
RPT: A Low Overhead Single-End Probing Tool
for Detecting Network Congestion Positions

Ningning Hu, Peter Steenkiste

December 20, 2003
CMU-CS-03-218

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Detecting the points of network congestion is an intriguingresearch problem, because this infor-
mation can benefit both regular network users and Internet Service Providers. This is also a highly
challenging problem, because the Internet is designed to provide only end-to-end services, and
its internals are in principal invisible to end users. Current techniques used to detect bottleneck
positions have problems such as high probing overhead and low measurement accuracy. In this
paper, we propose using Recursive Packet Trains (RPT) to detect the network congestion position.
RPT combines two types of probing packets – measurement packets and load packets – in a single
probing packet train. The idea is to let load packets generate a packet queue on the router, and to
use the measurement packets at the beginning and the end of the train to measure the packet train
length. By detecting the changes in the packet train length,we can derive the congestion points
of the network path. RPT has the advantages that it only needssingle-end control and that it has
relatively low overhead. In this paper, we present the algorithm and evaluate it using both testbed
experiments and Internet experiments.

This research was sponsored in part by DARPA under contractsF30602-99-1-0518, F30602-96-1-0287, and
N66001-99-2-8918, and by NSF under award number CCR-0205266 .

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of DARPA or the U.S. Government.



Keywords: Network measurements, active probing, packet train, congestion



1 Introduction

In this paper, the congestion position is defined as a networklink or router that determines or sig-
nificantly affects the data transmission throughput along anetwork path. Knowing the congestion
positions is extremely useful for both the end users and the Internet Service Providers (ISPs). The
end users can use it to estimate the performance of an ISP, while an ISP can use it to quickly locate
the position of network problems.

Measuring network performance such as the end-to-end available bandwidth has been an active
research area. However the proposed techniques fall short in at least two ways. First, they focus on
end-to-end performance, while providing no location information for the performance bottleneck.
Typical examples include the work on available bandwidth measurements [10, 8, 12, 15, 17]. Sec-
ond, for tools that do measure the hop-by-hop performance, the measurement overhead is often
very high. This category includes Pathchar [9] and BFind [5].

We regard two properties as important for a network congestion point detection tool: single-
end control and low overhead. In this paper, we propose usingRecursive Packet Trains (RPT) to
achieve these two goals. The key idea is to combine measurement packets and load packets in a
single probing packet train. RPT relies on the fact that congestion builds up as load packets queue
on the router interface, thus changing the packet train length on the link. By measuring this change
using the measurement packets, the position of the congestion can be derived.

In this paper, load packets emulate the behavior of regular data packets. That is because during
their transmission, they interleave with the background traffic, which enables us to capture the
network properties that we want. Measurement packets are small probing packets, similar to those
used by standard network tools like ping, traceroute, etc. The measurement packets are used when
we do not require any interaction between the probing packets and the background traffic packets.

This paper has two parts: the algorithm description and the performance evaluation. In Section
3, we describe the idea of Recursive Packet Trains, and present a preliminary algorithm to detect
the congestion position. The rest of the paper is devoted to the performance evaluation, which
includes both Emulab testbed experiments (Section 4) and Internet experiments (Section 5). We
start with a discussion of related work.

2 Related Work

The most widely used active probing tools are ping and traceroute. Ping uses an ICMP echo packet
to measure the round-trip time (RTT) to a specific destination. Traceroute sets the TTL in the IP
header to trigger responses from the routers along the network path, thus collecting the hostname
and RTT of the routers. However, the only performance information provided by these tools is
RTT, which is not directly related to congestion.

Bandwidth estimation techniques, specifically available bandwidth estimation algorithms [10,
8, 12, 15, 17], measure network throughput, which is more closely related to congestion. However,
they provide no location information for the congestion point. Also, all these tools, except cprobe,
need the cooperation of the destination. That makes them very hard to deploy.

Packet loss rate is another metric that is related to user traffic performance, especially the
performance of TCP traffic [13]. Besides tools that can directly measure the network path loss rate

1



such as Sting [16], there has been a tool Tulip [11] that can accurately pin point the packet loss
position.

The tool is most closely related to RPT are BFind [5] and pathchar [9]. BFind adds a steady
UDP flow to the network path, and gradually increases its throughput. At the same time, tracer-
oute is used to monitor the RTT changes from all the routers onthe path. When the UDP flow
throughput approaches the available bandwidth along the path, the RTT from the source to the
bottleneck router is expected to change more significantly than that to non-bottleneck routers. One
of the problems of BFind is that the UDP flow generates a heavy measurement overhead, which is
undesirable for a general purpose probing tool.

Pathchar [9] was designed earlier. It is used to estimate thecapacity of each link on a network
path. The main idea is to measure the data transmission time on each link. This is done by taking
the difference between the RTTs from the source to two adjacent routers. To filter out measurement
noises due to factors such as queueing delay, pathchar needsto send out a large number of probing
packets, picking out the smallest RTT values for the final calculation. As a result, pathchar also
has a large probing overhead.

