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Abstract

We initiate the study of metric embedding problems from an approxima-
tion point of view. Metric embedding is a map from a guest metric to a host
metric. The quality of the embedding is defined in terms of distortion, the
ratio by which pairwise distances get skewed in the host metric. While metric
embeddings in general have received quite a lot of attention in theory commu-
nity, most of the results about distortion prove uniform bounds that work for
various families of host and guest metric.

In this dissertation, we address the question: how to find the best embed-
ding of the particular input metric into a host metric. We consider the real line
as the host metric in our study. We consider the following measures of quality
of an embedding: distortion, average distortion and additive distortion. The
distortion is the maximum ratio by which a pairwise distance gets stretched in
a non-contracting embedding. We gig&,/n)-approximation for the distor-
tion of embedding an unweighted graph metric to a line metric. The average
distortion is the ratio of average distance in the embedded metric to that in
the input metric. We give a 17-approximation for the average distortion when
embedding an arbitrary finite metric to a line metric. The additive distortion
is the total absolute difference between input and output distances. We pro-
vide anO(+/log n)-approximation for this objective function. We also show
NP-hardness of these problems.

We also consider the problem of linear ordering of a metric, i.e. assigning
numbers from 1 through n to the points in the metric, so as to minimize the
‘stretch’. The stretch is the maximum pairwise distance in the ordering di-
vided by the distance in the input metric. For this problem, we Gifleg® n)
approximation.

Finally, we consider the problem of constructing a probabilistic embed-
ding of a graph into its spanning trees. We give a siniplleg” n)-approximation
algorithm that improves on the algorithm of Elkin et al. Elkin et al. [2005].
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Chapter 1

Introduction

Over the past decade, metric embeddings have been objects of much attention in theoret-
ical computer science. This has been largely due to their many algorithmic applications,
which range from simplifying the structure of the input data for approximation and online
problems (Arora [1996, 1998], Bartal [1996], Bartal et al. [1997], Fakcharoenphol et al.
[2003b], Garg et al. [2000], Kleinberg and Tardos [2002]), serving as convenient relax-
ations of important NP-hard problems Aumann and Rabani [1998], Blum et al. [2000],
Bourgain [1985], @linescu et al. [2001], Feige [2000], Linial et al. [1995] or simply by
being the object of study ([Agarwala et al., 1999, Farach et al., 1995]) arising from applica-
tions such as computational biology. Embedding techniques have become an indispensable
addition to the algorithm designer’s toolbox, providing powerful and elegant solutions to
many algorithmic problems (see, e.g., [Mael, 2002, Chapter 15] and [Indyk, 2001] for
surveys).

An embedding of a metri€V, d) into hostmetric (H,¢§) isa mapf : V — H. The
quality of this map is measured by how closely the distances between poihtdaeely
resemble those between their images.iAn embedding is callednon-contractingf the
map f does not decrease any of the distancesd(e,,y) < §(f(x), f(y)) forallz,y € V.
(In the sequel, we will abbreviatd f (), f(y)) to d(z,y).) An important measure of the
quality of a non-contracting embeddirfgs thedistortion D = D( f), which is:

distortion D = max 0(z,y)
zyeV d([E, y)

. (1.1)

(We note that a more general definition of distortion can be given that is scale-free; hence
the restriction of non-contracting embeddings used here is without loss of generality.)

While many embedding techniques and algorithms are known, the analyses for these
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embeddings usually only offer uniform bounds on the distortion of the embeddings; few
results which address the problem of minimizing the distortion required for embedding a
givenmetric into the host space. In fact, very few results show how to epproximate

the distortion to better than these uniform bounds.

This is perhaps best shown by a concrete example: [MatquL990] proved thany
metric (V, d) can be embedded into the real line with distort@(1’|); furthermore, the
result is existentially tight, as the-cycle cannot be embedded into the line with distortion
o(|V]) (see, e.g., Rabinovich and Raz [1998], Gupta [2001]). However, no algorithm is
known for this problem which offerger-instanceguarantees; even if a metri&’, d) may
be embeddable int& with distortion D = O(1), the known algorithms do not seem to
guarantee that the embedding they output has distortion, say, that is @tk —<) times
D.

This is the case with most problems in embeddings: while uniform upper bounds are
known for embeddings of many different families of metrics (e.g., general metrics, planar
graph metrics, tree metrics) into a variety of host spaces (e.g., the Minkdysgaces,
distributions of trees), very little is known about how to approximate the optimal distortion
given afixedmetric(V, d) and a host space. One notable exception is the remark of [Linial
et al., 1995] that the optimal embedding of any finite metric into (unbounded dimensional)
Euclidean spaces to minimize distortion can be computed as a solution to a semi-definite
program. Another one is the result by [Kenyon et al., 2004].

In this work we focus on studying the metric embeddings from an approximation-
algorithm perspective. In other words, we would like to address questions of the form:
given an input metric, how to best embed it into a prescribed host metric? In particular,
we focus on the line metric as the prescribed host m etric. It turns out that many of these
problems are NP-hard. Therefore, we look for approximation algorithms.

While distortion as defined above has been very popular, we also investige other no-
tions of the quality of the embedding. We explain each of these below.

Let (V, d) denote the given finite guest metric. We want to emPédl) into the line
metric: (R, 9). Let|V| = n and letA be the diameter of the metric.

1.1 Average distortion

In Chapter 2, we focus our attention on the average distortion of the embeddings arbitrary
finite metrics into the line metri®. The average distortion is the factor by which the
average distance in the metric is stretched.
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In a recent work, [Rabinovich, 2003] introduced the notion of average distortion and
proved bounds on average distortiomoh-expandingmbeddings into a line. Rabinovich
also showed a close connection between this and the max-flow min-cut ratio for concurrent
multicommodity flow with applications to finding quotient cuts in graphs ([Leighton and
Rao, 1999]).

We prove that finding the best embedding of even a tree metric into a line metric so as to
minimize the average distortion is NP-hard, and hence focapproximatinghe average
distortion of the best possible embedding for the given input metric. We give a constant-
factor approximation for the problem of embedding general metrics into the line metric.
For the case ofi-point tree metrics, we provide a quasi-polynomial time approximation
scheme (QPTAS) which outputs an embedding with distortion at ffioste) times the
optimum in timen®Ues™/<*) \We also consider the average distortion, where the average is
taken only over the endpoints of the edges of an input tree metric, we show how to exploit
the structure of tree metrics to give an exact solution in polynomial time.

The basic idea is to think of an embedding into the line as a tour on the nodes of
the original metric that starts from the leftmost vertex on the line and visit the vertices
in order from left to right. Our results build on this simple observation, and demonstrate
a close relationship between minimizing average distortion and the related problems of
finding short TSP tours [Lawler et al., 1985], minimum latency tours (Blum et al. [1994],
Goemans and Kleinberg [1998], Archer and Williamson [2003]), and optirneapairmen
solutions ([Fakcharoenphol et al., 2003a]). In particular, we prove the following results for
the average distortion. These results appeared in [Dhamdhere et al., 2004].

1. Hardness for average distortion: We prove that the problem of finding the min-
imum average distortion non-contracting embedding of finite metrics into the line
is NP-hard, even when the input metric is a tree metric. The proof proceeds via a
reduction from the Minimum Latency Problem on trees [Sitters, 2002].

2. Constant-factor approximations: We give an algorithm that embeds any metric
(V,d) into the line with average distortion that is within a constant of the minimum
possible over all non-contracting embeddings. In fact, we prove a slightly more
general bound on non-contracting embeddings igpiders (i.e., homeomorphs
of stars withk leaves). This result uses a lower bound on the minimum average
distortion of a non-contracting embedding inté-gpider in terms of the minimum
k-repairmen tour [Fakcharoenphol et al., 2003a] on the metric.

3. QPTAS on trees: For tree metrics om nodes, we give an algorithm for finding a
(1 4 €)-approximation to the minimum average distortion non-contracting embed-
ding into a line inn°(°¢"/<*) time. Our algorithm, which appears in Section 2.2, uses
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a lower bound on the minimum average distortion related to the TSP tour length and
latencies of appropriately chosen segments of an optimal tour. In this way, it ex-

tends the ideas of [Arora and Karakostas, 2003] for minimizing latency on trees to

the more general time-dependent TSPs [Blum et al., 1994], and provides a QPTAS
for the latter problem as well.

4. Poly-time algorithm for tree-edge distortion For a tree metric as input, if the min-
imum average distortion is measured only over the endpoints of the edges of the
tree (we call this objective the average tree-edge distortion), then we show that an
embedding following a certain Euler tour of the tree is optimal. In Section 2.3, we
show how to find this tour in polynomial time by dynamic programming. This result
extends some ideas of [Shiloach, 1979].

Related Work  While our problem appears similar to that of finding Mmimum Linear
Arrangement (MLA)for which Rao and Richa [Rao and Richa, 1998] gavedtog n)
approximation using the notion of spreading metrics, it is subtly different: the MLA prob-
lem involves minimizing the average stretch of the edggs . |7(u) —7(v)| under all
mapsr : V' — [n], whereas the mappings in our problem grel’ — R, and must ensure
that|f(u) — f(v)| > d(u,v) V{u,v} € V x V.

The problem of findindMinimum Latency touréa.k.a. the Traveling Repairman prob-
lem) is relevant to our discussion in terms of techniques used. In this problem, one is
given a metric spac@’, d) and a root depat € V; a repairman starting athas to visit all
|V| = n customers, one at each node of the metric. The goal is to minimizavérage
waiting timeof the customers, where the waiting time (atency of a customer is the
sum of the distances of all edges traversed by the repairman before visiting this customer.
There are extensions of this problem to theepairman case, wheferepairmen start off
atr, and the latency of a customer is now the time at which any one of the repairman
visits this customer. The version with only one repairman is known to be NP-hard even
on a tree [Sitters, 2002], and is MAX-SNP hard in general [Blum et al., 1994]. The first
constant-factor approximation for this problem was given by Blum et al. [Blum et al.,
1994]; the approximation factor was improved by Goemans and Kleinberg [Goemans and
Kleinberg, 1998] tdr.18, and most recently by Chaudhuri et al. [Chaudhuri et al., 2003] to
3.59. For the special cases of the latency problem on trees, Arora and Karakostas [Arora
and Karakostas, 2003] gave a quasi-polynomial time approximation scheme (QPTAS);
similar results were given for the case when the points |&‘ifor fixed dimensioni. The
k-repairmen version of the problem was studied by [Fakcharoenphol et al., 2003a] who
show a 16.994-approximation for arbitraky this was improved t®.49 by [Chaudhuri
et al., 2003].



Finally, a problem whose objective is the linear combination the cost of a tour as well
as its latency is that of findingme dependent TSP touithe paper by Blum et al. [Blum
et al., 1994] gives a constant factor approximation algorithm for this problem.

1.2 Additive distortion

In chapter 3, we consider he additive distortion of embeddings into the line metric. The
additive distortion is the sum of differences in all pairwise distances between the embedded
and input distances. Thig, norm of additive distortion is defined as:

(D _I8(z,y) — d(z, ")

The problem of finding the embedding into the line metric with minimum additive dis-
tortion was shown to be NP-hard by [Saxe, 1979]. Our main result(lsg'/?”(n))-
approximation algorithm for thé,, norm of the additive distortion. This result has ap-
peared in [Dhamdhere, 2004]

It's important to note here that we do not restrict the embedding to be non-contracting.
Instead we consider the absolute difference between the distances.

Related Work The additive distortion as a measure of the quality of the embedding has
received much attention, especially for the numerical taxonomy problem. The numerical
taxonomy problem is one of finding a tree metric that closely fits the input metric data.
Formulation of this problem as the minimization of additive distortion was first proposed
by [Cavalli-Sforza and Edwards, 1967]in 1967. In 1977, Waterman et al. [Waterman et al.,
1977] showed that if there is a tree metficoinciding exactly with the input dat&, then

it can be constructed in linear time. In the case when there is no tree that fits the data
perfectly, Agarwala et al. [Agarwala et al., 1999] used the framework of approximation
algorithms to give heuristics with provable guarantees for the problem. They dgave a
approximation to thd.., norm of the additive distortion for fitting the data to a tree metric.
They reduced the problem to that of fitting the dataltcametric, where each leaf is at the
same distance from a common root. ktirametrics they used an exact polynomial-time
algorithm for thel ., norm due to Farach et al. [Farach et al., 1995].

In our setting the host metric is the line metric. The special case of the problem for the
L., norm (i.e. withp = co) was considered by &btad et al. [listad et al., 1998]. They
gave &-approximation for it.



For fitting points to a line, a well-known result due to Menger (see e.g. [Deza and
Laurent, 1997]) gives the following four point criterion. The four point criterion says that,
if every subset of sizd can be mapped into the real line exactly, then all the points can
be mapped into the line exactly. An approximate version of Menger’s result was given
by Badoiu et al. [Bdoiu et al., 2003]. They proved that if every subset of dipan be
embedded into the line with thie,, norm of the additive distortion being at meghen all
the points can be embedded with thg norm of the additive distortion being at mdist

1.3 Classical Distortion

In chapter 4, we address the problem of approximating the classical distortion. Given a
graphG = (V, E) inducing a shortest path metrld = M (G) = (V, d), find a mapping

f of V into aline that is non-contracting (i.elf (u) — f(v)| > d(u,v) for all u,v € V)

which minimizes the distortio (M, f) = max, ey % That is, our goal is to

find D(M) = miny D(M, f). For the case whef' is anunWeightedgraph, we show the
following algorithms for this problem (denote= |V/|):

e A polynomial O(D)-approximation algorithm for metrick/ for which the optimal
distortion isD. This also implies ad(/n)-approximation algorithm for any/.

o A polynomial-timeé(\/ﬁ) approximation algorithm for metrics generated by un-
weighted trees. This also implies @nn'/?)-approximation algorithm for these
metrics.

Most of these results have appeared as part a€ifiu et al., 2005b].
For a special case in unweighted trees we give an improxéek n)-approximation.

Related Work Recently, Kenyon, Rabani and Sinclair [Kenyon et al., 2004] gt
algorithms for minimum (multiplicative) distortion embeddings of metaecgo simpler
metrics (e.g., line metrics). Their algorithms work as long as the minimum distortion is
small, e.g., constant. We note that constraining the embeddingsaiotbéotinto, as in

our case) is crucial for the correctness of their algorithms.

Very recently Badoiu et al. [Bdoiu et al., 2005a] gave arin)-approximation algo-
rithm for embedding weighted graphs into the line metric. They also showed that it is
NP-hard to approximate it within’ for some small constaiit> 0.
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1.4 Weighted Bandwidth

In chapter 5, we consider the problem of finding a linear ordering that minimizes the
stretch. In other words, given a metfiZ, d), we want to map the points ta, 2,...,n},

S0 as to minimizenax, ,|f(z) — f(y)|/d(x,y). i.e., instead of non-contracting embed-
ding, we look for just a linear ordering. We give arflog®(n) log A)-approximation for

this problem, where\ is the diameter of the metric. As a generalization of this result,
we also get an approximation algorithm for the weighted bandwidh problem. Weighted
bandwidth is definednaz, ,|f(x) — f(y)|w(z,y), wherew(x,y) denotes the weight of

the edge(x,y). Our approximation guarantee for the weighted bandwidth problem is
O(log® nlognW), whereW is the maximum weight of an edge. These results appear
in [Dhamdhere, 2005].

