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Abstract

Linear subspace has many important applications in computer vision, such as structure from
motion, motion estimation, layer extraction, object recognition, and object tracking. Singular
Value Decomposition (SVD) algorithm is a standard technique to compute the subspace from
the input data. The SVD algorithm, however, is sensitive to outliers as it uses L2 norm metric,
and it can not handle missing data either. In this paper, we propose using L1 norm metric to
compute the subspace. We show that it is robust to outliers and can handle missing data. We
present two algorithms to optimize the L1 norm metric: the weighted median algorithm and
the quadratic programming algorithm.
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1 Introduction

The measurements or observation data often lie only in a lower dimensional subspace in the
original high dimensional data space. Such subspace, especially the linear subspace, has
many important applications in computer vision, such as Structure from Motion (SFM) [17],
motion estimation [8], layer extraction [9, 10], object recognition [19], and object track-
ing [1].

To compute the subspace, ameasurement matrixW is first constructed, which is then
factorized to compute the subspace. To constructW , each data item is first reshaped into a
column vectormi. All of the reshaped column vectors are then stacked together to form the
measurement matrixW = [m1,m2, · · · ,mK ]. To compute the subspace, we need to factorize
this measurement matrixW into U andV :

WD×K = UD×dV
>
d×K (1)

HereD is the dimension of the input data space;K is the number of input data items; andd
is the dimension of the linear subspace. Thed columns of the matrixU are the bases of the
linear subspace that we want to compute.

The input data will contain noises in real cases. Depending on the distribution of the
noises, the maximum likelihood estimation (MLE) of the subspace (U andV ) is equivalent
to minimize some reconstruction error function. For example, if the noise distribution can
be modelled by Gaussian distribution, then the MLE is equivalent to minimize the following
cost function:

E(U, V) = ‖W− UV>‖2 (2)

where‖ · ‖2 is the matrix Frobenious norm (L2 norm).
It is well known that theL2 norm is sensitive to the outliers in the input data. In this

paper, we will first formulate the subspace computation problem as a probabilistic estimation
problem. Then we will present several cost functions according to different assumptions on
noise model. We will show that the cost function usingL1 norm metric is not only robust to
outliers, but also computationally attractable.

2 Probabilistic view of subspace computation

It was shown in [15, 16] that principal subspace can be computed by maximum likelihood
estimation, which in turn can be computed by EM algorith [4]. In a similar way, we formulate
the subspace computation as a maximum likelihood estimation problem under different noise
model. We will show that maximizing the likelihood is equivalent to minimization some cost
function. The format of the cost function is determined by the distribution of the noise in the
data.

In general, the observed datum (local measurement)mi is aD-dimensional column vec-
tor contaminated by additive noise:

mi = µi + εi i = 1, · · · , K (3)
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whereµi is the unobservable (fixed but unknown) true value corresponding to the observed
(measured)mi, andεi is the additive noise. We know thatµi resides in ad dimensional
linear subspace (d < PD) such that:

µi = Uvi (4)

wherevi is the projection ofmi on the subspace defined by the columns ofU.
Assuming that local measurements are independent, the log likelihood of the totalK

measurements is:

l(µ;m) = log p(m1, ...,mK |µ1, ..., µK) =
K∑

i=1

log p(mi |µi) (5)

Therefore, the goal of subspace computation from measurement data is to find the true
valuesµi’s that maximize the likelihood of the measurementsl(µ;m), subject to the condi-
tion that theseµi’s reside in a low dimensional subspace defined byU in Eq. (4) ).

2.1 Gaussian noise

If the noiseεi follows zero-mean normal distribution with common standard deviation ofσ,
thenmi v N(µi, Σ). By further assuming that the elements of each vector (mi or µi) are
independent, the probabilistic distribution ofmi conditioned onµi is:

p(mi |µi) v exp{−‖mi − µi‖2
2

2σ2
} (6)

where‖x‖2 is theL2 norm of vectorx:

‖x‖2 =

(∑
i

x2
i

)1/2

(7)

The data log likelihood can be written as:

l(µ;m) = −c

K∑
i=1

‖mi − µi‖2
2 (8)

wherec is some positive constant. Maximizing the data log likelihood is therefore equivalent
to minimizing the term in the r.h.s. of Eq. (8), which is called the cost function or energy
function:

EG(µ) =
K∑

i=1

‖mi − µi‖2
2 (9)

Substituting Eq. (4) into Eq. (9) and rewriting Eq. (9) in matrix format, we have:

E(U, V) = ‖W− UV>‖2
2 (10)
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HereW is the measurement matrix whosei-th column ismi. V> is the projection matrix, with
its i-th column being the projection value of thei-th data item in the subspace defined byU .

