

Beyond Desktop Management:
Scaling Task Management in Space and Time

João Pedro Sousa, David Garlan

August 2004
CMU-CS-04-160

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

This material is based upon work supported by the National Science Foundation (NSF) under Grant CCR-
0205266, and by DARPA under Grant N66001-99-2-8918. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the NSF, DARPA, or Carnegie Mellon University.

João Pedro Sousa, David Garlan

ii

Keywords: task management, desktop management, ubiquitous computing, software archite-
cture, task-oriented computing, everyday computing, self-configurable systems, adaptive sys-
tems, modeling user preferences, utility-based adaptation, resource-adaptive applications.

 Aura Software Architecture

 iii

Abstract

Computers support more and more daily activities for common users, and users increasingly take
their activities to different locations. Rather than being bound to a specific device, users would
like to take full advantage of the computer systems accessible to them, much like they take ad-
vantage of the furniture in each physical space. However, user attention takes a heavy toll when
scaling the use of computers to tasks that are constantly interrupted and resumed, and that span
many locations and long periods. In this report we describe an infrastructure that provides users
with easy access to their tasks as a logical unit, across multiple devices, and over time spans of
years. The infrastructure handles platform and application heterogeneity, as well as dynamic
adaptation to resource variations. We validate that the infrastructure’s overhead is small com-
pared to normal application startup, and that the approach scales.

Acknowledgments
The ideas contained in this technical report owe much to Mahadev Satyanarayanan, Peter Steen-
kiste, Bonnie John, Brad Myers, and Scott Hudson for asking the right questions. Finding and
polishing the answers to those questions emerged out of detailed discussions with Vahe Po-
ladian, and Bradley Schmerl. In addition, a number of others have contributed in various ways
to the work underlying this report (in alphabetical order): Yady Guitana, Lalit Jina, Peter Kim,
Takahide Matsutsuka, Tadashi Okoshi, Bhuricha Sethanandha, Chris Tuttle, Wei Zhang.

João Pedro Sousa, David Garlan

iv

Contents

1 INTRODUCTION.. 5

2 RELATED WORK .. 6

3 DEFINING USER TASKS AND SUSPEND-RESUME ... 8

4 SUPPORTING SUSPEND-RESUME .. 10

5 STORING AND FINDING TASKS ... 13

6 DEFINING AND EXPLOITING USER PREFERENCES.. 14

7 IMPLEMENTATION AND EVALUATION .. 16

8 DISCUSSION AND FUTURE WORK .. 19

REFERENCES ... 19

 Aura Software Architecture

 5

1 Introduction
It is well known that computer users may simultaneously handle several tasks, such as preparing
presentations, writing reports, or answering email, constantly shifting their attention between
them. This fact was observed twenty years ago [5], and it certainly holds today [10].

One important property of such tasks is that they typically involve several applications and in-
formation resources. For instance, for preparing a presentation, a user may edit the slides, refer to
a couple of papers on the topic, check previous related presentations, and browse the web for new
developments. Existing work on desktop management has addressed this property, from early
work in Rooms [7], through recent work such as the GroupBar [22].

Another, increasingly important property of user tasks is that they may span multiple locations.
Advances in ubiquitous computing are prompting people to change their expectations towards the
availability of computing [1], and this issue is especially relevant for users working at large com-
pany sites, research campuses, or service-oriented facilities such as hospitals. There, users carry
out their work across many locations, moving from their office to their colleague’s, to common
areas, to meeting rooms, etc. Rather than being bound to a specific device, users may want to
take full advantage of the computer systems accessible to them, much like they may take advan-
tage of the furniture in each physical space. In the example above, the user may start working on
the presentation while in his or her office, move to the office of a collaborator, and pick the task
up later at home. Users should not have to carry a personal machine around, although they may,
just like people don’ t have to carry their own chair around. Ideally, users should be able to con-
tinue their tasks, on demand, with whatever computing resources are available.

However, realistically, we cannot expect that a mobile user will encounter a uniform set of de-
vices over multiple locations, even among the same class of equipment, say desktops or meeting
room equipment. In a wider ubiquitous computing setting, where users may wish to access some
tasks at home, or at a coffee shop, or at the airport, the types of applications and devices available
to a user will vary widely. Therefore dealing with device and software heterogeneity becomes an
important issue in addressing the scalability of task management in space.

Yet another important property of user tasks is their duration and recurrence. Users may work on
some tasks for days or even months. Tasks may need to be resumed after the user thought they
were done. And tasks may recur periodically; or to be more precise, users may periodically carry
out distinct instances of the same kind of task. For instance, if a user prepares monthly reports,
although such tasks share some characteristics, each has its own identity and may diverge from
the common pattern: in July the user needed to include some slides for the top management, but
not in August.

Unfortunately, existing desktop management systems lack a notion of task that can be carried
across different devices, and that can be referred to independently of a set of active application
windows that represent it. Specifically, users should be able to refer to not only currently active
tasks, but also the ones defined long ago, such as the report on xyz that I wrote last year. And
note that this is not a question of finding one file that resulted from the task, but a question of
finding the task (definition) itself, so that it can be reactivated, if necessary, or used as a template
to create a similar task.

Our research experiments with a notion of user tasks that scales beyond a single desktop, and be-
yond the set of currently active windows. Specifically, by capturing at a semantic high-level
what the user is doing, we can reactivate the task in another machine, where the task was never

João Pedro Sousa, David Garlan

6

activated before. By making such representation independent of specific applications, we can
reactivate the task on different platforms. For instance, for the task of preparing a report, we cap-
ture the fact that the user needs to edit a text document, not that MS Word is part of the task. By
using available application interfaces (APIs,) we capture a high-level representation of the user-
perceived state: things such as cursor position and application settings, in addition to window
layout and files being worked on. By giving tasks a semantic identity (which goes beyond a
name,) we enable users to find, manipulate, and resume tasks at will, regardless of how long ago,
or where, or in which machine those tasks were defined.

