using GO for yeast. Performance comparison of five meth-
ods on data generated using the yeast GO database. We use p to represent the frac-
tion of genes that are identified from an active GO category (true positiverate for
a category, see Materials and Methods) and q to represent the fraction genes that
are selected but do not belong to any active category. (a) Selecting onecategory
with p = 0.9, q = 0.01 (b) Selecting one category withp = 0.5, q = 0.15. (c)
and (d): same as (a) and (b) but using two categories. (e) and (f): same with five
categories. Note that even when the noise is substantial (using50% of genes in
selected categories and15% of all other genes, second column) GenGO is still able
to accurately recover most of the correct categories.
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Figure 2.3: Performance comparison of five methods on data generated using hu-
man GO database. (a-f) same as in figure 2.2 for human GO data.
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significant categories in at least 50% of the experiments. In contrast, GenGO was
able to determine that no such significant category exists for more than97% of
tested noise sets.

Random Genes Classic Parent-Child Elim Weight GenGO
1% 69% 100% 67% 64% 100%

5% 0% 83% 74% 71% 98%

10% 0% 7% 51% 44% 100%

Table 2.1: Analysis of random gene sets.1%, 5%, and10% of all human genes
were randomly selected as a test set, and the five algorithms were run to identify
significant categories. Categories were only selected if they achieved a p-value<
0.001 following Bonferroni correction for multiple hypothesis testing. The proce-
dure is repeated 100 times, and the percentages of sets without any significant GO
categories are listed in the table. As can be seen, while GenGO correctly deter-
mined that there were no significant categories in more than 98% of tests, other
methods identified much more erroneous categories in these experiments.

2.6.3 Comparison on Microarray Experiment for Yeast

Testing GenGO using real expression data is more challenging since the ‘ground
truth’ is unknown in most cases. Still, when the biological condition is clearly
defined, it is possible to determine whether a set of GO categories providesa good
summary of the experimental setup.

Enrichment Analysis of Cell Cycle Genes

We have initially applied GenGO to analyze the well studied cell cycle expres-
sion dataset from Spellman et al. [1998]. We used the800 genes determined to
be cycling during the mitotic cell cycle in budding yeast. Figure 2.4 plots the lo-
cation in the GO hierarchy of the top five categories identified by four of the five
methods (see also Table 1 and Supplementary Figure 3). The results highlight the
advantages of GenGO. For example, while both GenGO and Classic successfully
identify “mitotic cell cycle” as the most significant category, the Classic method
returns highly redundant categories including “mitotic cell cycle”, “cell cycle pro-
cess”, and “cell cycle”. The Parent-Child method [Grossmann et al., 2006] also
returns redundant categories (“cell cycle process”, and “cell cycle”) though it does
a better job in finding the more specific “microtubule-based process” which isre-
lated to cytoskeleton changes during cell cycle progression [Spellman et al., 1998].
Both Elim and Weight fail to identify the most appropriate category for this data
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(cell cycle) though they do identify a number of relevant specific categories. In con-
trast, GenGO contains both the correct high level categories (‘cell cycle’ and ‘cell
division’) as well as more specific categories (“chromatin assembly or disassem-
bly”) that play an important role in DNA replication and chromosome segregation.
Note that cell division here is not redundant with cell cycle. While “cell cycle”
describes the different phases of the cell cycle, their regulation, and checkpoints,
‘cell division’ refers to the process of separation of daughter cells following the
cell cycle.

Classic Parent-Child Elim Weight GenGO
mitotic cell
cycle

cell cycle microtubule
nucleation

microtubule
nucleation

mitotic cell
cycle

DNA
replication

cell cycle
process

mitotic sister
chromatid
cohesion

mitotic sister
chromatid
cohesion

DNA
replication

cell cycle DNA
metabolic
process

mitotic
spindle
organization
and biogene-
sis

DNA strand
elongation
during DNA
replication

microtubule-
based
process

cell cycle
process

microtubule-
based
process

DNA
replication
initiation

mitotic
spindle
organization
and biogene-
sis

cell division

DNA-
dependent
DNA
replication

DNA
replication

telomere
maintenance
via
recombination

telomere
maintenance
via
recombination

chromatin
assembly
or disassem-
bly

Table 2.2: Top five GO categories identified by different methods from the listof
periodically expressed yeast genes during the mitotic cell cycle.

Enrichment Analysis of Amino Acid Starvation Response Genes

We repeated the above analysis using the top 500 induced genes in amino acidstar-
vation experiments [Gasch et al., 2000]. Only GenGO and Weight correctlyiden-
tified “amino acid biosynthetic process” as the most significant category (Table 2.3
and Figures 2.5- 2.9). The next significant category identified by GenGOis “sul-
fur metabolic process”. It includes genes required in recycling sulfur metabolites,
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Figure 2.4: Comparison of top five GO categories identified in the yeast cell cycle
genes Spellman et al. [1998] by four methods. (a): top five GO categoriesiden-
tified using the Classic method (hypergeometric p-value) are highlighted. Green
represents the most significant category identified. The five categories represent
highly redundant view of only two biological processes, as highlighted bythe red
circles. (b): Parent-Child method Grossmann et al. [2006]. (c): Weightmethod
Alexa et al. [2006]. (d) GenGO.
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which are known to be highly expressed under amino acid starvation [Thomas and
Surdin-Kerjan, 1997]. In addition, an interesting finding by GenGO is “monosac-
charide catabolic process”. During amino acid starvation, besides the lackof amino
acid there is a cellular need to produce energy which is carried out mainly bythis
process [Natarajan et al., 2001]. Another category identified by GenGO, ”amino
acid catabolic process”, describes the process that generates amino acids from ex-
isting proteins, which is a known consequence of amino acid starvation. In contrast,
the categories identified by Elim are too specific: three of the five categoriesare
subcategories of “amino acid biosynthetic process” and can be better summarized
by the latter. The Classic method again identifies redundant categories: ”organic
acid metabolic process”, ”carboxylic acid metabolic process”, and ”amino acid
metabolic process”.

Classic Parent-Child Elim Weight GenGO

nitrogen
compound
metabolic
process

nitrogen
compound
metabolic
process

arginine
biosynthetic
process

amino acid
biosynthetic
process

amino acid
biosynthetic
process

carboxylic
acid
metabolic
process

organic acid
metabolic
process

glutamate
biosynthetic
process

glutamate
metabolic
process

sulfur metabolic
process

organic
acid
metabolic
process

amino
acid and
derivative
metabolic
process

sulfate
assimilation

sulfur
amino acid
metabolic
process

amino acid
catabolic
process

amino acid
metabolic
process

amine
metabolic
process

transposition,
RNA-
mediated

main path-
ways of
carbohydrate
metabolic
process

purine base
metabolic
process

amino acid
and
derivative
metabolic
process

cellular
biosynthetic
process

methionine
biosynthetic
process

glutamine
family
amino acid
catabolic
process

monosaccharide
catabolic pro-
cess

Table 2.3: Top five GO categories identified by different methods from the listof
yeast genes induced following amino acid starvation [Gasch et al., 2000].
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nitrogen compound metabolic process

amine metabolic processorganic acid metabolic process

carboxylic acid metabolic process

amino acid and derivative metabolic process

amino acid metabolic process

biological process

cellular process metabolic process

cellular metabolic process primary metabolic process

Figure 2.5: Top five categories identified by the hypergeometric method for yeast
genes induced in amino acid starvation.

nitrogen compound metabolic process

amine metabolic process amino acid and derivative metabolic processorganic acid metabolic process cellular biosynthetic process

biological process

cellular process metabolic process

cellular metabolic process primary metabolic process biosynthetic process

Figure 2.6: Top five categories identified by Parent-Child method for yeastgenes
induced in amino acid starvation.

2.6.4 Analysis of Human Expression Data

We repeated the analysis described above using human immune response experi-
ments from [Nau et al., 2002]. 977 genes were identified as differentially expressed
when host cells were exposed to one or more bacterial pathogens. For this set all
methods have correctly identified “immune response” in the top two categories
(Table 2.4). However, as was the case for yeast, the Classic method returned many
redundant categories. Parent-Child returned two very general categories (‘biologi-
cal process’ and ‘regulation of biology’) which do not provide insightinto the set
of genes. Interestingly both Elim and Weight identified ‘response to virus’as one
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arginine biosynthetic process

transposition, RNA-mediated

sulfate assimilation

glutamate biosynthetic process methionine biosynthetic process

biological process

cellular process metabolic process

cellular metabolic process transpositionprimary metabolic process biosynthetic process

nitrogen compound
metabolic process

urea cycle
intermediate

metabolic process

amino acid and
derivative

metabolic process

organic acid
metabolic
process

amine metabolic process

sulfur
metabolic
process

n0044239

nitrogen compound
biosynthetic process

amino acid
metabolic process

carboxylic acid
metabolic process

cellular
biosynthetic

process

sulfur compound
biosynthetic process

amine biosynthetic process

sulfur utilization

sulfur amino acid
metabolic process

arginine
metabolic
process

sulfur amino acid
biosynthetic process

glutamine family
amino acid

metabolic process

amino acid
biosynthetic

process

aspartate family
amino acid

metabolic process

glutamate
metabolic process

glutamine family
amino acid

biosynthetic process

aspartate family
amino acid

biosynthetic process

methionine
metabolic
process

Figure 2.7: Top five categories identified by Elim for yeast genes inducedin amino
acid starvation.
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amino acid biosynthetic process

cellular
carbohydrate

metabolic process

sulfur amino acid
metabolic process

glutamate metabolic process glutamine family amino acid catabolic process

biological process

cellular process metabolic process

cellular metabolic process primary metabolic process
biosynthetic

process

nitrogen compound
metabolic process

catabolic process macromolecule metabolic process

amino acid and
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metabolic process

organic acid
metabolic
process

cellular
biosynthetic

process

amine metabolic process

sulfur
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cellular catabolic process
carbohydrate

metabolic
process

nitrogen compound
biosynthetic process

nitrogen compound catabolic process

amino acid
metabolic process

carboxylic acid
metabolic process

amine catabolic process amine biosynthetic process

glutamine family
amino acid

metabolic process
amino acid catabolic process

Figure 2.8: Top five categories identified by Weight for yeast genes induced in
amino acid starvation.
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Figure 2.9: Top five categories identified by GenGO for yeast genes induced in
amino acid starvation.
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of the top five categories. Since only bacteria were used in this study this category
should not have been identified. It was likely selected by these methods dueto
its overlap with the more general ‘immune response’ category. In addition to the
‘immune response’ and ‘wound response’ categories identified by GenGO it also
identified ‘taxis’ which is clearly relevant due to the mobility need for macrophages
during immune response [Jones, 2000]. GenGO also identified “regulationof apop-
tosis” which plays an important role in determining the drastically different fates
for macrophages after infection [Grassmé et al., 2001, Navarre and Zychlinsky,
2000, Rojas, 1997]. The final category identified, “tRNA aminoacylation” isthe
process that joins an amino acid to its cognate tRNA, which is an important step in
protein translation [Park et al., 2005].

Classic Parent-Child Elim Weight GenGO

immune
response

biological
process

immune
response

immune
response

immune
response

immune
system
process

immune
system
process

inflammatory
response

response
to wounding

response
to wounding

response
to stress

response
to stimulus

chemotaxis cell
proliferation

taxis

response
to stimulus

cell
proliferation

response
to virus

chemotaxis regulation
of apoptosis

response
to wounding

biological
regulation

anti-apoptosis response
to virus

tRNA aminoa-
cylation

Table 2.4: Top five GO categories identified from the list of human genes deter-
mined to be differentially expressed following exposure to bacteria.

2.6.5 Application to ChIP-chip Data Analysis

ChIP-chip [Harbison et al., 2004] is an experimental technique the combines CHro-
matin ImmunoPrecipitation with microarrays (“chip”), which can be used to iden-
tify the targets of transcription factors. These targets can later be used to shed light
on the functional role of that factor, which can be done by using GO to determine
the function of the resulting gene target set [Bar-Joseph et al., 2003].We have
compared the GO enrichment analysis of the different methods for the targets of
transcription factors from yeast and human.

For yeast we have looked at Swi6, a cell cycle regulator of G1 transcription
[Nasmyth and Dirick, 1991]. Table 2.5 presents the results of the five methods
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for this factor. Except for Elim and Weight, which did not return ‘cell cycle’ in
their top 5 hits, the three other methods correctly selected this as the top category
for Swi6. However, the hypergeometric and parent-child again returneda set of
redundant categories (‘cell-cycle’, ‘cell cycle process’). In contrast, GenGO was
able to balance the more detailed and more high level categories. Specifically it
was the only one to correctly identify ‘reproduction’ as one of the top categories
for Swi6, a role that is well documented [Leem et al.].

