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Abstract

Comparison of the spatial organization of related genomes reveals a wealth of informa-
tion about how complex biological systems evolve and function. A fundamental task in spatial
comparative genomics is identification of homologous genomic regions, regionsthat have de-
scended from a common region in an ancestral genome. While closely relatedregions are char-
acterized by conserved gene content and order, in more distantly relatedgenomes homologous
regions will be apparent only as gene clusters, pairs of regions with similar, but not identical,
gene content and scrambled gene order. As gene content and order diverge, statistical tests to
reject the null hypothesis that these regions share genes by chance become essential.

In this thesis, I provide statistical tests to assess the significance of gene clusters for a variety
of biological questions and search scenarios. I present the first formal statistical framework
for the max-gap cluster, the most widely used cluster definition in genomic analyses. This
framework provides statistical tests for two common search scenarios and facilitates principled
selection of parameter values prior to conducting a search for gene clusters.

Second, I propose novel statistical tests for clusters spanning three genomic regions, for two
comparative genomics applications: analysis of conserved linkage within multiplespecies and
identification of large-scale duplications. Multi-genome clusters are of increasing importance,
yet existing tests focus almost exclusively on pairwise comparisons. My results demonstrate
that simultaneously considering information from more than two regions dramatically improves
sensitivity over pairwise methods.

Third, I demonstrate the importance of incorporating cluster statistics in algorithms for spa-
tial comparative genomics. Orthologs, genes that descended from a common ancestor through
speciation, are the fundamental unit of comparison in many comparative genomics applica-
tions. Using my statistical framework for evaluating max-gap clusters, I develop a new method
for ortholog prediction based on conserved spatial organization. Usingstatistical significance
to rank conserved patterns makes it possible to accommodate a variety of spatial features in a
single framework, yielding a method that can be applied to a broad range of genomic data sets.
This flexible framework outperforms current spatial ortholog prediction methods, especially on
highly diverged genomes.
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Chapter 1

Introduction

Comparative genomics, the analysis and comparison of genomes from related species, is a powerful tech-
nique for understanding how complex biological systems evolve and function. Genomes can be compared
on a range of scales to ask a variety of questions. Features that have been compared include gene comple-
ment, gene order, sequence similarity of both coding and non-coding DNA,and the intron and exon structure
of related genes. In this work, I focus on the spatial arrangement of genes within a genome, and use the
term spatial comparative genomics to refer to this particular aspect of the field. The analysis of conserved
spatial organization can further our understanding of protein function and regulation, functional constraints
on genome organization, the rates and patterns of chromosomal evolution, phylogenetic relationships, and
how evolutionary processes lead to functional innovation.

Spatial comparative genomics is used to identify homologous1 features in related genomes, facilitat-
ing the transfer of knowledge between organisms [113, 119]. Although increasing numbers of genome
sequences are becoming available, most experimental studies are still carried out on a small set of model or-
ganisms. By determining how genes and genomic regions of poorly-studied organisms correspond to those
of well-studied organisms, knowledge about one species can improve understanding of others. In particular,
although humans are among the most well-studied organisms, many types of experimentation cannot be
carried out on humans. Thus, transfer of knowledge from model organisms is essential for understanding
human biological processes, and developing new disease treatments.

Conserved patterns in spatial organization can also help elucidate protein function and regulation. In
bacteria, functionally related genes tend to be spatially clustered on the chromosome. Comparisons of gene
order can identify sets of genes whose spatial arrangement is conserved, and that are likely to be functionally
related. Unlike sequence or structural homology methods, which primarily provide insight on the biochemi-
cal function of a protein, spatial clustering offers evidence of associations between proteins, such as physical
interactions, or participation in the same pathway. These types of associations help identify the physiological
or cellular role of a protein, complementing information derived from sequence comparisons. In bacteria,
conserved gene order and content have been used for prediction ofoperons [37, 57, 130, 135, 177, 179, 181],
horizontal transfers [97], and more generally to investigate the relationship between spatial organization and
functional selection [86, 87, 95, 124, 159, 162, 163].

Finally, analyses of spatial organization serve an invaluable role in evolutionary biology. A great deal of
spatial comparative genomics methodology has been developed for the study of ancient large-scale or whole

1Homology and other biological terms are defined in Appendix A
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genome duplication events [4, 53, 54, 110, 148, 150, 174, 175, 180].Conserved segments between different
genomes have been used extensively to reconstruct the history of chromosomal rearrangements and infer
an ancestral genetic map for a diverse group of species [18, 42, 51,115, 116, 129, 142, 149], as well as to
provide novel features for new phylogenetic approaches [12, 44, 74, 140, 141, 164].

All of the evolutionary and functional questions described above require the identification of homolo-
gous chromosomal segments, chromosomal regions that have descendedfrom the same chromosomal region
in an ancestral genome. When comparing two genomes, researchers aregenerally interested in findingor-
thologoussegments, regions that have descended from the same chromosomal region in the genome of the
most recent common ancestor (MRCA) of the two species. In other cases,a genome self-comparison is con-
ducted to identify evidence of whole genome or large scale duplication. In thiscase, chromosomes within a
single genome are compared in order to find duplicated, orparalogous, segments that derive from the same
region in the pre-duplication genome.

Immediately following speciation, offspring genomes have very similar gene content and order. Simi-
larly, a whole genome duplication yields two very similar copies of the ancestralgenome, both embedded
within a single genome. In both cases, the two genome copies will diverge over time due to a wide range
of evolutionary processes acting on the genome at different scales. These processes can radically alter ge-
nomic sequence, gene complement, and gene order. On a local scale, genomic sequence evolves through
point mutations and small insertions and deletions. Larger scalegenome rearrangements, such as translo-
cations, transpositions, and successive inversions of large regions of a chromosome, shuffle genes within
and between chromosomes, and scramble gene order with respect to the ancestral genome. In addition, the
gene complement, the set of genes that appear in the genome, will be altered by domain shuffling, horizontal
transfer, gene loss, and gene duplication.

As gene content and order diverge, homology can be significantly obscured. It is essential to not only
design sensitive search algorithms to identify homologous regions, but to apply statistical tests to show that
local similarities in gene content could not have occurred by chance. Although there is a long history of
searching for conserved chromosomal regions, there has been verylittle work on formal statistical models
for assessing their significance. This is the problem I address in this thesis.

1.1 Background

In closely related genomes, homologous segments will be characterized by conserved gene order and con-
tent, as well as similarity in non-coding regions, allowing them to be identified through direct sequence com-
parison. However, for more diverged genomes, sequence similarity will only be detectable in regions under
selection, such as protein coding regions. Furthermore, over time, successive rearrangements will cause
the scrambling of gene order. For comparisons of such diverged genomes, genes are frequently treated as
markers, and homologous chromosomal regions are detected by searching for gene clusters, pairs of regions
with similar but not identical gene content, and possibly scrambled gene order.

To detect distantly related homologous chromosomal segments, it is common to usea map-based ap-
proach, in which clusters are detected based on the locations of genomicmarkers, rather than direct com-
parison of the primary sequence. A marker-based approach to the identification of homologous segments
typically involves the following steps:

1. Markers must be mapped to their location in the genome. When the markers are genes and the data
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are genomic sequences, this reduces to the problem of gene finding.

2. Homology between markers must be established.

3. A precise cluster definition must be selected, to specify the types of clusters sought, and an algorithm
must be developed, to identify such clusters via genome comparisons.

4. Statistical tests must be applied, to ensure that the clusters obtained are not due to chance similarities.

The focus of this thesis is the last step, the development of statistical tests to assess the significance of
gene clusters. The design of statistical tests will depend on decisions made inthe previous three steps. In
the next three sections, I give a brief introduction to existing approachesfor each of the first three tasks.
Then, at the end of this chapter, I will discuss the implications of all of these choices for the development of
formal tests to assess cluster significance.

1.1.1 Marker Identification

Map-based approaches to genome comparison require as input a set ofmarkers, sequences with unique
locations in the genome. Frequently, genes are used as markers since theirsequences tend to be conserved
over long periods of evolutionary time. Also, in many genomic studies, it is genes that are the unit of interest.
More recently, other types of markers have also been considered [126, 128, 145]. In this thesis I assume that
genes are used as markers, but all of the methods discussed here are general enough to be applied to other
types of markers as well.

Maps derived from whole genome data provide a close to complete listing of thelocation of all genes,
although errors in gene finding may occasionally result in markers that do not correspond to protein coding
regions. Sequence data also allows the precise order and physical distances between genes to be determined,
as well as gene orientation.

Until recently, maps were constructed from genetic linkage data, derivedfrom the statistical analysis of
co-occurrence of traits. Unlike markers identified from genomic sequence data, markers in linkage maps
represent well-studied genes, for which the existence of corresponding transcripts has been verified. How-
ever, linkage maps can be quite sparse, with markers representing only a subset of all genes. Also, linkage
maps have low resolution: distances are approximate, gene orientation is unknown, and the respective order-
ing of nearby genes can not always be determined with certainty. Our current views of comparative spatial
genomics, as well as much of the existing models and methodology, are informedby this history. There are
many organisms where linkage maps are currently the only type of spatial dataavailable. Thus, the basic
genome model used in this thesis is general enough to be applied to both linkagemaps and modern genomic
datasets.

We assume a genome consists of a single linear unbroken chromosome, represented as a sequence of
n genes:G = (g1,. . .,gn). The orientation of each gene is ignored. This model assumes that genes do not
overlap, and disregards the physical distance between genes. The distance between genes is defined to be
equal to the number of genes between them. This model can be advantageous for genomic comparisons
because physical distances often differ substantially between organisms. In addition, it eliminates the need
to model the variation in gene density that can lead to gene-rich and gene-poor regions of chromosomes. A
model based on physical distances would have to take into account the fact that a cluster that is unlikely to
appear in a gene-poor region might easily occur by chance in a gene-rich region.
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a

Gene Duplication→
a a′

Speciation→

humana mousea humana′ mousea′

Orthologs Paralogs Orthologs

Figure 1.1: A hypothetical gene tree showing the evolution of thea gene family. An ancestral genea
undergoes a gene duplication, giving rise to genea′. A speciation event occurs, giving rise to human and
mouse. Each lineage contains a copy of thea anda′ genes. Thea gene in human is orthologous to the
a in mouse. Thea′ genes are orthologs as well. All pairs consisting of onea gene and onea′ gene are
paralogous. All four genes are homologous, as they arose from a single ancestral gene. Together, they form
a gene family.

1.1.2 Homology Detection

For genome comparison, once a set of markers is determined for each genome, their homologous counter-
parts in the other genome must be located. Two genes are homologous if they arose from a single gene in
an ancestral genome. Homologous genes are either orthologs or paralogs. Two genes in different species
are orthologous if they arose from a single gene in the MRCA of the two species, and paralogous if they
arose through a duplication event that preceded the divergence of thespecies [59, 61]. These relationships
are illustrated in Figure 1.1.

In general, common ancestry is inferred from sequence similarity. However, homology identification
based on sequence comparison of genes is still an imprecise science. Thisproblem is especially diffi-
cult for distantly related proteins, since distinguishing significant sequence similarity in the twilight zone
is particularly problematic [86]. Other factors that complicate homology identification include the pres-
ence of large families of multi-domain proteins [156], and the difficulty of distinguishing orthologs from
paralogs [134, 165, 59, 61]. As a consequence, gene homology identification is an area of active re-
search [21, 26, 33, 40, 92, 147, 176].

For the purposes of this thesis, I assume that homology relationships have already been established,
and treat the set of homologous gene pairs as fixed input data. The real-valued similarity scores are dis-
carded, and matches are considered binary,i.e. each pair of genes is either considered homologous or non-
homologous. The biological definition of homology implies that it should be an equivalence relation. In
practice, however, althoughdetectablehomology relations are generally symmetric, they are rarely tran-
sitive. That is, although genex maybe be similar to geney, andy is similar to genez, there may be no
detectable similarity betweenx andz. In general, homology is a many-to-many relationship, but often the
data we are given is one-to-one. This is a computational not a biological requirement—many algorithms
for finding gene clusters assume a one-to-one mapping between genes. In addition, this restriction is often
enforced when the goal is to identify orthologous segments, as allowing onlya one-to-one mapping signifi-
cantly reduces noise in the comparative map [183]. Thus, I assume a modelin which a gene has at most one
homolog, except in Chapter 4, in which I present a new method for generating a one-to-one mapping from
a many-to-many dataset.
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Figure 1.2: Three ways to visualize the comparison of marker order in two related genomes. Integers
and stars denote genes, with stars denoting singletons. (a) A comparativemap. Lines show the mapping
between homologous genes. (b) A dot plot showing the same information in a matrix format. Columns
represent genes inG1 and rows represent genes inG2. A matrix element is 1 (black circles) if the genes
are homologous, and 0 (empty) otherwise. (c) A graph in which vertices represent homologous gene pairs,
and edges connect vertices if the corresponding genes are close together in both genomes. In this example,
edges connect genes if the sum of the distances between the genes in bothgenomes is no greater than two.

1.1.3 Cluster Detection

Given the set of genes, their locations, and the homology mapping, the nextstep is to formally characterize
homologous segments. We have an informal notion of the signature of gene clusters: pairs of regions with
similar but not identical gene content, and scrambled gene order. In order to construct algorithms to find
such clusters, this informal notion of a gene cluster must be defined more rigorously.

The formal characterization of a gene cluster is critical to sensitive detection of ancient homology with-
out inclusion of false positives. Cluster definitions are based on simplified models of real biological pro-
cesses. In order to be useful, these models must abstract away much of the underlying biology and focus
on only a few features of interest. Researchers represent a genome comparison in a number of ways. For
example, consider two genomesG1 = 1* 2* 34** 56789 andG2 = * 3* 14* 2567 * 98 , where the integers
correspond to homologous gene pairs, and the stars indicatesingletons, genes with no homolog in the other
genome. Three ways of visualizing the ordering of genes in the two genomesare shown in Figure 1.2.
Figure 1.2(a) shows acomparative maprepresentation, in which homologous pairs are connected by a line.
Alternatively, in adot plot(shown in Figure 1.2(b)), the horizontal axis representsG1, the vertical axis rep-
resentsG2, and homologous pairs are represented as dots in the matrix. Finally, this datacan be converted
into anundirected graph(shown in Figure 1.2(c)), where each vertexv corresponds to a homologous gene
pair. Two vertices are connected by an edge if the corresponding genes are close together in both genomes,
where “close” is determined based on a user-defined distance function and threshold.
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Cluster Definitions and Algorithms

Deciding how exactly to define the structures of interest is one of the most challenging tasks in cluster
identification. Cluster definitions can be declarative, specifying precise conditions that allow one to identify
a cluster, or they can be constructive, in which an algorithm to find clustersis given, but explicit cluster
criteria are not specified. Although a constructive definition makes it clearhow to find clusters, it does not
necessarily provide information about what the resulting clusters will look like. Unless a formal definition
can be abstracted from the algorithm, it can be difficult to reason about these types of models, or to develop
formal statistical test for them. A declarative definition, on the other hand, isoften easier to reason about,
but it requires an additional search procedure to find clusters that satisfy the formal definition. Whether a
declarative or constructive definition is used, in both cases, it is necessary to verify that the constructive and
formal definitions are equivalent. Recently there has been a movement to formalize cluster definitions, and
to develop precisely formulated search algorithms, so that correctness and efficiency of these algorithms can
both be analyzed.

The most conservative approach defines conserved segments ascommon substrings, contiguous regions
that contain the same genes in the same order, and sometimes orientation [161, 14, 114, 120]. For example,
two common substrings can be found in the example genome in Figure 1.2(b):{6,7 } and{8,9 }. However,
such a stringent definition will invariably lead to the exclusion of many regionsthat did indeed descend from
a single ancestral region but have since undergone small rearrangements.

A slightly more liberal approach defines a conserved segment as acommon interval, a set of genes
occurring contiguously in each genome. The order of genes within the cluster may differ from genome to
genome. For example, two common intervals can be found in the example genomesin Figure 1.2:{5,6,7 }
and{8,9 }. A number of researchers have developed search algorithms to efficiently find common intervals
in genomic data [48, 77, 169]. However, this definition is still generally too strict, since gene duplication
and loss are common when comparing distantly related genomes, and a single gene insertion or deletion in
one genome will destroy a common interval.

Ther-window definition generalizes a common interval, allowing rearrangements, as well as a limited
number of insertions and deletions. Anr-windowcluster is defined as a pair of windows, each containingr
genes, in which at leastk genes are shared [34, 50, 62]. Note that ifk = r, then anr-window reduces to a
common interval of sizek. An r-window corresponds to a square in the dot plot with sides of lengthr, which
contains at leastk homologs. For example, whenr=5 andk=4, two clusters can be found in the example
genome in Figure 1.2(b):{5,6,7,9 } and{6,7,8,9 }. We distinguish between the genes that appear in
both regions that make up the cluster (the “marked” genes) and the intervening “unmarked” genes that occur
in only one of the two regions, although they may have a homolog elsewhere in the genome. One limitation
of ther-window definition is that it is unclear how to best choose the window size. Ifthe window size is too
small, then a cluster may be missed, since it does not fit within the window. If the window size is too large,
however, then even if it contains a cluster the window may not be densely populated with homologs, and the
cluster may not appear significant. Rather than fixing the window size in advance, we would prefer to allow
the window to grow to its “natural size.” In other words, we would like to keepextending the window as
long as we continue to find homologs nearby in both genomes.

To gain extensibility, the more generalmax-gapcluster definition has been proposed [10]. It also ignores
gene order and allows insertions and deletions, but does not constrain the maximum length of the cluster to
r genes. Instead, a max-gap cluster is described by a single parameterg, and is defined as a set of marked
genes where the distance (orgap) between adjacent marked genes in each genome is never larger than a
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given distance threshold,g. Note that wheng = 0, max-gap clusters reduce tocommon intervals. When
the maximum gap allowed isg = 1, two maximal max-gap clusters are found in the example genome in
Figure 1.2(b):{1,2,3,4 } and{5,6,7,8,9 }. A max-gap cluster ismaximalif it is not contained within
any larger max-gap cluster. Correct search algorithms for this definition require some sophistication. Many
groups design heuristics to find max-gap clusters, but such methods are not guaranteed to find all maximal
max-gap clusters. The implications of using these search methods is discussed further in Section 2.3.3.
Bergeronet al.originally developed a divide-and-conquer algorithm (called GeneTeams) to conduct a whole
genome comparison, and efficiently detect all maximal max-gap clusters [10]. This algorithm was later
extended by He and Goldwasser [75]. Their HomologyTeams algorithm handles paralogs, and is one of the
few algorithms for finding gene clusters in which it is not assumed that the homology mapping is one-to-one.

Other cluster definitions include that of Calabreseet al. [30], in which the distance between each pair
of homologs is evaluated as a function of the gap size inboth genomes. Unlike the max-gap definition,
which only requires the distance in each genome tosomeother marked gene in the cluster be small, this
method requires that all marked genes that are adjacent in genomeG1 alsobe close in genomeG2, but not
vice versa. A very different approach by Sankoffet al. [143] explicitly evaluates a cluster (or segment) by
a weighted measure of three properties: compactness, density, and integrity. They seek a global partition
of the genome into segments such that the sum of segment scores is minimized. Clusters have also been
defined in terms of graph-theoretic structures (e.g. Figure 1.2(c)), such as connected components [128]
or high-scoring paths [71, 175]. Finally, a variety of heuristics have been proposed to search for gene
clusters [6, 30, 32, 72, 73, 171, 175, 179], the majority of which are specifically designed to find sets of
genes in approximately collinear order (i.e. forming a rough diagonal on the dot plot). Many constructive
definitions give only a vague description of the clustering procedure. Even those that are more precisely
specified cannot be easily summarized without describing the full heuristic of each procedure.

Search Strategies

The significance of a gene cluster depends not only on the characteristics of the cluster, but also on how the
cluster was found. The larger the search space, the less significant thecluster. Unfortunately, however, most
statistical tests do not consider the size of the search space, and most experimental studies present clusters
without providing the details of the search procedure that are needed to correctly assess significance. Durand
and Sankoff [50] characterized the following three most common search strategies:

1. Reference set:Given a set of genes of interest, the goal is to identify subsets of these genes that are
located in close proximity in the genome. In this case, the search space is the entire genome. For
example, the genes of interest may be located in a particular genomic region (the ”reference region”),
and homologous regions, which will presumably contain many of the same genes, are sought. In other
cases, the genes of interest share a particular functional or regulatory property, and the goal is to find
evidence of functional constraints on spatial organization.

2. Window sampling: Given two chromosomal regions, the goal is to determine whether the regions
share a significant number of homologs, in order to obtain evidence that they descended from a single
region in an ancestral genome. In many cases, these windows are selected because they contain a pair
of known homologs of particular interest. This search scenario may be used, for example, to determine
whether a particular set of paralogs were duplicated through a large scale event, or to assess whether
the gene order around a pair of orthologs has been conserved. In window sampling, the search space
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is confined to the two regions of interest.

3. Whole genome comparison:Given two genomes, the goal is to identify all clusters of genes that
appear in proximity in both genomes. When assessing the significance of individual gene clusters
found through whole genome scans, the much larger search space must be taken into account to avoid
overestimating cluster significance.

Note that in the reference set search scenario, only a single genome is analyzed. Although the set of
genes may have been selected based on their location in a second genome, the search problem is defined
with respect to a single genome. In the window sampling and whole genome comparison scenarios, on the
other hand, the search problem is defined with respect to two genomes.

1.1.4 Statistical Tests for Gene Clusters

The previous section introduced the basic steps involved in identifying geneclusters, from determining the
position of markers in the genome to designing cluster definitions and algorithms.A final critical step in
the identification of ancient segmental homologies is significance testing. Overtime, processes of genome
mutation and rearrangement cause the properties of homologous segments tobecome more and more similar
to the statistical background. Thus, to evaluate putative homologous segments, it is imperative to test and
reject the hypothesis that the observed similarities could have occurred bychance.

In general, it is not possible to estimate a clustering algorithm’s accuracy, sensitivity or specificity, since
in the vast majority of cases the true evolutionary relationships are not known. Synthetic data can be used
to evaluate cluster-finding algorithms, but the rates of mutation and rearrangement events are also unknown,
and so evaluations based on simulated data are only informative to a limited degree. Thus, statistical tests
of cluster significance are critical for accurate identification of ancient segmental homologies.

Statistical models also enable the principled selection of search parameters. Many cluster definitions
are based on user-defined parameters. For example, ther-window cluster definition requires the user to
specify the window sizer. If parameters are selected too conservatively, many significant clusters will not
be detected. On the other hand, very liberal parameter values may lead to biologically meaningful clusters
being detected but discarded as not statistically significant. A statistical modelcan be used to determine the
range of parameter values within which a cluster will still be significant.

Lastly, formal statistical models allow us to investigate statistical trends for particular cluster models,
and ensure that the statistical behavior meets our expectations. For example, a rigorous statistical analysis
can show that a cluster definition is inappropriate for certain types of data,or for certain regions of the
parameter space. A statistical model is also useful for comparing the powerof alternative clustering models
under different models of genome evolution.

Related Work

The development of statistical models for gene clusters is largely an uncharted area. The significance of
a cluster depends on a broad range of factors, including characteristics of the data and model, the cluster
definition, the search procedure, and the biological question of interest.At present, the significance of
putative clusters is often not evaluated at all, or only informally. There arethree basic approaches to testing
the significance of gene clusters: combinatorial analysis, statistical analysis, and analysis by randomization.
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These approaches are often complementary, such that improvements in accuracy and efficiency may be
obtained when they are used in combination. For the most part, however, existing significance tests are
based on data randomization, or on very simple combinatorial models that are applicable to only a limited
set of conditions and cluster definitions.

The most common approach is to assess cluster significance with randomizationtests. Observed clusters
with properties that are rare in randomized data are assumed to correspond to homologous segments. Tests
based on randomization are simple to implement for null models of random gene order, since sampling
permutations uniformly is quite straightforward. For more complicated null hypotheses, however, random-
ization tests may be more difficult to design. Furthermore, randomization tests can be computationally
expensive. Combinatorial approaches for calculating cluster statistics mayhelp to reduce this running time
by specifying a biased distribution for importance sampling [25]. Although thesample space (all possible
gene permutations) is very large, only a small fraction of random samples willcontain any clusters at all.
Combinatorial analysis can be used to devise a sampling strategy that selects samples only from the small
fraction of permutations for which the probability of a cluster is high. Finally, randomization studies re-
quire complete knowledge of all markers and homologs in the data. When only partial data is available,
randomization tests are not feasible.

The only purely statistical approach to assessing cluster significance, ofwhich I am aware, is that of
Calabreseet al. [30]. The authors present a search algorithm and a statistical model to test putative clusters
detected by their algorithm. They define a random variableXij for each pair of genes(i, j), whereXij is one
when the genes are homologous, and zero when the pair is unrelated. Their statistical tests are based on an
assumption that theXij ’s are independently distributed, Bernoulli random variables. Under thismodel, the
number of homologs for any given genei can be described by a random variableYi =

∑
j Xij . This model

implicitly assumes that gene family sizes are binomially distributed (sinceYi is the sum of independent
Bernoulli random variables). However, this assumption is not supportedby the data. Rather, gene family
sizes typically follow a power law: small gene families are most common and large gene families are rare.
Thus, it is unclear to what extent this approach allows accurate estimation ofcluster significance.

A number of significance tests based on simple combinatorial arguments have been introduced within
the methods sections in various papers focusing on the analysis of particular genomic datasets [46, 51, 123,
167, 174, 177]. These tests provide a good starting point, but make so many simplifying assumptions that
their descriptive power is limited.

A few more rigorous combinatorial analyses have been made in conjunction with the development of
algorithms for cluster identification. In this work the mathematical quantity that is to be estimated is care-
fully defined, but the connection to the biological question of interest is notaddressed, and overly strict
simplifying assumptions are made,e.g. that the two genomes have identical gene complements [43, 169].
Furthermore, these attempts are generally based on very conservative cluster definitions, such as common
intervals and max-gap clusters in which the maximum gap is is at most one [43, 169]. The one combinatorial
approach that provides significance tests for a broad range of different biological scenarios was introduced
by Durand and Sankoff [50], and later extended by Raghupathy and Durand [132]. While this was the first
statistical work in this area to clearly describe both the biological and mathematical problem of interest, a
number of open problems remain. In particular, this work is not applicable to the most commonly used clus-
ter definition, the max-gap cluster. Furthermore, the tests are designed almost exclusively for comparisons
of two genomic genomes. Designing general statistical tests for clusters spanning multiple regions remains
an unsolved problem.
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The Design of Statistical Tests for Gene Clusters

Formal statistical models are needed to test the significance of gene clustersfor a range of different biological
questions of interest. However, translating from a biological question to a formal mathematical statement of
the problem is not trivial. In particular, selecting appropriate null and alternate hypotheses, as well as a test
statistic, is challenging.

For many of the problems in spatial comparative genomics, how to specify appropriate null and alternate
hypotheses is not always obvious. Given a biological question, such as whether local conservation of spatial
organization in the genome provides evidence either of shared ancestry or functional selection on gene
order, the goal is to show that a cluster with particular characteristics is unlikely to be observed by chance.
However, the meaning of “by chance” depends on the particular biological question.

For example, to show evidence that a particular set of genes were duplicated in one large-scale dupli-
cation event, it is necessary to demonstrate that the observed cluster is unlikely to be the result of multiple,
independent, gene duplications. In this case, if we assume that a duplicatedgene is located anywhere in
the genome with equal probability, then an obvious null hypothesis is that of random gene order. Although
there is some empirical evidence that the destination of single gene duplicationstends to be closer to the
source than would be expected by chance [175], this process is poorlyunderstood. Furthermore, subse-
quent rearrangements complicate the picture. Thus, tests of large-scale duplications are generally conducted
against the simple null hypothesis of random gene order. If the null hypothesis of random gene order cannot
be rejected, no more complex, biologically motivated null hypothesis need be considered. Similarly, when
testing for segmental orthology, tests are typically conducted against a nullhypothesis of random gene order.

A test statistic should summarize all the properties of the sample that are relevant to the hypothesis being
tested; the value of the statistic is then used to decide whether or not the null hypothesis can be rejected. It is
difficult to devise a test statistic for gene clusters that captures all properties of interest. Ideally, the number
of shared genes, the number of insertions and deletions, and the degreeof disorder would all be captured by
the test statistic. With clusters that span multiple regions, it is important to considerthe number of genes
shared by all the regions, as well as the number of genes shared by various subsets of the regions. Given this
complexity, selecting an appropriate test statistic is not always straightforward.

Finally, tests of cluster significance need to consider not only the characteristics of the cluster being
evaluated, but also the characteristics of the marker and homology data, and the size of the search space.
The specific properties of the genomic data, such as the number of genes and the number of homologous
gene pairs, must be factored into any model of cluster significance. In particular, as the number of matches
between genes increases, so do chance occurrences of gene clusters. The significance of a cluster also de-
pends on the number of possibilities considered during the search. The search space isO(n) for a reference
set scenario, but a whole genome comparison, on the other hand, is equivalent to comparingO(n2) pairs of
regions.
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Section Cluster Definition Sampling strategy Number of regions Null Hypothesis
2.2 Max-gap Reference set One Random Gene Order
2.3 Max-gap Whole genome comparison Two Random Gene Order
3 r-window Window sampling Three Random Gene Order

Table 1.1: Overview of statistical tests presented in this thesis.

1.2 Thesis Overview

In this thesis I present statistical tests for two commonly used cluster definitions: max-gap clusters and
r-windows. These tests take the number of shared genes into account, butallow insertions, deletions and re-
arrangements of genes within a cluster. They include models for comparisonof two regions and comparison
of three regions, and consider several different sampling strategies.These tests are summarized in Table 1.1.

In Chapter 2, I present the first formal statistical model for max-gap clusters. Tests for a reference set
scenario are presented in Section 2.2, and probabilities for clusters found through whole genome comparison
are derived in Section 2.3. I use the probability expressions derived in Section 2.3 to analyze the significance
of clusters found in a whole genome comparison ofE. coli andB. subtilis. I also investigate the impact of
the search procedure on the set of max-gap clusters identified on three datasets:E. coli compared withB.
subtilis, human compared with mouse and human compared with chicken.

In Chapter 3, I propose novel statistical tests forr-windows sampled from three distinct genomic regions,
including comparisons of three regions selected from three distinct genomes, and comparison of a pair of
regions duplicated by whole genome duplication with a reference region selected from a pre-duplication
genome. I use the analytical expressions I derive to investigate the impact of the fraction of singletons genes
on cluster significance, and to evaluate alternative test statistics. I also compare the sensitivity of these tests
with that of existing approaches.

In Chapter 4, I develop a novel method for ortholog prediction based on max-gap statistics. In Sec-
tions 4.2 and 4.3 I review existing methods for identifying orthologs, based onsequence and/or spatial
information. In Section 4.4, I present my method for ortholog prediction, which includes a new algorithm
for finding a particular sub-type of max-gap gene clusters, and a method for statistically validating gene
clusters when the homology mapping is many-to-many. In Section 4.6, I present empirical results on a set
of γ-proteobacteria, and compare the performance of my method with previous results on this dataset.

Finally, in Chapter 5, I discuss a number of insights that have developed over the course of work, on
how to improve upon existing cluster definitions and statistical tests. A number ofimportant open problems
raised by this thesis are also described.

Appendix A contains a glossary of technical and biological terms. Appendix B provides a detailed
catalog of cluster properties upon which many existing gene cluster definitions, algorithms, and statistical
tests are explicitly or implicitly based. Appendix C gives detailed derivations ofmany of the combinatorial
expressions used in Chapter 2.
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Chapter 2

Max-Gap Cluster Statistics

In this chapter, I present the first formal, rigorous mathematical model of max-gap gene cluster probabil-
ities [81, 80]. The max-gap definition has been proposed independently several times, and has also been
referred to asgene teams[10], δ-teams[76], andγ-intervals [43]. Although the max-gap definition has
emerged as perhaps the most popular in empirical studies [11, 20, 37, 62,102, 110, 124, 151, 162, 171, 175],
no formal statistical tests have been developed for max-gap clusters. Studies based on max-gap criteria cur-
rently use randomization to estimate the significance of clusters [11, 110, 124, 151, 171, 175]. Analytical
statistical models in the literature are designed for other definitions of gene clusters [30, 46, 50, 51, 167, 174].
It is not obvious how to extend them to apply to this commonly used cluster model.

Before presenting the main results of this chapter, I first present some necessary technical preliminaries.
After stating formal definitions for a max-gap chain in one genome, and a max-gap cluster in two genomes,
I present some general combinatorial expressions that are useful for deriving the results in the following
sections. Next I present the first statistical tests for max-gap clusters for two of the basic search scenarios
presented in Section 1.1.3.

In the first scenario, we wish to find clusters of a subset of genes that are pre-specified, ormarked.
In the second scenario, we are given two genomes, and a mapping between their homologs, and we wish
to identify all sets of genes that are found in spatial proximity in both genomes.In this whole genome
comparison problem, the set of genes in a cluster emerges from the comparison of two whole genomes. The
window sampling search scenario is not addressed in this section, as it is not compatible with the max-gap
cluster definition, which allows the length of a cluster to be arbitrarily large.

For all tests, the null hypothesis is that the genes are randomly distributed in the genome,i.e. that each
permutation of then genes is equally likely to occur.

2.1 Technical Preliminaries

As we stated in Chapter 1.1, we model a genome as a sequence ofn genes. It is assumed that genes do not
overlap, and gene orientation and physical distance between genes is disregarded. This model assumes that
the genome consists of a single linear, unbroken chromosome. If a genome contains multiple chromosomes,
then we assume they have been concatenated in an arbitrary order to create one long sequence of genes.
In this case, our model may slightly overestimate the probability of a cluster sinceit would erroneously
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enumerate clusters that span chromosome boundaries. This effect should be small however, as the number of
chromosome boundaries is very small compared to the number of genes. If there are circular chromosomes,
they can be broken at their origin or terminus. In this case, our model may slightly underestimate the
probability of a cluster since it would fail to enumerate clusters that span the origin or terminus. Again,
this effect should be small. Our model also assumes that each gene has at most one homolog in the other
genome, as discussed in Section 1.1.2.

2.1.1 Max-Gap Terminology

Definition 2.1.1. A genomeG = {1, ..., n} is a sequence of genes, ordered by their position in the genome.
We define∆(i, j), the gap between theith and jth genes, as the number of genes between them,i.e.
∆(gi, gj) = |i − j| − 1, if the genes are on the same chromosome, and∆(i, j) = ∞ if the genes are
on different chromosomes.

