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Abstract

Meta-programming is a discipline of writing programs in a certain programming language that generate,
manipulate or execute programs written in another language. In a typed setting, meta-programming lan-
guages usually contain a modal type constructor to distinguish the level of object programs (which are the
manipulated data) from the meta programs (which perform the computations). In functional programming,
modal types of object programs generally come in two flavors: open and closed, depending on whether the
expressions they classify may contain any free variables or not. Closed object programs can be executed
at run-time by the meta program, but the computations over them are more rigid, and typically produce
less efficient residual code. Open object programs provide better inlining and partial evaluation, but once
constructed, expressions of open modal type cannot be evaluated.
Recent work in this area has focused on combining the two notions into a sound type system. We present a
novel calculus to achieve this, which we call ν�. It is based on adding the notion of names inspired by the
work on Nominal Logic and FreshML to the λ�-calculus of proof terms for the necessity fragment of modal
logic S4. The resulting language provides a more fine-grained control over free variables of object programs
when compared to the existing languages for meta-programming. In addition, we extend our calculus with
primitives for inspection and destruction of object programs at run-time in a type-safe manner.
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1 Introduction

Meta-programming is a paradigm referring to the ability to algorithmically compose programs of a certain
object language, through a program written in a meta-language. A particularly intriguing instance of this
concept, and the one we are interested in in this work, is when the meta and the object language are: (1)
the same, or the object language is a subset of the meta language; and (2) typed functional languages. A
language satisfying (1) adds the possibility to also invoke the generated programs at run-time. We refer to
this setup as homogeneous meta-programming.

Among some of the advantages of meta-programming and of its homogeneous and typed variant we
distinguish the following (and see [She01] for a comprehensive analysis).

Efficiency. Rather than using one general procedure to solve many different instances of a problem, a
program can generate specialized (and hence more efficient) subroutines for each particular case. If the
language is capable of executing thus generated procedures, the program can choose dynamically, depending
on a run-time value of a certain variable or expression, which one is most suitable to invoke. This is the idea
behind the work on run-time code generation [LL96, WLP98, WLPD98] and the functional programming
concept of staged computation [DP01].

Maintainability. Instead of maintaining a number of specialized, but related, subprograms, it is easier to
maintain their generator. In a language capable of invoking the generated code, there is an added bonus of
being able to accentuate the relationship between the synthesized code and its producer; the subroutines can
be generated and bound to their respective identifiers in the initialization stage of the program execution,
rather then generated and saved into a separate file of the build tree for later compilation and linking.
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Languages in which object programs can not only be composed and executed but also have their structure
inspected add further advantages. Efficiency benefits from various optimizations that can be performed
knowing the structure of the code. For example, Griewank reports in [Gri89] on a way to reuse common
subexpressions of a numerical function in order to compute its value at a certain point and the value of its
n-dimensional gradient, but in such a way that the complexity of both evaluations performed together does
not grow with n. Maintainability (and in general the whole program development process) benefits from the
presence of types on both the level of synthesized code, and on the level of program generators. Finally, there
are applications from various domains, which seem to call for the capability to execute a certain function
as well as recurse over its structure: see [Roz93] for examples in computer graphics and numerical analysis,
and [RP02] for an example in machine learning and probabilistic modeling.

Recent developments in type systems for meta-programming have been centered around two particular
modal lambda calculi: λ� and λ©. The λ�-calculus is the proof-term language for the modal logic S4,
whose necessity constructor � annotates valid propositions [DP01, PD01]. The type �A has been used in
run-time code generation to classify generators of code of type A [WLP98, WLPD98]. The λ©-calculus is
the proof-term language for discrete linear temporal logic, and the type ©A classifies terms associated with
the subsequent time moment. The intended application of λ© is in partial evaluation because the typing
annotation of a λ©-program can be seen as its binding-time specification [Dav96]. Both calculi provide a
distinction between levels (or stages) of terms, and this explains their use in meta-programming. The lowest,
level 0, is the meta language, which is used to manipulate the terms on level 1 (terms of type �A in λ�

and ©A in λ©). This first level is the meta language for the level 2 containing another stratum of boxed
and circled types, etc. For purposes of meta-programming, the type �A is also associated with closed code
– it classifies closed object terms of type A. On the other hand, the type ©A is the type of postponed code,
because it classifies object terms of type A which are associated with the subsequent time moment. The
important property of λ© is that its terms at a certain temporal level n may refer to variables which are on
the same temporal level n. Because these variables can be predeclared in the context, the postponed code
type of λ© is frequently conflated with the notion of open code. The abstract concept of open code (not
necessarily that of λ©) is obviously more general than that of closed code, and it is certainly desirable to
endow a meta-programming language with it. As already observed in [Dav96] in the context of λ©, working
with open code is more flexible and results in better and more optimized residual programs. However, we
also want to run the generated object programs when they are closed, and unfortunately, the modal type of
λ© does not provide for this.