Classic Parent-Child Elim Weight GenGO
cell cycle cell cycle regulation of

cyclin-
dependent
protein
kinase
activity

regulation of
cyclin-
dependent
protein
kinase
activity

cell cycle

mitotic cell
cycle

cell cycle
process

G1/S-
specific
transcription
in
mitotic
cell cycle

interphase of
mitotic cell
cycle

external
encapsulating
structure
organization
and
biogenesis

regulation of
progression
through
cell cycle

biological
regulation

cell wall
organization
and
biogenesis

regulation of
progression
through
mitotic cell
cycle

DNA repli-
cation

regulation of
cell cycle

regulation of
cellular pro-
cess

axial bud site
selection

axial bud site
selection

reproduction

cell cycle
process

regulation of
cell cycle

positive
regulation
of DNA
replication

cell wall
organization
and
biogenesis

regulation of
transcription

Table 2.5: Categories for Swi6 targets identified by ChIP-chip experiments.

We have also looked at the analysis of targets of E2F1, a human cell cycle regu-
lator. Ren et al. [2002] have studied the targets of E2F1 and based on their detailed
analysis determined in their title that “E2F integrates cell cycle progression with
DNA repair, replication, and G2/M checkpoints”. While all GO analysis meth-
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ods correctly identified E2F1’s role in controlling various aspects of the cell cycle,
GenGO was only method to rank all three functions (replication, DNA repair and
G2/M checkpoint) in its top 5 categories. (See Table 2.6).

Classic Parent-Child Elim Weight GenGO
DNA
metabolic
process

cell cycle
process

cell division DNA repli-
cation

DNA repli-
cation

cell cycle
process

cell cycle DNA repli-
cation

mitosis Double-
strand
break repair

cell cycle DNA
metabolic
process

DNA repli-
cation
initiation

cell division mitotic
checkpoint

DNA repli-
cation

response to
endogenous
stimulus

mitosis regulation of
progression
through cell
cycle

mitotic sister
chromatid
segregation

cell cycle
phase

regulation of
cell cycle

regulation of
cyclin-
dependent
protein
kinase
activity

DNA repair G2/M tran-
sition of
mitotic cell
cycle

Table 2.6: Categories for Human E2F1 targets identified by ChIP-chip experi-
ments.

2.7 Summary

The use of GO to analyze large datasets is rapidly becoming a standard procedure
in many high throughput experimental studies. The ability to utilize decades of
prior work that have been curated into a single database allow researchers to gain
initial insight regarding their experiment and can often suggest novel hypothesis for
follow-up work [Ihmels et al., 2002, Eisen et al., 1998]. However, in manycases
the result of this GO analysis is a long list of significant categories. This makes
it hard to interpret the results and determine what the most significantly enriched
functions are in the selected set of genes.

In this chapter we described a generative model for identifying a small subset
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of categories that, combined, explain the observed set of genes. The algorithm
we presented maximizes a global likelihood function to achieve this task. Our
results suggest that GenGO is effective in minimizing false positives while at the
same time it can accurately balance the set of categories it returns, includingboth
high level and specific categories. GenGO was shown to work very well on both
simulated data and real data from a number of different experimental techniques
and species. Unlike other methods it does not require an extra step for correcting
for multiple hypothesis testing resulting in categories that are both significant and
unique.



Chapter 3

Identification of Cell Cycle
Regulated Genes

3.1 Overview

The cell is a dynamic system in which gene expressions are highly regulated. Dur-
ing the cell cycle, a cell goes through several stages to replicate its geneticmaterial
and organelles, and divide into two daughter cells. As a result, events related to
this process are regulated with regard to the cell cycle. Especially, there are many
genes expressed periodically, peaking at different stages of the cellcycle.

One of the first questions facing researchers is how to identify these cellcycle
regulated genes, or cycling genes. Many methods for identifying cycling genes
have been suggested. For example, Spellman et al. [1998] used Fouriertrans-
form to identify cycling genes in budding yeast. Wichert et al. [2004] presented
statistical methods for identifying periodically expressed genes and appliedthem
(separately) to human and yeast. Lu et al. [2004] and Bar-Joseph et al. [2004]
presented methods for deconvolving yeast expression data in order to improve the
identification of cycling genes. De Lichtenberg et al. [2005] used scores that look
at the amplitude of the expression value peak as well as the peak in the Fourier
spectrum around the cell cycle period. All of the above methods identify cell cycle
genes by ranking genes in asinglespecies according to a score computed from
their expression time series.

With microarray data available for more species, researchers have started to
study the conservation of the cell cycle expression. Surprisingly, Rusticiet al.
[2004] found the expression of cycling genes are not well conserved between two
closely related species, budding and fission yeast. There could be many reasons
for this discrepancy. One possibility is gene expression is not conserved, but an-

35
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other possible explanation is lists for different species are derived using different
methods, which have poor consistency.

In this chapter we present a method for combining experiments from multiple
species. Our algorithm combines sequence and expression data to identifythe set
of cycling genes. By considering sequence information we can use paralogs and
homologs to overcome noise and cutoff problems in individual species. By using
expression data we can detectfunctionalconservation, that is, sets of genes that are
not only similar in sequence but also similar in function.

We use probabilistic graphical models, and in particular Markov random fields,
to combine these data sources. We represent genes as nodes in the graph, with
edges corresponding to sequence similarity as determined by a BLAST score. Each
node (gene) is assigned an initial score which is determined by the expression
experiment. Starting with this score we propagate information along the edges of
the graph until convergence. Thus, if a node with a medium score is connected to
a set of nodes with high scores, the information from the neighboring nodes can be
used to elevate our belief in the assignment of this node, and vice versa.

3.2 The Model

…

…

Species 1

Species 2

…

…

Species 1

Species 2

Gene Node

Score Node

Gene Node

Score Node

Figure 3.1:A graphical model for two species. Dark nodes are score nodes, representing
the score derived from such experiments. The lighter nodes are gene nodes. Gene nodes
are connected by edges if their sequence is similar.

We formulate the problem of assigning cyclic status to genes using similarity
network models introduced in the previous chapter. There are two types ofnodes in
the graph we use for this problem (see Figure 3.1). The first represents genes and
the second represents expression scores from the related cell cycle experiments.
Edges between gene nodes correspond to sequence similarity, and carry a weight
which depends on that similarity. These edges are used to capture the conditional
dependencies of phylogenetically related genes. All edges between a gene node
and its corresponding score node have the same weight and correspond to the gene
nodes’ potentials.
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To generate the edges between potential homologous genes, we run BLAST
between all pairs of genes in the two species. We insert an edge between two gene
nodes (either belonging to the same species or to two different species) if their
BLAST score is higher than a fixed threshold. We use a conservative cutoff such
that we are fairly confident that when an edge is added to the graph, the two genes
it connects are very likely to be homologous. While we use a cutoff to determine
whether we place an edge or not, edges that are present in the graph are weighted
based on their BLAST score. The resulting graph comprises of a set of connected
components, as demonstrated in the diagram in Figure 3.1.

To represent the latent status of a gene (whether or not it is a cell cycle gene)
we associate a hidden variableCi with each gene node.Ci = 1 means that this
gene is cell cycle regulated, otherwiseCi = 0.

Based on the definitions above, the joint probability distribution over the ran-
dom variablesCi of this model is defined as follows [Pearl, 1988]

L =
1

Z

∏

i

ψi(Ci)
∏

i,j

ψij(Ci, Cj) (3.1)

whereψi(Ci) is the node potential function (derived from the score node),ψij(Ci, Cj)
is the edge potential function, andZ is the partition function, i.e. the normalization
term. Potential functions capture constraints on a single variable or betweena pair
of dependent variables. For example, if two gene nodesi andj are connected by
an edge with a large weight, it is likely that they are functionally related. Thus,
the potential function will penalize assignments that are different in the different
nodes (e.g., settingCi to 0 andCj to 1). Below we discuss the cycling score and
the potential function in detail.

3.2.1 Cycling Scores

A key to our algorithm is to apply a consistent scoring method to all species used.
The method we use takes into account both the periodicity and the amplitude of the
time series, and use the same method on all datasets.

Once such an expression score has been derived, each score node is assigned
the corresponding gene’s score,Si. We assume thatSi is drawn from a mixture
distribution. Specifically, we assume two different distributions (for each species):
a cell cycle specific distribution, which applies to all genes that are cell cycle reg-
ulated, and a null, or background distribution which applies to all other genes.

An important practical issue is to choose the form of the two component dis-
tributions of theSi scores. While the Gaussian distribution has been successfully
applied to model expression values, here we are modeling scores that arederived
from such values, and not the values themselves. In many cases, such scores are
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derived by taking the max value of some transformation. Cell cycle score calcula-
tion involves taking the maximum peak of the expression time series or the Fourier
transform and the resulting distribution often has a heavy tail and is more appropri-
ately modeled as an Extreme Value Distribution (EVD). This heavy tail propertyis
clearly noticeable in the scores assigned to known cycling genes as can beseen in
Figure 3.2.
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Figure 3.2: Empirical distribution for genes annotated as cycling in GO and therest
of the genes. As can be seen, these two distributions significantly overlap,making
it hard to infer cyclic status from the expression score alone. The scoredistribution
of the cell cycle genes has a heavy tail, and looks more like an Extreme Value
Distribution than a normal distribution.

The EVD is defined using two parameters: location (a) and scale (b). Its PDF
is given by:

p(x) =
1

b
e− exp{a−x

b } · e
a−x

b

The location and scale parameters of EVD are similar to the mean and variance
parameters of the Gaussian distribution. As in a Gaussian, they control the mode
and the spread of the distribution, though they do not necessarily correspond to the
mean and variance. Using the EVD mixture model we need to fit four parameters
for each speciesa0, b0, a1, b1 where

Si | Ci = 0 ∼ EVD(a0, b0)

Si | Ci = 1 ∼ EVD(a1, b1)
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The values of these parameters are fitted to the score distributions using an EM-
type algorithm. As with any EM algorithm, the initial guess plays an important
role in reaching a good local maximum. To initialize the parameters for the null
distribution we permute each of the original time series randomly to simulate the
expression levels of non cell-cycle genes. Scores are calculated fromthese artificial
expression data, and are subsequently used to estimate the parameters of the null
score distribution. To initialize the score for cell-cycle genes, we compile a list
of such genes that appear in the corresponding papers and use the scores of these
genes to derive a maximum-likelihood estimate of the parameters.

3.2.2 Node Potential Function

The node potential function is defined using Bayes rule as

ψi(Ci) = Pr(Ci|Si)

=
Pr(Si|Ci)Pr(Ci)

Pr(Si|Ci = 0)Pr(Ci = 0) + Pr(Si|Ci = 1)Pr(Ci = 1)

Using the EVD mixture assumption, the potential function becomes

ψi(0) =Pr(Ci = 0|Si) =
ti0

ti0 + ti1
,

ψi(1) =Pr(Ci = 1|Si) =
ti1

ti0 + ti1

where

ti0 = (1− Pc) ·
1

b0
e
− exp

n

a0−Si
b0

o

e
a0−Si

b0

ti1 = Pc ·
1

b1
e
− exp

n

a1−Si
b1

o

e
a1−Si

b1

andPc is a prior probability for cycling genes in the species to whichi belongs.
In practice, we requireb0 = b1 so that the two score distributions have a similar

spread. This guarantees that the posterior score will have the same ranking as the
expression scores when there are no edges in the graph.

3.2.3 Edge Potential Functions

Our edge potential functions capture the a-priori functional similarity between gene
pairs. This is based on our assumption regarding evolutionary conservation of gene
functions, namely, that genes that are highly similar in sequence are likely to be
similar in function. We use BLAST [Altschul et al., 1990] to determine sequence
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similarity. As mentioned earlier, we do not transform these BLAST scores into
binary features. Rather, we use the similarity score to determine the edge potential
which penalizes contradictory assignments. The penalty is proportional to how
close the two genes’ sequences are.

For each query sequence, the BLASTALL program returns an E-value and a
bit scoreS. The relation between them isE = mn2−S wherem is the length of
the query sequence andn is the length of the genome of the second species. Note
that bit scores are not “symmetric” as they depend on the total genome length. To
overcome this, and generate a single similarity score for pairs of genes we set the
weight on edge(i, j) to

wij =
1

2
(bij + bji)

wherebij is the BLAST bit score of genei against genej. Usingwi,j we define
the edge potential as

ψij(Ci, Cj) = 2−λwij(Ci−Cj)
2

.

This potential function penalizes assignments that do not agree between connected
nodes.λ is an externally specified parameter that controls the impact of edge po-
tentials relative to the node potentials.

3.3 Learning the Parameters of Our Model

The model parameters we need to learn are the score distribution parametersof
every species. We learn the score distribution parameters(a0, b0, a1, b1) in an it-
erative manner using an EM-style algorithm. We start with an informative guess
for the score parameters, as mentioned above. Based on the score distributions we
determine a posterior assignment to nodes using belief propagation, as we discuss
below. Following convergence of the belief propagation algorithm we use the (soft)
label assignments to update the score distribution parameters. We then repeat these
steps by performing belief propagation again based on the updated scoredistribu-
tions and so forth until both the label assignment and score distribution parameters
do not change anymore.