3 The Probing Algorithm

The key intuition that motivates this algorithm is: when a probing packet train passes through the
routers along a network path, its total length changes with the change of the available bandwidth on
each link. The change due to two reasons: the packet transmission time is different on links with
different capacities, and the interaction with backgroundtraffic packets can increase or decrease
the total packet train length. We expect the largest change to happen at the congestion points. To
implement this idea, we need a probing technique that can measure the train length oneach link,
which is done by a novel packet train design — Recursive Packet Train (RPT), and an algorithm
that can extract the exact congestion positions. In this section, we first describe the structure of the
RPT, we then present the algorithm used to detect the congestpositions, and finally we discuss the
properties of the RPT technique.

202 20 21 1255 255 255

40B 500B

60 packets 

Figure 1: Recursive Packet Train (RPT). The number in each packet is the TTL value.

3.1 Recursive Packet Train

An example of a Recursive Packet Train is shown in Figure 1. Inthis figure, every box is a UDP
packet, the numbers in the boxes are the TTL values. The wholeprobing packet train is composed
of two types of packets —measurement packets, andload packets:

2



1. Measurement packets are standard traceroute packets, i.e., they are 40 bytes UDP packets,
with properly filled-in payload fields. There are 20 measurement packets, at either end of
the packet train. The TTL value of each measurement packet islinearly incremented from
the head/tail packet, and the head/tail packet has TTL value1. The train in Figure 1 can only
measure a network path with no more than 20 hops, because it has only 20 measurement
packets on both ends, but we can easily add more measurement packets for a longer path.

2. Load packets are used to generate a packet train with a measurable length along the net-
work path. The load packets should be large packets. The exact size is configurable in our
implementation. In the following experiments, we set it to 500 bytes.

The number of packets in the packet train determines the amount of background traffic that
it can interact with. As a result, this number should be fairly large. In our experiment, we set
it empirically in the range of 60 to 100. Automatically configuring the number of probing
packets is future work.

RPT works as follows. The user sends out all the packets back-to-back. When they arrive at
the first router, the first and the last packet will expire and be dropped because their TTL values
are 1, resulting in two ICMP packets being generated [14]. The other packets in the train are
forwarded to the next router, with their TTL decremented by 1. Since the TTL values in a RPT are
set recursively, the above process is repeated on each subsequent router. This method of probing is
calledRecursive Probing.

The key to the probing procedure is as follows:the time gap between the two ICMP packets
from each router is a close approximation of the time length of the packet train on the incoming
link of that router. This is because: (1) each router only drops the head and the tail measurement
packets, and (2) the measurement packet size is much smallerthan the total size of the train, i.e.,
the change of packet train length due to the dropping of the measurement packets can be neglected.
In the following, we refer to the interval between two ICMP packets from the same router as the
gap value.

3.2 The Detection Algorithm

RPT provides a way to get the probing packet train length on each network link along the path,
i.e., a sequence of gap values. With these gap values, it is possible to find out the exact congestion
position — we expect the train length to change significantlyat the congestion point. We now
present an algorithm that can detect the congestion position from a sequence of gap values.

Figure 2 shows the pesudo-code for the detection algorithm.Intuitively, the algorithm searches
for the positions where the gap value has a significant change. To do this, we classify the gap value
changes into two categories:switch points, andstage points. A switch point is defined as a change
that lasts for at least two hops; while a stage point is just a change for a single hop, whose gap
value may or may not be the same in the next hop. Figure 3(a) illustrates this difference.

The reason for making this distinction is to filter out gap value changes due to non-congestion
factors. As will be discussed in the next section, there are two major non-congestion factors —
the time used by routers to generate ICMP packets and reversepath queueing. To distill the real
congestion induced changes, we rely on the observation thatcongestion induced gap values will

3



Algorithm CongestionDetect(gap)
/* gap is an gap sequence withlen values */f

return if len < 4;
return if over half of the gap values is 0;
fix the outliers;
fix the hill/valley point;

/* search for switch points */
if (len >= 12) f /* look for 3 switch points */switch[0::2] = SEGMENT3(gap);g else if(len >= 6) f /* look for 2 switch points */switch[0::1] = SEGMENT2(gap);g else f /* only look for 1 switch point */switch[0] = SEGMENT1(gap);g
/* search for the stage point */
for i in (1::(len � 1)) fdiff [i� 1] = abs(gap[i]� gap[i� 1]);gstage = get the largest 3 elements fromdiff ;

compare with the previous 4stage record, if a hop is labelled
for less than 4 times, it will not be included in the comparison in the next step;

/* output */
compareswitch with stage, output the 3 hops with the largest change;g

Figure 2: The Congestion Detection Algorithm

typically be maintained by subsequent routers. Therefore,the gap value sequence is expected to
have a square wave shape. Otherwise, the gap change due to non-congestion reasons is more likely
to be inconsistent. So if we detect a square wave in the sequence of gap values, as defined by the
switch point, we have a higher confidence that it is caused by congestion.

