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Abstract

We consider a two-player, sequential location game, with n stages. At each stage, players 1 and
2 choose locations from a feasible set in sequence. After all moves are made, consumers each
purchase one unit of the good from the closest location. Since player 1 has a natural first-mover
disadvantage here (player 2 can obtain a payoff of 1

2 just by replicating player 1’s moves), we
examine her minmax payoff. When the number of stages is known to both players we show that (i)
if the feasible locations form a finite set in Rd, player 1 must obtain at least 1

d+1 in the single-move
game (ii) in the original Hotelling game (uniformly distributed consumers on the unit interval),
player 1 obtains 1

2 even in the multiple stage game. However, player 1’s minmax payoff suffers
if she does not know the number of moves, but player 2 does. In the Hotelling game, where the
number of stages is either 1 or 2, player 1’s payoff falls to 5

12 . If she has no information at all about
n, we provide a lower bound for her minmax payoff: it must at least equal half the payoff of the
single-stage game.
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1 Introduction

Starting with the classic Hotelling model (Hotelling, 1929), there is an extensive literature on loca-
tion games. These games have been applied in several different contexts, including firms competing
in a market (Gabscewicz and Thisse, 1992, provide a survey), political competition among parties
or candidates (see Shepsle, 1991, for a survey), and facility location (surveyed by Eiselt, Laporte,
and Thisse, 1993).

In this paper, we consider minmax payoffs in a sequential location game with two players. After
players have chosen their locations, each consumer buys one unit of the product from the closest
player, breaking ties uniformly at random. We consider the game without prices: Each player
maximizes its market share. Since we allow players to locate at previously occupied locations, it
is immediate that player 1 has a first-mover disadvantage in this game. By replicating the moves
of player 1, the second player obtains a payoff no worse than 1

2 . Hence, we focus on the minmax
payoff of player 1.

We consider the location game without prices. This version is commonly applied to, e.g.,
political contests and the facility location problem. As Osborne and Pitchik (1987) show, the
(simultaneous-move) game with prices may not possess a pure strategy equilibrium. With mixed
strategy equilibria, the range of possible outcomes may be large. Further, characterizing the set of
mixed strategy equilibria can be difficult. For a similar reason, we consider the sequential rather
than simultaneous location game.1

We first examine a class of games in which the set of feasible locations is finite, and contained
in Rd. Without loss of generality, consumers are distributed over Rd (so there are d attributes of
the product a consumer cares about). In the single-stage game (with each player choosing just one
location), we characterize completely the set of feasible minmax payoffs for player 1 over all choices
of consumer distribution and location set. In this case, the minmax payoff of player 1 is equivalent
to her payoff in a subgame-perfect equilibrium.

We show that there exists such a location game in Rd, such that observed market shares are
a result of a subgame-perfect equilibrium of this game if and only if the share of the first mover
is between 1

d+1 and 1
2 , and the shares of the players sum to 1. That is, over all location games in

d-dimensional Euclidean space, the minimum payoff to player 1 in a subgame-perfect equilibrium
is 1

d+1 , and the maximum is 1
2 . Further, for any y ∈ [ 1

d+1 , 1
2 ], there exist instances of the game such

that r1 = y. With a location set in R2, player 1 must obtain at least 1
3 of the payoff.

This model is, therefore, testable in the terminology of Brown and Matzkin (1996), who use
the Tarski-Seidenberg theorem to provide testable restrictions on the equilibrium manifold of an
exchange economy. The Tarski-Seidenberg theorem holds for a finite system of polynomial inequal-
ities, so cannot be used in our setting, since the consumer distribution may be continuous. We
therefore provide a direct proof of our result.

This result provides an upper bound for the size of the first-mover disadvantage in such a game.
Entry timing games are often characterized by a trade-off between factors that imply a first-mover
advantage (for example, in the political context, an early entrant has more time to raise money)
and those that lead to a disadvantage. Our result implies that, ceteris paribus, if the payoff increase
as a result of a first-mover advantage exceeds d−1

2(d+1) (so that total payoff exceeds 1
2), players should

seek immediate entry in the single-stage game.
We then consider a multi-stage game in which the two players move sequentially at each stage,

with player 1 picking a location first, followed by player 2. General results on multi-stage games

1Prescott and Vischer (1977) show that the outcomes of a sequential location game can differ significantly from
those that obtain in a simultaneous move game.
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may not be feasible. In particular, player 1’s payoff need not be monotone in the number of stages.
We provide two examples to demonstrate this. In one, we construct a game, in which, player 1
obtains 1

2 in a subgame-perfect equilibrium of the single-stage, but only 1
3 in the two-stage game.