Related Work The (unweighted) bandwidth minimization problem (i.e. when all the
edge weights are) arises in VLSI layout problems and has received much attention. It
was shown to be NP-hard by Papadimitriou [Papadimitriou, 1976]. Blum et al. [Blum
et al., 2000] gave an SDP relaxation of the bandwidth and obtained am /b*) approx-
imation, whereb* is the optimal bandwidth. The first non-trivial approximation to this
problem was given by Feige [Feige, 2000]. He developed a notimolofne-respecting
embedding and used it to giv&log*® n)-approximation for the bandwidth problem. Sub-
sequently, Dunagan and Vempala [Dunagan and Vempala, 2001] showed how to improve
the approximation factor based on the SDP relaxation of Blum et al. [Blum et al., 2000].
Recently, Krauthgamer et al. [Krauthgamer et al., 2004] showed an algorithm to construct
volume respecting embeddings and thus reduced the approximation fact@ngd n).

1.5 Embeddings into spanning trees

In chapter 6, we study probabilistic embeddings of graphs into induced spanning trees.
Given a graphG = (V, E), we consider the shortest path metric on it defined By!).

A probabilistic embedding into induced spanning trees is a probability distribution over
the spanning trees of grapgh. The quality of the embedding is measureddxpected
distortion, which is the maximum over the edgeg@fof the expected value of the distance
between its endpoints in the spanning tree.

Only in this chapter, we are interested in uniform bounds on the expected distortion.

7



Related Work The problem of embedding a graph into a spanning tree to minimize
the average distortion was first considered by Alon, Karp, Peleg and, West [Alon et al.,
1995]. They gave an algorithm to construct a spanning tree@(itrp(/log n loglog n))
average distortion and applied to the onliReserver problem. They also demonstrated
examples wher€(log n) average distortion would be incurred for any spanning tree.

Subsequently, Bartal [Bartal, 1996, 1998] considered the problem of probabilistic em-
beddings of arbitrary metrics into tree metrics (not necessarily spanning trees). He ob-
tainedO(log® n) expected distortion and subsequently improved Dttog n log log n).

He also proved a lower bound 6¥(logn) for expander graphs. Later Fakcharoenphol,
Rao and Talwar [Fakcharoenphol et al., 2003b] gave an algorithm(iidy n) expected
distortion, thus matching the lower bound.

The case of embedding inteducedspanning trees was still open. Recently, Emek and
Peleg [Emek and Peleg, 2004] gave@fiog n)-approximation algorithm for minimizing
the distortion of a single spanning tree.

In 2004, Spielman and Teng [Spielman and Teng, 2004] showed that embedding into a
spanning tree with average stretglyields anO(mg¢ log@® n)-time algorithm for solving
diagonally-dominant symmetric linear systems. Subsequently, Elkin, Emek, Spielman and
Teng [Elkin et al., 2005] made a breakthrough for the average distortion problem. Their
algorithm hadO(log” n log log n) average distortion.

Our results We give a simple algorithm witl)(log® n) expected distortion. This also
implies anO(log® n) bound on average distortion. Our algorithm using the star-decomposition
schema introduced by Elkin et al. [Elkin et al., 2005]. We combine it with the cutting
scheme of Bartal [Bartal, 1996]. Furthermore, we introduce a new technique, viz. tail-
bounds on the diameter of the resulting sub-trees to bound the distortion. Our techniques
are orthogonal to those used by Elkin et al.. It might be possible to improve upon our
results by combining these ideas. These results also appear as part of [Dhamdhere et al.,
2006].



Chapter 2

Average Distortion

Itis important to note that while any non-contracting embedding can be converted to a non-
expanding embedding with the same average distortion by scaling down all the distances,
the converse is not true. Indeed, a non-expanding embeddmgght not be one-one,

and may map two points in the guest metric to the same point in the host metric. This is a
crucial difference between the two problems, and hence our result does not give a constant-
factor approximation for the average distortion of non-expanding embeddings into the line
R.

2.1 Embedding arbitrary metrics into the line

In this section, we show that we can approximate the average distortion into a line for a
given metric to within a constant; to this end, we show that the problem is closely related
to that of finding the minimum latency tours and its generalizations in a finite metric space.

2.1.1 Hardness of Embeddings

Theorem 1 It is NP-hard to find a non-contracting embedding of a given metric induced
by a tree into a line that minimizes the average distortion.

Proof.

We show how to reduce the problem of finding minimum latency tour on trees
to our problem. The minimum latency problem on trees (tree-MLP) was shown to
be NP-hard by Sitters [Sitters, 2002] even when the edge lengths &belih

9
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3 2n n

I

Figure 2.1: Hardness construction

Given an instance of tree-MLP, our reduction will define an instance of the
average distortion problem on a tree where the vertices have integer weights and
the edges have lengths, and we generalize the definition of average distortion to be

Zx,yEV w$wy5(‘r’ y)
Zx’yev wmwyd(xa y)

puw(f) = (2.1)

As long as the weights are only polynomially bounded, we can convert such an
instance to one with unit vertex-weights by the simple expedient of replacing any
vertex with weightw by a set ofw vertices at distance zero from one another. Let
us also note that minimizing the average distortion is equivalent to minimizing total
distance in the embedding, and hence we will show the hardness of minimizing the
total distance.

Given atred rooted at- as an instance of tree-MLP problem with edge lengths
in {0,1}, we construct an instance of the average distortion problem (cf. Fig-
ure 2.1). We introduce a new vertexand connect it to the root. We assign
weight7n? to s andn? to r. Let the distance betweenands bed, , = 2n®. The
rest of the vertices have weight

Claim 2.1 In the optimal embedding,and s are adjacent to each other.

Proof. Consider any embedding in whiehands are not adjacent to each
other. Therefore, the distance betweeand s is at leastd(r,s) + 1 in
such an embedding. The total distance in this embedding is atdeast
(d(r,s) + 1) = 14n® + 7n'.
On the other hand, consider any embedding in whieimd s are adja-
cent to each other and the pairwise distance between adjacent pairs is same

10



as that in the guest tree metric. We now compute an upper bound on the
total distance in such an embedding. The contribution due to thémpair

is w,w;-d(r, s) = 14n°. The contribution due to the pairs of the fofmv;)

or (s, v;) is at most(w, + wy) - (2d(r, s) + n?) - n < 6n7, since the distance
between any two points in the embedding is at ndét, s) + n?. Finally,

the contribution from the pairg;, v;) is at mosta? - (2d(r, s) + n?) < 5n?.

Thus the total contribution is at mog2n® + 6n” + 5n.

Therefore, any embedding in whiechand s are adjacent is better than
any embedding in which they are not. Therefore, in any optimal embedding,
r ands have to be adjacent to each other. n

Claim 2.2 In any optimal embedding, no vertexand the vertex are on
the same side of.

Proof. Suppose that the vertex and s are on the same side of From
the previous claim it follows that must be between; andr. Therefore
the pair(v;, r) contribute at least,.d(r, s) to the total distance. Now we
construct an alternative embedding the current one. We keep the order of
all the vertices except;, the same. We embed on the opposite side ofat
the end. In this process only the contributions from the pairs;) for all

j and(v;, s) go up, while the contribution from the pdiv;, r) goes down.
Note that, in the new embedding, the contribution of the pairsy;) can
be at most2d(r, s) + n?) - n and the contribution of the paiw;, s) is at
mostw,(2d(r, s) + n?). The contribution due to the pajr;, v,) goes down
by at leastw, - d(r, s) — w, - n?. Adding up the changes in contributions,
we get that the new embedding has smaller total distance.

Therefore in any optimal embedding, the verticeands cannot be on
the same side of. n

In order to finish the proof of the theorem, we now show that the ordering of the
vertices in an optimal tree-MLP tourisv,, vo, . .., v, ifand onlyifs, r, vy, vs, ..., v,
is the ordering of the vertices in the embedding that minimizes the average distor-
tion. Lets,r,w(1),7(2),...,m(n) be the ordering of the vertices in an embedding.
Let L(7) denote the total latency of the ordering giveniby(1),...,7(n). Let
Av(r) denote the sum of the distances in the embedding consisting of. . . , 7(n)
in that order.
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Then, the total distance in the embedding is

ws - Wy + ws -+ (ws + w,) - L(m) + Av(r)

Note thatAuv(r) is bounded above by* since we sum the distances o\&)
pairs and the maximum distance between any pairv;} in the embedding is at
mostn?. Thus,Av(r) is smaller tha{w, + w;).

Note that the difference between optimal valuel¢fr) and that in any other
solution is at least 1, while it's multiplying factdrv, + ws) dominatesAv ().
Hence, in order to minimize the total distance, we have to minimige). This
is exactly the tree-MLP problem. Hence, the problem of minimizing the average
distortion is NP-hard. ]

2.1.2 A Constant-factor Approximation Algorithm

In order to make the exposition of our approximation algorithm simple, we first show
a simple2-approximation for embedding a given metric into trees. Then we consider
embeddings inté-spiders and show how a similar technique works for thekgpider is

a tree with all vertices except tloenterhaving degrees or 2, and hence is a homeomorph

of the star withk leaves). In particular, we show how to take-approximation algorithm

for the k-repairmen problem [Fakcharoenphol et al., 2003a], and use it to prodee a
approximation for average distortion of embedding a given metric intgpider. Finally,
since a line metric is equivalent t2aspider, we get the embedding into a line metric as a
corollary.

Embeddings into trees Consider the problem of embedding the given metfriato a
tree metricy to minimize average distortion. LeX = 3 , d(z,y) denote the sum of
all the distances in the metrit and hence avl) = A/n? is the average distancedh The
medianof the metricd is the pointv € V' that minimizesA, = >~ .\, d(v,w), and will
be denoted byned Note that we can decompogeas follows:

A= Z d(u,v) = Z(Z d(u,v)) = ZA“ >nAped (2.2)

u,veV ueV veV ueV

sinceA,,..q < A, for all v € V. Consider a shortest-path trée(which is a star in a
general metriel) rooted atmed and letd; denote the metric induced by this shortest path

12



tree. Then the total distance in this tfEas
Ap=n-avdr) = Y _ dr(u,v)< >  dp(medu)+ dr(medwv)

u,veV u,veV
= ) d(medu)+ d(medv) = 2nA,.q
u eV

where the inequality in the second step is just the triangle inequality. This implies that
A med < A < Ap < 2nA,,.q, and thus:

Lemma 1 ((See also [Wong, 1980])§5iven any graph, the total distance, for the short-
est path tree rooted at the median is at md&, and is a2-approximation for the problem
of embedding the graph into trees.

The bound of is tight. E.g. in a complete graph the total distance(is — 1) and
it is n(2n — 3) for the shortest path tree. Also note here that the bourtdadfove is an
absolutebound on the worst-case ratio between the average distance in the output tree
and the graph, and is in the same flavor as the more traditional results on bounding the
maximum distortion of embeddings. We next move toward an approximation approach by
restricting the class of trees into which we embed.

Embeddings into spiders We now generalize the previous result to the case of embed-
dings intok-spiders. The vertex of degréeis called thecenterof the spider, and the
components obtained by removing the center are calldegsKlein and Ravi, 1995].

Let d; denote the optimat-spider embedding. We decompose the sum of distances in
d; as the sum ok-repairman path rooted at each vertex. Recall that;tirmveling repair-
man problem, we are givelnrepairmen starting at a common depotThe k repairmen
are to visitn customers sitting one per node of the input metric space. The goal is to find
tours on which to send the repairmen so as to minimize the total time customers have to
wait for a repairman to arrive [Fakcharoenphol et al., 2003a].

Let ¢ be the center of the spider in the optiniabpider embedding. To construct a
k-repairman paths starting from a vertexwe do the following. We send one repairman
away from the center along the leg of the spider which containghe otherk — 1 re-
pairmen travel toward the centerof the spider. From the center, they go off, one per
remaining leg of the spider. The cost of thigsepairman tour ig\} = > d;(r,j). Sum-
ming over all choices of the root we see that this is same as the sum of distances in the
embedding;.

n’-av(dy) = Y di(u,v) = A;

u,veV veV
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Hencen times the cost of the cheapdstepairman tour over all choices of the depots
(denoted byA?*?), is a lower bound on the sum of all the distances. i.e.,

Z di(u,v) > n - min{A%"}.

u,veV

Consider the cheapektrepairman tour over all choices of centers. Let it be centered
at a vertexc. This tour defines a non-contracting embedding intespider withc at the
center of the spider. Let’(«) denote the distance of verteXrom the center in the tour.

We can bound the sum of distances in this embedding as follows:

D di(uv) < Y do(u) +d(v) <20 d(u) <2 di(u,v).

u,veV u,veV ueV u, eV

Thus, if we could compute the optimairepairman tour centered aexactly, we would
obtain a2-approximation to the problem of embedding the metric ingpiders. Although

the problem of finding an optimatrepairman tour is NP-hard, the argument above proves
the following.

Theorem 2 Given ay-approximation for the minimurk-repairmen problem on a metric
d, we can obtain &~-approximation for embedding the metricinto a k-spider in a
non-contracting fashion to minimize the average distortion.

The current best known approximation factor for theepairman problem i8.49 (due to
Chaudhuri et al. [Chaudhuri et al., 2003]), leading to the following corollary.

Corollary 2.3 There is a 16.98-approximation for minimizing the average distor-
tion of a non-contracting embedding of a given finite metric infospider.

2.2 Approximation Schemes for trees

In this section, we restrict our attention to the special case of tree metrics. We give a quasi-
polynomial time approximation scheme (QPTAS) for minimizing the average distortion
for embeddings into the line metric. Our algorithm is based on the QPTAS given by Arora
and Karakostas [Arora and Karakostas, 2003] for the minimum latency problem. They
proved that a near-optimal latency tour can be constructed by concate@gtingl’|/¢)

optimal Traveling Salesman paths, and the best such solution can be found by dynamic
programming.
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For an embedding : V' — R into the line, let thespanof the embedding be de-
fined asmax, , |f(z) — f(y)|, the maximum distance between two points on the line.
We note that an embedding with the shortest span is just the optimal Traveling Salesman
path. While embedding a given metric into the line metric, minimizing the span of the
embedding could result in very high average distortion. However, we show that it suffices
to minimize the span locally to find near optimal embedding. In particular, our solution
within (1 + €) of optimal minimum average distortion is to find an embedding that is the
union of O(log |V'|/€?) Traveling Salesman paths with geometrically decreasing number
of vertices.