To search for the switch point, we use a simple brute-force algorithm. By default, we search for
3 switch points. We arbitrarily split the gap sequence into 4segments, with at least 2 points in each
segment. This requires the sequence to have at least 8 points. In our algorithm, we only search
sequences that have at least 12 points, so that we can compareamong several combinations. For
each segment, we compute its average, and the distance of each point to this average. We use the
sum of the computed distances to indicate how good the segmentation approaches a square wave
— the smaller, the better. We output the segmentation with the minimum sum. As just noted, we
need at least 12 points to search for 3 switch points. For shorter sequences, we only look for 2 (for

4



1

2 3

4

5 6gap value

time

switch point

time

(a) (b)

valley point

hill point

gap value

stage point

Figure 3: Switch/stage point & hill/valley point

a 6-11 point sequence) or 1 (for a sequence with less than 6 points) switch points.
For the stage point, since it is for only one hop, it is very hard to use the probing result of a single

RPT to determine whether it is congestion induced. Instead,we compare multiple consecutive
probing results to decide whether a stage point on a particular hop occurs consistently. For this
reason, we need to maintain astage point history. In our algorithm, we compare 5 probings. If a
stage point at a hop occurs at least 4 times, we label it as congestion induced.

So far, we did not consider measurement noise, which is unavoidable in probing. Here, we list
two of the important techniques that deal with noise and packet loss:

1. We need two ICMP packets from each router to compute the gapvalue. If at least one of
them is lost, we will have a 0 gap value. If over half of the gap values are 0, we discard the
whole sequence.

2. We need to modify thehill/valley point (Figure 3(b)). A hill point is defined as a pointp2 in
a triple-point group:p1; p2; p3, with gap values satisfying2g1 < g2 > 2g3. A valley point is
defined similarly, except the condition is changed tog1 > 2g2 < g3. Intuitively, a hill/valley
point is a burst in a time series measurement. But in the RPT probing, this type of burst is
not expected, since the gap value on one router tends to be maintained or increased by the
next router. For this reason, we regard a burst as an indication of measurement noise. In our
algorithm, we replaceg2 with the closer gap value of its two neighbors.

3.3 Properties of RPT

From the above discussion, we can see that the main properties of RPT include:

1. Time consistent measurements. As described above, the gap values from different routers
are triggered by thesame RPT, and the measurement times are very close. That allows us
to directly compare the measurements from adjacent routers. This property also enables us
to catch all the congestion points along the path that changethe packet train length. That is,
RPT is potentially capable of detecting multiple congestion points. Note that RPT is biased
to early congestion points, because a congestion point in anearly part of the path can hide a
later congestion with similar properties.

5



2. Single-end control. RPT does not need the cooperation of the destination, and can thus be
easily used by a regular network user.

3. Low overhead. For the case in Figure 1, one probing only needs 100 packets. For better
measurement accuracy, we may need multiple RPTs to do the probing. Even so, this is an
extremely light-weight probing technique, comparing withpathchar and BFind,

In terms of the measurement accuracy, the following factorsneed to be considered:

1. ICMP packet generation time. A router needs time to generate the ICMP response packets.
That time is different for different routers, and possibly for different packets on the same
router. As a result, the measured gap value for a router will not exactly equal the packet
train length when passing that router. Fortunately, measurements in [7] and [6] show that
the ICMP packet generation time is pretty small; in most cases it is between 200us and
500us. So if the packet train length is much larger than 500us, it is reasonable to neglect
this generation time. Since most Internet paths have a bottleneck link with a capacity of less
than 100Mbps, and we use 100 load packets for the Internet experiment, the corresponding
packet train length is larger than 4ms, which we regard as large enough to ignore the ICMP
packet generation time.

2. Queueing delay on the reverse path. When the ICMP packets are sent back to the sender, they
can experience queueing delay due to reverse path traffic. Since this delay can be different
for different packets, it is a source of measurement error. We are not aware of any related
work that has measured this value. In our algorithm, we try toreduce the impact of this
factor by filtering out the measurement outliers.

RPT also has some structural limitations:

1. We find that network firewalls often only let through 40 bytes UDP packets that strictly
conform to the traceroute packet format (with properly filled-in payload fields), and drop
any other UDP probing packets, such as the load packets in a RPT. So if the sender is behind
such a firewall, RPT will not work. Similarly, if the destination is behind a firewall, the
measurements for those hops behind the firewall can not be obtained by RPT.

2. Even if there is no firewall on the destination side, RPT maynot be able to measure the
packet train length on the last link, because the ICMP packets sent by the destination host
can not be used. Theoretically, the destination is supposedto generate an ICMP destination
port unreachable message for each packet in the packet train. But due to ICMP rate limiting,
the destination network system will typically only generate ICMP packets for some of the
probing packets, which often does not include the tail packet. Even if an ICMP packet is
generated for both the head and the tail packet, theaccumulated ICMP generation time for
the whole packet train makes the returned interval worthless.