Conversely, we exhibit a game in which player 1’s payoff converges to 1
2 as the number of stages

grows.
In the original Hotelling game (with the location set being the unit interval, and consumers

uniformly distributed over this interval), we show that in the n-move game, for any n, the minmax
payoff of player 1 is 1

2 . In fact, we demonstrate a set of locations such that, if firm 1 occupies each
location in this set, it obtains a payoff of at least 1

2 .
Such games have also been studied in computational geometry, under the label “Voronoi games.”

In these games, the location set is continuous, and the consumers are assumed to be uniformly
distributed over some compact set. Co-location of players is not permitted. Cheong et al. (2002),
show that when the Voronoi game is played on a square with uniform demand, with a large enough
number of moves, and the second player locates all her points after observing all of player 1’s
moves, player 2 obtains a payoff of at least 1

2 + α for a fixed constant α. Some of the results we
obtain here are cited as open questions by Cheong et al. In particular, we characterize the value of
the sequential game and the corresponding optimal strategies, when played in a high dimensional
space. For the Voronoi game on the uniform line and uniform circle, Ahn et al. (2001) show that
player 1 has a strategy which guarantees her a payoff of strictly more than 1

2 , while player 2 can
get a payoff arbitrarily close to 1

2 without actually getting 1
2 . Variations of the original single-move

Hotelling game with multiple players, have also been considered under the name of “competitive
facility location.” Eiselt et al. (1993) is an excellent survey of some of this work.

We next consider an “online” game, in the same “adversarial” spirit as the online algorithms
literature in computer science (Borodin and El Yaniv, 1998). Much of this literature examines
single-player decision problems, with nature being an adversary that chooses the input to minimize
the player’s payoff (or maximize her cost). The player must therefore make decisions that are
“robust” with respect to future inputs. Single-player online games studied previously include
location games where demand arrives over time (Mettu and Plaxton, 2000) and auctions (Bar-
Yossef et al., 2002).

To extend this framework to our two-player game, we assume that player 2 knows exactly the
number of stages, but player 1 knows only that the number of stages is in some feasible set. In
this case, the minmax payoff of player 1 contains an additional minimization over the set of stages.
Hence, this minmax payoff is no longer interpretable as occurring in a subgame-perfect equilibrium.

Suppose player 1 knows that there are one or two stages to the game, whereas player 2 knows
the actual number of stages. Then, even in the original Hotelling game, player 1 can no longer
guarantee a payoff of 1

2 ; in fact, we show that her minmax payoff is 5
12 . Finally, suppose player

1 has no information about the number of stages (i.e., she believes that this can be any positive
integer). By replicating the previous moves of player 2, player 1 obtains a payoff no worse than
half the payoff it gets in an equilibrium of the single-stage game. This provides a lower bound for
player 1’s minmax payoff.

The rest of this paper is organized as follows. We begin by describing the model and definitions
in Section 2. In Section 3 we study the multiple move game when both players know the number
of moves. In Section 4, we extend these results to the online game, where player 1 does not know
n. We conclude in Section 5.
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2 Preliminaries

Consider Rd with d ≥ 1, endowed with the Euclidean distance function, δ. Consumers are dis-
tributed on Rd, with distribution F (·) defined over the Borel σ−algebra on Rd. Without loss of
generality, the total mass of consumers is normalized to 1.

There are two players. L ⊂ Rd denotes a compact set of points at which players may locate.2

The game has n stages. At each stage, the players move in sequence. First, player 1 chooses
a location in L, and then player 2 responds. At any stage, either player is allowed to choose a
location already occupied by either of the players. The game is therefore represented as a 4-tuple,
(n, d, L, F ).

Let si denote the location chosen by player 1 at stage i, and ti the location chosen by player 2.
Let Si and Ti denote the first i moves of players 1 and 2 respectively, with S0 = T0 = ∅. A pure
behavior strategy for player 1 at stage i is a map ai : Si−1 × Ti−1 → L. Similarly, a pure strategy
for player 2 at stage i is a map bi : Si × Ti−1 → L. A pure strategy for player 1 in the game as a
whole is denoted A = (a1, . . . , an) and similarly for player 2.

