
Approximation Algorithms and Online Mechanisms for
Item Pricing

Maria-Florina Balcan∗ Avrim Blum∗

March 2006
CMU-CS-05-176R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. {ninamf,avrim}@cs.cmu.edu

Research supported in part by NSF grants CCF-0514922, CCR-0122581, and IIS-0121678
This is an expanded version of CMU-CS-05-176.



Keywords: Approximation Algorithms, Online Optimization, Profit Maximization, Combinatorial Auc-
tions, Single Minded, Unlimited Supply



Abstract

We present approximation and online algorithms for a number of problems of pricing items for sale so
as to maximize seller’s revenue in an unlimited supply setting. Our first result is an O(k)-approximation
algorithm for pricing items to single-minded bidders who each want at most k items. This improves over
recent independent work of Briest and Krysta [6] who achieve an O(k2) bound. For the case k = 2, where
we obtain a 4-approximation, this can be viewed as the following graph vertex pricing problem: given a
(multi) graph G with valuations we on the edges, find prices pi ≥ 0 for the vertices to maximize

∑

{e=(i,j):we≥pi+pj}

(pi + pj) .

We also improve the approximation of Guruswami et al. [13] from O(log m + log n) to O(log n), where
m is the number of bidders and n is the number of items, for the “highway problem” in which all desired
subsets are intervals on a line. Our approximation algorithms can be fed into the generic reduction of Balcan
et al. [3] to yield an incentive-compatible auction with nearly the same performance guarantees so long as
the number of bidders is sufficiently large. In addition, we show how our algorithms can be combined with
results of Blum and Hartline [4], Blum et al. [5], and Kalai and Vempala [16] to achieve good performance
in the online setting, where customers arrive one at a time and each must be presented a set of item prices
based only on knowledge of the customers seen so far.





1 Introduction

Consider the problem of a retailer trying to price its products to make the most profit. If customers had
valuations over individual items only, then the problem of setting prices would be relatively easy: for each
product i, the optimal price is such that the profit margin pi per item sold, times the number of customers
willing to buy at that price, is maximized. So, each item can be considered separately, and assuming the
company knows its market well, the computational problem of setting prices is fairly trivial.

However, suppose that customers have valuations over pairs of items (e.g., a computer and a monitor,
or a tank of gas and a cup of coffee), and will only purchase if the combined price of the items in their pair
is below their value. In this case, we can model the problem as a (multi) graph, where each edge e has some
valuation we, and our goal is to set prices pi ≥ 0 on the vertices of the graph to maximize total profit: that
is,

Profit(p) =
∑

{e=(i,j):we≥pi+pj}

(pi + pj) .

where p is the vector of individual prices.1

We call this the graph vertex pricing problem. More generally, if customers have valuations over larger
subsets, we can model our computational problem as one of pricing vertices in a hypergraph, or in more
standard terminology, the problem of pricing items in an unlimited-supply combinatorial auction with single-
minded bidders. Guruswami et al. [13] show an O(log m + log n)-approximation for the general problem,
where n is the number of items (vertices) and m is the number of customers (hyperedges). They also
show that even the graph vertex pricing problem is APX-hard — and this is true even when all valuations
are identical (if self-loops are allowed) or all valuations are either 1 or 2 (if self-loops are not allowed).
In related work, Hartline and Koltun [15] give a (1 + ε)-approximation that runs in time exponential in
the number of vertices, but that is near-linear time when the total number of vertices in the hypergraph is
constant. Recently, Demaine et al. [8] have shown that it is hard to approximate the hypergraph vertex
pricing problem within a factor of logδ n, for some δ > 0, assuming that NP 6⊆ BPTIME

(

2nε)

for some
ε > 0.

In this paper, we give a 4-approximation for the graph vertex pricing problem, and more generally we
present an O(k)-approximation for the case of hypergraphs in which each edge has size at most k (i.e.,
all customers’ valuations are over subsets of size at most k). The latter result improves over the recent
independent work of Briest and Krysta [6] who give a bound of O(k2).