4 Testbed Validation

We use both the Emulab testbed and Internet paths to evaluateRPT. The Emulab testbed provides a
fully controlled environment to study different aspects ofthe technique, while Internet experiments

6



are necessary for studying RPT’s performance with real background traffic. In this section, we
focus on the Emulab testbed experiments. The Internet experiments are discussed in the next
section.

With a fully controlled testbed, we can separate the factorsthat determine the final measure-
ments, focusing on obtaining a preliminary understanding of the algorithm properties. In this
section, we study the performance of RPT with (1) a single flowof background traffic, (2) multi-
flow background traffic, (3) queueing delay on the reverse path. In all three cases, the background
traffic is generated using iperf [4] UDP flows.

0
100M
0.5ms

50M
0.1ms

30M
0.4ms

100M
0.4ms

80M
14ms

70M
2ms

50M
4ms

50M 100M
40ms 10ms1 2 3 4 5 7 8 96

Figure 4: Testbed configuration. Hop 0 is the probing sender,hop 9 is the probing destination.
Hop 1 - 8 work as routers, the blank boxes are used as iperf sender/receiver to generate the traffic
load.

The testbed is created using the Emulab [3] facilities. Figure 4 shows the testbed configuration.
Because the physical Emulab link capacity is 100Mbps, we setthe bottleneck link capacity as
30Mbps in this experiment, using the dummynet functionality provided by Emulab. The link delays
are roughly set based on a traceroute measurement from a CMU host to yahoo.com. Note that all
the hosts on the testbed are PCs, not routers, so some properties such as the ICMP generation time
are not exactly the same as those of a real router. As the result, the following testbed experimental
results ignore some of the router related factors.

4.1 Single-Flow Background Traffic

In this section, we focus on two factors that determine the degree of a congestion: the link capacity,
and the traffic load.

In Figure 5, we add no background traffic, and the congestion point is purely determined by the
link capacity. We probe the path 10 times; the gap values on each hop are plotted in Figure 5. We
can see that the maximum gap changes appear at R3, whose inputlink is the bottleneck link. There
are also small gap increases at the subsequent routers. One possible reason is time measurement
error. Another reason is that the gaps in the packet train arenot evenly distributed, so when the
link capacity decreases, some of the small packet gaps can still increase, thus increasing the total
packet train length.

Figure 5 plots the base case of the probing results. In the following, we add different back-
ground traffic load on different links to study RPT’s performance. Unless explicitly stated, the
experiments are done using the following procedure. We gradually increase the iperf UDP traffic
load, in increments of 10% of the link capacity. For each load, we probe the path 10 times, with 5
seconds sleeping time in between.

Figure 6 shows the results when adding background traffic on the link between R3 and R4. The
other links are still free of load. Here, we choose to presentthe measurement from 40% to 90%

7



1 2 3 4 5 6 7 8
2000

3000

4000

5000

6000

7000

8000

9000

10000

hop number

ga
p 

va
lu

e(
us

)

Figure 5: Measurements with no background traffic. The line connects the median values on each
hop.

traffic load. We can see that, only when the available bandwidth on this link is less than 30Mbps
(the 80% graph) does the congestion point change from R3 to R4, which correctly reflects the real
bottleneck change.

Figure 7 presents the measurement when adding background traffic on the link between R6 and
R7, while keeping the other links free of load. Similarly, only when the available bandwidth on
this link is less than 30Mbps (starts from the 50% point in thefigure) does the congestion point
change to R7, which is again the real bottleneck change.

4.2 Multi-Flow Background Traffic

In this section, we study how RPT works with multiple competing traffic flows. We focus on two
scenarios. In the first scenario, we add two background flows in the same direction, but on different
links. This is done as follows: we first add a 20Mbps flow from R4to R8, then we gradually
increase the traffic between R6 and R7, in 3Mbps increments. As in the previous experiments, we
do 10 probings for each setting, for 9 settings in total. In the second scenario, we configure the
two traffic flows in opposite directions: we first fix the load from R8 to R4 to 20Mbps, and then
gradually increase the load from R6 to R7, in increments of 10% of the link capacity.

Table 1 presents the experimental results. Since our probing algorithm uses the first 4 probings
as the stage point history, we can obtain 6 final measurements, and each hop can be labelled at most
6 times. The numbers in the table are the number of times that arouter is labelled as a congestion
point.