After each player has chosen its n locations, each consumer buys 1 unit of the good from
the closest location. If the closest location is not unique, the consumer randomizes with equal
probability over the set of closest locations.

Given a multiset Y of locations and some point v in Rd, define δ(v, Y ) = miny∈Y δ(v, y) as the
distance between v and the point in Y closest to v. Let κY (v) = |{y ∈ Y : δ(v, y) = δ(v, Y )}|
be the number of points in Y which are at minimum distance from v. The demand gathered by
a point y ∈ Y is defined as r(y, Y \ {y}) =

∫

v∈Rd:δ(v,y)=δ(v,Y )
1

κY (v)dF (v). Now let S and T be
the locations chosen by player 1 and player 2 respectively. Then, player 1’s payoff is given by
r(S, T ) =

∑

s∈S r(s, S ∪T \ {s}). Player 2’s payoff is r(T, S) = 1− r(S, T ). Note that by definition,
for any move x and set of moves Y , we have r(x, Y ) ≤ r(x, y) ∀y ∈ Y .

The strategy choices of the two players, a and b, imply chosen locations, S(a, b) and T (a, b)
respectively. Notationally, for convenience, we often suppress the dependence of S, T on a, b. The
minmax payoff of player is defined as r1 = maxa minb r(S(a, b), T (a, b)).

Since this is a constant-sum game, a strategy of player 2 that minimizes the payoff of player
1 must maximize the payoff of player 2. Hence, when n is known to both players, the strategies
(â, b̂) that lead to player 1 earning its minmax payoff constitute a subgame-perfect equilibrium of
the game.

3 Known number of stages

In this section, we examine the game when the number of stages is known to both players. First,
suppose there is a single stage in the game, so that each player moves only once. The single-
stage game is particularly suited to model political competition, where a location is interpreted
as choosing a political platform (see Shepsle, 1991, for a survey). Whereas much of the spatial
literature on political competition has considered the simultaneous-move game, Osborne (1993)
notes that a sequential game may be more appropriate. Osborne considers a multi-agent game
in which agents can choose their platforms at any time, but platforms once chosen cannot be

2Without loss of generality, we assume that L spans R
d (in other words, the convex hull of L is d-dimensional).

Otherwise, we can project the d-dimensional space orthogonally to the subspace spanned by L. The orthogonal
projection π has the property that for any two location points l1, l2 ∈ L and a demand point x ∈ R

d, δ(l1, x) ≤

δ(l2, x) ⇔ δ(l1, π(x)) ≤ δ(l2, π(x)). Thus payoffs and equilibrium strategies in the game remain unaffected.
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changed. In focusing on the minmax payoff to player 1, we essentially bound the size of the first
mover disadvantage in this model.

We first consider the case of a finite location set.3 Let Gd(1) = (1, d, L, F ) denote an instance
of the single-stage location game in d-dimensional Euclidean space, where L is a finite location set
and d is also finite. Let Gd denote the set of such games.

It is clear that r1 ≤ 1
2 , since player 2 can ensure r2 = 1

2 via the strategy b = a, which replicates
each move of player 1. How low can the minmax payoff of player 1 be? The following example
shows that, when the location set is in R2, player 1’s payoff can be as low as 1

3 .




























J
J

J
J

J
J

J
J

J
J

JJ

r

a′
r

b′

r

c′
r c

S
S

S
S

SS

������������ra

HHHHHHHHHHHH

�
�

�
�

�
�r
b

1

1

0.5

1 0.5

1

0.5

1 1

Figure 1: A location game in the Euclidean plane. Points a, b, and c have demands x, 1
2(1 − x)

and 1
2(1−x) respectively, and, L = {a′, b′, c′}. Lines are labeled by the Euclidean distance between

their endpoints.

Example 1 Consider the game given by Figure 1, with L = {a′, b′, c′}, and f(a) = f(b) = f(c) = 1
3 ,

where f(v) denotes the density of demand at v. Player 2’s best response is as follows: If Player 1
chooses a′, player 2 chooses b′; if player 1 chooses b′, player 2 chooses c′; otherwise, player 2 chooses
a′. Given this, player 1 is indifferent over {a′, b′, c′}. Whichever location it chooses, it obtains a
payoff of 1

3 , with player 2 obtaining 2
3 .