The assumption of identical and independent distributed (i.i.d.) Gaussian noise model
transfers the maximum likelihood problem ofmaxµ l(µ;m) into a minimization problem of
a L2-norm cost function which is convex inU andV . The SVD algorithm is a closed form
solution to compute its global minimum.

2.2 Laplacian noise

If we assume the noiseε follows Laplacian distribution instead of normal distribution, we
have:

p(m1, · · · ,mK |µ1, ..., µK) ∼ exp{−
∑K

i=1 ‖mi − µi‖1

s
} (11)

where‖x‖1 is theL1 norm of vectorx:

‖x‖1 =
∑

i

|xi| (12)

The maximum likelihood of the observed data is given by minimizing the followingL1
norm cost function:

EL(µ) =
K∑

i=1

‖mi − µi‖1 (13)

Written in matrix form, we have:

EL(U, V) = ‖W− UV>‖1 (14)

whereW is the measurement matrix withmi its i-th column. Unlike theL2 norm cost func-
tion, theL1 norm cost function is in general non-convex inU andV .

2.3 General case

In general, when the noise follows the same distribution model but with different model
parameters for different data points, the data likelihood is:

p(m1, · · · ,mK |µ1, ..., µK) ∼ exp{−
K∑

i=1

D∑
j=1

h(mij − µij)

σij

} (15)

whereh(·) is some distance function, andσij is related to the parameter of the noise distri-
bution.

The maximum likelihood of the observed data is given by minimizing the following
weighted cost function:

E(µ) =
∑

i

∑
j

h(mij − µij)

σij

(16)
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Notice that each data item is weighed by different component1/σij. If we use the Eu-
clidean distanced(x) = cx2, the above cost function is simplified as a weighted sum:

E(µ) =
∑

i

∑
j

sij(mij − µij)
2 (17)

Heresij = c
σij

. Written in matrix format, we have:

E(U, V) = ‖S⊗ (W− UV)‖2 (18)

where⊗ denotes the component wise multiplication. In the low rank approximation context,
the above cost function has been studied in robust PCA in [5], and recently in [13]. Unlike
theL2 norm cost function, the above weighted cost function is in general non-convex inU

andV , due to the weight matrixS .
In summary, the maximum likelihood (ML) solution to the matrix factorization (subspace

computation) depends on the noise distribution assumed. When the noise follows indepen-
dent and identical Gaussian distribution, the ML solution is obtained by minimizing aL2
norm cost function. When the noise follows independent and identical Laplacian distribu-
tion, the ML solution is achieved by minimizing aL1 norm cost function. In general when
the noise distributions are no longer identical, the ML solution comes from minimizing a
non-convex weighted cost function [5, 13], with the weights set according to some problem
dependent distance function. Both the cases ofL1 norm and weighted cost function can deal
with outliers, as will be shown in the following sections.

For other noise distributions, such as the generalized exponential family, corresponding
cost functions can also be derived [2].

3 L2-norm based subspace computation

Gaussian distribution is the most often assumed noise model. Under Gaussian noise model,
the problem of estimating the subspace is equivalent to minimize the followingL2-norm cost
function:

E(U, V) = ‖WD×K − UD×dV
>
d×K‖2

2 (19)

whered is the dimension of the subspace defined byU , andd < D.
Singular Value Decomposition (SVD) is a popular approach to minimizeE(U, V). The

following theory of SVD explains how SVD can be used to minimizeE(U, V) [6]:

Theorem 1. [6] Let the SVD of matrixW be

WD×K = AD×DΣD×DB
>
D×K (20)

whereΣ = diag(λ1, · · · , λD) , λ1 ≥ · · · ≥ λD ≥ 0, andA andB orthonormal matrix. Then
for 1 ≤ d ≤ D, we have:

min E(U, V) =
D∑

i=d+1

λ2
i (21)
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The above theorem states that the firstd columns ofA in Eq. (20) defines the subspace
that minimizes theL2-norm cost function defined in Eq. (19), i.e.,

U = A(:, 1 : d)

Similarly we have
V = B(:, 1 : d)

SVD gives the closed form solution to theL2 norm cost function in Eq. (19). The prob-
lem with using theL2 norm cost function is that it is sensitive to outliers. With even a single
influential outliers, the resulted subspace could be completely different from the desired so-
lution. Detecting such outliers is therefore necessary.