3.3.1 Iterative Step 1: Inference by Belief Propagation

To infer the node status variablesCi, we need to compute the marginal posterior
label distribution on each gene node. This posterior is hard to compute directly
because of the intractable normalization termZ in Formula (3.1). Fortunately, for
these types of graphical models, we can use a standard belief propagation algorithm
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for inference avoiding the direct calculation of theZ term [Pearl, 1988]. Note that
our graph is loopy and thus the belief propagation algorithm is not guaranteed to
converge to a global maximum. Still, as was shown in Yedidia et al. [2003], in
practice these algorithms achieve good results in loopy networks as well.

The belief propagation algorithm consists of two steps: ‘Message passing’,
where each node sends its current belief to all its neighbors, and ‘beliefupdate’,
where nodes update their belief based on the messages received. In our case the
messages depend on the node’s expression score and the belief of genes that are
similar in sequence. The algorithm is summarized below.

1. ‘Message passing’. The messages sent by nodei to nodej about its belief in
an assignment of1 to j is :

mi,j(1)←
∑

k=0,1

(ψi(k)ψij(k, 1)
∏

n∈N(i)\j

mn,i(k))

WhereN(i) is the set of neighbors of nodei in the graph. Intuitively, this
message informsj abouti’s agreement with an assignment of 1 toj. In order
to determine this,i takes into account its own belief (from its score node),
the strength of the edge betweeni andj and the belief ofi’s neighbors about
the right assignment toi. For the belief in a 0 assignment we simply replace
every 1 with 0 in the above equation. Note that the weighting parameterλ is
already incorporated into the edge potential function and so it is incorporated
into the message as well.

2. ‘Belief update’. The belief ofi in an assignment of 1 is computed by setting:

bi(1) = (1/v)ψi(1)
∏

j∈N(i)

mj,i(1)

wherev is a normalization constant to make beliefs sum to 1. As can be seen,
i’s belief depends on both its original score and the messages it receivedfrom
its neighbors about what they ‘believe’ should be assigned toi.

3.3.2 Iterative Step 2: Updating the score distribution

Using the belief computed in the inference step, we update the score distribution
parameters. Our goal is to maximize the auxiliary functionQ(Θ,Θ(g)), which is
defined as the expected log likelihood of the complete data over the observedscores
given the parametersΘ(g) = (a

(g)
0 , a

(g)
1 , b(g)) at theg’th iteration.

We were unable to find a reference for deriving update rules for the EVD mix-
ture distribution. We have thus derived these ourselves. In general, to derive an
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update rule for this distribution we need to simplify theQ function and separate
the parameters into two terms which can be maximized independently. If we re-
quire thatb0 = b1, then for each species we have three parameters: two location
parametersa0 anda1 and one scale parameterb. We can find the location parame-
ters that maximizeQ easily if we knowb, but there is no close form solution forb.
However, we can use numerical methods to solve forb. The final update rules for
each species are as follows

a
(g+1)
l =

1

β
log

∑N
i=1 Pil

∑N
i=1 e

−βSiPil

, l = 0, 1

b(g+1) =
1

β

whereN is the number of genes in that species,Pil representsp(Ci = l|Si,Θ
g),

l = 0, 1, andβ is the root of the equation:

1

β
=

∑

l={0,1}

∑N
i=1 SiPil

∑

l={0,1}

∑N
i=1 Pil

−
∑

l={0,1}

[

N
∑

i=1

Pil

∑N
i=1 e

−βSiSiPil
∑N

i=1 e
−βSiPil

]

/

∑

l={0,1}

N
∑

i=1

Pil (3.2)

Equation (3.2) can be solved using linear line search since the reasonablerange
of β is not large. Note that the Newton-Raphson method does not work here,
because the solution is very close to the local extrema of the function.

Our algorithm is summarized in Table 3.1.

3.4 Identification of Conserved Cell Cycle Genes

3.4.1 Simulated Data

To test our model using simulated data we first generated the graph structure from
the two species as discussed before. We then generated labels (i.e. cycling or
not) for nodes in the graph using a Gibbs sampler method that took into account
previously assigned neighboring nodes when assigning labels to individual nodes.

After generating the labels we assigned scores to nodes. We used two (over-
lapping) score distributions, one for the nodes withCi = 1 and the other for those
with Ci = 0. In all experiments we used a fixed distribution for one species. How-
ever, each experiment used a different distribution for the second species. These
distributions varied in their separability, ranging from highly separable to highly
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Table 3.1: Algorithm for combining microarray expression data from multiple
species.

Input :
1. For each gene, expression scoreSi

2. Graph structure (edge weights)
Output :
For each gene its posterior cycling status,Ci

Initialization :
For each species compute estimates fora0, a1 andb
using permutation analysis and original lists

Iterate until convergence:
1. Carry out Belief Propagation to determine
a posteriorCi for each gene
2. Use the computed posterior to recompute the EVD
parameters for the score distribution in each species

overlapping (see Figure 3.3). We have next hidden the node assignments, and used
our algorithm to infer these assignments. We repeated this process 10 times for
each set of score distributions.

Figure 3.3 presents the results of two of these experiments. As can be seen, by
relying on the graph structure we were able to improve the recovery of the true label
assignments when compared to label assignments that are based on a cutoffof the
score alone. As the separation between the two distributions became smaller the
difference between the two methods became more apparent. For the less separable
distributions our algorithm performed much better than the score only method by
relying more heavily on the distribution of the other species.

These results indicate that under the evolutionary assumptions we stated in
the introduction, our algorithm can improve the assignment of cycling genes and
correctly recover more such genes.

It is worth noting that exact inference in general graphs is a NP-hard problem.
Belief propagation is an efficient algorithm for approximate inference on graphs
with loops. As a result, in addition to the noise in microarray measurements, the
computed posterior probabilities are also affected by how good the approximation
is.
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Figure 3.3: Simulation results. 20% of the nodes were labeled with 1 and the
rest were labeled with 0. (a) Score distribution and (b) Recovery rate for a well
separated distribution. Both score based (dashed line) and graph based (solid line)
methods were able to correctly recover the node assignments. (c) Score distribution
and (d) Recovery rate for an overlapping score distribution. Note that while our
graph based method can still achieve good precision and recall the scorebased
method does significantly worse, especially for the higher recall rates (above 40%).

3.4.2 Identification of Cell Cycle Genes

To date, cell cycle expression was measured in more than six species. As men-
tioned above, the two most studied species are budding yeast and humans.Both
provide access to a number of different validation sets, and are thus useful for
comparison of our algorithm and score based methods.

We downloaded expression data from the corresponding websites for the bud-
ding yeast [Spellman et al., 1998] and human [Whitfield et al., 2002] cell cycle
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papers. All protein sequences for genes in these species were downloaded from
the NCBI ftp server (http://ftp.ncbi.nlm.nih.gov). We used BLASTALL [Altschul
et al., 1990] to score all pairs of genes in both species.

Identifying Cycling Human Genes

To test the success of our algorithm for the task of identifying cycling humangenes
we used the GO human annotations. Of the 7254 human genes in the dataset we
used, 498 were annotated by GO as cycling. We first ranked human genes using
expression scores and the naive method mentioned above. Next, we ranked them
using the posterior score computed by our algorithm.
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Figure 3.4: Identification of Human Cell Cycle Genes. The Y axis is the numberof
GO annotated human cell cycle genes in the top 1000 genes with highest posteriors.
Our method (solid line) performs better than the score only method (dashed line)
and the naive method for combining sequence and expression data (dottedline).
Specifically for lower score thresholds our method achieves an improvement of
over 20% over both other methods in terms of the number of accurately recovered
cell cycle genes.

Figure 3.4 presents the precision recall curve for GO annotated cycling genes
for the top ranked 1000 human genes. Based on the analysis in the originalpa-
per [Whitfield et al., 2002], roughly 1000 genes are determined to be cycling,
which is why we focus on the top 1000. As can be seen, all three methods perform
substantially better than a random ordering (dashed-dotted curve). Comparing our



46 Chapter 3. Cell Cycle Genes

method with a score based method we see that while at the very high expression
score (bottom left) we do slightly worse, overall, and in particular for lowerscores
our algorithm provides results that are superior to score based methods.Specifi-
cally, for the top 1000 genes our algorithm was able to recover23% more genes
(135 vs. 110) when compared to both, the score only method and the naive method
for combining sequence and expression data.

Note that while we relied on the GO list for this analysis, it is not complete.
It is possible that there are many cycling genes which are not on that list. Thus,
the recall rate is probably much higher than the one we report here. As wesaw in
Figure 3.2, there is substantial overlap between the expression score distributing of
genes annotated as cycling and genes those do not belong to this category, making
it hard for a score only method to identify a large set of cycling human genes. In
contrast, our graph based method was able to partially overcome this problemby
relying on the graph neighborhoods.

While our algorithm has achieved better performance, it also makes some er-
rors. We show one of the false negatives, budding yeast CDC5, in Figure 3.5. From
the expression time series, CDC5 is clearly a cycling gene. Its posterior probability
falls below the threshold because of non-cycling homologs in its graph neighbor-
hood. However, we should note that these cases are rare. For example, only two
obviously cycling genes are not included in our list cycling genes in budding yeast,
which means even if the false negatives is ten times the number, the false nega-
tive rate would still be less than3%. On the other hand, it is harder to determine
false positives because we don’t have a list of non-cycling genes. Weexpect false
positives would be less of a problem because our algorithm only elevates the pos-
terior of genes with at least a border line cyclic score. In fact, the rank of most
genes doesn’t change much when we compare the result from our algorithm with
the result based on cyclic scores alone (Figure 3.6).

Convergence of Loopy Belief Propagation

In general, belief propagation is not guaranteed to converge on a graph with loops.
Several sufficient conditions for the algorithm to converge to a unique fixed point
are known [Tatikonda and Jordan, 2002, Ihler et al., 2006, Mooij andKappen,
2007]. For example, one sufficient condition that guarantees the convergence of
Loopy belief propagation is

max
t

∑

u∈N(t)

log d(ψut) < 1 (3.3)
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Figure 3.5: Example of a false negative cycling gene. Budding yeast CDC5 is a
cycling gene, but was not recovered by our algorithm.

where

d2(ψts) = sup
a,b,c,d

ψts(a, b)

ψts(c, d)

is the dynamic range measure of potential functionψst. For our model, the dynamic
range measure of edge potential functionψst is simply exp{λwst}, wherewst is
the edge weight, andλ is a non-negative hyper-parameter controlling how much
a gene’s cycling status is affected by its homologs’ status. It can be seen that the
graph we construct from sequence similarity satisfies the sufficient condition when
λ is small (close to zero). Using condition in Eq 3.3, the algorithm is guaranteed to
converge on the graph for four species when0 ≤ λ <∼ 7.7× 10−6. However, this
condition is too conservative. Empirically, Loopy belief propagation converges on
this graph whenλ < 0.01, but may fail to converge with a largerλ. To put it into
perspective, theλwe learned and showed to improve prediction accuracy is around
0.0005, which is within the range where Loopy belief propagation converges.

Comparison with Graph Cut Algorithm

Graph Cut is another popular method for learning labels in Markov randomfields
[Boykov et al., 1998, 2001], which can use both labeled and unlabeled data [Blum
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Figure 3.6: Comparison of expression score ranks and posterior ranks. The ex-
pression score rank and posterior rank for budding yeast genes. The x-axis is the
expression score rank (the lower the rank the more cyclic the gene is determined to
be by the scoring method) and the y-axis is the rank based on our method (again,
the lower the better). As can be seen, the ranks for most of the genes do not change
much. The red dashed line represents the posterior threshold used to select cycling
genes, and the green dashed line is the corresponding threshold if only expression
scores are used. Almost all genes that are elevated by our method to a cyclic sta-
tus have a rather high cyclic expression score (though some are not as high as the
cutoff for score alone, which is where the two methods differ).

and Chawla, 2001]. Similar to belief propagation, Graph Cut is an approximate
inference algorithm that finds assignment of node labels that maximizes the likeli-
hood. It works by looking for a set of edges with minimal total weight (a minimum-
cut) that separates the positively labeled and negatively labeled nodes. After re-
moving the cut, an unlabeled node is assigned a positive (negative) label ifit is
reachable from a positive (negative) node.

Tappen and Freeman [2003] compare Graph Cut and belief propagationon
stereo vision problems, and in their study the results from both algorithms are com-
parable. Graph Cut is able to achieve lower energy on those problems thanbelief
propagation, but empirically it does not imply better performance in recovering the
ground truth. In another study by Mahamud [2006], the author shows belief prop-
agation can achieve better performance. It is interesting to see whether Graph Cut
can achieve better performance for our model. Both Graph Cut and beliefpropa-
gation are polynomial-time algorithms. Standard max-flow algorithms can be used
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to solve for th minimum-cut problem, and the worst case runtime complexity is
O(N3), whereN is the number of nodes in the graph [Boykov and Kolmogorov,
2004]. In contrast, the time complexity of belief propagation isO(TN), whereT
is the number of iteration to converge [Mahamud, 2006]. Empirical study shows
the speed of Graph Cut algorithms is efficient and comparable to belief propaga-
tion on vision problem where the Markov random field models are grid-structured.
However it is not clear how fast the two algorithms can run on our problem.