We are interested in identifying sets of genes that appear in proximity in the genome, such that each
gene in the set is close to at least one other gene in the set,i.e. the maximum gap, ormax-gap, between the
genes is small.

Definition 2.1.2. LetX = {x1, ..., xm} be a set ofm genes in genomeG, such that genexi precedesxj in
the genome iffi < j. Note thatX is not required to be a contiguous set of genes, so genes that are adjacent
in X are not necessarily adjacent in the genome. We define∆(X), themax-gap of a set of genesX, as the
maximum gap between adjacent genes inX, i.e.∆(X) = max

1≤i<m
∆(xi, xi+1).

In the reference set scenario, we are given a set of genes of interest (the marked genes), and we wish
to determine whether any subset appears in proximity in the genome. We use thetermchain to describe a
subset of genes that are located close together in one genome.

Definition 2.1.3. We say thatX forms ag-chain of G if ∆(X) ≤ g. A g-chainX is maximal if it is not
contained within a larger chain,i.e. there is nog-chainX ′ ⊃ X.

For example, consider the genomeG = abc * d*** ef * , where stars indicate unmarked genes. Ifg = 2,
then{a, b, d} forms ag-chain, since neither(a, b) nor (b, d) is separated by more than two genes. However,
{a, b, d} is not a maximal2-chain since it is contained within the larger2-chain{a, b, c, d}. The set{e, f},
on the other hand, is a maximal2-chain.

Definition 2.1.4. Thesize of a chainX = {x1, ..., xm} is the total number of genes it contains:|X| = m.
Thelength of X is the total number of genes spanned by the chain:∆(x1, xm) + 2.

In the example above, the chain{a, b, d} is of size three, and length five, whereas the chain{a, c} is of size
two and length three.

Now that we have introduced the termchain to describe a set of genes that are located close together in
one genome, we introduce a formal definition of acluster, a set of genes that are located close together in
two genomes.

Definition 2.1.5. A set of genes,X, forms ag-cluster in genomesG1 andG2 if X forms ag-chain inG1,
each gene inX has a homolog inG2, andX ’s homologs form ag-chain inG2. A g-clusterX is maximal
if it is not contained within a larger cluster,i.e. there is nog-clusterX ′ ⊃ X.
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g maximalg-clusters
0 {a, b}, {c}, {d}, {e}, {f}
1 {a, b}, {c}, {d}, {e}, {f}
2 {a, b, d}, {c}, {e}, {f}
3 {a, b, c, d, e, f}

Table 2.1: The max-gap clusters ofG1 = abc * d*** ef * andG2 = abfd *** c* de , for values ofg from
0 to 3.

For example, consider the genomesG1 = abc * d*** ef * andG2 = abfd *** c* de , where each letter
corresponds to a homologous gene pair, and the stars indicate singletons.If g = 2, then{a, b} forms a
g-cluster, sincea andb are within two genes of each other in both genomes. The set{a, b} is not a maximal
g-cluster, however, since it is contained within theg-cluster{a, b, d}. The set{b, c} does not form ag-cluster
since it does not form ag-chain inG2. The complete list of maximalg-clusters ofG1 andG2 is given in
Table 2.1, for all values ofg.

In this chapter we often assume thatg is given, and fixed. In this case, we use the termmax-gap chain,
or even justchain, as shorthand for a maximalg-chain, andmax-gap clusteras shorthand for a maximal
g-cluster.

2.1.2 Generalized Dice Equation

Here I introduce several related combinatorial expressions that are used repeatedly in subsequent sections to
compute cluster probabilities under a number of different search scenarios. Assume we are givenm marked
genes, and that these genes are all located within a window ofl genes. In the following sections we are
interested in three related quantities:

1. the probability of finding allm genes in a max-gap chain of length exactlyl,

2. the probability of finding allm genes in a max-gap chain of length no greater thanl, given that the
first gene in the chain is the first gene in the window, and

3. the probability of finding allm genes in a max-gap chain anywhere within a window of lengthl.

The number of ways to place them genes so they form a max-gap chain of length exactlyl is equivalent to
the number of ways to placem genes in a window of sizel, such that they form a max-gap chain, and both
the first and last positions contain a marked gene (exemplified in Figure 2.1(a)). In this case, allm− 1 gap
sizes are constrained to be no more thang, and the gaps must sum tol−m. The second problem is similar,
except that only the first position must contain a marked gene (Figure 2.1(b)). In this case, in addition to
them − 1 constrained gaps, there is also one unconstrained gap after the last marked gene, which can be
larger thang. In the third problem, neither endpoint is required to contain a marked gene (Figure 2.1(c)). In
this case, there are two unconstrained gaps, one at each end of the chain. The only difference between these
three problems is the number of unconstrained gaps.
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(a)

v1=2 v2=0 v3=4 v4=2 v5=2 v6=2 v7=3 w1=1

(b)

v2=0 v3=4 v5=1

v6

w1=1 w2=5v1=1 v4=0 v6=1 v7=2

(c)

Figure 2.1: Three max-gap 4-chains of sizem = 8, located in a window ofl = 24 genes. The window is
shown as a rectangle. Genes in the chain (themarkedgenes) are shown as black circles, and all other genes
are shown as unfilled circles. The size of each constrained gapvi in the chain is labeled. The size of each
unconstrained gapwi is also labeled. (a) A max-gap 4-chain of length exactly24, in which both endpoints
of the window contain a marked gene. All gaps are constrained. (b) A max-gap 4-chain of length23, in
which only the leftmost endpoint of the window contains a marked gene. There is one unconstrained gap,
after the rightmost marked gene. (c) A max-gap 4-chain of length 18, in which neither endpoint contains a
marked gene. There are two unconstrained gaps, one at each end of the chain.

We can formulate all three problems as instances of a more general problem:for a given, non-zero
integers, find the number of solutions to the following equation

c∑

i=1

vi +
u∑

j=1

wj = s, such that0 ≤ vi ≤ g,∀i ∈ 1..c and wj ≥ 0,∀j ∈ 1..u, (2.1)

wherec is the number of constrained gaps, andu is the number of unconstrained gaps. This problem is a
more general version of a well-known problem [170]: determining the number of ways of rollingc dice,
each with faces numbered0 to g, such that the sum of their faces is equal tos. In this generalized version, in
addition to havingc dice with faces from0 to g, we also haveu “infinite” sided dice, and we wish to know
the number of ways of rolling the dice to get a sum ofs.

Let dg(d, u, s) be the number of solutions to Equation 2.1. An expression fordg(c, u, s) can be derived
using recurrence equations (see Appendix C.1):

dg(c, u, s) =

⌊s/(g+1)⌋∑

i=0

(−1)i

(
c

i

)(
s− i(g + 1) + c + u− 1

c + u− 1

)
. (2.2)

Using this equation, we can now give an expression for each of the threeprobabilities described above.
The probability ofm marked genes forming a chain of exactly lengthl is dg(m−1, 0, l−m)/

(
l
m

)
, since the

number of constrained gaps ism − 1, the number of unconstrained gaps is0, the gaps must sum tol −m,
and

(
l
m

)
is the number of ways of placingm genes anywhere withing a window ofl genes. The probability

that allm marked genes will form a chain of length no greater thanl, given that the first gene in the chain is
the first gene in the window, isdg(m − 1, 1, l −m)/

(
l
m

)
. The probability that the genes will form a chain

anywhere within a window of sizel is dg(m− 1, 2, l −m)/
(

l
m

)
.

16



2−chain of size 5 and length 10and length 4
2−chain of size 3 Gap of size 4 2−chain of size

and length 1

Figure 2.2: A sample genome (n=24), with m=9 marked genes shown in black. Three maximal max-gap
chains are found when the maximum gap allowed isg =2. The first has size three and length four, and the
second has size five and length ten. The rightmost marked gene forms a trivial chain of size one.

Note thatdg(m − 1, 1, l −m) should equal
∑l

r=m dg(m − 1, 0, r −m), since the number of ways of
getting a chain of no greater than lengthl is simply the number of ways of getting a chain of length exactly
r, summed over all possible values ofr from m to l. It is easy to verify that this equivalence holds (see
Appendix C.2 for a proof). Similarly, we can show thatdg(m− 1, 2, l−m) =

∑l
r=m dg(m− 1, 1, r−m).

For certain chain lengths,dg(m − 1, u, l −m) can be reduced to a simpler expression. The maximum
possible length of a max-gapg-chain of sizem is Lm = m + g(m− 1), which occurs when allm− 1 gaps
are of sizeg. In the case where there are no unconstrained gaps, ifl > Lm thendg(m− 1, 0, l−m) is zero,
since there is no way to get a chain of length greater thanLm. In the case when there is one unconstrained
gap, there is a special case whenl ≥ Lm. In this case, the constraint on the length of the chain is irrelevant,
and the problem is much simpler. The number of ways of getting a chain of lengthno greater thanl ≥ Lm

is dg(m− 1, 1, Lm −m) = dg(m− 1, 1, (m− 1)g), which can be shown to be equal to(g + 1)m−1. This
is simply the number of ways of choosingm− 1 gaps so that the length of each gap is between 0 andg.

It is also useful to observe thatdg(m− 1, 0, l−m) is symmetric aroundl = m + (Lm−m)/2, in other
wordsdg(m− 1, 0, i) = dg(m− 1, 0, Lm −m− i),∀i ∈ {m..Lm −m)} (see Appendix C.3 for a proof).
This symmetry can be exploited to computedg(m− 1, 0, l−m) more efficiently whenl is large. A similar
symmetry can be exploited to reduce the time required to computedg(m − 1, 1, l − m) by half, for large
values ofl. dg(m − 1, 1, Lm − i −m) is the number of ways to generate a max-gap chain of sizem and
length no greater thanLm − i. It can be shown that this is equivalent to(g + 1)m−1 − dg(m− 1, 1, i). This
is the number of ways to generate a chain of sizem with any length, minus the number of ways to generate
a chain of sizem and length no greater thanm + i.

These expressions will be used in the subsequent sections in various situations in which the length of
a chain is constrained. In addition, we will use the generalized dice equationto enumerate arrangements
in which there are more than two constrained gaps. Wheng is fixed, I will used(c, u, s) as shorthand for
dg(c, u, s).

2.2 Reference Set

In the reference set scenario, the task is to assess whether it is significant to find a particular set of genes
clustered together in the genome. We wish to find clusters of a subset ofm genes that are pre-specified,
or marked. These genes may be of interest, for example, because their homologs arecontiguous in another
region or genome (a “reference region”) or because they share somefunctional properties. We are interested
in the probability that allm marked genes, or a sizable subset, appear in close proximity within the genome
of interest.

There are many possible tests that could be considered for this problem. Indeed, this problem is very
similar to a standard one-dimensional, discrete scan statistic problem, for whichmany tests have been de-
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vised [66, 67]. Since the focus of this chapter is statistical tests for max-gap gene clusters, our tests are
based on the maximum gap observed between marked genes. The expressions derived in this Section will
also be useful for computing cluster probabilities for the whole genome comparison problem presented in
Section 2.3.

We provide two tests of spatial clustering of the reference set of genes.In the first test, the test statistic is
the largest gap observed between the marked genes,i.e. the smallest value ofg for which allm genes form a
singleg-chain. For example, in Figure 2.2, allm = 9 genes form a 4-chain. If the probability of observing
a complete 4-chain is small, we will be able to reject the null hypothesis of random gene order. Even if the
probability is large, however, there still may be a high degree of clustering of a sub-set of the genes. Thus,
we propose a second test in whichg is not an observed property of the data, but a parameter selected by the
user. With this approach, all maximalg-chains are identified, and the size of the largest maximalg-chain
is the test statistic. For example, in Figure 2.2, with a max-gap ofg = 2, the largest maximalg-chain is of
size five. This test may give different results depending on what value of g is selected by the user. If tests
are conducted with multiple values ofg, then a correction must be applied to thep-values to account for the
potential increase in Type I errors.

2.2.1 Exact Probabilities for Complete Chains

In this section, I consider the significance of acompletechain, containing allm genes of interest. The test
statisticY in this scenario is the maximum gap between the marked genes. Thep-value is the probability
of observing a gap between marked genes of no more thang in a random genome:PM = P0(Y ≤ g). If
PM < α, the null hypothesis of random gene order can be rejected at a significance level ofα.

Given a random permutation ofn genes, we wish to determine the probability of observing allm marked
genes (in any order) in ag-chain. The probability is

PM (m, g, n) = NM (m, g, n)/

(
n

m

)
, (2.3)

whereNM (m, g, n) denotes the number of ways to placem marked genes in a genome of sizen so that
they form ag-chain. Notice thatNM (m, g, n) is precisely the quantitydg(m − 1, 2, n −m) derived in the
previous section.

Whenm andg are not too large (i.e. (m − 1)g + m ≤ n + 1), we can expressNM (m, g, n) in closed
form. Our approach is to enumerate all possible chains by the position of the leftmost marked gene in the
chain. Given the position of the first marked gene, there are(g +1)m−1 ways to place the remaining marked
genes so that they form a max-gap chain of any length. There aren possible starting positions for the chain.
However,m− 1 of these starting positions are so close to the end of the genome that there will be no room
for the remainingm− 1 marked genes. In addition,(m− 1)g of these positions are close enough to the end
of the genome so that they can fit only a subset of all(g + 1)m−1 possible chains. Cumulatively, half of the
chains starting at these(m− 1)g positions will extend beyond the end of the genome (a proof of this claim
is given in Appendix C.3). Combining these terms, the total number of chains is

NM (m, g, n) =

{[
n− (m− 1)− (m−1)g

2

]
· (g + 1)m−1, if Lm ≤ n + 1,

dg(m− 1, 2, n−m), otherwise.
(2.4)

For typical reference set problems, values ofg andm are small compared ton, andLm will be much smaller
than the size of the genome, so the closed form expression can be used.
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In some cases we may wish to constrain the total length of the chain, by adding the restriction that all
m genes must appear in a window of size at mostr. The limit on window size ensures a minimum cluster
density, while the max-gap property prevents the gaps between marked genes from becoming too large.
More formally, given a genome of sizen, the probability of finding allm marked genes (in any order) in a
window of size at mostr, such that the gap between adjacent marked genes is never more thang, is

PR(m, g, r, n) =
1(
n
m

)
[
(n− r + 1) · dg(m− 1, 1, r −m) +

r−1∑

i=m

dg(m− 1, 1, i−m)

]

=
1(
n
m

) [(n− r + 1) · dg(m− 1, 1, r −m) + dg(m− 1, 2, r − 1−m)] .

(2.5)

There aren − r + 1 positions starting a window of at leastr, and one window at the end of the genome of
each size fromm to r − 1.

2.2.2 Exact Probabilities for Incomplete Chains

Requiring allm genes of interest to appear in a single chain is often too strict a requirement.Frequently,
only a subset of them genes of interest are found in close proximity in the genome [2, 45, 55, 65,83, 90,
91, 101, 103, 127, 136, 154, 157, 167]. For example, in Figure 2.2, wheng = 2, the marked genes form
three maximalg-chains: the first of sizeh = 3, the second of sizeh = 5, and the last of sizeh = 1.

Thus, in this section I provide a statistical test forincompletemax-gap chains: maximalg-chains of
sizeh < m. In this case, the maximum gap valueg is fixed in advance. We search the genome for all
maximal chains of marked genes. The test statisticHmax represents the size of the largest chain, where the
largest chain is the one that contains the most marked genes. Thep-value is the probability under the null
hypothesis that the largest chain will be of sizeh or greater:PH = P0(Hmax ≥ h). This is simply the
probability of observingat leastone chain of sizeh or greater in a random genome.

Dynamic program to compute exact probabilities for incomplete chains whenh ≤ m

2
Unlike com-

plete chains, there can be more than one incomplete chain of sizeh or greater in the same genome. A simple
extension of Equation 2.4 to incomplete chains would therefore over-countpermutations containing more
than one chain. Instead, I present a simple dynamic programming algorithm to count those permutations
whichdo notcontain a chain of sizeh or greater, and subtract to obtain the probability of observing at least
one incomplete chain. The algorithm moves along the genome, adding a marked or unmarked gene at each
step. It keeps track of runs of marked genes that satisfy the max-gap chain criterion and avoids creating a
chain of sizeh or greater by judicious placement of unmarked genes.

The quantityNH̄ [n, m, j, q] represents the number of ways to placem marked genes inn slots without
creating a max-gap chain of sizeh or greater, wherej is the distance to the previous marked gene andq is
the size of any chain created so far. It is defined recursively as follows:

NH̄ [n, m, j, q] =





0, if q = h or n < m

1, else ifm = 0

NH̄ [n−1, m, j+1, q] + NH̄ [n−1, m−1, 0, q+1], else ifj ≤ g

NH̄ [n−1, m, j+1, q] + NH̄ [n−1, m−1, 0, 1], otherwise.
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c1 c2 c3 c4u1 u2 u3 u4

Figure 2.3: An incomplete2-chain of sizeh = 5 (in a rectangle), located in a genome ofn = 24 genes, with
m = 7 marked genes. There areh − 1 = 4 constrained gaps,m − h + 2 = 7 − 5 + 2 = 4 unconstrained
gaps, and one gap of size exactlyg + 1 (shown by the straight arrow).

The probability of observing at least one incomplete chain of size at leasth is then just one minus the
probability that the genome contains no incomplete chains:

PH(n, m, h, g) = 1− NH̄ [n, m, g + 1, 0](
n
m

) . (2.6)

The complexity of computingPH isO(nmgh). Sinceh < m, this is bounded above byO(nm2g). However,
in practicem will be significantly smaller thann. For example, the size of typical bacterial genomes ranges
from 500 to 5000 [153], whereas the average number of genes in an operon is predicted to be between two
and four, and the large majority of operons contain fewer than fifteen genes [186]. Vertebrate genomes
can be much larger. For example, the estimated size of the human genome is around 25, 000 genes [88],
but duplicated or conserved regions reported in the literature tend to include only five to thirty genes in a
window containing a hundred genes at most [2, 45, 55, 65, 83, 90, 91,101, 103, 127, 136, 154, 157, 167].
If we make the conservative assumption thatm ≤ √n and thatg is a small constant, then the running time
will be bounded above byO(n2).

Exact probabilities for incomplete chains whenh > m

2
Whenm > h > m

2 , the probability can be
computed directly because there can be at most one chain of sizeh or greater, so we do not have to worry
about over-counting permutations containing more than one chain. There arem−h marked genes that are not
in the chain. These genes can appear to the left or to the right of the chain.We enumerate permutations based
on the number of marked genes that appear to the left of the chain. To do thiswe divide the permutations that
contain a chain of sizeh or greater intom− h disjoint sets. LetEi represent the permutations containing a
chain of sizeh or greater, such that exactlyi marked genes are to the left of the chain, where0 ≤ i ≤ m−h.

The cardinality|Ei| can be computed easily using the generalized dice equation presented in Sec-
tion 2.1.2. There areh − 1 gaps in the chain, each constrained to be no more thang, so c = h − 1.
The total number of gaps ism + 1 (m − 1 between the marked genes, one left of the leftmost marked
gene, and one right of the rightmost marked gene). Thus, there areu = m + 1 − (h − 1) = m − h + 2
unconstrained gaps. Wheni = 0, the constrained and unconstrained gaps together must sum ton −m, so
|E0| = d(h−1, m−h+2, n−m). Wheni > 0 we have to ensure that there is a gap of at leastg + 1 between
the chain and the marked gene immediately left of it, as shown in Figure 2.3. Our goal is to enumerate the
permutations withi genes to the left of the chain. If there was a marked gene withing, to the left of the
chain, then that gene would be part of the chain, and there would only bei− 1 genes to the left of the chain.
Thus, wheni > 0 it is necessary to include a gap of sizeat leastg + 1 immediately left of the chain. The
generalized dice equation was only designed to handle gaps with a maximum size, not a minimum size. A
gap with a minimum size ofg + 1 can just be represented as two gaps—one of size exactlyg + 1, and one
unconstrained. Thus, the unconstrained and constrained gaps in this case must sum ton−m− (g + 1), and
wheni > 0, |Ei| = d(h− 1, m− h + 2, n−m− g − 1).
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Figure 2.4: Probability of a complete max-gap chain ofm marked genes in a genome of sizen = 500 (a) as
a function ofg and (b) as a function ofm.

The probability of observing at least one maximal chain of sizeh or larger is:

PH(n, m, h, g) =

∑m−h
i=0 |Ei|(

n
m

)

=
1(
n
m

) [d(h−1, m−h+2, n−m) + (m− h)d(h−1, m−h+2, n−m−g−1)]

(2.7)

This test is based only on the size of the largest chain, and thus may sometimes result in an error of the
second kind,i.e. it may not reject the null hypothesis of random gene order even though there is significant
clustering of the marked genes. For instance, in some cases the probability of observing at least one chain of
sizeh may be too large to reject the null hypothesis, yet the total number of chains will be much higher than
expected by chance. It is possible that an alternative test statistic, such as the number ofg-chains of size at
leasth, or the number of marked genes in chains of at least sizeh, may provide a test of higher power. This
is left for future work.

2.2.3 Experiments

The behavior of max-gap cluster statistics for a marked gene scenario wasinvestigated by plotting the
probabilities computed by Equations 2.4, 2.6, and 2.7 graphically. I selected parameter values corresponding
to the range of values seen in real analyses. For example, I selected values ofg ranging from0 to 50, since
typical values of this parameter used in genomic analyses range from threein bacteria [162] to about thirty
in human [110]. I calculated probabilities for genomes sizes of0.5K, 1K, 5K, 20K, and25K, corresponding
to typical gene sets for bacteria, yeast, worm, and higher eukaryotes likehuman andArabidopsis.

Complete chains The probability of finding a complete chain for varying values ofn, m, andg was
calculated from Equation 2.4. For complete chains I computed cluster probabilities for all values ofm
ranging from two to the genome sizen.
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Figure 2.5: Region of the parameter space that is statistically significant (shown in black) at theα = 0.0001
level for a complete chain in a genome of sizen = 500. (a) Complete parameter space wherem ranges
from 1 to 500. (b) Detail form ≤ 50.

Figure 2.4 shows the probability of observing a complete chain containing allm marked genes in a
genome of sizen = 500, asm ranges from5 to 250 andg increases from 0 to 50. The probability of finding
a complete chain increases monotonically withg. We might also expect that this probability will increase
monotonically withm, or equivalently, that larger chains will always be more significant, but this is not the
case. As Figure 2.4(b) shows, asm increases, the probabilities first decrease and then increase. This makes
sense intuitively if ones considers the extreme cases: whenm = 1 or m = n the probability of finding a
complete chain will clearly be one, and the values ofm in between these two extremes will have probabilities
of less than one. Calculations with larger genome sizes show that asn increases the probabilities decrease
but the general trends seen in Figure 2.4(b) remain the same. not shown).

Another question of interest is the range of values ofm and g for which it is possible to obtain a
significant chain. Figure 2.5 shows the parameter values for which the probability of observing a complete
chain in a genome of size500 is no more than 0.0001. The significant region of the parameter space is
shown in black, indicating that as gap size increases, the range of valuesof m for which it is possible to
obtain a significant chain becomes more and more restricted.

Incomplete chains I calculated the probability of finding an incomplete chain from Equations 2.6 and 2.7
for the values ofn andg as stated above. I chose to examine values ofm ranging from3 to 250, which
covers the range of gene numbers found in typical reference regionsof interest (cited above), and values of
h ranging from3 to m/2. Figure 2.6(a) shows that as the maximum gap size allowed increases, so does the
probability of finding an incomplete chain. Increasing the required size (h) of the chain, on the other hand,
decreases its probability of occurring by chance. Figure 2.6(b) showsthe probability of max-gap chains for
varying values ofm, whereh = m

2 . As in the case of complete chains, the probabilities first decrease then
increase withm. Probabilities were also calculated for larger genome sizes. Again, asn increases chain
probabilities decrease but the general trends are similar (data not shown).

Finally, Figure 2.6(c) shows the parameter values for which the probability of observing an incomplete
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Figure 2.6: (a) Probability of an incomplete chain of size at leasth whenn = 1000 andm = 50. (b)
Probability of an incomplete chain that contains at least half of allm marked genomes whenn = 500. (c)
Region of the parameter space that is statistically significant (shown in black)at theα = 0.0001 level for an
incomplete chain ofm = 100 marked genes in a genome of sizen = 1000.
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chain in a genome of sizen = 1000 with m = 100 marked gene is no more than 0.0001. For example, with
a maximum gap size ofg = 5, a chain is not significant until it contains at least20 marked genes.

2.3 Whole Genome Comparison

In a whole genome comparisonwe are given two genomes,G1 andG2, of lengthn1 andn2 respectively,
and a mapping between them homologs shared betweenG1 andG2. We are interested in assessing the
significance of a cluster composed of a set of homologs found in proximity in two different genomes, under
the assumption that both the homologs and the singletons are randomly distributedthroughout the genome.

Recall that we say a set of genes forms a max-gap cluster only if they forma max-gap chain in both
genomes of interest, and the cluster ismaximal, in other words the set of genes is not included within any
larger max-gap cluster. The span of two max-gap clusters can overlap, but their gene content will always be
disjoint, i.e.a gene can be contained in only one maximal cluster.

Whenh = m, the probability of finding a complete max-gap cluster when comparing two genomes of
sizen1 andn2 is P (n1, m, g) · P (n2, m, g) whereP (n, m, g), defined in Equation 2.4, is the probability
of observing a complete chain ofm marked genes in a single genome. For whole genome comparison,m
is the number of shared homologs. Figure 2.4(b) shows howP (n, m, g) varies asm ranges from2 to n.
Recall that for whole genome comparison the percentage of homologous genes shared between two closely
related genomes may be quite high. Thus, squaring the probabilities in Figure 2.4(b) would result in many
parameter values for which the probability of a complete cluster will approachone.

To understand this, first consider the simpler case in which the gene sets are identical; e.g.,m=n. In this
caseP (n, m, g) equals one; under a simple model of identical gene content, there will always be a max-gap
cluster of sizen, since a window that spans the entire genome will containn genes with no gaps, and then
genes will be identical in both genomes. Even without assuming identical genecontent, whenmg is large
with respect ton we will still be likely to observe extremely large clusters. Indeed, a complete cluster can be
found wheneverg is greater than the longest contiguous run of singletons. This observationhas implications
for the design of statistical tests.

Recall that for testing the significance of incomplete chains of marked genes, thep-value is equal to
the probability of observing a chain of sizeh or greater. This conforms to the traditional approach in
hypothesis testing of determining the probability under the null hypothesis of obtaining a value of the test
statistic that ismore extreme(e.g. less likely) than the observed value. However, the probability of finding
a cluster by whole genome comparison may actually increase with the size of the cluster. For example, as
Figure 2.4 shows, the probability of a complete cluster is often greater than0.5. Whenever this is the case,
the probability of observing a cluster of sizem−1 must beless than0.5. Thus, there is no guarantee that
a larger cluster will be less likely to occur by chance, and so a larger cluster is not more “extreme” from a
statistical viewpoint. Thus, for whole genome comparison, rather than calculate the probability of finding
a cluster of size greater than or equal toh, I determine the probability of amaximalcluster ofexactlysize
h. I calculate this probability by counting the number of permutations of then1 andn2 genes that result
in a max-gap cluster containing exactlyh homologs, then divide that by the total number of permutations
possible.
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Figure 2.7: A dot plot comparing two genomes—G1 on the vertical andG2 on the horizontal axis—that
sharem = 7 homologous gene pairs. Singletons are drawn on the axes as circles, butnot shown in the dot
plot.

2.3.1 Bounds on Cluster Probabilities

One strategy for counting all permutations that contain a cluster of size exactly h is to first count the ways
of creating a cluster ofh homologs and then count the number of ways of judiciously placing the remaining
m−h homologs so that they cannot extend the cluster to make it larger. The challenge is to determine which
regions are “safe” for thesem−h outergenes.

To determine which regions are “safe” it can be useful to think about a cluster in a two-dimensional
space, such as the dot plot in Figure 2.7, whereG1 is on the horizontal axis,G2 is on the vertical axis,
and the cluster is represented in the center. In this example, a non-maximal cluster of size three ({124}) is
contained within a cluster of size five ({12456}). For a gap size ofg = 1, how many configurations of the
remaining four outer genes are “safe,” i.e. do not extend the cluster of size three? Clearly the black rectangle
defined by the cluster itself is unsafe, as is the dark gray “moat” of widthg around its border, since any gene
that lies in these regions will increase the size of the cluster beyondh = 3. What about locating a gene
within g positions from the cluster in only one of the genomes (e.g. the regions delineated by dotted lines in
Figure 2.7)? This region is not necessarily unsafe. For example, gene7 is within a distanceg of the cluster
in G2 yet does not extend the cluster since it is far from the cluster inG1. On the other hand, though neither
genes5 nor 6 can independently extend the cluster (since each is further thang away from the cluster on
one of the genomes), together they successfully extend the cluster of sizethree to one of size five. Thus it
is not clear how to exactly specify the unsafe regions so that we count allvalid permutations while at the
same timenot counting those permutations in which the cluster can be extended. Instead, Iuse the above
intuition to devise an upper bound for the probability of finding a shared cluster of size exactlyh. The key
observation is that an outer gene may be within a distance ofg from the cluster inG1 (like genes3 and5),
only if its homolog is located at leastg genes from the cluster onG2.

Upper Bound for Incomplete Clusters My upper bound counts the number of ensembles of them ho-
mologs on both genomes which satisfy the following criteria: there existh homologs that form a chain on
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both genomes, and there does not exist any other homolog that is within a distanceg of the chain onboth
genomes. The key observation is that an outer gene is permitted within a distance ofg from the chain inG1

only if its homolog is located at leastg + 1 genes from the chain onG2 (like genes3 and5). This strategy
is guaranteed to count all permutations that contain a max-gap cluster of sizeh, but because of its limited
look-ahead (as discussed in Section 2.3) it will also incorrectly count somepermutations which contain a
cluster of sizeh, but for which that cluster is not maximal (such as the cluster of size three inFigure 2.7).
Thus, this approach provides an upper bound on the probability of observing a max-gap cluster ofh genes.

Let M be the set of allm homologs shared between the genomes. As stated previously, no gene is
permitted in the dark gray region, since any gene in this region will extend the cluster. Thus, the setM can
be divided into three subsets corresponding to the three legal regions indicated in Figure 2.7:

1. H ⊂ M is the set ofh homologs that form a chain in both genomes (e.g. the black region in Fig-
ure 2.7),

2. T ⊂ M−H is the (possibly empty) set oft homologs that are located within a distanceg from the
cluster onG1 but notG2 (e.g. the light gray regions), and

3. R = M−H−T is the set ofr=m−h−t genes that arenot within a distanceg from the cluster onG1

(e.g., the unshaded regions).

The upper bound is the number of ways of placing these three subsets of genes on both genomes so that
all constraints are satisfied, divided by the total number of ways to place them homologs. To compute the
upper bound on the probability of observing a cluster of sizeh, we must sum over all possible values oft,
which yields

Pup(h, g, n1, n2, m) =
1
(

n
m

)2
min(m−h,(h+1)g+2)∑

t=0

h!t!r!

m!
· q1 · q2, (2.8)

whereq1 is the number of ways of “safely” placing the genes (according to the constraints on each set) in
G1 andq2 is the number of ways of “safely” placing the genes inG2. The factorials account for the different
number of ways of ordering the genes within each subset (H, T , andR) versus the unrestricted case in
which allm homologs can be permuted indistinguishably. Note that the upper bound on thesum is typically
(h + 1)g + 2 rather thanm− h, because whent > (h− 1)g + 2(g + 1) (the maximum number of positions
within g of a chain of sizeh), q1 will be zero.

Bothq1 andq2 can be formulated as instances of a more general problem: the number of ways of placing
m = h + y + f + a genes in a genome ofn genes, such thath genes form ag-chain,y genes are close
to the chain (i.e., within g genes),f genes are far from the chain (i.e. more thang genes away), and the
remaininga genes are anywhere. Letq[h, y, f, a, n] represent this number, thenq1 = q[h, t, r, 0, n1] and
q2 = q[h, 0, t, r, n2]. To computeq[h, y, f, a, n] we enumerate over all possible values ofl, wherel is the
length of the chain:

q[h, y, f, a, n] =

min(Lh,n)∑

l=h

max(0, n−l−2g−1) dg(h− 1, 0, l − h)

(
b− h

y

)(
n− b

f

)(
n− h− y − f

a

)

+

min(g,n−1)∑

i=0

E · dg(h− 1, 0, l − h)

(
b′ − h

y

)(
n− b′

f

)(
n− h− y − f

a

)
,

(2.9)
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where the length of the chain plus its bounding moats (as shown in Figure 2.7) isgiven byb= l + 2(g + 1),
andE is defined below. The last term counts chains within a distancei ≤ g of either end of the genome.
In this case, the size of the chain plus its bounding moats isb′ = min(n, l+i+g+1). Generally, there are
two possible chains of lengthl within i of either end of the genome: one near the beginning of the genome
and one near the end. In this caseE =2. However, whenl ≥ n − i − g, the chain spans almost the entire
genome, and will be simultaneously close to both ends, soE =1.

Wheny = 0, q can be computed more efficiently, since we do not have to ensure that any genes are
close to the chain. We first consider the number of ways of placing theh genes in a chain, and thef genes
far away, then multiply this number by

(
n−h−f

a

)
, the number of ways of placing the remaininga genes in

any of the remaining positions.

