
Probabilistic Reuse of Past Policies

Fernando Fernández Manuela Veloso
July 2005

CMU-CS-05-173

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was conducted while the first author was visiting Carnegie Mellon from the Universidad Carlos III
de Madrid, supported by a generous grant from the Spanish Ministry of Education and Fullbright. The second au-
thor was partially sponsored by Rockwell Scientific Co., LLCunder subcontract no. B4U528968 and prime contract
no. W911W6-04-C-0058 with the US Army, and by BBNT Solutions, LLC under contract no. FA8760-04-C-0002
with the US Air Force. The views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies orendorsements, either expressed or implied, of the sponsoring
institutions, the U.S. Government or any other entity.

Keywords: Reinforcement Learning, Policy Reuse, Transfer Learning.

Abstract

A past policy provides a bias to guide the exploration of the environment and speed up the learning
of a new action policy. The success of this bias depends on whether the past policy is “similar”
to the actual policy or not. In this report we describe a new algorithm, PRQ-Learning, that reuses
a set of past policies to bias the learning of a new one. The past policies are ranked following a
similarity metric that estimates how useful is to reuse eachof those past policies. This ranking
provides a probabilistic bias for the exploration in the newlearning process. Several experiments
demonstrate that PRQ-Learning finds a balance between exploitation of the ongoing learned policy,
exploration of random actions, and exploration toward the past policies.

1 Introduction

Reinforcement Learning [7] is a widely used tool to learn to solve different tasks in different
domains. Bydomainwe mean the rules that define how the actions of the learning agent influence
the environment, i.e. the state transition function. Bytaskwe mean the specific problem that the
agent is trying to solve in the domain, which is defined through the reward function.

The goal of this work is to study how action policies that are learned to solve a defined set of
tasks can be used to solve a new and previously unseen task. A first approach is to use a policy
through the transfer of the Q function. The past Q function isused to seed the learning of the new
one. However, any past policy when followed greedily, provides a whole plan that maximizes the
expected reward in the past task. This plan depends on the domain and the past task but not on the
new task. Thus, Q function transfer between tasks is useful when the reward functions of the new
and old tasks are very similar, but provides very poor results if they are different [2].

There are other areas in RL in which sub-policies are reused.For instance, some algorithms
use macro-actions to learn new action policies in Semi-Markov Decision Processes, as it is the
case of TTree [11] and Intra-Option Learning [8]. Hierarchical RL uses different abstraction levels
to organize subtasks [3].

Policy Reuse [5] is a learning technique guided by past policies to balance among exploitation
of the ongoing learned policy, exploration of random actions, and exploration toward the past
policies. Thus, it is very related with the exploration vs. exploitation problem, which tries to define
whether to explore new or exploit the knowledge already acquired. In the literature, different kinds
of exploration strategies can be found. A random strategy always selects randomly the action to
execute. Theε-greedy strategy selects with a probability ofε the best action suggested by the Q
function learned up to that moment, and it selects a random action with probability of(1− ε). In
alternative, Boltzmann strategy ranks the actions to be used, providing with a higher probability
to the actions with a higher value of Q. Directed explorationstrategies memorize exploration-
specific knowledge that is used for guiding the exploration search [9]. These strategies are based
in heuristics that bias the learning so unexplored states tend to have a higher probability of being
explored that recently visited ones. None of these strategies include knowledge of past policies,
but knowledge obtained in the current learning process.

Nevertheless, several examples found in the AI bibliography have demonstrated that informa-
tion of past problems can be useful for solving new ones, as Policy Reuse does. For instance,
past plans can be used to guide the search of new ones through control rules in a planning sys-
tem [12]. Also, way-points followed in past paths can be usedto bias the search of new paths in a
path-planning system, and to speed up the search [1].