We also consider the highway problem studied in [13]. This problem is the special case of the hypergraph
pricing problem where vertices are numbered 1, . . . , n and each customer wants an interval [i, j].2 For this
problem, we give an O(log n)-approximation, improving slightly over the O(log m + log n) approximation
of [13], and also give an O(1)-approximation for the case that all users want the same number of items up to
a constant factor. Finally, we also give a fully polynomial time approximation scheme (FPTAS) for the case
that the desired subsets of different customers form a hierarchy (this is defined more precisely in Section 6).

1This formula corresponds to a model in which items have zero marginal cost to the retailer (digital goods) so that an item sold
at price pi generates profit pi. Alternatively, if products have a fixed marginal cost, and we cannot sell them below cost (say, due
to the presence of resellers), then we can think of pi as the profit margin on item i and simply subtract our costs for the endpoints
from each valuation we.

2Previous work [15, 13] uses “m” to denote the number of items and “n” to denote the number of customers, viewing the items
as edges in some network. Since we are viewing items as vertices and customers as (hyper)edges, we have reversed this notation.



Incentive-compatibility Our results described above assume the seller “understands the market”: that is,
we know how many customers will buy different sets of items and at what prices. Thus, we are simply left
with a computational problem. If we do not understand the market and are in the setting of an unlimited-
supply combinatorial auction, we would instead want an algorithm that is incentive-compatible, meaning
that it is in bidders’ self-interest to reveal their true valuations. Fortunately, a generic reduction of [3] shows
that if there are sufficiently many bidders, then for problems of this type one can convert any approxima-
tion to the computational problem into a nearly-as-good approximation to the incentive-compatible auction
problem. In particular, Õ

(

hn
ε2

)

bidders are sufficient for this reduction to produce only a factor (1 + ε) loss
in approximation ratio when all valuations lie in the range [1, h]. Essentially, the idea of the reduction is to
randomly partitions bidders into two sets S1 and S2, run the approximation algorithm separately on each set,
and then use the prices found for S1 on S2 and vice-versa (making the process incentive-compatible); the
results in [3] then show that Õ

(

hn
ε2

)

bidders are sufficient to ensure that the resulting profit is nearly as large
as if one had used prices determined on each Si on that set itself. Related results of [12, 11] give bounds
of this form for the case of a single digital good. Thus, if one has sufficiently many bidders, one can focus
attention on the computational approximation problem.

The above results assume a one-shot mechanism (sealed-bid auction) in which all bidders are present at
the same time. We also consider the more demanding case that bidders arrive online, and one must present
to each bidder a set of item prices that depend only on bidders seen in the past. We show how methods
of [4, 5] for the online digital-good auction can be applied to our algorithms for graph (or k-hypergraph)
vertex pricing to achieve good performance for these problems in the online setting as well. For the highway
problem, we need a somewhat more involved argument using an algorithm of Kalai and Vempala [16].

Other Related Work It is worth noting that if the goal is economic efficiency (obtaining an outcome
which maximizes the sum of the utilities3 of all participants), and not revenue maximization, then for the
case of limited supply single minded bidders in combinatorial auctions, both the pricing problem and the
mechanism design problem are known to have good approximate solutions [17, 1].

2 Notation and Definitions

We assume we have m customers (or “bidders”) and n items (or “products”). We are in an unlimited supply
setting, which means that the seller is able to sell any number of units of each item, and they each have
zero marginal cost to the seller (or if they have some fixed marginal cost, we have subtracted that from
all valuations and the seller may not sell any item below cost). We consider single-minded bidders, which
means that each customer is interested in only a single bundle of items and has valuation 0 on all other
bundles. Therefore, valuations can be summarized by a set of pairs (e, we) indicating that a customer is
interested in bundle (hyperedge) e and values it at we. Given the hyperedges e and valuations we, we wish
to compute a pricing of the items that maximizes the seller’s profit. We assume that if the total price of the
items in e is at most we, then the customer (e, we) will purchase all of the items in e, and otherwise the
customer will purchase nothing. That is, we want the price vector p that maximizes

Profit(p) =
∑

{

e:we≥
∑

i∈e
pi

}

∑

i∈e

pi.

3If a consumer buys a subset of the items, then his utility for that subset is the difference between his valuation for the subset
and the purchase price.