Parametric approaches are often used to deal with outliers. The parametric approaches
define a global parametric model that inliers should follow. Outliers are those items that do
not follow such parametric model. Specifically, in parametric approaches, a parametric model
is first fit to the data, and then outliers are identified as the data that violate the fit model. A
more general scheme is to give each data item a weight in the range of[0, 1] according to the
degree that such data item violates the global parametric model. A zero weight indicates an
outlier. Robust estimator is often used to weight each data item, where the objective function
in Eq. (19) is rewritten as:

min
∑
i,j

ρ(mij − u>i·v·j) (22)

wheremij is the ij-th element ofW, U and V are the global parametric model (subspace
model),ui· is the i-th row of U, andv·j is thej-th column ofV>. The contribution to the
cost function of each data element is controlled by the robust M-estimatorρ(·) based on the
distance between the data element and the current subspace model, i.e., the residualmij −
ui·v·j. For example the Geman-McClure robust functionρ(x, σ) = x2

x2+σ2 is used in [18],
whereσ is the parameter that controls convexity of the robust estimator.

The use of robust M-estimator to solve Eq. (22) changes the convexity of the cost func-
tion. In general, there are many minimums in Eq. (22), and iterative procedures are often used
to derive a good local minimum. In each iteration, each data item is first weighted based on
its distance to the current parametric model, and then a new model is recomputed using the
weighted data. When the dimension of the data is too high to afford computing the subspace
model multiple times, gradient decent can be used to compute a local minima [18].

The convergence of the above iterative process depends on the model initialization. When
a reasonably good initialization is available, the parametric method is highly effective since
it takes the global data into account in detecting the outliers. Parametric approaches are
effective for detecting structure outliers, since such outliers are not influential and a good
initial model is possible if there are not extreme outliers. On the other hand, in the presence
of influential extreme outliers, it would be hard, before the removal of the extreme outliers,
to obtain a good initial model as the starting point for the iterative procedure.
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4 L1-norm based subspace computation

In this section, we discuss the potential advantages of usingL1 norm metric for subspace
computation. Minimizing theL1 norm metric corresponds to the maximum likelihood esti-
mation under Laplacian noise model. We first show thatL1 norm metric is more robust than
L2-norm through a simple illustrative line-fitting example. We then present two algorithms
to compute the subspace usingL1 norm metric: Alternating Weighted-Median algorithm and
Alternating Convex Quadratic Programming. These two algorithms are efficient: weighted
median has fast algorithm [14], and convex quadratic programming (see [11]) is well studied
and has very efficient software package available. More extensive experiments of these above
two approaches to subspace computation is part of the future work.

4.1 RobustL1 norm metric: example

One important advantage of usingL1 norm is that it is more robust to outliers thanL2 norm
in statistical estimation. This can be seen from the following simple example where we try
to find a 1D subspace from given 2D data items. In other words, the example is to fit a line
to the given 2D data points.

Suppose we are given 10 two-dimensional points{(xi, yi) | i = 1, ..., 10} where the re-
sponse variabley is corrupted by Gaussian noise. We want to fit a liney = kx to these 10
points, wherek is the parameter (slope) that we need to estimate. In other words, we want
to compute the one dimensional subspace from the given two dimensional data. Specifically,
we use the following linear model:

y = kx + ε (23)

wherek is the parameter to estimate andε is the noise that corrupts the response variabley.

4.1.1 L2 norm formulation

If ε is assumed to be Gaussian noise, then the ML estimation of the parameterk is given by
minimizing the followingL2-norm cost function (sum of squared difference):

E(k) =
10∑
i=1

(yi − kxi)
2 (24)

The least squared solution to minimize the above cost function is:

k =

∑10
i=1 xiyi∑10
i=1 x2

i

4.1.2 L1 norm formulation

If ε is assumed to have Laplacian distribution, then the ML estimation of the parameterk is
given by minimizing the followL1-norm cost function:

10∑
i=1

|yi − kxi| =
10∑
i=1

|xi||yi

xi

− k| (25)
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Figure 1: Fit a line to 10 given data points. All data points are inliers. The result of usingL2
norm cost function is similar to that of usingL1 norm.