In fact, we show that this game represents the worst case for player 1 over all such location
games in R2. That is, there does not exist a demand distribution and a finite location set in R2,
such that player 1 obtains a subgame-perfect equilibrium payoff strictly less than 1

3 in this single-
move location game. The result extends more generally: in Rd, player 1 must obtain at least 1

d+1 ,

and there exists a game in which it obtains exactly 1
d+1 (so the bound is tight).

3Finiteness of the location set is necessary to prove Theorem 1 below. The demand distribution F (·) may be
continuous.
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Recall that, when the number of stages is known to both players, the minmax payoff of player
1 is identical to its payoff in a subgame-perfect equilibrium. We therefore state our result in terms
of subgame-perfect equilibrium payoffs.

Theorem 1 There exists a location game Gd(1) ∈ Gd such that r1, r2 are payoffs in a subgame-
perfect equilibrium of Gd(1) if and only if r1 ∈ [ 1

d+1 , 1
2 ] and r2 = 1 − r1.

Proof of Theorem:
It is immediate that, in any equilibrium, r1 + r2 = 1. Hence, we prove that r1 ∈ [ 1

d+1 , 1
2 ].

“If” part:
Given a value x ∈ [ 1

d+1 , 1
2 ], we construct a game Gd(1) for which r1 = x. This essentially

reconstructs Example 1 in d dimensions. We first construct the game in the (d + 1)-dimensional
Euclidean space (for ease of exposition), then project it down to the d-dimensional Euclidean space.

Define d̂ = 1 +
∑d

i=1 i2 = 1 + d(d+1)(2d+1)
6 . Fix ε > 0 such that ε � 1.

The set of location points is L = {l1, l2, . . . , ld+1}. The ith co-ordinate of point li is −1, and all
other co-ordinates of point li are 0.

There are also d+1 demand points vi. Let f represent the density of demand. Set f(v1) = x ∈
[ 1
d+1 , 1

2 ] and f(vi) = 1
d
(1 − x)∀i > 1. Demand point vi has ith co-ordinate 1 − ε, and for j 6= i, the

jth co-ordinate is ε[(j − i)mod d].
This induces the following distance function between demand points and location points:

δ2(li, vj) =

{

2 − 2ε[1 + (j − i)mod d] + d̂ε2 : i 6= j

d̂ε2 : i = j.

For any demand point vj, we can define a precedence relation ≺j as li ≺j li′ if δ(li, vj) < δ(li′ , vj).
It follows that for every j, we have lj ≺j l(j+1)mod d

≺j l(j+2)mod d
≺j . . . ≺j l(j−1)mod d

. This

precedence relation is identical to that induced by a Condorcet voting paradox (Condorcet, 1785)
instance with d + 1 voters and d + 1 choices.

It is now immediate that r1(li, l(i−1)mod d
) = x for i = 1, and r1(li, l(i−1)mod d

) = 1
d
(1 − x) for

i > 1. For x ∈ [ 1
d+1 , 1

2 ], we have x ≥ 1
d
(1 − x). Player 1’s equilibrium strategy, therefore, is to

choose l1, and the resulting payoff is r1 = x.
Finally, we obtain our d-dimensional instance by orthogonally projecting D to the d-dimensional

hyperplane formed by the points in L. Such a projection reduces each δ2(li, vj) by the same amount,
and hence preserves the precedence relation ≺j.

“Only if” part:
Note first that, for any Gd(1) ∈ Gd, we have r1 ≤ 1

2 in any subgame-perfect equilibrium. By
choosing t = s, Player 2 earns r2 = 1

2 , and so can do no worse in equilibrium. Hence, r1 ≤ 1
2 .

We show that for any Gd(1) ∈ Gd, we have r1 ≥ 1
d+1 in any subgame-perfect equilibrium. Define

a precedence relation on L, as follows: l ≺ l′ if and only if r1(l, l
′) < 1

d+1 . We need to show that
there exists a point l ∈ L such that there is no l′ ∈ L with l ≺ l′. First, we prove that ≺ is acyclic
on L; that is, there is no sequence of elements (l1, l2, . . . , lm) in L with l1 ≺ l2 ≺ l3 ≺ . . . ≺ lm ≺ l1.