Let p∗ be the price vector with the maximum profit and let OPT = Profit(p∗).
Let us denote by E the set of customers, and V the set of items, and let h be max

e∈E
we. Let G = (V, E)

be the induced hypergraph, whose vertices represent the set of items, and whose hyperedges represent the
customers. Notice that G might contain self-loops (since a customer might be interested in only a single
item) and multi-edges (several customers might want the same subset of items). In the special case that
all customers want at most two items, so G is a graph, we call this the graph vertex pricing problem. As
mentioned in Section 1, this pricing problem was shown to be APX-hard in [13]. If all customers want at
most k items, we call this the k-hypergraph vertex pricing problem. In [13] a simple O(log m + log n)
polynomial time approximation algorithm is given for the general problem.

3 Graph Vertex Pricing

We begin by considering the Graph Vertex Pricing problem, and show a factor 4 approximation.

Theorem 1 There is a 4-approximation for the Graph Vertex Pricing problem.

Proof: First notice that if G is bipartite (with self-loops allowed as well), then there is a simple 2-approximation
algorithm. Specifically, consider the optimal price-vector p∗ and let OPTL be the amount of money it
makes from nodes on the left, and OPTR be the amount it makes from nodes on the right (so OPT =
OPTL + OPTR). Notice that if one takes p∗ and zeroes out all prices for nodes on the right, then this has
profit at least OPTL since all previous buyers still buy (and some new ones may too). Therefore, we can
algorithmically make profit at least OPTL by setting all prices on the right to 0, and then separately fixing
prices for each node on the left so as to make the most money possible on each node. This makes the optimal
profit subject to all nodes on the right having price 0 because no edges have two distinct endpoints on the
left and so the profit made from some node i on the left does not affect the optimal price for some other node
j on the left. Similarly we can make at least OPTR by setting prices on the left to 0 and optimizing prices
of nodes on the right. So, taking the best of both options, we make

max (OPTL, OPTR) ≥
OPT

2
.

Now we consider the general (non-bipartite) case. Define opte to be the amount of profit that OPT
makes from edge e. We will think of opte as the weight of edge e, though it is unknown to our algorithm.
Let E2 be the subset of edges that go between two distinct vertices, and let E1 be the set of self-loops. Let
OPT1 be the profit made by p∗ on edges in E1 and let OPT2 be the profit made by p∗ on edges in E2, so
∑

e∈Ei

opte = OPTi for i = 1, 2 and OPT1 + OPT2 = OPT. Now, randomly partition the vertices into

two sets L and R. Since each edge e ∈ E2 has a 1
2 chance of having its endpoints on different sides, in

expectation OPT2

2 weight is on edges with one endpoint in L and one endpoint in R. Thus, if we simply
ignore edges in E2 whose endpoints are on the same side and run the algorithm for the bipartite case, the
profit we make in expectation is at least

1

2

[

OPT1 +
OPT2

2

]

≥
OPT

4
.

This proves the desired result.



3.1 Derandomization

If desired, the above algorithm can be derandomized by using the fact that our analysis only needs the
partitioning distribution to be pairwise-independent. In particular, pairwise-independent distributions can
be realized using small (polynomial-size) sample spaces [18, 20]. Thus, given a problem instance, one can
simply try each possibility in the sample space and then choose the one that produces the highest profit.

3.2 Special Cases

If the underlying graph G is in fact a tree, then the there is a simple exact dynamic programming algorithm
for solving the graph vertex pricing problem, and the same holds if the graph has bounded treewidth. Com-
bining these with the recent results of Demaine et al. [9] we obtain a PTAS for the graph vertex problem in
the case when G is planar [14].

4 k-Hypergraph Vertex Pricing

We now show how to extend the algorithm in Theorem 1 to get an O(k)-approximation when each customer
wants at most k items. This improves over the O(k2) bound of [6].

Theorem 2 There is an O(k)-approximation algorithm for the k-Hypergraph Vertex Pricing problem.

Proof: We can use the following procedure.

Step 1 Randomly partition V into VL and Vrest by placing each node into VL with probability 1
k

.

Step 2 Let E′ be the set of edges with exactly one endpoint in VL. Ignore all edges in E − E ′.

Step 3 Set prices in Vrest to 0 and set prices in VL optimally with respect to edges in E ′.