The computation is very similar to that for Equation 2.7, except that we are interested in a chain of size
exactlyh, rather thanat leasth. We must ensure that when any of thef far genes are to the right side of the
chain, then there is a moat ofg + 1 genes to the right of the chain. We divide the ensembles that contain a
chain of sizeh into f + 1 disjoint sets. LetFi represent the permutations containing a chain of sizeh, such
that exactlyi of thef homologs are to the left of the chain, and the remainingf − i homologs are to the
right of the chain, and none of thef genes are withing genes of the chain. Again, the cardinality|Fi| can
be computed easily using the generalized dice equation presented in Section 2.1.2. There areh − 1 gaps
in the chain, each constrained to be no more thang, soc = h − 1. The total number of gaps ish + f + 1
(h + f − 1 between theh + f genes, one left of the leftmost gene, and one right of the rightmost gene).
Thus, there areu = f + 2 unconstrained gaps. Wheni = 0, all the far genes are to the right of the chain. In
this case we have to ensure that there is a gap of at leastg + 1 between the chain and the gene immediately
right of it. In other words, the constrained and unconstrained gaps together must sum ton−h−f − (g+1),
so |F0| = d(h−1, f+2, n−h − f − (g + 1)). Wheni = f , the calculation is identical. When0 < i < f
we have to ensure that there is a gap of at leastg + 1 to the left of the chain,and to the right of the chain.
In this case, the unconstrained and constrained gaps in this case must sumto n − h − f − 2(g + 1), and
|Ei| = d(h− 1, f+2, n− h− f − 2(g − 1)). Putting these terms together, yields:

q[h, 0, f, a, n] =

(
n− h− f

a

) f∑

i=0

|Fi|

=

(
n− h− f

a

)
· [(f − 1)dg(h− 1, f + 2, n−h−f−2(g + 1)) + 2dg(h, f + 2, n−h−f−(g + 1))]

(2.10)

Pup(h, g, n1, n2, m) can then be computed using Equations 2.9 and 2.10.

Lower Bound for Incomplete Clusters A similar approach can be used to calculate a lower bound on
the probability of observing a max-gap cluster of sizeh, for all h > m

2 . To compute the upper bound, an
outer gene was permitted within a distanceg of the chain onG1 or G2 but notboth. However, as explained
previously, this constraint on the location of the outer genes is not sufficient to guarantee that the cluster is
maximal. For example, both genes 5 and 6 in Figure 2.7 are individually “safe”, but together they extend
the cluster. Consequently, the constraint leads to over-counting, and thus the upper bound.

To compute the lower bound we strengthen the constraint so thatnooutsider is allowed within a distance
g of the cluster onG1, regardless of where it is located inG2. This is unnecessarily restrictive but guarantees
that a cluster is maximal. The choice ofG1, however, is arbitrary. A constraint thatno outsider is allowed
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within a distanceg of the cluster onG2, regardless of where it is located inG1 would also guarantee a
maximal cluster. My lower bound is the probability of an ensemble that satisfies either of the two constraints
above, e.g. the union of the two constraints. By the inclusion-exclusion rule, the union is simply the sum of
the probability that each constraint is satisfied minus the probability that both constraints are satisfied.

Assuming equal genome sizes, the first and second scenarios are symmetric, and consequently the prob-
abilities are equal. The probability can be computed by Equation 2.8, replacingq1 with q3, defined below.
The intersection of the two constraints is not empty, i.e. the two scenarios are not independent; in enumerat-
ing all permutations that obey either constraint we will have double counted those permutations in whichno
homolog is within a distanceg of the chain ineithergenome. Thus we must subtract out the probability of
observing a cluster of sizeh where there is no homolog within a distanceg of the cluster in either genome.
This probability can also be computed from Equation 2.8, except we again replaceq1 with q3, andq2 is
replaced byq4, also defined below. Combining these two applications of Equation 2.8 yields a lower bound
on the probability of observing a cluster of exactly sizeh:

Plow(h, g, n1, n2, m) =
1
(

n
m

)2
m−h∑

t=0

h!t!r!

m!
(2 · q2 · q3 − q2 · q4) . (2.11)

The expression forq3 is similar to that forq1, except thet close genes can no longer appear in the moat on
G1, so the

(
b−h

t

)
and

(
b′−h

t

)
in Equation 2.9 are both replaced by

(
l−h

t

)
:

q3 =

min(Lh,n)∑

l=h

max(0, n−l−2g−1) dg(h− 1, 0, l − h)

(
l − h

t

)(
n− b

r

)

+

min(g,n−l)∑

i=0

E · dg(h− 1, 0, l − h)

(
l − h

t

)(
n− b′

r

)
.

(2.12)

The expression forq4 is similar to that forq2. However, ther genes, rather than allowed anywhere at
all, can be anywherebut the moat:

q4 = (t + 1)

(
n− h− t− 2(g + 1)

r

)
dg(h− 1, t + 2, n− h− t− 2(g + 1))

+2

g∑

i=0

(
n− h− t− (g + 1 + i)

r

)
dg(h− 1, t + 2, n− h− t− (g + 1 + i))

(2.13)

In the general case, the moat is of size2(g + 1) so we just subtract this in the first binomial. In the two edge
cases, in which all thet far genes are on one side of the chain, we now need to know how large themoat is
in each case to know how many ways there are to place ther genes so that none falls in the moat. Thus, we
sum overi = 0..g, wherei is the size of the moat left of the chain.

Equation 2.11 is guaranteed to give a lower bound on the probability of observing a cluster of sizeh for
all h > m/2. However, whenh ≤ m/2, a permutation may contain more than one cluster of sizeh. The
strategy described above enumerates clusters according to their position inthe genome, so a permutation
with two clusters of sizeh at different locations will be double counted. Ash decreases, the percent of
random genomes that contain multiple clusters will increase, and the probabilitywill be correspondingly
overestimated. For small values ofh, it is possible that the probability computed by Equation 2.11 will
actually exceed the true probability.
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Figure 2.8: Comparison of simulation results (solid lines) to upper bound (dashed lines) and lower bound
(dotted lines). Probability of finding max-gap clusters of sizeh when (a)n=1000, m=250, andg=10, (b)
n=1000, m=250, andg=20, and (c)n=500, m=166, andg=15.

2.3.2 Experiments

In order to investigate the accuracy of the bounds in different regions of the parameter space, I compared
them to the probability of finding max-gap clusters in randomly permuted genomes, estimated through
simulation. A number of different parameter values and genome sizes were analyzed. For each set of
parameter values, I generated one million random permutations of two genomes, and used the GeneTeams
software [10] to find all max-gap clusters. In Figure 2.8, the upper bound (dashed line) and lower bound
(dotted line) are compared to the probabilities estimated from the simulations (solid line). Notice that in
Figure 2.8(a) the simulated probabilities are only shown forh ≤ 10 since only one million random trials
were generated, and that is the cluster size at which the probabilities drop below10−6.

First, I considered how the ratio of gap size to genome size affects the accuracy of the bound. As
Figure 2.8(a) illustrates, when the maximum gap size is small with respect ton (about 1%), the upper bound
is extremely accurate for all values ofh. However, when the maximum gap size is larger with respect ton
(2% or 3%), then the bounds are only exact when estimating the probability ofa large or complete max-gap
cluster. This is illustrated in Figure 2.8(c), which shows the behavior of the bounds whenn=500, m=166,
andg = 15. For these parameter values, the bounds are extremely accurate for large values ofh, but begin
to diverge significantly ash drops below100. To what extent does the divergence of the upper bound affect
the conclusions we may draw about cluster significance? At a significancelevel of 0.01, for example, the
error in the upper bound would lead to the unnecessary elimination of significant clusters of size8 to 15. At
a significance level of 0.001, however, the upper bound could be usedto correctly determine that no matter
how large the cluster size, the null hypothesis cannot be rejected.

In addition to accuracy, I also considered the monotonicity of the probabilitieswith respect to cluster
size. My analysis shows that, under a null hypothesis of random gene order, the probabilities of observing a
max-gap cluster are not always monotonic with respect to cluster size, butoften decrease initially and then
increase ash approachesm. For example, whenn = 1000, m = 250, andg = 20, Figure 2.8(b) shows that
the chance probability of observing a cluster of fifty genes is actually smallerthan the chance probability of
observing a cluster of 100 genes. This non-monotonic behavior can be understood intuitively by observing
that, as the size of the cluster increases, the max-gap criterion implicitly increases the maximum allowed
window size. As a result, as the size of the cluster sought increases, the probability of observing such a
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Cluster Size
gap 2-3 4-10 11-26 27-60 > 60

1 108 21 1 0 0
5 112 26 1 0 0
15 144 32 2 0 0
50 165 50 6 2 1
100 0 0 0 0 2

Table 2.2: Number of max-gap clusters of varying sizes shared betweenE. coli andB. subtilisfor a range of
gap values.

cluster may grow substantially as well.

In order to demonstrate the utility of these statistical tests, I conducted a whole genome comparison of
theE. coli andB. subtilisgenomes. A mapping of homologs between the two genomes was obtained from a
website1 maintained by A. K. Bansal [6]. TheE. coli genome hasn=4108 known genes and theB. subtilis
genome hasn = 4245 known genes. After eliminating ambiguous orthologs, the map yieldsm = 1315
homologous pairs. Using the GeneTeams software [10], I identified all max-gap clusters shared between the
two genomes, for values ofg ranging from0 to 110. Wheng = 110, all homologs formed one complete
cluster.

A subset of the results selected to show the general trends is shown in Table 2.2. In addition, Figure 2.9
shows the sizes of the clusters found with a range of different gap sizes. The results fall into three regimes.
Wheng = 0 . . . 40, cluster sizes range from two to twelve, except for one larger cluster ofsize20 to 30.
Wheng = 40 . . . 70, clusters sizes have a larger range, from two to about600. Finally, for gap sizes of
g ≥ 70, the homologs form only one or two large clusters.

To assess the accuracy of my upper bound for this bacterial dataset, I again compared it with estimates
of the probability of finding max-gap clusters in randomly permuted genomes ofthe same size, obtained
through simulation. I generated one million random permutations of two genomes with n = 4108 genes
andm = 1315 homologs, and again used the GeneTeams software [10] to find all max-gapclusters with
gap sizes ranging fromg = 0 to 100. Figure 2.10 compares my upper bound, calculated from Equation 2.8
(dashed lines), with the probabilities estimated from simulations (solid lines). Theaccuracy of the bound
depends on bothh andg. The bound appears to be quite accurate wheng is between one and fifteen, but
asg becomes larger the bound diverges from the estimated probabilities for smallvalues ofh. However, as
h approachesm, the bound provides a very accurate estimate of the probability even for largeg. Note that
although one million random permutations were carried out to estimate the cluster probabilities, clusters
of size20 ≤ h ≤ 1314 occurred only infrequently, and thus forg = 15 the probability estimates from
randomized genomes still have high variance in this region. Although the upper bound appears to drop
below the simulated probability forh = 1312 andh = 1306, this is due to the fact that one million iterates
are insufficient to obtain a precise probability estimate in this region of the parameter space.

Since the upper bound is highly accurate for0 ≤ g ≤ 15, it can be used to evaluate the significance
of clusters detected through whole genome comparison. If we consider a significance threshold of 0.001,
then Figure 2.10 shows that clusters of size three and larger are unlikely tobe observed given random gene
order wheng = 0. Wheng = 15, however, only clusters of size seven or larger appear to be significant.

1http://www.cs.kent.edu/˜arvind/intellibio/database/ orthologs
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Using these statistics, we find a total of128 homologs in some significant cluster wheng = 0, whereas191
homologs are in a significant cluster wheng = 1, and only82 are in a significant cluster wheng = 15. This
suggests that using a gap value ofg =1 provides more discriminatory power than eitherg =0 or g =15 for
this dataset.

For g ≤ 40, most max-gap clusters contain two to ten genes, which corresponds to the range of sizes
for typical operons [186]. I compared the clusters to the RegulonDB database of experimentally determined
operons inE. coli [137], and verified that for gap sizes of zero to ten, over 90% of the clusters are comprised
entirely of genes from a single operon. The single large cluster of over twenty genes is composed entirely
of ribosomal proteins, which together form the ribosomal “super-operon” in E. coli.

An intriguing observation is that the number of large clusters seems to be fewer than expected under
the null model. Wheng ≥ 25, the model predicts that the probability that all genes will form a complete
cluster is close to one. However, a gap size ofg > 100 is required to obtain a complete max-gap cluster
in the bacterial dataset. This discrepancy can be explained by the presence of operons. Since the genes in
operons are densely clustered [37], the singletons will be clustered moredensely as well. These runs of
singletons form large gaps and prevent large clusters from forming as often as they would under a model of
random gene order. This is one piece of evidence that the max-gap cluster definition is a good discriminator,
since the frequency of both small and large clusters is clearly different than that expected under the null
hypothesis, at least for this dataset. In eukaryotes, clusters will generally be due to shared ancestry rather
than conserved operons, and so the difference between the observed and predicted cluster sizes may not be
so extreme.

The tests developed in this section follow the common practice of using cluster size as the test statistic.
Size is the most commonly selected test statistic for a variety of cluster definitions.This choice is based
on the natural intuition that the more homologs in a cluster, the lower the probabilitythat it could have
occurred by chance, and thus the more confidence we can have that thecluster is truly indicative of common
ancestry. For example, ther-window definition constrains the maximum length of a cluster, then evaluates
the significance of a cluster according to its size. Forr-windows, since the length is constrained, an increase
in size corresponds to an increase in global density, which, as shown in Durand and Sankoff [50], does
indeed correspond to a reduced probability that such a cluster would occur by chance in randomly ordered
genomes.

For max-gap clusters, however, we have demonstrated that the probabilityof observing a cluster by
chance may actually increase with the size of the cluster. Unlike forr-windows, the max-gap definition
does not constrain the length of the cluster. This is considered one of the key strengths of the max-gap
definition, but it is also a weakness. As the size of the cluster grows, the length of the window containing it
is also allowed to grow. Consequently, the probability of observing a max-gap cluster in randomly ordered
genomes will often increase as the cluster size increases. We showed thatthe cluster probabilities under
the null hypothesis are not even guaranteed to be monotonic with respect tosize: the probabilities may
first decrease with size, then eventually begin to increase. Although thereis a widespread belief that cluster
significance grows with the number of homologs in the cluster, it is critical to recognize that for some cluster
definitions, larger clusters do not always imply greater significance. Thisobservation has implications for
the design of statistical tests, in particular the choice of test statistic.

In a standard hypothesis test, thep-value is the probability, under the null hypothesis, of obtaining a value
of the test statistic that is as extreme or more extreme (e.g. less likely) than the observed value. However,
if a larger cluster is actually more likely to occur by chance, then a larger value of the test statistic is not
more “extreme” from a statistical viewpoint, and such a test is not well-founded. More generally, any model
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G1 G2 n1 n2 m

E. coli B. subtilis 4, 108 4, 245 1, 315
Human Mouse 22, 216 25, 383 14, 768
Human Chicken 22, 216 17, 709 10, 338

Table 2.3: The genomes compared (G1 andG2), the total number of genes in each genome (n1 andn2,
respectively), and the number of orthologs identified, excluding ambiguous orthologs (m).

for which the pdf of the test statistic is not unimodal poses difficulties for hypothesis testing. This is not
merely an abstract statistical issue, but suggests a failure to accurately capture the full interaction between
cluster properties and cluster significance [79]. Thus, before settling on a test statistic, its distribution under
the null hypothesis should be investigated. For many of the cluster definitionsthat have been proposed,
there has been little statistical scrutiny. Rarely is the null hypothesis or the teststatistic formally stated,
and thus it remains to be investigated whether the significance tests being conducting are in fact statistically
well-founded.

2.3.3 Are Max-Gap Clusters in Genomic Data Nested?

Cluster definitions that constrain the gap size between marked genes are widely used in genomic studies [6,
11, 20, 37, 102, 110, 124, 151, 162, 171, 175]. An efficient algorithm for finding max-gap clusters (as
defined above) via whole genome comparison has been presented by Bergeronet al. [10]. However, other
groups [7, 11, 30, 32, 37, 73, 82, 110, 124] use a greedy, bottom-up heuristic in which larger clusters are
built iteratively from smaller clusters. Each homologous gene pair serves as a cluster seed, and a cluster is
extended by looking in its immediate neighborhood for another homologous gene pair close to the cluster
on both genomes. In each step, the heuristic “looks ahead” a certain number of positions to see if additional
homologs may be added to the clusters without violating the max-gap constraint. It can easily be shown
that a simple greedy approach with a look-ahead in either direction of sizeg + 1 will not find all max-gap
clusters [10]. For example, given genomesG1 = 12* 34* andG2 = 31* 4* 2, regardless of the starting
point, a greedy approach using a gap size ofg=1 will not find the (valid) max-gap cluster{1,2,3,4 }. In
fact, unless the algorithm “looks-ahead” all the way to the end of the genome, it is not guaranteed to find all
max-gap clusters [10].

It is instructive to compare the properties of clusters found by such heuristics with those ofgeneral
max-gap clusters (all clusters that satisfy Definition 2.1.5). Greedy search algorithms implicitly limit the
results to nested clusters, where a cluster of sizek is nestedif, for eachh ∈ 1 . . . k − 1, it contains a valid
cluster of sizeh. Intuitively, it may seem that any reasonable cluster definition should havethis property.
In fact, clusters with no ordering constraints are not necessarily nested, as illustrated in the example above.
Nested max-gap clusters comprise only a subset of general max-gap clusters found through whole genome
comparison. It can be shown that any greedy search algorithm that constructs max-gap clusters iteratively,
i.e. by constructing a cluster of sizek by adding a gene to a cluster of sizek − 1, will find exactlythe set
of all maximal nested max-gap clusters, as long as it considers each homologous gene pair as a seed for a
potential cluster. In such cases, although order is not explicitly constrained, the search algorithm enforces
implicit constraints on gene order: nested clusters can only get disordered to a limited degree. In most cases,
however, such constraints are not acknowledged, and perhaps noteven recognized.

Such implicit constraints may be particularly problematic when the goal is to characterize the properties
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Algorithm 1 A greedy, bottom-up algorithm to find nested max-gap clusters.
1: clusters← {}
2: for i = 1 to n do // i iterates through all genes inG1

3: C← {i} // C is the cluster being constructed
4: L1 ← R1 ← i; // Li andRi are the left/rightmost positions ofC onGi

5: L2 ← R2 ← p(i); // p(i) indicates the position of genei’s homolog inG2

6: j ← L1 − g − 1; // j iterates through all genes close toC onG1

7: while L1-g-1≤ j ≤ R1+g+1do
8: if j /∈ C andp(j) ∈ {L2 − g − 1, . . . , R2 + g + 1} then // if j is close toC in G2

9: C = C ∪ {j}; // add the gene to clusterC
10: L1 = min(L1, j); L2 = min(L2, p(j));
11: R1 = max(R1, j); R2 = max(R2, p(j));
12: j = L1 − g − 1; // start the search over
13: else
14: j++
15: end if
16: end while
17: clusters← clusters∪ {C}
18: end for

of homologous regions. For example, although the CloseUp algorithm was ostensibly designed to identify
chromosomal homology using “shared-gene density alone” [73], the greedy nature of the search algorithm
means that all clusters with a minimum gene density may not actually be detected. Ifsuch an approach was
used to evaluate the extent to which order is conserved in homologous regions, incorrect inferences could be
made. If clusters with highly scrambled gene order were not found, one might erroneously conclude that no
such clusters exist, rather than that the clustering algorithm was simply not capable of finding them. Without
a clear understanding of which properties are constrained by the method,and which properties are inherent
in the data, it can be difficult to interpret such results.

In this section, we investigate the practical consequences of choosing one search procedure over the
other. We compare three pairs of genomes to determine the proportion of max-gap clusters in real genomes
that are actually nested. Whole genome comparisons of three pairs of genomes at varying evolutionary dis-
tances were conducted. The first comparison was ofE. coli andB. subtilis, with a mapping of orthologs be-
tween the two genomes obtained from the GOLDIE database [6]. The other two comparisons were of human
and mouse, and human and chicken, with ortholog mappings obtained from theInParanoid database [118].
The total number of genes in each genome, and the number of orthologs identified, is given in Table 2.3.

The GeneTeams software, an implementation of the top-down algorithm of Bergeronet al. [10], was
used to identify all maximal max-gap clusters shared between the two genomes,for g ∈ {1, 5, 10, 15, 20, 30, 50}.
In addition, we designed a simple bottom-up, greedy algorithm to identify all maximal nestedmax-gap clus-
ters (Algorithm 1). This algorithm considers each pair of orthologs in turn,treating each as a cluster seed
from which a greedy search for additional orthologs is initiated. Occasionally different seeds may yield
identical clusters. Any such duplicate clusters are filtered out, as are non-maximal nested clusters (clusters
strictly contained within another nested cluster). However, overlapping clusters (e.g.properly intersecting
sets) are not merged together, since the resulting merged clusters would not be nested.2

2It is unclear whether those who employ a greedy heuristic merge all overlapping clusters or not, since such heuristics are
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Figure 2.11: Comparison of the set of nested clusters to the set of gene teams, for g ∈
{1, 5, 10, 15, 20, 30, 50}. (a) The fraction of gene teams that arenot nested. (b) The fraction of maximal
nested clusters that arenot gene teams.

For the bacterial comparison, for all gap values exceptg = 50, both methods found the same set of
clusters,i.e. all gene teams were nested. In all eukaryotic comparisons, however, atleast one non-nested
gene team was identified. Nonetheless, the percentage of teams that were not nested remained low for
all comparisons, ranging from close to 0% to about 2% as the gap size was increased (Figure 2.11(a)).
The percentage of nested clusters that were not gene teams (in other words, clusters that could have been
extended further if a greedy algorithm had not been used), was also close to zero for small gap sizes, but
increased more quickly, peaking at almost 15% for a gap size ofg = 50 (Figure 2.11(b)). In contrast, in
randomly ordered genomes, although large gene-teams are much rarer, amuch higher percentage are not
nested (data not shown).

Another quantity of interest is the number ofgenesthat would be missed altogether if a greedy approach
is used rather than a top-down algorithm; that is, the number of genes that are found in a large gene team but
not in a large nested cluster. For a minimum cluster size of two, very few genes are missed: the number of
genes missed remains under 20 for both eukaryotic datasets, no matter how large the gap size (Figure 2.3.3,
circles). For a more realistic minimum cluster size of seven, however, the number of missed genes rises
more quickly, peaking near 80 for the human/chicken comparison (Figure 2.3.3, triangles), and near 120 for
the bacterial comparison (data not shown).

The gene teams that are not nested tend to be the larger clusters. For example, Figure 2.13 compares the
distribution of gene teams sizes to the distribution of non-nested gene teams sizes, for the human/chicken
comparison, for the complete set of clusters identified at any gap size. Thegene team size distribution peaks
very quickly: over 80% of gene teams contain fewer than ten genes. The sizes of non-nested gene teams,
however, peak much more slowly: only about 10% of non-nested gene teams contain fewer than ten genes.
It is not until the size reaches 270 genes that the CDF reaches 0.8.

generally specified quite vaguely, if at all. In our datasets, only a small percentage of clusters detected with the greedy algorithm
overlapped (e.g.2% in the human/chicken comparison).
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In summary, when comparingE. coli with B. subtiliswith reasonable gap sizes, the nestedness assump-
tion does not exclude any clusters from the data. For the eukaryotic datasets, these results also suggest
that for smaller gap sizes few clusters are missed when using a greedy search strategy. For larger gap val-
ues, the nestedness assumption does appear to lead to some loss of signal, especially in the human/chicken
comparison: large clusters are identified only in fragments, and the spatial clustering of many genes is not
detected at all. For more diverged genome pairs, as clusters become more disordered, this loss of signal may
be exacerbated. Furthermore, a higher fraction of non-nested clusters may be found when the homology
mapping is many-to-many. These questions remains to be investigated, as do thepractical implications of
the nestedness assumption on the detection of duplicated segments through genome self-comparison.

In Section 2, I presented a statistical model forgeneralmax-gap clusters identified through whole
genome comparison. The results presented there are not applicable to clusters found with a greedy heuristic
or for studies in which only nested clusters are of interest. In particular, since nested max-gap clusters are
a subset of general max-gap clusters, we expect to find fewer nestedclusters than general clusters under
the null hypothesis. This is especially true for large clusters. In addition, the enumeration strategy I use to
derive statistics relies on the fact that max-gap clusters are disjoint and that gene order is irrelevant. Neither
of these properties holds for nested clusters [79]. Statistics for nested max-gap clusters remain an open
problem.

The significance of the results reported here goes beyond the vagariesof two competing methods for
finding clusters with gaps. Our results also show that, for the datasets considered here, a greedy search
strategy for max-gap clusters may actually improve statistical power, at leastfor small gap sizes. A test of
cluster significance will have increased power (i.e. a reduced number of false negatives) when the cluster
definition is as narrow as possible, while still capturing the properties exhibitedby diverged homologous
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regions. These properties, however, are generally not known, since there is little data about evolutionary
histories or processes. In some cases, however, the appropriateness of a particular property can be evaluated
even without full knowledge of evolutionary histories [49, 79]. For example, if adding an additional con-
straint to the cluster definition does not eliminate any of the clusters identified in the data, then I argue that it
is not only acceptable to include such a property in the cluster definition, butdesirable, in order to increase
statistical power. Thus, when comparingE. coli with B. subtiliswith reasonable gap sizes, a nested cluster
definition appears to be a good choice: the nestedness assumption does not exclude any clusters from the
data, but substantially reduces the probability of observing a cluster by chance, thereby strengthening the
statistical significance of detected clusters.

It may be that considering order more explicitly, either in the cluster definition,or in the test, results
in additional discriminatory power. Nestedness implicitly enforces order constraints on a cluster, but it is
a binary constraint. It may be that this constraint is unnecessarily weak, or unnecessarily strong. Thus,
explicitly considering order in the statistical test may be preferable to requiring clusters to be nested. More
quantitative measures of order conservation may be found that increasestatistical power still further. How to
best quantify the degree to which order is conserved, however, remains an open question. A first step in this
direction has been taken by Sankoffet al. [144], who proposed a number of quantitative measures of gene
order. However, analyses comparing the discriminative power of these measures in genomic data have not
yet been carried out. How to best quantify and/or constrain the degree towhich order is conserved remains
an open question.

The use of search heuristics can be particularly dangerous when attempting to draw conclusions about
the degree of disorder observed in homologous regions. Researchers may think that they have searched for
all max-gap clusters, but by using a greedy heuristic they have implicitly biased their search toward partially
ordered clusters, invalidating any conclusions they may draw about conservation of order.
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Chapter 3

Cluster Statistics for Three Windows

Existing statistical tests for gene clusters are designed almost exclusively for comparisons of only two ge-
nomic regions. With the rapid rate of whole genome sequencing, analysis of gene clusters that span three
or more chromosomal regions is of increasing interest. Studies investigating the role of two or more suc-
cessive rounds of whole genome duplications have searched for multiple homologous regions in the same
genome [110, 11, 47]. In addition, a number of methods have been developed for finding sets of clustered
genes across multiple genomes [30, 64, 122, 102, 125, 75, 109].

Even when only a pair of regions is under consideration, comparison with additional regions may in-
crease statistical power. In particular, to identify regions duplicated in a whole genome duplication (WGD),
comparisons with related genomes may be necessary. Although some evidence of WGD can be found by
comparing a genome with itself and looking for pairwise clusters, in many casesduplicated regions may not
be identifiable by direct comparison due tocomplementary gene loss: following a WGD, there is no imme-
diate selective advantage for retaining the majority of genes in duplicate, so one copy of most duplicates is
lost. As a result, the gene content of duplicated regions is often disjoint, or nearly so.

A solution to this problem is comparison with the genome of a closely related species that diverged
shortly before the WGD (apre-duplicationspecies). If two regions in the genome of thepost-duplication
species each have significant similarity to a single region in the genome of the pre-duplication species, they
are likely to be homologous even if they share few or no homologous genes.In the example shown in
Figure 3.1, thepost-duplicationregionsWpost1 andWpost2 have only one gene in common. However, they
share three and four genes, respectively, with the pre-duplication region Wpre. The strategy of comparison
with a pre-duplication genome enables the identification of duplicated regions,even when they share no
genes. It has been successfully employed to analyze duplications in fish [89], plants [96, 172, 173] and sev-
eral yeast species [93, 146]. However, statistical analyses for this approach have relied solely on sequential
pairwise tests. Statistical tests designed for three regions have the potentialto detect more highly diverged
duplicated regions, but are also more difficult to design.

In this chapter, I present statistical tests for three regions, developed incollaboration with Narayanan
Raghupathy [133]. These tests are based on ther-windows model introduced in Section 1.1.3 and assume
a window sampling search strategy. This approach is exemplified in Figure 3.2(a) which shows comparison
of two chromosomal regions, orwindowsof adjacent genes, (W1 andW2). The number of shared homologs
(y12, shown in Figure 3.2(b)) is typically used as the measure of similarity. However, this pairwise approach
cannot be directly extended for tests of clusters composed of more than twowindows. When comparing three
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Figure 3.1: A gene cluster spanning three regions with complementary gene loss. Genes are represented
as circles. Homologous gene pairs are connected by dotted lines. Intervening genes with no homologous
match within the regions are indicated by black circles. The windowWpre is sampled from a pre-duplicated
genomeGpre and the two regionsWpost1 andWpost2 are sampled from a post-duplicated genomeGpost.
Only the white gene has been retained in duplicate. The remaining genes inWpre occur only once inGpost.

(a) (b)

Figure 3.2: A pairwise gene cluster and its Venn diagram representation. (a) A gene cluster of two windows,
W1 andW2, of sizer1 = r2 = 5, which sharey12 =3 homologous genes. Genes are represented as circles.
Homologous gene pairs are connected by dotted lines. Intervening geneswith no homologous match within
the regions are indicated by black circles. (b) The Venn diagram representation of the pairwise comparison
of W1 andW2, which sharey12 homologous genes.

(a) (b)

Figure 3.3: A three region gene cluster and its Venn diagram representation. (a) A gene cluster of three
windowsW1, W2, andW3, in whichx123 = 1, x12 = 2, x13 = 1 andx23 = 1 homologs are shared between
the three windows. Genes are represented as circles. Homologous genepairs are connected by dotted lines.
Intervening genes with no homologous match within the windows are indicated byblack circles. (b) The
Venn diagram representation of the three-way comparison ofW1, W2, andW3, in which x123 homologs
appear in all three windows. The variablesxij represent the number of genes that only appear inWi and
Wj , andxi represents the number of genes that only appear in a single window,Wi.
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windows (W1, W2, andW3 in Figure 3.3(a)), there are many more quantities to consider (Figure 3.3(b)):
the number of homologs observed in all three windows (x123), the number of homologs observed in each
pair of windows (x12, x13 andx23), and the number of genes observed only in a single window (x1, x2, and
x3). Evidence for homology comes not only from the set ofx123 homologs that appear inall the windows
being compared, but also from the number of homologs that are shared bya subset of the windows (the
xij

′s, which we refer to collectively as thepairwise overlaps). How best to combine evidence from different
subsets of windows remains an unsolved problem.

In the first attempt to address this issue, we consider the problem of clusters spanning exactly three
regions. Given a set of three windows sampled from three genomes, each containingr consecutive genes,
we wish to determine whether the windows share more homologous genes than expected by chance. (If
duplications are under consideration, the windows may be sampled from non-overlapping regions of a single
genome.) This problem, while restricted to three windows, exhibits the basic challenges that arise in the
more general problem of clusters spanningk ≥ 3 windows.

In this chapter, we develop the first statistical tests that consider bothx123 andthexij
′s simultaneously.

We obtain expressions for the probability—under the null hypothesis of random gene order—that the number
of shared genes is at least as large as the number observed. These expressions are derived for genome
models that are appropriate for two common comparative genomics problems: (1) analyses of conserved
linkage groups in three regions from three genomes, and (2) identificationof segments duplicated by a
whole genome duplication, via comparison with the genome of a related, pre-duplication species. We show
through simulations that our tests for comparing three regions are more sensitive than existing approaches,
and have the potential to detect more diverged homologous regions.

3.1 Related Work

Durand and Sankoff [50] were the first to formally characterize the probability of a cluster in multiple
genomes. They derived an expression for the probability that in at leastN ′ of N ′ genomes there is a
window of sizer containing at leasth of m genes of interest. In this scenario, them genes of interested are
pre-specified. The subset ofm that appears in each window can differ, but the subset of genes that appear
in more than one window, or even all the windows, is not given additional weight.

Here we consider the following more general: Given three distinct genomic regions of interest, possibly
from multiple genomes, devise a test that considers all evidence that these regions are homologous. There are
three existing approaches for determining whether the number of genes shared by three regions is statistically
significant. Our Venn diagram model (Figure 3.3) can be used to compare these approaches and succinctly
illustrate the differences between them. We first introduce some notation. Consider three windowsW1, W2,
andW3, of lengthr1, r2, andr3, sampled from three non-overlapping genomic regions. Lety12=x123 +x12

be the total number of genes shared between windowW1 andW2. Note thaty12 includes the genes that are
shared byall three windows. Similarly,y13 = x123 + x13, andy23 = x123 + x23. The random variable
Y12 represents the number of homologs shared between two windows of sizer1 and r2, under the null
hypothesis.Y13 andY23 are defined analogously.

In order to determine the significance of gene clusters, the goal is to selecta test statistic that captures
the essential properties of the clusters of interest. For example, when comparing two windows of sizer1 and
r2, the test statistic is typicallyy12, the number of homologs shared between the two windows. Significance
is demonstrated by showing thatP (Y12 ≥ y12) is small, under the null hypothesis. In contrast, when
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comparing three windows it is less obvious how to choose an appropriate test statistic.

The most common strategy for testing significance of multiple regions is to conduct multiple pairwise
comparisons (reviewed by Simillionet al. [152]). A cluster is considered significant if regionW1 is signifi-
cantly similar toW2, andW2 is significantly similar to regionW3. In this case, homology between all three
regions is inferred, even ifW1 andW3 share few genes. Using the notation from our Venn diagram model,
we can express this formally: a cluster is significant at theα level when

P (Y12 ≥ (x123 + x12)) ≤ α andP (Y13 ≥ (x123 + x13)) ≤ α. (3.1)

Here the test statistics areY12 andY13. This approach allows the use of existing statistical methods designed
for comparing two regions. However, this strategy is conservative as it will only identify a three-way cluster
if at least two of the three pairwise comparisons are independently significant.

In a second approach, once a significantly similar pair of regions (W1 andW2) is identified, the genes in
these regions are merged to approximate their common ancestral region [152]. Then a second pairwise test
is conducted, in which the third region of interest is compared to this inferredancestral segment. With this
approach, a cluster is significant when

P (Y12 ≥ (x123 + x12)) ≤ α andP (Y1∪ 2,3 ≥ (x123 + x13 + x23)) ≤ α, (3.2)

whereY1∪ 2,3 is a random variable representing the number of genes shared between two windows of size
r1 + r2 − x123 − x12 andr3, under the null hypothesis. This approach still allows the use of pairwise
statistical tests, but is more powerful than the above approach, since the second step considers the genes that
occur inW2 as well as those that occur inW1, when comparing to a third homologous region. Nevertheless,
it still requires that at least one pair of regions be independently significant.