For comparison, we apply the standard max-flow algorithm [Ford and Fulk-
erson, 1956] to learn the human cell cycle genes, using budding yeast cell cycle
genes as labeled data. Because there is no labeled data for non-cycling genes, we
randomly choose10% genes from unlabeled genes to use as negative training data.
From the results, we can see the Graph Cut algorithm can achieve similar precision
and recall, but it runs much slower than the belief propagation algorithm.

Algorithm Recall Precision Time
Graph Cut 0.14 0.26 37 min

Belief Propagation 0.14 0.27 1 min 22 sec

Table 3.2: Comparison of Graph Cut and belief propagation.

3.4.3 Identification of Groups of Orthologous Cycling Genes

By incorporating information from sequence similarity, we are able to identify a
more consistent set of cycling genes. To further discover groups of orthologous
cycling genes across species, we apply the Markov clustering (MCL) algorithm
[Enright et al., 2002] to the graph of cycling genes. MCL has been shown to work
well in detecting protein families, and it can handle the presence of multi-domain
proteins in the graph. The resulting groups provide candidates for further conser-
vation analysis in the next section. At the same time, by looking at the graph neigh-
borhood represented by these groups, one can easily see the power of our algorithm
to recover cycling genes with relatively weak expression scores. One such graph
neighborhood is shown in Figure 3.7. Fission yeast nda3, a microtubule compo-
nent, is a known cell cycle gene [Javerzat et al., 1996] . On the top of Figure 3.7 we
plot the graph neighborhood of nda3. As can be seen, it contains many known cy-
cling genes from the four species. On the bottom we plot the expression ofnda3 in
8 different fission yeast cell cycle datasets. As can be seen, in at least some of these
conditions nda3 seems to be cycling (the right panel). However, either because its
expression levels are low in the other experiments or because of other experimental
problems, it does not seem to be cycling in the other conditions. Using expression
data alone, we would not assign a cyclic status to this gene. However, because of
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its medium expression score and its strong neighborhood score, our algorithm was
able to correctly determine that it is a cycling fission yeast gene.

Figure 3.7: Microtubule component clique and expression profiles for fission yeast
Nda3 in eight experiments [Rustici et al., 2004, Oliva et al., 2005, Peng etal.,
2005]. Nda3, a known cell division gene [Javerzat et al., 1996], obtains a high
cycling score but is not one of the 600 top cycling fission genes based onexpres-
sion analysis. Using our method its score is correctly elevated due to its sequence
similarity to high scoring genes.

3.5 Biological Analysis of Conserved Cycling Genes

We applied our algorithm to the expression time series of budding yeast, fission
yeast,Arabidopsis, and humans, using data from [Spellman et al., 1998, Rustici
et al., 2004, Menges et al., 2002, Whitfield et al., 2002]. After obtaining thelists
of cycling genes in each species, we divided them into several groups based on



3.5. Biological Analysis of Conserved Cycling Genes 51

whether a gene is specific to only one species, or is conserved in two, three, or all
of the four species.

We compare conserved cycling genes with species-specific cycling genes, as
well as the existing lists of cycling genes. In the following discussion, we denote
the set of human cycling genes conserved in all four species by CCC4human and
those conserved in three species (humans and the two yeasts) by CCC3human, etc.

3.5.1 GO Analysis of Conserved Cell Cycle Genes

The CCC3 list gives us our first look at the conserved core of periodically tran-
scribed genes across evolution. Even though CCC3 contains relatively few genes
(0.4% to 1.3% of the total number of genes for each species) many of these genes
play a role in key processes required for growth. Using the enrichment analy-
sis tool (GenGO) developed in Chapter 2, we identified categories that were en-
riched in this set. For budding yeast these categories include “mitotic cell cycle”
(p-value =4 ∗ 10−17), “DNA replication” (p-value =2 ∗ 10−13) and “chromatin
assembly/disassembly” (p-value =3 ∗ 10−12). Similar enrichments were found for
human conserved cycling genes and for fission yeast. For example, “mitoticcell
cycle” (p-value =3 ∗ 10−15), DNA replication (p-value =1 ∗ 10−14), and “spindle
organization and biogenesis” (p-value =1∗10−7) are enriched in humans, and cell
cycle (p-value =10−9), “chromatin assembly/disassembly” (p-value =10−9) are
enriched in fission yeast.

3.5.2 Interaction between Cycling Yeast Genes and Key Transcription
Factors

In eukaryotic cells, gene expression is regulated by transcription factors, a large
class of proteins that are able to bind to DNA. For some species, researchers have
found transcription factors that play an important role in regulating periodicgene
expression. As a result, cycling genes are more likely to be regulated by these
transcription factors. We used a dataset for protein-DNA binding [Harbison et al.,
2004] to compare our budding yeast results with the original list of Spellmanet al
which was based on score alone. We extracted the binding information (p-value<
0.005) for the nine transcription factors that have been previously shown to play
key roles in regulating cell cycle progression [Simon et al., 2001] (Figure3.8 (a)).
We found 2.5% more interactions between these nine TFs and the top 800 genes
on our list when compared with the Spellman list (621 vs. 606, note that a gene
could be counted multiple times if more than one TF interacts with it). We also
tried the binding information with a stricter p-value (< 0.001), where our method
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also found slightly more interactions (477 vs. 474). While this improvement is far
less dramatic than the results presented for the human data, it still implies that our
method can improve cell cycle assignment even for high quality datasets, like the
yeast cell cycle expression data [Wichert et al., 2004].

We also compared the DNA-protein interaction between the cycling genes and
two human transcription factors known to involved in cell cycle control [Renet al.,
2002] (Figure 3.8 (b)). In both cases, the percentage of genes bound by the tran-
scription factors is significantly higher for the conserved list than for the list in
Whitfield et al. [2002], and both are higher than the human-specific list.

3.5.3 Gene Expression in G0 Phase or Developmental Arrest

In contrast to normal dividing cells, cells in G0 phase do not grow or divide. In
this phase, genes that are part of the cell cycle machinery are probablyexpressed
at a lower level or not expressed at all. We use the data in [Gasch et al., 2000] to
test this idea. As we show in Figure 3.8 (c), after entering G0 phase, the average
expression level of conserved cycling genes becomes significantly lower than that
of the budding yeast specific genes, while the list in [Spellman et al., 1998] lies
somewhere in between. This finding supports the view that the core cell cycle ma-
chinery enters a low activity state while species-specific cycling genes participate
in other pathways, e.g. metabolic pathways, necessary for maintaining the living
state. It is also possible that the latter genes are responsible for reactivating the
core cell cycle machinery to enter the mitotic cell cycle again.

ForArabidopsis, we test the similar idea using expression data in anArabidop-
sis mutant whose flowers enter developmental arrest following stage 12 [Nagpal
et al., 2005] (Figure 3.8 (d)). The cells in the stem of the mutant are used asthe
control. It can be seen, following the developmental arrest, the averageexpression
level of conserved cycling genes goes down while it remains the same in normal
dividing cells in the stem.

3.5.4 Protein-Protein Interactions Between Cycling Genes

We further show that there are much more protein-protein interactions amongcon-
served cycling genes than average cycling genes, and so they are morelikely to
work together in a few modules than spreading over a large set of modules.We use
large scale protein-protein interaction data sets in [Gavin et al., 2006, Krogan et al.,
2006] for budding yeast and data in [Rual et al., 2005] for human cells.To gen-
erate an empirical distribution of interaction numbers, we randomly draw subsets
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Figure 3.8: (a) shows the number of interactions between budding yeast cycling
genes with nine key transcription factors involved in cell cycle control [Harbison
et al., 2004]. Our list of cycling genes has slightly higher number of bindingthan
those in [Spellman et al., 1998]. (b) shows the percentage of cycling humangenes
bound by two cell cycle transcription factors [Ren et al., 2002]. Conserved cycling
genes have a significant higher percentage of bindings than that in [Whitfield et al.,
2002], which is in turn higher than that in human specific cycling genes. (c)shows
the average expression level of cycling budding yeast genes in phaseG0 [Gasch
et al., 2000]. Conserved cycling genes have significant lower average expression
level than those in Spellman et al., while budding yeast specific cycling geneshave
a higher expression level. (d) Flower cells of Arabidopsisarf-6 arf-8 mutant show
developmental arrest at stage 12, while cells in stem are normal [Nagpal et al.,
2005]. We compare the average expression level of conserved cycling genes and
those in [Menges et al., 2002]. The conserved genes have a lower expression level
during developmental arrest. (e), (f), and (g) show the number of protein protein
interactions between conserved cycling genes, comparing with the number of in-
teractions within a random set of cycling genes [Gavin et al., 2006, Krogan et al.,
2006, Rual et al., 2005]
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from the list of all cycling genes, and count the number of interactions withineach
subset. It can be seen, for budding yeast there are significantly more interactions
between the conserved set (Figure 3.8 (e) and (f)). While the interactions among
conserved human genes are not as significantly enriched (Figure 3.8 (g)), we note
that there are much fewer interactions in the human data set and there might be
more unknown interactions.

3.5.5 Gene Expression in Human Normal Tissues and Cancer Cell
Lines

We compared the average gene expression level in human normal tissues,where
most cells have stopped growing. We used the data set in Shyamsundar et al.
[2005], and tested the significance of differences by t-test. For all tissues in the
data set, we find that the expression of conserved cycling genes is lowerthan that of
human-specific cycling genes, and genes in Whitfield et al. [2002] lies somewhere
in between. In 22 out of 36 tissues the difference between the conserved set and
genes in [Whitfield et al., 2002] is significant (p-value≤ 0.05), and the difference
between the latter and human-specific genes is significant in almost all tissues(33
out of 36, p-value≤ 0.05) (Figure 3.9 (a), (b)).

In contrast to cells in normal tissues, cancer cells usually divide aggressively
and cell cycle regulated genes are expected to be expressed in higher levels. We
used data for two colon cancer cell lines from Provenzani et al. [2006] and found
conserved genes are indeed expressed in higher levels than those in Whitfield et al.
[2002]. We have found further support when comparing expressionlevels of an
asynchronous cell population where cells are dividing, and that of human cells in
G0 phase, where cells have stopped growing. (Figure 3.9 (d)). The expression level
of the conserved set is high in the former and dips in the latter population, which
makes it a better indicator of the cell cycle state of the population.

3.5.6 Percentage of Conserved Cycling Genes

Figure 3.10 presents the number of conserved genes for the differentevolutionary
distances represented in our datasets. About 21% of the budding and fission yeast
cycling genes reside in cliques containing genes from these two species (CCC2).
When adding human genes, roughly 10% of cycling yeast genes and 8% of cy-
cling human genes are included in such cliques (CCC3). Finally, between 5%
and 7% of cycling genes in all four species are conserved in sequenceand expres-
sion (CCC4). We note that although our original sequence similarity criterionwas
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Figure 3.9: (a) and (b) show the average expression levels of cycling genes in nor-
mal human tissues [Shyamsundar et al., 2005]. In all cases, conservedcycling
genes have significant lower expression levels than human-specific cycling genes.
(c) shows the average expression level in two colon cancer cell lines [Provenzani
et al., 2006]. Conserved cycling genes have a higher average expression level than
those in [Whitfield et al., 2002]. (d) shows the average expression levelsin asyn-
chronous cell population and the G0 phase [Cam et al., 2004].
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based on BLAST e-values, following the clique analysis the resulting sets are in
very good agreement with curated homology databases Penkett et al. [2006]. For
example, 82% of budding yeast genes in CCC2 have a curated fission yeast ho-
molog in CCC2. Similarly, 82% of fission yeast genes in CCC2 have a curated
budding yeast homolog in CCC2.

Figure 3.10: Conservation of cycling genes: percentage of conserved cycling genes
in the four species.

3.5.7 Motif Analysis for Budding and Fission Yeast Genes

To further validate our findings of a large overlap between the cycling genes in the
two yeast species, we turned to motif analysis. Several transcription factors are
conserved between budding and fission yeast [Bähler, 2005]. A possible explana-
tion for expression conservation (or lack thereof) is in the conservation(or lack of
conservation) of a binding motif for these cycling genes.

We started by looking at genes bound by the budding yeast factor Swi6, which
regulates transcription at the G1/S transition [Breeden and Nasmyth, 1987]. We ex-
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tracted three lists for this factor. The first, denoted BY6, contained cyclingbudding
yeast genes in CCC2 determined to be bound by Swi6 [Harbison et al., 2004]. The
second list, denoted FY6C, contained fission yeast genes that both werein CCC2
and had homologs in BY6. These genes were determined to be cycling and con-
served by our method. The third list (FY6NC) contained non-cycling fission yeast
genes with cycling budding yeast homologs bound by Swi6. This latter list serves
as a negative control because it contains genes that have lost their cycling status be-
tween the two species. Four motif finders were run on each dataset; SOMBRERO
[Mahony et al., 2005b,a], BioProspector [Liu et al., 2001], Consensus[Hertz et al.,
1990], and AlignACE [Roth et al., 1998] (see Materials and methods, below, for
details). All four motif finding algorithms were able to identify the Swi6 motif in
BY6 and FY6C, indicating that this motif is conserved between the two species,
at least for some of the conserved cycling genes. In sharp contrast, none of these
motif finders was able to identify the Swi6 motif in the upstream regions of genes
in FY6NC.