While other research in ubiquitous computing shares the goal of supporting the notion of mobile
user tasks, it commonly custom-builds or significantly extends existing applications. In contrast,
our approach does not assume, or preclude, that applications are mobile, or distributed, or other-
wise built with ubiquitous computing in mind. We focus on mechanisms that are external to ex-
isting applications, and that exploit the applications’ APIs to support the notion of mobile user
tasks. Our approach to representing user tasks gracefully handles the heterogeneity of devices
and applications that a mobile user will inevitably encounter.

In this report we present an infrastructure that supports the notion of user task as a first class en-
tity. Users can browse their tasks, swap active tasks, as well as suspend working at one location
and resume at another location, while fully utilizing the locally available set of devices (whether
or not they carry around a personal device). The infrastructure automatically finds and configures
devices and applications on the user’s behalf, optimizing the support for the relevant tasks. For
that, adequate knowledge about the user’s preferences plays a key role.

The Aura infrastructure has been developed as part of the Aura Project at Carnegie Mellon Uni-
versity [12], and has been evolving in prototype form for over a year. Ultimately, the goal of this
research is to demonstrate that such an infrastructure reduces the distractions incurred by mobile
users, allowing them to focus on their tasks rather than on the end-user configuration of the com-
puter systems to support those tasks. In addition to supporting suspend-resume of user tasks
across heterogeneous devices, the infrastructure is also prepared to handle (i) dynamic variation
of resources, such and bandwidth and battery, and (ii) dynamic variations in the availability of
applications and devices.

This report describes how a user may interact with the infrastructure to define a task, to suspend-
resume tasks, and to browse his tasks (Sections 3 and 5). It also provides a high-level description
of the architecture and workings of the infrastructure (Section 4 – a detailed discussion and for-
mal specification is available in [23].) This report does not address validating the claims of re-
ducing user distractions, of the optimality of task instantiation, or of dynamic adaptation, al-
though Section 6 describes how user preferences are captured and represented, and hints at how
they are used to drive both optimal task resume and dynamic adaptation.

In this report, we validate the following claims: (a) it is feasible to implement such an infrastruc-
ture, (b) the infrastructure’s overhead for automatic suspend-resume is small compared to the av-
erage startup time of applications, and (c) the approach scales for large numbers of user tasks and
available services.

2 Related Work
Existing desktop managers fall short in scaling in space, or time, or both. Some solutions to ad-
dress user mobility (scalability in space) rely on thin clients enabling the user to remotely access a
remote computing server (e.g. X Windows or PC Anywhere). However, such solutions have two
serious drawbacks: first, remote clients rely on a stable, fairly high-bandwidth, connection –

 Aura Software Architecture

 7

something that is frequently not available in a ubiquitous computing setting. Second, as thin UI-
oriented clients, these solutions fail to take advantage of local resources, and, in particular, of the
ever-increasing capabilities of mobile devices, smart spaces, etc. A partial solution to this limita-
tion is provided by mobile context-aware applications, which target user mobility by providing a
mobile piece of code that follows the user around. That piece of code examines the capabilities
available at each location it is migrated to, and using internal logic, chooses appropriate interac-
tion modalities. However, this strategy assumes a certain degree of uniformity in the platforms
that the code will be migrated to, and relies on the mobile application’s ability to recognize and
handle the characteristics of each device and other software components in the system. Therefore
there is no guarantee that the application will be able to migrate to every device that the user
chooses to utilize. Even if it does migrate, there is no guarantee that the mobile application will
provide better service than a local, custom built, application. Most importantly, current solutions
based on mobile code are application-centric, and do not support a first-class notion of user task.

Early work in ubiquitous computing environments experimented with the idea that users are mo-
bile, and may utilize available devices in their vicinity. That work uses OS-level mechanisms
driven by location-sensing components to automatically “ teleport” (make accessible) a user’s
desktop to the nearest display within a smart space, such as an augmented home [6]. Other early
work experimented with the idea that a user’s task encompasses a set of applications independ-
ently of device-driven metaphors, such as a desktop [15,24]. In that work, applications are visu-
ally aggregated and can be moved between the foreground and background of the user’s attention
as a unit. Subsequent work targeted making smart spaces amenable to cooperative tasks [18] and
supporting the tasks of mobile users in very specific domains, such as biology labs or hospitals
[3,9]. Yet other research extends operating systems for supporting the notion of mobile user
tasks, where tasks are user-defined collections of applications [19]. Commonly, the above cited
research custom-builds or significantly extends existing applications to work over an infrastruc-
ture that supports distributed data exchange and application mobility.

Others have adopted a lightweight approach for suspend-resume, in the sense that no modifica-
tions are required to existing applications. There, the state of the whole virtual memory in the
user’s current machine is captured and migrated to the target machine [14]. However, such a so-
lution is limited to situations where the user tasks are supported by a single machine and where
the user only moves among machines with a compatible hardware architecture, and identical sys-
tem and application software.

In contrast, our approach handles heterogeneity by representing user tasks at a high level and then
mapping each task to the applications and devices available at each location. Nevertheless, our
approach is still lightweight in the sense that light wrapping is enough to integrate existing appli-
cations.

In addition to heterogeneity, another important challenge is coping with dynamic change. Here
we build on research on model-based dynamic reconfiguration of software systems [8], and
smoothly integrate results on fidelity-aware applications [16]. Over the latter, our work adds the
advantage that the resource-adaptation policies can be dynamically tuned to match the user’s
preferences for each task.

Other results our research builds on, although they are not covered in this report, are service on-
tology and discovery mechanisms [2,11], mobile information access [20], and sensing the physi-
cal context around the user [13,21].

