
A Human Organization Analogy for Self-* Systems

John D. Strunk, Gregory R. Ganger

April 2003

CMU-CS-03-129

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The structure and operation of human organizations, such as corporations, offer useful insights to designers of self-*
systems (a.k.a. self-managing or autonomic). This paper explores the analogy, and describes the design of a self-*
storage system that borrows from it.
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1 Introduction

A popular research topic these days is the pursuit of “self-* systems:” self-organizing, self-
configuring, self-tuning, self-repairing, self-managing systems of cost-effective components (e.g.,
“bricks” or “blades”). Such research is a direct response to the shift from needing bigger, faster,
stronger computer systems to the need for less human-intensive management of the systems cur-
rently available. System complexity has reached the point where administration generally costs
more than hardware and software infrastructure.

In the course of describing self-* systems, several analogies have been offered, attempting
to draw inspiration from natural systems such as insect collectives or the autonomic nervous sys-
tem. This paper discusses another analogy source—human organizations, such as corporations or
militaries—and the insights it offers. Human organizations successfully combine the efforts of au-
tonomous, imperfect, adaptable entities to achieve a broad range of goals across a broad range of
sizes. Compared to natural systems, they accommodate more relevant goals (e.g., customer satis-
faction and legal protection vs. survival), and they are more thoroughly understood (e.g., see [10]).
Natural systems may well be the best model, when they are better understood, but provide little
guidance to system designers in the meantime.

The theory and practice of human organizations offer several interesting insights for self-*
system designers. For example, management hierarchies guide and oversee the efforts of workers
from outside the critical path. Such management partitions the workload among workers of varying
capabilities, provides local goals and policies, and monitors progress and work quality. As another
example, human organizations rarely start with detailed performance specifications at any level.
Instead, they move forward based on vague expectations and then adjust as they observe the results.
Insufficiently timely service produces a clear signal: complaints.

Such insights can be applied directly to the design of self-* systems. These systems may have a
set of nodes for performing work and a set of supervisory nodes for management tasks. Supervisors
could partition work and collect statistics while allowing local optimization to occur unhampered.
Human administrators can use complaints to indicate insufficient performance, which is often how
they hear about problems, rather than specifying complex service level objectives (SLOs). Super-
visor nodes, upon receiving a complaint from the administrator, would translate this abstract input
to internal performance goals for various tasks.

As a concrete example, we describe the design of a self-* storage system and how it borrows
from the analogy of human organizations. In interface and function, storage is simpler than gen-
eral computation systems. Yet, storage devices’ highly non-linear performance characteristics and
users’ reliability demands make it difficult to perfect. Simultaneously, storage plays a critical role
in data centers and seems to require a disproportionate amount of administrative attention (e.g.,
1 administrator per 1–2 TB in 2000 [5]). It is clearly a subject worthy of our attention.

2 Human Organizations

As researchers struggle to develop self-* systems, they have looked at existing natural systems
for examples with self-* properties. This search has produced several popular analogies, such as
autonomic computing [7], that evoke images of plumbing that functions, adapts, and repairs itself
without requiring attention. Insect collectives (e.g., bee hives and ant colonies) have been another
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source of inspiration, evoking images of large numbers of expendable, interchangeable individuals
autonomously working towards a common good.

On the surface (and for marketing purposes), these analogies look appealing. Beyond these
high-level properties, however, it is not clear how much they contribute to self-* systems. Most
biological systems tend to be inflexible outside of a narrow range, sometimes leading to disastrous
results—for example, insects continue to be drawn to bug zapping lamps. Their responses to
stimuli are genetically pre-programmed, resulting in very gradual adaptation to new environments
with the death of collectives (and mutation of the species) as part of the process. Perhaps most
importantly, such systems generally have static, limited policies (e.g., survival). Self-* systems,
on the other hand, need to support a broad range of policies across a broad range of environments
while being upgradable (e.g., patches) and robust (e.g., death of a collective is unacceptable).
Clearly, space remains for inspiration from additional sources.