In the sequel, we use to denote|l/|, the number of vertices. For our algorithm, we
assume that all the edge lengths are in the rahg€ /¢|. Indeed, ifD is the diameter of
the metric space andandv are two vertices such thdtu, v) = D, then)_, ., d(z,y) >
> wev d(z,u) + d(z,v) > nD. We can then merge all pairs of nodes with inter-node
distance at mostD /n?, which affects the sum of distance by at mesfD. Hence the
ratio of maximum to minimum nonzero distance in the metric can be assumecdtgde

Relation to TDTSPs We first show that the Arora-Karakostas QPTAS works also for
the case of the Time Dependent Traveling Salesman Problem (TDTSP) defined by Blum et
al. [Blum et al., 1994]. In the TDTSP, the objective is to minimize a positive linear combi-
nation of the TSP tour value and the total latency of the tour. The objective function is of
the forma TSP + GLAT whereTSP andLAT denote the span of the tour and total latency

of the tour respectively and andj are constants.

We now describe how to break up an optimal tour into locally optimal segments. Let
T denote the optimal tour for the objective functiad SP + SLAT. We break this tour
into k£ segmentsk is O(log n/¢)). In segment we visitn; nodes, where

ni=[(1+ef = fori=1,....k—1; ng = [1/e]

Note that these,’s are chosen in such a way that< e} ., n;. Denote)_._; n; by r;.

Replace the optimal tour in each segment, except the last one, by the minimum-distance
traveling salesman path on the vertices of that segment that starts and ends at the same pair
of vertices.. The new tour now consists of the concatenati@n(bfg /<) locally optimal
Traveling Salesman paths. This gives us the following lemma.

Lemma 2 There is a tour that is a concatenation@flog n/¢) minimum Tr aveling Sales-
man paths that has TSP+ GLAT objective value at mo$t +¢) times the optimal solution
(OPT).
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Proof. We first give a lower bound on OPT. L&} denote the span of the segment
i in OPT. Every node in thenth segment has latency bigger th@ffgl T;. We
sum over all vertices and get the lower bound on OPT: QP! (a + 1) T;.

Now we replace each segment of OPT with the minimum Traveling Salesman
path on the same set of vertices with the same pair of vertices as start and end
points. By replacing a segment with a minimum traveling salesman path, we reduce
the span of that segment. However latency of the vertices inside a segment can go
up. The latency of each vertexif! segment will increase by at mastl;. Hence
the cost of concatenated tour increases by at @djgf 06n;T;. From the property
thatn; < e - r;, it immediately follows that the cost of the concatenated tour is at
most(1 + ¢)OPT. =

We now use the Lemma 2 to show the following theorem for average distance.

Theorem 3 Any finite metric has a non-contracting embedding into a line that is com-
posed of)(log n/e*) minimum Traveling Salesman path segments with average distortion
no more than1 + ¢) times the minimum possible over all such embeddings.

Proof. Our strategy is same as in Lemma 2. Consider the optimal embedding of
the input tree into a line. We break this embedding up id{tbg n/¢) segments.

Let n; be the size oith segment defined as before. We now divide the objective
function value according to the segments, so that only the shiaoé segment
changes, if we replace the embedding of segmarith a different embedding.

Let 7; be the span of the embedding of segmenif i, is the left-most node
in the embedding of the segmeinthen letZ; = >, d(io, j) be the sum of the
distances of all nodes in segmérftom nodeiy. Note thatl; is the total latency
of vertices in segmentwith i, as root. And letD; = 3 . d(u,v) be the sum
of all the pairwise distances in segment

Letg; = >, ;n;andr; = >, ; n; be the number of total nodes to the left and
right of segment respectively.

We now describe a lower bound on the total distance of the optimal solution.
We define the contribution of the segmeérb the lower bound as the sum of the
following distinct terms.

1.If a vertexu is to the left of the segmeritand a vertex is to the right, then
the segment addsT; to the distance between them.
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2.If a vertexu is to the left andw is in the segment, then the contribution is
(i, w) = the distance from the left most vertéxof the segment to w.

3.If a vertexw is to the right andwv is in the segment, then the contribution is
ﬂ - (S(’io, UJ)

4.f both the verticesv andw’ are in the segment then the contribution is
d(w, w').

These contributions, when summed up over all pairs of vertices, give:

Ci = qiriTi + qiLi + ri(niT; — Li) + D; (2.3)

Note that) . C; is a lower bound on the total distance. In the following argu-
ment we rearrange the embedding inside each component while making sure that
the increase in the total distance is at most, C;.

Note thatD; < n?T;. Fori = 2,...,k, we know that; < ¢; andn; < € - r;.
Hence, comparing; with the first term in (2.3), we get

(1+e)(griTi + gL +r;(nT; — L;)) > C; > qiri Ty + q; Ly + (i T; — L) (2.4)

To prove the Theorem 3, it suffices to find an embedding ofitlif'leegment such

that the increase in the total distance is withiimmes the lower bound in the RHS

of the above inequality 2.4. The expression for the lower bound on the RHS of
inequality 2.4 is a linear combination of TSP and Latency values of the tour in seg-
ment:. We can apply Lemma 2 to obtain a tour compose@@bg n;/¢) minimum
traveling salesman paths. Note that replacing the original embedding with the tour
obtained from Lemma 2 can only increase the four distinct terms that make up the
quantityC;. From Lemma 2, the increase in the total distance is at rigst

Atechnical detail in this argument is that the coefficient.p€ould be negative.
Lemma 2 does not handle this case. But note th&t — L, is the total “reverse”
latency in segment with the rightmost endpoint being the root. Thus we can
rewrite the lower bound as a linear combinatiorifptindn,;7; — L; with positive
coefficients.

We can thus replace each segmenitith a concatenation ad(log n;/¢) Trav-
eling Salesman paths, without increasing the cost by more than a fagtos-of).
Since there aré®(logn/¢) segments in all, it follows that there is an embedding
consisting ofO(log” n/€?) shortest Traveling Salesman paths.

Finally, we show how to reduce this number down®¢logn/e*). Let us
rewrite the lower bound in (2.4) d8; — r;) L; + (¢; + n;)r;T;. Note thatl; < n,T;.
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This gives us that the terg; — ;) L; is at mosk - (¢; + n;)r;T;, whenevery; — r;

is positive. Hence, if we replace the segménith a shortest Traveling salesman
path on those vertices, the cost will be witliin+ ¢) of the lower bound in (2.4).
Note that, fori > 1/¢, we havey; > r;. Hence fori = 1,...,1/¢, using Lemma 2,

we replace each segment by a concatenati@n(bfg n/¢) tours each. Then for the
segmentd /e and above, we use only one minimum Traveling Salesman path per
segment. Overall this results in a concatenatio®@fg n/e?) traveling salesman
paths with the average distortion withjh + ¢) times that of the optimal. u

Consider a(3, 2)-partition of the tree, i.e. a recursive partition of the tree into two
subtrees with a common root, such that for each subtree

1 . 2
3 s (size of subtrep< 3 M

It is a folklore result that a%, %)-partition exists for any tree. We will use the tesap-
arator nodefor the common root of the subtrees. From the recursive partition, we get

separator nodes for each level of recursion.

Note that an optimal traveling salesman path on a tree is obtained by depth-first search.
Therefore, it need to cross any separator node at most twice. In the previous theorem,
we proved that a near-optimal non-contracting embedding is given by a concatenation of
O(log n/€?) traveling salesman paths. Combining this with the recursive partition, we get
the following theorem.

Theorem 4 There exists a non-contracting embedding of a tree metric into a line with
average distortion at mostl + ¢) times the minimum possible that, when viewed as a
walk, crosses each separator na@€log n/¢*) times in a recursive node-separator based
partition defined above.

Using this theorem, we give a dynamic programming algorithm. This is very similar
to the algorithm due to Arora and Karakostas [Arora and Karakostas, 2003].

Theorem 5 For any givene > 0, there is an algorithm that runs in time”(°s"/<*) and
computes a non-contracting embedding of a given input tree metric into a line with average
distortion at most1 + ¢)-times the minimum.

Proof. Let us describe the dynamic program at the heart of our quasi-polynomial
time approximation scheme.

ALGORITHM
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“Guess” the leftmost vertex in the embedding. Find a recurisjvé )-partition
of the tree. Do the following steps starting at the bottom level of the partition and
working upwards.

1.Identify a separator node at the current level of the partition.

2.Guess” the number of times the embedding crosses this node and for each
crossing, the length of the embedding after the crossing and the number of
nodes on that portion.

3.Search the dynamic programming table for subtours consistent with the “guesses”.

4.Combine the subtours found to create a new bigger subtour and store it in the
dynamic programming table and go to step 1.

“Guessing” in step 2 refers to exhaustive enumeration of all possible values for
the triple (# of crossings, length, # of nodes). At the end of the enumeration,
the algorithm will have created a collection of candidate solutions, one for each
possible guess. Its output will be the embedding of minimum average distortion.
One of the embeddings considered by this algorithm must be near-optimal. Hence
the embedding produced by the algorithm {8 & ¢) approximation for the optimal
average distortion.

We now prove that the running time of the algorithm is bounded ¥ ™/<*),
The running time is dominated by the number of “guesses”. The number of cross-
ings through a node is at ma8tlog n/e?) and the number of nodes visited between
two crossings cannot be greater thanTo bound the number of guesses for the
length of the embedding between two crossings, we round the lengths as follows.
Let L be the length of the longest path in the input tree. We merge all the pairs
of vertices with pairwise distance smaller thai/n®. We also round each edge
length to its closest multiple af./n? and divide all the lengths byLL/n>. In this
rounded instance, the minimum length jsvhile the maximum internode distance
is n3/e. After solving the rounded instance, we reinstate the merged edges to the
output embedding. This does not change the pairwise distance between any pair
by more thanO(eL/n?). Thus the total change due to rounding is bounded by
O(eL) = O(eOPT).

If we run the algorithm on a rounded instance, the total number of guesses for
each crossing i©(n®/e)-n = O(n*/e). This gives a total 0D ('%5" - (n? /e)OUos /<) =
nOlosn/<*) gyesses for a node. We do this for each node. Moreover, there are

choices for the leftmost vertex of the embedding. Therefore, the overall running
time of the algorithm is bounded y(n - n - nCUegn/<*)) = pOlogn/e), n
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2.3 An exact algorithm for minimizing average tree-edge
distortion

For the tree metrics, we consider a slightly different objective function in this section. Let

M = (V,d) be the input metric to be embedded in a non-contracting mapping to a line.
Assume that the input metrit/ arises from a tred” = (V, E). Instead of considering
distances between all pairs of nodes, we take average of the distance over the edge set
E of the tree. Let denote the host metric (i.e. a line). Then we want to minimize
Z(U,U)EE5(U7 v). We call this theaverage tree-edge distortionWe give a polynomial

time algorithm for minimizing the average tree-edge distortion.

This problem is quite similar to the Minimum Linear Arrangement [Shiloach, 1979]
problem on trees. Recall that, a linear arrangement of a grélph) is a mappingr :
V' — [n]. The objective is to minimize_,, . [7(v) — 7(v)|. However, the crucial
difference is that we require the embedding into a line to be non-contracting.

Our algorithm is based on the algorithm for Minimum Linear Arrangement on trees
given by Shiloach [Shiloach, 1979] with some crucial extensions. We first begin by finding
a centroid of the tree. The following lemma is folklore (see, e.g., [Buckley and Harary,
1990]). Itis important to note that, we allow subdivision of the edges here, i.e. we allow
to split an edge into two by adding a vertex anywhere along that edge.

Lemma 3 Given atreel’ = (V, ) with edge weights, there exists a centroid vertemn
a subdivision off’, such that the subtrees @frooted atv* have edge weight at most half
the total weight of the tree.

We then show that the subtrees of the centroid are not interleaved in an optimal embedding.
This lets us solve the problem recursively on the subtrees. The algorithm constructs an
Eulerian tour of the tree as an optimal embedding.

2.3.1 Cost reducing transformations

We now show that, given a non-contracting embedding of a tree into the line, we can trans-
form it without increasing the average distortioso that the solutions for subtrees rooted

at the centroid are disjoint contiguous segments of the line. We will denote the embedding
by a permutationr of the vertices. Note that for the embedding to be non-contracting, it
suffices to have the distance between adjacent pair of vertices in the permutation to be the
same as their distance in the tree metric @(@,: + 1) = d(7 (), 7' (i + 1)).
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We now explain the transformations. LEtbe the input tree with* as the centroid.
Let 77 be a subtree df rooted atv*. We group all other subtrees @5 (see Figure 2.2).
The transformations work toward uninterleaving the embeddings ahd7,. There are
two different cases depending on whether end vertices are from same or different subtrees.

u

Tl Tg T1 T2

d a b ¢ d

a b

Figure 2.2: TypéA transformation

1. Let the two endpoints be in different subtrees, i.e. we havg1) € T; and
n1(n) € T,. A transformation of typed converts the ordering into «,, such
that 7 restricted to each df;, andTs is preserved, and; is embedded entirely to
the left of 73; i.e., m,(u;) < m,(v;) for all u; € T} andv; € Ts.

"
Ty v _—

T

Figure 2.3: TypeB transformation

2. Let the two endpoints of the embedding be in the same treeg 1), 77 (n) €
T,. A type B transformation produces an ordering which is same ag when
restricted to each df}; and7,. We have two choicesT; or T, could be embed-
ded to the left of the other subtree. We pick the one minimizing average tree-edge

distortion.

We denote the embedding producedmyyor 7, by (7} : T3). Note that, there are two
choices for the embedding @i (resp.73): the same order as inor completely opposite
of 7. We will always pick the best of these choices.

Observation 2.4 In the embeddings, and r;, the length of the edges within the
treesT; andT; is never more than their counterparts in the embedding
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Lemma 4 The above two transformations do not increase the average tree-edge distortion
of the embedding.

Proof. We will handle the two cases separately. We need the property‘tliaa
centroid vertex only in the second case.

Type A The only edge that possibly gets expanded in this transformation is
(v*,u). We show that the increase for this edge is offset by the savings in the
edges of the tre€g, andT5. In particular, ifr(w;) > w(v*) fori = 1,... k, then

in 7, the verticesuy, . . ., u;, contribute to the cost of edde*, ). However, in the
initial ordering, these vertices contribute at least this amount to the edges on the
pathv* — 7~1(n). A symmetric argument holds for the change in the sum of edge
lengths in the treé&}.

Type B Let |T| denote the length of an Euler tour of trée We first compute
the length of the edgéu,v*) in m,. Since we have picked the cheaper of the
two available choices, the length is at m@&t, | + |73])/2 + d(u, v*). Thus the
potential increase in the length of the edgev*) is (|71| + |13|)/2. The decrease
in the sum of edge lengths of the subtfBedue to the transformation is at least
|Ty| + d(u,v*). To see this, consider a pathr!(1) — 7«~1(n) in the treeT}. The
embedding includes at least an Euler tour of tfeéealong with the edgéu, v*).
Now if |T5| + 2d(u,v*) > (|T1| + |T2|)/2, then the decrease offsets the potential
increase. In other words, [T} | — | 73| < 2d(u,v*), then the transformatioB does
not increase cost. This is certainly true sinc¢as a centroid. u

2.3.2 Optimal embeddings are Euler tours

Given any embedding we can apply the transformatioasor B to uniterleave the em-
beddings of the subtrees. Le&tbe the centroid. LeTy, 71, . . ., T, be the subtrees rooted
atv*. Let|T;| denote the length of an Euler tour of the tf&eLet the subtrees be arranged
in the decreasing order of the lengths of their Euler tolifg: > 71| > ... > |T|. Let
To=T —Tp.