To analyze this algorithm, let OPTi,e denote the profit made by p∗ selling item i to bidder e. (So OPTi,e ∈
{0, p∗i } and OPT =

∑

i∈V,e∈E

OPTi,e.) Notice that the total profit made in Step 3 is at least
∑

i∈VL,e∈E′

OPTi,e

because setting prices in Vrest to 0 can only increase the number of sales made by p∗ to bidders in E ′. Thus,

we simply need to analyze the quantity E

[

∑

i∈VL,e∈E′

OPTi,e

]

.

Define indicator random variable Xi,e = 1 if i ∈ VL and e ∈ E′, and Xi,e = 0 otherwise. We have:

E[Xi,e] = Pr[i ∈ VL and e ∈ E′] ≥
1

k

(

1 −
1

k

)k−1

(1)



Therefore,

E





∑

i∈VL,e∈E′

OPTi,e



 = E





∑

i∈V,e∈E

Xi,eOPTi,e





=
∑

i∈V,e∈E

E [Xi,e] OPTi,e

≥
1

k

(

1 −
1

k

)k−1

OPT

= O

(

OPT

k

)

.

4.1 Derandomization

As with the algorithm of Theorem 1, the above algorithm for k-hypergraph vertex pricing can also be
derandomized if desired, but in this case the more sophisticated tools of Even et al. [10] are needed. First,
note that we are only interested in the case that k is o(log n + log m), since for larger values of k we can
switch to the generic algorithm of Guruswami et al. [13]. Thus, we can allow for a blowup of 2O(k) in our
running time. Now, consider the algorithm in Theorem 2 and define indicator random variables Xi = 1 if
i ∈ VL and Xi = 0 otherwise. So, each Xi = 1 with probability 1

k
, and notice that we need only k-wise

independence among the Xi to calculate E[Xi,e] in Equation (1). Even al. [10] give a construction of small
sample spaces that is especially well-suited to our needs. Their construction runs in time polynomial in 2k,
n, and 1

ε
, and produces an explicit sample space with the following property: for any k-tuple (Xi1 , . . . , Xik)

of the random variables Xi and any assignment (v1, . . . , vk) to their values, the fraction of points in their
sample space under which these variables all take on those values is within ±ε of the probability of this event
under our product distribution. In particular, the k-tuples we care about are those corresponding to edges
e ∈ E, with values of the form (1, 0, . . . , 0) corresponding to the event that Xi,e = 1. Setting ε = o

(

1
k

)

,
we get that under the uniform distribution over their sample space, Equation (1) holds up to 1− o(1), which
suffices for our bounds. Thus, we simply run the construction of Even al. [10] using such a value of ε, and
try each partitioning in their explicit sample space, choosing the one that produces the highest profit.

5 The Highway Problem

A particular interesting case considered in [13] is the highway problem. In this problem we think of the
items as segments of a highway, and each desired subset e is required to be an interval [i, j] of the highway.
A special case of this problem shown in [13] to be solvable in polynomial time is the case when all path
requests share one common end-point r. For this case, Guruswami et al. [13] give an O(m2) exact dynamic
programming algorithm, which we will call A. They also give pseudo-polynomial dynamic programming
algorithms for two particular cases: an O(hh+2mh+3)-time exact dynamic programming algorithm for the
case when all valuations are integral, and an O(hk+1m) time exact dynamic programming algorithm for the
case that furthermore all requests have path lengths bounded by some constant k. The highway problem was
recently shown to be weakly NP-hard by Briest and Krysta [6].



We now present an O(log n) approximation algorithm for the highway problem, improving somewhat
over the previous bound of O(log n + log m) [13].

Theorem 3 There is an O(log n)-approximation algorithm for the highway problem.

Proof: We begin by partitioning the customers into log2 n groups. Specifically, let S1 be the set of all
customers who want item n

2 . Let S2 be the set of all customers not in S1 who want either item n
4 or

item 3n
4 . More generally, let Si be the set of customers not in S1 ∪ · · · ∪ Si−1 who want some item in

{

n
2i ,

2n
2i , . . . ,

(2i−1)n
2i

}

. Now, for each set Si we can use algorithm A from [13] to get a 2-approximation to

the optimal profit over Si. Specifically, for each j ∈ {1, . . . , 2i − 1} let Sij be the subset of customers in Si

who want item jn
2i . Notice that by design, customers in set Sij do not have any desired item in common with

customers in Sij′ for j′ 6= j, which means we can consider each of them separately. Now, for each Sij we
get a 2-approximation to OPT(Sij) by running A twice, first zeroing out all prices for items to the left of
item jn

2i and then again zeroing out all prices for items to the right of jn
2i and taking the best of the two cases.