For the first experiment, the real bottleneck is on< R6; R7 >, and the probing algorithm starts
to identify it when the traffic load reaches 20% of the residual capacity, i.e. when the real available
bandwidth is 24Mbps. The measurement misses the real congestion point at R7 for 3 times in
the 10% case, due to the small difference in available bandwidth of 27Mbps on< R6; R7 > and
30Mbps on< R2; R3 >. These results exemplifies an important property of RPT: themeasure-

8



0 5 10
2000

4000

6000

8000

10000

40% cbw
0 5 10

2000

4000

6000

8000

10000

50% cbw
0 5 10

2000

4000

6000

8000

10000

60% cbw

0 5 10
2000

4000

6000

8000

10000

12000

70% cbw
0 5 10

2000

4000

6000

8000

10000

12000

80% cbw
0 5 10

2000

4000

6000

8000

10000

12000

90% cbw

Figure 6: Measurement with different background traffic on the link <R3, R4>. “cbw” mean
background traffic load. In each graph, the x-axis is the hop number, the y-axis is the gap value in
micro-seconds.

ment is biased to the congestion point in the early part of thepath, i.e., a congestion point can hide
a later point with a similar level of congestion. This is alsowhy the tool misses the congestion
point < R6; R7 > in the second experiment when the load is 40% and 50% (corresponding to
available bandwidths of 30Mbps and 25Mbps).

4.3 Queueing Delay on the Reverse Path

During the probing of RPT, when ICMP packets are sent back to the sender, they may experience
queueing delay due to the traffic in the reverse direction, thus increasing measurement error. To
understand this effect, we experiment with traffic on links< R3; R2 > and< R7; R6 >. That is,
we add traffic in the reverse direction on each of these links,and gradually increase the load, as we
did in the experiment for Figure 6.

The experimental results are listed in Table 2. We can see that, R2 and R3 are always labelled
as congestion points in all the probings, which means that the probing technique never misses the
real congestion point.

9



0 5 10
2000

4000

6000

8000

10000

12000

20% cbw
0 5 10

2000

4000

6000

8000

10000

12000

30% cbw
0 5 10

2000

4000

6000

8000

10000

12000

40% cbw

0 5 10
2000

4000

6000

8000

10000

12000

50% cbw
0 5 10

2000

4000

6000

8000

10000

12000

60% cbw
0 5 10

2000

4000

6000

8000

10000

12000

14000

70% cbw

Figure 7: Measurement with background traffic on the link<R6, R7>. In each graph, the x-axis
is the hop number, the y-axis is the gap value in micro-seconds.

Table 1: Multiple flows< R4; R8 > & < R6; R7 > < 8; 4 > & < 6; 7 >
cbw r1 r2 r3 r4 r5 r6 r7 r8 r1 r2 r3 r4 r5 r6 r7 r8
10% 0 6 6 0 1 2 3 0 0 6 6 0 3 1 2 0
20% 0 6 6 0 0 0 6 0 0 6 6 0 2 1 3 0
30% 0 6 6 0 1 1 4 0 0 6 6 0 5 1 0 0
40% 0 6 6 0 0 0 6 0 0 6 6 0 1 1 4 0
50% 0 6 6 0 0 0 6 0 0 6 6 0 1 2 3 0
60% 0 6 6 0 0 0 6 0 0 6 6 0 1 0 5 0
70% 0 6 6 0 0 0 6 0 0 6 6 0 0 1 5 0
80% 0 6 6 0 0 0 6 0 0 6 6 0 0 0 6 0
90% 0 6 6 0 0 0 6 0 0 6 6 0 0 0 6 0

5 Internet Validation

This section evaluates the performance of RPT on Internet paths. For a complete evaluation on
the Internet, we need to know the real available bandwidth onall the links of a network path.
But that information is hard to obtain. The Abilene backbone[1] can partly solve this problem,

10



Table 2: Return path queueing on link< R3; R2 > and< R7; R6 >< R3; R2 > < R7; R6 >
cbw r1 r2 r3 r4 r5 r6 r7 r8 r1 r2 r3 r4 r5 r6 r7 r8
10% 0 6 6 0 4 1 0 0 0 6 6 0 3 2 0 0
20% 0 6 6 0 3 3 0 0 0 6 6 0 4 0 2 0
30% 0 6 6 0 3 0 3 0 0 6 6 0 5 1 0 0
40% 0 6 6 0 2 3 1 0 0 6 6 0 5 1 0 0
50% 0 6 6 0 1 3 1 0 0 6 6 0 5 1 0 0
60% 0 6 6 0 3 2 1 0 0 6 6 0 4 0 2 0
70% 0 6 6 0 3 0 3 0 0 6 6 0 6 0 0 0
80% 0 6 6 0 4 1 1 0 0 6 6 0 3 2 1 0
90% 0 6 6 0 2 2 2 0 0 6 6 0 5 1 0 0

since it publishes its backbone topology and the traffic load(5-minute SNMP statistics) [2]. For
this reason, we did all our Internet experiments over Abilene paths. Because the tool needs root
permission to send raw packets, we only did the experiment from two sources: a CMU machine
and an Emulab host.