First we check if the embeddin@y, : Tp) has average tree-edge distortion at most that
of 7. If so, then we solve the problem recursively’GnandTy.

The other case is whe(fTj, : Tj)) has greater average tree-edge distortion thafrom
Lemma 4, we know that neither—'(1) nor 7—!(n) belongs to7,. Letx~(1) € T;,,
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then we can apply transformatioh or B to = (depending on whether~'(n) € T;)

and we get the embeddin;, : 7;,). Let the leftmost endpoint of;, belong to the
subtreeT;,. Once again we apply the appropriate transformation and get the embedding
(T3, : (T, : T")), whereT” = T'—T;, — T;,. We continue this process until both endpoints

of " =T — T, — ... — T, belong toT;. At this step, the candidate transformatiorBis
However, it does not decrease cost at this point becaugeno longer a centroid iff”.
Hence we must adopt a different line of attack in this case.plls the greatest integer
such that for ali < p, and lete, be the edge from* to the root of7,. Then we have

2|T5| = (ITo]) + 2d(eo) + (IT7)), (2.5)
Wher_eT’ =T-To-T1—...— 1T, Then we can show that the embeddifig : 7 : ... :
T,:T),wherel' =T — T, — ... — T, has tree-edge distortion smaller thanMoreover,

since neitherr—!(1) nor =~ (n) belongs tdl}, we havep > 0.

Thus we have shown that, we can solve the problem recursively on these trees and
combine their solutions. From this we get the following important observation.

Lemma 5 An optimal non-contracting embedding of a weighted ffeato a line to min-
imize average tree-edge distortion corresponds to an Eulerian tour.

2.3.3 Algorithm

We describe our recursive algorithm here. [Lebe the tree from which the input metric
(V,d) arises.

1. Find the centroid* of the tre€T’. LetTy, ..., T} be the subtrees &f rooted at*.

2. Find the greatest integersuch that for alk < p, we have2|T;| > (|Ty|) + 2d(eo) +
(IT")), whereT" =T — Ty — Ty — ... = T,,, and|To| > |T1| > |Ta| > .. ..

3. If p = 0, then recursively find the embeddingsifandT;,. Output the embedding
(T(] : To)

4. If p > 0, then recursively find the embeddings@f ..., 7,, 7" (whereT’ =T —
Ty — ... —1T,). Output the best embedding of these subtrees using the subroutine
described below.

Subroutine: We now describe the subroutine to combine the embeddings of subtrees
T1,...,T; rooted atr. We want to find the ordering of these subtrees which minimizes
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Figure 2.4: Embedding the subtrees
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Figure 2.5: Accounting for the lengths of edges

the tree-edge distortion of the embedding. The objective function for this subroutine is the
sum of the lengths of edges, . . ., ¢; in the embedding. See Figure 2.5(a). Note that, we
only include the part of the edge fronto the closest point of its tree.

Let d(e;) be the length of the edge in the input metric. Since the embedding is
an Eulerian tour, we know that if edge crosses the tre€k,, 73 and 7}, e.g., then it is
expanded byT;| + |Ts| + |Ty|. Thus the total length af; to account for isi(e;) + |T»| +
|T5| + |T4| + d'(e1), whered'(e; ) is the part of the length of; inside tre€T;. The quantity
d'(e;) can be taken as the distance of the roofpto its closest endpoint. On the other
hand, if there arg edges crossing over the trég then the tree contributes thig, | term
in the length of each of those edges. Thus, if the fgés (5 + 1)St from left or right
endpoint, then its contribution to the total cosj|$,| + d(e,).

This suggests that we can find the optimal ordering of the trees using minimum cost
matching algorithm. Consider a complete bi-partite gréh; where: is the number
of subtrees hanging off the centroid. Theertices on one side correspond to the trees
Ty,...,T;. If the treeT, is the(j + 1)St from the left in an embedding, this is represented
by connecting vertex on the left side ofi ,; to vertex; + 1 on the other side, by an
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edge of weigh®j|T,| + d(e,). If T; is the(j + 1)5t from the right, then we connect the
edge between vertexto the vertex + j + 1 on the other side of the same cost. Finding a
minimum-weight matching in this bipartite graph will give us the ordering of trees on left
and right side of the root.

Theorem 6 There is a polynomial-time algorithm for finding a non-contracting embed-
ding of an input tree metric into a line to minimize average tree-edge distortion.

We remark that it is not hard to construct instances where the optimal non-interleaving
embedding in the same spirit as above provide very poor approximations to the minimum
average distortion embeddings even for tree metrics. For example, consiesider
where the vertices are placed at distanés (2, ... on each leg. Any non-interleaving
embedding has average distortio(r), whereas the optimal (interleaving) embedding has
average distortiod)(1).

2.4 Discussion

The hardness result for average distortion is not approximation preserving. Therefore, it
does not rule out a PTAS for minimizing the average distortion. It is an interesting open
guestion to close this gap.

Lee, Mendel and Naor [Lee et al., 2004] propose a different the notion of average
distortion: average taken over the ratios of pairwise distances. It will be interesting to give
approximation algorithm for this average distortion.
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Chapter 3

Additive Distortion

In this chapter, we consider the total additive distortion of the embedding as our objective
function. The total additive distortion is the sum of errors in all pairwise distances in
the input data. This problem has been shown to be NP-hard by [Saxe, 1979]. We give
an O(+/logn) approximation for this problem by using Agarwal et al.’s [Agarwal et al.,
2005] algorithm for the Min Uncut problem as a subroutine. Our algorithm generalizes to
give anO(logl/Qp n) approximation for the.,, norm of the additive distortion.

3.1 Problem Formulation

Consider a set of. points, denoted byn| = {1,2,...,n}. The input data consists of
ann x n matrix D,.,. The entryD;; denotes the distance between poingd;. We
assume that all the entries bf are non-negative and that is symmetric Furthermore,
we assume thab,; = 0 for all s.

Let f : [n] — R denote a mapping of the input points to the real line. Distance
between images of poinisandj in the line is given byf,; = |f(i) — f(j)|. The total
additive distortion (in the.; norm) is given by

Li(D, f) = Z | Dij — fij.

10ur results hold even if the input distances/ ,.,, do not satisfy triangle inequality, i.e. evenlifis
not a “metric”.
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Generalizing this, we can write thg, norm of the additive distortion as

LD, f) = (3 1Dy = ful) .

The goal is to find a may that minimizes the., (D, f) (or more generally,,(D, f)).

3.2 Approximation for L, norm

In this section, we give an approximation algorithm for minimizing fhenorm of the
additive distortion.

In Lemma 6, we will show that it is sufficient to look atrestricted mapping of the
points into the real line. The problem of finding an optimalestricted mapping can be
cast as a kind of partition problem given the characteristics of the real line.

3.2.1 r-restricted mappings

Let » be a point in the input. A mapping of the input points to the real lin® is anr-
restricted mapping, if distance on the line of all points from same as that in the input.
Formally,D,; = |f(r) — f(z)| for all 4.

We will denote an--restricted mapping by”. We next show that there is always a
“good” r-restricted mapping. This will enable us to focus onlyrerestricted mappings
which are easier to handle. Agarwala et al. [Agarwala et al., 1999] prove a similar lemma
for tree metrics. We adapt their proof for the case of line metrics.

Lemma 6 There exists a point among the input points such that there issarestricted
mappingf” that is within a factor of8 of the optimal mapping for thé, norm of additive
distortion, for allp > 1.

Proof. Let f* denote an optimal mapping of the input points to the line for the
L, norm of additive distortion. We will modify the optimal solution to produce a
mapping f¢ for each point; in the input. To produce the restricted mappifig
perturb the distances iff* so that it becomesrestricted. In particular, if () <
/*(2) for somej, then setf’(j) = f*(i) — D;; and if f*(j) > f*(i), setf'(j) =
f*(4) + D;;. Our mappingf* maps point; to f*(:). It maps rest of the points
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according to their distance fromwhile maintaining their order to the left or right
of pointi in the optimal mapping™.

Let ;). denote| D — f7,|. We can write the additive distortion of the optimal
mapping asL, (D, f*) = (32, efk)l/l’. From the construction of the maf, it
follows that|f;, — ;k| < € + €k

Now we bound the additive distortion ¢gf in terms ofe;;’s. For all j, k we
have,

|Dji, — f;k| < |fi— f;k| + Djr — fil
< (ej+€n) + € (3.1)

Note that|z|? is a convex function of for p > 1. Therefore, Equation (3.1)

gives us the following:
1Dy — fiil? (€ij + € + €x)°

<
< 3TN+ e+ € (3.2)

By an averaging argument, we can say that

Z?:I LP(D’ fl)p

n

min{L,(D, f')'} <
We use Equation (3.2) to bound the sum

D LD Y < )Y 3N A+ )
=1

i=1 jk
< e e
7,k
= 3n- LD, f1)
Thereforemin; L,(D, f*) < 3 - L,(D, f*) which proves the result. u

3.3 Algorithm

The result of Lemma 6 proves that it is sufficient to considegstricted mappings (with
a loss of3 in the approximation factor). Next we describe the algorithm that implements
this idea.

29



Algorithm A

1. For each point = 1,2, ...,n, find (approximately) the bestrestricted mapping
fr

2. Output a mapping that has the smallest additive distortion among these mappings.

By Lemma 6, the additive distortion of the output of Algorithm A is within a factor of 3
of the optimal additive distortion. As we will show later, finding besestricted mapping
is NP-hard. Therefore, we approximate the optimaéstricted mapping within a factor
of O(logl/p n). From the following observation it follows that the overall approximation
factor of our algorithm will beD(log'/? n).

Lemma 7 If p is the approximation factor of the algorithm fesrestricted mapping, then
the solution produced by Algorithoh will be a 3p approximation for the additive distor-
tion.

3.4 Approximating r-restricted mappings

Let f be anr-restricted mapping. Without loss of generality, we can assumg that= 0.
LetVi = {i| f(i) < 0} andV, = {i | f(i) > 0}. Note thatin] = V; U {r} U V4. Note
that, the mapping is fully characterized by the partitior, U V; of [n] — {r}. Hence, the
problem of finding the best-restricted mapping is equivalent to the problem of finding
the partition ofl” = [n] — {r} that has minimum additive distortion. Henceforth, we will
think of the problem as that of partitioning the input set of points to minimizetistof
the partition, i.e. the additive distortion. Here we give an approximation tétmerm of
additive error for the-restricted mapping.

Consider a partitio; U V5 induced by an--restricted mapping’. We can write an
expression for itxostas follows. Consider two pointg andy. If they both belong to
the same side of the partition, then the contribution of the fpajy} to the cost of the
partition isc(z,y) = [Day — fuyl? = (Day — | f(x) = fF(W))? = [Day — |Dre — Dy ||P. On
the other hand, it andy belong to different sides of the partition, then the contribution is
d(2,y) = |Day = fay|? = [Day — | f(2) = f(W|P = |Dyz + Dy — Doy |P. Note thate(z, y)
andd (z,y) are completely determined from the input matki.., .

Now, we can think of the problem as a graph partitioning problem where each edge
has two costs(-) andd/(-) associated with it. Thﬁth power of the cost for the-restricted
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solution,L,(D, f")?, is same as the objective function for the partition problem. Itis given
by:
> c(z,y) + > d(z,y). (3.3)

x,y on same side x,y on different sides

3.4.1 Two-cost Partition Problem

We are given a complete gragh= (V, E') with two cost functions and¢’. We want to
find a partition of the vertex sét = V; U V;, which minimizesy _,_, , >, v, c(u,v) +
Zuevl,vevg (u, v).

Note that, ifc(u,v) = 0 for all u, v, then the problem reduces to finding a minimum
cut in the graph. On the other hand¢ifu, v) = 0, then the problem is the well known
edge deletion for graph bipartition problem (BIP) [Klein et al., 1990]. Our algorithm
generalizes the algorithm for graph bipartition given by [Klein et al., 1990, Garg et al.,
1996]. The basic idea is to create two copies of each vertex to go on different sides of the
partition. To ensure that they are on different sides, we designate each pair as a source-sink
pair in the multi-cut subroutine.

Algorithm B:

1. Create an auxiliary grapf’ from the graphG as follows.

(a) For each vertex: in the graphZ, G’ has two verticesu andu/.

(b) For each edgéu, v) we createl edges inG’: (u,v), (u,v'), (v, v) and(v’, v').

(c) The edges iz’ have weights, denoted by-,-). Setl(u,v) = I(v/,v") =
c(u,v) andl(u,v") = (v, v) = ' (u,v).

2. Use an approximation algorithm for the multi-cut problem (E.g., [Garg et al., 1996])
as a subroutine to find a multi-cut in graph with (u, u’), for all «, as the source-
sink pairs. LetS be the set of edges in the multi-cut returned by the subroutine.

3. Construct a set of edgés as follows. If{u,v} or {«/,v'} is chosen inS, then
include both inT". Similarly, if {u,v'} or {«, v} is chosen, then include both Tn

4. Find a bipartitionV] U V; of vertices ofG’ so thatT’ contains all the edges going
across the partition.

2We will show how to do this in the proof of Proposition 3.1.
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5. Output the partitior/; U V5, whereV; = V/ NV.

The intuition behind this algorithm is as follows. For the cut represented,bye
will show that we can get a partition of vertices in graghsuch that only one of and
v’ is in one partition. From the partition &¥, we get a bipartition o€;. The cost of the
bipartition of G is related to the cost of multi-cut obtained by above algorithm in the graph
G'. We prove this in the next lemma.

Lemma 8 Algorithm B returns a partitior” = V/ U V; of graphG’, such that ifu € V/,
thenu’ € Vj and vice versa. Moreovegwew’yew l[(z,y) is at most twice that of the
multi-cut found after step 2 by Algorithm B separating eadrom .

Proof. Consider the sef of edges found by the multi-cut subroutine whose re-
moval separates eachfrom «/. For each edgéz,y) € S, we also include its
“mirror” edge inT. i.e. if (z,y) € S, then(2’,y) € T from the graph. Note
that, the cost of an edge and its “mirror” edge is same (i(e,,y) = (2, )).
Therefore, the cost of the edgesiins at most twice the cost of edgessin

Now we show that removal of the edges’ihbreaks the graph in two parts
with the desired property. Consider the gra@gh7". Construct a grapli/ whose
vertices represent the connected components’iafter removing the edges in
T. Two verticesh, andh, in H are connected to each other if the corresponding
connected components @ have vertices andzx’.

In Proposition 3.1, we prove that the graphis bipartite. Now we can use
graphH to construct a partitio’’ = V/ U V in graphG’. Since the vertices in
graphH were connected components in gragh there are no edges crossing the
partitionV} U V; in graphG’. Moreover, bipartiteness of gragh means that each
pair of verticese andx’ in graphd is split in the partition. The cost of this partition
is at most2 times the cost of the multi-cut. u

Proposition 3.1 The graphH defined in the proof of Lemma 8 is bipartite.