A third approach also merges two of the three regions (W1 andW2), but does not require that the regions
are significantly similar [123]. Rather, the only requirement is that the mergedregion be significantly similar
to the third regionW3:

P (Y1∪ 2,3 ≥ (x123 + x13 + x23)) ≤ α. (3.3)

When constructing the merged regionW1 ∪ W2, neither of these two methods (Equation 3.2 and Equa-
tion 3.3) distinguish between genes that appear in onlyW1 or W2, and genes that appear in bothW1 and
W2. Thus, all three approaches fail to explicitly recognize the additional significance of genes that occur in
all three regions (x123). Also, the first and the third methods do not consider evidence from all three pairwise
overlaps. No existing test considers both the three-way and pairwise overlaps simultaneously.

3.2 Overview

In this chapter we develop statistical tests for three windows, sampled independently from distinct chromo-
somal regions. This sampling approach is used when a researcher is interested in the region surrounding a
particular gene, then compares the regions containing this gene in three different genomes for evidence of
common ancestry. As long as the gene of interest is discarded from the statistical computation, our proposed
tests are applicable to clusters found by this sampling approach. It is importantto note, however, that these
tests are not applicable if the windows were selected by a whole genome scanning approach in which all
sets of three windows with genes in common are identified. In this case, the probability of observing the
cluster by chance will be greater, since the search space is larger. Using the tests proposed here to evaluate
the significance of clusters found by whole genome comparison will lead to false positives.
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(a) (b)

Figure 3.4: Gene content overlap models. The set of genes in each genome is represented as a circle. (a)
Orthology model:n123 genes are shared between all three genomes. The remaining genes are singletons,
i.e. they appear in only one genome . (b) Duplication model:Gpre is the union of two ancestral, duplicated
genomes embedded within it. Then1,2 genes that are retained in duplicate appear twice inGpost (once in
each embedded genome) and once inGpre. The light gray regions correspond to then1,1 genes that appear
once inGpre and once inGpost. These genes were preferentially lost. The dark gray regions correspond to
then0,1 genes that appear once inGpost, but do not appear inGpre. These genes are retained in singleton in
Gpost but lost inGpre.

The significance of a cluster depends not only on the search strategy used to identify the cluster, and the
properties of the windows (Figures 3.2(b) and 3.3(b)), but also on the properties of the genomes (Figure 3.4).
The relevant properties of the genomes are the total number of genes in each genome and thegene content
overlap— the fraction of genes shared among the three genomes. Depending on which biological questions
are being investigated, an appropriate model of gene content overlap willalso differ. Here, we develop
statistical tests for two different models of gene content overlap. The first, theOrthology Model, is designed
for comparisons of three regions selected from three distinct genomes. The second, theDuplication Model,
is for comparison of a pair of regions duplicated by WGD with a reference region selected from a pre-
duplication genome. Note that we use Venn diagrams to represent gene content overlap (Figure 3.4), but
these differ from the Venn diagrams of gene clusters (Figure 3.3). In theformer case, each circle represents
the complete set of genes in the genome, whereas in the latter case each circlerepresents only the set of
genes sampled from a specific region of the genome.

For each genome content overlap model we give analytical expressionsfor three-way statistical tests,
and compute cluster probabilities for representative parameter values using Mathematica. We investigate
the impact of different gene content overlap models and alternative test statistics on cluster significance, and
compare the sensitivity of our tests with that of existing approaches.

3.3 Exact Probabilities for the Orthology Model

We model a genomeGi as an ordered set ofNi genes,Gi=1, 2, . . . Ni. We ignore chromosome breaks and
physical distance between genes, and assume that genes do not overlap. We first consider a simpler version
of this model, where each genome containsn identical genes,i.e.N1=N2=N3 = n. Here, each gene in
genomeGi is assumed to have exactly one homolog each inGj andGk.
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3.3.1 Genomes with Identical Gene Content

We compute the probability of observing a cluster under the null hypothesis using a combinatorial approach.
We first illustrate this approach for the simpler case of a pairwise cluster, then present analytical expressions
for the probabilities of three-region clusters under the null hypothesis. Recall that the goal is to determine
the probability under the null hypothesis that the test statistic would have at least the observed value. The
probabilityP (Y12 ≥ y12) can be computed by counting the number of ways the two windows can be filled
with genes, such that they share at leasty12 genes, and normalizing by the number of ways of filling the
windows without restrictions.

Given two windows,W1 andW2 of sizer1 andr2, sampled from two genomes containingn identical
genes, the number of ways the windows can shareexactlyy12 genes is

(
n

y12

)(
n−y12

r1−y12

)(
n−r1

r2−y12

)
[50]. The first

binomial is the number of ways of choosing they12 shared genes, and the remaining two binomials give the
number of ways of choosing two sets of genes to fill the remainder of each window, such that the sets are
disjoint. We normalize by the total number of ways of choosing genes to fill two windows of sizer1 andr2.
Thus, the probability that these windows shareexactlyy12 genes is

P2(Y12 =y12) =

(
n

y12

)(
n− y12

r1 − y12

)(
n− r1

r2 − y12

)

(
n

r1

)(
n

r2

) =

(
n

y12, r1 − y12, r2 − y12

)

(
n

r1

)(
n

r2

) , (3.4)

where we define1

(
n

i1, i2, ..., ik

)
≡
(

n

i1

) k−1∏

j=1

(
n−∑j

l=1 il
ij+1

)
=

n!

i1!i2! . . . (n− i1 − i2 . . .− ik)!
.

From this, we can obtain the probability that two windows shareat leasty12 genes,

P2(Y12 ≥ y12) =

min(r1,r2)∑

h=y12

P2(Y12 =h). (3.5)

We use an analogous approach and notation for computing the probabilities for comparisons of three
regions. In a comparison of three windows, the random variableX12 represents the number of homologs
shared between two windows of sizer1 andr2, thatdo notappear in a third window of sizer3. The random
variablesX13 andX23 are defined analogously. The random variableX123 represents the number of genes
shared between three windows of sizer1, r2, andr3, under the null hypothesis. For notational convenience,
we define~x=(x123, x12, x13, x23) and use~X =~x as shorthand forX123 =x123, X12 =x12, X13 =x13, and
X23=x23. Similarly, we use~Yij =~yij as shorthand forY12=y12, Y13=y13, andY23=y23.

To computeP ( ~X ≥ ~x), the probability of observing at least~x genes shared among three regions, we
first derive an expression for the probability of observing exactly~x genes, then sum over this expression. In
the above pairwise comparison, we counted the number of ways to form three different sets: they12 shared
genes, ther1− y12 genes unique toW1, and ther2− y12 genes unique toW2. Computing the probability

1Note that this is a non-standard use of the multinomial notation since we do notrequire thatn= i1 + i2 + . . . ik.
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of three windows containingexactlythe observed number of shared genes is a direct extension of the two-
window problem, except there are seven sets to be selected (Figure 3.3(b)):

P ( ~X =~x) =
1(

n
r1

)(
n
r2

)(
n
r3

) ·
(

n

x123, x12, x13, x23, x1, x2, x3

)
. (3.6)

The probability of observingat least~x shared genes is obtained by summing over all possible values of
X123 andXij ,

P ( ~X ≥ ~x) =

u123∑

v123=x123

u12∑

v12=x12

u13∑

v13=x13

u23∑

v23=x23

P ( ~X = ~v), (3.7)

whereu123 = min(r1, r2, r3), u12 = min(r1, r2) − v123, u13 = min(r1−v12, r3)−v123, u23 = min(r2−
v12, r3−v13)−v123, and~v = (v123, v12, v13, v23). In the worst case, evaluating this expression takesO(r4)
time. In practice, the computation time can be substantially reduced, because thesummand decreases expo-
nentially asx123 and thexij

′s increase. Only the smallest values will contribute to the final probability, and
most of the terms can be disregarded.

3.3.2 Genomes with Non-Identical Gene Content

In contrast to the assumptions of the identical gene content model, in most cases, a genome will have
singletongenes that do not have a detectable homolog in related genomes. The greater the number of
singletons, the fewer genes available to populate the windows such that the genes are shared between the
windows. Here, we develop a statistical test for three-window clusters for the general orthology model in
which the gene content of each genome may differ.

In this model, we assume the genomes share a common set ofn123 ≤ min(N1, N2, N3) homologs (Fig-
ure 3.4(a)). In addition, each genomeGi containsni = Ni−n123 singleton genes. Homology between gene
pairs that have no homolog in the third genome is disregarded, with such genes being treated as singletons.
This models the situation that would result if homologs were identified accordingto the triangle method
used in COGs [166].

To compute the probability of observing exactly~x shared genes, we must count the number of ways
of choosing the~x shared genes, as well as the genes that are unique to each window. As inthe case of
identical gene content, the shared genes must be selected from then123 genes common to the three genomes.
However, thexi genes that are unique to each windowWi can be selected either from the remaining common
genes, or from theni singletons in genomeGi. In the former case, care must be taken to ensure that a gene
is only assigned to one window. As a result, two additional summations are required, since the number of
ways to choose thex3 genes unique toW3 depends on how many genes from then123 common genes were
used to fillW1 andW2. The probability is:

PS( ~X =~x) =

(
N1

r1

)−1(N2

r2

)−1(N3

r3

)−1( n123

x123, x12, x13, x23

)

x1∑

i=0

x2∑

j=0

(
n123−s

i, j

)(
n1

x1− i

)(
n2

x2− j

)(
N3−s− i− j

x3

)
,

(3.8)

wheres=x123 + x12 + x13 + x23 is the total number of shared genes.
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Figure 3.5: Cluster significance as a function ofσ/n, the fraction of singleton genes in each genome. (a)
The probabilityPS( ~X ≥ (1, 1, 1, 1)), whenn = N1 = N2 = N3 = 5000, andr = 100. (b) The probability
PS( ~X ≥ (0, 1, 1, 1)), whenn=N1=N2=N3=25000, andr=100.

The probability of observingat leastas many shared genes under this model, can be computed from
Equation 3.8 by summingPS( ~X =~x) over all possible values ofX123 andXij :

PS( ~X ≥ ~x) =

u123∑

v123=x123

u12∑

v12=x12

u13∑

v13=x13

u23∑

v23=x23

PS( ~X = ~v), (3.9)

whereu123 = min(r1, r2, r3), u12 = min(r1, r2) − v123, u13 = min(r1−v12, r3)−v123, u23 = min(r2−
v12, r3−v13)−v123, and~v=(v123, v12, v13, v23).

3.3.3 Properties that Influence Cluster Significance

We use Equation 3.7 and Equation 3.9 to investigate how properties of the genomes, the cluster, and the test
itself affect significance. First, we analyze how the proportion of singleton genes affects cluster significance.
Next, we investigate how the distribution of the total number of shared genes among the three-way and
pairwise overlaps affects significance. Finally, we compare the value ofP ( ~X ≥ ~x) for clusters with similar
numbers of shared genes, but where the shared genes are distributeddifferently in the Venn diagram.

How does the proportion of singletons affect cluster significance?

To study how cluster significance depends on the extent of gene contentoverlap among the genomes, we
computedPS( ~X ≥ ~x), as a function ofσ, the proportion of genes that are singletons. Note that givenn and
σ, n123 is defined byn(1 − σ). As σ increases, the probability of observing a cluster drops precipitously
(Figure 3.5) for bothn = 5000 andn = 25000. Figure 3.5(a) shows whenn = 5000 andr = 100 the
probability of a cluster withx123 = 1 andx12 = x23 = x13 = 1 drops from0.01 to 10−5 as the proportion
of singleton genes in the genomes increases from0.3 to 0.9. Similarly, whenn = 25000 andr = 100 the
probability of a cluster withx123 = 0 andx12 = x23 = x13 = 1 drops sharply as shown in Figure 3.5(b).
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(a) (b)

Figure 3.6: Two gene clusters with the same number of genes (h) conserved between each pair of regions.
(a) A gene cluster in which two genes are shared by all three regions (x123 = 2, x12 = x13 = x23 = 0) (b) A
gene cluster in which two distinct genes are shared by each pair of regions (x123=0, x12=x13=x23 =2).

This is because as fewer homologs are shared between the genomes, it becomes much more surprising to
find them clustered together. These examples underscore the importance of considering the extent of gene
content overlap among the genomes when evaluating cluster significance.

How much more does a gene shared by all three windows contribute to significance?

To answer this question, we compare the significance of clusters in whichh genes are shared byall three
windows (as shown in Figure 3.6(a)), with clusters in which there areh distinct genes shared between each
pair of windows (as shown in Figure 3.6(b)). Notice that in both examples shownin Figure 3.6 each pair
of windows sharesh = 2 genes. However, in the first case each region only containsh = 2 shared genes,
whereas in the second case each region shares2h = 4 genes with the other regions. Although the total
number of shared genes is larger in the second scenario, Figure 3.7(a)shows that the first scenario is much
more significant. Even a small increase inx123 results in a large increase in significance—much more so
than an increase of an equivalent number of homologous matches betweenpairs of regions. For larger values
of n (Figure 3.7(b)), although the difference between the two scenarios is not as great, the second scenario
is still more significant than the first.

How does the distribution of shared homologs among the pairwise overlaps influence significance?

We consider how an unequal distribution of the pairwise conserved genes (thexij ’s) affects significance. We
compare all possible distributions, ranging from a scenario in which only a single pair of windows shares
genes, to a scenario in which the genes are distributed evenly among the three windows (x12 = x13 = x23).
Let t =

∑
xij be the total number of genes that appear in exactly two of the three regions.At one extreme,

the t genes can be uniformly distributed:x12 = x13 = x23 = t/3. In this case, the variance of thexij ’s will
be zero. The distribution could be skewed, on the other hand, with the most extreme skew occurring when
all t genes appear are shared between exactly one pair of regions:e.g.x12 = t andx13 = x23 = 0. In this
case the variance will bet2/3. Figure 3.8 compares cluster probabilities for all possible distributions of the
xij ’s, as a function of the variance of thexij ’s. It shows that the greater the variance ofxij ’s, the lower the
probability of observing the cluster by chance. In other words, a skewed distribution of thexij ’s is more
significant than a uniform distribution. This illustrates why it is preferable to consider the value of each of
the three pairwise overlaps independently, rather than considering only their sum.
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Figure 3.7: A comparison ofP ( ~X ≥ (h, 0, 0, 0)) andP ( ~X ≥ (0, h, h, h)), showing the impact ofx123 and
xij

′s on cluster significance, (a) whenn=5000, r=100, (b) whenn=25000, r=100.

3.3.4 Comparisons with Alternative Tests

In this section, to understand which aspects of our test are most important tocluster significance, we derive
three alternative tests, and compare them withP ( ~X ≥ ~x). We consider the following alternative tests:
P (X123 ≥ y123), to determine when it is necessary to consider thexij ’s; P (~Yij ≥ ~yij), to determine how
much information is lost by not explicitly considering the value ofx123; andP ( ~X = ~x), to see whether
it is sufficient to consider only the probability of observing an identical cluster, or whether more extreme
ensembles must be considered as well. Finally, we compare our three-way test with two of the pairwise tests
reviewed in Section 3.1.

Is a test based only onx123 sufficient, or is it necessary to consider pairwise overlaps as well?

In order to assess the additional sensitivity gained by also considering genes shared between only two of
three regions, we compareP ( ~X ≥ ~x) with P (X123 ≥ x123), the probability of observing at leastx123

homologs shared between all three windows. To enumerate all triples of windows that shareexactlyx123

genes with no restrictions on thexij
′s, it is necessary to selectx12, x13 andx23 so that they have no homologs

in common. Otherwise,X123 would be greater than rather than equal tox123. This can be achieved using
the following expression for the number of windows that shareexactlyx123 genes:

q(X123 = x123) =

r1−x123∑

x12=0

(
r1

x123, x12

)(
n−r1

r2−x123−x12

)(
n−x123−x12

r3−x123

)
, (3.10)

where the second term ensures thatW1 andW2 share exactlyx12 genes, and the third term ensures that
exactlyx123 genes are shared in all three windows. We then obtain the probability of observingat leastx123

genes in common by summing overq(X123 = x123) as follows:

P (X123 ≥ x123) =

(
n

r2

)−1(n

r3

)−1 u123∑

k=x123

q(X123=k). (3.11)
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Figure 3.8: The probability of observing a cluster whenn=5000, r=100, x123=0, andx12+x13+x23 = t,
as a function of the variance of thex′

ijs, where higher variance indicates more skew. (a) Whent = 6, the
variance of thexij ’s ranges from0 when thexij ’s are uniformly distributed (x12 = x13 = x23 = 2) to 12
when thexij ’s are maximally skewed (x12 = 6, x13 = x23 = 0). (b) Whent = 9, the variance of thexij ’s
ranges from0 (x12=x13=x23=3) to 27 (x12=9, x13=x23=0).

We analyzed the impact of disregarding thexij
′s, by comparing Equation 3.11 with Equation 3.7 when

n ∈ {5000, 25000} andx12 = x13 = x23 ∈ {2, 3}, for a range of values ofx123 (Figure 3.9).P (X123 ≥
x123) is consistently two orders of magnitude greater thanP ( ~X ≥ ~x). This is because a test based only on
x123 fails to capture evidence of homology from genes that occur in only a subset of the windows (i.e. the
xij

′s), and will severely overestimate the probability of observing a cluster by chance. For example, given a
significance threshold ofα= .01 and the parameters used in Figure 3.9(b), a cluster withx12=x13=x23=3
andx123=1 would not be considered significant using a test based onx123 alone, even though the three-way
test shows that such a cluster is unlikely to arise by chance. Clearly, a testthat considers onlyx123 is overly
conservative, and will lead to many false negatives.

Is it necessary to consider explicitly the number of genes that appear in all three windows?

Our test statistic~X distinguishes betweenx123 and each of the three pairwise overlaps. A simpler alternative
would be to consider bothx123 and thexij ’s, but to not distinguish between the two. To investigate whether
it is necessary to considerx123 explicitly, we compareP ( ~X ≥ ~x) with P (~Yij ≥ ~yij). Recall thatyij =
xijk + xij , i.e. it is defined as thetotal number of genes shared between windowsWi andWj , including
those genes that are also contained inWk. Note that~Yij ≥ ~yij is strictly a weaker constraint than~X ≥ ~x.
In addition to all the ensembles in which~X ≥ ~x, two additional sets of ensembles will be counted when
computingP (~Yij ≥ ~yij) that would not be counted when computingP ( ~X ≥ ~x):

1. X123 ≥ max(y12, y23, y13), andX12 + X123 < y12 or X13 + X123 < y13 or X23 + X123 < y23.

2. X123 < max(y12, y23, y13), andX12 + X123 ≥ y12 andX13 + X123 ≥ y13 andX23 + X123 ≥ y23.

For example, if we observe a cluster withx123 = 2, x12 = x13 = 1, andx23 = 0, then to compute
P ( ~X ≥ ~X) we count the number of ensembles in whichx123 ≥ 2, x12 ≥ 1, andx13 ≥ 1. To compute
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Figure 3.9: A comparison ofP (X123 ≥ x123) with P ( ~X ≥ ~x) as a function ofx123, when (a)n = 5000,
r = 100, andx12 = x13 = x23 = 2. (b) n= 5000, r = 100, andx12 = x13 = x23 = 3. (c) n= 25000, r = 100,
andx12=x13=x23=2. (d) n=25000, r=100, andx12=x13=x23=3.
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P (~Yij ≥ ~yij), we will also enumerate the number of ensembles in whichx123 = 0, x12 ≥ 3, andx13 ≥ 3,
and the number of ensembles in whichx123 = 1, x12 ≥ 2, andx13 ≥ 2.

ThusP (~Yij ≥ ~yij) will always be an upper bound onP ( ~X ≥ ~x). In particular, with Equation 3.12,
the significance of a cluster in whichh genes are shared by all three windows (as shown in Figure 3.6(a))
will be the same as that of a cluster in whichh distinct genes are shared between eachpair of windows (as
shown in Figure 3.6(b)).

To computeP (~Yij ≥ ~yij) we simply sumP ( ~X ≥ ~x) over all possible values ofX123:

P (~Yij ≥ ~yij) =

u123∑

v123=0

u12∑

v12=δ(y12)

u13∑

v13=δ(y13)

u23∑

v23=δ(y23)

P (~V = ~v)

= P (X123 ≥ ymax) +

ymax−1∑

v123=0

u12∑

v12=δ(y12)

u13∑

v13=δ(y13)

u23∑

v23=δ(y23)

P (~V = ~v)

(3.12)

whereδ(x) = max(0, x− v123) andymax = max(y12, y13, y23).

We comparedP (~Yij ≥ ~yij) with P ( ~X ≥ ~x), whenx123 ∈ {0, 2}, for a range of values ofxij ’s
(Figure 3.10). Whenx123 = 0 andh is small,P (~Yij ≥ ~yij) is very close toP ( ~X ≥ ~x). Whenx123 = 0 and
h is large,P (~Yij ≥ ~yij) diverges slightly fromP ( ~X ≥ ~x), but in this region a cluster would be significant
according to either test. In short, whenx123 = 0, P (~Yij ≥ ~yij) is a accurate test. On the other hand, when
x123 =2 andx12 =x23 =x13 = 0, P (~Yij ≥ ~yij) overestimatesP ( ~X ≥ ~x), as shown in Figure 3.10(b) and
Figure 3.10(d). In this case, the approximation could lead to false negatives, sinceP (~Yij ≥ ~yij) does not
recognize the greater significance of genes that appear in all three regions.

Is P ( ~X =~x) a suitable measure of significance?

It might seem natural to use the probability of observing theexactnumber of shared homologs directly to test
cluster significance. To investigate this, we comparedP ( ~X =~x) with P ( ~X ≥ ~x) whenn = {5000, 25000},
x123 = {0, 1}, andx12 = x13 = x23 = h, for a range of values ofh (see Figure 3.11). UsingP ( ~X =~x) is
risky: Whenn = 5000 and for small values ofxij , P ( ~X =~x) underestimatesP ( ~X ≥ ~x) by several orders of
magnitude. For example, given the parameters in Figure 3.11(a), even when the three regions sharenogenes
(x123 = x12 = x13 = x23 = 0), the probabilityP ( ~X = ~x) is significantly less than one! Therefore, this test
will lead to false positives whenxij ’s are small. Ash increases, the probabilities converge andP ( ~X =~x) is
a good approximation forP ( ~X ≥ ~x). In contrast, whenn = 25, 000 (Figs. 3.11(c) and 3.11(d)),P ( ~X =~x)
is a closer approximation toP ( ~X ≥ ~x) even for small values ofxij . In general,P ( ~X =~x) is a lower bound
on P ( ~X ≥ ~x), and can be computed more efficiently.P ( ~X = ~x) is a useful first test because if we cannot
reject the null hypothesis usingP ( ~X = ~x), then we will not be able to reject usingP ( ~X ≥ ~x). However,
whenP ( ~X =~x) is small, then a second test will be required.

How does our three-way test compare to existing pairwise tests?

To assess the difference between existing pairwise tests reviewed in Sec.3.1 and our joint three-region
statistical tests, we compare our Equation 3.7 (P ( ~X ≥ ~x)) with Equation 3.1 and Equation 3.3, for a range
of representative parameter values. (We did not plot Equation 3.2 as it willalways lie between the curves
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Figure 3.10: A comparison ofP ( ~X ≥ ~x) with P (~Yij ≥ ~yij), as a function ofh, wherex12 =x13 =x23 =h
and (a)n= 5000, r = 100, x123 = 0, (b) n= 5000, r = 100, x123 = 2, (c) n= 25000, r = 100, x123 = 0 (d)
n=25000, r=100, x123=2.
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Figure 3.11: A comparison ofP ( ~X ≥ ~x) with P ( ~X = ~x) as a function ofh, wherex12 = x13 = x23 = h
and (a)n = 5000, r = 100, x123 = 0, (b) n = 5000, r = 100, x123 = 1 (c) n = 25000, r = 100, x123 = 0 (d)
n=25000, r=100, x123=1.
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for Equation 3.1 and Equation 3.3.) In Figure 3.12 we plot the significance level at which a null model of
random gene order would be rejected by each test, whenn = 5000, x123 ={0, 2, 3, 5}, x12 =x13=x23 =h,
andh ranges from zero to twelve. We consider a uniform distribution of thexij ’s, in order to focus on the
effect ofx123 on cluster significance. There are two regions of the parameter space ofparticular interest.

The first case of interest is whenx123 = 0, but the pairwise overlaps are relatively large. In this case,
we can see the importance of considering all pairwise overlaps in the absence of genes conserved in all
three regions. Whenx123 =0, both Equation 3.1 and Equation 3.3 overestimate the probability of a cluster
(Figure 3.12(a)). Recall that Equation 3.1 conducts two independent pairwise tests ofW1 with W2, and
thenW2 with W3, whereas Equation 3.3 compares the merged regionW1 ∪W2 with W3. Equation 3.1 is
a conservative test because it requires two of the three pairwise tests to be independently significant, and
ignores the overlap between the windowsW2 andW3, whereas our approach considers the three regions
jointly. Equation 3.3 is a better approximation, but is still overly conservative,because it does not consider
the overlap between windowsW1 andW2. As a result, both tests may miss significant clusters. For example,
in Figure 3.12(a), given a significance threshold ofα=0.001, for apair of regions to be significantly similar
(Equation 3.1), they must share at least eight genes. In other words, tofind a three-way cluster with a
sequential pairwise approach,W1 must share eight genes each withW2 andW3. With the pairwise merging
approach,W1 andW2 must together share at least six genes withW3. In contrast, using our testP ( ~X ≥ ~x),
a cluster is significant in both the above cases, but also in the case where each pair of regions shares only
four genes,even when none of these genes appear in all three regions. This example demonstrates the
importance of considering all pairwise overlaps in the absence of genes conserved in all three regions.

The second case of interest is whenx123 is non-zero, and the pairwise overlaps are small. In this case,
tests which consider only the pairwise overlaps may fail to reject the null hypothesis, even though it is
highly unlikely that such a cluster would occur given random gene order. On the other hand, our test,
which considersx123, does not make this error. Whenx123 is non-zero (Figs. 3.12(b), 3.12(c) and 3.12(d)),
and the pairwise overlaps are small, both Equation 3.1 and Equation 3.3 overestimate the probability of a
cluster, and would result in false negatives. Given a significance threshold of α = 0.001, whenx123 = 2,
both Equation 3.1 and Equation 3.3 would fail to reject the null hypothesis forclusters in whichh < 5
(Figure 3.12(b)), and whenx123=3, they would fail to reject the null hypothesis for clusters in whichh < 4
(Figure 3.12(c)). Even whenx123 = 5, and the cluster is undoubtedly significant, the pairwise approaches
would still fail to reject the null hypothesis whenh < 3.

In summary, our three-way test is more sensitive than existing tests based onpairwise comparison.
Those tests are overly conservative, and as a result may fail to reject the null hypothesis even when a cluster
is highly unlikely to occur by chance.

3.4 Exact Probabilities for the Duplication Model

Following a WGD, in many cases there is no immediate selective advantage for retaining a gene in duplicate,
so one of the duplicates is often lost. Since duplicated regions may share fewparalogous genes, they are
often detected by comparison with a related pre-duplication genome. For example, in the species tree
shown in Figure 3.14, WGD occurred after the divergence ofK waltii and before the speciation event that
producedS. bayanusandS. cerevisiae. Duplicated regions inS. cerevisiae, a post-duplication species, can
be detected by comparison withK. waltii, a pre-duplication species. We propose a second genome overlap
model specifically for analyzing such duplications. LetGpost be a genome that has undergone a WGD and

54



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12

P
ro

ba
bi

lit
y

h

x123=0

Eq. 3.1
Eq. 3.3

Eq. 3.7

(a)

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  2  4  6  8  10
P

ro
ba

bi
lit

y
h

x123=2

Eq. 3.1
Eq. 3.3

Eq. 3.7

(b)

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

h

x123=3

Eq. 3.1
Eq. 3.3

Eq. 3.7

(c)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

h

x123=5

Eq. 3.1
Eq. 3.3

Eq. 3.7

(d)

Figure 3.12: A comparison of our three-region testP ( ~X ≥ ~x) (Equation 3.7) with two existing tests based
on pairwise comparisons (Equation 3.1 and Equation 3.3). The significancelevel at which a null model of
random gene order would be rejected by each test, whenn=5000, r=100, x12 =x13 =x23 =h, whereh is
the independent variable, and (a)x123=0, (b) x123=2, (c) x123=3, (d) x123=5.
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(a) (b) (c)

Figure 3.13: Pre-post gene cluster examples with different gene loss scenarios, in which two regions,Wpost1

andWpost2, from the genome of a post duplication species are compared with a regionWpre from a pre-
duplication species. (a) A pre-post gene cluster whereWpre share three genes each withWpost1 andWpost2

(x13 = x23 = 3). Wpost1 andWpost2 do not share any genes (x12 = 0, x123 = 0). (b) A cluster in which
Wpost1 andWpost2 share two genes withWpre and have a single gene in common (x12 = 1, x123 = 0). (c)
A cluster in whichWpost1 andWpost2 share two genes withWpre and there is an additional gene shared by
all three regions (x12 = 0, x123 = 1).

Gpre be a genome that diverged prior to the WGD (Figure 3.4(b)). Letni,j be the number of genes that
appeari times inGpre andj times inGpost, wherei ≤ 1, j ≤ 2. This model only recognizes paralogs
that arose through WGD, ignoring lineage specific duplications. Thus, it assumes that each gene inGpost

has at most one paralog and that genes inGpre have no paralogs;i.e. n2,0 = n2,1 = n2,2 = 0. Furthermore,
this model assumes that every gene that appears twice in the post-duplicationgenome also has a homolog
in the pre-duplication genome;i.e.n0,2=0. This assumption is based on the rationale that genes retained in
duplicate are functionally important and, hence, are retained inGpre as well. This assumption is supported
by empirical observation. For example, in post-WGD yeast species over 95% of genes retained in duplicate
are also present in each pre-WGD yeast genome [29]. Similarly, in this modelevery gene inGpre has at
least one homolog inGpost (n1,0 = 0). We use the convention thatW3 is the window sampled fromGpre,
andW1 andW2 are sampled from distinct chromosomal regions inGpost.

To compute the probability of observingexactly~x shared homologs under the null hypothesis, we make
the additional assumption that at most one copy of a duplicated gene appears in a given window. Given this
condition,

PD( ~X = ~x) =

(
n1,2

x123, x12

)(
Npre − x123 − x12

x13, x23

)(
Npre − s

x3

)(
Npost − n1,2 − s− x3

x1, x2

)

(
Npre

r3

)min(r1,r2)∑

i=0

(
n1,2

i

)(
Npre + n0,1 − i

r1 − i

)(
Npre + n0,1 − r1

r2 − i

) ,

whereNpre = n1,2 + n1,1 andNpost = 2n1,2 + n1,1 + n0,1. PD( ~X ≥ ~x), the probability of observingat
least~x shared homologs under the null hypothesis, is then obtained as before bysumming overPD( ~X = ~x)

How do Retained Duplicates after WGD Affect Cluster Significance? To investigate the importance
of the genes conserved in duplicates, we calculatedPD( ~X ≥ ~x) with parameter values based on recent
studies of pre- and post-duplication species in the yeast [29, 146] and bony fish [89] lineages. We compare
the significance of clusters for three reciprocal gene loss scenarios:when no genes are shared by the post-
duplication windowsW1 andW2 (x123 = 0, x12 = 0, as shown in Figure 3.13(a)), when a single gene is
shared byW1 andW2 but none are shared by all three regions (x123=0, x12=1, as shown in Figure 3.13(b)),
and when a single gene is shared among all three regions (x123=1, x12=0, as shown in Figure 3.13(c)).
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WGD

K. waltii S. bayanus S. cerevisiae

Figure 3.14: A species tree containing three yeast species. A whole genome duplication (indicated by a star)
occurred afterK. waltii diverged from the lineage leading toS. bayanusandS. cerevisiae.

In our simulations based on yeast, we usedNpost=5000 andn1,2=450. These parameters are consistent
with the observation that only16% of genes inS. cerevisiaeare duplicate genes that arose during the WGD.
Figure 3.15(a) shows the probabilities for these cluster scenarios whenx13 = x23 = h, andh ranges from
0 to 5. The shape of the three curves is similar, but the probabilities drop by an order of magnitude from
one to the next. Genes retained in duplicate have a large impact on cluster significance. For example, in
Figure 3.15(a), given a significance threshold ofα = 0.001, if only overlaps between the pre- and post-
duplication windows are considered, each pair of windows much share three genes in order to reject the null
hypothesis. However, if there is a single gene retained in all three windows, then random gene order can be
rejected regardless of how many other genes are shared by the pre- and post-duplication regions.

In our simulations based on bony fish, we selected parameter values from arecent study of WGD in the
bony fish lineage, in which duplications in theTetraodongenome were identified by comparison with the
human genome [89]. In these simulations we usedn1,2=3500, n1,1=19500, andn0,1=1500. Although the
Tetraodonand human genomes are much larger than yeast genomes, the statistical analysis shows similar
trends (Figure 3.15(b)): again, even the addition of a single gene retained in duplicate has a large effect on
significance!

Retained duplicates have such a large impact on cluster significance because the number of genes that
occur twice inGpost is small. This is equivalent to having a very small value ofn123 in the Orthology
model. In the Duplication model, the gene content overlap between the three conceptual genomes in the
Venn diagram will always be quite small, and so even small values ofx123 andx23 lead to highly signif-
icant clusters. This is particularly noteworthy because most current methods compare the pre-duplication
region independently with each of the post-duplication regions, and thus ignore the values ofx12 andx123

entirely [89, 93, 96, 146, 172, 173]. Our results show that existing methods could fail to detect clearly
significant clusters, and that by using a multi-region test additional duplicated regions may be uncovered.
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Figure 3.15: The effect of reciprocal loss on cluster significance in comparing pre- and post-duplication
genomes, whenr = 50, x12 = x13 = h, ash ranges from 0 to 5, and (a)n1,2 = 450, n1,1 = 3600, n0,1 = 500
(b) n1,2=3500, n1,1=19500, n0,1=1500.

3.5 Discussion and Open Problems

In this paper, we presented a simple framework that allows us to understandand compare existing statistical
tests for clusters spanning more than two regions. We proposed two different models of gene content overlap
suitable for common comparative genomics problems. Based on these models, we developed novel statis-
tical tests for evaluating the significance of gene clusters spanning three regions. Here, we have presented
initial results for the design of tests for multi-region clusters, and shown thatmulti-region tests are able to
validate distantly related homologous regions that will be dismissed by pairwise tests, or by a test based on
x123 alone.