In this work, we contribute PRQ-Learning, an algorithm thatimplements Policy Reuse ideas
efficiently. This algorithm allows us to reuse past policiesto learn a new one, improving the
results of learning from scratch. The improvement is achieved without prior knowledge about
which policies are useful, and not even knowing whether a useful one exists or not.

The report is organized as follows. Section 2 describes the main elements of Policy Reuse.
Firstly, the concepts of domain and task are related with Markov Decision Processes. Second,
Policy Reuse is formally defined. Third, theπ-reuse exploration strategy is introduced, which
is able to balance the exploration of new actions, the exploitation of the current policy, and the
exploitation of a past predefined policy [5]. And last, the concept of similarity between policies is

1

motivated.
Section 3 introduces the PRQ-Learning algorithm. The experiments described in Section 4

demonstrate three capabilities of the PRQ-Learning algorithm. Firstly, that a ranking of similar-
ity between past policies can be estimated simultaneously to learning the new policy. Second,
that PRQ-Learning is able to use the previously defined ranking to find a correct balance among
exploiting past policies, exploring new actions, or exploiting the policy that is currently being
learned. And third, that PRQ-Learning can improve learningperformance when compared with
learning from scratch. Lastly, Section 5 concludes with newresearch lines.

2 Domains, Tasks and Policy Reuse

The goal of this section is to introduce Policy Reuse. To do this, we first describe the concepts of
task, domain, and gain. Then, we define how the reuse of a past policy is used as a bias in a new
exploratory process. Last, we define a similarity concept between policies, which motivation is
deeply described in [5].

2.1 Domain, Tasks and MDPs

A Markov Decision Process [6] is represented with a tuple< S,A, δ,R >, whereS is the set of
all possible states,A is the set of all possible actions,δ is an unknown stochastic state transition
function,δ : S ×A×S → <, andR is an unknown stochastic reward function,R : S ×A → <.
We focus in RL domains where differenttaskscan be solved. We introduce a task as a specific
reward function, but the other concepts,S, A and δ stay constant for all the tasks. Thus, we
extend the concept of an MDP introducing two new concepts: domain and task. We characterize
a domain,D, as a tuple< S,A, δ >. We define a task,Ω, as a tuple< D,RΩ >, whereD is a
domain as defined before, andRΩ is the stochastic and unknown reward function.

In this work we assume that we are solving a task with absorbing goal states. Thus, ifsi is a
goal state,δ(si, a, si) = 1, δ(si, a, sj) = 0 for si 6= sj , andR(si, a) = 0, for all a ∈ A. A trial
starts by locating the learning agent in a random position inthe environment. Each trial finishes
when a goal state is reached or when a maximum number of steps,sayH, is achieved. Thus, the
goal is to maximize the expected average reinforcement per trial, sayW , as defined in equation 1:

W =
1

K

K∑

k=0

H∑

h=0

γhrk,h (1)

whereγ (0 ≤ γ ≤ 1) reduces the importance of future rewards, andrk,h defines the immediate
reward obtained in the steph of the trialk, in a total ofK trials.

An action policy,Π : S → A, defines for each state, the action to execute. The action policy
Π∗ is optimal if it maximizes the gain W in such a task, sayW ∗

Ω. Action policies can be represented
using the action-value function,QΠ(s, a) that defines for each states ∈ S, a ∈ A, the expected
reward that will be obtained if the agent starts to act froms, executinga, and after it follows
the policyΠ. So, the RL problem is translated to learning the previous function,QΠ(s, a). This
learning can be performed using different algorithms, as Q-Learning [13].

2

2.2 Policy Reuse

The goal of Policy Reuse is to describe how learning can be sped up if different policies, which
solve different tasks, are used to bias the exploration process of the learning of the action policy of
another similar task. Then, the scope of this work is summarized as:

• We need to solve the taskΩ, i.e. learnΠ∗Ω.

• We have previously solved the set of tasks{Ω1, . . . ,Ωn}, so we have the set of policies,
{Π∗1, . . . ,Π

∗
n}, to solve them respectively.