Proof. For the sake of contradiction, assume tlhathas a cycle of odd length.
Consider three consecutive vertiees andw in this odd cycle. Let be connected
to v andw.

Letz be a vertex ofy that belongs to the connected componeand defines
the edge{u,v} in graph H. Therefore,x’ is the component. Similarly, lety
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be a vertex in component andy’ be the corresponding vertex in component
Sincex’ andy’ are in the same connected componerihere is a path’ — 3/ that

lies completely inside the component Since we didn’t remove any of the edges
on the pathe’ — ¢/, all themirror edges haven't been removed either. Therefore
the themirror pathz — y connectse andy. This contradicts the fact thatandy
were in different connected components. This proves that the dfapla bipartite
graph. u

Lemma 9 The cost of the optimal multi-cut is a lower bound on the cost of partition of
graph@.

Proof. Consider a partitio” = V; U V; of graphG. From this, we can construct
a partition of the vertex set @¥’. LetV] =V, U {2’ | = € Vo} andVy = V'\V].
Then, removing all the edges (i crossing this partition ensures that no vertex

is connected to its counterpart i.e. The set of edges going across the partition is
a multi-cut. The cost of these edges is exactly the cost of the partitioh of =

Recall that GVY algorithm for multi-cut [Garg et al., 1996] is @flog k) approxima-
tion for k£ terminals. Here we have terminals. Therefore by Lemmas 8 and 9, we get an
O(log n) approximation for the bestrestricted mapping. Along with Observation 7 give
us anO(log n) approximation for thd.; norm of additive distortion.

3.5 Improved algorithm

We show that the two-cost is equivalent to the bipartition problem (BIP).

Theorem 7 Two-cost bipartition problem is equivalent to single cost bipartition problem.

Proof. Let the graphG = (V, E). There are two cost functionsd : £ — [0, 00).
The objective i), | c(e) + ), _ d(e). Heree + means an edgewhich has both
endpoints inside a cluster. Similarly— means an edge whose endpoints lie in
different clusters.

We construct a grapl = (U, E’) with a single cost function(.) as follows.
For eachy € V, we create two vertices v' € U. Letz(v,v") = co. For each edge
(u,v) € E, we createl edges in£’ with following costs:

z(u,v) = z(u',v") = c¢(u,v)and
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z(u',v) = x(u,v") = d(u,v)

Now we use a BIP algorithm as black box to solve this problem. Cleadpnd
v’ cannot be on the same side;ds, v') = oco. If v andv are on the same side (and
thereforeu’ andv’ on the other side), then the cost to BIR:is:, v) + x(u/,v") =
2¢(u,v). If uw andv are on different sides in the BIP solution, theand’ are on
one side and’ andv on the other. Thus, the costigu, v') + x (v, v) = 2d(u, v).
Thus from the BIP solution, if we drop all the verticésve get the desired partition
for the two-cost problem. The costs are within constant factor of each othem

Now we can use a recet\/log n)-approximation algorithm due to Agarwal et al. [Agar-
wal et al., 2005] for the two-cost bipartition problem. This improves our approximation
factor toO(log* 2pn).

3.6 Discussion

We can show that the problem of finding the besestricted mapping is NP-hard by
reducing the edge deletion for graph bipartition (BIP) [Garey and Johnson, 1979] to it.
Consider a graplé’. Let V(G) = n. We construct a distance matrix onn + 1 points

V(G) U {a}. Set the diagonal entrigs,, to 0. SetD,, = 1/2 for all z € V(G). For all

{z,y} € E(G), setD,, = 1. Set the rest of the entries 1g2. Consider arr-restricted
mapping. Let’(G) = V; U V; be the partition induced by therestricted mapping. Then

the cost of the-restricted mapping iB(V1, V2) + (1/2)((5) — |E(G)]), whereB(V;, Vs)

is the number of edges that need to be deleted to obtaandl; as two sides of a bipartite
graph. Therefore, finding the optimakestricted mapping corresponds to minimizing the
number of edges deleted for making the gréphipartite. This proves that finding the best
r-restricted mapping is NP-hard. However, this reduction is not approximation preserving.
So it does not preclude the possibility of a PTAS for this problem. Getting even a constant
factor approximation would be quite interesting.

In the proof of NP-hardness ofrestricted mapping problem, we used an input matrix
D that does not satisfy the triangle inequality. For input mafvixhat is ametric(i.e. it
satisfies the triangle inequality), it might be possible to get a polynomial time algorithm
for the best-restricted mapping.
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Chapter 4

(Classical) Distortion

In this chapter, we focus on approximating the distortion. The goal is to find an embedding
f 'V — R, from the node set’ of a graphG into the real lineR that is non-contracting

(i,e. |f(z) — f(y)| = d(z,y)), and has a smallistortion D(f) = max, yev |f(z) —
f(y)|/d(x,y). We assume that the graghis an unweighted graph.

Two Lower Bounds
We start by giving two basic lower bounds on the distortion of an optimal embedding in
terms of structural properties of the input gra@h

We call a graph a&-spiderif it can be decomposed intb edge-disjoint simple paths
(calledlegg that share exactly one common node, which is callecd#mterof the spider.

Lemma 10 [3-spider bound] Let G be a3-spider, in which every leg has length at lést
Then any map ofr into the line has distortion at let.

Proof. Let ¢ denote the center af and letxg,...,x;, yo,...,y andzg, ..., 2
denote the first+ 1 vertices on the three legs 6f, where counting starts from the
center node (i.ec = 2o = yo = z). Fix an optimal non-contracting embedding
f*, and consider the vertices, y; andz; in this embedding.

There must exist vertices, v; € {x;, yi, 2} such that eithef*(u;) € [f*(v), f*(¢)]
or f*(u;) € [f*(c), f*(u)], i.e., the image of, lies betweery*(v;) and f*(c). As-
sume w.l.o.gf*(w) € [f*(c), f*(uv)], and letu; andv; denote the-th node on the
path corresponding tg andu,, respectively.

Sincef*(w;) € [f*(c) = f*(vo), f*(v;)], there must exist an indexsuch that
fr(w) € [f*(vi), [*(vig)]. This gives|f*(v;) — f*(vis1)| = 21, because the map
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f*is non-contracting. Howeved|v;, v;11) = 1, which shows that the distortion is
at least2/, as desired. ]

For the second lower bound we define the following structural property of the graph
G. Thelocal density\ of GG is defined as

S (LCUEIN

veV,reRso 2r

where|B(v,r)| = {u € V | d(u,v) < r} denotes the ball of vertices within distance
from v. Intuitively, a high local density tells us that there are dense clusters in the graph,
which will cause a large distortion. The following lemma formalizes this intuition.

Lemma 11 [Local Density] Let G denote a graph with local density Then any map of
G into the line has distortion at least

Proof. Fix v € V andr € R such that|B(v,r)| — 1)/2r is maximum, and let
z,y € B(v,r) denote those two nodes froB(v, ) that are farthest apart in the
optimum mapf*. Assume.f*(z) < f*(y).

All vertices from the ballB(v,r) are mapped to a point from the interval
[f*(x), f*(y)]. There ardB(v,r)| such vertices, and since the embeddffigs
non-contracting we getf*(z) — f*(y)| > (|B(v,r)| — 1). However, the shortest-
path distance betweenandy in G is at mostd(z,y) < d(z,v) + d(v,y) < 2r.
Hence, the distortion is at leag3 (v, )| — 1)/2r. u

A simple corollary of this lower bound is the following:

Corollary 4.1 (Size ofr-ball) Let D be the optimal distortion for embedding the
graphG into the line. ThenB(v,r)| = O(r - D), for every ballB(v, r).

The local density lower bound has been widely studied in the context dflithienum
Bandwidth Problemwhere it is known that the minimum bandwidth is within a polylog-
arithmic factor of the local density. However, for our problem this bound can be rather
weak. For example, in the case of a 3-spider with legs of leng# the local density is
3/2, whereas the optimum distortion is at le@2n/3) by Lemma 10. This shows that a
combination of the local density bound and the 3-spider bound is needed in order to obtain
a reasonable approximation ratio for our embedding problem.

The following result will be useful for our algorithms:
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Theorem 8 (MatouSek [MatouSek, 1990]) Anyn-point metric can be embedded into the
real line with distortion at mos®(n).

For the case of unweighted graphs (which is all we need), this can be proved by just laying
the vertices out in any depth-first order — the distortion of such a layout is at(mest).
(We will show this in Lemma 13.)

4.1 O(4/n)-Approximation algorithm for general graphs

Before describing the embedding algorithm, we give the basic idea behind it. If the optimal
distortion to embed- into the line isD, we show thati has a so-called “diametric path”
such that all the vertices @ are “close to” (i.e., within distanc® of) this path. This
allows us to cut this diametric path at evdpysteps and extend this partitioning to the rest

of the graph, and hence get pieces of diameter at mo¥te show how to embed each of
these components individually, and finally how to stitch these embeddings together to get
an embedding of the gragh.

Lemma 12 [Concentration around diametric path] If s andt¢ are two vertices in the
graphG such thati(s, t) is maximum, then the distance of all other points from the shortest
s-t path is at mosD.

Proof. Let path(s,t) denote the shortestt path. Assume for contradiction that
there is a vertex whose distance fromath(s, t) is larger thanD, and letc denote
the vertex orpath(s, t) that is closest to.

By the definition ofz, we haved(c, z) > D. Moreover, sincés, t) is the pair
with maximum distancé(s, t), the inequalitieg/(c, s) > D andd(c,t) > D hold.
Hence, the union gfath(s, ) and the shortestz path forms a 3-spide¥ in which
every leg has length at leabt+ 1.

Lemma 10 implies that the distortion for embedding the 3-spiier at least
2(D + 1). Since, for everyr,y € S, the distance betweenandy in S and the
distance between andy in G differs at most by a factor of 2, the distortion for
embedding~ into the line is at leasD + 1. This gives a contradiction. L]

Now we partition the node set &f into small pieces. Assume for simplicity that the
lengthd(s, t) of the diametric path is a multiple dp. Lets = vy, vy, ..., v, = ¢t denote
the vertices omath(s, t) such thati(v;, v;11) = D. We assign each node (#to the node
v; that is nearest to it (ties are broken arbitrarily), and form a compakemt V' from all
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Figure 4.1: Patrtition into small balls

nodes assigned to vertex The following claim shows that the componerfs created
by this process have a low diameter.

Claim 4.2 X; C B(v;, D).

Proof. It follows from Lemma 11 that for any nodethere is a node on the path
path(s, ) with d(u, c¢) < D. Since, the vertices; are placed in distanc® on this
path, there must exist an indéxor which d(c,v;) < D/2. This shows that for
each node: there is a node; with d(u,v;) < 2D, and henceX; C B(v;,3D). =

Lemma 13 For each componenX;, there is a non-contracting embedding into the inter-
val [0, L], whereL = O(D?).

Proof. A componentX; is contained in the balB(v;, 3D). A depth-first search
(DFS) on this ball takes at moét(D?) steps since there are at méxtD?) nodes
in the ball, due to Corollary 4.1. We map a nodeXn that is visited in thet*®
step of the DFS t@. This gives a non-contracting mapping into the intefoal |,
whereL = O(D?) is the maximum number of steps needed by the DFS. =

Theorem 9 Let f; : X; — [0, L] denote the embedding &f; in Lemma 13, wheré, =
O(D?). The embedding : V — R that maps anode € X; toi- L+ f;(v) has distortion
at mostO(D?).

Proof. Clearly, the distortion of an edge between two nodes from the same compo-
nent is at mosL = O(D?), because both nodes are mapped to the same interval.

Consider an edgér, y}, wherex € X; andy € X; for i # j. First, we note
that|i — j| cannot be bigger thafy otherwise the path from; to v; that goes via
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the {z,y} edge is shorter than the diametric shortest path we started with. Hence,
we have|i — j| < 4. In this caser andy are mapped into an interval of length at
most4L = 4D?, which implies a distortion of(D?). This completes the proof of

the theorem. ]

The following argument turns the above result into@/n)-approximation algorithm.

Theorem 10 There exists a polynomial tinte(/n)-approximation algorithm for embed-
ding an unweighted graph into a line to minimize the distortion.

Proof. Assume that we know the value of the optimal distortione [1,n]; if

D > /n, then we just output a DFS tour of the entire graph. Since the length of
the DFS tour i< (n), the distortion igD(n) < O(y/n) x D, giving us the claimed
embedding.

On the other hand, ib < /n, then we use the algorithm from Theorem 9 find

an embedding with a distortion 6f(D?) < O(y/n) x D; this completes the proof.
u

4.2 Better embeddings for unweighted trees

For the case of trees, we use a similar framework as for graphs: we divide the tree along
the “diametric path” and obtain connected componéfits . . , X, with eachdiam(X;) <

D and |X;] = O(D?). Instead of taking the depth-first tour to embed eaghas in
Lemma 13, we give a more sophisticated embedding.

4.2.1 Prefix Embeddings

We first prove that it suffices to consider embeddings where each prefix of the associated
tour forms a connected component of the tree; this will allow us to considerably simplify
all our later arguments.

Lemma 14 [Prefix Embeddings] Given any graph’, there exists an embedding Gf
into the real line with the following two properties:

1. Walk from left to right on the line, the set of points encountered up to a certain point
forms a connected component(®f
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2. The distortion of this map is at most twice the optimal distortion.

Proof. Consider the optimal embedding, and letvy, vs, ..., v, be the order of
the points in this embedding. (We will blur the distinction between a vertand

its image f*(v) on the line.) Without loss of generality, we can assume that the
distance between any two adjacent point@nd v, in this embedding is their
shortest path distanc&v;, v;1).

Leti be the smallestindex such that,, vs, . . ., v; } does not form a connected
subgraph; hence there exists some vertex on every shoytest; path that has
not yet been output. We pick one of these shortest pEthske the vertexw in
P — {vy,vq,...,v;_1} closest tov;_;, and place it at distancé(v;_;,w) to the
right of v;_; in the embedding. We repeat this process until Propeisysatisfied,;
it remains to bound the distortion we have introduced.

Note that the above process moves each vertex at most once, and then it is
moved to the left. We claim that each vertex is moved by at most a distance
where D is the optimal distortion. Indeed, consider a vertexhat was moved
when addressing the_;-v; path, and let,, be a neighbor ofv amonguy, . .., v;_1.

Note the distancéf*(vi,) — f*(w)| between these two vertices is at mastin the
optimal embedding. Since stays to the right of,, the distance by whichy was
moved is at mosbD.

In short, though the above alterations moved vertices to the left, whilst keeping
others at their original locations ifi*, the distance between the endpoints of an
edge increased by at mast Since the distancg™ (v) — f*(u)| was at mosD to
begin with, we end up with an embedding with distortion at n2d3t proving the
lemma. u

Henceforth, we will only consider embeddings that satisfy the properties stated in
Lemma 14. The bound on the increase in distortion is asymptotically the best possible:
for the case of the:-vertex stark ,_;, the optimal distortion isc n/2, but any prefix
embedding gets a distortion of at least 2.