Global minimum of Eq. (25) can be obtained using the following well known result
(see [14]):

Result 1. The global minimum of theL1-norm cost functionE(k) =
∑K

i=1 ‖yi − kxi‖1 is
given by the weighted median of{ yi

xi
| i = 1, ..., K}, where|xi| is the weight for thei-th item

yi

xi
.

If xi = 0, then its correspondingi-th data point is removed from the accumulation in
Eq. (25), since the weight is equal to zero too.

4.1.3 Results

Fig.1 shows the results when there is NOT any outlier in the given data. As we can see, the
L1 norm andL2 norm cost functions give similar estimation ofk.

When there are outliers in the data, the results are different. In Fig.2 there are two outliers,
A andB. TheL1 norm cost function still gives good results, while theL2 norm cost function
gives erroneous estimation.

4.2 Alternative minimization

We have shown that by assuming Laplacian noise distribution, the maximum likelihood esti-
mation of matrix factorization corresponds to minimizing aL1-norm cost function, and that
L1-norm metric is more robust to outliers thanL2-norm metric. In this section, we present
algorithms on how to maximize the likelihood, i.e., minimize theL1-norm based cost func-
tion:

E(U, V) = ‖W− UV>‖1 (26)
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Figure 2: Fit a line to 10 given data points. Two data pointsA andB are outliers. Using
L2 norm cost function gives erroneous result shown in dash line, while usingL1 norm cost
function still gives correct result shown in solid line.

WD×K is the measurement matrix with Columni the observed (measured) dataxi. The
columns ofUD×d are thed bases of the subspace to be estimated, withd < min(D, K).

While Eq.(25) has a global minimum that can be computed via the weighted median, the
cost function for matrix factorization in Eq.(26) is in general non-convex, since bothU andV
are unknown. It requires some iterative scheme to achieve a good local minimum.

If U or V is known, then we can use weighted median to compute the global minimum
of Eq.(26). This fact suggests a scheme that minimizes the cost function alternatively overU

or V, each time optimizing one argument while keeping the other one fixed. Such alternative
minimization scheme [3] has be widely used in subspace computation usingL2 norm [12] or
other distance metric such as Bregman Divergences [2]. The alternative optimization can be
written as:

U(t) = arg min
U

‖W− UV(t−1)>‖1 (27a)

V(t) = arg min
V

‖W− U(t)V>‖1 (27b)

4.2.1 Alternative minimization by weighted-median

Alternative minimization via weighted-median has been applied to robust SVD (unpublished
document [7]). However, the algorithm presented in [7] contains mistakes and can not cor-
rectly handle the case where the rank of the measurement matrix is more than one, i.e.
rank(W) > 1. We present the correct algorithm that can handle the case whererank(W) is
more than one.
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//Initialization
SetU = 0 andV = 0
//Cycle throughd columns ofU for N times
Forn = 1, · · · , N, c = 1, · · · , d:

//Optimizeu·c, thec-th column ofU with other columns fixed
If n = 1, initialize v

(0)
·c randomly

SetW = W−∑
k 6=c uikvkj

For t = 1, · · · , convergence

For i = 1 · · ·D, u
(t)
i = arg min

u
‖mi· − uv(t−1)>

·c ‖1

For j = 1 · · ·K, v
(t)
j = arg min

v
‖m·j − vu(t)

·c ‖1

Figure 3: Algorithm of using iterative weighted median to minimize theL1 norm cost func-
tion, and therefore to compute the subspace.

To simplify the presentation, we first consider the case where the dimension of the sub-
space is one. The alternating minimization problems are:

For i = 1 · · ·D, u
(t)
i = arg min

u
‖mi· − uV(t−1)>‖1 (28a)

For j = 1 · · ·K, v
(t)
j = arg min

v
‖m·j − vU(t)‖1 (28b)

whereu
(t)
i is thei-th element of the column vectorU (similar definition ofv(t)

i ) , t is the index
of the iteration steps. The solutions (global minimums) to Eq. (28) can be obtained through
the well known weighted median algorithm according to Result 1.