• How can we use the previous policies,Π∗i to learn the new one,Π∗Ω?

To solve this problem we have developed the PRQ-Learning algorithm. This algorithm auto-
matically answer two questions: (i) what policy, from the set {Π∗1, . . . ,Π

∗
n}, is used to bias the new

learning process? (ii) once a policyΠs is selected, how is it integrated in the learning process?
The algorithm is based on an exploration strategy,π-reuse, which is able to bias the learning of a
new policy with only one past policy. From this strategy, a similarity metric between policies is
obtained, providing a method to select the most accurate policy to reuse. Both theπ-reuse strategy
and the similarity metric, defined in [5], are summarized in the next subsections.

2.3 Exploiting a Past Policy

Reusing a defined past policy requires integrating the knowledge of the past policy into the current
learning process. Our approach is to bias the exploratory process of the new policy with the past
one.

We denote the old policy withΠold, and the one we are currently learning withΠ. We assume
that we are using a direct RL method to learn the action policy, so we are learning its relatedQ
function. Any algorithm can be used to learn theQ function, with the only requirement that it can
learn off-policy, i.e. it can learn a policy while executinga different one, as Q-Learning does [13].

The goal of theπ-reuse strategy is to balance random exploration, exploitation of the past
policy, and exploitation of the new policy, which is being learned currently. Theπ-reuse strategy
follows the past policy with a probability ofψ. However, with a probability of1−ψ, it exploits the
new policy. Obviously, random exploration is always required, so when exploiting the new policy,
it follows an ε-greedy strategy, as is defined in Table 1. Lastly, theυ parameter allows the decay
of the value ofψ in each trial.

The interesting of theπ-reuse estrategy is that it also contributes a similarity metric among
policies, as it is summarized in the next subsection.

2.4 A Similarity Metric Between Policies

The exploration strategyπ-reuse, as defined in Table 1, returns the learned policy,Πnew, and the
average gain obtained in its learning process. Let’s callWi to the gain obtained while executing
theπ-reuse exploration strategy, reusing the past policyΠi.

We call Π∗Ω the optimal action policy for solving the taskΩ. W ∗
Ω is the gain obtained when

using the optimal policy,Π∗Ω, to solveΩ. Therefore,W ∗
Ω is the maximum gain that can be obtained

3

π-reuse (Πold, K,H, ψ, υ).
for k = 1 toK

Set the initial state,s, randomly.
Setψ1 ← ψ

for h = 1 toH
With a probability ofψh, a = Πold(s)
With a probability of1− ψh, a = ε-greedy(Πnew(s))
Receive current states′, and reward,rk,h

UpdateQΠnew(s, a), and therefore,Πnew

Setψh+1 ← ψhυ

Sets← s′

W = 1
K

∑K

k=0

∑H

h=0 γ
hrk,h

ReturnW andΠnew

Table 1:π-reuse Exploration Strategy.

in Ω. Then, we can use the difference betweenW ∗
Ω andWi to measure how useful to reuse the

policy Πi is to learn to solve the new task, using the distance metric shown in equation 2.

d→(Πi,Π) = W ∗
Ω −Wi (2)

Then, the most useful policy to reuse, from a set{Π1, . . . ,Πn}, is:

argΠi
min(W ∗

Ω −Wi), i = 1, . . . , n (3)

However,W ∗ is independent ofi, so the previous equation is equivalent to:

argΠi
max(Wi), i = 1, . . . , n (4)

This equation is not possible to compute, given that the set of Wi values, fori = 1, . . . , n is
unknown a priori. However, it can be estimated on-line at thesame time that the new policy is
computed. This idea is formalized in the PRQ-Learning algorithm.