We have extended the motif analysis discussed above to study ten additional
transcription factors that were determined to play a key role in regulating cycling
genes in budding yeast [Pramila et al., 2006, Simon et al., 2001]. For eachof these
factors we extracted all cycling budding yeast genes determined to be bound by
this factor [Harbison et al., 2004] and their fission yeast homologs. As wedid for
Swi6, we further divided the fission yeast genes into two sets; the first contains
fission yeast genes in CCC2 and the second (a negative control list) contains non-
cycling fission yeast homologs of cycling budding yeast genes. Next, weran the
four motif finders on each dataset.

The results are presented in Table3.3. Here we report on the number of motif
finders that identified the correct motif for each factor and on the percentage of
genes in the set that contained this motif. Similar to the results obtained for Swi6,
the other two G1/S factors, namely Swi4 and Mbp1, exhibit the optimal motif
conservation pattern; the expected motifs are found in both the fission yeast cell
cycle genes and the positive control of conserved budding yeast cellcycle genes,
but are not found in the negative control set of non-cycling fission yeast genes. For
G2/M, the Fkh2 sets display similar, although less significant, pattern (two of four
motif finders identified the correct motif for the cycling set). However, Fkh1and
Fkh2 motifs also appear, although less strongly, in the negative control sets. In
total, FKH-like motifs are present in eight of the 11 negative control datasets. The
M/G1 phase analysis is complicated by small dataset size. This may result from
the lack of conservation between the two species for this phase [Bähler, 2005]. As
a result, motif match for this set is either weak (Swi5) or nonexistent (Mcm1 and
Yox1).
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Budding
yeast
phase

Transcription
factor

Fission
yeast
cell

cycle
genes

Negative
control

(fission yeast
non-cell-cycle

genes)

Positive
control

(conserved
budding

yeast
cell-cycle

genes)

Extended
positive
control

(all
budding

yeast
CC genes)

G1/S Swi4 4 0 4 4
Swi6 4 0 4 4
Mbp1 4 0 4 4

G2/M Fkh1 0 2 1 3
Fkh2 2 2 1 2
Ndd1 0 0 4 4

M/G1 Mcm1a 0 0 3 4
Ace2 4b 0 0b 4
Swi5 ∼ 2b 0 ∼ 2b 1
Yox1 0b 0b 3b 3
Yhp1 0b 0b 1b ∼ 1b

Table 3.3: Motif analysis of the conserved cycling genes in budding and fission
yeast. For each set and each factor we list the number of motif finders (up tofour)
that identified the correct motif. Each motif finder often recovers multiple correct
motifs, and each motif is associated with a list of predicted instances in promoter
regions. We report the percentage of promoters that contain instances predicted by
at least one-third of the correct motifs. The first and third columns are theCCC2
genes in budding and fission yeast, respectively. The second column is non-cycling
fission yeast genes with homologous cycling budding yeast genes. See Additional
data file 3 for further details.a Mcm1 regulates genes in G2/M and M/G1.b These
datasets contain ten genes or fewer.∼, weak matches to the known motif.

3.5.8 Essentiality of Conserved Cycling Genes

Finally, we show that conserved cycling genes are more likely to be essential genes,
without which the cell is unable to survive or to proceed through the cell cycle
normally. We carry out the analysis on both budding yeast and human cells.
Percentage of essential budding yeast genes. For budding yeast, we use the
knockout data from theSaccharomycesGenome Deletion Project consortium [Winzeler
et al., 1999]. We compared several sets, including the set of all cycling genes, the
set of conserved cycling genes, and the set of cycling genes with homologs (re-
gardless of cycling or not) in other species. The last set is chosen to show how
much information we can gain by incorporating microarray expression data.It can
be seen that the set of cycling genes conserved in four species (CCC4) has the
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highest percentage of essential genes (41.2%), much higher than any other sets in
the comparison (Figure 3.11).
Percentage of essential human genes. For humans, we base our analysis on large-
scale RNAi knock-down experiments [Mukherji et al., 2006]. In their study, each
of the24, 373 predicted human genes were knocked down, covering> 95% of all
protein-coding genes in the human genome. Analysis of the resulting cells shows
that depletion of1, 152 genes strongly affects the normal progression of the cell
cycle. We use this list of essential genes, and carry out the same analysisas we did
in the budding yeast. As we can see in Figure 3.11, the sets of conserved cycling
genes again have the highest percentage of essential genes (15.7% for CCC3 and
17.3% for CCC4). In contrast, the full set of cycling genes has similar percentage
of essential genes to a random set of genes of the same size. Combining expression
data and sequence data in a naive way only slightly increases the percentage of
essential genes to9.8%.

Together we show that, by combining sequence data and microarray expression
data, we are able to identify a more coherent set of cycling genes.

3.6 Summary

By combining information from sequence and expression, we were able to identify
a large set of genes as conserved in both sequence and cycling status between four
different species: budding yeast, fission yeast, humans, and Arabidopsis.

A number of previous studies comparing cycling gene lists derived indepen-
dently for each species concluded that only a small number of genes are conserved
between these species. For example, Rustici et al. [2004] concluded that only 5%
to 10% of cycling budding yeast genes have a cycling homolog in fission yeast.
Jensen et al. [2006] identified only five orthologous groups to be conserved be-
tween the four species (about1% of the cycling genes). However, due to experi-
mental noise and difference in computing cyclic scores, direct comparisonof lists
cycling genes across species will significantly underestimate the number of con-
served cycling genes.

Our results are strongly supported by additional analyses. We show thatcycling
genes conserved in multiple species have much stronger cell cycle characteristics
than the full list for each single species. There are also extensive interactions within
the set of conserved cycling genes, and almost half of the CCC4 yeast genes are
essential. These observations and GO analysis indicates that these genescompose
a crucial part of the cell cycle system. Together, these findings support our claim
that we have derived a core conserved set of cycling genes.
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Figure 3.11: The importance of the core cycling genes. (a) Percentage of essential
genes in different sets of budding yeast genes [Winzeler et al., 1999]. Although
18% of budding yeast genes are essential, only 15% of cycling genes are essential.
Our analysis resolves this apparent contradiction by showing that the conserved
cycling genes lists contain a much higher percentage of essential genes (35% and
46% for CCC3 and CCC4). Sequence alone cannot account for this high percent-
age (27%), indicating the importance of the combined analysis. (b) Similar analy-
sis for the human lists using data from RNA interference knockdown experiments
[Mukherji et al., 2006].



Chapter 4

Comparative Study of Gene
Expression Regulation in
Immune Response

4.1 Overview

4.1.1 The Immune System

Functions and components of the immune system.Most multicellular organisms
rely on their immune system to defend against the infection from a multitude of
pathogens. In addition, the immune system is also responsible for removing dead
cells, tumor cells, or cells infected by pathogens. There are two componentsof
the immune system, namely the innate immune system and the adaptive immune
system. The innate immune system is believed to be evolutionarily older and it
exists in organisms from plants to humans. In contrast, the adaptive immune system
only exists in vertebrates.

The immune system comprises of many types of cells, including macrophages,
dendritic cells, neutrophils, natural killer cells, B-cells, T-cells, and they play dif-
ferent roles in the immune response. To understand how these cells collaborate to
fend off pathogens of great diversity, we first need to know how theyreact differ-
ently to infections.

Gene expression in immune response depends on the types of the host cell
and bacteria. After encountering pathogens, some of the host genes may be dif-
ferentially expressed. Such changes in expression may have different patterns over
a time course. Some genes may be induced, and some others may be repressed
in response to the infection. The response pattern of a gene depends onthe host
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(a) (b)

Figure 4.1: (a) A macrophage and (b) a dendritic cell. (source: Wikipedia)

cell type in which the gene is expressed. This cell-type specific gene expression
pattern enables different immune cells to carry out different functions in the im-
mune response . The host immune response also varies greatly dependingon the
type of pathogens that trigger the response. The host cells may activate very differ-
ent pathways when challenged by Gram-negative and Gram-positive bacteria. As
another example, it has been known that some bacteria will induce very different
host response if one of the bacterial genes is switched off [McCaffrey et al., 2004].
Other complicating factors include the susceptibility of the host and whether host
cells have been exposed to interferon.

4.1.2 Application of Microarrays in Immunology

There have been many studies using microarrays to compare immune gene expres-
sion programs under different conditions. For example, Huang et al. [2001] com-
pared the gene expressions in human dendritic cells infected by various pathogens
and derived both a common set and pathogen-specific sets of differentially ex-
pressed genes. Boldrick et al. [2002] carried out similar studies on human macrophages,
and they also studied the effect of different doses. Chaussabel et al. [2003] identi-
fied a set of commonly expressed genes in both human macrophages and dendritic
cells, as well as genes uniquely expressed in one the of two cell types. Inaddition,
there are studies comparing the effect of hosts factors and bacterial virulence on
the gene expression profiles [Hoffmann et al., 2004, van Erp et al., 2006].
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In all these studies, genes are ranked according to a score, e.g. fold-change,
and a set of differentially expressed genes is selected using an arbitrary threshold,
e.g. ranging from 2-fold change to 3-fold change. Genes in this set may be further
clustered into groups, and a few genes are selected for further study.While this
approach has already generated many interesting results, it may have missed genes
that play an important role in immune response if they just fall below the thresh-
old. This problem is especially important because microarray data are usually very
noisy.

4.1.3 Comparative Study of the Immune System

Conservation of the immune system. There is considerable conservation of the
immune system at the genomic level between different species, especially genes
related to the innate immune response. For example, toll-like receptors, a ma-
jor class of pattern recognition proteins, are found to be highly conserved across
all species [Aderem and Ulevitch, 2000]. It is interesting to find out how much
of the immune system is conserved during evolution by comparative study across
species. At the same time, this conservation provides us with correlation infor-
mation between species, which can be used to better interpret noisy experimental
results.

Identifying Immune Response Genes by Combining Data from Multiple
Species.Microarray expression experiments that study immune response to bac-
teria infection can be divided along several lines. Here we focus on three such
divisions: Cell type, bacteria type and host species.

Innate immunity is the result of the collective responses of different immune
cells, which are differentiated from multipotential hematopoietic stem cells [Keller
and Snodgrass, 1990]. To understand the roles of and possible interplays between
different types of immune cells, it is important to identify both the common re-
sponses of different immune cells, as well as responses unique to a certain cell type.
Identification of genes differentially expressed in macrophages but notin dendritic
cells, and vice versa, may highlight their specific functions and help us understand
mechanisms leading to their different immune response roles. In addition to the
different cells, specific bacteria types are known to trigger very different innate
immune responses [Nau et al., 2002]. Specifically, response to Gram-positive and
Gram-negative bacteria is activated by different membrane receptors that recognize
molecules associated with these bacteria. Finally, many of the key components
in the innate immune system are highly conserved [Hoffmann et al., 1999]. For
example, the structure of Toll-like receptors (TLRs), a class of membrane recep-
tors that recognizes molecules associated with bacteria, is highly conserved from
Drosophila to mammals. It is less known though to what extent the immune re-
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sponse program is conserved and what other genes play a role in this conserved
response.

While each of these subsets of experiments (macrophages vs. dendritic, human
vs. mouse etc.) can be analyzed separately using ranking methods and thencom-
pared to each other, due to noise in gene expression data methods that relyon a
score cutoff become much less reliable for genes closer to the threshold [Lu et al.,
2007]. Thus, analyzing responses to different pathogens and then comparing the
lists derived for each experiment may not identify a comprehensive list ofimmune
response genes. Similarly, while comparing the expression changes triggered by
similar bacteria in human and mouse may lead to the identification of conserved
immune response patterns, direct comparison of these profiles across experiments
is sensitive to noise and orthology assignments, leading to unreliable results and
underestimation of conservation [Lu et al., 2007].

It is therefore desirable to combine microarray gene expression datasetsfrom
different studies to overcome noise in the datasets and jointly infer genes thatare
involved in immune response. In Chapter 3 we have combined expression datasets
from four species to identify conserved cell cycle genes. The underlying idea is
that pairs of orthologous genes are more likely than random pairs of genes to be
involved in the same cellular system. Thus, if one of the genes in the pair has a
high microarray expression score while the other has a medium score, we can use
the high scoring gene to elevate our belief in its ortholog, and vice versa. Our
method in Chapter 3 used discrete Markov random fields to construct a homology
graph between genes in different species. Next, we developed a beliefpropagation
algorithm to propagate information across species allowing orthologous genes to
be analyzed concurrently.