The experiment is carried out as the follows. Based on Abilene’s backbone topology, from
each probing source node, we choose 22 probing destinations. For each of the 11 major routers
on the Abilene backbone, we make sure that it is used by at least one probing path. From either
probing source, we keep probing all the destinations, with 2seconds sleeping time in between. For
each destination, we obtained 33 sets of measurements from the CMU source, and over 200 sets
of measurements from the Emulab source.

Table 3 and Table 4 list the experimental results. For each probing destination, we list the
total number of probing results that we collected (excluding the first 4 that are used as the stage
point history), and the top 3 routers that are labelled as thecongestion points. For each congestion
point, we present the number of times it is labelled, and the corresponding percentage over all the
probings, which is referred to as thedetection rate.

The primary congestion point for CMU sourced paths is abilene-psc.abilene.ucaid.edu, cor-
responding to a link within Pittsburgh Supercomputing Center. The top congestion point for the
Emulab sourced paths is 205.124.237.10. It is a router in theUtah Educational Network. In both
cases, the detection rate is over 90%, which shows the stability of RPT.

The second congestion point in each path is also valuable, asindicated by the detection rate,
which is often over 50%. We believe this is the second bottleneck on the path. For example, the
path from both sources to www.ogig.net identified pos-6-3.core0.eug.oregon-gigapop.net as the
second congestion point, both with a 70% detection rate. Using the MRTG data from Abilene
(refer to Figure 8), we find that that router corresponds to anOC-3 link, which indeed has the
smallest capacity for the partial path starting from PSC.

11



6 Conclusion and Future Work

In this paper, we proposed the idea of RPT, a tool that can be used to detect the congestion position
of a network path. It has attractive properties such as single-end control and low overhead. We
also report the design and evaluation of a preliminary algorithm that analyzes the probing results
from RPT and identifies the congestion point of a network path. We use both Emulab testbed and
Internet experiments to evaluate this algorithm. The preliminary results show that RPT is effective
in detecting the position of network congestion.

We are currently working on improving the following aspectsof the RPT technique presented
in this paper:

1. Algorithm improvement. We need to improve the congestion point detection algorithm dis-
cussed in Section 3.2, to make it more complete.

2. More realistic testbed evaluation. In this paper, we studied several aspects of the probing
technique, trying to understand its basic properties. But the traffic loads that we used are not
always realistic. Experiments with more realistic background traffic are needed.

3. More solid and extensive Internet evaluation. We only study the performance of the tool on
Abilene Internet paths. We need to use more diverse Internetpaths to evaluate this tool. A
challenge in Internet experiment is to know the real traffic load onall relevant links.

4. Understanding what this tool really measures. We discussed the notion of “congestion point”
in this paper. But in some cases, this may not be the link with the lowest available bandwidth.
We need to have a more complete understanding on what factorsaffect our measurement and
how to distinguish them.

5. The impact of the probing packet size and the number of packet packets. In this paper, the
probing packet size and the number of load packets in the train were empirically selected.
We need to know how the measurement change with different configurations, and eventually
design a mechanism to automatically configure the probing packet train.

References

[1] Abilene. http://abilene.internet2.edu/.

[2] Abilene network monitoring. http://www.abilene.iu.edu/noc.html.

[3] Emulab. http://www.emulab.net.

[4] Iperf. http://dast.nlanr.net/Projects/Iperf/.

[5] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. An empirical evaluation of wide-area
internet bottlenecks. InIMC’03, Miami, Florida, October 2003.

[6] Kostas G. Anagnostakis, Michael B. Greenwald, and Raphael S. Ryger. cing: Measuring
network-internal delays using only existing infrastructure. In INFOCOM 2003, April 2003.

12



[7] Ramesh Govindan and Vern Paxson. Estimating router icmpgeneration delays. InPAM’02,
March 2002.

[8] Ningning Hu and Peter Steenkiste. Evaluation and characterization of available bandwidth
probing techniques.IEEE JSAC Special Issue in Internet and WWW Measurement, Mapping,
and Modeling, 21(6), August 2003.

[9] Van Jacobson. pathchar - a tool to infer characteristicsof internet paths, 1997. presented as
April 97 MSRI talk.

[10] Manish Jain and Constantinos Dovrolis. Pathload: A measurement tool for end-to-end avail-
able bandwidth. InPassive and Active Measurements, Fort Collins CO, March 2002.

[11] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas Anderson. User-level internet path
diagnosis. InSOSP’03, The Sagamore, Bolton Landing (Lake George), New York, October
2003.

[12] Bob Melander, Mats Bjorkman, and Per Gunningberg. A newend-to-end probing and anal-
ysis method for estimating bandwidth bottlenecks. InIEEE Globecom - Global Internet
Symposium, San Francisco, November 2000.

[13] Jitendra Padhye, Victor Firoiu, Don Towsley, , and Jim Kurose (U. Mass). Modeling TCP
throughput: A simple model and its empirical validation. InProc. of ACM SIGCOMM’98,
Vancouver, British Columbia, Canada, September 1998.