3 PRQ-Learning Algorithm

We are focused on learning to solve a taskΩ, i.e. to learn an action policyΠΩ. We haven past
optimal policies to solven different tasks respectively. For simplicity in the notation, we will call
these policiesΠ1, . . . ,Πn, andΩ1, . . . ,Ωn the tasks. Also, let’s callW xi

i the expected average
reward that is received when following the policyΠi and using an action selection strategyxi.
This strategy could be Boltzmann,π-reuse or any other strategy. Also, let’s callW x

Ω the average
reward that is received when following the policyΠΩ and using an action selection strategyx.

4

When deciding which action to execute in each step of the learning process of the policyΠΩ,
the following decisions must be taken: (i) what policy is followed from the set{ΠΩ,Π1, . . . ,Πn}?
(ii) once a policy is selected, what exploration/exploitation strategy is followed?

The answer proposed to the first question is to follow a softmax strategy, using the valuesW x
Ω

andW xi

i , as defined in equation 5, where a temperature parameterτ is included. Notice also that
this value is also computed forΠ0, which we assume to beΠΩ.

P (Πj) =
eτW

xi
j

∑n

p=0 e
τW

xp
p

(5)

Once the policy to follow has been chosen, whether to follow it greedily, or to introduce also
an exploratory element, must be decided, i.e. we need to decidex andxi, for i = 1, . . . , n. If the
policy chosen isΠΩ, a completely greedy strategy is followed. However, if the policy chosen isΠi

(i = 1, . . . , n), theπ-reuse action selection strategy, defined in previous section, is followed. The
whole algorithm, which we have called PRQ-Learning (PolicyReuse in Q-Learning) is shown in
Table 2. The learning algorithm used is Q-Learning. It has been chosen because it is an off-policy
algorithm. Any other off-policy algorithm could be chosen.

4 Experiments

In this section we demonstrate three main results. First, given a set of past policies, the most
similar policy to the new one can be learned simultaneously to learning the new policy. Second,
a balance between exploring new actions, exploiting past policies, and exploiting the new policy
that is being learned currently is successfully achieved. And third, performance can be improved
if we can bias the exploration with past policies even if: (a)we have several past policies, (b) we
do not know a priori which one is the most similar. The next subsection describes the application
domain.

4.1 Navigation Domain

This domain consists of a robot moving inside of an office area, as shown in Figure 1, similar to the
one used in other RL works [4, 10]. The environment is represented by walls, free positions and
goal areas, all of them of size1×1. The whole domain isN×M (24×21 in this case). The possible
actions that the robot can execute are “North”, “East”, “South” and “West”, all of size one. The
final position after each action is noised by a random variable following a uniform distribution in
the range(−0.20, 0.20). The robot knows its location in the space through continuous coordinates
(x, y) provided by some localization system. In this work, we assume that we have the optimal
uniform discretization of the state space (which consists of 24 × 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks the execution of actions that would crash it into
a wall. The goal in this domain is to reach the area marked with’G’. When the robot reaches it, it
is considered a successful trial, and it receives a reward of1. Otherwise, it receives a reward of 0.

Figure 1 shows six different tasks in the same domain,Ω1, Ω2, Ω3, Ω4, Ω5 andΩ, given that
the goal states, and therefore, the reward functions, are different. All these different tasks will be
used in the experiments.

5

Policy Reuse in Q-Learning

• Given:

1. A set ofn tasks{Ω1, . . . , Ωn}.

2. Their respective optimal policies,{Π∗

1
, . . . , Π∗

n} to solve them

3. A new taskΩ we want to solve

4. A maximum number of trials to execute,K

5. A maximum number of steps per trial,H

• Initialize:

1. QΩ(s, a) = 0,∀s ∈ S, a ∈ A

2. Initialize W x
Ω

to 0

3. Initialize W
xi
i to 0

4. Initialize the number of trials where policyΠΩ has been chosen,UΩ = 0

5. Initialize the number of trials where policyΠi has been chosen,Ui = 0, ∀i = 1, . . . , n

• Fork = 1 to K do

– Choose an action policy,Πj , randomly, assigning to each policy the probability of being selected computed by the following
equation (equation 5):

P (Πj) =
e
τW

xj

j

Pn
p=0

eτW
xp
p

– Initialize the states to a random state

– SetR = 0

– for h = 1 to H do

∗ UseΠj to compute the next action to execute,a, following the exploitation strategyxj .