João Pedro Sousa, David Garlan

8

Fig. 1. Fred’s task definition for writing XYZ’04 paper

3 Defining User Tasks and Suspend-Resume
To illustrate the lifecycle of tasks, we present a simple scenario of a user, Fred, who is about to
write a paper. Fred considers opening the relevant files and applications on a need-to basis, using
standard OS mechanisms. However, since this task will persist for the next few weeks, Fred de-
cides to define it with the infrastructure (Fig. 1). Initially, Fred includes only editing the paper,
and he does that by pressing the down arrow at the bottom of the (empty) task definition window
and selecting edit text. The text editor activated by the infrastructure brings up a (default) blank
document and Fred starts working. As Fred browses the web, he decides to associate an espe-
cially relevant page with the task, so that it is brought up automatically every time the task is re-
sumed. For that, Fred simply drags the page shortcut out of the browser and into the more field
of the task window (the default browse web appears automatically). Later, Fred decides to start
entering the performance data on a spreadsheet. Again, Fred simply drags the file produced by
the data gathering tool, from the file system explorer into the more field and selects edit spread-
sheet for it.

Note that the infrastructure imposes no constraints on the user’s work. This comes from recog-
nizing that many user activities are spontaneous and short lived, and need not be classified as per-
taining to a particular task. However, once the user recognizes an enduring association with a
task, the infrastructure makes it easy to update the task definition on the fly.

The right-hand side of Fig. 1 defines alternative operation-mode configurations and their order of
precedence. The (default) full configuration includes all the activities defined for the task. In
addition to that, Fred also defined the skip web degraded-mode configuration for when the cir-
cumstances are such that either a browser or connection are not available, or that the quality of
service is so poor (for instance, due to low bandwidth) that Fred would rather focus on the other
activities. Fred also defined the paper only configuration for last resort circumstances, for in-
stance when having only a handheld with extremely limited resources. Note that Fred can define
as many or as few operating modes as he feels appropriate.

 Aura Software Architecture

 9

Fig. 2. Fred’s list of pending tasks on the dashboard

Suppose now that Fred enters a new location, such as a collaboration area, and authenticates with
the infrastructure.1 A dashboard becomes available to Fred, showing all of his tasks that are both
pending and enabled (Fig. 2, and more on this below). The infrastructure actively monitors the
availability of devices, applications and resources in Fred’s vicinity and matches that information
against the pending task definitions, such as the one in Fig. 1, and against Fred’s preferences (see
below and Section 6). How well each of these tasks can be supported in the current circum-
stances is represented as the utility of the computing environment around Fred for the particular
task. In simple terms, the higher the utility of the environment, the better the match between
Fred’s needs for the task and the capabilities of the environment. The infrastructure evaluates the
utility for each alternative operating mode, weighs it with Fred’s preference as expressed in the
happiness slide bar under each configuration, and presents Fred with the best option on the
dashboard. The monitor tab in Fig. 1 presents details on the alternatives for supporting each con-
figuration, and the corresponding utility. The user may decide to activate a configuration other
than the one with the best calculated utility, thus overriding the dashboard’s default. Because of
space limitations, these features are not shown here.

By choosing an option in the popup menu associated with each entry in the dashboard, Fred tells
the infrastructure which tasks he wishes to work on (Fig. 2). Tasks change state as a result of
Fred’s choices. After a task is created it becomes pending. The user can associate enabling con-
straints with a task, constraining it (its appearance in the dashboard) to certain locations, time-
frames, or other context properties (Section 5). Note however that enabled is not a state, but
rather a selection (a subset) of pending tasks determined by the user’s context. A pending task
becomes active after the user decides to resume it. The user may switch an active task between
the foreground and the background of his attention by selecting the focus/unfocus actions. An
active task can be suspended, returning to the pending state, and then closed, when the user
doesn’ t intend to work on the task any more. Closed tasks by default do not show on the
dashboard but can be browsed and (re)opened, if necessary (Section 5). The state transition dia-
gram for tasks is shown in Fig. 3, where the arc labels correspond to the first letter of the actions
described above.

When the user resumes a task, the infrastructure takes the configuration with the best utility and
activates applications that support the task’s activities, such as those in Fig. 1. Furthermore, the
infrastructure uses a task snapshot captured the last time that the task was suspended to direct the
applications to recover user-level settings such as cursors, window size and placement, applica-
tion options, etc. The focus and unfocus actions, provide a lightweight mechanism for swapping

1 Authentication mechanisms can range from smart id tags, to fingerprint scanning, to typing in a user

name and password. For the purposes of this discussion, the result is equivalent.

João Pedro Sousa, David Garlan

10

among active tasks without deactivating the applications. For instance, applications with a GUI
may react to an unfocus directive by minimizing their windows, data streaming servers may react
by not streaming data (without closing the connection,) etc.

Fig. 3. State transition diagram for a task

4 Supporting suspend-resume
This section presents a layered view of the infrastructure and describes the roles of each layer
with respect to task suspend-resume and dynamic adaptation. Table 1 summarizes the relevant
terminology.

Table 1. Terminology

task An everyday activity such as preparing a presentation or writing a report. Carrying out a task may re-
quire obtaining several services from an environment, as well as accessing several materials.

environment The set of suppliers, materials and resources accessible to a user at a particular location.

service Either (a) a service type, such as printing, or (b) the occurrence of a service proper, such as printing a
given document. For simplicity, we will let these meanings be inferred from context.

supplier An application or device offering services – e.g. a printer.

material An information asset such as a file or data stream.

capabilities The set of services offered by a supplier, or by a whole environment.

resources What is consumed by suppliers while providing services. Examples are: CPU cycles, memory, battery,
bandwidth, etc.

context Set of human-perceived attributes such as physical location, physical activity (sitting, walking…), or
social activity (alone, giving a talk…).

user-level
state of a
task

User-observable set of properties in the environment that characterize the support for the task. Specifi-
cally, the set of services supporting the task, the user-level settings (preferences, options) associated
with each of those services, the materials being worked on, user-interaction parameters (window size,
cursors…), and the user’s preferences with respect to quality of service tradeoffs.