Since there are only log2 n groups Si, we simply use the algorithm A from [13] to get a 2-approximation
to the optimal profit over Si, and then take the best of all options, thus obtaining a 2 log2 n approximation
overall.

5.1 Special cases

Using algorithm A we can also get a constant-factor approximation in the special case that everyone wants
exactly k items, for any (not necessarily constant) k. To see this, split the items into groups G1, G2, . . . , Gn

k

of size k, and let OPTeven and OPTodd be the amount of money that OPT makes from the even-numbered
groups and from the odd-numbered groups respectively. We can make at least OPTeven

2 as follows. We
first set all the prices on items in the odd groups to zero. Now notice that each customer wants items in at
most one even-numbered group: let us associate that customer with that group. We can now partition the
customers in each even group into two types: those that want the leftmost item in the group and those that
want the rightmost item in the group; we then run the dynamic program separately over each type, and take
the best outcome. In a similar way, we can make at least OPTodd

2 by setting prices items in the even groups
to 0. So we try both and take the best, thus obtaining a factor of 4 algorithm.

Similarly we can get a factor of 4c approximation algorithm if everyone wants between k
c

and k elements,
for any value of k.

6 When bidders form a hierarchy

We present here a fully polynomial time approximation scheme for the case that the desired subsets of
different (single-minded) customers form a hierarchy.4 Specifically, we consider the case of a hypergraph
where for any two edges e, e′, we have either e ⊆ e′ or e ⊇ e′ or e ∩ e′ = ∅. This means that the edges
themselves can be viewed as forming a tree structure ordered by containment. Let Te be the set of all
bidders whose desired subset is contained in e. Note that we can assume for simplicity that we have a binary
hierarchy (if the hierarchy is not binary, then we can transform it into a binary hierarchy by adding fake
edges e, increasing the size of the hypergraph by at most a constant factor).

We start by presenting a pseudopolynomial algorithm for the case that the bidders have integral val-
uations (between 0 and h). In this case, by the integrality lemma in [13] there exists an integral optimal

4Independently, Briest and Krysta [6] show a similar result.



solution. For each e ∈ E and nonnegative integer s ≤ h, let us denote by ne
s the number of bidders with

desired set e whose valuations are at least s. Now, for each e ∈ E and nonnegative integer s ≤ nh, let
A[s, e] represent the maximum possible profit we get from bidders in Te when the total sum of the prices
on items in e is exactly s. Our dynamic programming algorithm for computing the quantities A[s, e] can be
now specified as follows.

Step 1 For each “leaf” e in the hierarchy (an edge e that does not contain any other edges e′) initialize
A[s, e] = s · ne

s.

Step 2 Consider any edge e with children e1 and e2 whose A-values have been computed. Compute
A[s, e] = max

s1+s2=s
(A[s1, e1] + A[s2, e2]) + sne

s.

Step 3 Return max
s∈V al

A[s, r], where r is the root V .

After computing the A-values, we can then easily determine the optimal pricing vector by backtracking.
Clearly, the overall procedure above runs in time polynomial in n, m and h.

If we do not want to have a polynomial dependence on h, we can instead use the above pseudopolynomial
algorithm to obtain an FPTAS in a fairly standard way as follows.

Step 1 Given ε > 0, let l = εh
nm

.

Step 2 Define w′
e =

⌊

we
l

⌋

, for each hyperedge e ∈ E.

Step 3 Run the dynamic programming algorithm on the instance specified by G = (V, E) and valuations
w′

e, and let p′ be the returned price vector.

Step 4 Output the price vector p̃ defined as p̃i = l · p′i, for i ∈ V .

Theorem 4 The above algorithm is an FPTAS, achieving profit at least (1 − ε)OPT in time polynomial in
n, m, and 1

ε
.