Humans are able to work together in groups to solve a wide variety of problems relatively
efficiently. The primary example that we explore here is that of the corporation. Corporations
have a number of properties that are desirable for self-* systems. They are able to exist over a
wide range of sizes. For example, corporations exist that have from tens of employees to several
hundreds of thousands of employees, and both are successful.1 They are composed of heterogenous
components—the company CEO has a far different skill set than the janitor—and they are resilient
to failure. The tasks of employees that leave the organization are redistributed to others with
similar abilities either on a temporary basis, until a replacement is hired, or on a more permanent
basis. Corporations also show a great deal of versatility. While most have the same general goal,
increasing the value of their shareholders’ investment, the methods for achieving it vary widely.

2.1 Insights

The value of an analogy is the set of insights into system design that it provides. Human organiza-
tions offer a number of ideas that can guide the design of self-* systems.

Hierarchical management structure: Most human organizations have a tree-like structure in
which managers delegate tasks, along with a set of goals or deadlines, downward to their subordi-
nates. The main tasks of a supervisor are partitioning work among their workers, ensuring they are
meeting their assigned goals, and taking corrective action to improve efficiency. One key insight
within this management framework is that supervisors delegate tasks, but they do not dictate how
those tasks should be accomplished. Workers are able to perform tasks in their own way. This di-
vision works well since each worker has different strengths and characteristics, implying that they
themselves are the best judge of how they will most effectively accomplish their assigned tasks.

As we design self-* systems, this management structure provides an architecture for how
the different system components should work together. The separation of task distribution from
the implementation of those tasks permits devices to locally optimize based on their individual
characteristics. By communicating goals along with tasks, the supervisors enable the individual
workers to prioritize their activities in such a way that their optimizations are aligned with the
high-level goals of the system.

Complaint-based tuning: Humans are not good at precisely specifying what they want, but
they are very good at complaining when they are not satisfied. As a result, most service organiza-

1The larger examples have very clear inefficiencies, yet they still thrive.
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tions within corporations do not ask users for quantitative expectations. Instead, they create their
own rough, educated guesses and refine performance targets based on any complaints received.
It is human nature to be outspoken when things are “broken” (i.e., not living up to expectations),
while tasks that are being handled properly are generally taken for granted.

At the highest level, any self-* system will need to interact with a human administrator to re-
ceive system goals and priorities. It is unreasonable to expect the administrator to provide detailed,
meaningful SLOs—even experts pursuing workload characterization research struggle with how
to generate them. Instead, for performance metrics, self-* designs should borrow from the human
solution: educated guesses refined by feedback.

Risk analysis: All companies must assess and cope with issues of failure and security. As in
the real world, trial-and-error with feedback-based refinement is not sufficient. Companies spend
a great deal of effort to create policies for managing risk. Some self-* policies (e.g., reliability and
availability) involve similar tradeoffs that require similar analysis.

Try it and see: Making predictions about future system configurations is subject to a signifi-
cant margin of error. Companies counter this by trying new ideas on a small scale before investing
large amounts of resources. Self-* systems can use this “try and see” approach as well. Workload
characterization and system models introduce inaccuracies into system performance predictions.
By trying new configurations on a small scale first, predictions can be refined and mistakes cor-
rected with minimal impact on the overall system.

Observe, diagnose, repair loop: Biological systems act via preprogrammed responses to
stimuli, but most do not diagnose problems via investigation and reasoning the way humans do.
Humans develop and learn from shared repositories of knowledge. They apply the resulting exper-
tise to deduce the sources of problems and take corrective action. Such problem solving will be
needed in self-* systems, particularly when physical repairs must be explained and justified to the
human administrator.

Sleep, shifts, vacations, sabbaticals: Human organizations plan for and schedule worker
downtime. Doing so makes the workers more effective, allowing them to refresh themselves and
to step back from their work to gain perspective. To support such downtime, managers must have
sufficient workers and properly coordinate their schedules.