The infrastructure exploits knowledge about the user’s tasks to automatically configure the envi-
ronment on behalf of the user. First, the infrastructure needs to know what to configure for; that
is, what the user needs from the environment in order to carry out his tasks. Second, the infra-
structure needs to know how to best configure the environment: it needs mechanisms to optimally
match the user’s needs to the capabilities and resources in the environment.

In our architecture, each of these two subproblems is addressed by a distinct software layer: (1)
the Task Management layer determines what the user needs from the environment at a specific
time and location; and (2) the Environment Management layer determines how to best configure
the environment to support the user’s needs. For example, the features in Figures 1 and 2 reside
in the Task Management layer.

closed

pending

active

foreground

background
o

c

r

s

u

f

 Aura Software Architecture

 11

Table 2 summarizes the roles of the software layers in the infrastructure. The top layer, Task
Management (TM), captures knowledge about user tasks and associated intent. Such knowledge
is used to coordinate the configuration of the environment upon changes in the user’s task or con-
text. For instance, when the user accesses a new environment, TM coordinates access to all the
information related to the user’s task, and negotiates task support with Environment Management
(EM). Task Management also monitors explicit indications from the user and events in the
physical context surrounding the user. Upon getting indication that the user intends to suspend
the current task or resume some other task, TM coordinates saving the user-level state of the sus-
pended task and instantiates the resumed task, as appropriate. Task Management may also cap-
ture complex representations of user tasks (out of the scope of this report,) including task decom-
position (e.g., task A is composed of subtasks B and C), plans (e.g., C should be carried out after
B), and context dependencies (e.g., the user can do B while sitting or walking, but not while driv-
ing).

Table 2. Summary of the software layers in the infrastructure

The EM layer holds abstract models of the environment. These models provide a level of indirec-
tion between the user’s needs, expressed in environment-independent terms, and the concrete ca-
pabilities of each environment.

This indirection is used to address both heterogeneity and dynamic change in the environments.
With respect to heterogeneity, when the user needs a service, such as speech recognition, EM will
find and configure a supplier for that service among the ones available in the environment. With
respect to dynamic change, the existence of explicit models of the capabilities in the environment
enables automatic reasoning upon dynamic changes in those capabilities. Environment Manage-
ment adjusts such a mapping automatically in response not only to changes in the user’s needs
(adaptation initiated by TM, see Section 3), but also to changes in the environment’s capabilities
and resources (adaptation initiated by EM). In either case, adaptation is guided by the maximiza-
tion of a utility function representing the user’s preferences (see Section 6).

The Environment layer holds the applications and devices that can be configured to support the
user’s task. Configuration issues aside, these suppliers interact with the user in the same way as
they would without the presence of the infrastructure. The infrastructure steps in only to auto-
matically configure those suppliers on behalf of the user. The specific capabilities of each sup-
plier are manipulated by EM, which acts as a translator for the environment-independent descrip-
tions of user needs issued by TM.

By factoring models of user preferences and context out of individual applications, the infrastruc-
ture enables applications to apply the adaptation policies appropriate for each task. That knowl-

layer mission roles

Task

Management

what does

the user need

• monitor the user’s task, context and preferences

• map the user’s task to needs for services in the environment

• complex tasks: decomposition, plans, context dependencies

Environment

Management

how to best

configure

the environment

• monitor environment capabilities and resources

• map service needs, and user-level state of tasks
to available suppliers

• ongoing optimization of the utility of the environment
relative to the user’s task

Environment support the

user’s task

• monitor relevant resources

• fine grain management of QoS/resource tradeoffs

João Pedro Sousa, David Garlan

12

edge is very hard to obtain at the application level, but once it is determined at the user level – by
Task Management – it can easily be communicated to the applications selected to support the
user’s task (see [4]).

The infrastructure can accommodate suppliers with a wide range of sophistication in matters like
fidelity- and context-awareness. For communication between layers, tagged formats have the
advantage over raw data formats that they make it easier to deal with heterogeneity. Specifically,
tagged descriptions can be processed by suppliers with different degrees of sophistication. For
example, suppose the user requires a text editing service, and would prefer spell checking to be
activated. Although finding a suitable supplier in a rich environment may not be a problem, a
basic text editor on a small platform might not support spell checking, or even be aware of what
“spell checking” means. Therefore, the description of the user-level state must be such that a
given supplier is able to extract the information it can recognize, without being thrown off by in-
formation it does not know how to handle. Naturally, the layers of the infrastructure need to
share a vocabulary of tags, or otherwise be able to resolve symbol equivalences (this is a topic of
other research [11]).

The same reasons that make a tagged format desirable to represent the user-level state apply to
the overall task description. Given the distributed, heterogeneous, and dynamic nature of ubiqui-
tous computing environments, any component in the infrastructure may have to deal with differ-
ent versions of some other components at some point. Therefore the overall representation of user
tasks, and all communication among the layers in Table 2, is XML-based.

Furthermore, all communication between layers is asynchronous (non-blocking). Typical ubiqui-
tous computing environments are heavily distributed –suppliers, especially, may be scattered
across different devices, some of which may be remote to the user’s location. Connectivity varies
widely, from high-speed wired connections to fluctuating wireless (radio or infrared) connections.
In synchronous communication, the originating (calling) component blocks on the reply of the
target (called) component. However, in our case, each layer should keep up with its responsibili-
ties in real-time, doing the best it can with the available information, and without blocking on
another component’s reply. For example, EM should not stop monitoring the capabilities of the
environment, or replying to TM’s requests, on account of being blocked on the reply of a remote
supplier – which might have become disconnected. Likewise, TM should not stop responding to
changes in the user’s task, when waiting for the reply of some other component.