For any two location points x, y ∈ L, define Hxy = {v ∈ Rd : δ(x, v) ≥ δ(y, v)} to be the
half-space containing points in Rd which are at least as close to y as to x. For any subset S of Rd,
let F (S) =

∫

v∈S dF (v) represent the total demand of all points in S. It follows that if x ≺ y, then

F (Hxy) > d
d+1 .

Suppose ≺ induces a cycle in L; let this cycle be l1 ≺ . . . ≺ lm ≺ l1. For ease of notation, define
lm+1 = l1, and L′ = {l1, . . . , lm}. Consider the half-spaces Hli,li+1

for 1 ≤ i ≤ m. Given a set X,
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let X denote the complement of X. Since F (Hli,li+1
) > d

d+1 , if must be that F (H li,li+1
) < 1

d+1 .

Hence, for any set K of d+1 or fewer indices, F (∪k∈KH lk,lk+1
) < 1, so F (∩k∈KHlk,lk+1

) > 0. That
is, any d + 1 or fewer half-spaces must have an intersection with strictly positive demand.

We now appeal to the following theorem due to Helly, 1921 (see also Eckhoff, 1993).

Helly’s Theorem: Let C be a family of convex sets in Rd, and suppose C is finite or each
member of C is compact. If every d+1 or fewer members of C have a non-empty intersection, then
all members of C have a non-empty intersection.

We can now define C = {Hli,li+1
: 1 ≤ i ≤ m} and use Helly’s Theorem, since each Hli,li+1

is convex. It follows that ∩m
i=1Hli,li+1

is non-empty. Choose any point o ∈ ∩m
i=1Hli,li+1

, and
renormalize all points in L relative to o as the origin. Note that by definition of Hli,li+1

, we have
δ(li, o) ≥ δ(li+1, o), for all i, 1 ≤ i ≤ m. Then, lm+1 = l1 implies that all the points li are equidistant
from the origin and the origin lies on the hyperplanes defined by {v ∈ Rd : δ(v, li) = δ(v, li+1)}, for
i ∈ {1, . . . ,m} .

Now let νi be the vector li+1−li. Then, each half-space is given by Hli,li+1
= {u ∈ Rd : u·νi ≥ 0}.

We refer to li+1 and li as the location points defining νi. Since L′ is a cycle, we also have
∑m

i=1 νi = 0.
That is, a positive linear combination of these vectors νi sums to zero.

Now, Carathéodory’s theorem (see Eckhoff, 1993) implies that there exists a positive combina-
tion of at most d + 1 of the vectors νi that sums to zero. Without loss of generality, let these be
ν1, . . . , νd′ (d′ ≤ d + 1), and let αi be positive reals such that

∑d′

i=1 αiνi = 0. Let the corresponding
half-spaces be called Hi.

Next consider any point x lying in X = ∩d′

i=1Hi. Since x · νi ≥ 0 for all i, 1 ≤ i ≤ d′, we must
have 0 ≤ x · αiνi = −

∑

j≤d′,j 6=i x · αjνj ≤ 0, implying that x · νi = 0 for all i ≤ d′. In other words,
x is equidistant from the location points defining each vector νi, so the entire set X consists only
of points equidistant from the location points of the vectors νi.

For each half-space Hi, we have F (Hi) ≥ d
d+1 + F (X)

2 . Moreover, F (X) > 0, since X ⊇

∩m
i=1Hli,li+1

, and F (∩m
i=1Hli,li+1

) > 0. So we have F (∪i<d′Hi ∪ X) < d′−1
d+1 − d′−1

2 F (X) + F (X) ≤
d

d+1 + F (X)
2 . Therefore, F (∩i<d′Hi \X) > 1

d+1 −
F (X)

2 . But ∩i<d′Hi \X is disjoint from Hd′ , which

has demand greater than d
d+1 + F (X)

2 . This contradicts the fact that the total demand is 1.
We have shown that the relation ≺ is acyclic. An acyclic relation on a finite set must contain a

point l0 which is not preceded by any other point l′ ∈ L. Such a point can be found by starting at
any point l ∈ L, and moving to any point l′ ∈ L such that l′ ≺ l. Since ≺ is acyclic and L is finite,
this process must terminate at an l0 such that there is no point l′ ∈ L with l′ ≺ l. This completes
the proof of the “only if” part.