Proof: In the following discussion, let Profitw′(p) denote the profit made by using the price vector p in
the rounded instance specified by G = (V, E) and valuations w′

e. In order to prove that the profit we obtain
by using p̃ in the original instance (given by G = (V, E) and valuations we) is at least (1− ε)OPT, we first
make some observations.

Let p be a pricing vector and let W be the set of winners under the pricing scheme p in the original
instance. If p′′ is the pricing vector defined as p′′i =

⌊

pi

l

⌋

for i ∈ V , then Profitw′(p′′) ≥ 1
l
·Profit(p)−nm.

To see why this is true, notice first that W ⊆ W ′′, where W ′′ is the set of winners under the pricing
scheme p′′ in the rounded instance (specified by G = (V, E) and valuations w′

e). This follows from the
fact that

∑

i∈e

pi ≤ we implies
∑

i∈e

p′′i =
∑

i∈e

⌊

pi

l

⌋

≤
⌊

we
l

⌋

= w′
e. This implies Profitw′(p′′) =

∑

e∈W ′′

∑

i∈e

p′′i ≥

∑

e∈W

∑

i∈e

(

pi

l
− 1

)

= 1
l
· Profit(p) − nm, as desired.

Let p′ be a pricing vector and let W ′ be the set of winners under the pricing scheme p′ in the rounded
instance. If p̃ is the pricing vector defined as p̃i = l · p′i for i ∈ V , then Profit(p̃) ≥ l ·Profitw′(p′). To see
why this is true, notice first that W ′ ⊆ W , where W is the set of winners under p̃ in the original instance.
This follows from the fact that

∑

i∈e

p′i ≤ w′
e implies

∑

i∈e

p̃i = l ·
∑

i∈e

p′i ≤ w′
e = l

⌊

we
l

⌋

= we. This implies

Profit(p̃) =
∑

e∈W

∑

i∈e

p̃i =
∑

e∈W

∑

i∈e

l · p′i ≥
∑

e∈W ′

∑

i∈e

l · p′i = l · Profitw′(p′), as desired.



We are now ready to show that Profit(p̃) ≥ (1 − ε)OPT. Let p∗ and p′ be the price vectors with the
maximum profit in the original and rounded instances respectively, and let W ∗ and W be the corresponding
set of winners. Let p̃ be the price vector defined as p̃i = l·p′i for i ∈ V and let p′′ is the pricing vector defined

as p′′i =
⌊

p∗i
l

⌋

for i ∈ V . According to the previous observations we have Profit(p̃) ≥ l · Profitw′(p′).

Since p′ is the price vector with the maximum profit in the rounded instance we have Profitw′(p′) ≥
l · Profitw′(p′′). Combining these together with the fact that Profitw′(p′′) ≥ 1

l
· Profit(p∗) − nm, we get

Profit(p̃) ≥ Profit(p∗) − lnm, which implies Profit(p̃) ≥ (1 − ε)OPT, as desired.
Since w′

e ≤ nm
ε

for all e ∈ E, we also have that our procedure runs in polynomial time in n, m, and 1
ε
,

thus being a FPTAS for the hierarchy case.

7 Online Pricing

As mentioned in Section 1, results of Balcan et al. [3] can be used to convert our algorithms into incentive-
compatible mechanisms in the offline “batch” setting (i.e., a sealed-bid auction). In this section we consider
a natural, more demanding online setting in which customers arrive one at a time, and we must set prices to
the items for customer t based only on information about customers 1, . . . , t − 1.

7.1 The model

We assume customers arrive one at a time. Each customer will be shown a set of item prices, and will
then decide whether to purchase or not at those prices. We assume customers cannot return and cannot
control their time of arrival, so any take-it-or-leave-it set of prices for customer t based only on information
received from customers 1, . . . , t−1 is incentive-compatible. In addition, we assume an oblivious adversary
model: that is, our objective is to achieve good expected performance for any sequence of customers, but
this sequence cannot depend on the outcome of any probabilistic choices made by our algorithm.