When the subspace dimensiond is more than one,U andV contain more than one column.
Our algorithm cycles through thed columns ofU andV, optimizing each column while fixing
the others. The problem is therefore broken intod subproblems of Eq. (28). The overall
algorithm is shown in Fig 3.

4.2.2 Alternative minimization by convex quadratic programming

We have presented the approach that cycles through the principal vectors (subspace bases)
by optimizing over one principal vector while fixing the others. In this subsection, we con-
vert the subspace computation problem to alternative convex optimization problem, which
updates all principal vectors at a time in each iteration. The alternative convex optimization
is potentially faster and achieve better local minimum than the alternative weighted median
approach presented above.

In the following we show how to solve Eq. (27b). Eq. (27a) can be solved similarly. The
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cost function of Eq. (27b) can be written as:

E(V) = ‖W− U(t)V>‖1

=
K∑

j=1

‖m·j − U(t)v·j‖1

wherem·j is thej-th column ofW , v·j is thej-th column ofV>. The problem of Eq. (27b) is
therefore decomposed intoK sub-problems, each one optimizingv·j. Each sub-problem has
the following general formula:

x = arg min
x

‖b− Ax‖1 (29)

This problem can be reduced to a simple convex quadratic programming problem whose
global minimum can be computed efficiently [11]:

min
x,z,t

1

2
‖z‖2

2 + γe>t

s.t.− t ≤ Ax− b− z ≤ t (30)

wheree is a column vector of ones.γ is a small positive constant.

4.2.3 Convergence

The cost functionE(U, V) is decrease at each alternative minimization step. Since the cost
functionE(U, V) is lower bound (≥ 0), the alternative minimization procedure will converge.
By carefully design the algorithm, it will converge to a local minimum. We are investigating
if it will converge to a local minimum in theory.

The convergence is achieved when the difference of the parameters between adjacent
iterations is small enough. More specifically, the algorithm will stop if for each subspace
base, the following holds:

θ(ut
c,u

t−1
c ) < ε (31)

Hereθ(u1,u2) is the angle between the two vectorsu1 andu2; uc is the c-th subspace base;
andε is a small positive number.

4.3 Handling missing data

Missing data can be handled in both weighted-median algorithm and convex programming
algorithm, by discarding the constraints corresponding to the missing data.

To see the reason, we rewrite Eq. (26) as:

E(U, V) =
D∑

i=1

K∑
j=1

|wij − ui·v·j| (32)
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wherewij is the element located ati-th row andj-th column ofW , ui· is thei-th row ofU , and
v·j is thej-th column ofV>. If wij is missing, then we discard the corresponding cumulative
item of |wij − ui·v·j|.

For the weighted-median algorithm, discarding such item does not affect the result of the
weighted median in Eq (28).

For the quadratic programming algorithm, discarding one such item removes one corre-
sponding equation in the equation set in Eq (29). As long as the total number of missing
elements inb (one column in the measurement matrixW ) is no more thanD − d, the equa-
tion set is still over-constrained and the quadratic programming is still solvable. In general,
the original dimensionsD is much larger than the subspace dimensiond, which allows large
number of missing data in each column ofW .

4.4 Summary

In summary, theL1 norm formulation of subspace computation that requires minimization of
‖W− UV>‖1 can be decomposed into two alternative minimization problem. Each alternating
problem is further divided intoD andK independent sub-problems. Each sub-problem can
be in turn reduced to a simple convex quadratic problem whose global minimum can be
computed efficiently. Notice that while the global minimum of each sub-problem can be
derived by convex quadratic programming, the original problemminU,V ‖W − UV>‖1 is in
general non-convex.

5 Example

Let us consider an8 × 6 measurement matrix, which consists of eight data points in the six
dimensional column space (or 6 data points in the eight dimensional row space), as shown
in Eq (33). The rank of this matrix is two, which means these eight data points actually lie
in a 2D subspace. Now suppose we observe these eight data points but with outlier mea-
surements. As shown by the red italic elements in Eq (34), every data point contains outlier
measurement!