Each layer reacts to changes in user tasks and in the environment at a different granularity and
time-scale. Task Management acts at a human perceived time-scale (minutes), evaluating the
adequacy of sets of services to support the user’s task. Environment Management acts at a time
scale of a few seconds, evaluating the adequacy of the mapping between the requested services
and specific suppliers. Adaptive applications (fidelity-aware and context-aware) choose appro-
priate computation tactics at a time-scale of milliseconds. A detailed description of the architec-
ture, including the formal specification of the interactions between the several components in the
three layers defined above, is available in [23].

 Aura Software Architecture

 13

Fig. 4. Information about Fred’s task of writing the XYZ’04 paper

5 Storing and Finding Tasks
Fully supporting the notion of user task entails enabling the user to browse and refer to his tasks
as first class entities in the system. For that, the infrastructure stores information about each task,
such as name, due date, relevant notes, or names of people collaborating on the task (Fig. 4).
Note that this information is stored in addition to the user-level state of a task, as defined in Sec-
tion 4.

Storing information about a task enables the user to search for that task later on, based on any-
thing he remembers about that task. One can think of each term entered in the information about
the task as enabling one classification scheme, which distinguishes all the tasks referring to that
term from those that don’ t. This is in stark contrast with the single hierarchical classification
scheme offered by the directory structure in file systems, and much closer to the approach used
by web search engines (more on this below).

The user is free to enter as much or as little information about the task as he feels appropriate,
with no concerns about name uniqueness. In the extreme, even the name may be omitted, since
the infrastructure keeps an internal unique id for each task of a given user. Of course, the more
information the user provides, the easier it will be for him to find that task later. The user can
establish links between a task t and related tasks by dropping a task reference into the links table
on t’s summary tab.

A task’s reference can be obtained anywhere the task is shown: in the entries on the dashboard
(Fig. 2) or on the browsing results (Fig. 5), from the arrow to the left of the name in the summary
tab, in other task’s links table, etc. Task links can be followed by double clicking, which shows
the corresponding task information window. Most importantly, task references can be dropped
onto the dashboard, thus enabling the user to act upon them as described in Section 3.

The infrastructure’s browsing component, lamp, builds an index of the terms entered anywhere in
the task information window (Fig. 5). During a search, this index is matched (formally an inner
product) against the index of searched keywords. Dates are matched by the before and after crite-
ria: for instance, 10/12/03 matches before 1/1/04. Each match scores one point, and search results
are presented sorted by score.

João Pedro Sousa, David Garlan

14

Fig. 5. Search for papers on foo written before 1/1/04

Note two tabs in Fig. 4, history and enabled, not shown for the sake of space. The history tab
shows the list of dates and places where the task was activated (in the sense discussed in Section
3). This information is kept for auditing purposes, in addition to the search purposes discussed
above. The enabled tab lists the context properties, such as locations and timeframes, under
which the task is enabled. Recall that only enabled (pending) tasks show in the dashboard after a
user authenticates. Nevertheless, the user may browse disabled (or closed) tasks and explicitly
drop them onto the dashboard. The infrastructure allows any task in the dashboard to be acti-
vated, logging that fact in the task’s history.

6 Defining and Exploiting User Preferences
Suppose that Fred needs to prepare a review of a promotional video. For taking notes on the
video, the Fred prefers to dictate the text. However, if the environment lacks the capabilities (mi-
crophone, speech recognition software…) or resources (CPU cycles, battery charge…) to support
dictation satisfactorily, Fred is willing to type or write the text. These are examples of configura-
tion preferences (see also Section 3).

For typing the notes (text editing service), Fred may prefer MSWord over Emacs, and be unwill-
ing to use the vi editor at all. These are examples of supplier preferences. Note that representing
supplier preferences by discriminating the supplier type is a compact representation for the pref-
erences with respect to the availability of desired features, such as spell checking or richness of
editing capabilities, as well as to the user’s familiarity with the way those features are offered.

Consider now that Fred will be watching the video over a network link. Suppose that the band-
width suddenly drops: should the video player reduce image quality or frame-update rate? The
answer depends on Fred’s QoS preferences for the current task. For watching a video with a lot
of motion, such as a sports video, Fred may prefer to preserve the frame-update rate at the ex-
pense of frame quality. However, for watching a painting documentary, Fred may prefer image
quality to be preserved at the expense of frame-update rate. As another example of a QoS trade-
off, when using speech recognition with limited resources, would Fred prefer more accurate rec-
ognition or snappy response times?

Computing the best match between what a user needs for a given task and what the environment
has to offer corresponds to maximizing a utility function. The utility functions used in our work
express formally, in a computable way, the user’s preferences for the task. The environment’s
capabilities and available resources act as constraints in the maximization process. User prefer-
ences (and their formal reification, utility functions) used in our work have three parts: first, con-

 Aura Software Architecture

 15

figuration preferences capture preferences with respect to the set of services to support a task.
Second, supplier preferences capture which specific suppliers are preferred to provide the re-
quired services; and third, QoS preferences capture the acceptable Quality of Service (QoS) levels
and preferred tradeoffs.

To make preferences easier to both elicit and process, we make two simplifying assumptions.
First, preferences are modeled independently of each other. In other words, the utility function
for each aspect captures the user’s preferences for that aspect independently of others. Second,
preferences fall into two categories: those characterized by enumeration, and those characterized
by numeric values. Supplier preferences are characterized by enumeration (e.g. MSWord, Emacs,
or other), and so are QoS dimensions such as audio fidelity (e.g. high, medium and low). For
these, the utility function takes the form of a discrete mapping to the utility space (see below).

 For preferences characterized by numeric values, we distinguish two intervals: one where the
user considers the quantity to be good enough for his task, the other where the user considers the
quantity to be insufficient. Sigmoid functions, which look like smooth step functions, character-
ize such intervals and provide a smooth interpolation between the limits of those intervals (see
Fig. 6). Sigmoids are easily encoded by just two points: the values corresponding to the knees of
the curve; that is, the limits good of the good-enough interval, and bad of the insufficient interval.
The case of when more-is-better (e.g. accuracy) is just as easily captured as the case where less-
is-better (e.g. latency) by flipping the order of the good and bad values. In the case studies evalu-
ated so far, we have found the expressiveness of the forms above to be sufficient.