Our three-way tests are the first to combine evidence from genes sharedamong all three regions and
genes shared only between pairs of regions. Unlike tests that consider only x123, our three-way tests also
considerxij

′s, and thus can detect significant clusters even whenx123 is small (Figure 3.9(a)). In addition,
our tests outperform current approaches based on sequential pairwise tests, as shown in Sec. 3.3.4. These
approaches disregard two important pieces of information. They do not always consider evidence from all
three pairs of regions. Even more importantly, they do not explicitly considerthe number of genes shared
among all three regions. Our results show that even a few genes conserved in all three regions dramatically
increases the statistical significance of gene clusters (Figure 3.7(a)). This effect is particularly strong when
the shared gene content of the genomes is small (Figure 3.5(a)). Thus, unlike pairwise tests, our approach
can detect related regions where each pair of regions share only a fewgenes (i.e.xij

′s are small), but where
a few genes are also shared among all the regions (i.e.x123 is non-zero but small).

The difference between our tests and sequential pairwise tests is even morestriking in the duplication
model. We showed that even the addition of a single gene retained in duplicate has a large effect on signifi-
cance (Figure 3.15(a)). However, current tests compare the pre-duplication region independently with each
of the post-duplication regions, and thus ignore these retained duplicates.Consequently, there could be a
large number of highly significant gene clusters for which sequential pairwise tests would fail to reject the
null hypothesis of random gene order, but a three-way test would provide strong evidence that the regions
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Figure 3.16: Examples of potentially misleading gene clusters. (a) WindowsW1 andW2 share many genes,
but W3 shares only a single gene with each. Even if this cluster is highly unlikely to occur by chance,
concluding that all three regions are homologous would be a mistake in this case. (b) The leftmost three
genes inW2 appear in the leftmost half ofW1, and the rightmost three genes inW2 appear in the rightmost
half of W3. Even if this cluster is highly unlikely to occur by chance, it may be incorrectto conclude that
all three regions arose from a single region.

arose through duplication.

It is important to be precise about the conclusions that can be drawn on thebasis of these tests. A small
p-value does not guarantee that all three regions descended from a single region in the genome of a common
ancestor. Even if only two of the windows descended from a common region, it is quite likely that we
will be able to reject the null hypothesis of random gene order. Figure 3.16(a) shows an example in which
windowsW1 andW2 share many genes, butW3 shares only a single gene with each. Concluding that all
three regions are homologous would be a mistake in this case. Furthermore, even if the cluster is significant,
this does not mean that the regions arose from a common ancestor spanningthe entirety of all three regions.
It could be that only a small portion of each region is homologous, but the signal from this sub-region is still
strong enough to reject the null hypothesis that the regions are completely unrelated. Figure 3.16(b) shows
an example in which the leftmost three genes inW2 also appear in the leftmost half ofW1, and the rightmost
three genes inW2 also appear in the rightmost half ofW3. Given this scenario, it may in fact be the case that
the region ofW1 that is homologous toW2 is distinct from the region ofW2 that is homologous withW3.
In this case it may be incorrect to conclude that all three regions arose from a single region. One possibility
would be to flag such clusters, or screen them out entirely, in a post-processing step.

The work presented here can be extended in many ways. Our genome overlap models make certain
assumptions that may not always hold. For example, in the orthology model weassume that there are no
genes that appear in only two of the three genomes. In our duplication model, we assume there are no
genes that appear inGpre but notGpost. In our orthology models we disregard paralogs entirely, and in our
duplication model, we consider only those paralogs that arose via WGD. Also, our test for duplicated regions
assumes that there will never be two copies of a gene in a window selected from Gpost. A more general
test would loosen these restrictions, and take all paralogs into account. Another important extension is the
modification of these tests for clusters found via a whole genome scanning approach. Finally, to investigate
hypotheses of multiple WGDs within the same lineage, tests for more than three regions sampled from the
same genome are required.
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Chapter 4

Ortholog Detection

In this chapter, I use gene cluster statistics to develop a new method for identifying orthologs, motivated
by the idea that orthologs will appear in similar genomic contexts more often then paralogs. Recall that
two genes in different species are orthologous if they arose from a single gene in the most recent common
ancestor (MRCA) of the two species, and paralogous if they arose through a duplication event that preceded
the divergence of the species [59, 61]. These relationships are illustrated in Figures 4.1(a) and 4.1(b).

Orthologs are thought of as direct evolutionary counterparts: when werefer to ’the same gene in differ-
ent species’, we typically mean orthologs. Thus, orthologs are the fundamental unit of comparison in many
comparative genomics studies, and there are a variety of applications that require high-throughput methods
for accurately identifying orthologs in genome-scale datasets. Traditionalmethods for ortholog identifica-
tion are based on comparison of gene sequences. However, many additional sources of information can be
used in addition to sequence comparison. Comparisons of genomic spatial organization have recently been
used to augment sequence information, and improve ortholog prediction.

In this chapter, we combine our previous statistical work on testing the significance of max-gap clusters
with a new algorithmic approach for finding max-gap clusters. By joining thesetwo components, we design
a novel method for orthology prediction based on both sequence comparison and spatial organization. We
show that the use of the flexible max-gap cluster definition combined with our statistical approach for rank-
ing gene clusters consistently reduces the number of orthologs missed (false negatives), without increasing
the number of paralogs identified as orthologs (false positives), compared to previous approaches based on
spatial analysis.

The rest of this chapter is organized as follows. In Section 4.1, I describe some of the applications that re-
quire genome-wide ortholog detection, and review the approaches that have been developed for this problem.
In Section 4.2, I introduce a general graph-based framework that is used in the majority of context-based
orthology detection methods. In Section 4.3, I describe existing methods that consider spatial organization
in order to improve ortholog identification, and discuss the limitations of these methods. I give an overview
of my approach in Section 4.4, then discuss each of the main contributions in detail. In Section 4.6, I present
empirical results on a set of alpha-bacterial genomes, and compare my method’s performance with previous
results on this dataset. Finally, in Section 4.7, I end by outlining possible improvements to this approach.
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Figure 4.1: (a) A gene tree showing the evolution of the hypotheticalc gene family. Genec in genomeG
undergoes a gene duplication, giving rise to its paralogc′. A speciation event occurs, which gives rise to
genesc1, c′1, c2, andc′2. Genesc1 andc2 are orthologs that arose from genec in the MRCA, whereas genes
c′1 andc′2 are orthologs that arose from genec′ in the MRCA. The remaining gene pairs are paralogs. (b) A
gene tree showing the evolution of the hypotheticald gene family. A single copy of thed gene family exists
in genomeG. A speciation event occurs, which gives rise tod1 andd2. A subsequent duplication of gene
d1 in G1 gives rise tod′1. Genesd1 andd′1 are paralogs, and are both orthologous to gened2.

4.1 Background

Identification of orthologs is a prerequisite for a wide range of functionaland evolutionary problems that
can be approached through comparative genomics.

One application is predicting the functions of genes in newly sequenced genomes. The number of
sequenced genomes is growing rapidly, too quickly for gene functions to be determined experimentally.
Given a newly sequenced genome, we would like to infer the function of its genes from the function of
related genes in well-studied model organisms. Since orthologs share a direct evolutionary relationship,
they often have similar functions [56, 100, 111, 147]. Distinguishing orthologs from paralogs is considered
an essential step for accurate transfer of experimental knowledge between species [119].

Other types of functional investigations also rely on orthologs. In phylogenetic foot-printing, transcrip-
tion factor binding sites and other functionally important non-coding sequences are identified by searching
for conserved sequences near orthologous genes. In addition, researchers often find it useful to distinguish
orthologs from paralogs when studying the evolution of gene expressionor how protein interaction networks
differ among related organisms.

Finally, since orthologs arise through speciation, they play a key role in inferring evolutionary histories.
To infer phylogenetic relationships among species, it is essential that only orthologous genes are analyzed.
In addition, in comparisons of genome organization and genome rearrangements, orthologs are often used
as markers, in order to identify orthologous chromosomal segments.

Existing Methods for Orthology Detection

Most methods for assigning orthologs start by constructing a set of ortholog candidates via sequence com-
parison. An all-against-all comparison of genomeG1 and genomeG2 is conducted to identify homologous
gene pairs. For each gene, a set of homologs is selected, which serve as candidate orthologs. Frequently,
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Figure 4.2: (a) Two hypothetical modern-day genomes, and the genome oftheir most recent common an-
cestor (MRCA). GenomeG1 is in speciesS1, genomeG2 is in speciesS2, and genomeG is in the ancestral
speciesS. Rearrangement events are shown to illustrate the evolution of spatial organization. (b) A map
comparison of genomesG1 andG2, represented as a bipartite graph. (c) A matching of the genes inG1 and
G2. (d) The conserved blocks shared betweenG1 andG2, according to three different definitions: common
substrings, common intervals, and max-gap clusters (g = 1).
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any pair of genes with sequence similarity above a set threshold is considered homologous. In other cases
the requirement is more stringent: a gene must not only be similar to the query gene, but must score within
a fixed percentage of the highest scoring match, or be one of thek highest scoring matches. Sometimes no
fixed similarity threshold is applied—for each query gene thek most similar genes are kept as candidate
orthologs. Many more variants have been proposed, but regardless of the details of the method, the end
result is a set of homologous gene pairs. The problem is then to determine which of these homologous pairs
are orthologs, and which are paralogs.

One way to distinguish orthologs from paralogs is to construct a gene family tree, then reconcile it
with the corresponding species tree to infer speciation and duplication events [39, 60, 68, 187, 158]. This
approach is challenging to apply on a genome-wide scale, however, because it is resource-intensive and
error-prone [22]. With this method, the accuracy of ortholog assignmentsdepends on the accuracy and in-
formation content of the multiple sequence alignment (MSA), and the accuracy of the estimated phylogeny.
However, current methods for automatically generating MSAs yield alignmentsof poor quality when se-
quences are not highly similar, and so MSAs often require hand-curation. Even with the best possible MSA,
there is often not sufficient information in the MSA to infer an accurate genetree. Furthermore, this method
requires building a new tree for each family of interest. Building gene trees isNP-hard; even the best heuris-
tics are time-consuming, and are not guaranteed to find the correct tree topology, particularly when gene
sequences are highly divergent. Although accuracy of the inferred tree can be assessed through bootstrap
analysis, this type of analysis is impractical for genome-scale datasets.

Thus, many orthology predictions methods do not try to explicitly build a tree, but instead consider only
pairwise sequence similarity. The simplest approach assumes genes are orthologs if they form reciprocal
best hits, orbi-directional best hits(BBHs) [112, 158, 86, 166]. However, this method assumes that protein
similarity accurately reflects evolutionary distance, that all genes within a familyevolve at equal rates, and
that gene predictions are correct and complete. As a result, domain shuffling, fused proteins, high sequence
diversity within a family, incomplete genome sequencing, and errors in gene prediction can all lead to errors.
For example, in Figure 4.1(b), if the best hit of gened2 is d′1, then the orthology ofd1 andd2 will not be
detected. Furthermore, ifd2 was later duplicated, giving rise tod′2, then the BBH method may identify only
a single pair of orthologs. Sinced2 andd′2 were duplicated recently, they will have very similar sequences,
and it could easily be the case that the best hit of gened′1 is gened2, the best hit ofd′2 is d1, and the best
hit of d1 is d′2. In this case, only (d′1,d2) would be returned as an orthologous pair. Gene loss also leads to
errors. For example, in Figure 4.1(a), ifc1 andc′2 are lost, thenc′1 andc2 would be BBHs, and would be
incorrectly classified as orthologs.

More complex approaches have been designed to overcome some of theselimitations. The COGs
method [165] tries to reduce false positives by identifying orthologs only if they form triangles of BBHs
shared between three distantly related species. Triangles that share a side are then merged into a single
orthologous group. This merging step is designed to decrease false negatives by allowing many-to-many
orthology relationships. Given a particular pair of species of interest, however, the COG groupings are often
too coarse. Orthology sets are often very large, and contain genes thatdiverged prior to the speciation event
of interest. OrthoMCL [99] and InParanoid [134] attempt to reduce falsenegatives by using clustering al-
gorithms that group together similar sequences even if they do not form BBHs. In addition, the OrthoMCL
algorithm attempts to eliminate spurious matches due to shared domains and protein fusions. Even these
more sophisticated approaches are limited by their reliance on sequence information alone.

Other approaches have been developed that augment sequence data with orthogonal information sources,
such as functional or regulatory data. For example, Bandyopadhyayet al. [5] infer orthologs based on the
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gene interaction network. They assume that genes whose network neighbors are orthologs are more likely
to be orthologs. A Markov Random Field is created that models the orthology relation between each pair of
proteins as a probabilistic function of the orthology relations of their immediate network neighbors. Gibbs
sampling is used to compute the probability of orthology for each gene pair. Che et al. [36] supplement
sequence data with operon boundaries. The assumption is that if two genesare in the same operon, then
their orthologs are likely to also be in the same operon. Zhenget al. [185] identify BBHs, but then filter
these predictions based on functional annotations: if the pair of proteins are classified in different functional
subfamilies, then they are not considered orthologs. These methods are not applicable to most newly se-
quenced genomes in which little functional, transcriptional, or regulatory datais available, however, or if
orthologs are being identified in order to infer gene function.

Comparisons of spatial organization also contribute evidence of orthologythat is orthogonal to evidence
provided by gene sequence comparisons. Figure 4.2(a) shows a hypothetical genomeS that is replicated
by speciation, yielding genomesS1 andS2, that subsequently diverge through small-scale and large-scale
evolutionary changes. Shared genomic context combined with sequence similarity is thought to be a better
indicator of orthology than sequence similarity alone. For example, considerthe members of gene family
c in Figure 4.2(a). Genesc andc′ are paralogs that arose through a single gene duplication prior to the
separation of speciesS1 andS2. They are located in distinct chromosomal regions inG, the genome of the
MRCA of speciesS1 andS2. A speciation event results in two copies ofc andc′, one inG1 and the other
in G2. Immediately following the speciation, the orthologsc1 andc2 appear in identical contexts,i.e. they
have the same neighboring genes in the same order. The same is true ofc′1 andc′2. The paralogsc1 and
c′2, andc2 andc′1, on the other hand, appear in very different genomic contexts. Thus, by comparing gene
neighborhoods, it is possible to determine thatc1 is orthologous toc2 and not toc′2. Over time, the genomic
context of the orthologs will diverge due to genomic rearrangements. However, in many cases the regions
will remain similar enough to detect orthology. For example, in the genomes ofS1 andS2, c1 andc2 are
both within two genes ofa, b, d, ande. Similarly, c′1 andc′2 are both within three genes ofu, v, w, andz. In
contrast, there are no shared genes in the local neighborhoods ofc1 andc′2.

4.2 A Graph-Based Framework for Orthology Detection

Before we review existing methods for incorporating spatial organization into ortholog prediction, we intro-
duce the graph-based representation of the data used by many of these approaches, and describe the various
types of output they generate.

4.2.1 Input

Given a set of homologous gene pairs, a bipartite homology graphH = (V1∪V2, E) is constructed. Vertices
in V1 andV2 represent genes inG1 andG2 respectively. Givenv1 from V1 andv2 from V2, (v1, v2) is an
edge inE if v1 andv2 are homologous. Most often,H is an undirected1, unweighted graph. In a few cases,
edge weights are assigned based on sequence similarity scores, and a weighted graph is constructed.

If true homology relationships were known, genes would formgene families, in which every gene in

1Depending on the strategy for identifying homologous pairs, the inferredhomology relationship may not be symmetric,i.e.
genea’s list of homologs may contain geneb, but not vice versa. In this case, an additional pre-processing step isrequired to
enforce symmetry.
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the family is homologous to every other gene in the family since each gene in a familyarose from a single
ancestral gene. However, due to noise, limitations of sequence comparison methods, or a stringent similarity
threshold, not all homologous pairs will be identified, and the inferred homology relationship may not
always be transitive,e.g. in the bipartite homology graph there may be a genea that is homologous tob
and c, and another gened that is homologous to geneb but not genec. Since many of the algorithms
designed for this problem require gene families as input, the transitive closure2 of H is often used as the
input graph (omitting edges between genes in the same genome). We call this thefamily graph,F . An
example is shown in Figure 4.2(b). There is an edge between two genes inF if and only if they are in
different genomes, and they are in the same connected component inH. The graphF is composed of a set
of connected components, each corresponding to a family. Genea is said to be in the same family as geneb
iff a andb are in the same connected component inF .

Applying the transitive closure has the effect of adding edges to the homology graph. In some cases,
these edges will correspond to homologs that were not identified due to weak sequence similarity. In other
cases, these edges may be false predictions due todomain chaining, in which genes are erroneously con-
sidered homologous because they share an inserted domain. For orthology identification, it is critical that
all orthologs be identified as homologs, but it is not important that all homologsbe represented in the input
graph. In fact, ideally, the input graph would contain thesmallestset of homologous genes that is likely to
contain the true ortholog. For ortholog identification, adding edges may just introduce noise, and decrease
performance. That said, taking the transitive closure is still a common practice in orthology-detection meth-
ods, because it is the norm in other applications in which a homology graph is constructed, and because
gene families often simplify algorithms.

4.2.2 Output

Given the graphF as input, the typical output is a graphO, called the orthology graph, that is a sub-graph
of F that forms a matching,i.e.each vertex is incident to at most one edge. Genes connected by edges inO
are considered orthologs. Genes in the same family that are not connectedby an edge inO are considered
paralogs. The orthology graph may take one of three forms, as follows.

In theexemplarapproach, a single exemplar gene is selected from each family. In other words, edges
are pruned fromF until each connected component representing a family contains exactly two genes, one
from each genome. Theexemplarof each family (also called themain ortholog[63], or thepositional
ortholog [27]) is thought to represent the gene that best reflects the original position of the ancestral gene
family progenitor [138]. One motivation for seeking exemplars is that they are “more likely to be functional
counterparts since they are both evolutionary and positional counterparts.” [63]. The assumption underlying
this approach is that the MRCAS had only a single gene in each gene family, andall duplications occurred
after speciation, by separate lineage specific expansions in the lineages leading toS1 andS2. If the ancestral
genome contained paralogs, then there may be more than one pair of orthologs within a family, and this
approach will identify only a subset of the orthologs.

A second approach seeks a maximal matching ofF . In this case more than one orthologous pair can be
identified per family. This approach assumes that all copies of a gene family were present in the MRCA,
andno duplications occurred after speciation. With this approach, when co-orthologs are present, only one
will be identified. For example, in Figure 4.2(b), gened2 can only be matched with gened1 or d′1, but not

2The transitive closure of a graphG = (V, E) is a graphG+ = (V, E+) such thatE+ contains an edge(v, w) iff G contains
a non-null path fromv to w.
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both. Note that this method generates a maximal matching, but it is not guaranteed to be aperfectmatching.
When the number of representatives of each gene family is not be the same inboth genomes, some genes
will not be assigned an ortholog. This is illustrated in the maximum matching shown inFigure 4.2(c), in
whichd′1 is not assigned an ortholog.

In the most general approach, edges are pruned fromF , but a one-to-one matching is not required.
The output may include one-to-many or even many-to-many mappings betweengenes. These genes are
consideredco-orthologs, genes that arose by duplication subsequent to the speciation. For example, in
Figure 4.2(a),d1 andd′1 are co-orthologs tod2, since the duplication of gened1 occurred subsequent to
the speciation ofS1 andS2. This model makes no assumptions about the relative timing of speciation and
duplication events.

4.3 Related Work

The use of genomic context to augment sequence data in orthology detectionhas received considerable
attention in recent years, both in practical efforts to build orthology databases, and in theoretical work on
genome rearrangements.

A number of software tools for identifying orthologs use genomic context asauxiliary information to
improve ortholog predictions based on sequence similarity. Typically, these heuristics identify unambiguous
orthologs (often BBHs) that form collinear blocks,i.e. regions with perfectly conserved gene order. Gene
pairs with sufficiently strong sequence similarity are matched if they appear within or near a collinear block,
even if they have a better sequence match elsewhere in the genome [29, 28,31, 41, 94, 27, 178, 185]. In
addition, such methods sometimes feature a post-processing step in which genes with extremely low or even
no detectable similarity are assigned as orthologs if they appear in a collinear block, and no other potential
ortholog was identified [29].

The use of multiple genome comparisons can increase the accuracy of thesemethods since a gene is
likely to be in a collinear block in at least a subset of the genomes. Once a subset of the orthologs have been
identified, additional orthologs may be assigned by comparison with a third genome. For example, if genes
bcde are adjacent in genomeG1, genesabc are adjacent inG2, and genescdef are adjacent inG3, it can be
inferred that genec in G2 is orthologous to genec in G3, even though they share no genomic context.

Methods based on collinear blocks of unambiguous orthologs have been successful when comparing
genomes in which local gene order is well-conserved, such as ascomycete fungi [94, 29, 28]. However, in
more diverged genomes such an approach may be less successful, because fewer orthologs will be immedi-
ately unambiguous, and order within orthologous segments will be more scrambled. More complex methods
based on the family graph presented in Section 4.2 have been developed to handle these cases.

Perhaps the earliest attempt to solve this problem within a graph-based framework is that of Bansalet
al. [7]. They propose a heuristic consisting of two steps. In the first step theHungarian method [17] is used
to find a maximal matching in the weighted bipartite graph. Based on these matches,in the second step
max-gap gene clusters are identified. The weights of edges between genes in all large clusters are increased,
and the remaining edge weights are decreased. The algorithm iterates between these two steps, but does not
converge. This method has no statistical basis, nor explicit optimization criteria.

Many of the recent methods for orthology identification based on genomic context can be classified into
one of two basic approaches. The first seeks to select orthologs that minimize some measure of distance
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between the two genomes, and the second strives to selects orthologs to maximize conservation of spatial
organization. Unlike the methods discussed above, all of these approaches discard sequence similarity
scores, and use an unweighted family graph.

4.3.1 Minimizing Rearrangement Distance

The first exemplar approach to the problem of orthology identification based on genomic context sought a
set of orthologs that minimized the number ofbreakpoints, the number of pairs of genes that are adjacent
in one genome but not in the other [138]. When local order is conserved, minimizing breakpoints may be
helpful for orthology detection. When local order is scrambled, however, the breakpoint distance will be
less useful, since it only considers adjacent genes, not local neighborhoods. For example, the breakpoint
distance does not help us choose between the two possible assignments of the c gene family in the genomes
shown in Figure 4.2(a). Ifc1 is matched withc2, then it creates two breakpoints, but ifc1 is matched withc′2,
it also creates two breakpoints. Similarly, regardless of whetherc′1 is matched withc′2 or c2, two breakpoints
result.

More recent approaches define the distance between two genomes in termsof a specified set of rear-
rangement operations. Given this set of rearrangement operations, amatching that corresponds to the most
parsimonious evolutionary history of rearrangements is sought. Ortholog assignment is then formulated as
the problem of transforming one genome into the other with the smallest number ofrearrangement events.
Within both the exemplar and matching framework, different sets of rearrangement operations have been ap-
plied to this problem, including reversals [38, 138, 160], reversals and translocations [63], or duplications,
transpositions, and reversals [52]. This approach is challenging because for even a simple set of operations,
finding the most parsimonious scenario is NP-hard [38]. In addition, this approach is based on the assump-
tion that the underlying evolutionary model can be explained by a small set ofrearrangement operations.
Finally, relative costs must be assigned to each operation to reflect the underlying frequency of such events,
but such frequencies are often genome-dependent, and typically not known.

4.3.2 Maximizing Spatial Conservation

Another common approach is to select an ortholog assignment that maximizes conservation of spatial or-
ganization. These approaches are typically based on some notion of aconserved block. The underlying
assumption is that chromosomal segments that form a conserved block arose from a single chromosomal
segment in the MRCA,i.e. the regions are orthologous. Thus, the genes within the block are also likely
to be orthologous. Each conserved block can be thought of as specifying a local ortholog assignment. A
global mapping can then be constructed based on these local mappings. However, if a gene appears in more
than one conserved block, these blocks may imply different orthology assignments, in which case they are
inconsistent.

With this approach, the goal is to select a consistent subset of the conserved blocks, such that every gene
appears in at least one conserved block,i.e. the blockscoverboth genomes. Typically, a greedy heuristic
is used [15, 14, 161]. The set of all maximal3 conserved blocks is identified in a pre-processing step. The
procedure repeatedly selects the longest maximal conserved block fromthis set, assigns orthologs within
the block, and then removes all remaining blocks that are inconsistent with thenew partial assignment [15,
14, 161].

3A conserved block is considered maximal if it is not included within any larger conserved block.
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A number of methods based on this framework have been proposed. Two methods differ in two main
ways: the precise definition of conserved block and the optimization criterionused to select the set of
blocks that specify the matching. Two definitions of a conserved block have been investigated within this
framework. The most constrained definition equates a conserved block toa common substring: two sets
of contiguous genes in identical (or reversed) order, with identical gene content [161, 14]. This definition
is very stringent, as it does not allow a single insertion, deletion, or inversion to occur within a conserved
block. Like the breakpoint distance, this measure of conservation is most useful when gene order is highly
conserved. For example, in Figure 4.2(d), the only common substring with length greater than one isvw, so
identifying common substrings will not help determine orthology relationships forthe genes in familyc.

The common interval, another block definition that has been used, is less constrained. A common
interval is defined to be two sets of contiguous genes, representing the same set of gene families, in any or-
der [19, 14, 13]. In other words, the set of gene families contained withinthe block must be identical in both
genomes, although the number of representatives of each family may differ. For example, in Figure 4.2(d),
the common intervals are({u1, w1, v1}, {u2, v2, w2}) and({d1, d

′
1}, {d2}). Common intervals are much

more inclusive than common substrings. They allow rearrangements, as wellas many-to-one or many-to-
many relationships within the interval. This means there can be local duplicationsor deletions after the
speciation, as long as at least one representative gene for each family remains in the interval. However, in-
sertions of unrelated genes are still not allowed, nor is the deletion of a single-copy gene. As a consequence,
this definition of conserved block is still not general enough to identify the two conserved, but scram-
bled, regions({a1, b1, c1, d1, d

′
1, e1}, {a2, b2, c2, d2, e2}) and ({c′1, u1, v1, w1, z1}, {c′2, u2, v2, w2, z2}), in

Figure 4.2(d).

Different optimization criteria have been proposed for determining which subset of conserved blocks is
best. One approach is to select a set of consistent, maximal conserved blocks, such that the the total number
of conserved blocks isminimized[161, 14, 13]. This is based on the assumption that genes that appear in
longer conserved blocks are more likely to be orthologs. Whether or not this assumption is justified has never
been investigated. Since these optimization problems have been shown to be NP-hard [13, 16, 15, 19, 24, 35],
existing methods rely on greedy heuristics.

A somewhat different approach is used by Bourqueet al. [19], who seek amaximumcardinality subset
of consistent blocks. These blocks need not be maximal however; in fact, they may even be nested, such
that one block completely contains another. The motivation for maximizing the number of blocks is that
genomes with similar gene order will have many conserved blocks, whereasrandomly ordered genomes
will have few. Bourqueet al. [19] reduce the problem of finding the maximum number of compatible
blocks to a MAX-SAT problem. They design their own MAX-SAT heuristic since their clauses are not in
conjunctive normal form, and so no direct MAX-SAT solver can be used.

There is a close relationship between maximizing spatial conservation and minimizing rearrangement
distances. For certain block definitions it has been proven that minimizing the number of maximal blocks is
equivalent to minimizing the rearrangement distance. For example, the ortholog assignment corresponding
to the smallest set of common substrings that cover both genomes will also be theortholog assignment that
requires the fewest inversions to transform one genome into the other [161]. More generally, choosing a
definition of a conserved block is comparable to choosing a set of rearrangement operations. For example,
allowing gaps in a conserved block definition is similar to adding insertion or deletion to a set of rearrange-
ment operations.
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4.4 Our Approach

Previous methods based on maximization of spatial conservation rely on veryrestrictive definitions of a
conserved block. Neither the common substring, nor the common interval definition allows gaps within the
block. When comparing more distantly related genomes, these conservativedefinitions may fail to detect
orthologous regions in which neither gene order nor gene content are identical. To address this, we present
a new orthology detection algorithm on a more general definition of a conserved block, the max-gap cluster
presented in Section 2. The max-gap cluster is the most general definition ofa conserved block that is used
in practice, and for which efficient search algorithms have been developed. This cluster definition allows
for scrambled gene order, gene loss, gene insertions, as well as tandem duplications. In addition, unlike the
methods described in Section 4.3.2, our method also accepts a weighted homologygraph, and we propose a
number of ways to integrate sequence similarity scores into our framework.

Allowing a conserved block to contain gaps poses a number of new challenges that do not arise with
more conservative block definitions. Since conserved blocks may be very sparse, and gene order scrambled,
truly orthologous chromosomal regions are more easily confused with regions that share a few genes just by
chance. Although using a more flexible definition should decrease the number of false negatives that arise
due to failure to detect spatial conservation, this is offset by the risk of generating more false positives due
to incorrectly identifying regions that simply share a few genes by chance as orthologous regions.

A second, related challenge arises with the introduction of gaps. If a geneappears in two distinct,
but inconsistent, clusters, we must decide which cluster is more likely to represent a pair of orthologous
chromosomal segments. With previous definitions of conserved blocks, whether common substrings or
conserved intervals, larger blocks were always preferred over smaller blocks. This reflects the intuition that
larger blocks are less likely to occur by chance, and thus are more likely to indicate orthology of the entire
region. This assumption has never been tested, however. Although this assumption seems reasonable with
the common substring definition, in which gene content and order are identical, once duplicates are allowed
within the cluster, such as with common intervals, it is more speculative. Furthermore, once gaps are allowed
this assumption clearly no longer holds—a longer block with more genes but withlarge gaps may be less
indicative of common ancestry of a region than a smaller block with fewer gaps. A key challenge of this
more general framework is therefore how to compare two conserved blocks of different sizes and lengths,
and determine which one is more likely to represent a pair of orthologous chromosomal segments.

We address the two challenges above by using statistical significance of a cluster as a measure of con-
servation. The key idea of this approach is to rank clusters based on theirprobability of occurring by chance
under a null model of random gene order. The underlying assumption is that the smaller the probability that
a cluster would occur by chance, the more likely the cluster indicates orthology of the entire region, and
thus the more likely the genes within the cluster are orthologous. This approach can be used for any cluster
definition, including one with gaps. The only requirement is that a test statistic be selected, such that the
probability of a cluster decreases as the value of the test statistic increases.

A third challenge that arises when gaps are introduced is it becomes more difficult to determine when
blocks conflict. Maximal common substrings conflict whenever the gene span of one substring overlaps the
gene span of another. In this case, all conflicting blocks can be identifiedand removed in time proportional
to the length of the block. Once gaps are introduced, however, identifyingall clusters that conflict with a
selected cluster is more difficult. Even if the gene spans of two clusters overlap, the clusters may still be
compatible. To address this issue, rather than removing all conflicting clusters immediately upon selecting
a lowest-cost cluster, we take a lazy approach: we check whether a cluster is invalid only when it is selected
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as the current lowest-cost cluster.

One last challenge is that our approach requires an algorithm for findingall highly significant max-
gap clusters. Existing algorithms only find maximal max-gap clusters. Since a shorter cluster with fewer
gaps may be more significant than a longer cluster with more gaps, it is desirable to consider non-maximal
clusters, as well as maximal ones, when assigning orthologs. To this end, below we will define a new type
of max-gap cluster, called adominantmax-gap cluster, which can be proven to always be more significant
than any of the sub-clusters it dominates, in the case of clusters without duplicates.

We design a general ortholog detection approach by combining our previous statistical work on max-
gap gene clusters with an extension of the max-gap cluster search algorithmdesigned by He and Gold-
wasser [76], to find dominant max-gap clusters. Before presenting ouralgorithm, we first introduce some
technical preliminaries. We then give a high-level overview of our algorithm, which is followed by detailed
presentations of our main contributions.

Technical Preliminaries

In this chapter, unlike previous chapters, we assume genes are partitioned into equivalence classes,i.e.gene
families. In this case, the homology graph will have many-to-many homology relationships. In this section
we revisit the definitions of a max-gap chain and cluster given in Section 2.1.1, and extend them to allow
for a many-to-many homology mapping. In addition, in this chapter we require anew notion of adominant
cluster, which is also defined below.

As before, we model a genome as an ordered list of genes, ignoring gene orientation, physical distances
between genes, and overlapping genes. If a genome contains multiple chromosomes, we assume they are
concatenated in a fixed (but arbitrary) order. Each gene is now associated with a gene family in addition to
its position on the genome.

Definition 4.4.1. A genome is a tripleG = (Σ, X, F ), whereΣ is a set of gene families,X = {1, .., n} is
a sequence of genes, ordered by their position in the genome, andF : 1, .., n → Σ is a function mapping
genes to gene families.F−1(f) denotes the subset of genes assigned to familyf .

From a pairs of genomes we can construct the corresponding family graph:

Definition 4.4.2. Given two genomesG1 = (Σ1, X, F1) and G2 = (Σ2, Y, F2), F = (V1 ∪ V2, E) is a
bipartite graph, where a vertexv1 ∈ V1 represents a gene inG1, a vertexv2 ∈ V2 represents a gene inG2,
and(v1, v2) ∈ E iff v1 ∈ V1, v2 ∈ V2, andF (v1) = F (v2).

A maximum matching ofF is of sizeν =
∑

f∈Σ1∪Σ2

min(|F−1
1 (f)|, |F−1

2 (f)|)

In order to define a max-gap cluster in the presence of gene families, we first recall from Section 2.1.1
the definitions of the max-gap of a set of genes on a single chromosome, andof ag-chain:

Definition 4.4.3. Given genomeG = (Σ, X, F ) containing two genesi andj, thegap betweeni andj is
defined as∆(i, j) = |i− j|−1, if the genes are on the same chromosome, and∆(i, j) =∞ if the genes are
on different chromosomes. Given a (not necessarily contiguous) subset of genesX ′ ⊆ X, we define∆(X ′),
themax-gap of X ′, as the maximum gap over all pairs of adjacent genes inX ′. We say thatX ′ ⊆ X is a
g-chain of C if ∆(X ′) ≤ g. The set of families occurring inX ′ is denotedΣ(X ′) = {F (i) | i ∈ X ′}.
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For example, consider the two genomes shown in Figure 4.2(b):

G1 = a1d1d
′
1c1b1e1 ∗ ∗ ∗ u1w1v1 ∗ c′1z1

G2 = b2a2c2 ∗ d2e2 ∗ ∗ ∗ u2v2w2c
′
2 ∗ z2

where genes in the same family are assigned the same letter, and stars indicate genes with no homolog in
the other genome. In this example, the gap between genew2 and genec′2 is zero, and the gap betweenw2

andz2 is two. The set{c′2, w2, z2} forms a 1-chain inG2, as does{u2, v2, w2}, which also forms a 0-chain.