W6×8 =




9.47 8.42 −12.49 1.03 1.69 3.83 1.84 8.08
−7.30 −0.13 −5.71 −4.56 11.26 9.48 5.83 8.97
−2.43 −2.03 2.88 −0.34 −0.17 −0.72 −0.32 −1.75
8.13 6.99 −10.15 1.02 0.99 2.83 1.31 6.37
7.87 5.83 −7.55 1.55 −0.90 0.89 0.19 3.91
7.56 1.50 2.62 3.92 −8.97 −7.16 −4.48 −6.03




(33)
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W̃6×8 =




9.47 8.42 −12.49 1.03 1.69 3.83 1.84 8.08
−7.30 −0.13 200 .0 −4.56 11.26 9.48 5.83 8.97
−2.43 −100 .0 2.88 −0.34 −0.17 300 .0 −300 .0 −1.75
8.13 6.99 −10.15 1.02 −300 .0 2.83 1.31 700 .0
7.87 5.83 −7.55 200 .0 −0.90 0.89 0.19 3.91

400 .0 1.50 2.62 3.92 −8.97 −7.16 −4.48 −6.03




(34)

ŴL1 =




9.47 8.42 −12.39 1.03 1.69 3.83 1.84 8.08
−7.30 −0.13 −3.41 −4.56 11.26 9.48 5.83 8.97
−2.43 −2.03 2.91 −0.34 −0.17 −0.72 −0.32 −1.75
8.13 6.99 −10.15 1.02 0.99 2.83 1.31 6.37
7.87 5.83 −7.91 1.55 −0.90 0.89 0.19 3.91
7.56 1.50 0.75 3.92 −8.97 −7.16 −4.48 −6.03




(35)

ŴL2 =




0.17 0.37 −0.11 0.02 −2.81 −0.88 0.92 6.56
−0.34 −1.24 0.05 −0.01 −0.44 3.77 −3.75 1.03
−28.70 −99.70 5.28 −1.67 0.46 299.22 −298.29 −1.08
9.81 7.08 −10.01 2.30 −299.96 2.94 1.23 699.98
0.20 0.55 −0.09 0.02 −1.89 −1.51 1.53 4.42
1.92 6.56 −0.38 0.11 −1.20 −19.62 19.57 2.80




(36)
We apply the algorithm of alternative minimization by weighted-median to compute the

2D subspace. Eq (35) shows the reconstructed matrix in the 2D subspace, and Fig. 4(a) shows
the reconstruction error. As we can see, the errors are small, and the outlier measurements
have been successfully recovered.

We also apply the SVD algorithm (L2 norm) to compute the two dimensional subspace.
Eq (36) shows the reconstructed matrix in the 2D subspace, and Fig. 4(b) shows the recon-
struction error. The SVD algorithm is sensitive to the outlier measurements, as we can see
from the erroneous reconstructed matrix.

For comparison purpose, we plot the reconstruction errors in same coordinate frame, as
shown in Fig 5. The weighted median algorithm (L1 norm) achieves much better results than
the SVD algorithm (L2 norm).

6 Conclusion

In this paper we study the problem of robust subspace computation. From the probabilis-
tic view point, subspace computation can be formulated as maximum likelihood estimation
problem, which in turn leads to the low rank matrix approximation. Under different noise
models, subspace computation is formulated as minimizing the matrix reconstruction error
using, respectively,L2 norm, L1 norm, or general weighted reconstruction error function.
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(a) L1 norm (b) L2 norm

Figure 4: Reconstruction error for each element in the measurement matrixW . (a) Black “∗”:
weighted median usingL1 norm metric; (b) Red “¤”: SVD algorithm usingL2 norm metric.

The un-weightedL2 norm error function is convex and its global minimum can be computed
using SVD algorithm. But it is sensitive to outliers.L1 norm error function and general
weighted error function are robust to outliers, but they are non-convex. Alternative minimiza-
tion algorithms can be used to minimize such non-convex function. We study two alternative
minimization algorithms to minimize theL1 norm error metric, namely the weighted median
and quadratic programming. The weighted median algorithm is robust and simple, but it can
only compute the subspace bases one by one, and therefore potentially easier to be trapped
into a bad local minima. The quadratic programming can compute the subspace bases all at
once in each iteration step, and is potentially more efficient since quadratic programming is
a well-studied and well-tuned algorithm. Alternative minimization requires a good initializa-
tion for the algorithm to converge to a good solution. Currently we use random initialization.
In the future, we will study how to initialize the alternative algorithm. Testing the algorithms
on real data is also part of future work.
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