We consider two information models. In the full information model, we assume that after the t-th
customer departs, we learn his desired set et and valuation vt. In the more difficult posted-price model, we
assume we only find out whether and what the customer purchased but not his actual valuations. That is, if
he purchases a subset at the current prices we do not know if he still would have purchased at higher prices,
and if he does not purchase at the current prices, we do not know if (or what) he would have purchased at
lower prices. In both models, we will be interested in algorithms that perform well compared to the best
fixed setting of prices for the entire sequence. Thus, we are comparing to the same notion of OPT as in the
offline case.

7.2 The Online Graph and k-Hypergraph Pricing Problems

Our 4-approximation for graph vertex-pricing, and our O(k)-approximation for k-hypergraph vertex pricing,
can be directly adapted to the online setting by using the results of [4, 5] for the online digital-good auction.

Specifically, note that our algorithms begin by selecting a subset VL of items to have non-zero prices, and
then achieve their approximation guarantees considering only profit made from customers who want exactly
one item in VL. Thus, we can view these algorithms as effectively performing |VL| separate digital-good
auctions, ignoring customers who want zero, or more than one, item from VL. In particular, to apply these
algorithms to the full-information online setting, we begin by randomly choosing the set VL as described
in the algorithms, setting prices for items in V − VL to 0. We then instantiate a separate copy of the



online digital-good auction from [4] for each item i ∈ VL. When a customer arrives, if the customer wants
exactly one item i from VL then his valuation is given to the associated online auction algorithm. Let OPTi

denote the optimal profit achievable using a fixed price for item i from customers whose bundles contain
item i but no other item in VL. Using the results of [4], the expected profit of the online auction for item
i will therefore be at least (1 − ε)OPTi − O(h

ε
log 1

ε
), where ε > 0 is an input to the online algorithm

and h is the maximum valuation of any customer seen so far. Thus, overall, we achieve profit at least
(1 − ε)

∑

i∈VL

OPTi − O(nh
ε

log 1
ε
), where

∑

i∈VL

OPTi is the profit of the offline approximation algorithm.

In particular, so long as the offline algorithm’s profit is Ω(nh
ε2

log 1
ε
), we lose only a (1 + O(ε)) factor

in conversion to the online setting. Note that we need the assumption of an oblivious adversary for the
approximation ratios proved in Sections 3 and 4 to apply.

In the posted-price setting, we can also apply the associated posted-price algorithms of [4, 5]. The only
tricky issue is that a customer who chooses not to buy anything must be fed in as a non-buyer to all of the
online algorithms, in order to ensure that the sequence of customers fed into algorithm i is a superset of
the true customers for that item. In addition, the algorithms for the posted-price scenario require that the
upper-bound h on the maximum valuation be known in advance.

7.3 The Online Highway Problem

For the highway problem, we cannot decompose our solution into a collection of independent digital-good
auctions, so the reduction in Section 7.2 does not go through. However, for the case that all path requests
have a common endpoint (for which Guruswami et al. [13] give an efficient exact algorithm using dynamic
programming), we can convert to the online setting by placing this problem in the framework of online
geometric optimization studied by Kalai and Vempala [16]. In particular, [16] gives a method to convert
any efficient exact algorithm for offline optimization into an efficient near-optimal algorithm for online
optimization, for any problem of the following type:

1. There is a set S ⊆ R
d of feasible points. At each time step t we must pick some point pt ∈ S, we are

then given an objective function vt ∈ R
d, and we obtain profit pt · vt.

2. Our goal is to perform nearly as well as the best point p ∈ S in hindsight. That is, we want
∑

t

pt · vt

to be nearly as large as max
p∈S

∑

t

p · vt.

3. We have an efficient algorithm for the offline optimization problem: given objective function v ∈ R
d,

find the point p ∈ S that maximizes p · v.

Kalai and Vempala [16] give a procedure for choosing points pt online for any problem of the above
type such that the total profit obtained,

∑

t

pt · vt, is within a 1 − ε factor of the profit of the best p ∈ S in

hindsight, minus an additive term that is polynomial in the diameter of S and the maximum L1 magnitude
of any vt.