Here we extend this method in several ways so that it can be applied to ana-
lyzing immune response data. Unlike the cell cycle, which we assumed workedin
a similar way in all cell types of a specific species, here we are interested in both
common responses and distinguishing responses for each dividing factor. This re-
quires a different analysis of the posterior values assigned to nodes in the graph. In
addition, for the immune response analysis, genes are represented multiple times
in the graph (once for each cell and bacteria type) leading to a new graphtopol-
ogy. We are also interested in multiple labels for immune response (up, down, not
changing) compared to the binary labels we used for cell cycle analysis (cycling
or not). Finally, we use a Gaussian random field instead of a discrete Markov ran-
dom field. Instead of simply connecting genes with high sequence similarity, the
edges in the graph are determined in a novel way that enables us to better utilize
the information contained in sequence homology, leading to improved prediction
performance.

In the following sections, we will introduce our model for integration of inho-
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mogeneous immune response datasets.

4.2 The Model

We formulate the problem of identifying immune response genes using probabilis-
tic similarity network models. In particular, we use Gaussian random fields (GRFs)
to model the assignment of gene labels. Gaussian random fields are a special type
of Markov random fields. In a GRF, every node follows a normal distribution, and
all nodes jointly follow a multivariate normal distribution.

There are two types of nodes in our graphical model (Figure 4.2). The first
type is a gene node; it represents the status of a gene in a certain cell type,from a
certain host species, in response to a certain type of pathogen. Here weconsider
two cell types (macrophages and dendritic cells), two host species (humans and
mice), and two pathogen types (Gram-negative and Gram-positive bacteria). The
number of gene statuses can be either two (involved in immune response or not), or
three (suppressed, induced, or unchanged during immune response). For simplic-
ity, we will describe our model using two gene classes, but will present theresults
based on both two and three classes in the Results section. Correspondingto each
gene node is also a score node, representing the observation of expression of the
corresponding gene. Together, the GRF jointly models the statuses of all genes in
all cell types, all species, and under both types of infection conditions.

The edges in the GRF represent the conditional dependencies between statuses
of genes. We put an edge between two gene nodes when they area priori more
likely to have the same status than otherwise. Specifically, there are two cases
where we add an edge. In the first case, for each gene node in the graph, we
connect it with another gene node if the two genes share high sequence similarity,
and the experiments related to both nodes are on the same cell type and bacteria
type. The assumption is that genes with similar sequence are more likely to have
similar functions in the same type of cells and under the infection of the same type
of bacteria. The edge potential function, defined on the edges, introduces a penalty
when two genes with high sequence similarity are assigned different statuses. In
the second case, we connect a gene node with another gene node if the two nodes
represent the same gene in the same type of cell (or infected by the same typeof
bacteria). Here we assume the genes are likely to function similarly in the same
type of cells, or under the same type of infection. Again, the potential function
penalizes the situation where a gene is assigned different status under different
conditions. The amount of penalty depends on the strength or weight attached to
the edge. Different edges may have different weights. The joint probability is
defined as the product of the node potential functions and edge potentialfunctions,
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Figure 4.2: Diagram of the Gaussian random field (GRF) model. (a) A subgraph
in the GRF containing homologous human and mouse genes. The white nodeh+

m

represents the (latent) status of the human geneh in macrophages under infection
of Gram-positive bacteria.h−m represents the genes status in macrophages under
infection of Gram-negative bacteria.h+

d andh−d represent the statuses of the same
genes in dendritic cells under the infection of Gram-positive or Gram-negative bac-
teria.m+

m,m−
m,m+

d , andm−
d are similarly defined for the homologous mouse gene

m. Two white nodes are connected by an edge if they represent the same gene in
two experiments, either on the same cell type or under the infection of the same
type of bacteria. We also connect two white nodes if they represent homologous
genes in the same cell type and under the infection of the same type of bacteria.
The black nodes represent the observation from the expression data ina certain cell
type and under the infection of the appropriate bacteria. They are connected with
the white nodes representing the corresponding genes under the same condition.
(b) A high level diagram of the GRF model. Each dotted box represents a sub-
graph of four nodes related to the same gene as those shown in (a), and each edge
represents four edges connecting the nodes of homologous genes in thetwo dotted
boxes, in the same way as shown in (a).

divided by a normalization function. We can infer the status of individual genes by
estimating the joint maximum a posteriori (MAP) assignment of all nodes.

4.2.1 Computing Weight Matrix

When assigning the edge weights, we employ a similar approach to the one in
Chapter 3, where we use a Markov random field to jointly model gene statuses in
multiple species. In that model, the edges in the graph are weighted by BLAST
[Altschul et al., 1990] scores between pairs of genes. Given two genes connected
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in the graph, the edge weight (BLAST bit score) represents the sequence similarity
between the two genes, which in turn captures thea priori dependency between
their statuses. However, in a Markov random field model, an edge represents the
dependency between the two nodes conditional on the statuses of all othernodes
[Bishop, 2006]. In contrast, sequence similarity is computed for a pair of genes
regardless of other genes. In other words, what a BLAST score captures is the
marginal dependency between the two genes’ statuses.

We address this discrepancy based on a connection between edge weights and
the covariance matrix of Gaussian random fields. The edge weights of a GRF
can be organized into a (symmetric) matrix, where each row (and each column)
corresponds to a node, and each element in the matrix is the weight on the edge
connecting the corresponding nodes. This weight matrix is the same as the inverse
of the covariance matrix of the GRF [Zhu, 2005].

Using this observation, we can build a similarity matrix based on BLAST
scores, and use its inverse as the weight matrix on the GRF. Each row (andeach
column) in the similarity matrix corresponds to a gene. If the BLAST bit score
between two genes is above a cutoff, we set the corresponding elements inthe sim-
ilarity matrix to that score. Otherwise, it’s set to zero. We use a stringent cutoff so
that we are fairly confident of the functional conservation when we adda non-zero
element.

Because the similarity matrix contains scores for all genes in two species, the
computational cost to invert it is very high. Instead, we compute an approximate
inverse. We first convert the whole matrix into a diagonal block matrix by Markov
clustering algorithm [Enright et al., 2002], then compute the approximate inverse
by inverting each block independently. The matrix inversion is done by Sparse
Approximate Inverse Preconditioner [Deshpande et al.].

Finally, we assign edge weights based on this inverse matrix. Note that each
gene is represented by four nodes in the graph, because it is presentin differ-
ent experiments on two cell types and two pathogen types. For edges connecting
gene nodes in the same cell type and pathogen type, we set the weight accord-
ing to the inverse similarity matrix. For edges connecting nodes that are identical
except for cell type, we use a single edge weight, a hyper-parameter. For edges
connecting nodes that are identical except for pathogen type, we use yet another
hyper-parameter.

4.2.2 Expression Score Distribution

The gene expression score is a numeric summary computed from the gene’smi-
croarray time series. We assume that for each gene population (in the caseof two
gene classes: involved in immune response or not; in the case of three geneclasses:
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induced, suppressed, or unchanged during immune response) the scores follow a
Gaussian distribution with its own mean and variance. Due to the simplicity of
the model and noise in the microarray experiments, the Gaussian distributions are
highly overlapped, which makes them hard to separate by expression score alone
[Lu et al., 2006].

4.2.3 Node Potential Function

The node potential functions capture information from gene expression data. For
each genei, let Ci denote its (hidden) status,Si denote its expression score,yi

denote the random variable in the GRF associated with the gene.Ci can be a
binary variable if we consider two gene classes (involved in immune response or
not), or a ternary variable if we consider three gene classes (induced,suppressed, or
unchanged).Si andyi are both real variables. Because eachyi follows a (different)
normal distribution, we need to have a way to link a gene’s probability of belonging
to each class with the corresponding normal distribution. This is achieved bythe
probit link function. Take two gene classes for example. Letpi be the probability
of genei being involved in immune response conditional on its expression score
Si,

pi = Pr(Ci = 1|Si) =
Pr(Si|Ci = 1)

Pr(Si|Ci = 1)Pr(Ci = 1) + Pr(Si|Ci = 0)Pr(Ci = 0)

The node potential function is defined as

ψ(yi) = φ(yi|µ = Φ−1(pi), σ
2 = 1) (4.1)

whereφ(yi|µ, σ
2) is the probability density function for the normal distribution

with meanµ and varianceσ2, andΦ−1(x) is the probit function, i.e. the inverse cu-
mulative distribution function for the standard normal distribution. In other words,
the information from a gene’s expression score is encoded by a normal distribution
of yi such thatpi = Pr(yi > 0).

In the case of three gene classes(Ci ∈ {−1, 0,+1}), we can use the following
formulas to link the probabilities ofCi andyi:

Pr(Ci = 1|Si) =Pr(yi > 1) (4.2)

Pr(Ci = −1|Si) =Pr(yi ≤ −1) (4.3)

Pr(Ci = 0|Si) =Pr(−1 < yi ≤ 1) (4.4)
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It can be proved that given any (non-zero) probability mass function onCi, we
can find a normal distributionN(µ, σ2) such that these formulas are satisfied when
yi ∼ N(µ, σ2).

4.2.4 Edge Potential Function

The edge potential functions capture the conditional dependencies between pairs
of gene nodes. The assumptions here are that (1) genes with higher sequence simi-
larity are more likely than otherwise to have the same or similar functions; and (2)
a given gene is more likely than otherwise to have the same function across cell
types and across pathogens.

First we will define the edge potential functions for edges connecting genes
in the same cell type and under infection of the same type of bacteria. In this
case, the edge potential function depends on the weight matrix we introduced in
Section 4.2.1. Note that although all elements in the BLAST score matrix are non-
negative (sequence similarities are non-negative), its inverse matrix may have neg-
ative elements. As a consequence, edge weights can be either positive ornegative.
A positive edge weight means the statuses of the two gene nodes are positively cor-
related, conditional on the status of all other gene nodes. A negative edge weight
means they are negatively correlated, conditional on all other gene nodes.

The following edge potential function captures this dependency (λ0 is a posi-
tive hyperparameter):

ψ0(yi, yj) =

{

exp{−λ0|wij |(yi − yj)
2} if wij ≥ 0

exp{−λ0|wij |(yi + yj)
2} if wij < 0

When the edge weightwij is positive, the edge potential function places a
penalty ifyi andyj are different. The larger the difference, the higher the penalty.
Likewise, whenwij is negative, the edge potential function introduces a penalty
based on how closeyi andyj are to each other. The penalty becomes higher when
theyi andyj are closer.

For edges connecting the same gene in the same cell type but under infection
of different type of bacteria, the edge potential function is defined as

ψ1(yi, yj) = exp{−λ1(yi − yj)
2}

whereλ1 is a positive hyperparameter. Similarly for edges connecting the same
gene under the infection of the same type of bacteria but in different cell types, the
edge potential is defined as
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ψ2(yi, yj) = exp{−λ2(yi − yj)
2}

whereλ2 is a positive hyperparameter. Together, the joint likelihood function
is defined as

L =
1

Z

∏

ψ(yi)
∏

ψ0(yi, yj)
∏

ψ1(yi, yj)
∏

ψ2(yi, yj) (4.5)

4.3 Learning the Model Parameters

In this section we will present our algorithm based on two gene classes. The al-
gorithm can be extended to three gene classes by using different node potential
functions (See discussion in Section 4.2.3). We need to learn the parametersof the
expression score distributions for each combination of cell types, host species, and
pathogen types. In each case, there are four parameters(µ0, σ

2
0, µ1, σ

2
1), i.e. the

means and variances of the two different Gaussian distributions, one corresponding
to the scores of immune response genes, the other corresponding to the scores of
the remaining genes.

We learn these parameters in an iterative manner, by an EM-style algorithm.
We start from an initial guess of the parameters. Based on these parameters, we
infer “soft” posterior assignments of labels to the genes using a version ofthe
belief propagation algorithm on the GRF. The posterior assignments are in turn
used to update the score distribution parameters. We repeat the belief propagation
algorithm based on the new parameters to infer updated assignments of labels.
This procedure goes on iteratively until the parameters and the assignmentsdo not
change anymore.

4.3.1 Iterative Step 1: Inference by Belief Propagation

Given the model parameters, we want to compute the posterior marginal distribu-
tion for each latent variableyi, from which we can derive for each gene node the
posterior probability of being involved in immune response. It is hard to compute
the posteriors directly because the computational complexity of the normalization
function in the joint likelihood function scales exponentially. However, due tothe
dependency structure in the GRF, we can adapt the standard Belief Propagation
algorithm [Yedidia et al., 2003] for GRF, and use it to compute all the posteriors
efficiently. Unlike MRFs defined on discrete variables, variables in GRFs are con-
tinuous and follow normal distributions. The current estimation of the marginal
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posterior (“belief”) of every latent variableyi in the GRF is a normal distribution.
Similarly, the “messages” passed between nodes are also normal distributions.