Remarks:

1. As part of the proof of Theorem 1, we show that for any game Gd(1) ∈ Gd, there exists
a point l ∈ L, such that a half space defined by l and any other point l ′ ∈ L contains at
most d

d+1 demand. This concept is similar to the concept of centerpoints, used widely in
Computational Geometry (see Edelsbrunner, 1987). Given a demand distribution with finite
support, a centerpoint always exists; however, it may not lie in the set L. We can overcome
this problem by picking a point l ∈ L which is closest to the centerpoint. If such a point l
is unique (for example, when L is convex), then the theorem holds. On the other hand, if it
is not unique, picking any one of the closest points only implies r1 ≥ 1

2(d+1) , necessitating a
proof based on first principles, as given above.

2. Finiteness of the location set, L, is used in the “if” part of the theorem. The following
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example, a variant of the largest number game, indicates that there is no extension to a
countably infinite set. Consider the unit interval, [0, 1]. Let f(0) = 1 (so that all demand is
at the point 0). Let L = { 1

n
}n∈Z+

, where Z+ is the set of positive integers. For any point l1
chosen by player 1, player 2 can find a point closer to 0, and obtain a payoff of 1.

3. In the game in Gd constructed in the “If” part of Theorem 1, with x = 1
d+1 , consider the

payoff of player 1 as the number of moves n increases (with both players knowing n). While
the number of moves is less than d+1, player 1 can weakly increase her payoff by locating at
each stage at a location where she has not located yet. When the number of moves is d+1 or
more, the strategy of first locating at all points in L and then replicating player 2’s previous
move guarantees a payoff which converges from below to 1

2 as n increases.

Given the last remark above, one might conjecture that, in the multi-stage game, the minmax
payoff of player 1 is weakly increasing in the number of moves, n. However, the following example
demonstrates that this is not always true.

Example 2 Consider two replicas of the game in Example 1, with location sets Li = {a′i, b
′
i, c

′
i}

for i = 1, 2. The demand density is 1
6 at each of the points in Di = {ai, bi, ci}, for i = 1, 2. Further,

let a′j be the closest location point in Lj to the demand points Di, for i = 1, 2 and j 6= i. Let
δ(ai, a

′
j) > 2 for i = 1, 2 and j 6= i, so that the points in Lj are sufficiently far from the points in

Di.
Suppose n = 1, so that each player moves just once. Player 1’s optimal action is to choose

either a′1 or a′2. If player 1 chooses a′
1, player 2’s best response is to choose any of {a′

1, a
′
2, b

′
2, c

′
2},

with a corresponding best response set if player 1 chooses a1. In either case, player 1 obtains a
payoff of 1

2 .
Now, suppose n = 2. Without loss of generality, suppose player 1 chooses a location in L1 with

her first move. Conditional on choosing a point in L1, locating at a′1 is an optimal action for player
1. Now, player 2 responds by locating at b′1. Consider player 1’s best response. If she chooses any
point in L2, player 2 will choose the corresponding point in L2 such that it obtains 2

3 of the demand
closest to each of L1 and L2, and hence captures a payoff of 2

3 in the game. If she chooses any point
in L1, player 2 will then choose a′

2, obtaining all of the demand closest to L2, and at worst 1
3 of the

demand closest to L1, for an overall payoff no worse than 2
3 . Hence, player 1 can obtain no more

than 1
3 in the 2-move game.

Example 2 and Remark 3 above suggest that there is no general result on the equilibrium payoffs
as n increases. Since results on the general n-move game are difficult to obtain, we next study the
game in Hotelling’s original setting, where the demand is distributed uniformly over [0, 1], and
L = [0, 1]. Let H(n) = (n, 1, [0, 1], U [0, 1]) denote the Hotelling game with n rounds, L = [0, 1],
and F (x) = x for x ∈ [0, 1]. We first show that there is no second-mover advantage in H(n). In
particular, for any fixed n, there exists a set of location points S that player 1 can choose which
implies that its payoff is at least 1

2 , regardless of the strategy of player 2.