∗ Executea

∗ Receive current state,s′

∗ Receive current reward,r

∗ UpdateQΩ(s, a) using Q-Learning update function:

Q(s, a)← (1− α)Q(s, a) + α[r + γ max
a′

Q(s′, a′)]

∗ SetR = R + γhr

∗ Sets← s′

– SetW
xj

j =
W

xj

j
Uj+R

Uj+1

– SetUj = Uj + 1

– Setτ = τ + ∆τ

Table 2: PRQ-Learning

4.2 Learning Curves

In the following subsections, we will describe different learning processes of a new policy. For
each of them we will present two results showing two different curves, the learning curve, and the
test curve.

The learning curve of each strategy describes the performance of such strategy in the learning
process. Learning has been performed using the Q-Learning algorithm, for fixed parameters of

6

G G

G

(a) TaskΩ1 (b) TaskΩ2 c) TaskΩ3

G

G
G

(d) TaskΩ4 (e) TaskΩ5 (f) TaskΩ

Figure 1: Office Domain.

γ = 0.95 andα = 0.05, which have been empirically demonstrated to be accurate for learning. A
learning trial consists of executingK = 2000 trials. Each trial consists of following the defined
strategy until the goal is achieved or until the maximum number of steps,H = 100, is executed.
In the figures containing the curves, thex axis shows the trial number. They axis represents the
gain obtained. Thus, a value of 0.2 for the trial 200 means that the average gain obtained in the
200 first trials has been 0.2.

The test curve represents the evolution of the performance of the policy while it is being
learned. Each 100 trials of the learning process, the Q function learned up to that moment is
stored. Thus, after the learning process, we can test all those policies. Each test consists on 1000
trials where the robot follows a completely greedy strategy. Thus, the x axis shows the learning
trial in which that policy was generated, and they axis show the result of the test, measured as the
average number of steps executed to achieve the goal in the 1000 test trials.

For both the learning and test curves, the results provided are the average of ten executions. In
the curves, error bars provide the standard deviation in theten executions.

4.3 Learning from Scratch

We want to learn the task described in Figure 1(f). For comparison reasons, the learning and test
processes have been executed firstly following different exploratory strategies that do not use any
past policy. Specifically, we have used four different strategies. The first one is a random strategy.
The second one is a completely greedy strategy. The third oneis ε-greedy, for an initial value of
ε = 0, which is incremented by 0.0005 in each trial. Lastly, Boltzmann strategy has been used,
initializing τ = 0, and increasing it in 5 in each learning trial. Figure 2 showsthe learning and test
curves for all of them.

Figure 2(a) shows the learning curve. We see that when actingrandomly, the average gain
in learning is almost 0, given that acting randomly is a very poor strategy. However, when a
greedy behavior is introduced, (strategy 1-greedy), the curve shows a slow increment, achieving

7

values of almost 0.1. The problem with the 1-greedy strategyis that it also produces a very high
standard deviation in the 10 executions performed, showingthat a completely greedy strategy may
produce very different results. The curve obtained by the Boltzmann strategy do not offer any
improvements overε-greedy. However, theε-greedy strategy seems to compute an accurate policy
in the initials trials, and obtain the highest average gain at the end of the learning.