The Belief Propagation algorithm consists of the following two steps: “mes-
sage passing”, where every node in the GRF passes its current belief toall its
neighbors, and “belief update”, where every node updates its belief based on all
incoming messages. The algorithm starts from a random guess of the beliefsand
messages, and then repeats these two steps until the beliefs converge.

1. Message passing. In this step, every nodeyi computes a message for each
of its neighborsyj , sendingyi’s belief of yj ’s distribution. The message
is based on the potential functions, which represent local information (node
potential) and pairwise constraints (edge potential), as well as incoming mes-
sages from allyi’s neighbors exceptyj .

mij(yj)←

∫

yi

ψ(yi, yj)ψ(yi)
∏

k∈N(i)\j

mki(yi)

2. Belief update. Once nodeyi has received messages from all its neighbors,
it updates the current belief incorporating all these messages and the local
information from the node potential. The update rule is as follows

bi(yi)←
1

vi

ψ(yi)
∏

k∈N(i)

mki(yi)

wherevi is a normalization constant to makebi(yi) a proper distribution.

Because all the messages and beliefs are normal distributions, they can berep-
resented by the corresponding means and variances. More importantly, inthis case
the message update rule and belief update rule can be formulated into rules up-
dating the means and variances directly, thus avoiding computationally expensive
integration operations. The exact update rules are given in the appendix.

4.3.2 Iterative Step 2: Updating the Score Distribution

The posterior computed in step 1 is based on the current (theg’th iteration) estima-
tion of parameters, collectively denoted byΘ(g). The goal now is to determine the
parameters that maximize the expected log-likelihood of the complete data over the
observed expression scores given the parametersΘ(g) = (µ

(g)
0 , σ

(g)
0 , µ

(g)
1 , σ

(g)
1 ).

To update the parameters of the score distributions, we first compute the pos-
terior probability of a gene being involved in immune response, based on the pos-
terior ofyi. This is the same as applying the reverse probit function:
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Pr(Ci = 1|Θ(g)) =

∫ +∞

0
bi(yi)dyi

For simplicity, we use the following notations

p
(g)
i = Pr(Ci = 1|Θ(g)) q

(g)
i = Pr(Ci = 0|Θ(g))

The updated distribution parameters for a Gaussian mixture are computed by
standard rules
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4.4 Results

4.4.1 Immune Response Data

Immune response data. Immune response microarray experiments were retrieved
from supporting websites of [Detweiler et al., 2001, Chaussabel et al., 2003, Huang
et al., 2001, Lang et al., 2002, Hoffmann et al., 2004, van Erp et al., 2006, McCaf-
frey et al., 2004, Draper et al., 2006, Granucci et al., 2001], totaling 21 data sets.
The data sets include experiments on macrophages and dendritic cells in humans
and mice. For each cell type we have included experiments using Gram-positive
and Gram-negative bacteria, except for mouse dendritic cells, for whichwe only
found Gram-negative bacteria datasets. Human and mouse orthologs weredown-
loaded from Mouse Genome Database [Eppig et al., 2005]. Tables 4.1 and4.2
summarize the datasets used in this paper.
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Host/Cell Type Gram- Datasets Gram+ Datasets
Human Macrophages 4 2

Human Dendritic Cells 3 2
Mouse Macrophages 3 6

Mouse Dendritic Cells 1 0

Table 4.1: Summary of immune response datasets used.

Host/Cell Type Gram- Datasets Gram+ Datasets
Human Macrophages Samonella enterica Mycobacterium tuberculosis

subspeciestyphimurium
Human Dendritic Cells Escherichia coli Mycobacterium tuberculosis
Mouse Macrophages Lipopolysaccharide Listeria monocytogenes,

Group Bstreptococcus
Mouse Dendritic Cells Escherichia coli

Table 4.2: Summary of infectious agents used.

4.4.2 Computing Expression Scores

Computing expression scores. For each gene in each experiment, an expression
score is computed from the gene expression time series data. The score is based on
the slope of the time series to capture both the change in expression levels andthe
time between infection and response. Specifically, we first determine the signof
a gene’s score (si) by comparing the absolute values of the highest and the lowest
expression levels. The score is positive if the former is higher, or negative if the
latter is higher. Denote the time point that corresponds to the highest expression
level (in the former case) or to the lowest expression level (in the latter case) asti.
The score is computed as follows:Si = si ∗ expression(ti)/ti.

Due to different protocols being used and experimental noise, agreement be-
tween different datasets, even if done using the same type of cells and bacteria,
may sometimes be low . For example, the overlap between lists of fission yeast
cell cycle genes identified in three studies [Rustici et al., 2004, Oliva et al.,2005,
Peng et al., 2005] is on30%. Nevertheless, since each dataset contains new ob-
servation of the same underlying biological process, combining them may better
capture the biological truth. Here we want to combine scores from different exper-
iments on the same host cell type and bacteria type. For example, there are five
datasets where human macrophages were infected by Gram negative bacteria, and
we would like to combine the five scores for each gene into one.

To test for the consistency between the datasets to be combined, we define the
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Host/Cell Type Gram Consistency p-value
Human Macrophages + 0.577 < 0.001

Human Macrophages − 0.490 < 0.001

Human Dendritic Cells + 0.610 < 0.001

Human Dendritic Cells − 0.546 < 0.001

Mouse Macrophages + 0.466 < 0.001

Mouse Macrophages − 0.553 < 0.001

Table 4.3: Consistency between immune response datasets.

following measure

Consistency=
# of genes ranked in top 1000 in at leastmax{|D|/2, 2}datasets

1000

for each cell/bacteria type, where|D| is the number of datasets. We compare it to
the consistency of randomized data, and compute an empirical p-value (Table 4.3).
In each case, the consistency is significant with a p-value< 0.001.

4.4.3 Recovering Known Human Immune Response Genes

Recovering known human immune response genes. To evaluate the performance of
our model, we retrieved 642 human innate immune response genes from a database
[Kelley et al., 2005], and used them as the labeled data. We learned the model
parameters by three-fold cross validation using the labeled data. We compared
the performance of GRF, MRF, and the baseline model where genes are ranked by
their expression score alone. We use the fraction of known immune response genes
recovered by a model as the performance measure. Because the set ofimmune re-
sponse genes we used does not have labels indicating the cell types or infection
conditions, we treat a gene as “positive” regardless of the cell type andbacteria
type. For GRF and MRF models, the genes were ranked by their highest posterior
probability (in any of the cell or bacteria types). For the baseline model, the genes
are ranked by their expression scores. As we show in Figure 4.3, both GRF and
MRF models outperform the baseline model. These models are able to infer a bet-
ter gene’s posterior probability by transferring information between the same gene
across cell types or from homologous genes across species. At the threshold of top
10% genes, MRF is able to recover28% of known immune response genes, com-
pared with26% by the baseline model. Encouragingly, GRF leads to the biggest
improvement in performance. Of the top10% high scoring genes based on the
posterior computed by GRF,35% are known immune response genes, a34.6%
increase compared to the baseline (score only) model.



4.4. Results 75

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Known Innate Immune Genes Recovered

Fraction of Total Genes

F
ra

ct
io

n 
of

 Im
m

un
e 

G
en

es
 R

ec
ov

er
ed

GRF w/ inverse matrix
MRF
score−only
random

Figure 4.3: Performance comparison of the Gaussian random field (GRF)with im-
proved weights, the Markov random field (MRF), and the baseline model where
genes are ranked by their expression scores. Using MRF we were ableto recover
18% known immune genes in the top5% of ranked genes. This is a 28% im-
provement compared with the baseline model (which recovers 14% of the immune
genes). The GRF model is able to recover 25% known immune genes at the same
threshold, a 79% improvement over the baselyne method and a 38% improvement
over the MRF model.

4.4.4 Identification of Common Response Genes

Identification of common response genes by combined analysis. Based on the
learned posterior probabilities, we ranked the genes for each cell type ineach
species, for both Gram-positive and Gram-negative infections. We identified 57
ortholog pairs that are assigned high posterior in all cell types and infection types.
These genes are commonly induced by all bacteria in both macrophages andden-
dritic cells across the two species. We first compared our list with a separatelist of
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genes commonly induced in human macrophages by various bacteria. This latter
list was derived from expression experiments that were not included in our analy-
sis [Nau et al., 2002]. The results confirmed the lists we identified. The overlap
between the two lists was highly significant with a p-value =1.70×10−25 (p-value
computed using hypergeometric distribution).

We also compared our list with top 500 genes induced byMycobacterium tu-
berculosisin mouse bronchoalveolar lavage (BAL) cells. Usually BAL cells in-
clude a large portion of macrophages and some dendritic cells. Again, we saw
is a significant overlap between our list and the top induced genes in BAL cells
(p-value =1.50× 10−7).

To reveal the functions of the common response genes we carried out GOen-
richment analysis using STEM [Ernst and Bar-Joseph, 2006]. The enriched GO
categories include many common categories involved in immune responses, in-
cluding “immune response” (p-value=3.9 × 10−8), “inflammatory response” (p-
value=2.5×10−7), “cell-cell signaling” (p-value=1.1×10−6), “defense response”
(p-value=1.5× 10−6), and “response to stress” (p-value=2.4× 10−5).

Many of the classic players of innate immune activation and inflammation are
recovered. For example, TNF is a proinflammatory cytokine and stimulates the
acute phase reaction [Lukacs et al., 1995]. IL1 is an important mediator of in-
flammatory response and involved in cell proliferation, differentiation, andapop-
tosis [Mizutani et al., 1991, Bratt and Palmblad, 1997]. The list also includes
chemokines that recruit and activate leukocytes (CCL3, CCL4, CCL5, CXCL1)
[Wolpe et al., 1988] or attracts T-cells (CXCL9) [Valbuena et al., 2003].Also
important to the regulation of inflammation response is IL10, a well-known anti-
inflammatory molecule [Lammers et al., 2003]. In addition, ETS2, NFkB, and
JUNB are all very important transcription factors for inflammation. [Sun andAn-
dersson, 2002].

To identify the pathways involved in common immune response, we searched
for networks enriched by common response genes using Ingenuity Pathway Anal-
ysis (IngenuityR©Systems, www.ingenuity.com). One of such networks is shown
in Figure 4.4.

4.4.5 Immune Response Conserved in Specific Cell Types

Immune response conserved in specific cell types. In addition to genes commonly
induced across all dividing factors, we also identified genes that are differentially
expressed between the two cell types. We identified 127 genes that are highly in-
duced in dendritic cells in both bacteria types across human and mouse, but are
not induced in macrophages. Many of the genes are known to be associated with
functions of dendritic cells, especially the antigen processing and presentation. For
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Figure 4.4: One of the networks of genes commonly induced in both dendritic
cells and macrophages when infected by bacteria, in both human and mouse.The
network was constructed by Ingenuity Pathway Analysis (IngenuityR©Systems,
www.ingenuity.com). The gray-colored nodes are genes inferred to be expressed
at high levels in all cell types, regardless of the bacteria type or species.White-
colored nodes are genes interacting with commonly induced genes. Note the large
fraction of the pathway recovered by our method. Many known immune response
genes are present in this network. IL1 is an important mediator of inflammatory
response and involved in cell proliferation, differentiation, and apoptosis [Mizutani
et al., 1991, Bratt and Palmblad, 1997]. ETS2 is an important transcription factor
for inflammation. CCL3, CCL4, and CCL5 are chemokines that recruit and acti-
vate leukocytes [Wolpe et al., 1988]. The profiles for one of these genes, CCL5,
are shown in Figure 4.6
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Figure 4.5: One of the networks of genes strongly induced in dendritic cells
but less so, unchanged, or suppressed in macrophages. (The legend is the same
as in Figure4.4). The network was constructed by Ingenuity Pathway Analysis
(IngenuityR©Systems, www.ingenuity.com). The gray-colored nodes are genes in-
ferred to be expressed at high levels in both dendritic cells and macro-phages, re-
gardless of the bacteria type or species. White-colored nodes are genes interacting
with commonly induced genes. Many known immune response genes are present
in this network. CD86 is an essential co-stimulatory molecule that delivers this
second signal and is also a marker of dendritic cell maturation. TAP is involved
in the transportation of peptides generated by the proteosome from the cytosol to
endoplasmic reticulum, which is an important step in MHC class I antigen pre-
sentation, a major function of dendritic cells. The profiles of CD86 are shown in
Figure 4.7
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example, components of the proteosome are prominently represented in the genes
determined to be induced in dendritic cells. The proteosome is a multi-protein
complex responsible for cleaving cytosolic proteins and is a necessary first step
in MHC class I antigen presentation, a major function of dendritic cells. Peptides
generated by the proteosome are then transported from the cytosol to endoplasmic
reticulum by TAP, also represented in the gene list, where they are loaded on to
MHC I molecules. Once the peptide-MHC I complex is displayed on the DC sur-
face, the canonical class I pathway of antigen presentation is complete. Antigen
presentation by DC is also accomplished through the class II pathway and theDC-
specific gene list includes HLA-DRA, a human MHC II (class II) surfacemolecule.
In addition to peptide-MHC complexes, T cell activation during antigen presenta-
tion requires a second signal. CD86 is an essential co-stimulatory molecule that
delivers this second signal and is also a marker of dendritic cell maturation;CD86
is represented in the gene list. Also in the gene list enriched for expressionin den-
dritic cells are TNFSF9 and TNFSF4. These molecules are cytokines that play a
role in antigen presentation between dendritic cells and T lymphocytes. CD93 is
represented in the DC results. This molecule is involved in the phagocytosis of
apoptotic bodies. It is believed that phagocytosis of apoptotic bodies by dendritic
cells has important effects on tolerance.