4.2.2 The Embedding Algorithm
In this section, we give an algorithm which embeds trees with distogtioh) = O(A/D log D+
D), where) is the local density and) the optimal distortion. The algorithm proceeds in

rounds: in round, we lay down a se¥; with aboutg(D) vertices. To ensure that the
neighbors of vertices are not placed too far away from them, we enforce the condition that
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the vertices irZ; include all the neighbors of verticesiin.; Z; that have not already been
laid oult.

It is this very tension between needing to lay out a lot of vertices and needing to ensure
their neighbors do not hurt us later, that leads to the following algorithm. In fact, we will
mentally separate the action of laying out the neighbors of previously embedded vertices
(which we call theBFS partof the round) from that of laying out of new vertices (which
we call theDFS par).

We assume that we know the left-most verteix the prefix embedding; we can just
run over all the possible values ofo handle this assumption. L&t(.X') denote the set of
neighbors of vertices in the s&t C V.

We define dight path orderingon the vertices of the tre€. The light path ordering
is a DFS ordering which starts at rooind at each point enters the subtree with smallest
number of points in it.

Algorithm Tree-Embed:

1. letC «— {r} denote the set of vertices already visited. Set 1.

2. whileC' # V(T) do
(Round i BFS)

3. Visitall vertices inN(C) \ C;letC «— CUN(C)
(Round i DFS)

5. setB to be a set ofy(D) vertices of/(T") \ C in thelight path ordering
Visit all vertices inB; letC' — C'U B.

6. endwhile

Lemma 15 [Number of rounds] The algorithmTree-Embed requiresO(y/Dlog™* D)
iterations to complete.

Proof. By the very definition of the algorithm, the s€tgrows by at leasg(D)
in every iteration. Note that the diameter of the tree is bounde@(y) and its
local density is\. Therefore, the number of points in the tregi§\D). Hence,
within O(AD/g(D)) = O(v/Dlog™' D) rounds, all the vertices of the tree will be
visited. .

The heart of the proof is showing that visiting the vertices in Steps 3 and 5 does not
incur too much distortion; it may be the case that the siz& @f') \ C' may be too large,
or even that these vertices may be separated very far from each other.

41



active branching
points

inactive
branching
point

\»

[ visited part

Figure 4.2: A typical snapshot of Algorithifree-Embed

Lemma 16 [Span of boundary] The size of the induced spanning tree on the boundary
N(C)\ C'is bounded by(D).

Proof. Consider the set’; of vertices that have been visited by roundConsider

a vertexz visited in round; of the DFS for somg < i. Note that the children

of the vertexz will be visited after z. We say thatr is a branching pointif not

all the children ofr were visited in the same round as The branching point

is activeafter round: if at least one of the vertices below it has not been visited
by roundi; otherwise it isinactive We claim that all the active branching points

in C; lie on some root-leaf path. This follows because the light path ordering is a
DFS ordering. Therefore, if some vertices below a branching pdiatve not been
visited, then the DFS part of the algorithm will not visit a different subtree.

Note that each active branching point (except possibly the lowest one) has at
least two children and the algorithm visits the child which has a smaller number of
vertices in its subtree. Therefore, the number of active branching points on a root
to leaf path is at mosb(log D).

We claim that every point iV (C;) \ C; is within a distance of + 1 of some
active branching point. We prove this by inductionioBefore the first round, this
property is true, sinc€, = {r}. Now assume the property for- 1 and consider a
vertexv € N(C;)\ C;. Letu be the neighbor of such that: € C;. If uw was visited
in the round: of the DFS, then: is an active branching point, since its childhas
not been visited in the same round. Otherwise, Was visited in round of the
BFS, thenu is within distance of some branching point. Sincev is belowx and
has not been visited after roundhe branching point must be active. Therefore,
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v is within distance + 1 from some active branching point.

Letz be an active branching point and €t contain the points fron¥V (C;)\ C;
that are within distancé+ 1 from x. Then, we can bound the span of the induced
tree onNV, using the local density bound. The number of vertices in the induced
tree onNV, is bounded by: + 1)\. Therefore, the sum of spans over all the active
branching points is at mos?(\\/Dlog D). Note that, all the active branching
points are on a single root-leaf path. Therefore, connecting all the branching points
in N(C;)\ C; requires only a path of length(D). Hence, the total span of vertices
in N(C;) \ C; is bounded by(D). L]

Lemma 17 The span of the tree induced on the vertices visited in any iteration is bounded

by g(D).

Proof. From Lemma 16, the span of the vertices visited in Step 3 of the algorithm
is bounded by)(Av/D log D+ D). The number of new vertices visited in Step 5 of
the algorithm is bounded by(D). Since, we visit a set of connected components,
their span is bounded by(D) + span(N(C) \ C). Therefore, the span of the
vertices visited in each iteration is bounded®{\+/Dlog D + D). L

Lemma 18 The distortion of the embedding produced by Algoritfiee-Embed is g(D) =
O(ADlog D + D).

Proof. For a pair of vertices that are visited during the same iteration, the distance
in the embedding is bounded byD) (from Lemma 17). Therefore, the distortion

of such a pair is bounded by. So, consider an edde, y) such that: andy were
visited in different iterations. Note that, step 1 of the algorithm ensures thatak
visited in iteration:, theny was visited in iterationi + 1. Therefore, the distance
betweenr andy in the embedding is bounded lgyD). Hence, the distortion is
bounded by (D) = O(Av/Dlog D + D). ]

Concatenating the embeddings In order to concatenate the embeddingXef Xs, . . .,

it is enough to observe that since the input graph is a tree, there is only one edge connecting

componentsY; and X, for all i. Letr; denote the root okX; ands; denote the vertex in
X, connecting to-;, 1, the root ofX; ;. It follows from our decomposition thal(r;, s;) <
O(D). To produce an embedding of the compon&ntising AlgorithmTree-Embed, we
use a light path ordering of; assuming that the subtree containiags heaviest subtree.
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Hences; is last in the light path ordering ok; and is visited last by AlgorithnTree-
Embed. This makes sure that the distortion of the edger;. ) is also within the bound.
Changing the light path ordering in this way, does not affect the bound on distortion proved
in Lemma 18. Thus we get the following result.

Theorem 11 There is a polynomial time algorithm that finds an embedding of an un-
weighted tree with distortio®(Ay/Dlog D + D).

Corollary 4.3 There is a polynomial time algorithm that finds an embedding of
an unweighted tree with distortion within a factoX(nlogn)'/3) of the optimal
distortion.

4.3 Hardness results

Theorem 12 The problem of minimizing the distortion of embedding an unweighted graph
into line is NP-hard.

Proof. The reduction is from the Hamilton Path problem. Suppose we are given a
graphH = (V', E’) with |V'| = h, we create a grapfi thus: we take two copies of

H and a new vertex, and add edges fromto all the vertices in both copies éf.

We also set the weight of all edges to be 1. We now ask whétherembeddable
with distortionh into the real line.

Clearly, we can assume that the embedding is an expansion, since scaling does
not change the distortion. i had a Hamilton patltw, . .., v,), we can map to
the origin, and the two copies of to the points+i and—: respectively. This can
be easily checked be an expansion, and to have distortion exadthyus accepting
instances get mapped to accepting instances.

On the other hand, iff has no Hamilton path, then let us look at any embedding
¢. By the Pigeon-Hole principle; will have at least: vertices to one side, and
at least one consecutive pair of these vertices will have distance 2 between them
(since they will not be connected: either they belong to different copi€$, air
they don’'t have an edge between them) while all the others have distance at least 1.
Thus the distortion of the edge connectintp the furthest vertex on this side will
be at least + 1, thus completing the proof. u

MAX-SNP hardness of the problem follows similarly, by an easy reduction from
metric-TSP with edge weights 1 and 2.
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We now show that embedding a (weighted) tree into a line is NP-hard.

Theorem 13 The problem of minimizing the distortion of embedding a (weighted) tree
into a line metric is NP-hard.

Proof. We will reduce from the set partitioning problema@riTioNn), which is
NP-complete [Garey and Johnson, 1979] (but only weakly so)ARTRION, the
input hase positive integers,, as, - - - , a, With > . a; = 2L and we want to decide
whether there is some subset of these numbers which add up to ekactly

Given an instance of this problem, let us construct a star with edge lengths as
described below. Let of the edges correspond to the input fatRRITION and
hence have lengths. We call these thehort edgesWe also ad®(n + 1) long
edges each with lengtl8L. We now ask whethef' can be embedded onto the
real line with distortion at mosb = (2n + 5/3). In the following discussion, we
always assume that the root is embedded at the origin.

If we have a positive instance oARTITION, without loss of generality assume
that the firstt numbers add up té and thata; < as, < ... < ag, andagy, <
aro < ... < a,. We embed the vertices corresponding to the firshort edges
on the positive half of the axis with

¢(U2> = Qa; -+ Z QCL]',

0<y<i—1

and the remaining vertices at the positions

¢(Uk+i) = — Qi — Z 204

0<j<i—1

Now the vertices corresponding to the long edges can be placed at positibhs
(2i + 1)3L), for 0 < i < n. It can be easily checked that this embedding is an
expansion and furthermore, the distortion is at nf6st+ 5)/3 = 2n + 5/3 = D.

Onthe other hand, take a negative instancexsftiPrioN. Consider the optimal
embedding of this graph which is an expansion, and look at the vertices correspond-
ing to the long edges. Clearly, no more than- 1) of these can be placed on one
side, else the distortion for the last vertex would be at IRast+ 1) + 1] > 2n+ 3.

Hence we have exactly half these vertices on either side in an optimal embedding
of such an instance. Since this is a negative instanceaRf IRION, any partition

of the vertices of the short edges will cause the final vertex to be at distance at least
2(L+1)+(2n+1)3L, and hence we have distortion at least-5/3+2/3L > D.

|
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4.4 Improved Embedding

In this section, we consider a special case of the problem where the inpit bae sub-
trees with size and deptd D. In this case, we are able to givglog D)-approximation
to the distortion.

4.5 Lower bounds:

We prove the following two lower bounds on the distortion based on the structure of the
tree. These arguments are based on the work done per round and the span of the boundary.

Lemma 19 [Small Trees Bound]Let all the subtrees of the tréehave size smaller than
s. LetV denote the total number of vertices in those subtrees. Then the distortion of any
embedding of " is at leastV/ /s.

Proof. If there are at least’/2 vertices within a distance gf’s from the root, then
the local density of the treA > V/(2,/s). Therefore, the distortion Q(V/+/s).

So now assume that more th&ii2 vertices are at a distance ¢fs or more
from the root. Consider the situation after rouyfd/2 of the optimum embedding.
In \/s/2 rounds the optimum embedding can visit at mbst \/s/2 vertices out
of the /2 vertices that are ‘far’ from the root. Thus, there are at l€ast Df
vertices that are at leagts far from root and not yet visited. Since each subtree

has size at most, there must be at leagt — % subtrees that have vertices yet to

be visited. Each such subtree contributes at Igasto the span of the boundary.
Hence the total span of the boundary at this stagé(gé\//—g — D). Consequently,

the distortion is2( 7). =

Lemma 20 [Large Trees Bound] Let the treel’ havek subtrees of size at leasteach.
Then the distortion of any embeddingofs at leastk/s.

Proof. The total number of vertices ifiis at leasks. Suppose at least/2 subtrees
have depth smaller thays. Then at leasks/2 vertices out of the total are within
a distance of/s from the root. Hence, the local density of the tide> k./s/2
and the distortion i§)(k+/s).

Now suppose that more thari2 trees have depth more thgfs. Consider the
the optimum embedding aftgrs /2 rounds. Up to this point, the optimum embed-
ding could have visited at mo$?,/s/2 vertices. Thus the optimum embedding
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could have finished at mo&?/(2+/s) subtrees by this point in time. Therefore, at
leastk /2 — D/(2+/s) trees with depth/s. Therefore, the span of the boundary is
at leastk+/s/2 — D/2. Hence the distortion i€(k+/s). u

4.6 Algorithm

Next we describe our randomized algorithm and give a rough sketch of its analysis.

1: For each subtree, pick a deldy.a.r. from[1, 2)

2: In the BFS rounds, we visit each subtree with its delaye. if the delay ig//z, then
visit the subtree: times iny rounds.

3: In each DFS round, find the smallest subtrees hanging off the boundary that can be
visited inO(D logn) work and visit them.

Figure 4.3: Algorithm Random-Delay

Observation 4.4 The BFS part visits each subtree at least once in every two con-
secutive rounds.

This follows because the delay is at m@sturthermore, the observation implies that
the work done in the DFS between two BFS visits to a subtree is at@{dstogn).

4.7 Analysis

The main idea is to show that by the end of rounthe algorithmR manages to finish all
the subtrees hanging off the boundary with size ugf to

Let » denote the root of the subtree. For each vertedefineT,, = the set of the
verticesw such that the — w path contains the vertex The sefl, is the subtree rooted
atv. Let|T,| denote the number of verticesTi. In particular, we havér, | = 1iff visa
leaf.

We define the set of subtrees of size less thand rooted at no more tharfrom the
root as follows.

Vi={ueT,|ve B(rt) and|T,| < s},
whereB(r, t) is the ball of radiug aroundr.
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Lemma 21 Consider the set!. If s < ¢ - t?, then the number of vertices in this set is
bounded byc D - t.

Proof. Consider the subtrees of size smaller thahat are rooted within distance

t from the root. LetN denote the number of vertices in these subtrees. After
t rounds, the optimum algorithm visits at mast- ¢ vertices. Moreover, all the
subtrees remaining afterounds have size smaller thatf. The number of ver-
tices remaining is at least — Dt. Therefore, it follows from Lemma 19 that the
distortion must be at lea$tv — Dt)/(t+/c). HenceN < 2¢ D - t. L

4.8 A different view of the algorithm

Randomize the tree. Run the greedy algorithm onit. In other words, visit smallest subtrees
in each round with a budget @(D log D). We claim that the optimum distortion on
randomized tree is within a constant factor of the optimum distortion on the original tree.

Now consider the randomized tree, i.e. each of the subtrees is stretched by a random
factor betweerl, 2]. In the rest of the analysis, we focus solely on the randomized tree.

Lemma 22 Consider the set’! in the randomized tree. ¥ < ¢ - ¢?, then the number of
vertices in this set is bounded By D - ¢.

Proof. This follows directly from Lemma 21. The randomization only stretches
the trees, and hend®/| can only go down. u

Lemma 23 The probability that vertex € T lands at level in the randomized tree is
bounded by /t.

Proof. Let the vertexv be at a distanc€ from the root in the original tree. The
randomization process maps it in the interi4l2¢’] uniformly. Therefore, fow
to get mapped at distanc¢efrom the root (i.e. levet), it must be the case that
t' <t < 2t'. If this condition holds, then the probability thatill get mapped to
tis + < 2. This proves the lemma. n
Consider a level. DefinelV,,the “new work created” at a level as

W, = {u €T, | vis at levelt and|T,| < t*}

In the next lemma we bound the quantity;.
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Lemma 24 The new work created in rountds bounded by)(D log D) with high proba-
bility.