Theorem 2 For the game H(n), we have r1 = 1
2 .

Proof: Consider S = (s1, s2, . . . , sn), where si = 1
2n

+ (i−1)
n

. This divides the unit line into n + 1
intervals—the two border intervals are of length 1

2n
, while the internal intervals are of length 1

n
.

Let the second player’s chosen location points be given by T = (t1, . . . , tn). We will show that
each point ti gets payoff at most 1

2n
. This implies that r1 ≥ 1

2 . As observed earlier, player 2 can
obtain a payoff of 1

2 by simply replicating each of player 1’s moves (i.e. set ti = si for each i). It
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is easy to see that, even in the absence of any points ti, the total demand captured by point si in
this case is at most 1

n
for any i.

Consider the point ti. First consider the case when ti = sj for some j. Clearly, the market
share of point ti is at most 1

2n
from our observation above. Next consider the case that ti lies in

one of the border intervals. Again, since the length of these intervals is 1
2n

, the market share of ti
is at most 1

2n
.

Finally, consider the case when ti lies in some interval (sj , sj+1). If there is at least one other
point tk in this interval, ti and tk may share the total demand in that interval, each getting at
most 1

2n
. If ti is the only point in this interval, then, it gets 1

2(sj+1 − ti) demand from the left
and 1

2(ti − sj) demand from the right. Combining the two, we have that ti gets at most 1
2n

of the
demand. Thus player 2 obtains a payoff no greater than 1

2 .

A similar result was obtained independently by Ahn et al. (2001), in the context of Voronoi
games, which differ from our location games in that co-location is not allowed in Voronoi games.

Note that player 1’s strategy in Theorem 2 is independent of player 2’s strategy T . Thus, player
1’s strategy guarantees her a payoff of at least 1

2 even when both players move simultaneously at
each round, or indeed, even if the order of moves is completely arbitrary.

4 Player 1 does not know the number of stages

Next, we consider an “online” version of the location game. In this game, the number of stages, n,
is known to player 2 but not to player 1. Instead, player 1 merely knows that n ∈ N , where N is
some feasible set for the number of stages.

In terms of minmax payoffs, this changes the flavor of the game completely. The minmax payoff
of player 1 now contains an additional uncertain element, the number of stages in the game. As a
result, the minmax payoffs in the game can no longer be thought of as equilibrium payoffs. Given
location sets S, T for the two players, and a known number of stages n, let r1(S, T, n) = r(Sn, Tn)
denote player 1’s payoff in the game. Then, when player 1 does not know the number of stages,
her minmax payoff is given by r1(N) = maxa minb minn∈N r1(S(a, b), T (a, b), n).

To illustrate the nature of the difficulty in analyzing this case, suppose first that N = {1, 2},
that is, player 1 knows that the number of stages is either 1 or 2. In contrast with Theorem 2,
the following theorem shows that, in the set-up of the original Hotelling game H, player 1 can no
longer ensure a payoff of 1

2 across all possible outcomes.

Theorem 3 Suppose player 1 knows that n ∈ N = {1, 2}, and player 2 knows n. Then, in the
game H(N), we have r1(N) = 5

12 .

Proof: We first show that r1(N) ≥ 5
12 . Consider the following strategy for player 1. It first locates

at s1 = 1
2 . If n = 1, player 2 will also choose t1 = 1

2 , so player 1 earns exactly 1
2 (that is, r1(1) = 1

2).
Suppose n = 2. Without loss of generality (w.l.o.g.), player 2’s first move is to t1 ≤ s1. If

t1 > 1
3 , player 1 then chooses s2 = t1 − ε, for some small ε > 0. Now, regardless of player 2’s second

move, player 2 obtains a payoff at most 1
2 + (1

2 − t1)/2 ≤ 7
12 . By locating at 1

2 + ε, for some small
ε > 0, player 2 obtains a payoff that approximates (but is strictly less than) 7

12 .
On the other hand, if player 2 first locates at t1 ≤ 1

3 , then player 1 then chooses s2 = 5
6 . Now,

if player 2 chooses t2 > s1, it earns a payoff at most 7
12 . If t2 = s1, its payoff is at most 13