[14] J. Postel. Internet control message protocol, September 1981.

[15] Vinay Ribeiro, Rudolf Riedi, Richard Baraniuk, Jiri Navratil, and Les Cottrell. pathchirp: Ef-
ficient available bandwidth estimation for network paths. In Passive and Active Measurement
Workshop 2003, La Jolla, CA, April 2003.

[16] Stefan Savage. Sting: a TCP-based network measurementtool. In Proceedings of the 1999
USENIX Symposium on Internet Technologies and Systems, pages 71–79, Boulder, CO, Oc-
tober 1999.

[17] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A measurement study of available band-
width estimation tools. InInternet Measurement Conference (IMC) 2003, Miami, Florida,
USA, October 2003.

APPENDIX

A The MRTG for the Abilene Path

13



Table 3: Probing results over Abilene paths using a CMU host as the source

www.anl.gov 33 www.ogig.net 33
30 0.91 abilene-psc.abilene.ucaid.edu 25 0.76 abilene-psc.abilene.ucaid.edu
25 0.76 bar-cmu-ge-4-0-0-1.psc.net 23 0.70 pos-6-3.core0.eug.oregon-gigapop.net
5 0.15 chinng-nycmng.abilene.ucaid.edu16 0.48 bar-cmu-ge-4-0-0-1.psc.net

www.apan.net 34 www.onenet.net 33
33 0.97 abilene-psc.abilene.ucaid.edu 31 0.94 abilene-psc.abilene.ucaid.edu
20 0.59 bar-cmu-ge-4-0-0-1.psc.net 19 0.58 bar-cmu-ge-4-0-0-1.psc.net
5 0.15 losang-hstnng.abilene.ucaid.edu 9 0.27 164.58.10.209

www.arc.nasa.gov 33 www.pnw-gigapop.net 33
27 0.82 abilene-psc.abilene.ucaid.edu 24 0.73 abilene-psc.abilene.ucaid.edu
16 0.48 bar-cmu-ge-4-0-0-1.psc.net 10 0.30 nycmng-washng.abilene.ucaid.edu
9 0.27 chinng-nycmng.abilene.ucaid.edu10 0.30 HYPER-VL502.GW.CMU.NET

www.arizona.edu 33 www.rutgers.edu 34
19 0.58 abilene-psc.abilene.ucaid.edu 26 0.76 abilene-psc.abilene.ucaid.edu
16 0.48 bar-cmu-ge-4-0-0-1.psc.net 17 0.50 bar-cmu-ge-4-0-0-1.psc.net
10 0.30 HYPER-VL502.GW.CMU.NET 11 0.32 nycmng-washng.abilene.ucaid.edu
www.calren2.net 34 www.sox.net 34
23 0.68 abilene-psc.abilene.ucaid.edu 31 0.91 abilene-psc.abilene.ucaid.edu
20 0.59 bar-cmu-ge-4-0-0-1.psc.net 25 0.74 bar-cmu-ge-4-0-0-1.psc.net
10 0.29 beast-bar-g4-0-1.psc.net 5 0.15 gw2-sox.sox.gatech.edu
www.hawaii.edu 33 www.tamu.edu 34
24 0.73 abilene-psc.abilene.ucaid.edu 31 0.91 abilene-psc.abilene.ucaid.edu
17 0.52 bar-cmu-ge-4-0-0-1.psc.net 22 0.65 bar-cmu-ge-4-0-0-1.psc.net
12 0.36 205.166.205.218 7 0.21 atla-washng.abilene.ucaid.edu
www.iastate.edu 33 www.ttu.edu 34
26 0.79 abilene-psc.abilene.ucaid.edu 32 0.94 abilene-psc.abilene.ucaid.edu
13 0.39 HYPER-VL502.GW.CMU.NET 23 0.68 bar-cmu-ge-4-0-0-1.psc.net
10 0.30 nycmng-washng.abilene.ucaid.edu5 0.15 hstnng-atlang.abilene.ucaid.edu
www.louisville.edu 33 www.udel.edu 34
29 0.88 abilene-psc.abilene.ucaid.edu 31 0.91 abilene-psc.abilene.ucaid.edu
24 0.73 bar-cmu-ge-4-0-0-1.psc.net 26 0.76 bar-cmu-ge-4-0-0-1.psc.net
11 0.33 lou-belknap-9-0-0-p.kec.net 7 0.21 chp-br4-p-0-0-0.nss.udel.edu
www.magpi.net 34 www.usf.edu 34
32 0.94 abilene-psc.abilene.ucaid.edu 32 0.94 abilene-psc.abilene.ucaid.edu
29 0.85 bar-cmu-ge-4-0-0-1.psc.net 28 0.82 bar-cmu-ge-4-0-0-1.psc.net
6 0.18 local1.abilene.magpi.net 8 0.24 atla-washng.abilene.ucaid.edu