Computer infrastructures must plan for similar kinds of individual worker downtime. For ex-
ample, upgrades require taking individual workers offline. Additionally, occasional worker reboots
provide real operational benefits by resetting software state [6, 14].

Expecting inefficiencies: Human organizations are often mocked for their inefficiencies—
perhaps there is a lesson here for self-* designers. Scalable systems only work when complexity is
managed, and large human organizations manage complexity in part by tolerating inefficiency and
not attempting to fully utilize every resource.

3 Self-* Storage

We are exploiting insights from the corporate analogy in the design of self-* storage, a self-tuning,
self-managing storage system. This section describes our system architecture and discusses the
key interfaces and components, identifying the insights we exploit.
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Figure 1: Architecture of self-* storage – This figure shows the high-level architecture of self-* storage. The top
of the diagram is the management hierarchy, concerned with the distribution of goals and the delegation of storage
responsibilities from the system administrator down to the individual worker devices. The bottom of the figure depicts
the path of I/O requests in the system from clients, through routing nodes, to the workers for service. Note that the
management infrastructure is logically independent of the I/O request path.

3.1 System architecture

The high-level system architecture, shown in Figure 1, consists of three types of components:
supervisors, workers, and routers. These three components work together to configure and tune
the storage system based on administrator-provided goals.

Supervisors: The supervisors form a management hierarchy. The top of the hierarchy receives
high-level goals for data items from the system administrator. These directives are partitioned
at each level of the tree structure according to the capabilities of workers in that branch. Each
supervisor knows the goals and data that were assigned to it as well as how it has partitioned this
work to its subordinate nodes (workers or lower-level supervisors).

Workers: The workers (typically small storage arrays) are responsible for storing data and
servicing I/O requests for clients. The data that a worker stores and its goals are assigned by that
worker’s direct supervisor. However, the supervisor does not dictate any configuration parameters
for worker devices. Each worker is given the freedom to internally refine cache, scheduling, and
layout policies based on its characteristics, capabilities, and observed workload.

Routers: The routers ensure that I/O requests are delivered to the appropriate worker nodes
for service. Since the core job of the routers is transmitting requests and replies between work-
ers and clients, they are responsible for workload distribution. While worker nodes have a level
of autonomy from the supervisors, routers do not. They directly implement the policy that the
supervisors have chosen.
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3.2 Administrative interface

Critical to self-* storage being able to self-manage is having an external entity (the system ad-
ministrator) specify the high-level goals for the system [15]. There seems to be a consensus that
system configuration, from the administrator’s perspective, is better handled by specifying goals
rather than mechanisms [1]. While moving from specifying mechanisms to goals is a step in the
right direction, it is unclear whether administrators are properly equipped to specify detailed goals.
There is some hope that availability and reliability goals can be derived from various business and
insurance costs (related to risk management), but the proper way to set performance targets is a
different problem. Workload characterization [4, 8] can provide a first estimate of performance
requirements and can even be used to guide storage system design [2, 3], but further tuning by the
administrator will be necessary. Providing an easy to use interface for this refinement is a neces-
sity. We believe that using a system of complaints from the administrator can provide just such a
mechanism.

Complaint-based tuning will use complaints about the performance of specific data items as
feedback to revise performance targets and priorities between data items. This allows the adminis-
trator to revise the system’s goals using a very intuitive interface. Humans are very good at voicing
displeasure when something fails to meet their expectations even if they cannot enumerate those
expectations. In particular, an administrator (or even a normal user) can usually identify when the
system is not performing well enough.

When an administrator voices a complaint about the current service level of the storage system,
he provides two key pieces of information. First, the complaint is a statement that current service
levels are not sufficient. Second, the data identified in the complaint is the “most noticeable”
offender. These two items can be used by the system to guide performance tuning.

The first case to consider for tuning is one in which the system is able to meet its current
performance targets (i.e., there are sufficient resources for the demand currently placed on the
system). When a complaint is received, we know that the current performance level is inadequate,
and since it is already meeting its target, that target is incorrect and should be modified. Arguably,
a complaint could also have a qualitative “strength” to guide the magnitude of the adjustment, but
it may be possible to infer this information from the pattern of complaints. By iteratively receiving
complaints and adjusting performance goals, the system can “zero in” on the proper settings.