The utility space provides a formal representation of how useful is each aspect of the preferences,
and ultimately of the whole environment, relative to a specific task. In other words, utility is a
measure of user’s happiness with respect to possible outcomes. Formally, we encode utility in the
interval [0,1] of the real numbers, where 0 utility corresponds to the environment being unaccept-
able for the task; and 1 corresponds to user satiation, in the sense that increasing the capabilities
of the environment will not improve the user’s perception of usefulness for the specific task.

Fig. 6 shows an example of QoS preferences for the speech recognition service. The service has
three QoS dimensions: latency, accuracy and vocabulary size. The first two are numeric: the la-
tency of recognizing each utterance is expressed in seconds, and accuracy reflects the percentage
of words that are recognized accurately. The user manipulates the good and bad thresholds by
dragging the green (lighter) and red (darker) handles, respectively.2 Note that the utility space is
represented simply using four intervals: from the lowest where the user prefers the configuration
not to be considered, represented by a cross, to the highest corresponding to satiation, represented
by a happy face. The slide bar associated to each dimension captures how important, that is how
much the user cares, about variations along that dimension.

We don’ t expect every user to handle this kind of detail. Rather, the infrastructure provides a set
of templates for each service type, corresponding to frequent situations. For instance, for the
speech recognition service, it includes the snappy recognition template shown in Fig. 6, as well as
the accurate recognition template, where the latency thresholds are relaxed, and the accuracy and
vocabulary more strict. The user can choose which preference template to apply to each service
when defining a task (Fig. 1) or, by selecting the advanced tuning, manipulate the preferences
directly.

2 The upper limit of the scale adjusts automatically between the values 10, 50, 100, 500, and 1000, further

changes being enabled by a change in unit.

João Pedro Sousa, David Garlan

16

Fig. 6. QoS preferences for the speech recognition service

The framework for representing user preferences described above is used to find the optimal ini-
tial configuration, as well as to address the ongoing reconfiguration of the environment, dynami-
cally optimizing the support for the user’s tasks. Fig. 7 shows the internal representation of the
preferences captured in Fig. 6. Note that the infrastructure creates user interfaces like the one in
Fig. 6 dynamically, based on the internal representation. See [23] for a complete description of
the formats of user preferences and corresponding formal semantics. A description and evalua-
tion of the maximization algorithm used by the infrastructure is available in [17]. This algorithm
exploits the structure of the utility functions to achieve an aggressive, but provably correct, prun-
ing of the search space, resulting in an expected complexity orders of magnitude smaller than
standard constrained maximization heuristics.3

Fig. 7. Internal representation of the QoS preferences in Fig. 6

7 Implementation and Evaluation
The current version of the infrastructure implements the Task Management (TM) and Environ-
ment Management (EM) layers (see Section 4) in Java. For the Environment layer, we have im-
plemented suppliers that wrap Internet Explorer, MSWord, GNU Emacs, Media Player, Xanim
(media player), PowerPoint, Sphinx (speech recognizer), Festival (speech synthesizer), and Ba-
belFish (web-based translator). Each of the suppliers was developed using the most convenient
language to access the application’s APIs, ranging from C/C++, to Java, to Lisp.

3 The worse case complexity is the same as the complexity of standard heuristics.

<utility combine="product">
 <QoSdimension name="latency" type="float">
 <function type="sigmoid" weight="1">
 <thresholds good="1" bad="3" unit="second"/>
 </function>
 </QoSdimension>
 <QoSdimension name="accuracy" type="float">
 <function type="sigmoid" weight="0.7">
 <thresholds good="90" bad="40" unit="percent"/>
 </function>
 </QoSdimension>
 <QoSdimension name="vocabulary" type="enum">
 <function type="table" weight="0.7">
 <entry x="small" f_x="0.8"/>
 <entry x="medium" f_x="1"/>
 <entry x="large" f_x="1"/>
 </function>
 </QoSdimension>
</utility>

 Aura Software Architecture

 17

The effort for developing a new supplier is about 2 weeks time-on-task for an experienced student
for basic capture and recovery of user-level state: for example, for a web browser, the navigation
history, current page, window position, size and scroll, etc. In our experience, controlling the
resource adaptation policies of an application proved to be more challenging. These applications
tend to fall into two categories: first, those coming from research or open-source projects, for
which controlling the policies, although possible, can be an involved task. Second, commercial
software, which either doesn’ t expose APIs to control the adaptation policies, or for which we
could not observe a reliable correlation between the controls transmitted to the application and its
actual behavior – consistently greedy. However, the application market seems to be maturing in
this respect: in recent experiments with RealOne Player we could observe a good correlation be-
tween the control knobs for the resource-adaptation polices and the application’s actual behavior.

For practicality, the current implementation relies on the following assumptions:
− Each task is accessed by a single user (we are not yet addressing cooperative work).
− The user interacts with a single instance of the infrastructure at any given time and location. This as-

sumption will have to be dropped to account for situations such as the user carrying around a laptop with
an instance of the infrastructure, and entering a location containing another instance of the infrastructure,
say his office. Presumably, the user will expect the two infrastructures to cooperate so that he can access
all the capabilities seamlessly.

− A distributed file system is available everywhere the user may want to access his tasks. For situations
where this option is not practical, the infrastructure can easily be extended for using other file access
mechanisms, such as https.

− The suppliers handle issues of data format compatibility. For instance, a supplier of text editing services
should recognize alternative document formats and perform the appropriate transformations, as neces-
sary.