The random strategy andε-greedy outperforms the other strategies in the test curve shown in
Figure 2(b). This is due to the fact that both strategies, with the defined parameters, are less greedy
than the other policies in the initial steps. Typically, higher exploration at the beginning results in
more accurate policies.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Random 1−greedy e−greedy Bolzmann

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Random 1−greedy e−greedy Bolzmann

(a) Learning Curve (b) Test Curve

Figure 2: Learning and test evolution when learning from scratch

4.4 Learning with PRQ-Learning

In this section, we introduce the experiments performed with the PRQ-Learning algorithm. In the
following we will demonstrate three main issues. Firstly, that performance can be improved if
we can bias the exploration with past policies, even if we have several and we do not know, “a
priori”, which one is the most similar. Second, that which isthe most useful policy can be learned
simultaneously to learning the new policy. And third, that abalance between exploring, exploiting
past policies, and exploiting the new policy that is being learning currently can be successfully
achieved.

We use the PRQ-Learning algorithm for learning the taskΩ, defined in Figure 1(f). We assume
that we have previously learned 3 different set of tasks, so we distinguish three different cases. In
the first one, called “Case 1”, the past tasks areΩ2, Ω3 andΩ4, defined in Figure 1(b), (c) and (d)
respectively. Then, we can use their respective policies,Π2, Π3 andΠ4 to bias the learning of the
new one,ΠΩ. All these tasks are very different from the one we want to solve, so their policies are
not supposed to be very useful in learning the new one. In the second case, the set of past policies
is also composed withΠ2, Π3, Π4, but in this case, the policyΠ1 is also added. The third case uses
the policiesΠ2, Π3, Π4 andΠ5

The PRQ-Learning algorithm is executed for the three cases.The learning curves are shown
in Figure 3(a). The parameters used are the same used in Section 2.3. The only new parameters
are the ones of the Boltzmann policy selection strategy,τ = 0, and∆τ = 0.05, obtained empiri-

8

Ω1 ,Ω2 , Ω3 , Ω4 Ω2 , Ω3 , Ω4

Ω2 , Ω3 , Ω ,4 Ω5

Learning from Learning from

Learning from

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

Ω1 ,Ω2 , Ω3 , Ω4 Ω2 , Ω3 , Ω4

Ω2 , Ω3 , Ω ,4 Ω5

Learning from Learning from

Learning from

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

(a)Learning Curve (b) Test Curve

Figure 3: Learning and test curves when learning the task of Figure 1(f) reusing different sets of
policies.

cally. The result obtained when learning from scratch usingBoltzmann exploration strategy is also
included for comparison.

Figure 3(a) shows two main conclusions. On the one hand, whena really similar policy is
included in the set of policies that are reused, the improvement on learning is very high. In both
cases (when reusingΠ1 andΠ5), average gain is greater than 0.1 in only 500 iterations, and more
than 0.25 at the end of the trial. On the other hand, the learning curve when no similar policy is used
(case 1) is similar to the results obtained when learning from scratch with the 1-greedy strategy
(which is the strategy followed by PRQ-Learning for the new policy, as defined in section 3). That
demonstrates that the PRQ-learning algorithm has discovered that reusing the past policies is not
useful. Therefore, it follows the best strategy available,which is to follow the 1-greedy strategy
with the new policy.

Figure 3(b) shows the test curves for all the cases. The figureshows that when reusing similar
past policies in learning, a policy which provides a gain upper than 0.3 is obtained in 1000 trials.
That is a strong improvement over the strategies that learn from scratch.

The good results obtained when reusing past similar policies can be easily understood if we
look in the Figure 4(a). The figure shows the evolution of the average gain computed for each
policy involved,W5, W2, W3, W4, andWΩ. That values correspond with one of the learning
processes performed when reusingΠ5, Π2, Π3, Π4. It demonstrates how the most similar policy is
computed. On thex axis, the number of trials is shown, while they axis shows theW value for
each policy. The figure shows that forΠ2, Π3 andΠ4, the W values stabilize below 0.05. However,
for the policyΠ5, the value increases up to 0.15. The gain of the new policy starts to increase
around iteration 100, achieving a value higher than 0.3 by iteration 500.