The second case of interest occurs when the system is unable to meet the current performance
targets and a complaint is received. In this case, we know that the current resources are insufficient
for the observed workload, and a message to that effect can be sent to the administrator. The
real insight in this situation is that the administrator chose to complain about this particular data
item when there are likely many that are not meeting their targets. The way to interpret this is
that the specified data item is more important than the others, so the system should adjust not the
performance targets, but the relative importance of meeting those targets.

3.3 Supervisor interface

For the system as a whole to meet the externally supplied goals, supervisors must communicate
to ensure all of the sub-parts are performing satisfactorily. Supervisor-to-supervisor communica-
tion serves two functions. First, it disseminates the “tasks” and goals to lower-level nodes, either
to workers or other supervisors. Second, it allows a supervisor to assess the performance of its
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subordinates to ensure they are meeting their goals.
Along the downward path, the supervisor assigns data and specifies associated goals (poten-

tially as SLOs in Rome [15]); it does not specify mechanisms. This use of goals allows the higher
level supervisor to ignore the details of lower-level mechanisms. Additionally, it allows intent to
be passed as part of the assignment. By communicating intent down the tree, lower nodes gain the
ability to assess their performance relative to goals as they internally optimize.

There are three types of information that we desire from the upward communication path.
First, lower-level nodes need to provide workload information to their supervisor. This information
encapsulates not only workload characteristics, but also how they (possibly a subtree of nodes) are
performing relative to the desired goals. Second, some information regarding the capabilities of
the subtree should be provided. Due to the workload-dependent nature of such a specification,
this is likely only an approximation, but may be helpful to the supervisor node as it attempts
to optimize. Third, it is desirable for lower-level nodes to be able to provide predictions about
potential configurations. If supervisors are able to ask, “How well would you meet your goals if I
added workload

�
?”, optimization can likely be sped up considerably. In addition to speeding up

the process, poor decisions can be pruned without inflicting a performance penalty on the system
via trial-and-error.

3.4 Supervisor internals

The hierarchy of supervisor nodes controls how data is partitioned onto each worker, and how the
incoming workload is distributed. A supervisor’s objective is to correctly partition data and goals
onto its subordinate nodes, such that if its children meet their assigned goals, the goals for the
entire subtree managed by the supervisor will be met. Creating this partitioning is not easy. Prior
to partitioning the workload, the supervisor needs to gain some understanding of the capabilities
of each of its workers. Much like this interaction in human organizations, the information will be
imperfect. For instance, the workers may provide best-case performance numbers to the supervisor.
This is of some use, but far from ideal.

One of the major obstacles for the supervisor to overcome is finding a way to evaluate a
sufficient portion of the possible configurations. To handle this, the supervisor is likely to use a
combination of coarse statistics, simulation, and trial-and-error. The coarse statistics for workload
characteristics and worker capabilities may allow large numbers of possibilities to be evaluated
quickly, but with a significant margin of error. Prospective partitionings could be further refined
by asking workers to simulate each possible configuration given the workload goals and historical
traces collected by workers. Finally, the promising ones from this stage can be implemented, first
on a small scale, then applied to a larger set of devices and data.

3.5 Worker internals

Workers store and service requests for assigned data in whatever manner they deem most effective.
By allowing the workers to independently optimize, they can internally reorganize, taking advan-
tage of techniques such as block shuffling [9, 12], rotational replication [11, 16], and track-aligned
extents [13].

Clearly, if workers are given a level of autonomy, there are certain minimum requirements
for these devices (beyond mere persistent storage). First, the worker must be able to handle block
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allocation internally. The mechanism for handling this can be simple, but it must exist since the
supervisor does not dictate intra-device data placement strategies. Second, the worker must provide
a way for the supervisor to assess its performance. The most straightforward method for this is if
workers maintain a trace of all requests and their service times. Given this trace, or proper statistics,
the supervisor can evaluate the effectiveness of its workers.