Definition 4.4.4. Given two genomesG1 = (Σ1, X, F1) and G2 = (Σ2, Y, F2), and two sets of genes,
X ′ ⊆ X andY ′ ⊆ Y , the pair(X ′, Y ′) forms acluster if X andY contain the same gene families;i.e.
Σ(X ′) = Σ(Y ′). A cluster(X ′, Y ′) is a sub-cluster of (X∗, Y ∗) if X ′ ⊆ X∗ andY ′ ⊆ Y ∗. Themax-gap
of a cluster(X ′, Y ′) is ∆(X ′, Y ′) = max(∆(X ′), ∆(Y ′)).

Definition 4.4.5. A cluster(X ′, Y ′) forms ag-cluster if its max-gap∆(X ′, Y ′) ≤ g. A g-clusterX is
maximal if it is not contained within a largerg-cluster,i.e. there is nog-cluster(X∗, Y ∗) such thatX∗ ⊇
X ′, Y ∗ ⊇ Y ′, and(X ′, Y ′) 6= (X∗, Y ∗).

This definition of a cluster requires that the set of gene families be the same in each chain, but the
number of representatives of each family in the two chains may differ. The order of the genes within the two
chains may also differ, but the number of gaps between any pair of adjacent genes in a chain is constrained.

For the purpose of identifying orthologs, if there is a sub-cluster with a smaller gap, it may be useful
to distinguish it from the larger cluster that contains it. For example,S = ({u1, v1, w1}, {u2, v2, w2}) is a 1-
cluster, but it is not a maximal 1-cluster because it is contained in the larger 1-clusterT = ({c′1, u1, v1, w1, z1},
{c′2, u2, v2, w2, z2}). However, the max-gap ofS is actually smaller than the max-gap ofT , sinceS is also
a 0-cluster. To address this issue, it is convenient to define the following:

Definition 4.4.6. A g-clusterC1 = (X∗, Y ∗) dominates a g-clusterC2 = (X ′, Y ′) if X∗ ⊇ X ′, Y ∗ ⊇ Y ′,
andthe maximum gap ofC1 is at least as small as the maximum gap ofC2; i.e.∆(X∗, Y ∗) ≤ ∆(X ′, Y ′).
A g-cluster isdominant if there is no cluster that dominates it.

For example,U = ({c′1, u1, v1, w1}, {c′2, u2, v2, w2}) is dominated byT = ({c′1, u1, v1, w1, z1},
{c′2, u2, v2, w2, z2}) since both have a max-gap ofg = 1, andT containsU . The cluster,V = ({u1, v1, w1, z1},
{u2, v2, w2, z2}) is also dominated byT sinceT has a smaller max-gap and containsV . However, although
S = ({u1, v1, w1}, {u2, v2, w2}) is contained byT , it is not dominated byT , sinceS has a smaller max-
gap. In fact, bothS andT are dominant clusters. The list of all dominant clusters inG1 andG2 is given in
Table 4.1.

Recall that a key idea of this approach is that to find a global matching of two genomes we identify signif-
icant gene clusters, which can be used to select a local matching. However, as defined above, ag-cluster does
not necessarily specify a local matching. Note that a cluster(X ′, Y ′) is in essence a sub-graph ofF with ver-
tices corresponding to the subset of genes inX ′ andY ′, and all edges whose endpoints are in these subsets.
We call this the subgraph ofF induced by (X ′, Y ′). In many cases this sub-graph will be a matching. For
example, each vertex in the sub-graph induced by({u1, v1, w1}, {u2, v2, w2}) has degree exactly one. In
other cases, the induced sub-graph will not be a matching since the two chains may containdifferentnumbers
of genes from a gene family. For example, the sub-graph induced by({a1, b1, c1, d1, d

′
1}, {a2, b2, c2, d2})

(shown in Figure 4.2(b)) contains two edges incident tod2: one tod1 and one tod′1. Given such a cluster, in
order to assign a unique ortholog from within the cluster to each gene, the problem is to select a maximum
matching associated with the cluster.
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g Dominantg-clusters
0 ({u1, v1, w1}, {u2, v2, w2}), ({c1}, {c2}), ({c1}, {c′2}), ({c′1}, {c2}), ({c′1}, {c′2})

({a1}, {a2}), ({b1}, {b2}), ({d1, d
′
1}, {d2}), ({e1}, {e2}), ({z1}, {z2})

1 ({a1, b1, c1, d1, d
′
1e1}, {a2, b2, c2, d2, e2}), ({c′1, u1, v1, w1, z1}, {c′2, u2, v2, w2, z2})

2 none
3 ({a1, b1, c1, c

′
1, d1, d

′
1e1, u1, v1, w1, z1}, {a2, b2, c2, c

′
2, d2, e2, u2, v2, w2, z2})

Table 4.1: The set of max-clusters ofG1 = a1d1d
′
1c1b1e1 ∗ ∗ ∗ u1w1v1 ∗ c′1z1 andG2 = b2a2c2 ∗ d2e2 ∗ ∗ ∗

u2v2w2c
′
2 ∗ z2.

Definition 4.4.7. We say that the clusterSm = (Xm, Ym) is an associated matching of the clusterS =
(X ′, Y ′), if Sm is a sub-cluster ofS, and the sub-graph ofF induced bySm forms a matching. Thesize
of a matching is the number of edges in the sub-graph it induces, which is equivalent to|Xm| = |Ym|. An
associated matching ofS is a maximum matching associated withS if there is no associated matching of
greater cardinality.

There may be more than one maximum matching associated with the same cluster. Forexample, there
are two maximum matchings associated with clusterW = ({a1, b1, c1, d1, d

′
1}, {a2, b2, c2, d2}) depending

on whetherd1 ord′1 is matched withd2: ({a1, b1, c1, d1}, {a2, b2, c2, d2}) and({a1, b1, c1, d
′
1}, {a2, b2, c2, d2}).

Both matchings have size four. The sub-cluster({a1, b1, c1}, {a2, b2, c2}) is also a matching associated with
W , but it is not maximum since it is only of size three.

Finally, given a cluster(X ′, Y ′) whose associated matching(Xm, Ym) has sizeh = |Xm| and max-gap
g = ∆(Xm, Ym), we introduce the notationΦ(h, g) to denote thecostof the cluster. Our implementation
will allow any non-negative cost function to be used, but ideally, the costof a cluster should be inversely
related to the probability of observing such a cluster by chance.

4.5 The Algorithm

An overview of our ortholog detection algorithm is given in Algorithm 2. This algorithm takes as input two
genomes of sizen1 andn2, and a family assignment for each gene. In addition, the user must specifya
maximum gap parametergmax. Although in theory the algorithm could identify all dominantg-clusters, for
any value ofg, for efficiency we restrict the search to only those dominant clusters with max-gap no greater
thangmax. Algorithm 2 follows the general framework described in Section 4.3.2. It differs from previous
approaches in two ways. First, the max-gap definition is used to specify the conserved blocks. Second,
rather than selecting thelargestremaining cluster at each step, Algorithm 2 selects the lowest cost cluster,
where the cost of a cluster is based on its probability of occurring by chance in a random genome. This
strategy is designed to find a matching such that genes within clusters that aremost significant are assigned
as orthologs preferentially.

There are four main components: pre-computing matching costs, finding clusters, scoring clusters, and
assigning orthologs. In the first step, we pre-compute matching costsΦ(h, g), for all possible values of
h > 0 and g ∈ 0..gmax. Costs are either computed analytically, based on the equations presented in
Section 2.3, or computed empirically, by randomly permuting gene order and counting how many clusters
of different sizes and gaps are observed.

73



Algorithm 2 Ortholog Detection Algorithm
1: Compute the cost of a matching of sizeh and max-gapg, for all 1 ≤ h ≤ H and0 ≤ g ≤ gmax

2: Identify all dominantg-clusters, for allg ∈ {0..gmax}
3: for eachdominant clusterdo
4: Select a maximum matching
5: Compute the cost of the matching.
6: Insert the cluster into a priority queue, with priority equal to the cost of the associated matching
7: end for
8: while queue is not emptydo
9: Remove the lowest cost cluster from the queue.

10: if the cluster is no longer validthen
11: Add to the queue any sub-clusters that are now dominant.
12: else
13: Assign orthologs within the cluster, as specified by the associated matching.
14: end if
15: end while

In the second step we identify all dominantg-clusters, whereg ∈ {0..gmax}. Next, for each cluster
that we identified, we select an associated matching, based either on gene order or sequence similarity. We
compute the size and max-gap of the matching, and from those quantities look upthe cost of the cluster. We
then insert the cluster into a priority queue, with priority equal to the cost of the associated matching. Note
that it is possible that the max-gap of a cluster containing duplicates may be smaller than the max-gap of
its maximum associated matching. As a result, in rare cases, the gap size of the associated matching might
actually be larger thangmax. In this case the cluster is not inserted into the priority queue.

Finally, in the last step we construct a genome matching. We iteratively remove the lowest cost cluster
from the priority queue. If any of the genes in the cluster have already been assigned an ortholog, then the
cluster is no longer valid, and is discarded. In this case, sub-clusters that were previously dominated by the
cluster may now be dominant. We identify any newly dominant sub-clusters, and add them to the queue. If
the cluster is valid, then we assign all the gene pairs in its associated matching as orthologs. We continue
this procedure until the queue is empty, and a global maximum matching has beenselected.

Below we discuss in more detail our solution to the four main components of our algorithm: finding
dominant clusters, finding an associated matching of a cluster, scoring clusters, and keeping the list of
dominant clusters up to date.

4.5.1 Finding all dominantg-clusters

Line 2 of Algorithm 2 requires a method to identify all dominantg-clusters, for all values ofg in 0..gmax.
Given a fixed value ofg, and a one-to-one homology mapping, the GeneTeams algorithm [8] has been de-
signed for finding all maximalg-clusters in two genomes. He and Goldwasser [76] extended this approach
to handle gene families, in a software tool called HomologyTeams.4 However, the HomologyTeams algo-
rithm identifies only maximalg-clusters, for a fixed value ofg. For example, giveng = 3, of the fourteen

4Although the software is entitled HomologyTeams, note that it cannot be applied to the general homology graphH, but only
the family graphF .
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dominant clusters shown in Table 4.1, HomologyTeams would return only the single large cluster shown
in row g = 3. What we seek to determine, rather, is all dominantg-clusters, for all values ofg in 0..gmax.
There is a close relationship between maximal and dominant clusters, however, that suggests a modified ver-
sion of the HomologyTeams algorithm for finding dominant clusters. In orderto describe the algorithm, we
first review the He and Goldwasser algorithm, then explain how we modify it to find dominant clusters. The
HomologyTeams algorithm handles only single-chromosome genomes. We havemodified their algorithm
to compare multi-chromosomal genomes as well, but in order to simplify the exposition, in this section I
assume each genome contains only one chromosome.

Both GeneTeams and HomologyTeams use a divide-and-conquer algorithmwhich begins by breaking
one genome into runs of genes separated by a gap greater thang. For example, consider again the two
genomes shown in Figure 4.2(b):

G1 = a1d1d
′
1c1b1e1 ∗ ∗ ∗ u1w1v1 ∗ c′1z1

G2 = b2a2c2 ∗ d2e2 ∗ ∗ ∗ u2v2w2c
′
2 ∗ z2

Giveng = 2, genomeG1 would be split into two runs,X1 = a1d1d
′
1c1b1e1 andX2 = u1w1v1 ∗ c′1z1, since

they are separated by a gap greater thang. In GeneTeams, each division ofG1 specifies a unique division
of G2 into disjoint subsequences. In HomologyTeams, however, a gene may have more than one homolog,
and so each run inG1 is compared with the subsequence ofG2 formed by taking all genes with homologs
in the run onG1. For example,X1 would be recursively compared withY1 = b2a2c2 ∗ d2e2 ∗ ∗ ∗ ∗ ∗ ∗c′2,
andX2 would be compared withY2 = c2 ∗ ∗ ∗ ∗ ∗ ∗u2v2w2c

′
2 ∗ z2. Notice that the subsequencesY1 andY2

are not disjoint since both contain the genesc′2 andc2.

The HomologyTeams algorithm alternates between splitting genomesG1 andG2 on gaps greater thang,
recursively breaking each one down into runs, and updating the current set of shared families (thealphabet),
until two subsequences with no gap greater thang are reached. For example, in the comparison ofX1 and
Y1, Y1 would be broken into two runs:Y11 = b2a2c2 ∗ d2e2 andY12 = c′2. At this pointX1 has the same
alphabet asY11, and since neither have a gap greater thang = 2, the recursion would halt, and(X1, Y11)
would be returned as a maximalg-cluster. Y12 would be compared with the subsequence ofX1 with the
same alphabet:X11 = c1. Since neitherX11 nor Y12 has a gap greater thang = 2, (X11, Y12) would be
returned as a maximalg-cluster.

In order to modify this algorithm to identify dominant clusters, we note the relationship between maxi-
mal and dominant clusters:

Proposition 4.5.1. Every maximalg-cluster is a dominantg-cluster.

Proof. Let (X ′, Y ′) be ag-cluster with∆(X ′, Y ′) = g′ ≤ g. If (X ′, Y ′) is maximal then every cluster that
contains it has gap greater thang. Therefore, there exists no cluster with a max-gap less than or equal tog′

that contains(X ′, Y ′).

Proposition 4.5.2. Every dominantg-cluster is a maximalg′-cluster, for someg′ < g.

Proof. Let (X ′, Y ′) be a dominantg-cluster with∆(X ′, Y ′) = g′ ≤ g. Since it is dominant, there is no
cluster with max-gapg∗ ≤ g′ than contains it. Thus it is a maximalg′-cluster.

These two propositions suggest a possible algorithm: run the HomologyTeamsalgorithm multiple times,
for each value ofg in 0..gmax. Proposition 4.5.1 guarantees that only dominant clusters will be returned,
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and Proposition 4.5.2 guarantees that all dominant clusters will be found. However, this naive approach is
inefficient, since for small values ofg much of the work of the algorithm is the same as for larger values of
g. In addition, the same clusters could be output multiple times, since a dominant cluster may be a maximal
g-cluster for many values ofg. Thus, an additional post-processing step would be required to filter out
the many redundant clusters returned. We present a more efficient algorithm based on the the following
observations.

Lemma 4.5.1. (Bealet al. [8]) If X1 andX2 are twog-chains of genomeG, andX1∩X2 6= ∅, thenX1∪X2

is also ag-chain.

Proof. The proof is given in the GeneTeams paper, as proof of Lemma 1. The existence of gene families
does not alter this lemma.

Lemma 4.5.2. If (X1, Y1) and (X2, Y2) are twog-clusters,X1 ∩ X2 6= ∅, andY1 ∩ Y2 6= ∅, then(X1 ∪
X2, Y1 ∪ Y2) is also ag-cluster.

Proof. Since(X1, Y1) is a cluster,Σ(X1) = Σ(Y1). Similarly, Σ(X2) = Σ(Y2). Thus,Σ(X1 ∪ X2) =
Σ(Y1 ∪ Y2), and(X1 ∪ X2, Y1 ∪ Y2) is a cluster. By Lemma 4.5.1,X1 ∪ X2 is ag-chain, as isY1 ∪ Y2.
Hence,∆(X1 ∪X2, Y1 ∪ Y2) ≤ g, and(X1 ∪X2, Y1 ∪ Y2) is ag-cluster.

Proposition 4.5.3.Either ag-cluster is a maximalg-cluster, or there exists a unique maximalg-cluster that
contains it.

Proof. Let (X ′, Y ′) be a non-maximalg-cluster with∆(X ′, Y ′) = g′ ≤ g. Since it is non-maximal, there
is some maximalg-cluster(X1, Y1) that contains it. Assume there is another maximalg-cluster(X2, Y2)
that also contains(X ′, Y ′). Clearly,X1 ∩X2 6= ∅ andY1 ∩ Y2 6= ∅ since bothX1 andX2 containX ′, and
bothY1 andY2 containY ′. By Lemma 4.5.2,(X1 ∪X2, Y1 ∪ Y2) is also ag-cluster. However,(X1, Y1) is
maximal, so there is no largerg-cluster that contains it. Thus(X1, Y1) = (X2, Y2).

These propositions guarantee that the following modification of the He and Goldwasser algorithm effi-
ciently identifies all dominant clusters. The existing HomologyTeams algorithm is used to find all maximal
gmax-clusters (which are guaranteed to be dominantgmax-clusters by Proposition 4.5.1). When a maximal
gmax-cluster(X ′, Y ′) with max-gapg ≤ gmax is found, rather than outputting it and halting, we reduce the
maximum allowed gap fromgmax to g−1, and recursively identify all the sub-clusters of(X ′, Y ′) that form
maximalg − 1-clusters. Only when two subsequences with no gaps (g = 0) are reached does the algorithm
halt.

Since only maximalg-clusters are output, forg ≤ gmax, Proposition 4.5.1 guarantees that only dominant
clusters will be output. Proposition 4.5.2 guarantees that this strategy will identify all dominantg-clusters.
Proposition 4.5.3 guarantees that no duplicates will be produced, since a dominant cluster will never be a
sub-cluster of more than one maximal cluster.

The main FindDominantClusters function is shown in pseudo-code in Algorithm 3, and the recursive
procedure is shown in Algorithm 4. The GetSharedFamilies and SplitIntoRunsfunctions are not given here,
but are implemented identically to the HomologyTeams implementation, except that theyignore genes which
have already been assigned orthologs, and treat them as gaps. Thesefunctions rely on the key innovation
of the HomologyTeams approach: a succinct representation of subproblems that maintains an overall space
bound proportional to the size of the genome. Our modified algorithm also uses this representation.
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Algorithm 3 FindDominantClusters( A, B,gmax )
1: Q← emptyset
2: sharedfamilies← GetSharedFamilies(A, B)
3: runs in A ← SplitIntoRuns(A, sharedfamilies,gmax )
4: for eachA run in runs in A do
5: Q← Q∪ FindDominantClusters’(B, Arun,gmax)
6: end for
7: return Q

Algorithm 4 FindDominantClusters’( A, B,g )
1: Q← emptyset
2: sharedfamilies← GetSharedFamilies(A, B)
3: runs in A ← SplitIntoRuns(A, sharedfamilies,g)
4: if |runs in A| = 1 then
5: g← max(∆(A), ∆(B)) −1
6: Q← Q∪ (A,B)
7: end if
8: if g ≥ 0 then
9: for eachA run in runs in A do

10: Q← Q∪ FindDominantClusters(B, Arun,g)
11: end for
12: end if
13: return Q

4.5.2 Selecting a Maximum Matching Associated with each Cluster

A maximum associated matching must be selected for each dominant cluster found on line 4 of Algorithm 2.
We designed two methods for selecting a maximum matching associated with each cluster. The first relies
only on gene order within the cluster, and the second also considers sequence similarity.

The first method uses a simple left-to-right strategy for choosing a local matching of a cluster(X ′, Y ′).
Starting with the leftmost gene in the chainX ′, we match each gene inX ′ with the leftmost gene inY ′, such
that the gene is in the same family, and the gene has not yet been matched. Forexample, given the cluster
shown in Figure 4.3,b1 would be matched withb2, b′1 would be matched withb′2, ande1 would be matched
with e2. When order is preserved this strategy will perform well. If there has been an inversion or additional
scrambling of gene order, this strategy may match genes quite poorly.

The second method uses a greedy strategy to select gene pairs that havesimilar sequences,i.e. with the
lowest E-values. Starting with the leftmost gene in the chainX ′, we match each gene inX ′ with the most
similar gene inY ′, such that the gene is in the same family, and the gene has not yet been matched. For
example, given the cluster shown in Figure 4.3,b1 would be matched withb2, b′1 would be matched withb′2,
ande1 would be matched withe′2.
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a2 b2 c2 d2 e2 b′2 e′2

a1 b1 c1 d1 b′1 e1

Figure 4.3: An example gene cluster with many possible maximum associated matchings. The e-values
are: e-val(b1, b2) = 10−100, e-val(b′1, b

′
2) = 10−98, e-val(b′1, b2) = 10−10, e-val(b1, b

′
2) = 10−12, e-

val(e1, e2) = .0001, e-val(e1, e
′
2) = 0.

4.5.3 Computing cluster costs: Estimating the Expected Number of Clusters

A cost must be assigned to each dominant cluster found on line 1 of Algorithm2. The cost of a cluster
depends on the statistical significance of its associated matching. The parameters that we use to determine
the significance of a matching are its sizeh and max-gapg. Note that although all maximal matchings
associated with a cluster will have the same size, the max-gap will depend on which matching is selected,
which may differ depending on which of the two matching algorithms is used.

More precisely, the cost is based on the number of matchings of sizeh and max-gapg we expect to
observe when comparing two genomes that contain the same genes, in the samegene families, if all possible
permutations of genes were equally likely. LetXh,g be a random variable representing the number of clusters
with matchings of sizeh and gapg, in a comparison of two genomes. We defineφ(h, g) = E[Xh,g] as the
expected value ofXh,g under the null hypothesis. The costΦ(h, g) of a cluster is then the expected number
of clusters with size≥ h and maximum gap≤ g:

Φ(h, g) =
ν∑

k=h

g∑

d=0

φ(k, d),

whereν, the size of the maximum matching, is the largest possible value ofh. For reasonably small values
of g, ash increases the probability of observing a cluster decreases rapidly. Thus, for some sufficiently large
value ofH

Φ(h, g) ≈
H∑

k=h

g∑

d=0

φ(k, d).

Thus, rather than summing fromk = h..ν, we sum only fromk = h..H, whereH is relatively small, and is
set by the user.

For genomes with arbitrary gene family sizes, an exact expression forE[Xh,g] is not known. Thus,
we propose two methods for estimating the expected number of clusters with a matching of sizeh and
gapg. The first method estimates the number of clusters that would be observed under the null hypothesis
through a Monte-Carlo procedure in which random permutations of the genes in each genome are selected
at each iteration. With this procedure the number of genes assigned to eachfamily remains the same, but
the locations of each family within the genome are randomized. The number of matchings of each size and
gap are tabulated at each iteration. This procedure is repeated forr iterations. Letxi(h, g) be the number of
clusters with associated matching of sizeh and gapg observed in theith iteration. The average number of
clusters observed provides an estimate of the expected number under the null hypothesis:

φ(h, g) ≈ 1

r

r∑

i=1

xi(h, g). (4.1)
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This approach will provide very accurate estimates for clusters that occur frequently. However, it will not
provide accurate estimates for clusters that have only a very small probability of occurring by chance. In the
most extreme case, any cluster that is not observed in any random permutation is assigned a cost of zero.
Given two zero cost clusters, this method cannot determine which is more likelyto represent the orthologous
region.

Our second estimate is based on the upper boundPup(h, g, n1, n2, m) derived in Section 2.3. Recall
thatPup(h, g, n1, n2, m) is an upper bound on the probability of observing a maximal max-gap cluster of
sizeh and gap no greater thang, in a comparison of randomly ordered genomes containingn1 andn2 genes
respectively, andm shared gene families, each of size exactly two. We estimate the expected number of
clusters of sizeh and max-gapexactlyg as:

φ(h, g) ≈ Pup(h, g, n1, n2, min(n1, n2))− Pup(h, g −1, n1, n2, min(n1, n2)). (4.2)

This will only be a rough approximation for a number of reasons. It is an upper bound on the probability
of observing at least one cluster, rather than the expected number of clusters. In addition, chromosome
boundaries are disregarded, which will cause the number of clusters to be slightly overestimated. Most im-
portantly, however, it assumes that all gene families are of size at most two,so it may severely underestimate
the number of clusters. Unlike the randomization approach, however, with this analytical method even very
small probabilities can be computed.

We experimented with two different strategies for prioritizing clusters. The first strategy ranks clusters
according to their costΦ, which is based solely on the spatial characteristics of the cluster. Often, however,
there will be multiple clusters in the queue with the same cost. With the first strategy,these clusters are
ranked randomly. Our second strategy first ranks clusters accordingto their costΦ, but uses sequence
similarity to break ties. Given two clusters of equal cost, we can sort them in the priority queue by their
minimum E-value. More precisely, the secondary sorting criterion is the minimum E-value of the associated
matching, where the minimum E-value of a matching(Xm, Ym) is defined to be

min{e-val(x, y) | x ∈ Xm, y ∈ Ym, F (x) = F (y)},

where e-val(x, y) is the E-value of genex and geney, and is computed as described in Section 4.6.2.

This secondary sorting criterion is most important for selecting between clusters with associated match-
ings of size one,i.e.clusters containing only a single gene, that provide no spatial evidence oforthology. In
this case, sequence similarity is the only information available.

4.5.4 Updating the queue of dominant clusters

Algorithm 2 starts by computing the set of all dominantg-clusters in the original homology graphH. As
orthologs are assigned, however, the homology graph may change, andthus the set of dominant clusters
may change. On line 13 of Algorithm 2, genes are assigned as orthologs. When a pair of genes(g1, g2) is
determined to be an orthologous pair, all other edges tog1 andg2 must be pruned from the graph. Thus, after
thetth iteration of line 13 of Algorithm 2, there will be a new homology graphHt. SinceHt contains fewer
edges thenHt−1, it may also contain a different set of dominantg-clusters. After removing edges the size of
gaps may have increased, and ag-cluster(X, Y ) that was dominant at timet may have gap greater thangmax

in Ht+1. In this case, the cluster(X, Y ) is considered invalid at timet + 1, and should be removed from
the priority queue. In addition, a cluster(X ′, Y ′) that was previously dominated by(X, Y ) could become a
dominant cluster, and thus should be added to the priority queue at timet + 1.
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We use a lazy strategy to handle these deletions and insertions. We wait until cluster(X, Y ) reaches
the front of the queue to remove it. We check whether the cluster if invalid, and only then do we insert
its newly dominant sub-clusters into the priority queue. Since the function FindDominantClusters treats
matched genes as gaps, we can re-use this function to identify the newly dominant sub-clusters of cluster
(X, Y ), by passingX andY as the input gene sequences rather than the entire genome.

Even with this lazy insertion strategy, in most cases the lowest-cost valid cluster at timet will in fact be
in the queue at timet. This is because if a clusterC ′ is valid at timet, but is not yet in the queue, it must be
dominated by some invalid clusterC that is associated with a graph from a previous time step, but has not
yet been removed from the queue. However, the fact thatC is still in the queue means that there are clusters
with smaller cost. These clusters most likely have a smaller cost thanC ′ as well, sinceC ′ is a sub-cluster of
C. In fact, if a clusterC has no duplicates, then any sub-clusterC ′ it dominatescannothave a smaller cost.

Theorem 4.5.3.Let(X, Y ) be ag-cluster that contains no duplicates,i.e. if x1 ∈ X, x2 ∈ X, andF (x1) =
F (x2) thenx1 = x2, and ify1 ∈ Y, y2 ∈ Y , andF (y1) = F (y2) theny1 = y2. Any sub-cluster(X ′, Y ′)
dominated by(X, Y ) must have equal or higher cost.

Proof. Let h andg be the size and max-gap of(X, Y ), respectively andh′ andg′ be the size and max-gap
of (X ′, Y ′). SinceX ′ ⊆ X andY ′ ⊆ Y , h ≥ h′. Since(X, Y ) dominates(X ′, Y ′), g ≤ g′. By definition,

Φ(h′, g′)− Φ(h, g) =
H∑

k=h′

g′∑

d=0

φ(k, d)−
H∑

k=h

g∑

d=0

φ(k, d)

=
h−1∑

k=h′

g′∑

d=0

φ(k, d) +
H∑

k=h

g′∑

d=0

φ(k, d)−
H∑

k=h

g∑

d=0

φ(k, d)

=
h−1∑

k=h′

g′∑

d=0

φ(k, d) +
H∑

k=h

g∑

d=0

φ(k, d) +
H∑

k=h

g′∑

d=g+1

φ(k, d)−
H∑

k=h

g∑

d=0

φ(k, d)

=

h−1∑

k=h′

g′∑

d=0

φ(k, d) +

H∑

k=h′

g′∑

d=g+1

φ(k, d)

(4.3)

Regardless of the method used to estimateφ(k, d), it is always non-negative. The sum of non-negative terms
is non-negative, thereforeΦ(h′, g′) ≥ Φ(h, g).

Even when a cluster contains duplicates, it is typically the case that all its sub-clusters have a higher
cost. This is because a sub-cluster will generally be smaller, and have a larger gap. In rare circumstances, it
is possible that a sub-cluster will have a lower cost. For example, considerthis very simple example:

G1 = a1 ∗ a′1 ∗ ∗ b1

G2 = b2 ∗ ∗ a2.

The clusterC = ({a1, a
′
1, b1}, {a2, b2}) is a dominant 2-cluster. If we select the associated maximum

matching({a1, b1}, {a2, b2}) then the matching has sizeh = 2 and max-gapg = 4. The sub-cluster
C ′ = ({a′1, b1}, {a2, b2}) is also a 2-cluster, but it is contained withinC, so it is not dominant. Ifa1

is assigned an ortholog,C becomes invalid andC ′ becomes a dominant cluster. However, the maximum
matching associated withC ′ has sizeh = 2 and max-gapg = 2, so it will be assigned a lower cost thanC.
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This scenario occurs as a result of selecting a poor matching forC. In the majority of cases, however, the
cost of a sub-cluster will never be less than the cost of its dominating cluster. Thus, it is reasonable to use a
lazy strategy for adding newly dominant clusters to the queue.

4.6 Experiments

Evaluating ortholog prediction methods is challenging. Although there are manydatabases of predicted
orthologs, there is no clear gold standard. A wide variety of evaluation strategies have been used. Meth-
ods that do not consider genomic context often use spatial organization toevaluate their predictions [68],
but clearly that is not appropriate for a method based on genomic context. Another approach is to use
functional genomics data [85], since orthologs are believed to have similar functions. Experimentally deter-
mined functions are known for only a small fraction of genes, so more indirect measures must be used, such
as expression profiles, protein-protein interactions, and participation in metabolic pathways. Methods that
consider spatial organization are often evaluated on synthetic datasets [19, 63], but these datasets are typi-
cally generated so as to conform to the method’s underlying evolutionary model, which is often not realistic.
Ortholog predictions can also be evaluated by comparing gene names and annotations, under the assumption
that genes with similar names and annotations are more likely to be orthologs than genes with distinct names
and no shared annotations [63, 14, 13]. Obviously, this assumption will hold to varying degrees depending
on the genes under consideration, and how they were annotated.

4.6.1 Data and Evaluation Metrics

Our main goal in this evaluation is to test whether by relaxing the conserved block definition and incorpo-
rating sequence similarity scores we are able to improve ortholog prediction compared to previous methods
that try to maximize spatial conservation. Thus, in order to compare our results with two previous spatial
methods, we use the same evaluation approach as LCS [14] and CIGAL [13], which were tested on aγ-
proteobacteria dataset. The resulting predictions were evaluated using gene name annotations, as described
below.

The dataset consists of eight single-chromosome species (listed in Table 4.2), that span the phylogeny
of γ-proteobacteria (Figure 4.5). The MRCA of these species is thought to have lived at least 300 million
years ago [98]. Table 4.2 gives the number of genes in each genome. The genome sizes range from only 598
genes, in the aphid endosymbiontBuchnera aphidocola, to 5642 genes, in the environmentally versatile,
opportunistic pathogenPseudomonas aeruginosa.

For consistency, we used the gene families constructed by Blinet al. [14]. They place an edge between
two genes in the homology graph if the sequences have at least 25% identity (in both directions), and the
BLAST alignment covers at least 65% of both sequences. Then, they take the transitive closure to generate
the family graph. Figure 4.4 shows the distribution of the number of genes perfamily per genome.Pseu-
domonas aeruginosacontains two families with more than forty genes. All other families are represented
by fewer than 35 genes in each genome. The majority of families are represented by fewer than ten genes
in each genome. These gene families determine the maximum matching size for eachpair of genomes
(Table 4.2).

We compared our method with three previous methods. In the BBH method, orthologs are assumed to
be those gene pairs that form bi-directional best Blast hits. LCS and CIGAL assign orthologs greedily based
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Ec Hi Pa Pm St Xf Yp
4345 1732 5642 2015 4532 2821 3954

Ba 598 564 466 521 450 563 464 557
Ec 4345 1319 2209 1460 3348 1104 2325
Hi 1732 1131 1329 1320 820 1270
Pa 5642 1220 2231 1222 2035
Pm 2015 1459 829 1422
St 4532 1123 2543
Xf 2821 1072

Table 4.2: Number of genes in each bacterial genome (first row and firstcolumn), and maximal matching
sizeν. Abbreviations: Ba,Buchnera aphidicola; Ec, Escherichia coli; Hi, Haemophilus influenzae; Pa,
Pseudomonas aeruginosa; Pm,Pasteurella multocida; St, Salmonella typhimurium; Xf, Xylella fastidiosa;
Yp, Yersinia pestis CO92.
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Figure 4.4: The distribution of family sizes, over all eight genomes.

Xf Pa Pm Hi Ba Yp St Ec

Figure 4.5: Phylogenetic tree showing the estimated branching order of the eight γ-bacteria species used in
the evaluation. [98]. Branch lengths are not representative. Abbreviations are given in Table 4.2.
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Measure Formula Intuitive Meaning

Precision TP
TP+FP The percentage of predicted orthologs that are correct.

Recall / Sensitivity TP
TP+FN The percentage of orthologs predicted to be orthologs.

Specificity TN
TN+FP The percentage of paralogs predicted to be paralogs.

Accuracy TP+TN
TP+TN+FP+FN The percentage of predictions that are correct.

F1 measure 2TP
2TP+FN+FP The harmonic mean of precision and recall.