The gain values computed for each policy are used to compute the probability of selecting
them in each iteration of the learning process, using the formula introduced in equation 5, and the
parameters introduced above (initialτ = 0, and∆τ = 0.05). Figure 4(b) shows the evolution
of these probabilities. In the initial steps, all the past policies have the same probability of being
chosen (0.2) given that the gain of all them is initialized to0. While the gain values are updated,
only the policyΠ0 stays in a high value, while for the other policies, this value decreases down
to 0. However, for the new policy, the value also increases until it achieves the value of 1, given

9

that its value is the higher after 400 iterations, as shown inFigure 4(a). This demonstrates how the
balance between exploiting the past policies or the new one is achieved.

2 3 4 5 Ω

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

W

Trials

W W W W W Π3 Π4 Π5Π2 ΠP()

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ro

ba
bi

lit
y

Trials

P() P() P()P()

(a)Evolution ofWi (b) Evolution ofP (Πi)

Figure 4: Evolution ofWi andP (Πj)

5 Conclusions and Future Work

In all the works cited in the related work in Section 1, options, macro-actions, and/or policies
are used as part of a hierarchy, so learning the new learning process that is performed stays in a
higher abstract level above the sub-policies used. The maindifference with our work is that we
use past policies which are useful by themselves to solve different tasks, and that can help to bias
the learning of “similar” ones.

This work contributes an efficient algorithm for policy reuse, PRQ-learning. The algorithm
demonstrates that if a useful policy is in the pool of policies available, the algorithm finds it and
reuse it efficiently. If no policy is useful, the algorithm also discovers it, and move its behavior to
learning from scratch. Thus, the algorithm obtains a correct balance among exploring new actions,
exploiting past policies or exploiting the new one. Last, this work opens a wide range of research
lines, as policy transfer among different tasks, domains, and/or agents.

References

[1] James Bruce and Manuela Veloso. Real-time randomized path planning for robot navigation.
In Proceedings of IROS-2002, Switzerland, October 2002. An earlier version of this paper
appears in the Proceedings of the RoboCup-2002 Symposium.

[2] James Carroll and Todd Peterson. Fixed vs. dynamic sub-transfer in reinforcement learn-
ing. In Proceedings of the International Conference on Machine Learning and Applications,
2002.

[3] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition.Journal of Artificial Intelligence Research, 13:227–303, 2000.

10

[4] Fernando Fernández and Daniel Borrajo. On determinismhandling while learning reduced
state space representations. InProceedings of the European Conference on Artificial Intelli-
gence (ECAI 2002), Lyon (France), July 2002.

[5] Fernando Fernández and Manuela Veloso. Exploration and policy reuse. Technical Report
CMU-CS-05-172, School of Computer Science, Carnegie Mellon University, 2005.

[6] M. L. Puterman.Markov Decision Processes - Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY., 1994.

[7] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, Massachusetts, 1998.

[8] Richard S. Sutton, Doina Precup, and Satinder Singh. Intra-option learning about tempo-
rally abstract actions. InProceedings of the Internacional Conference on Machine Learning
(ICML’98), 1998.

[9] Sebastian Thrun. Efficient exploration in reinforcement learning. Technical Report C,I-CS-
92-102, Carnegie Mellon University, January 1992.

[10] Sebastian Thrun and A. Schwartz. Finding structure in reinforcement learning. InAdvances
in Neural Information Processing Systems 7. MIT Press., 1995.

[11] William T. B. Uther.Tree Based Hierarchical Reinforcement Learning. PhD thesis, Carnegie
Mellon University, August 2002.

[12] Manuela M. Veloso and Jaime G. Carbonell. Derivationalanalogy in PRODIGY: Automating
case acquisition, storage, and utilization.Machine Learning, 10(3):249–278, March 1993.

[13] C. J. C. H. Watkins.Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, UK, 1989.

11