We can place the highway problem in which all path requests are of the form {1, . . . , i} into the above
setting as follows. First, let d = nh, where we assume all bidders have integral valuations between 0 and
h. Now, let S be the set of all possible item prices represented in the following way. Given a pricing
(p1, . . . , pn) of the n items, represent pi as a vector of length h consisting of qi − 1 zeros followed by
h− qi +1 entries at value qi, where qi = p1 + . . .+pi is the price of the i-th bundle. Then concatenate these
n vectors together to create a point in R

d. A bidder who desires bundle {1, . . . , i} at value w is represented



as a vector of all zero entries except for a 1 in the w-th coordinate of the i-th block. By design, the dot
product of this vector with a vector p ∈ S is exactly the profit that would be obtained from this bidder by
the item-pricing corresponding to p. Finally, we can use the optimization algorithm from [13] as our offline
optimization oracle. Since in our case the diameter of S is at most 2nh2, and the maximum L1 magnitude
of any vt is at most 1, the total profit obtained will be within a 1− ε factor of the profit of the best p ∈ S in
hindsight, minus an additive term which is Õ

(

nh2
)

.
One somewhat subtle issue is that the Kalai-Vempala algorithm requires running the offline algorithm

on objective functions v that correspond to perturbed versions of the actual history v1 + . . . + vt−1 and
so one must be careful that this might not actually correspond to a legal problem input to our offline opti-
mization algorithm. However, because we have represented each bidder as a coordinate basis vector, we can
decompose any vector v into a set of legal bidders, and so this is not a problem.

Note that for the posted-price version, we just need to apply known extensions of the Kalai-Vempala
algorithm to the bandit setting [2, 19, 7] in which only the profit pt · vt and not the actual vector vt is
revealed to the algorithm.

Unfortunately, we do not know how to perform these reductions for the general highway problem, be-
cause for that problem we do not have an exact offline algorithm. However, it may be possible to view our
approximation algorithm as an exact optimizer for a related problem that can itself be fit into the Kalai-
Vempala framework, solving the online problem in that way.

8 Conclusions

We present approximation and online algorithms for a number of problems of pricing items to consumers
so as to maximize seller’s revenue in an unlimited supply setting. We achieve an O(k)-approximation
algorithm for the case of single-minded bidders where each consumer wants at most k items, an O(log n)
approximation for the highway problem from [13], and a constant factor approximation to the highway
problem when all bidders want approximately (up to a constant factor) the same number of items. We also
show how some of our approximation algorithms can be adapted to the more demanding online setting in
which customers arrive one at a time, in both the full-information and posted-price settings.

8.1 Open Questions

There are several natural open problems left by this work.
First, can one improve on the factor of 4 for the graph vertex problem? Any method able to reduce the

factor of 2 for the bipartite case would immediately result in an improved bound. Alternatively, perhaps the
reduction to the bipartite case can be improved. Also, for the general hypergraph vertex pricing problem
it would be good to close the gap between the upper bound we present in this paper and the lower bound
of [8].

Second, is it possible to possible to perform the reduction in Section 7.3 for the general online highway
problem? Or, more generally, can one convert approximation algorithms for these problems into online
algorithms without using special properties of the algorithms themselves as done in Section 7.2?

Finally, an intriguing question related to this work is: what kind of approximation guarantees are achiev-
able if one allows the seller to price some items below cost (i.e., to have “loss leaders”)? For the case of
digital goods, it may not make sense to allow negative prices (customers might purchase infinitely many
such items), but in the case of products of fixed marginal cast, a retailer might wish to price some products
below cost in order to induce more purchases of bundles containing both those and other more expensive



products. For example, consider four items A, B, C, and D, and three customers: one who values {A, B}
at $10 above their combined cost, one who values {B, C} at $40 above their cost, and one who values
{C, D} at $10 above their cost. If no item can be priced at a loss, then it is not possible to have all three
customers buy at their valuations. On the other hand, by pricing A and D at $10 below cost, and B and
C at $20 above cost, the seller can extract full profit. More generally, we can construct a (bipartite) graph
in which there is an Ω(log n) gap between the optimal profit achievable without any items priced at a loss
and the optimal profit if such pricing is allowed.5 However, this does not necessarily mean that no o(log n)
approximation is possible, only that our current approaches do not succeed. In particular, we do not know
of any constant-factor approximation for the graph vertex pricing problem when negative profit margins on
some items are allowed.
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