Table 4.3: Common evaluation metrics for binary classification tasks.

on longest common substrings [14], and largest common intervals [13], respectively. We applied BBH, LCS,
CIGAL, and our new algorithm to all 28 pairs of genomes and evaluated the results using a “ground truth”
dataset constructed as follow. Each gene is associated with a (possibly empty) list of UniProt [3] names,
including the gene name field and the synonyms field. We consider two genes tobe true (T) orthologs if
they share a name. If both genes have UniProt names, but no common name,we consider them paralogs, or
a false ortholog pair (F). Otherwise, if one or both of the genes in the pair has no UniProt name, we consider
the pair to be unknown (U). Note that this approach does not guarantee that a gene will be assigned only one
ortholog. In fact, a number of genes have two or more matches in a single genome.

We ran each method on all 28 pairs of genomes. Note that with the exception ofBBH, these methods
are guaranteed to be symmetric. In other words, it is possible that switching the order of the input genomes
will yield a slightly different set of orthologs. We always order the genomepairs alphabetically. For each
pair of genomes, the output of each method is a matching, a set of predicted orthologous pairs. These are the
set of positive predictions (P). All gene pairs that were not matched areconsidered paralogs, and are labeled
negative ortholog predictions (N). Combining the known labels with the predicted labels, each gene pair is
classified as a true negative (TN), true positive (TP), true unknown (TU), false negative (FN), false positive
(FP), or false unknown (FU).

Table 4.3 summarizes the five metrics typically used in evaluating prediction systems. For orthology
prediction, the majority of the examples are negative (i.e. paralogs), and thus specificity and accuracy will
always be high as long as the classifier does not predict too many positives. For this reason, we selected
precision, recall, and theF1 measure as our evaluation metrics. For each method we report the precision
and recall for all 28 genome pairs, as well as theaverageprecision and recall and theoverall precision and
recall. The average5 precision is simply the average of the 28 precision measurements, whereas the overall
precision reports the percentage of all predicted orthologs in all 28 datasets that are correct. The average
and overall precision andF1 measure are defined similarly. The average precision weights allgenomepairs
equally. The overall precision weights allgenepairs equally, and thus is influenced more by pairs of large
genomes with many true orthologs than by pairs of small genomes with only a few orthologs.

5Often, the average precision is referred to as themacro-average, and what we call the overall precision is referred to as the
micro-average.
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4.6.2 Methods

The gene sequences, gene orderings, and UniProt annotations for all eight species were obtained from a
website6 maintained by Cedric Chauve.

We implemented Algorithm 2 and the Monte Carlo method described in Section 4.5.3 in C. The imple-
mentation of Algorithm 2 re-uses much of the code from the HomologyTeams7 software. The analytical
cluster probabilities were computed using Mathematica.

The cluster costΦ(h, g) was computed separately for each pair of genomes. As described in Sec-
tion 4.5.3,φ(h, g), the expected number of clusters with associated matching of sizeh and max-gapg,
was estimated in two ways, by Monte Carlo sampling and using an analytical method. The Monte Carlo
sampling procedure was conducted as follows. For each genome,r = 1, 000, 000 random permutations
of gene order were generated. For each pair of randomized genomes,all dominant max-gap clusters with
1 ≤ h ≤ 50 and0 ≤ g ≤ 20 were identified. The order-based strategy described in Section 4.5.2 wasused
to select a matching, and the size and max-gap of the associated matching weretabulated, yielding a table of
cluster frequencies for all values ofg andh. These frequencies were used to estimateφ(h, g), as specified
in Equation 4.1. In the analytical method,φ(h, g) was computed from Equation 4.2, for all matchings of
size1 ≤ h ≤ 50 and max-gap0 ≤ g ≤ 20.

E-values were calculated using an all-against-all BLAST [1] comparison using default parameters on a
combined FASTA file with the list of gene sequences from all eight genomes.E-values are not, in general,
symmetric because Blast statistics are length dependent. If sequencesa andb are of different lengths, e-
val(a, b) will differ from e-val(b, a). In this case, we set both e-val(a, b) and e-val(b, a) to be the smaller of
the two E-values. These E-values were used to compute BBHs for each pair of genomesG1 andG2. Given
sequencea in G1 andb in G2, the pair(a, b) is a BBH iff there is no pair(a, b′) such thatb′ is in G2 and
e-val(a, b′) ≤ e-val(a, b), and there is no pair(a′, b) such thata′ is in G1 and e-val(a′, b) ≤ e-val(a, b).

4.6.3 Results

In this section, we compare nine different variants of our method, summarized in Table 4.4. These strategies
differ in terms of four factors: the method used to compute cluster costs, the method for selecting an asso-
ciated matching, whether E-values were used to rank clusters with equal costs, and the value ofgmax. By
comparing different strategies, we investigate the affect of allowing gaps, and the importance of incorporat-
ing sequence information along with spatial information. We also compare our methods with three existing
methods for ortholog predictions: CIGAL, LCS, and BBHs.

In all the graphs below, the genome pairs are ordered by the value of theF1 measure achieved when
using BBHs to assign orthologs. In other words, gene pairs on the left are “easy”: orthologs can be identified
accurately using gene sequences alone. Gene pairs on the right are “hard”: sequence-based methods have
lower precision and recall on these datasets.

6Available athttp://arnt.bioinfo.uqam.ca/˜genoc/CG06
7Available athttp://euler.slu.edu/˜goldwasser/homologyteams/ .
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Computing φ(h, g) Selecting a Local Matching Ranking clusters gmax

MG0 Monte Carlo Order Φ 5

MG1 Analytical Order Φ 5

MG2 Analytical Order Φ 0

MG3 Analytical Order Φ 10

MG4 Analytical E-values Φ 5

MG5 Analytical Order Φ + E-values 5

MG6 Analytical E-values Φ + E-values 5

MG7 Analytical E-values Φ + E-values 10

MG8 Analytical E-values Φ + E-values 0

Table 4.4: Summary of prediction methods evaluated.

Analytical versus Monte Carlo

In Section 4.5.3 we proposed two methods for estimating the significance of a cluster: a Monte Carlo
method and an estimate based on the analytical equations presented in Section 2.3. TheF1 measure for
these two methods are compared in Figure 4.6, whengmax = 5. Although there are a few datasets for
which the Monte Carlo method yields a largerF1 measure, the overall performance is slightly better with
the analytical estimates. This difference occurs because, even with one million samples, the Monte Carlo
method is not able to estimate very small probabilities accurately. Hence, the queue initially contains a large
number of clusters that are all assigned a cost of zero. The analytical method can rank these clusters more
accurately, giving preference to those with smaller gaps and larger size.In Figure 4.6, E-values were not
used to select a local matching, nor to rank clusters. When local matchings are selected based on E-values,
the trends are very similar. If E-values are also used to rank clusters, then the difference between the two
methods is reduced, since the inability of the Monte Carlo method to rank highly significant clusters is
mitigated by the use of E-values to rank these clusters.

Figure 4.6 also illustrates that the average (macro-average) performance is better than the overall (micro-
average) performance. This trend is observed regardless of the method used to predict orthologs, since the
genome pairs with more orthologs tend to be the more difficult datasets.

Allowing Gaps

A central tenet of our approach is that ortholog prediction can be improved by using a more flexible cluster
definition that allows insertions and deletions. We also claim that our statistical approach to scoring clusters
enables us to identify more true positives without increasing the number of false positives. In order to test
these assumptions, we examined how the performance of our method changes asgmax is increased from0
to 20. No sequence information is considered in this analysis, because we wantto investigate the effect of
allowing gaps when using a purely spatial approach. Figure 4.7 shows that asgmax is increased from0 to 5,
both precision and recall increase. As expected, the improvement to recall is larger than to precision. The
largest improvements are achieved on the hardest datasets. Although forcertain datasets, such as Pm-Yp,
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Figure 4.6: Performance comparison of two methods for estimating the significance of a cluster: Monte
Carlo (MG0) and Analytical (MG1).
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allowing gaps larger than five does improve precision and/or recall, increasing gmax above five does not
yield an increase in overall performance. However, neither does it substantially decrease performance. Even
allowing gaps as large as ten or twenty, the performance decreases only very slightly or not at all. This shows
that our use of cluster statistics is effective in eliminating clusters that are notbiologically meaningful.

Figure 4.7 also compares our method to CIGAL. Recall that CIGAL is based on common intervals,
which are max-gap clusters withg = 0. By allowing gaps in conserved blocks, our method obtains a sub-
stantial performance improvement over CIGAL. This difference is due almost entirely to the more liberal
cluster definition, since whengmax = 0, the overall performance of the two methods, as expected, is very
similar. Max-gap withgmax = 0 performs slightly better than CIGAL on the easiest datasets, which is prob-
ably due to differences in how a local matching is selected. Unlike CIGAL, our matching strategy explicitly
tries to preserve gene order, which appears to work better than CIGAL’s matching strategy, especially for
the easier datasets. This small difference is not sufficient to explain the improvement over CIGAL when
gmax = 5. Thus, the majority of the improvement must be due to using a more liberal clusterdefinition.

The advantage of a cluster definition that includes gaps is exemplified by the cluster in Figure 4.8, which
shows a dot plot of regions in theE. coli andB. aphidocolagenomes. This region contains a gene cluster
characterized by numerous insertions and deletions. A method that does not recognize conserved blocks
that contain gaps would fail to detect this cluster, and thus would be unlikely tocorrectly identify orthologs
for the genes in these regions.

Considering Gene Order

To evaluate the relative importance of gaps versus gene order, we compare the max gap method, based on
spatial information alone and disregarding sequence information, with LCS,a method based on common
substrings. For theγ-proteobacteria considered in this evaluation, order tends to be very conserved. Con-
sequently, LCS achieves better performance than CIGAL (Figure 4.9). Not only does CIGAL have lower
precision than LCS, but it improves recall for only one of the 28 genome pairs (not shown). This poor
performance occurs because only a small fraction of the additional clusters that CIGAL identifies are bio-
logically meaningful—more often they are just chance clusters, and therebyincrease the number of false
positives. This illustrates that for this dataset, relaxing the gene order constraint was not helpful for ortholog
prediction.

If rearrangementsandgaps are allowed (gmax = 5), then our method performs similarly to LCS overall.
It performs slightly better on roughly a third of the datasets and slightly worseon the remaining datasets.

For these eightγ-proteobacteria, even when clusters contain gaps, gene order tends tobe conserved. For
example, the cluster shown in Figure 4.8 contains many gaps, but order is almost perfectly preserved within
the cluster—it contains only a single inversion. This suggests that a method that considers both gene order
and gaps would yield more accurate predictions. One approach would be toselect a cluster definition that
requires identical gene order but allows gaps. Such a stringent definition might not work well, however,
when analyzing more rearranged genomes. We discuss alternative waysof incorporating gene order into our
approach in Section 4.7.1.
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Figure 4.7: Comparison of (a) precision and (b) recall for CIGAL and Max-gap whengmax = 0 (MG2),
gmax = 5 (MG1), andgmax = 10 (MG3).
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Figure 4.8: A dot plot showing a region ofBuchnera aphidicolacompared with a region ofE. coli. Each
box indicates a pair of genes in the same family, one from Ba and one from Ec. True orthologs are shown in
green, false orthologs in red, and unknown pairs in black.
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Figure 4.9: Performance comparison of LCS, CIGAL, and Max-gap (MG1).

90



 0.8

 0.85

 0.9

 0.95

B
a 

X
f

P
m

 X
f

B
a 

S
t

B
a 

E
c

S
t X

f

H
i P

m

H
i X

f

E
c 

X
f

B
a 

H
i

X
f Y

p

B
a 

Y
p

P
a 

X
f

B
a 

P
m

E
c 

H
i

B
a 

P
a

H
i Y

p

H
i S

t

P
m

 Y
p

E
c 

P
m

H
i P

a

P
m

 S
t

E
c 

S
t

P
a 

P
m

S
t Y

p

E
c 

P
a

E
c 

Y
p

P
a 

S
t

P
a 

Y
p

A
ve

ra
ge

O
ve

ra
ll

F
1 

M
ea

su
re

Max-gap no-evals
Max-gap eval-match
Max-gap eval-ties
Max-gap eval-match-ties

Figure 4.10: Performance comparison of different ways of incorporating sequence similarity. In the first
method (Max-gap no-evals, MG1), sequence information is disregarded, and a local matching is selected
based on gene order. In the second method (Max-gap eval-match, MG4), a local matching is selected based
on E-values. In the third method (Max-gap eval-ties, MG5), a local matchingis selected based on gene
order; E values are used to rank clusters of equal cost. In the last method (Max-gap eval-match-ties, MG6),
E-values are used both to select a local matching and to rank clusters.
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Figure 4.11: Performance comparison using different values ofgmax, when E-values are used for selecting
a matching and ranking clusters:gmax = 0 (MG8), gmax = 5 (MG6), andgmax = 10 (MG7).

Incorporating Sequence Information

We proposed two ways to incorporate sequence information within a spatial framework. In the first case,
E-values are used to select a local matching, once a cluster has been obtained from the priority queue. In
the second case, E-values are used to break ties in the cluster ranking when more than one cluster has the
same cost. Here we evaluate the effectiveness of these two methods. Figure 4.10 shows that our method for
using E-values to select a local matching is preferable to our method for selecting a matching based on gene
order alone. It is possible, however, that a method that considers only gene order, but recognizes inversions,
would perform as well or better than our sequence-based method.

Using E-values to rank clusters with the same cost also results in a large increase in performance (Fig-
ure 4.10). This improvement is much larger than that obtained when using E-values only to assign a local
matching. This is because the majority of gene clusters have only one associated matching. Even when
there is a choice of matching, for this data, gene order is highly conservedwithin clusters (as illustrated by
Figure 4.8), so the order-based matching strategy performs reasonablywell. However, there are a number
of genome pairs in which there are large numbers of orthologs that do not share any gene neighbors at all.
Without using E-values to break ties, thesesingletonsare ranked randomly, which is equivalent to picking an
arbitrary family member as the ortholog. Not surprisingly, choosing the genewith the most similar sequence
as the ortholog yields much better results. These two uses of sequence information are orthogonal, so by
using E-values both to select a local matching and to break ties, performance is further increased.
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Incorporating sequence into a context-based approach consistently improves performance, over all 28
genome pairs. However, when both methods of incorporating sequence similarity are used, allowing gaps
no longer improves performance, as shown in Figure 4.11; in fact, the best performance is obtained when
gmax = 0. It is not completely clear why larger gap sizes lead to slightly worse predictions. It could
be that sequence is just a better predictor than spatial context for this dataset, and so by using a smaller
gap we are relying on sequence for a larger portion of the genes. Another possible explanation is that,
with larger gaps, there are more “innocent bystanders” that get erroneously pulled into a highly significant,
neighboring cluster. When a conserved block is very large and dense,the probability of it occurring by
chance is extremely small, and so if there are neighboring genes, even at some distance, they may get
included in the cluster, without substantially affecting the probability. A small probability of occurring by
chance is a good indicator that a part of the cluster indicates an orthologous block, but it is not a good
indicator that the entire cluster represents an orthologous block.

Comparison to Existing Approaches

Here we compare our method, based on a combination of sequence and spatial information, with existing
approaches based on only spatial context, or only sequence comparison. Figure 4.12 compares our method
with CIGAL, LCS, and BBHs. As shown in Figure 4.7, even without using sequence information, our
method is a better predictor or orthologs than CIGAL. Allowing gaps and usingsequence information, to-
gether, results in an even larger improvement over CIGAL (Figure 4.12).Without sequence information, our
method performed similarly to LCS, but our combined method achieves substantially higher precision and
recall than LCS on all 28 genome pairs. Incorporating sequence into a context-based approach consistently
improves performance.

Although BBH is the most common method for assigning orthologs, previous studies of spatial methods
have not compared their results with BBHs. We address that omission here,comparing CIGAL, LCS, and
our max-gap method with BBHs (Figure 4.12). Surprisingly, both CIGAL andLCS have significantly worse
results than BBH. Compared to our method, BBH has higher precision, but slightly lower recall overall. For
the easier datasets, BBH tends to do better, particularly on recall. For the harder datasets, however, our
method gets consistently higher recall.

The small magnitude of the improvement over BBHs could be due to a number of factors. First, our
evaluation metric is based on gene names, which are assigned primarily basedon sequence similarity. In-
deed, there are many cases of clearly conserved clusters, with identicalgene order and content, in which
the genes were not assigned the same names. It is highly unlikely that these clusters occurred by chance.
Second, our method assumes that all orthologs are assigned to the same gene family. We observed numerous
cases where orthologous pairs were assigned to two different families. In these cases, our method can not
possibly make the correct prediction. To address this issue, one possibilitywould be to use a more liberal
sequence threshold when identifying homologous genes. However, this strategy would add many extrane-
ous edges to the homology graph. We discuss an alternative solution to this problem in the next section. A
third factor may be the close relationship between theγ-bacteria considered in this evaluation. It may be
that these eight species are so similar that a simple approach like BBHs worksquite well. When comparing
more highly diverged species, however, our approach may yield largerimprovements. Finally, there are a
number of ways to improve our methods, both in how it utilizes spatial and sequence information. These
extensions are discussed in the next section.
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Figure 4.12: A comparison of (a) precision and (b) recall, for BBH, LCS, CIGAL, and max-gap (MG8).
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4.7 Discussion and Future Work

In this chapter we presented a new method that predicts orthologs based ona combination of spatial context
and sequence information. This method makes two main contributions. The firstis an efficient algorithm
that, given a bipartite family graphF , identifies all dominant max-gap clusters. As orthologs are assigned,
and edges are removed from the graph, our algorithm efficiently updatesthe set of dominant max-gap clus-
ters. The second contribution is a statistical method that, given two max-gap clusters of different sizes and
gaps, estimates which cluster is least likely to have occurred by chance. Our ortholog identification method
improves over existing methods based on spatial context, which rely on more conservative cluster defini-
tions, and disregard sequence information. Assessing gene clusters statistically allows us to use a more
flexible cluster definition, increasing true positives without increasing false positives. In fact, by identifying
conserved blocks that contain gaps, we increase both precision and recall, compared to existing spatial ap-
proaches. Furthermore, unlike previous methods, our statistical approach allows us to not only return a set
of predicted ortholog pairs, but also to rank those pairs by the strength ofthe evidence.

On the datasets tested, our combination approach results in slightly lower precision and slightly higher
recall than BBHs. However, even with equivalent performance to sequence-based approaches, our approach
has the advantage that in addition to identifying orthologous genes, it identifies orthologous regions, which
are the required input to many comparative genomics applications.

Aside from ortholog prediction, our framework is useful as a platform for comparing clusters definitions
and/or test statistics. Although many different definitions of a conserved block have been used for this
problem, it is not yet clear which characteristics of a conserved block are most important. Although it might
seem preferable to choose the most liberal possible definition of a conserved block, we demonstrated that this
is not necessarily the optimal approach. The appropriate definition of a conserved block will depend closely
on the rates and patterns of large-scale chromosomal changes, and may differ from organism to organism.
In order to determine which properties are most important, we need an algorithmic framework in which all
of these properties can be considered. Since our approach is designed for a very general cluster definition,
it can easily be modified to use more constrained definitions: we can set the max-gap to zero (yielding
conserved intervals), disregard scrambled clusters and those with duplicates (yielding common substrings),
restrict the minimum size of a cluster, or allow only partially scrambled clusters, etc. A Monte Carlo method
can be used to estimate cluster significance based on a wide range of test statistics. Hence, our framework
is useful for conducting unbiased comparisons of the performance of different cluster definitions and test
statistics. For example, we showed that for theγ-proteobacteria considered here, it is more important to
consider insertions/deletions then local rearrangements.

Finally, we demonstrated that it is critical to consider sequence information in addition to spatial context.
Although spatial context is often useful, there are often large numbers oforthologs that share no neighboring
genes. Thus, since LCS and CIGAL disregard sequence information, they do not perform as well as BBHs. It
is possible that spatial methods based on other principles might provide more accurate ortholog predictions.
On the other hand, it has been demonstrated that CIGAL achieves similar performance on a mouse/human
dataset as MSOAR, a state-of-the-art approach that seeks to minimize rearrangement distances [13]. This
suggests that other methods based only on spatial data also suffer from the same limitations.
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4.7.1 Directions for Future Work

Evaluation

Comparisons of gene names are not ideal for constructing a gold standard. An alternate strategy could be
to use a phylogenetic test to assess ortholog predictions. Phylogeny reconstruction is NP complete and
hence computationally prohibitive for predicting orthologs in large gene families. In contrast, the use of
phylogenetic methods for testing ortholog predictions is less computationally demanding because only a
restricted search space must be considered. Since only the phylogeneticposition of the predicted orthologs
is in question, it is unnecessary to build gene trees for all the genes in a given family. Rather, trees could
be constructed for all subsets of four genes (quartets) that include thepredicted ortholog pair and two other
family members. A prediction is validated if the majority of the quartet trees confirmsthat the predicted
pair is indeed orthologous. A confidence score for each prediction could also be derived from the fraction
of quartet trees that support the prediction.

In addition to better evaluation strategies, it would also be interesting to test ourmethod on a more di-
verse set of species, with more distantly related pairs. A larger, more diverse dataset may help us understand
why ortholog prediction is easier in some genomes than in others, and how the characteristics of the genome
determine which cluster definition is most appropriate. Finally, we plan to compare the performance of our
method with a broader range of competing approaches. In this thesis, the method was compared with two
existing methods based on spatial context. Other methods have been developed, but their data and/or code
is not publicly available. Creation of a standard, publicly available benchmark will allow more thorough
comparison of all the existing methods.

More effective use of sequence information

Our results demonstrate that incorporating sequence information in a spatialapproach yields a marked per-
formance improvement. Additional use of sequence information is likely to yield further improvements.
For example, our method continues to select clusters based on their spatial characteristics, even when the
cost of the cluster is extremely high,i.e. there is no evidence that the clusters represent homologous re-
gions. An alternative strategy would be to switch from a combined spatial/sequence approach to a purely
sequence-based approach, once the spatial organization no longer provides sufficient evidence to reject the
null hypothesis. One possibility is to compare the observed number of clusters with size≥ h and max-gap
≤ g with the expected number of clusters. If the difference is small, then the cluster should be discarded.
A significance threshold could be selected based on aχ2 test with one degree of freedom. Only clusters
with scores above the significance threshold would be considered for ortholog assignment. To assign the
remaining unmatched genes, a purely sequence-based method could be used. Alternatively, when a high
precision dataset is desired, no additional orthologs could be assigned.

Sequence information could be better utilized in our our method for choosing an associated matching
based on E-values. Currently a greedy heuristic is used. Other possibilities include identifying the maximum
weight, maximum cardinality matching:i.e. the maximum matching such that the sum of the edge weights
is largest. (In this case it is appropriate to use bit scores rather than E-values.) Alternatively, we could
select a stable matching. Even better than either of these approaches wouldbe to design an algorithm that
considers both gene order and sequence similarity. An algorithm such as Shuffle-Lagan [23] could be used
to create aglocal alignment of the gene sequences in the cluster: an alignment in which each letter of one
sequence is aligned to only one letter of the other sequence, but which allows for rearrangement events such
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as inversions, translocations, and duplications.

Another modification that would allow us to make better use of sequence data is toomit the transitive
closure step when creating the input graph. As discussed in Section 4.3, for ortholog identification, it is
not necessary to identify all homologs of a gene, but only a small set that islikely to contain the true
orthologs. Requiring gene families defined as equivalence classes is actually detrimental, since to create
families we have to either remove strong edges between genes inH, or add weak edges. Removing strong
edges may remove orthologs, whereas adding weak edges mostly adds noise. Instead, our method could
be modified to work on the homology graphH, rather than the family graphF . This introduces some
algorithmic challenges, but they are not insurmountable. My approach is strongly based on the fact that
the the homology relation is reflexive (i.e. the graph is undirected), but only a few details of the algorithm
require transitivity.

More effective use of spatial information

Estimating probabilities is currently the most time-consuming step of our algorithm. Even with a million
random iterations, the Monte Carlo method does not estimate small probabilities accurately, and the ana-
lytical approach is only approximate since it does not consider the effectof gene families. Faster, more
accurate statistics could be obtained by combining the two approaches. The analytical equations could be
used to generate a biased distribution of permutations for importance sampling [25]. Although the sample
space of all possible gene permutations is very large, only a small fraction of random samples will contain
non-trivial gene clusters. Our combinatorial analysis can be used to devise a sampling strategy that selects
samples only from the small fraction of permutations for which the probability ofa cluster is high.

Another way to use spatial information in the absence of sequence similarity would be to add a post-
processing step in which pairs of genes with weak or even no detectable similarity are assigned as orthologs
if they appear in a gene cluster, and no other potential ortholog was identified for either gene.

One of the strengths of the max-gap cluster definition is it allows homologous blocks that have sustained
local rearrangement to be identified. Nonetheless, homologous blocks tend to be more ordered than gene
clusters found in randomly ordered genomes. Requiring identical gene order is too strict, and designing an
algorithm to find only partially disordered clusters is challenging. A simpler wayto consider order, while
still allowing rearrangements, is to incorporate the degree of rearrangement into the test statistic. Several
such test statistics have been proposed [144]. An order-based test statistic could be included as a secondary
sorting criteria, to rank clusters with identical size and max-gap. Alternatively, a compound test statistic
could be designed that considers size, max-gap, and order simultaneously.
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Chapter 5

Discussion

In this thesis, I provide statistical tests to assess the significance of gene clusters for a variety of biolog-
ical questions and search scenarios. I developed the first formal statistical framework for max-gap gene
clusters [80], the most widely used cluster definition in genomic analyses. This framework provides statis-
tical tests for two common search scenarios: a reference set scenario inwhich the goal is to find clusters
comprising a set of genes of interest, and a whole genome comparison to identify homologous segments.
In addition to assessing significance of gene clusters after they are detected by a search algorithm, this
framework facilitates principled selection of parameter values prior to conducting a search for gene clusters.

In the development of statistical tests for the max-gap cluster definition, I observed two troubling is-
sues regarding the use of this definition. First, my statistical results demonstrate that cluster probabilities
under the null hypothesis are not monotonic with respect to cluster size, which is commonly used as a test
statistic for gene clusters. Although there is a widespread belief that clustersignificance grows with the
number of homologs in the cluster, it is critical to recognize that for some cluster definitions, larger clusters
do not always imply greater significance. In the design of future studies,before selecting a test statistic its
distribution under the null hypothesis should be analyzed to ensure that thedistribution is monotonic. Sec-
ond, I observed that the majority of studies based on the max-gap definition use a greedy, bottom-up search
strategy that implicitly enforces order constraints, yet these biases are rarely recognized. The use of such
heuristics can be particularly dangerous when attempting to draw conclusions about the degree of disorder
observed in homologous regions [79].

I also proposed a novel statistical framework for evaluating the significance of clusters spanning three ge-
nomic regions, based on anr-window cluster definition and a window sampling search scenario. I designed
statistical tests for clusters spanning exactly three regions [133] based on genome models for two typical
comparative genomics problems: analysis of conserved linkage within multiple species and identification
of large-scale duplications. My statistical tests for three genomic regions are the first to combine evidence
from genes shared among all three regions and genes shared betweenpairs of regions. My results demon-
strate that these tests are more sensitive than existing pairwise methods, and have the potential to detect
more diverged homologous regions. Recent studies of whole genome duplication have compared a dupli-
cated genome with a related genome that diverged prior to the duplication event. This approach has been
shown to detect more paralogous regions than can be identified through genome self-comparison. However,
my statistical analysis demonstrates that there may be many additional duplicated blocks that these studies
are failing to detect, due to their reliance on pairwise tests. The promise of increased statistical power is
intriguing in light of the continuing debate concerning the history and tempo of whole genome duplications
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in the evolution of species such as human andArabidopsis.

Finally, I demonstrated the importance of statistical analysis of gene clusters by applying my max-gap
cluster statistics to a key problem in comparative genomics: ortholog prediction. I developed a new method
for ortholog prediction, based on a simple greedy strategy which repeatedly selects the most significant
max-gap gene cluster, and assigns orthologs within the cluster. The fundamental idea of this approach is
to rank clusters based on statistical significance; this strategy was key to applying this greedy strategy to
the max-gap cluster definition. Another important innovation was the design ofan efficient algorithm for
finding all highly significant max-gap clusters, forall values ofg. This algorithm extends on previous work
that finds only maximal max-gap clusters for one particular choice ofg, and hence could miss many highly
significant clusters.

My method for otholog prediction improves over other methods based on conserved spatial organization,
by allowing a more flexible cluster definition to be used, by employing a more principled ranking criterion,
and by relying on sequence information in the absence of any significant spatial signal. In addition, rather
than just returning a binary classification of each gene pair as an orthologor a paralog, the statistical ap-
proach makes it possible to assign a confidence score to each pair basedon the strength of the associated
spatial evidence. Lastly, by disentangling the ranking criterion from the cluster definition, my statistical
approach to ranking clusters allows the same basic framework to be applied toan unlimited range of cluster
definitions and test statistics, making it an effective framework for comparing the performance of different
algorithmic and statistical approaches to detecting homologous chromosomal regions.

5.1 Designing Improved Gene Cluster Definitions

In addition to developing new statistical and algorithmic tools for key problems in spatial comparative
genomics, this thesis has led to a number of observations about the currentchallenges in analyzing the
spatial organization of genomes, as well as insights into the most promising directions for new methods in
spatial comparative genomics.

Identification of distantly related homologous chromosomal regions has traditionally been broken down
into two independent steps. The first is to define the spatial patterns suggestive of common ancestry, then
search for “gene clusters,” pairs of regions that exhibit these patterns. The second step is to select a test
statistic and design a statistical test to determine the significance of an observed cluster. Ideally a cluster
definition would be based on all properties of interest, and search parameters would be selected to ensure that
only significant clusters are identified. In practice, a cluster definition often constrains only one property,
such as the maximum gap size or cluster length. A significance test, based on an orthogonal property such
as cluster size or density, filters the clusters identified by the algorithm to ensure that they are statistically
significant. Both steps are critical for ensuring sensitive detection of ancient homologous regions without
inclusion of false positives.

Formal characterization of a gene cluster is one of the most challenging tasks in cluster identification.
Many definitions have been proposed, but there is little understanding of the trade-offs between them, or con-
sensus on which criteria best reflect biologically important features of gene clusters. Nor has any consensus
been reached about how to compare or evaluate different gene clusterdefinitions. This lack of consensus
reflects the difficulty in characterizing what homologous blocks will look like,since in most cases evolution-
ary histories are not known. Most often, when designing cluster definitions this issue is ignored altogether.
Formal definitions of gene clusters are typically geared toward the design of efficient search algorithms,

100



rather than on selecting a definition that reflects the underlying biological processes.

Even when the explicit goal is to select a definition that reflects the underlying biological processes,
definitions are generally based upon intuitive notions, often derived from small, well-studied examples (e.g.
such as the MHC region [55, 154, 167]). However, these regions were identified precisely because of
their distinctiveness, and so they may not be appropriate representatives of typical homologous regions.
Inferences drawn from larger sets of predicted homologous regions may be biased as well, since only those
regions that match existing cluster definitions are detected. Confusing the picture still further, inferences
about properties of homologous blocks may be unreliable, due to implicit constraints enforced by search
algorithms, as described in Section 2.3.3.

Cluster definitions should reflect the patterns of spatial conservation in thedata, but these patterns, in
turn, will depend on which rearrangement processes dominate in the lineage of interest. The most common
large-scale rearrangement events are inversions, translocations, horizontal gene transfer, duplications, and
loss. All of these processes will result in different characteristic patterns behind in the genome. In order to
design appropriate cluster definitions, it is important to understand not onlywhich rearrangement processes
occur, but how often they occur, and how they influence cluster properties.

Inversions can arise as a result of recombination between inverted repeats, and are seen frequently in
both eukaryotic and prokaryotic genomes. In fact, inversions appear tobe the most frequent rearrangement
events in closely related bacteria [9, 84]. The size and spatial distribution of inversions will affect both
cluster size and order. If inversions span many genes, and are locatedrandomly throughout the genome,
then although the global organization of two genomes may look very different, gene order will be well-
conserved within homologous blocks. If inversions are short, on the other hand, conserved regions will be
quite small, and gene order in homologous regions may differ substantially. Inbacteria, inversions occur
most often in a symmetric fashion around the origin or terminus of replication [84]. As a results, genes
located together in the ancestral genome will tend to maintain similar distances to the origin and terminus,
but may appear on opposite sides of the genome. For this situation, it may be most appropriate to use
a cluster definition in which the location relative to the axis of replication is considered, but the absolute
genomic location is not. However, note that this pattern is not predictive of orthology per se. Paralogs that
arose through tandem duplication could be separated by an inversion, and thus also end up on opposite sides
of the origin of replication.

The rate of inversion depends on genome characteristics such as the number of repeats, as well as
characteristics of a species’ lifestyle, such as level of selective pressure and effective population size. For
example,Saccharomyces“sensu stricto” species exhibit protein divergence levels similar to mammals, and
yet only a few large inversions have been identified within this group, compared to much higher numbers in
mammalian genomes [58]. Even within yeasts, inversion rates vary substantially. A. gosyppiandK. lactis
have fewer inversions, and smaller inversions thanS. cerevisiaeandC. glabrata, which are more closely
related. D. hanseii, has been shown to have an inversion rate more than twice as high as that ofrelated
yeasts, whereas the rate inY. lipolytica is at least twice as small [58]. In bacteria, there is some evidence
that short inversions are generally more common than longer ones [139],but for the most part, the length
distribution of inversions in different lineages is unknown.

Multi-gene insertions can occur as a results of translocations and—in bacteria— horizontal gene trans-
fer (HGT). Both translocations and HGT can lead to rearrangement and fragmentation of clusters within
the genome, but neither will cause substantial shuffling of gene order within clusters. However, HGT in
particular may confound ortholog identification: clusters inserted by HGT maybe more conserved than
orthologous clusters, and could lead to errors predicting orthologs. Likeinversion rates, translocation rates
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may be affected by repeat frequency. Translocations can occur when direct repeats lead to deletions, and
these deleted fragments are reinserted at another location in the genome. Rates of HGT also differ be-
tween species [121]. Some of these differences have been attributed to selection against disruption of short
sequences used by the cell for orientation purposes during processes like replication and segregation [78].

The mechanisms and rates of gene duplication and loss will also influence the characteristics of ho-
mologous blocks [49]. Gene duplication can occur by retrotransposition,tandem duplication, segmental
duplication, and whole genome duplication. The characteristics of gene clusters will depend on which du-
plication mechanisms dominate in the genomes of interest. Whole genome duplication,for example, is often
followed by massive gene loss, and thus results in clusters with large numbers of gaps, but often highly con-
served gene order [89, 93, 146]. The effect of gene loss on cluster properties will depend on whether genes
are lost gradually, one at a time, or abruptly, in large blocks. If gene lossoccurs in large contiguous blocks,
such as might occur following whole genome duplication, or a lifestyle changefrom a free-living organism
to a symbiont, then the retained genes will occur in large, dense conservedblocks. If single genes are lost
independently, on the other hand, conserved regions may still be large, but not very dense.