We have tested the infrastructure on Windows and Linux platforms, including the migration of
user tasks between the two.4 The results below were obtained on a IBM ThinkPad 30 laptop run-
ning Windows XP Professional, with 512 MB of RAM, 1.6 GHz CPU, and WaveLAN 802.11b
card. The TM and EM each run on a Hot Spot JRE from Sun Microsystems, version 1.4.0_03.

To test the scalability of the infrastructure with the number of tasks, we populated a large number
of task summaries (see Fig. 4) using data extracted from random text documents. Since we ex-
pect the number of tasks for the average user to range in the hundreds of new definitions per year
of usage, we went up to about 10,000 task definitions. We then repeatedly divided the task direc-
tory size in half to obtain the variation of the performance with the number tasks.

Fig. 8 shows the latency between authentication and the availability of the user’s dashboard con-
taining an up-to-date list of the pending tasks. The diamond-shaped points correspond to the la-
tency in reading the user’s task directory, currently implemented over the file system, and the
square-shaped points to the latency of searching the pending tasks after the directory was read.
As expected, the latency grows linearly with the number of tasks, being under 1 second for well
over 2000 task definitions. Fig. 9 shows the latency of task browsing as well as the memory foot-
print of the TM. As expected, both grow linearly with the number of tasks, at least after a signifi-
cant number of tasks. The current implementation keeps the task directory in memory, after it has
been read after authentication. Of course, the penalty in memory footprint is compensated by the
swift search times: less than 1 second for a search such as the one illustrated in Fig. 5, even
against 10,000 task definitions.

4 Naturally, task migration is constrained by the suppliers available under each platform. At present, only

Emacs and Xanim were tested under Linux.

João Pedro Sousa, David Garlan

18

151

1729
1048

674
407

254

126

3158

40

154
106948370

46

207

10

100

1000

10000

85 171 342 683 1,367 2,769 5,472 10,942 # tasks

ms

read
directory
search
pending

Fig. 8. Latency of dashboard availability after user authentication

Fig. 9. Latency of task searching and TM memory footprint

Should the memory footprint become an issue, for instance when deploying the infrastructure on
a handheld computer, the task directory can be read for every search. The memory footprint of
the TM would drop to 16 MB, and the latency of each search would be increased by the latency
of reading the directory (Fig. 8).

The memory footprint of the EM ranges linearly from 7 MB to 15 MB when it caches the descrip-
tions of 20 up to 400 services in the environment. Note that a “hello world” Java application has
a memory footprint of 4.5 MB, and that a Java/Swing application that shows a “hello world” dia-
log box has a memory footprint of 12 MB.

Once a task is included in the dashboard, the infrastructure takes an average of 200 ms (standard
deviation 50 ms) to find the best configuration. Recall that this involves the constrained maximi-
zation of the utility function for each of the alternative configurations (see example in Fig. 1).
These numbers were obtained from tasks that range from 4 up to 24 alternative combinations of
suppliers for the required services. The performance variation is due to the different numbers of
alternative configurations, number of services in the task, and QoS profile of the suppliers.

Once the user decides to resume a task in the dashboard, the infrastructure takes an average of
700 ms (standard deviation 200 ms) to confirmedly activate all the relevant suppliers. Once the
user decides to suspend an active task, the infrastructure takes an average of 170 ms (standard
deviation 20 ms) to obtain a snapshot of the user-level state in all relevant suppliers.

204
367

169
113 133

336
603

1021
28

22
1616

40

1916

57

10

100

1000

10000

85 171 342 683 1,367 2,769 5,472 10,942 # tasks

ms

1

10

100

MB

ms

MB

 Aura Software Architecture

 19

8 Discussion and Future Work
In this report we presented an infrastructure that supports the notion of user task as a first class
entity. This infrastructure has a number of important benefits:
− Enables mobile users to browse their tasks and swiftly resume their work on a previous interrupted task,

regardless of when and where that task was interrupted.
− Supports the description of alternative ways of supporting the same task, such as taking notes either by

dictation or by editing a text document, and assists the user in choosing the one for which the currently
available devices and applications offer the best support.

− Handles heterogeneity by describing user tasks in terms of the required services, such as editing slides,
viewing a text document, or browsing the web, rather than in terms of particular applications.5

− Easily accommodates legacy applications by wrapping, taking advantage of the increasingly rich APIs
for controlling the applications’ behavior and for capturing its user-level state, such as settings and open
files.

− Optimizes resource allocation across all the applications involved in a user’s task, taking into account
the relative importance of each application within the task.

− Actively monitors the QoS that applications provide to the user.
− Smoothly integrates work in fidelity-aware applications by handling dynamic change at two levels: (a) at

a time scale of every few seconds it optimizes the choice of applications and the task-wide resource allo-
cation. And (b), it passes user preferences (in the form of a utility function) to fidelity-aware applica-
tions, which then can micromanage resource utilization at a time scale of milliseconds.

− Enables fidelity-aware applications to enforce the resource-adaptation polices and QoS tradeoffs that are
appropriate for each task.

Ultimately, the goal of the ongoing research at Carnegie Mellon University is to demonstrate that
such an infrastructure reduces the distractions incurred by mobile users, allowing them to focus
on their tasks rather than on the end-user configuration of computer systems. Such claim needs to
be validated both with respect to the instantiation of tasks, and with respect to the dynamic adap-
tation to variations in the capabilities and resources accessible to the user. Although such claim is
not yet validated at the present date, the results obtained so far are encouraging. Our implementa-
tion demonstrates that it is feasible to obtain the benefits listed above (see [4,17,23]).

We demonstrated that the infrastructure’s overhead for automatically configuring the environ-
ment on the user’s behalf ranges on the few hundreds of milliseconds. This kind of overhead is
mostly imperceptible when coupled with starting up applications. What the user clearly perceives
is that applications instantaneously recover the user-level state where the task was previously in-
terrupted, and that all services associated with a task start up as a unit. Future validation will
demonstrate that such benefit quickly amortizes the cost of defining the task’s constituents and
user preferences.