24 . For any
other point t2 < s1, its payoff is at most 1

2 . In any case, r2 ≤ 7
12 , so r1(2) ≥

5
12 . Hence, r1(N) ≥ 5

12 .
Next we show that r1(N) ≤ 5

12 . Suppose not. Then, player 1’s first move must be to some
point in ( 5

12 , 7
12 ) (else r1(1) ≤

5
12 ). W.l.o.g, suppose player 1’s first move is to s1 ∈ ( 5

12 , 1
2 ]. Suppose
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n = 2, and consider the following sequence of play. Player 2 chooses t1 = 2
3(1 − s1) < s1. At the

second stage, if player 1 moves to s2 < s1, then player 2 makes its second move to t2 = s1 + ε for
some small ε > 0. Otherwise, player 2 moves to some t2 > s1 that obtains maximum payoff. The
latter payoff is at least 1

3(1 − s1). A simple calculation again shows that in either of these cases,
player 2 earns a payoff of at least 2

3 − s1

6 ≥ 7
12 .

The above theorem shows that if H is played with the number of stages restricted to being no
more than 2, then player 1’s minmax payoff is lower than 1

2 . What if player 1 has no information
at all about the number of stages? The techniques used for the above theorem do not extend easily
to larger n, since the number of cases increases rapidly as n increases. However, we show below
that a simple strategy guarantees a payoff of 1

4 to player 1 irrespective of the number of rounds in
the game.

We first show a more general theorem that applies to all sequential two-player location games,
including H and those in Gd. The theorem shows that in a multi-stage game, player 1 must obtain
at least 1

2 of its payoff in the single-stage game, even when it has no knowledge of the number of
stages (that is, the set of feasible stages, N , is the set of positive integers). We prove the theorem
by exhibiting a particular strategy that earns this payoff: locate at the single-stage equilibrium
location, then replicate each move of player 2.

Theorem 4 Suppose that, in a subgame-perfect equilibrium of a single stage location game, player
1 earns r1 = ρ. Consider the multiple-stage game in which player 1 knows that n ∈ Z+, but player
2 knows n. In this game, r1(Z+) ≥ ρ

2 .

Proof: Consider the following strategy for player 1. At stage 1, she chooses a location s1 that yields
the payoff of a single-stage equilibrium, ρ. For i > 1, player 1 replicates player 2’s previous move,
so that si = ti−1. For any location y ∈ S ∪ T , we have r(y, S ∪ T \ {y}) ≤ r(y, s1) ≤ 1 − ρ.

Now, r1(S, T, n) ≥
∑n

i=2 r(si, S∪T \{si}) =
∑n−1

i=1 r(ti, S∪T \{ti}) = r(T, S)−r(tn, S∪T \{tn}).
This implies 2r1(S, T, n) ≥ 1 − r(tn, S ∪ T \ {tn}) ≥ ρ. Thus, r1(Z+) ≥ minn r1(S, T, n) ≥ ρ

2 .

An immediate implication is that player 1 can obtain at least 1
2(d+1) in any game in Gd, and at

least 1
4 in the game H, when she does not know the number of stages.

Corollary 5 Suppose player 1 has no information about n, but player 2 knows n.
(i) for any location game Gd(Z+) ∈ Gd, we have r1 ∈ [ 1

2(d+1) ,
1
2 ].

(ii) for the game H(Z+), we have r1 ≥ 1
4 .

5 Conclusion

We have shown that in a one move location game in Rd, player 1 can always guarantee at least
1

d+1 of the total payoff. If player 1 earns a payoff strictly less that 1
d+1 , this payoff could not

have emerged from a subgame-perfect equilibrium of the location game in d-dimensional Euclidean
space. Conversely, for every x ∈ [ 1

d+1 , 1
2 ], there exists a location game such that player 1 obtains a

market share exactly x in equilibrium. Hence, the model is testable.
In the multiple-move game on a unit line, when both players know the number of moves, both

obtain a payoff of 1
2 in a subgame-perfect equilibrium. It would be interesting to generalize this

result to games in higher dimensions.
The situation changes when player 1 does not know the number of moves. Even if the number

of moves is 1 or 2, in the game on a unit line, player 1 obtains a payoff strictly less than 1
2 . However,
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we demonstrate a strategy for player 1, using which she can obtain at least half the payoff of the
single-move game in a subgame perfect equilibrium. An interesting open problem is to completely
characterize this minmax payoff.
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