We searched pathways enriched by these genes, and one of the enriched net-
works in shown below in Figure 4.5.

We have also identified 157 genes that are more likely to be induced in macrophages
than in dendritic cells. Among these genes, IFNGR1 is important for macrophages
to detect interferon-gamma (also known as type II interferon), a key activating cy-
tokine of macrophages. HMGB1 is believed to be involved in inflammation and
sepsis. It is a chromatin structural protein that is released from some cells as a cy-
tokine and is associated with fatal outcome from inflammation in sepsis. Another
interesting gene is ADAM12, which is from a family of proteinases that are likely
involved in tissue remodeling/wound healing by macrophages.

4.5 Summary

By combining expression experiments across species, cell types and bacteria type
we were able to obtain a core set of innate immune response genes. The setwe
identified contained many of the known key players in this response and alsoin-
cluded novel predictions. We have also identified the unique signature of macrophages
and dendritic cells leading to insights regarding the set of processes activated in
each of these cells type as part of the response.

While our method assumes that homologous genes share similar functions, it
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Figure 4.6: Expression profiles of CCL5 which was identified by our methodas
a common immune response gene. (a) and (b) are expression profiles forhuman
CCL5 in dendritic cells and macrophages during immune response. (c) and (d)
expression profiles for mouse CCL5 in dendritic cells and macrophages. The ex-
pression of both genes are strongly induced following infection.

is still sensitive to the observed expression profiles. Thus, if two homologsdisplay
different expression patterns they would be assigned to different cellor bacteria
types. Still, the reliance on homology is a very useful feature for most genes. As
we have shown, using this assumption we can drastically improve the ability of our
method to recover the correct set of genes.
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Figure 4.7: Expression profiles of CD86, a gene identified to be activatedonly in
dendritic cells. (a) and (b) are expression profiles for human CD86 in dendritic
cells and macrophages during immune response. (c) and (d) are expression pro-
files for mouse CD86 in dendritic cells and macrophages. For both species,the
expression of the gene is induced after infection in dendritic cells, but unchanged
in macrophages.
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Chapter 5

Conclusions and Future Work

In previous chapters, I have described the development of a generative model for
functional analysis of gene sets and two probabilistic models for combined analy-
sis of multi-species microarray data, and the application of the models to the cell
cycle and innate immune response gene expression programs. The resultsare sum-
marized in Section 5.1. In Section 5.2 I discuss some of the open problems and
extensions for future work.

5.1 Conclusions

With the growing amount of high-throughput biological data, modern biologyis
becoming more of a data-driven science. It is important to develop and apply
computational methods that can take full advantage of the available data. A crucial
issue is to integrate data of different types and from different sourcesfor better
analysis of biological systems.

5.1.1 Generative Model for Functional Analysis of Gene Sets

In this thesis, I have first presented an algorithm to incorporate the information
in Gene Ontology [Ashburner et al., 2000], including both annotations andthe
hierarchical structure of the ontology, for functional analysis of genesets. While
many tools have already been developed for the same task, our method, GenGO,
has the distinctive feature that it takes into account the full dependency structure
encoded in GO, and has shown dramatic performance improvements in some cases.

The method is based on a generative probabilistic model, where I assume that
the biological processes in a cell can have one of the two states, ‘active’or ‘inac-
tive’, and genes are activated by their associated biological processes. The algo-

83
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rithm then looks for a small set of active biological processes that can best explain
the set of observed genes. I compare GenGO with three other existing methods on
simulated gene sets, using both annotations on budding yeast and humans. The per-
formance of GenGO is close to perfect when the noise level is low, and still much
better than all other methods even with high level of noise. Finally, I apply GenGO
to the analysis of real data from a number of different experiments and species, and
shows that it is able to avoid much redundancy and accurately balance the set of
GO categories it returns, including both high level and specific categories.

5.1.2 Random Field Models for Analysis of Cross-Species Data

For cross species analysis, I have presented algorithms combining sequence data
and gene expression data from multiple species and cell types to study the underly-
ing gene expression program. As I have shown in different parts of thethesis, this
approach has led to better identification of the genes participating in the expression
programs.

For the cell cycle, I propose a Markov random field model that jointly mod-
els the cell cycle status of genes in multiple species. According to this model, a
gene is more likely to be a cycling gene if its cyclic (expression) score is higher.
Also, when two genes are similar in the sequence and one of them has a border-
line cyclic score, it is more likely to be a cycling gene if the other gene is a cycling
gene. The algorithm looks for the assignment of the cell-cycle statuses thatmax-
imizes the joint likelihood of all cyclic scores and sequence similarity. I compare
the performance of our method with the method that uses only expression data,
and show that our method is able to recover more known cycling genes. Forthe
innate immune response, I propose a Gaussian random field model, which models
the response status of genes in two cell types from two species, infected by a num-
ber of different bacteria. I show that the Gaussian random field model performs
better than the Markov random field model, as well as the method that uses only
expression data, in recovering known immune genes.

I have also presented methods to delineate the core components that are con-
served across species/cell types, as well as those belong to specific species/cell
types. For the cell cycle program, I am able to find a core set of conserved cycling
genes. I analyze the conserved cycling genes using a number of complementary
high-throughput datasets, and show that these genes have much stronger character-
istic of cell cycle regulation than the full list of cycling genes. I also comparethe
core set with the full set of cycling genes and show it has much higher percentage
of essential genes. For the immune response expression program, I identify sets
of genes with conserved response. For example, CCL5 is shown to be induced in
both dendritic cells and macrophages in both mouse and human. I also identify
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sets of genes that are specifically induced in one cell type, but not in the other, and
the differential induction is conserved between human and mouse. One example
is CD86, which is induced in dendritic cells in both human and mouse, but not in
macrophages.

While this thesis presents a number of computational tools for data integration,
there is still much work left in the area. In the following section I will talk about
some of the future directions.

5.2 Future Work

5.2.1 Biological Validation of Conserved Immune Response Genes

In Chapter 4 I have identified a few sets of genes that are conserved in the immune
response between two cell types and between human and mouse. To further vali-
date our results, we are planning to do more host-pathogen experiments. One idea
is to pick some bacterium previously not used in our study (Table 4.2), and study
the host immune response induced by it. It would be a good indicator of success if
the set of conserved response genes are induced by this new bacterium.

5.2.2 Extensions of GenGO

In Chapter 2, I propose a generative model, GenGO, for functional analysis of gene
sets. In the model, I assume that genes are in one of two states, either activeor in-
active. In other words, the state of a gene is assumed to be discrete. However, in
many cases the activity of a gene may be better modeled by a continuous variable.
For example, when profiling gene expression by microarrays, in addition toob-
serving which genes are up- or down-regulated, one also observes the magnitude
of the expression change, which is a continuous number. It would be a waste of
information if the measurement is discretized into just two classes.

Here I describe a possible way to extend the model to support continuous states.
The idea is to model a gene’s activity state by a continuous variable on[0, 1], and
assume an active biological process can “generate” the activity state of itsassoci-
ated genes, following a beta distribution. For genes not associated with anyactive
biological processes, their state follows another beta distribution. The betadistri-
bution is a continuous distribution on[0, 1] with two parameters. Its probability
density function can be either unimodal or bimodal, providing great modeling flex-
ibility. It is possible to determine the set of active biological processes by maxi-
mizing the likelihood of observed activity of all genes (normalized to within[0, 1])
over all possible sets of GO categories.
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Another possible extension is to regularize the objective function using struc-
tural information of the GO hierarchy. In our current model, the likelihood func-
tion is penalized by the number of active GO categories. An interpretation of this
penalty term is it corresponds to the prior probability of a set of GO categories
being active. However, this formulation ignores the relation between GO cate-
gories. There are several possible ways to incorporate the structuralinformation.
For example, we can penalize the objective function by both the number of active
categories, as well as the inverse distance between these categories. Intuitively, the
latter means we prefer GO categories to be more spread out in the GO hierarchy.
Another possible source of prior information is the size of (i.e. the number ofgenes
in) an GO category. For example, we may want to penalize GO categories whose
size is either too big or too small, reflecting our belief that these categories areless
likely to be active.

5.2.3 Extensions of Random Field Models

In Chapter 4, I propose to use Gaussian random field models with the inverse
weight matrix, and show it achieves better performance than Markov random field
models in predicting immune response genes. The Markov random field modelis
based on the original weight matrix. It would be interesting to compare our results
to Markov random field models with theinverse weight matrix, and see how much
of the improvement is due to the inverse weight matrix.

One direction for future work is to find better ways to learn the graph structure
of Gaussian random field models from data. Currently, I learn the structure by us-
ing the SPAI algorithm [Grote and Huckle, 1997] to compute a sparse approximate
inverse of the weight matrix, which essentially tries to look forX that minimize
the Robina’s norm

‖WX − I‖F

whereW is the weight matrix andI is the identity matrix. The algorithm starts
from some given sparse matrix, e.g. a diagonal matrix, then searches fora ma-
trix that augments the sparsity structure as well as decreases the objectivefunc-
tion. Many other ways have been proposed to learn a sparse graph. For example,
one can choose to maximize theL1-penalized log-likelihood (e.g. [Banerjee and
El Ghaoui, 2008, Friedman et al., 2008]). It would be interesting to compare the
different methods for learning the graph structure, and their impact on thepredic-
tion accuracy.

Another direction is to extend the random field models to handle multiple
classes. In the study of cell cycle and immune response expression programs,
the model assigns genes into two (cycling or not) or three classes (up-regulated,
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down-regulated, and unchanged). While this approach has done a reasonably good
job, in some cases we may need to handle more classes. For example, some im-
mune response genes may be induced immediately after the host cell’s exposure to
the pathogen, while others may be induced in later stages. In order to characterize
various dynamical responses of a gene expression program, we needto classify the
genes based on when their expression profiles change. One possible way to handle
multiple classes of expression patterns is outlined as follows. First we definek
modal expression pattern profiles, e.g. “early up”, “late up”, “up down”, “down
up”, etc. For each gene expression time series, we compute its distance to these
profiles. Now we define a random field where each node is a (latent)k−dim Gaus-
sian with mean equal to a gene’s distance vector, and the edges are derived from
homology. By approximating this random field by a Gaussian random field, we
may be able to perform efficiently inference and determine the class membership
for each gene.

5.2.4 Cross-Species Study of Biological Networks and Beyond

The major tool I use in this thesis is probabilistic graphical models. Probabilistic
graphical models have several advantages in integrating information. First, they
have the ability to represent complicated dependency structure that can’tbe cap-
tured by independent pair-wise relationship. Second, by taking into account the
information encoded by the graph, graphical models enable learning fromboth la-
beled and unlabeled data. I plan to extend and apply the framework presented in
this thesis to other areas in computational biology.

In this thesis I focused on identification of conserved or species-specific gene
sets. However, genes usually work together to carry biological functions. The
interaction and regulation of genes are better represented as networks.There are
already some studies on cross-species analysis of protein-protein interaction net-
works [Sharan et al., 2005]. It is interesting to extend our framework intocross
species analysis of regulation networks, to identify conserved and species-specific
regulatory modules.

Higher order organisms such as humans have more than one type of cells. Al-
though the different types of cells have the exactly the same genome, their may
look and behave vastly different. One of the reasons for this difference is because
the cells don’t have the same epigenetic modifications. The information in epige-
netic modifications controls the accessibility to the promoter of a gene, and thus
regulates the gene’s expression patterns. One challenge in the study of epigenetics
is how to integrate data from different types of cells to infer the underlying epi-
genetic regulation code. I believe by developing new computational tools fordata
integration, we will be able to better understand the epigenetic programs.
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The accelerated accumulation of expression and sequence data provides great
opportunities for cross-species study of biological systems, but also poses new
computational challenges. Large datasets often impose higher computationalcost
and thus it is crucial to develop fast learning and inference algorithms. Some new
efficient methods have been proposed in other areas, such as using approximation
to speed up computation [Potetz 2007], using asynchronous message passing for
faster convergence of belief propagation [Elidan et al.], and using convex formu-
lations [Wainwright 2005]. I am interested in developing and applying efficient
algorithms to solve large-scale problems. Due to complicated interactions between
biological properties, some problems may have heterogeneous correlationstruc-
ture. It is interesting to develop models that can capture multiple (latent) classesof
relationship, and learn the classes from data.

In sum, I believe our computational framework will play an important role in
the cross-species study of biological systems, and I look forward to seeing more
applications of the framework to open problems.
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