An additional ability that would be helpful, although not strictly necessary, is for the worker
to be able to provide predictions about how well it could achieve its goals given a potential config-
uration. In this scenario, the supervisor could provide a potential configuration and an associated
workload which the worker would analyze via analytic models or internal simulation, returning to
the supervisor the performance information. While the idea of embedding a simulator in a storage
device may sound overly optimistic, one must remember that many already have internal timing
models that are used for scheduling.

4 Open Questions

This section discusses some issues that we believe are critical to the success of this architecture for
self-* storage.

Supervisor’s ability to optimize: The ability of supervisors to successfully coordinate many
sub-devices, each of which internally optimize, is critical to the success of this architecture. One of
the main properties that make this supervisor/worker organization attractive is that the supervisors
abstract away the internals of their workers. However, hiding the details makes optimization more
difficult. Worse, workers can adapt to their workload, making their behavior more difficult to
predict.

To ensure that supervisors make timely progress, we plan to use a two-phase approach. First,
it is important for the system to quickly move away from configurations that are “abnormally bad”,
and into a state that is “reasonable.” In this first phase, we want to ensure that the system is able
to get itself out of performance holes, but we are not concerned with optimality. In the second
phase, it is not necessary to quickly converge upon an optimal configuration, only that the system
continually attempts to improve. We believe that the number of configurations (in practice) that
exhibit acceptable performance is likely to be large relative to those that exhibit either abnormally
good or bad characteristics. By combining both coarse metrics and simulation (in the first and
second phases, respectively), the system should be able to make timely progress.

Goal tradeoffs: While it seems clear that the system should be able to make tradeoffs among
high-level goals, it is not obvious how to implement them nor how they should be controlled by
the administrator. For instance, the system may have goals for reliability, availability, performance,
and power consumption. One approach to the system design is to create a strict ordering: reliabil-
ity, availability, performance, then power down anything that remains. This leads to unsatisfying
scenarios. For instance, performance could possibly be greatly improved by accepting a small
reduction in availability. In order to recognize and properly handle this, the system must have a
continuous model for its goals, not just a black-and-white threshold.

The introduction of interactions between goals complicates the administrator’s job because he
must understand those interactions as the workload and system characteristics change. Finding
a method to simply communicate this information to the administrator is a necessity. Using the
system’s ability to make predictions may prove helpful. For example, the system can help the
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administrator understand how the configuration would change as the workload increases, devices
are upgraded, or components fail by providing evaluations of “what if” scenarios. Additionally, the
use of “safety stops” may be useful in the event the administrator makes a serious tuning mistake.
For example, minimum thresholds for the various parameters could serve as hard limits that the
system would not cross while it makes internal tradeoffs.

Configuration complexity: Even in the architecture we propose, there are a large number of
tunable parameters (per data set goals and their relative importance). Finding a method for the
administrator to easily set each of them is a challenging task. While the complaint-based tuning
proposed earlier will provide a simple interface, it will be tedious to use outside of the occasional
performance “tweak.”

For managing this complexity, there are two aspects that work in our favor. First, it is likely
that most data will fit a generic (though site-specific) template, and only the exceptions would need
to be hand configured. Second, tuning the system can be a gradual process. When first installed,
it is likely that the system will be over-provisioned, allowing the system to perform well even if it
is not properly tuned. Only when the workload increases, causing the system to become resource
constrained, will the actual performance thresholds and configuration become important. When the
frequency of performance tweaks reaches an unacceptable level, more resources should be added.

5 Summary

Human organizations offer useful insights for the design of self-* systems. This paper describes
the architecture of a self-* storage system that borrows from this analogy. For example, it uses a
supervisor/worker hierarchy to distribute work and manage complexity while freeing components
to independently optimize based on their individual characteristics and workloads. It also uses
complaint-based tuning for performance goal specification.
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