We also demonstrated that the infrastructure scales well with the number of task definitions, and
with the number of services in the environment.

References
1 Abowd, G., Mynatt, E.: Charting Past, Present and Future Research in Ubiquitous Computing. In: ACM Transac-

tions on Computer-Human Interaction, Vol. 7(1) (2000) 29-58
2 Arnold, K., O’Sullivan, B., Scheifler, R., Waldo, J., Wollrath, A.: The Jini Specification. Addison-Wesley, 1999.
3 Arnstein, L., Sigurdsson, S., Franza, R.: Ubiquitous Computing in the Biology Laboratory, Journal of Lab Auto-

mation (JALA). 6(1), March 2001.

5 This approach is not incompatible with taking advantage of mobile applications, but it builds on
that without limiting the user to one application, no matter how mobile or pliable the application.

João Pedro Sousa, David Garlan

20

4 Balan, R., Sousa, J.P., Satyanarayanan, M. Meeting the Software Engineering Challenges of Adaptive Mobile
Applications. Carnegie Mellon U. Tech. Report, CMU-CS-03-11, 2003.

5 Bannon, L., Cypher, A., Greenspan, S., Monty, M. Evaluation and analysis of user’s activity organization. Pro-
ceedings of CHI’83, pp 54-57, ACM, New York, 1983.

6 Brumitt, B. et al.: EasyLiving: Technologies for Intelligent Environments. Proc HUC2000 – 2nd Int Symposium
on Handheld and Ubiquitous Computing. LNCS 1927 pp 12-29, Springer-Verlag, Gellersen, Thomas (eds.), Sep-
tember 2000.

7 Card, S.K. & Henderson, A.H. Jr. (1987). A multiple, virtual workspace interface to support user task switching.
Proceedings of CHI+GI'87, pp 53-59, ACM. New York, 1987.

8 Cheng, S., Garlan, D., Schmerl, B., Sousa, J. P., Spitznagel, B., Steenkiste, P., Hu, N.: Software Architecture-
based Adaptation for Pervasive Systems. Intl Conference on Architecture of Computing Systems: Trends in Net-
work and Pervasive Computing, Karlsruhe, Germany. LNCS 2299. Schmeck, Ungerer, Wolf (eds.), 2002.

9 Christensen, H., Bardram, J.: Supporting Human Activities – Exploring Activity-Centered Computing. UbiComp
2002: Ubiquitous Computing, Procs of the 4th Intl Conference, Borriello, Holmquist (eds.), LNCS 2498, pp 107-
116, Göteborg, Sweden, 2002.

10 Czerwinski, M., Horvitz, E., Wilhite, S. A diary study of task switching and interruptions, Proceedings of the 2004
conference on Human factors in computing systems, p.175-182, April 24-29, 2004, Vienna, Austria

11 The DAML Services Coalition (multiple authors), "DAML-S: Web Service Description for the Semantic Web",
Proc Int’ l Semantic Web Conference (ISWC), 2002.

12 Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P. Project Aura: Toward Distraction-Free Pervasive Comput-
ing. IEEE Pervasive Computing, April-June 2002.

13 Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. Computer 34(8), pp 57-66, 2001.
14 Kozuch, M., Satyanarayanan, M.: Internet Suspend/Resume. Presented at the Fourth IEEE Workshop on Mobile

Computing Systems and Applications, Calicoon, NY. Available as Intel Research Report IRP-TR-02-01, Jun. 1,
2002.

15 MacIntyre, B., Mynatt, E., Voida, S., Hansen, K., Tullio, J., Corso, G.: Support For Multitasking and Background
Awareness Using Interactive Peripheral Displays. Proc. ACM User Interface Software and Technology
(UIST’01), Orlando, Florida, November 2001.

16 Noble, B.: System support for mobile, adaptive applications, IEEE Personal Computing Systems, vol. 7, no. 1, pp
44-49, Feb. 2000

17 Poladian, V., Sousa, J.P., Garlan, D., Shaw, M. Dynamic Configuration of Resource-Aware Services. Proceedings
of the 26th International Conference on Software Engineering - ICSE 2004, IEEE Computer Society, pp. 604-613,
Edinburgh, UK, May 2004.

18 Ponnekanti, S., Lee, B., Fox, A., Hanranhan, P.: Icrafter: A Service Framework for Ubiquitous Computing Envi-
ronments. UbiComp 2001: Ubiquitous Computing, Proceedings of the 3rd International Conference, Abowd, Bru-
mitt and Shafer (Eds.), LNCS 2201, pp 56-75, Atlanta, Georgia, September 2001.

19 Román, M., Hess, C. K., Cerqueira, R., Ranganathan, A., Campbell, R. H., Nahrstedt, K.: Gaia: A Middleware
Infrastructure to Enable Active Spaces. IEEE Pervasive Computing, pp 74-83, Oct-Dec 2002.

20 Satyanarayanan, M.: Mobile Information Access. IEEE Personal Communications, Vol. 3, No. 1, February 1996.
21 Schmidt, A. et al.: Context Acquisition based on Load Sensing. UbiComp 2002: Ubiquitous Computing, Proceed-

ings of the 4th International Conference, Borriello and Holmquist (Eds.), LNCS 2498, pp 333-350, Göteborg,
Sweden, September 2002.

22 Smith, G., Baudisch, P. et al. GroupBar: The TaskBar evolved. Proceedings of OZCHI’03, Brisbane, Australia,
2003.

23 Sousa, J.P., Garlan, D. The Aura Software Architecture: an Infrastructure for Ubiquitous Computing. Carnegie
Mellon Univ. Technical Report CMU-CS-03-183, 2003.

24 Wang, Z., Garlan, D.: Task Driven Computing. Carnegie Mellon University Technical Report CMU-CS-00-154,
http://reports-archive.adm.cs.cmu.edu/cs2000.html, May 2000.