Proof. Suppose there arke subtreesl’, T, ..., T, at the root. LetX; be the
number of vertices from the subtrégin the new work created at level ThusX;
is a random variable whose maximum valuéisThe new work created in round

t is given by
Wt — ZXZ

We first compute the expected valueltf. Note that only the vertices frofi’
can be included imV;. Moreover, we will count a subtrég, as new work created
in roundt iff the subtree from the parent ofhas size bigger than.

Thus a vertexv € T, is in W, if v is at levelt in the randomized tree. Hence,
probability that a subtre€, from V%, gets counted iV, is bounded by/t. There-
fore, we can bound the expected sizdlgfas follows.

2
E[W,] <) |T,| - Prlv atlevelt] < S2DE < 4D

In the previous equation, we bounded the siz&,0fising Lemma 21.
Now using a Chernoff bound, we get

Pr(W, > 24Dlog D] < exp(—2log D)
This proves the lemma. u

Intuitively, W, is the amount of new work created as our BFS boundary reaches.level
SincelV, is bounded by)(D log D), our algorithm is able to finish the new work created.

We also need to consider (long skinny) subtrees of size roughlyat are rooted at
t" < t. We haven't considered such subtrees as part of “new work created” anywhere,
since around level they were much bigger thaf¥ and around level, they weren't new
anymore. To handle this, we prove the following lemma with a stronger invariant.

Lemma 25 By round?2?, the algorithm Random-Delay visits all the subtrees of 8tz&’
rooted at2’ or lower.

We also need to bound the span of the new work created, since a whole bunch of such subtrees could be
created.
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Proof. Consider the subtrees of size up2®*2 that are rooted a2’ or lower.
From Lemma 22, it follows that the number of vertices in such trees is bounded by
D - 213, We will refer to this as theld work

Consider the rounds froi~! to 2°. In each of these rounds, onfy( D log D)
new work is created in subtrees of size uRtt™? (from Lemma 24). Therefore,
algorithm R is able to finish all the new work in the same round in which it was
created. Moreover, algorithm Random-Delay does at [gd3tamount ofold work
in each such round.

Therefore, at the end of rourd, the algorithm has visited all subtrees of size
up to2%+2 that are rooted at’ or lower. m

Thus we maintain the invariant that afterounds, only subtrees of size bigger than
are hanging off the boundary. (In fact, we have proven a stronger invariant, but this one
suffices for the rest of the proof.) The following lemma proves that number of such trees
is small.

Lemma 26 Number of subtrees of sizet? rooted at depth is at mostO(D/t).

Proof. Let & be the number of trees of size bigger thdn Call a subtree half-
visited, at least half of its vertices have been visited. By rounat mostD - ¢
vertices can be visited by any algorithm. In other words, at maxstt of these
subtrees can be half-visited by any algorithm. Therefore, at (géast2D /t) sub-
trees each with> ¢?/2 vertices would still remain. Using Lemma 20, we see that
the distortion is at leagt: — 22) - L. Thereforet < *2 which proves the lemma.

]

Lemma 27 The span of the boundary after rounds bounded by) (D) for anyt.

Proof. Since the number of subtrees remaining afteounds is bounded by
O(D/t), the span of the boundary afterounds is bounded b§ (D). L

Since the work in each round is bounded®yD log D) and the span is bounded by
O(D) after each round, the distortion of the algorithm R is bounde@g¥ log D). Thus
we get the following theorem.

Theorem 14 The Algorithm Random-Delay is a polynomial-time (randomized) algorithm

that computes an embedding of the input tree to the line with distattidnlog D), where
D is the optimal distortion.
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4.9 Discussion

The main open question is whether there 8(&og n) approximation for the case of un-
weighted trees. Our algorithm does not extend to the case when subtrees could have size
larger thanD.

As an alternate approach, we can write the following linear programming formulation
for the distortion problem. We use the following properties:

1. There are at mosD rounds. The diameter of the treelis therefore any two points
in the tree should be embedded within a distafZeof each other, i.e. withiD
rounds.

2. If a vertexw is visited in round, then all of its children must be visited by round
t+ 1.

3. A vertex ison the boundanafter roundt, if its parent has been visited in round
but the vertex itself was not. The span of the vertices on the boundary is the size of
the Steiner tree connecting these vertices. The span of the vertices on the boundary
after any round plus the number of new vertices visited in rounid bounded by
D.

To formulate the LP, we have variablegv) for each round and each vertex. Itis
zero if the vertexy has not been visited by rourtcand is1 from the round: it is visited.
We usep, to denote the parent node ofin the tree. We have a variable.(v) for each
vertex; which isl if at roundt eitherv was newsly visited or it is in the span of the current
boundary.

min D
S.t.

x () =1 for rootr andvt > 0
(monotonicity) x;(p,) > x4(v) Vt>0,veV
(progress) Z41(v) > x(v) Vt>0,veV

wy(v) > x(v) — 1 (u) VE>0,YueT,
(work) Yoy wi(v) <D vVt >0

However, the LP ha$)(,/n) gap for the3-spider example. It might be possible to
strengthen the linear program.
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Chapter 5

Weighted Bandwidth

In this section, we consider a slightly different notion of distortion. For the given metric
space(V, d), we ask for a mapping : V' — {1,2,...,n} instead of asking for a non-
contracting embedding. Such a mAjs called dinear ordering The stretch of the linear

orderingf is defined as
e M@ = FW)

(x.y) d(z,y)

We also consider the following generalization of the problem.

Weighted Bandwidth Consider a grapli- = (V, E) on n-vertices with edge weights
w: E—R.Letf:V — [1,n]| beal-1 map. Such amapis called dinear arrangement
The weighted bandwidth of the linear arrangemgrg defined as the maximum stretch of
any edge, i.e.
bw(f) = max w(i,j) - /() — ().
(i,5)EE

The weighted bandwidth of the graphis the minimum possible bandwidth achievable

by any linear arrangemetft: V' — [1, n).
bw(G) = min bw(f).

fV—=[ln]

The goal is to find a linear arrangement of the verticeg-olvhich minimizes the
weighted bandwidth.

The problem of minimizing bandwidth (i.e. when all the weights Brevas shown to
be NP-hard by Papadimitriou [Papadimitriou, 1976]. Blum et al. [Blum et al., 2000] gave
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an SDP relaxation of the bandwidth and other linear ordering problems. The first non-
trivial approximation to this problem was given by Feige [Feige, 2000]. Subsequently,

Dunagan and Vempala [Dunagan and Vempala, 2001] showed how to improve the ap-
proximation factor based on the SDP relaxation of Blum et al. Recently, Krauthgamer et
al. [Krauthgamer et al., 2004] showed an algorithm to construct volume respecting em-
beddings and thus reduced the approximation fact6r(tog® n).

The main result of this section is summarized in the following theorem.

Theorem 15 There exists a polynomial-time algorithm that producisog® n log nA)-
approximation the minimum weighted bandwidth problem.

Techniques The main idea in our algorithm is similar to that of Feige [Feige, 2000].
However, instead of using shortest path metric on gréplwe use a different metric
(V,d) that is constructed using weights of the edges. The stretch of a linear ordering of
(V,d) is exactly same as the weighted bandwidth of grépMe embed the metrid/, d)

into Euclidean space using a volume respecting embedding. Finally, we project the points
on a random line. The ordering of the points on the random line is output as the ordering
of the vertices.

In the metric(V, d), the length of an edge:, v) is 1 /w(u, v). We construct the shortest
path metric orl” using these lengths. We also define a new lower bound for the weighted
bandwidth. The construction of the metfic, d) lets us bound the weighted bandwidth of
the output with respect to the lower bound.

Definitions and Notation We first define a few quantities that we shall use in the analysis
later.

Throughout the discussion, 18t(x, o%) denote the Gaussian distribution with mean
and standard deviatian We use the following simple fact about the Gaussian distribution.

Fact5.1 Letx ~ N(u,0?) be arandom variable. Let be an interval of length.

Priz e I] <

Q| ~

We defineTree VolumeTvol() of a metric as the product of the edge lengths of the
minimum spanning tree on the metric. Let(aff, zo, ..., ;) denote the affine span of
the pointszy, ...,z € R™. An (n, k)-well-separated embeddirgg a metric(V, d) is a
contracting map : V' — R” that satisfies the following condition.
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For each seb C V, s.t. |S| = k, there exists a permutatid, s1,. .., sx_1} of S such
that, for alli, if L; = aff(¢(sg), ..., ¢(si—1)), then

dist(@(s:), L) > ~ d(si. {50, .5 1}) (5.1)

3

The notion of well-separated embeddings is very closely related to the that of volume-
respecting embeddings. We use the following result by Krauthgamer et al. [Krauthgamer
et al., 2004].

Lemma 28 ([Krauthgamer et al., 2004]) There exists an algorithm to constfugt n, k)—
well-separated embedding for every2 < k < n.

5.1 Algorithm

Our algorithm is based on a metric on the grapterived from the weights. We construct
this metric as follows. Given the weightson edges of the grapfi, we define the metric
d on the graph as follows. Léte) = ﬁ denote the length of an edge The metric
completion results in an instance where the weights) of some edges havacreased
Using these lengths, we define the distance between any paasd(u, v) = the length
of shortest path (according to lengtils) from « to v.

5.2 Analysis

We first give a lower bound on the minimum weighted bandwidth based on the metric
(V,d). Throughout this section we assume tti@t, v) > 1 for all verticesu,v € V. This

can be easily achieved by scaling all the weights equally and hence it doesn’t change the
approximation factor.

Lower Bound Let B(v,r) denote the ball of radius centered at vertex under metric
d,i.e. B(v,r) ={u € V | d(u,v) < r}. Let|B(v,r)| denote the number of vertices in
the setB(v, r). Define the local density of the metri&, d) as

| B(v,7)]

D = max ———~—.
v,r 2r
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1: For each edge, define its length age) := @ For each pair of vertice@, v), let
d(u,v) = be the length of shortest path according the lengif)s Scale the distances,
so that the minimum pairwise distancelis

2: Leto: V — R" be an(n, k)—well-separated embedding of the mef{fi¢ d) into /5.

3: Let7 = (ry,ry,...,r,) be avector irR", wherer; is a random variable with distribu-
tion N(0,1),fori =1,...,n. Letm : R" — R be a map defined by

() = 7 (o(v)) for eachv € V

5: Output a linear arrangement according to the ordering obtained by themap

Figure 5.1: Algorithm Weighted-Bandwidth (WB)

Claim 5.2 D is a lower bound otw(G).

Proof. Fix a vertexv and a radius- and consider the balB(v,r). In any lin-
ear arrangement, the number of vertices between the leftmost werdex the
rightmost vertexw is at least B(v,r)|. Since, bothu andw belong toB(v, r),
the distance between them is at m@st Consider a shortest path (under lengths
l(e)) joining v andw in graphG. For all edges’ of this shortest path, we have

N —J(e) = L _
d(e) =1() = eIk

At least one of the edges in this path has stretcH'>". Here, stretch of an
edgee’ is

#(vertices between endpoints @

(e

Hence the weighted bandwidth of gra@hs at leastD. u

The analysis of the algorithm is very similar to that of Feige’s algorithm [Feige, 2000].
We bound the stretch of any edge in the random projection instead of its length.

Lemma 29 Consider a setS C V with |S| = k. The probability thatS gets mapped
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inside an interval of lengthh under the map) is bounded as follows.

: : O(n\)F1
Pr[S gets mapped in an intenak ————
59 PP vk Tvol(S)
Proof.

FixasetS = {sg, s1,...,sx1}. Let'scallg(s;) asv;. LetL; = spa vy, ..., v;_1}.

We use the spherical symmetry of choosing a random line. Using suitable
rotation and translation, we assume that 0 andL; = sparéi, ..., € }.

We can now interpret the well-separatedness property of thegmépt v; =
(vity - -+, 045,0,...,0)and letdg(s;, {50, - - -, Si—1}) = ¢;- Then well-separatedness
says that

Vi > g
n

Note that the map can be described as follows.

(x) = (p(x), 7),
wherer’ = (r,...,7r4) and each; ~ N(0,1). Thus we havey(s;) = (v;, ) for
i=0,1,...,k—1.

We now bound the probability that all 6fis mapped into the intervdl= [0, /).
We write this probability is the product of conditional probabilities.

k—1
PWM&QI]:IIWW@0€H¢Q%VWQADQI] (5.2)

Now we boundPr[v(s;) € I | ¥({so,...,si_1}) C I]. Note that)(s;) = 3%, vir;.

=1
In order thaty(s;) € I, we need to have;r; € I’, for some other interva]’]of
lengthl. All of the ¢ (s), ..., 1 (s;—1) are independent of. Thus

Pr[w(sl) el | w(So) < ], - 7¢(Si_1) < ]] < Pr[vim c I/]
.
Vi
< M

qi

Here, the second inequality follows from the Fact 5.1 and the final one from well-
separatedness of map
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Now we can simplify equation (5.2).

Prii(S) C 1] "

IA
|

i=1

()"
Tvol(S)

IA

This proves the lemma. u

Lemma 30 Stretch of any edge under the mags bounded by with high probability.

1
Pr[Edgee has stretch> \] < —
2n?2
Proof. Consider an edge = (u,w). Since the map is a contracting map, it does
not stretch the edge. Therefore, to bound the stretch of the edge under, wap
need to bound its stretch under the projectiorSincer is a linear map, we only

need to consider stretch of a vectoe R™ due to the mag.
Recall that each coordinate Bfollows the distributionV (0, 1).

Because of spherical symmetry, it follows thét | behaves likeV (0, ||7/]|?).
Let X ~ N(0,1) be a random variable.

Pr[F-17| > 2\/@] - Pr[uvn X > 2\/@}
< Pr[|X|>2\/@]

< ;e—%@vlogn)g
— Wdlogn x 271
< L
- 2n?
This concludes the proof. u

We use the following lemma due to Feige.

Lemma 31 ([Feige, 2000]) For allS C V, s.t.|S| = k, we have the following inequality.

1
TVOI Z d (U

(1) Uz 2)) d(vﬂ'(k—l)a Uﬂ'(k))
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Lemma 32 For any metric(V, d) we have the following.

1
) < n-O(DlognA)**
TvoI(S)_n O(DlognA)™,
SCV|S|=k

whereA is the diameter of the metric.

Proof. Using Lemma 31, we can write the following inequality.

1 1
- <
< Tvol(S) — Z Z d(Vr(1); Vr(2)) * -+ - AVrr—1), Vn(r))

IN
2
£
-
<
N
B -
QU
—~
<
o
-
<
z

Let A be the diameter of the metric defined in Step 1 of the algorithm. Note that
A < nW,wherelV is the ratio of maximum weight to minimum weight. To bound
the sum on the right hand side, fix a vertexc V and a tupl€ay, as, ..., ax_1),

with eacha; € {1,2,...,log A}. Now, consider all the sequences/otertices

(w1, ug, . .., uy), where the first vertex ig; andd(u;, u;, 1) € [2%,2% 1) for all 4.