It has been shown that both duplication and loss rates vary substantially between species and over evolu-
tionary time [104, 105, 108]. Tandem duplication rates may be affected by the number of repeated elements,
since recombination between direct repeats can lead to tandem duplications [84]. The little that is known
regarding susceptibility to whole genome duplications, on the other hand, suggests that it is related more to
species lifestyle than genome characteristics [106, 107, 155].

Functional constraints could also influence the local rate of rearrangement, and thus the local characteris-
tics of a conserved block. If two genes are in the same operon, then therewill be selection against insertions
or inversions with endpoints between the genes. Consequently, the geneswill maintain the same orientation,
and the physical distance between them will be constrained. Hence, geneorientation and physical distances
between genes may be very informative for identifying functional clustersin bacterial genomes.

In addition to theories about which genomic and lifestyle factors affect specific types of rearrangements,
a few hypotheses have been proposed concerning the factors that results in high or low overall levels of
rearrangements. For example, symbiotic or pathogenic species often havehigh rearrangement rates [58, 84].
This has been attributed to a number of factors, including smaller population sizes, and selective pressure to
escape immune recognition. However, these associations tend to be either speculative, or weak.

In summary, little is currently known about the rates at which different evolutionary processes occur.
The relative frequency of these processes and the degree to which these frequencies are consistent across
lineages, remain open questions. Thus, we cannot yet carry out accurate simulations to investigate what gene
clusters would look like under characteristic rearrangement regimes. Thisdoes not mean it is impossible to
compare the performance of two potential cluster definitions on a particular dataset, however.

I argue that a cluster definition should be selected that is precisely as general as needed to include the
set of homologous blocks, but no more general, in order to capture as few chance clusters as possible [79].
Of course, we do not know which are the homologous regions. In the future, we may be able to construct
accurate generative models, then use these models to evaluate the discriminatory power of different cluster
definitions and statistical tests. An innovation we can implement immediately is to selecta cluster definition
that maximizes the difference between the number of clusters observed in thegenomic data of interest,
compared to random data, as discussed in Section 2.3.3.

It is essential that new cluster definitions be designed specifically to discriminate truly homologous
regions from background noise (clusters of genes that occur by chance). This requires statistical techniques
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for quantifying the discriminatory power of different combinations of definitions and test statistics, as well
as software tools that, given a dataset of interest, and a suite of possible cluster definitions, selects the most
appropriate one. In Appendix B, I present a detailed catalog of cluster properties that can be considered
in designing new definitions. Analyses of desirable cluster properties may pave the way for new, possibly
more powerful cluster definitions.

5.2 Open Problems

In addition to the open problems discussed in previous chapters, and the need for improved gene cluster
definitions, my thesis raises a number of other important problems:

Multi-region clusters: Additional statistical tests for comparison of multiple regions is an important
area for future work. Tests for more than three regions are needed, as well as tests for whole genome
comparison. Such tests will be particularly useful for detecting evidence of more than one round of WGD,
and for designing ortholog prediction methods that consider spatial context in more than two genomes.

Combining sequence, spatial, and phylogenetic evidence for ortholog detection:Ortholog detection
based on spatial data is a hot topic, that has received considerable attention in recent years. Most existing
methods either assume very conservative cluster definitions, or ignore sequence information entirely. How-
ever, spatial approaches have limitations. Ideally, methods would be developed to effectively exploit spatial
information while at the same time making optimal use of sequence and phylogenetic data as well. Sequence
similarities and spatial context could be analyzed simultaneously within a combinedstatistical framework.
This problem seems to fit naturally within an expectation maximization framework, since if the orthologous
blocks were known the orthologous genes could be identified, and vice versa.

Gene families: Exact cluster statistics that take gene families into account remains an importantand
challenging problem. Virtually all genomic data sets require models that consider many-to-many homology
relationships. The model upon which I based my statistical tests in Chapter 2 assumes that each gene has at
most one homolog. In Chapter 3 this assumption was relaxed slightly to allow for two copies of a gene that
was duplicated via WGD. In Chapter 4, arbitrary sized gene families were assumed, but I approximated the
probability of gene clusters in this case by assuming a one-to-one homology mapping, and then adjusting
the number of homologous gene pairs upward. This approximation worked as well for ortholog prediction
as estimating probabilities using a Monte Carlo approach. Even better estimates may be obtained by an
approach combining analytical and Monte Carlo methods, as described in Section 4.7.1.

Statistics for clusters found by whole genome comparison:There are a number of unresolved statisti-
cal questions regarding evaluating the significance of clusters identified through whole genome comparison.
Whole genome comparisons can lead to questions about the degree of clustering in the genome overall, or
about individual clusters. For example, a researcher might want to makea global statement about processes
in the evolution of the genomes, such as whether an ancestral genome underwent a whole genome dupli-
cation. In this case the focus is not on a single homologous region, but on the level of clustering overall.
In other cases, we may want to ascribe meaning to individual clusters,e.g.to argue that a particular cluster
was a result of a whole genome duplication. In this search scenario, clusters are not independent. The pres-
ence of one cluster affects the probability of finding additional clusters. The gaps in a cluster will typically
be smaller than the expected gap size, and so the expected gap size of the remaining gaps will be larger
than expected in a random genome. For example, if a large conserved operon is detected, then to evaluate
the degree of clustering of the next largest cluster we might need to take theexistence of the first cluster
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into account, since it will effectively reduce the size of the genome and change the distribution of the test
statistics. With many large clusters, the probability of finding small clusters might be changed significantly.
Thus, what can be said about the significance of any individual clusteridentified through whole genome
comparison is unclear.

Statistical tests for selective pressure on spatial organization: In this thesis I attribute similarities
in spatial organization of genes to common ancestry, either through speciation or duplication events. If
our goal is merely to detect homologous regions, we need not consider why the regions are conserved,
or why some regions are more conserved than others. However, clustering of genes may indicate more
than recent shared ancestry. Conservation of spatial organization across large phylogenetic distances often
indicates selective pressure on gene order, especially in bacteria. With increasing evolutionary divergence,
ongoing rearrangement processes lead to randomization of gene orderin the absence of functional selection.
In distantly related genomes, conservation of genomic organization suggests functional selection, while
in more closely related species similarities in gene order may be due only to shared ancestry. Thus, to
identify functional selection on spatial organization, the phylogenetic distance between the species must
be incorporated into the null hypothesis. One possible direction would be to take an approach analogous
to the approach that is used to detect selective pressure at individual sites along specific lineages [182].
Sequence data could be used to infer a phylogenetic tree topology. With the topology fixed, branch-specific
rearrangements rates could be learned that maximize the overall likelihood ofthe data. This likelihood could
be compared to that achieved when allowing rearrangement rates to vary vary at different spatial portions of
the genome. If the latter likelihood is significantly higher, then selective pressure on these regions can be
inferred. The main challenge would be to devise a statistical model that allows efficient computation of the
likelihood of observing a particular spatial organization given the inferred rearrangement rates.

Identifying precise boundaries of homologous regions:The statistical tests presented here reject
the null hypothesis of random gene order if there is any evidence of shared ancestry in the regions being
compared. In the three-window tests in Chapter 3, this means that a cluster maybe significant even if
only two of the three regions share a common ancestor, or if two regions share non-overlapping regions
of homology with the third. In Chapter 4, we observed that highly significantgene clusters may attract
spurious neighboring genes by chance. Large gene families exacerbate this problem, since if a cluster is
large, there is a good chance that there will be two genes from the same large family in proximity to the
cluster in both genomes. More work must be done to identify such “innocentbystanders.” Given the gene
family distribution, and the size and length of a gene cluster, it may be possible toestimate the number of
unrelated genes that will be near the cluster in both genomes simply by chance. Then the size of the cluster
could be corrected before evaluating it statistically. Alternatively, we might be able to identify outliers by
comparing density in the periphery of the cluster with density in the center of thecluster.

Statistical tests that consider cluster density and order:The results in this thesis have shown that
for many datasets the max-gap definition is too liberal since gene order is notconsidered. In Section 2.3.3,
in an empirical study of three genomic datasets, I demonstrated that the majority ofmax-gap gene clusters
are nested. In Section 4.6.3, I showed that for identifying orthologs in a set of γ-proteobacteria, a cluster
definition that requires identical gene order performed better than a definition that allows rearrangements,
but not gaps. It is likely that a definition that allows small differences in gene order would perform even
better. Rather than trying to define a search algorithm to find only partially ordered clusters, order could
be considered in a test statistic. How to choose such a test, and how to combineit with tests of density,
is unclear, however. A first step in this direction has been taken by Sankoff et al. [144], who proposed a
number of quantitative measures of gene order. However, analyses comparing the discriminative power of
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these measures in genomic data have not yet been carried out. How to bestquantify the degree to which
order is conserved remains an open question.
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Appendix A

Glossary
Conserved: Derived from a common ancestor and retained in contemporary related species. Conserved
features may or may not be under selection.

Chromosome: a single DNA molecule. Typically, bacterial chromosomes are circular, whileerotic
chromosomes are linear.

Gene: a unit of inheritance that consists of a segment of DNA that, typically, encodes a protein or
structural or functional RNA. Alternately spliced genes can encode morethan one product.

Gene orientation: gene orientation is dictated by the strand from which the gene is transcribed. Genes
in a cluster have the same orientation if they are transcribed from the same strand.

Genome: The total genetic material of an individual or species, consisting of one or more chromosomes.

Homologs: Genes or features that share common ancestry.
Homologous: Related through common ancestry.
Homology: Similarity due to shared ancestry.

MRCA : Most recent common ancestor.

Negative selection: The removal of deleterious mutations from a population; also referred to as purifying
selection.

Orthologs: Homologs that arose through speciation. They are descendants of the same gene in their most
recent common ancestor.

Paralogs: Homologs that arose through duplication.

Phylogenetic distances: Measures of the degree of separation between two organisms or their genomes,
expressed in various terms such as number of accumulated sequences changes, number of years, or num-
ber of generations.

Positive selection: The retention of mutations that benefit an organism; also referred to as Darwinian
selection.

WGD: whole genome duplication.
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Appendix B

Catalog of Cluster Properties

The properties underlying existing cluster definitions are generally not stated, and the dimensions along
which they differ have been analyzed in only a cursory manner. As a result, the formal trade-offs between
different models have been difficult to understand or compare in a rigorous way. Here we attempt to char-
acterize desirable properties of clusters and cluster definitions, in orderto develop a more rigorous under-
standing of how modeling choices determine the types of clusters we are able tofind, and how such choices
influence the statistical power of tests of segmental homology. We present aset of properties upon which
many existing gene cluster definitions, algorithms, and statistical tests are explicitly or implicitly based [79].
We also propose additional properties that we believe are desirable, butare rarely stated explicitly.

Many of the cluster properties underlying existing definitions derive fromthe processes that lead to
genome rearrangements. As genomes diverge, large-scale rearrangements break apart homologous regions,
reducing the size and length of clusters. Gene duplications and losses cause the gene complement of ho-
mologous regions to drift apart, so that many genes will not have a homolog inthe other region, and gene
clusters will appear less dense. Smaller rearrangements will disrupt the gene order and orientation within
homologous regions. Thus, clusters are often characterized according to their size, length, density, and the
extent to which order and orientation are conserved. We discuss these properties in more detail below, as
well as a number of additional properties that are rarely stated explicitly, but that we argue are nonetheless
desirable.

Size: Almost all methods to evaluate clusters consider the size of a cluster,i.e. the number of homol-
ogous gene pairs contained within it. In general it is assumed that the more homologs in a cluster, the
more likely it is to indicate common ancestry rather than chance similarities. An appropriate minimum size
threshold will depend, however, on the specific cluster definition. For example, a cluster of four homologs in
which order is conserved may be less likely to occur by chance, and thus more significant than an unordered
cluster of size four.

Length: The length of a cluster, defined with respect to a particular genome, is the total number of
genes spanned by the cluster. For example, in Figure 1.2(b), the upper left cluster is of size four, and spans
two singletons, so is of total length six. In a whole genome comparison, the number of non-homologous
genes spanned by the cluster in each genome may differ. However, if the processes that degrade a cluster are
operating uniformly, then the length of the cluster in both genomes should be similar. Similarity of lengths
is implicitly sought by the length constraint ofr-windows, and explicitly sought in a clustering method
proposed by Hampsonet al. [73].
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Density: Although over time gene insertions and losses will cause the gene content ofhomologous
regions to diverge, in most cases we expect that significant similarity in gene content will be preserved.
Thus, the majority of existing approaches attempt to find regions that are densely populated with homologs.
We define theglobal densityof a cluster as its size divided by its length. For a fixed value ofr, the minimum
global density of anr-window is set by choosing the parameterk. The only way to set a constraint on the
global density of a max-gap cluster, on the other hand, is to reduceg, which will also reduce the maximum
length of a cluster.

Even when a minimum global density is required, regions of a cluster may not be locally dense: a
cluster could be composed of two very dense regions separated by a large region with no homologs. In
this case, it might seem more natural to break the cluster into two separate clusters. Density as we have
defined it here reflects the average gap size, but does not reflect thevariancein gap sizes. The gap between
adjacent marked genes in anr-window can be as large asr−k, whereas max-gap clusters guarantee that the
maximum gap will be no more thang. Note that the two definitions have switched roles: the local density is
easily controlled by the parameterg for max-gap clusters but there is no way to constrain the local density
of r-window clusters without also further constraining the maximum cluster length.This trade-off between
global and local density gives a simple illustration of how it can be difficult to design a cluster definition
that satisfies our basic intuitions about cluster properties.

Order: For whole genome comparison, a cluster is considered ordered if the homologs in the second
genome are in the identical or opposite order of the homologs in the first genome. For example, consider
the two genomes shown in Figure 1.2. The clusters{6,7 } and{8,9 } are ordered, but{5,6,7 } and
{1,2,3,4 } are not. Many cluster definitions require a strictly conserved gene order[11, 32, 179]. Over
time, however, inversions will cause rearrangements, and thus conserved gene order is often considered too
strict a requirement. In order to allow some short inversions, Hampsonet al. [72] explicitly parameterize
the number of order violations that are allowed in a cluster. A number of groups use heuristic, constructive
methods that either implicitly enforce certain constraints on gene order, or explicitly bias their method
to prefer clusters that form near-diagonals in the dot plot [30, 171, 175, 110]. The remainder, includingr-
windows and max-gap clusters, completely disregard gene order. However, as we explained in Section 2.3.3,
though a number of groupsstatethat they ignore gene order, constraints on gene order are often unintended
consequences of algorithmic choices.

Orientation: Conserved spatial organization in bacterial genomes often points to functional associations
between genes. In particular, clusters of genes in close proximity, with the same orientation, often indicate
operons. In whole genome comparison of eukaryotes, similarities in gene orientation can provide additional
evidence that two regions share a common ancestor. To the best of our knowledge, however, except for the
method of Visionet al. [175], in which changes in orientation decrease the cluster score, existing definitions
either require all genes in a cluster to have the same orientation, or disregard orientation altogether.

Temporal Coherence: Temporal information can be used to evaluate the significance of a putative
homologous region identified through whole genome comparison. If a set ofhomologous genes all arose
through the same speciation or duplication event, then the points in time at which each homolog pair di-
verged will be similar, and consequently we would expect our estimates of these divergence times group
close together. However, all existing methods to find clusters are based solely on spatial information, and
divergence times have been used only to estimate the age of a duplicated blockidentified based on spatial
organization [11, 131], but not to assess the statistical significance of acluster. In theory, combined analysis
of temporal and spatial information could be used, for example, to increaseour confidence that a region
is the result of a single large-scale duplication event. However, due to the large error bounds that must be
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associated with any sequence-based estimate of divergence times [70, 117, 184], the practicality of such an
approach is as yet unclear.

Nestedness:For whole genome comparison, one cluster property that is generally not considered ex-
plicitly, but may be assumed implicitly, is nestedness. A cluster of sizek is nestedif for eachh ∈ 1 . . . k−1
it contains a valid cluster of sizeh. Intuitively it may seem that any reasonable cluster definition should
have this property. In fact, clusters with no ordering constraints are notnecessarily nested. For example,
Bergeronet al. [10] state a formal definition of max-gap clusters, and prove that there are maximal max-gap
clusters of sizek which do not contain any valid sub-cluster of size2..k−1. For example, wheng =0 they
present a non-nested max-gap cluster with only four genes. The sequence of genes1234 on one genome
and3142 on the other form a max-gap cluster of size four which does not contain any max-gap cluster of
size two or three. Thus, nested max-gap clusters comprise only a subset of general max-gap clusters found
through whole genome comparison.

There are no definitions that explicitly require that clusters be nested; rather, greedy search algorithms
implicitly limit the results to nested clusters. Greedy algorithms use a bottom-up approach: each homolo-
gous gene pair serves as a cluster seed, and a cluster is extended by looking in its chromosomal neighborhood
for another homologous gene pair close to the cluster on both genomes [30,32, 73, 82]. It can be shown
that any greedy search algorithm that constructs max-gap clusters iteratively, i.e. by constructing a cluster
of sizek by adding a gene to a cluster of sizek − 1, will find exactlythe set of all maximal nested max-gap
clusters, as long as it considers each homologous gene pair as a seed for a potential cluster. In such cases,
although order is not explicitly constrained, the search algorithm enforces implicit constraints on gene order:
nested clusters can only get disordered to a limited degree. In most cases,however, such constraints are not
acknowledged, and perhaps not even recognized.

Disjointness: If two clusters are not disjoint,i.e. the intersection of the marked genes they contain is
not empty1, our intuitive notion of a cluster may correspond more closely to the single island of overlapping
windows than to the individual clusters. For example, in Figure 1.2, whenr = 5, andk = 4 there are two
r-windows: {5,6,7,9 } and{6,7,8,9 }. Although both clusters contain genes6, 7, and9, there is no
window of length five that contains all five of the genes. Thus,r-windows are not always disjoint. Indeed, it
is surprisingly hard to find a cluster definition that guarantees that all clusters will be disjoint. The majority
of definitions lead to overlapping clusters that must be merged or separatedin an ad-hoc post-processing
step for use by algorithms that require a unique tiling of regions. The only definition for which maximal
clusters have been shown to be disjoint is the max-gap cluster [10], but only when homology relationships
are one-to-one. When a gene may be matched with multiple genes, or when additional constraints are
enforced (in addition to the maximum gap size), disjointness is quickly forfeited. For example, consider
the consequences of requiring conserved order when looking for max-gap clusters in Figure 1.2. With
a maximum gap ofg = 2, five maximalg-clusters with conserved order are identified:{1,2 }, {2,4 },
{3,4,5,6,9 }, {3,4,5,7,8 }, and{3,4,5,7,9 }. Although the last three clusters overlap, they cannot
be merged without breaking the ordering constraint (due to the inversionsof the segments containing genes
6 and7 and genes8 and9).

More generally, a lack of disjointness strongly suggests that the cluster definition is too constrained. In
ther-window example, these clusters are not disjointpreciselybecause the definition artificially constrains
the length of a cluster. In the second example, the clusters were not disjointbecause a definition with a strict
ordering constraint was not able to capture the types of processes, such as inversions, that created the cluster.

1Note that it is possible, however, for two disjoint clusters to have overlapping spans in one of the genomes, as long as they do
not share any homologs.
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Isolation: If we observe a cluster with some additional homologous pairs in close proximityto its
borders we might feel that the cluster border was arbitrary, and shouldextend to cover the neighboring
island of genes. Thus, we propose that cluster definitions should guarantee that clusters will beisolated,
that is: the maximum distance between marked genes in a cluster should alwaysbe less than the minimum
distance between two clusters. A maximum-gap constraint guarantees that clusters will be isolated, but only
barely—the gap within a cluster may be as large asg, whereas the gap separating two clusters may be just
g+1.

Symmetry: For whole genome comparison, a desirable property that is rarely considered explicitly is
whether the definition is symmetric with respect to genome. In some cases, suchas the definition proposed
by Calabreseet al.[30], a cluster is defined in such a way that whether a set of genes forma valid cluster may
depend on whether genomeG1 or genomeG2 is represented by the vertical axis in the dot plot. Put another
way, the set of clusters identified will differ depending on which genome is designated as the reference
genome. A surprisingly large proportion of constructive definitions are not symmetric. These clustering
algorithms require the selection of a reference genome even when there is no clear biological motivation
for this choice. Definitions that are symmetric with respect to genome includer-windows and max-gap
cluster definitions, as well as algorithms that represent the dot plot as a graph and use a symmetric distance
function [128, 175].

* * *

The detailed catalog of cluster properties presented here will be useful for assessing whether definitions
satisfy the intuitive notions upon which they are implicitly based, and whether these notions actually corre-
spond to the types of structures present in real genomic data. Analysis ofcluster properties can be useful
for determining which characteristics actually reflect the types of structures found in real genomes, and thus
which will best discriminate truly homologous regions from background noise (clusters of genes that occur
by chance). Analyses of desirable cluster properties may also pave the way for new, possibly more powerful
cluster definitions.

It is important to note that the importance of a property may depend on the goalsof the study. For exam-
ple, when clusters are being identified as a pre-processing step for reconstructing rearrangement histories,
the exact boundaries and sizes of the cluster may be quite important [168].In other cases, a researcher
may wish to test a global hypothesis (such as finding evidence for one or two rounds of whole genome
duplication), and may not necessarily care about the significance or boundaries of any specific cluster.

Even if it were known which properties reflect biologically and methodologically relevant features, de-
signing a definition to satisfy those properties may not be straightforward because, in many cases, properties
are not independent. Properties may interact in subtle ways—a definition that guarantees one desirable
property will often fail to satisfy another. For example, one of the nice properties of the max-gap definition
is that clusters are always disjoint. However, as shown above, adding additional constraints on order or
length results in clusters that are no longer guaranteed to be disjoint. The subtle and sometimes undesirable
interplay of some of these properties makes it difficult to devise a definition that satisfies them all. In fact,
many of the most important properties are difficult to satisfy with the same definition. Thus, it remains an
open question to what extent a single definition can capture all of these properties simultaneously.
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Appendix C

Derivations of Max-Gap Expressions

C.1 Derivation of dg(c, u, s)

For a given, non-zero integers, dg(c, u, s) is the number of solutions to the following equation

c∑

i=1

vi +
u∑

j=1

wj = s,

such that0 ≤ vi ≤ g,∀i ∈ 1..c and0 ≤ wj ,∀j ∈ 1..u. The number of ways in whichs can be obtained is
the coefficient ofxs in the generating function

f(x) = (1 + x + x2 + ... + xg)c · (1 + x + x2 + ...)u.

Sincef(x) is the product of finite and infinite geometric series, it can be written as follows:

f(x) =

(
g∑

i=0

xi

)c(
1

1− x

)u

=

(
1− xg+1

1− x

)c(
1

1− x

)u

=(1− xg+1)c(1− x)−(c+u).

Expanding by application of the binomial theorem, we obtain:

f(x) =
c∑

i=0

(−1)i

(
c

i

)
xi(g+1)

∞∑

l=0

(
c + u + l − 1

l

)
xl.

In order to get the coefficient ofxs, we must include all terms wherei(g + 1) + l = s, which means that
l = s− i(g + 1). Therefore,

dg(c, u, s) =

c∑

i=0

(−1)i

(
c

i

)(
s− i(g + 1) + c + u− 1

s− i(g + 1)

)
.

However,s − i(g + 1) > 0 only wheni < s/(g + 1), so the other terms do not contribute to the sum.
Furthermore, (

s− i(g + 1) + c + u− 1

s− i(g + 1)

)
=

(
s− i(g + 1) + c + u− 1

c + u− 1

)
,
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yielding the final expression

dg(c, u, s) =

⌊s/(g+1)⌋∑

i=0

(−1)i

(
c

i

)(
s− i(g + 1) + c + u− 1

c + u− 1

)
.

C.2 Derivation of dg(m− 1, 1, l −m) from dg(m− 1, 0, l −m)

In Section 2.1.2 we gave an expressiondg(m− 1, 0, l−m) for the number of ways of arrangingm marked
genes in a max-gapg-chain of lengthexactlyl. We obtain an expression fordg(m−1, 1, l−m), the number
of ways of arrangingm black genes in a max-gap chain of lengthno greaterthanl, as follows:

l∑

r=m

dg(m−1, 0, r−m) =
l∑

r=m

⌊(r−m)/(g+1)⌋∑

i=0

(−1)i

(
m− 1

i

) (
r − i(g + 1)− 2

m− 2

)
,

Ther in the upper bound of the second summation can be replaced byl because wheni > ⌊(l−m)/(g+1)⌋
the final binomial will be zero, which gives

l∑

r=m

⌊(l−m)/(g+1)⌋∑

i=0

(−1)i

(
m− 1

i

) (
r − i(g + 1)− 2

m− 2

)
.

Now that the upper bound of the second summation is no longer dependent on r, the outer summation can
be moved inward:

⌊(l−m)/(g+1)⌋∑

i=0

(−1)i

(
m− 1

i

) l∑

r=m

(
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)
.

Rewriting the bounds of the inner summation gives:

⌊(l−m)/(g+1)⌋∑

i=0

(−1)i

(
m− 1

i

) l−i(g+1)−2∑
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(
r

m− 2

)
.

Decreasing the lower bound tor = 0 does not affect the probability because when0 ≤ r < m − 2
the binomial is zero. We apply the upper summation identity (see Appendix C.5) to eliminate the inner
summation, which yields

⌊(l−m)/(g+1)⌋∑

i=0

(−1)i

(
m− 1

i

) (
l − i(g + 1)− 1

m− 1

)
,

which is exactlydg(m − 1, 1, l −m). The derivation ofdg(m − 1, 2, l −m) from dg(m − 1, 1, l −m) is
identical.

C.3 A closed-form expression fordg(m− 1, 2, Lm−m−1)

The following three lemmas are needed to obtain a closed-form expression for dg(m−1, g, (m − 1)g−1).
Recall that the maximum possible length of ag-chain of sizem is Lm = m + g(m− 1).
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Lemma C.3.1. For all l such thatm ≤ l ≤ Lm, dg(m− 1, 0, l −m) = dg(m− 1, 0, Lm−l).

Proof. Let S(m, g, l) be the set ofg-chains of sizem and lengthl, with no gap greater thang. Clearly,
|S(m, g, l)| = dg(m − 1, 0, l − m). Let 〈g1, ..., gm−1〉, where0 ≤ gi ≤ g, denote a member of this set,
i.e. a g-chain of sizem and lengthl = m +

∑m−1
i=1 gi, with gap sizesg1, ..., gm−1. Define a function

f(〈g1, ..., gm−1〉) = 〈y1, ..., ym−1〉, whereyi = g − gi. We claimf mapsS(m, g, l) to S(m, g, Lm+m−l).
To see this, observe that0 ≤ yi ≤ g, and the length of the chain〈y1, ..., ym−1〉 is

m+

m−1∑

i=1

yi = m+

m−1∑

i=1

g−gi = m+(m−1)g−
m−1∑

i=1

gi = m+(m−1)g−(l−m) = 2m+(m−1)g−l = Lm+m−l

Sincef is a bijection,|S(m, g, l)| = |S(m, g, Lm+m − l)|, and thusdg(m − 1, 0, l − m) = dg(m −
1, 0, Lm − l).

Lemma C.3.2. For all l such thatm ≤ l ≤ Lm, dg(m − 1, 1, l − m) + dg(m − 1, 1, Lm−l−1) =
dg(m− 1, 1, Lm −m).

Proof. By definition,

dg(m− 1, 1, l−m) + dg(m− 1, 1, Lm−l−1) =
l∑

i=m

dg(m− 1, 0, i−m) +

Lm+m−l−1∑

j=m

dg(m− 1, 0, j −m),

Lemma C.3.1 can be used to simplify the second term, yielding

l∑

i=m

dg(m− 1, 0, i−m)+

Lm∑

j=l+1

dg(m− 1, 0, j −m)

=

Lm∑

j=m

dg(m− 1, 0, j −m) = dg(m− 1, 1, Lm −m)

Lemma C.3.3. If m ≥ 1
g+1 and(Lm+m−1) is even, then2dg(m−1, 1, 1

2(Lm+m−1)−m) = dg(m−1, 1, Lm−m)

Proof.

dg(m−1, 1, Lm−m) =

Lm∑

i=m

dg(m−1, 0, i−m) =

1

2
(Lm+m−1)∑

i=m

dg(m−1, 0, i−m)+

Lm∑

j= 1

2
(Lm+m+1)

dg(m−1, 0, j−m)

which by Lemma C.3.1 is equal to

1

2
(Lm+m−1)∑

i=m

dg(m− 1, 0, i−m) +
m∑

j= 1

2
(Lm+m−1)

dg(m− 1, 0, j −m) =

1

2
(Lm+m−1)∑

i=m

2dg(m− 1, 0, i−m)

= 2dg(m− 1, 1,
1

2
(Lm + m− 1)−m)
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Theorem C.3.4. dg(m− 1, 2, Lm−m−1) =
Lm −m

2
(g + 1)m−1

Proof. EitherLm + m is even or it is odd. When it is evendg(m− 1, 2, Lm−m−1) is equivalent to

Lm−1∑

i=m

dg(m− 1, 1, i−m) =

1

2
(Lm+m)−1∑

i=m

dg(m− 1, 1, i−m) +

Lm−1∑

j= 1

2
(Lm+m)

dg(m− 1, 1, j −m).

Rewriting the summation index on the second term yields

1

2
(Lm+m)−1∑

i=m

dg(m− 1, 1, i−m) +

m∑

j= 1

2
(Lm+m)−1

dg(m− 1, 1, Lm − j − 1)

=

1

2
(Lm+m)−1∑

i=m

dg(m− 1, 1, i−m) + dg(m− 1, 1, Lm − i− 1).

By Lemma C.3.2, this simplifies to

1

2
(Lm+m)−1∑

i=m

dg(m− 1, 1, Lm −m) =
Lm −m

2
(g + 1)m−1,

as desired.

Otherwise, ifLm + m is odd, thendg(m− 1, 2, Lm−m−1) is equivalent to

1

2
(Lm+m−3)∑

i=m

dg(m− 1, 1, i−m) + dg(m− 1, 1,
1

2
(Lm + m− 1)−m) +

Lm−1∑

j= 1

2
(Lm+m+1)

dg(m− 1, 1, j −m).

The second term can be simplified by Lemma C.3.3, yielding

1

2
dg(m− 1, 1, Lm −m) +

1

2
(Lm+m−3)∑

i=m

dg(m− 1, 1, i−m) +

Lm−1∑

j= 1

2
(Lm+m+1)

dg(m− 1, 1, j −m).

As in the even case, the last two terms can be combined and simplified by Lemma C.3.2:

1

2
dg(m− 1, 1, Lm −m) +

(Lm −m− 1)

2
dg(m− 1, 1, Lm −m) =

Lm −m

2
(g + 1)m−1,

as desired.
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C.4 Expected length and gap of a chain ofm marked genes

Expected length The expected length,E[l] of a complete chain ofm marked genes (with no restriction
on the gap sizes,i.e.g = n), placed randomly in a genome containingn genes is:

E[l] =
n∑

l=m

l · prob(l)=
1(
n
m

) ·
n∑

l=m

l · (n− l + 1) ·
(

l − 2

m− 2

)
=

1(
n
m

) ·M = 1 +
(m−1)(n + 1)

m + 1

M =

n∑

l=m

(n− l + 1) · (l − 1)

(
l − 2

m− 2

)
+

n∑

l=m

(n− l + 1) ·
(

l − 2

m− 2

)

= (m−1)
n∑

l=m

(n− l + 1)

(
l − 1

m−1

)
+

n∑

l=m

(n− l + 1) ·
(

l − 2

m− 2

)

= (m−1)(n + 1)
n∑

l=m

(
l − 1

m−1

)
−(m−1)

n∑

l=m

l ·
(

l − 1

m−1

)
+ (n + 1)

n∑

l=m

(
l − 2

m− 2

)
−

n∑

l=m

l ·
(

l − 2

m− 2

)

= A−B + C −D

=

(
n

m

)
·
(

(m−1)(n + 1)−m(m−1)
n + 1

m + 1
+

m

n
(n + 1)− (m−1) − m

n

)

=

(
n

m

)
·
(

1 +
(m−1)(n + 1)

m + 1

)
,

whereA, B, C, andD are defined below, and simplified using the identities given in Appendix C.5.

A = (m−1)(n + 1)

n∑

l=m

(
l − 1

m−1

)
=(m−1)(n + 1)

(
n

m

)

B = (m−1)
n∑

l=m

l ·
(

l − 1

m−1

)
=(m−1)

n∑

l=m

m ·
(

l

m

)
=m(m−1)

n + 1

m + 1

(
n

m

)

C = (n + 1)
n∑

l=m

(
l − 2

m− 2

)
=

m

n
(n + 1)

(
n

m

)

D =

n∑

l=m

l ·
(

l − 2

m− 2

)
=

n∑

l=m

(l − 1) ·
(

l − 2

m− 2

)
+

n∑

l=m

(
l − 2

m− 2

)
=(m−1)

n∑

l=m

(
l − 1

m−1

)
+

m

n

(
n

m

)

= (m−1)

(
n

m

)
+

m

n

(
n

m

)
.

Expected gap size The expected gap size,E(g), if m genes are placed randomly in a genome of sizen is:

E[g] =
E[l]−m

m−1
=

1

m−1
+

(m−1)(n + 1)

(m + 1)(m−1)
− m

m−1

=
m + 1 + (m−1)(n + 1)−m(m + 1)

(m + 1)(m−1)
=

(m−1)(n−m)

(m−1)(m + 1)
=

n−m

m + 1
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C.5 Useful combinatorial identities

The following three simple identities are used in the above proofs. For derivations see Grahamet al. [69].

n∑

l=m

(
l − 1

m−1

)
=

n−1∑

x=0

(
x

m−1

)
=

(
n

m

)
by upper summation

n∑

l=m

(
l − 2

m− 2

)
=

(
n− 1

m−1

)
=

m

n

(
n

m

)
by an absorption identity

n∑

l=m

(
l

m

)
=

(
n + 1

m + 1

)
=

n + 1

m + 1

(
n

m

)
by an absorption identity
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