www.npt.nren.nasa.gov 33 www.wisc.edu 33
25 0.76 abilene-psc.abilene.ucaid.edu 24 0.73 abilene-psc.abilene.ucaid.edu
21 0.64 bar-cmu-ge-4-0-0-1.psc.net 21 0.64 bar-cmu-ge-4-0-0-1.psc.net
8 0.24 dnvrng-kscyng.abilene.ucaid.edu16 0.48 r-peer-WNMadison-gw.net.wisc.edu

www.oar.net 33 www.wpi.edu 34
29 0.88 abilene-psc.abilene.ucaid.edu 27 0.79 abilene-psc.abilene.ucaid.edu
24 0.73 bar-cmu-ge-4-0-0-1.psc.net 26 0.76 bar-cmu-ge-4-0-0-1.psc.net
12 0.36 chinng-nycmng.abilene.ucaid.edu6 0.18 nycmng-washng.abilene.ucaid.edu14



Table 4: Probing results over Abilene paths using an Emulab host as the source

www.anl.gov 207 www.ogig.net 207
192 0.93 205.124.237.10 182 0.88 205.124.237.10
115 0.56 wr1ebc-crebc.net.utah.edu 145 0.70 pos-6-3.core0.eug.oregon-

gigapop.net
101 0.49 anl-mren-gige.anchor.anl.gov 113 0.55 205.124.249.122
www.apan.net 208 www.onenet.net 206
201 0.97 205.124.237.10 201 0.98 205.124.237.10
153 0.74 155.99.132.109 138 0.67 155.99.132.109
80 0.38 205.124.249.122 123 0.60 205.124.249.122

www.arc.nasa.gov 207 www.pnw-gigapop.net 207
190 0.92 205.124.237.10 201 0.97 205.124.237.10
138 0.67 155.99.132.109 140 0.68 155.99.132.105
88 0.43 205.124.249.122 81 0.39 205.124.249.122

www.calren2.net 208 www.rutgers.edu 208
199 0.96 205.124.237.10 198 0.95 205.124.237.10
110 0.53 wr1ebc-crpark.net.utah.edu 120 0.58 POS5-0-0-rutgers-gw.Rutgers.EDU
101 0.49 WestEdCAT6009POS-

WestEdGSRPOS.CSU.net
116 0.56 wr1ebc-crebc.net.utah.edu

www.cmu.edu 207 www.sox.net 208
197 0.95 205.124.237.10 201 0.97 205.124.237.10
132 0.64 wr1ebc-crpark.net.utah.edu 105 0.50 155.99.132.105
108 0.52 cmu-i2.psc.net 76 0.37 205.124.249.122
www.hawaii.edu 207 www.tamu.edu 208
195 0.94 205.124.237.10 202 0.97 205.124.237.10
120 0.58 155.99.132.105 134 0.64 155.99.132.109
69 0.33 205.124.249.122 34 0.16 TAMU.GIGAPOP.GEN.TX.US

www.iastate.edu 207 www.ttu.edu 208
198 0.96 205.124.237.10 198 0.95 205.124.237.10
75 0.36 155.99.132.109 128 0.62 155.99.132.105
43 0.21 wr1ebc-crebc.net.utah.edu 63 0.30 205.124.249.122

www.louisville.edu 207 www.udel.edu 208
197 0.95 205.124.237.10 194 0.93 205.124.237.10
123 0.59 155.99.132.109 98 0.47 wr1ebc-crebc.net.utah.edu
22 0.11 205.124.249.122 60 0.29 chp-br4-p-0-0-0.nss.udel.edu

www.magpi.net 208 www.usf.edu 208
191 0.92 205.124.237.10 204 0.98 205.124.237.10
117 0.56 wr1ebc-crpark.net.utah.edu 139 0.67 155.99.132.109
51 0.25 phl-01-02.backbone.magpi.net 58 0.28 205.124.249.122

www.npt.nren.nasa.gov 207 www.wisc.edu 207
202 0.98 205.124.237.10 199 0.96 205.124.237.10
128 0.62 155.99.132.109 104 0.50 155.99.132.109
67 0.32 192.12.123.201 82 0.40 r-peer-WNMadison-gw.net.wisc.edu

www.oar.net 207 www.wpi.edu 208
197 0.95 205.124.237.10 198 0.95 205.124.237.10
132 0.64 155.99.132.105 122 0.59 155.99.132.105
49 0.24 krc1-atm1-0-0s4.columbus.oar.net 119 0.57 goddard-wpi.goddard.gigapop.net

15



PSC – (WASH), OC48

(WASH) – NYCM, OC192

(NYCM) – CHIN, OC192

(CHIN) – IPLS, OC192

16



(IPLS) – KSCY, OC192

(KSCY) – DNVR, OC192

(DNVR) – OGIG, OC3

Figure 8: The MRTG traffic statistics for the Abilene routerson the path CMU! www.ogig.net.

17