We claim that the sum over this subset of sequence$i3)“~!. Note that any
ball around a vertex of radiusr has at mosD - (2r) vertices in it. Therefore, once
we choose the vertex; in the sequence, there are at most) - 2%) choices for
u;, 1. Hence the total number of sequences in the above subset is aDfiogt ! -
2(2:9)_ The contribution of any such sequence to the sum is at i@t @),
Therefore, the sum over these subsets is at @OBL)*~*.

Finally, there aren choices foru; and (log A)*~! choices for the vector of
a;'s. Hence we get that the sum on RHS is at mest O(Dlog A)*~!. Since
A = O(nW), this concludes the proof.

Now we are ready to prove the main theorem.

Proof of Theorem 1 Using Lemmata 31 and 32, we get thathad sets < n-O(nA D logn)*~1.
Furthermore, using Lemma 30, we assume that all edges have stretch

Let B be the weighted bandwidth of the output of our algorithm. In particular, there
is an edge whose weighted bandwidth i8. Therefore, the endpoints of the edgkave
B/w(e) vertices between them in the linear ordering. Singe,= 1/w(e), there must be

59



B-l(e) vertices between the two endpointscah the optimal linear ordering. However, in
the random projection, stretch of the edgeas bounded by, i.e. its length was at most
A - l(e). With this length, edge can span only(e) intervals of length\ each. Thus, there
is an interval of length\ which has at Ieasf;'(le# = B points. Hence we can conclude that

the number of bad sets of sizds at Ieasl(f).
Therefore, we get

(i) < n-O(nADlognA)~1

Choosingk = logn and plugging im = logn and\ = logn gives us the bound

B < O(log? nlognA) - D.

This proves the main theorem. O

5.3 Discussion

It should be possible to replace theynA factor by aO(logn) factor. However, cur-
rently we do not know how to do it. A more difficult open question is to improve the
approximation factor for the bandwidth problem.
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Chapter 6

Spanning Tree Embeddings

In this chapter, we consider probabilistic embeddings into spanning tree metrics. The
input metric is the shortest path metric on the input grépk- (V, E). A probabilistic
embedding into spanning trees is a probability distribuiover the spanning trees of

the graphz. The quality of a probabilistic embedding is given by thepectedlistortion.

It is defined as follows:

El[distortion| = max Ererdr(u,v)/d(u,v)
u,ve

Our goal is to find a probabilistic embedding with small expected distortion. Note that
we are looking for uniform bounds on the expected distortion.

We give a simple randomized procedure that takes the shortest-path dr@dtagraph
G = (V, F), and whose output is a probabilistic embeddingl @fito spanning subtrees
of G. Our result is based on the techniques from Bartal [Bartal, 1996] combined with the
recent results by Elkin et al. [Elkin et al., 2005].

For simplicity of exposition, we first consider the case whé&is an unweighted graph,
and hence the diameter 6fis at most(n — 1). The arguments can then be extended to
the case of arbitrary edge-lengths using standard ideas (e.g. see [Bartal, 1996]).

While the guarantees of our algorithm are only marginally better than those of Elkin et
al., we would like to point out that our improvements come from use of a different tech-
nique. It might be possible to combine the two approaches to improve the result further.
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6.1 The Algorithm

Our randomized algorithm uses the idea of star decompositions proposed by Elkin et al..

Definition 1 (star-decomposition) A star-decomposition of a graph with a designated
root nodery is a set of disjoint connect componentshf= (o, Ey), ..., Gy = (Vi, Ex)
together with a collection of root nodes, . . . , r, such thatr; € V; forall 0 < i < k and
eachr;, 1 <1 < k has a neighbor if/,.

The procedure of Figure 6.1 takes a grapwith a rootr, and outputs a star-decomposition
of GG. For the backward cut step in the algorithm, we define a new distance function:
backward-edgelistance. For the definition of the new distance function we replace each
edge inG \ 1, by two directed edges in opposite direction. We define the lef{gth) of
such a directed edder, v) as

1 if d(ro,v) =d(ro,u) — 1
l(u,v) = { 1 if d(ro,v) = d(ro,u)
0 if d(ro,v) =d(ro,u) + 1

Using this length function, we get the shortest path distance that we chhtkevard-edge
distance The distance from to y counts how often an edge has to be used in backward
or sidewards direction according to distance frgnm order to reachy from x. (Note that

we only used directed edges to define the new distance functich dmthe following all
edges are undirected again.)

Given the above procedure to find random star-decompotio6s tife embedding of
G into random spanning trees is the same as in Elkin et al. [Elkin et al., 2005].

The following is the main theorem of the paper:

Theorem 16 The algorithmEmbed-Tree induces a distribution over spanning treeof
such that the expected stretch of each edgg fO(log® n).

Let us give a roadmap for the proof. We first prove two simple lemmas that bound the
probability that an edgéu, v) is cut by the forward and backward cut stepsaindom-
Star-Decomp; each of these probabilities will turn out to b¥logn/A). Furthermore, it
is easy to see that the number of levels encountered by any edg®isn). In previous
such analyses (e.g., by Bartal [Bartal, 1996]), the argument used is thavifis cut at
level A, the distance betweenandv in the final tree is at mosP(A), and hence the total
stretch incurred by the edged¥log® n). In our case, it is true that the distance between
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. Input: GraphG with rootr such thatadius, (G) = A.
: Pick a distance' uniformly at random from the interval\ /4, A /2].

. (Forward Cut) Cut all the edges at distangdrom the rootr; let V;, be the component
containing the root.

. Let xy, 2o, ...,z be the “portal” vertices irG \ 1, whose neighboring edges have
been cut in Step 2, and Igtx;) be some “parent” of; in V4.

: Let X «— V'\ V| be the “remaining” vertices.

. (Backward Cut) Fori = 1,2, ..., consider the portal vertex; € X, and choose a
random distancé from the distributionA - Exp{6logn}. Cut all the edges lying at
backward-edge distanck from vertexz; to get the componerit,.

: Let X «— X\ V;;if X # (), goto Step 6.
: Add the edgesz;, p(z;)) to get the grapld;.

Figure 6.1: AlgorithmRandom-Star-Decomp (G, )

. Input: GraphG with rootr such thatadius, (G) = A.

. ExecuteRandom-Star-Decomp (G, r) to get the componentg;, V4, . .., Vi, with
eachV; being rooted at;, and eachV; (for i > 1) connected td/; by edgesr;, p(r;)).

: ExecuteEmbed-Tree (V;, r;) recursively to convert eadhi into a subtree of7[V}].

Figure 6.2: AlgorithmEmbed-Tree (G, r)
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andv when they are separated is indee@\ ), but it may increase over the course of later
cuts; hence we need Theorem 17 to say thatthelistance in the tree does rem@nA)
with high probability.

6.1.1 Edge-Cutting Probabilities and Recursion Depth

Claim 6.1 The probability that an edge is cut by a forward cut at leXxak at most
O(%).

Proof. Consider an edge = (u,v). If v is closer thamA /4 or farther thanA /2
from the rootr, then(u, v) cannot be cut by the forward cut step. Otherwisell
be cutiffy € [d(r,u),d(r,v)]. Sincey €yar [A/4, A/2], the probability of this
event is at most/A. n

Claim 6.2 The probability that an edge is cut by a backward cut is at nﬁé’ﬁl

Proof. Recall that in Backward Cut step, we choose a random radius using the
distributionA - Exp{6logn}. Consider the ball; centered at the vertex that

has the radiu(; ~ A - Exp{6logn}. This ball cuts an edge= (u, v), if exactly

one ofu andv is inside. Without loss of generality, assume thas closer tor,
thanv. We consider three separate cases\If> d(rq,v), then the edgéu, v) is
inside the ball/; and won't be cut. 1fd(r,u) < X; < d(r1,v), then the ball;

cuts the edge. Finally, if X; < d(ry,u), then the edge is outside ballV; and
some other ball can cut it. Letdenote the probability that the edgés cut. Then

we have

p < Prld(r;,u) < Xy <d(r,v)] + Pr[X; < d(ri,u)] - p

Since the edges are unweightet{r,v) < d(r,u) + 1. Letd = d(rqy,u).
Then we have
Prid < X; <d+1] 6logn
1 —Pr[X; <d A
The last step follows from the memoryless property of the exponential distribution.
]

p < < PriX;<d+1|X,>d <

Since an edge is cut either as a forward edge or as a backward edge, we get the follow-
ing result.
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Corollary 6.3 The probability that an edge:, v) is cut at levelA is at most”i%.
Fact 6.4 The depth of the recursion fe@mbed-Tree is O(log n) whp.

Proof. To prove this, we claim thavhp the diameter of each of thé's is at most
11A/12. Indeed, since we choose the expected value of the exponential distribution
to be suitably small, the diameter reduces by a constant factor whp. Hence the
recursion depth will b&(log, 5 ;; diam(G)) = O(logn). L]

6.1.2 Bounding Additional Stretch

Theorem 17 Given anyG rooted atr, and any vertex € V(G), the distance from to r
in the random tree produced Bmbed-Tree (G, v) is O(dg(v,r)) whp.

Proof. We can view the expansion of diameter @fas follows. In each level
of recursion, we run the proceduRandom-Star-Decomp in each of the com-
ponents. Consider the graph aftelevels of recursive application dkandom-
Star-Decomp. Let the diameter after levélbe denoted by\,. Let there ben
components on the root to leaf path at this stage, with diamétgr®s, ..., D,,.

Note that one application &tandom-Star-Decomp increases the diameter of
the j"* component fromD; to D, + D; X;, whereX; ~ Exp{O(logn)}. Hence,
we can bound the diametée;,; of the graph aftest recursive application of
Random-Star-Decomp as

A < A(1+ Z%’Xj)

J

whereo; = D;/A,;. Note thato; depends on the history of the algorithm so far.
Nevertheless, as we show later in Lemma 33, we can get the following:

whereY; ~ Exzp{O(logn)} andY; is independent of the history.
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Thus the final diameter (aftérsteps) of the graph is bounded as follows:

Ap 2 A-TJ(+2(Y; + 1/ logn)) (6.1)
k
< A-exp{> 2(Y;+1/logn))} (6.2)
<A- exp{g(l)} w.h.p. (From Lemma 34) (6.3)

Proof of Theorem 16 Let us first consider all the bad events (that the diameter of some
V; is too large, and that the distance betweesndv gets too large. Since there are only
(at most)n? such bad events, each one happens with probability at ifgstly(n), and

the distortion suffered when any of these bad events happen is abnvestcan ignore all
these events.

From Theorem 17 it follows that an edgehat gets cut at leveh suffers a distortion
of O(A). Therefore we can compute the expected distortion of edxgefollows.

Distortion(e) = Z Pr[Edgee cut at levelA] - O(A)

level A

< Y O(IOE”) L0(A)

level A

= Z O(logn)

level A

= O(log®n)

6.2 Stochastic Domination and Tail Bounds

In this section, we prove two simple yet crucial lemmas: the first states that a convex com-
bination of exponential i.i.d. random variables is stochastically dominated by (a suitably
shifted version) of one independent copy of the random variable.

Definition 2 A random variableX is stochastically dominated by another random vari-
ableY’, if the following holds for alk.

PriX > t] <Pr[Y >t].

66



Proposition 6.5 The following facts hold:

olff X <Y andY < Z, thenX < Z.
eLet X, Y, andZ beindependentr.v.s,with > 0. If X <Y, thenXZ <Y Z.

Proof. Recall thatX < Y holds iff Pr[X > t] < Pr[Y > t| for all t. The first
property follows from the fact that

Pr(X > ] <Pr[y >t] < Pr[Z >

To prove the second property, assume th@t is the probability density function
for the random variable. Then we have

PIXZ > ] = /Pr[Xz > f1f(2)dz < /Pr[Yz > ff(2)dz = PIYZ > 1.

In the next lemma, we bound a convex combination of exponentially distributed ran-
dom variables.

Lemma 33 Let Xy, Xi,..., X, ~ Exp{\} bei.i.d.random variables. And let, as, ..., o,
be m non-negative real numbers such that,, o, = 1. Then we have:) . o; X; =<
2(Xo + 1/A), or equivalently

Pr() oiX; > t+2/N < Pri2Xo >t]  forallt >0
=1
Proof. To prove an upper bound on LHS, we use the moment generating function

M(s) of 3. o; X;. Recall that the moment generating function of a random variable
X is defined asxp e**. Using this definition, we get

1
M) =1 =7

%

We first bound the maximum possible valueMdf(s) subject to the constraint
tha.tz:Z a; = 1.
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Fact 6.6 The following is true for all3,~ > 0 such thats + v < 1 and

0<t<l.
1 1

Q-1 -0 S 1= G+t

Using this simple fact repeatedly fo1(s), we getM (s) <
the Markov inequality,

1 -
T Now using

PT[Z Xy >t 42/ < e sV N (s) foralls >0

=1

Finally, choosings = \/2, we get
LHS < Ze—@t/?) < Pr2X, > t],
which proves the lemma. u
The second is a standard tail bound on the sum of i.i.d. exponential random varaibles.

Lemma 34 Let X, Xy, ..., X ~ Ezp{logn} bei.i.d. random variables. Lét < log n.
Then

1
Pry Xiz 4 < —

Proof. Without loss of generality assume that= logn. Let M(s) denote the
moment generating function of ; X;. Using standard techniques, we get

1 1
Me) = =m = G=m”

Using Chernoff’s inequality,
_
1—(s/k)

Now choosings = 3k/4 (so as to optimize the upper bound), we get

A\* 1
PT[ZX,zzL]g(g) —

Pr) X; >4 <e o forall0< s < k.

IA

68



6.3 Discussion

The big open question is whether it is possible @¢log n) expected distortion. It will
also be interesting to give approximation algorithm for the expected distortion.
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Chapter 7

Conclusion

In this dissertation, we initiated the study of metric embeddings from an approximation
algorithm point-of-view. We focused on the host metric being the real line.

For embedding an arbitrary into the line metric, the existing results give a uniform
bound ofO(n) on the distortion. To cope with this bound, our goal was to give approxi-
mation algorithm for the distortion.

However there are many open problems in this framework. Finding the best embedding
of an arbitrary metric intd, metric is one; Finding the best probabilistic embedding of an
arbitrary metric into (spanning) tree metrics is another.

Another way to cope with high uniform bound is to consider metric embeddings with
e-slack Kleinberg et al. [2004], Chan et al. [2005], where distortion is small for all but
ane fraction of the pairwise distances. As an example, consider the uniform metric on
points (i.e. all pairwise distances dre To embed this metric into the line metric, we need
Q(n) distortion. However, there is a simple embedding of this metric into the linelyith
distortion and:-slack.

While we studied embedding into line metrics (one dimensional Euclidean space),
more progress needs to be done on embedding into the Euclidean space with a small,
fixed number of dimensions. It will be useful as an alternative to heuristics for multi-
dimensional scaling in dimension reduction of data. These results could perhaps be com-
bined with thee-slack results to be more useful in practice.
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