There have been several proposed type systems which incorporate the the advantages from both languages,
most notable being MetaML [MTBS99, Tah99, CMT00, CMS01]. MetaML defines its notion of open code
to be that of the postponed code of λ© and then introduces closed code as a refinement – as open code
which happens to contain no free variables. Our calculus, which we call ν�, has the opposite approach.
Rather than refining the notion of postponed code of λ©, we relax the notion of closed code of λ�. We start
with the system of λ�, but provide the additional expressiveness by allowing the code to contain specified
object variables as free (and rudiments of this idea have already been considered in [Nie01]). The fact that
a given code expression depends on a set of free variables will be reflected in its type. The object variables
themselves are represented by a separate semantic category of names (also called symbols or atoms), which
admits equality. The treatment of names is inspired by the work on Nominal Logic and FreshML by Pitts and
Gabbay [GP02, PG00, Pit01, Gab00]. This design choice lends itself well to the addition, in an orthogonal
way, of intensional code analysis, which we also undertake for a fragment of our language. Thus, we can also
treat our object expressions as higher-order syntactic data; they can not only be evaluated, but can also be
compared for structural equality and destructed via pattern-matching, much in the same way as one would
work with any abstract syntax tree.

The rest of the document is organized as follows: Section 2 is a brief exposition of the previous work
on λ�. The type system of ν� and its properties are described in Section 3, while Section 4 describes
parametric polymorphism in sets of names. Intensional analysis of higher-order syntax is introduced in
Section 5. Finally, we illustrate the type system with example programs, before discussing the related work
in Section 6. This paper supersedes the previously published [Nan02].
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2 Modal λ�-calculus

This section reviews the previous work on the modal λ�-calculus and its use in meta-programming to
separate, through the mechanism of types, the realms of meta-level programs and object-level programs.
The λ�-calculus is the proof-term calculus for the necessitation fragment of modal logic S4 [PD01, DP01].
Chronologically, it came to be considered in functional programming in the context of specialization for
purposes of run-time code generation [WLP98, WLPD98]. For example, consider the exponentiation function,
presented below in ML-like notation.

fun exp1 (n : int) (x : int) : int =
if n = 0 then 1 else x * exp1 (n-1) x

The function exp1 : int -> int -> int is written in curried form so that it can be applied when only a
part of its input is known. For example, if an actual parameter for n is available, exp1(n) returns a function
for computing the n-th power of its argument. In a practical implementation of this scenario, however, the
outcome of the partial instantiation will be a closure waiting to receive an actual parameter for x before it
proceeds with evaluation. Thus, one can argue that the following reformulation of exp1 is preferable.

fun exp2 (n : int) : int -> int =
if n = 0 then λx:int.1
else

let val u = exp2 (n - 1)
in

λx:int. x * u(x)
end

Indeed, when only n is provided, but not x, the expression exp2(n) performs computation steps based on
the value of n to produce a residual function specialized for computing the n-th power of its argument. In
particular, the obtained residual function will not perform any operations or take decisions at run-time based
on the value of n; in fact, it does not even depend on n – all the computation steps dependent on n have
been taken during the specialization.

A useful intuition for understanding the programming idiom of the above example, is to view exp2 as a
program generator; once supplied with n, it generates the specialized function for computing n-th powers.
This immediately suggests a distinction in the calculus between two stages (or levels): the meta and the
object stage. The object stage of an expression encodes λ-terms that are to be viewed as data – as results of a
process of code generation. In the exp2 function, such terms would be (λx:int.1) and (λx:int. x * u(x)).
The meta stage describes the specific operations to be performed over the expressions from the object stage.
This is why the above-illustrated programming style is referred to as staged computation.

The idea behind the type system of λ� is to make explicit the distinction between meta and object stages.
It allows the programmer to specify the intended staging of a term by annotating object-level subterms of the
program. Then the type system can check whether the written code conforms to the staging specifications,
making staging errors into type errors. The syntax of λ� is presented below.

Types A : : = b | A1 → A2 | �A
Terms e : : = c | x | u | λx:A. e | e1 e2 | box e | let box u = e1 in e2

V alue variable contexts Γ : : = · | Γ, x:A
Expression variable contexts ∆ : : = · | ∆, u:A
V alues v : : = c | λx:A. e | box e

There are several distinctive features of the calculus, arising from the desire to differentiate between the
stages. The most important is the new type constructor �. It is usually referred to as modal necessity, as on
the logic side it is a necessitation modifier on propositions [PD01]. In our meta-programming application, it
is used to classify object-level terms. Its introduction and elimination forms are the term constructors box
and let box, respectively. If e is an object term of type A, then box e would be a meta term of type �A.
The box term constructor encases the object term e so that it can be accessed and manipulated by the meta
part of the program. The elimination form let box u = e1 in e2 does the opposite; it takes the object term
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encased by e1 and binds it to the variable u to be used in e2. Notice that the semantics of λ� (presented
in Figure 1) distinguishes between two kinds of variables, and consequently has two variable contexts: Γ for
variables bound to meta terms, and ∆ for variables bound to object terms. We can now use the type system
of λ� to make explicit the staging of exp2.

fun exp3 (n : int) : �(int->int) =
if n = 0 then box (λx:int. 1)
else

let box u = exp3 (n - 1)
in

box (λx:int. x * u(x))
end

Application of exp3 at argument 2 produces an object-level function for squaring.

- sqbox = exp3 2;
val sqbox = box (λx:int. x *

(λy:int. y *
(λz:int. 1) y) x) : �(int -> int)

In the elimination form let box u = e1 in e2, the bound variable u belongs to the context ∆ of object-level
variables, but it can be used in e2 in both object positions (i.e. under a box) and meta positions. This way
the calculus is capable of expressing not only composition of object programs, but also their evaluation. For
example we can use the generated function sqbox in the following way.

- sq = (let box u = sqbox in u);
val sq = [fn] : int -> int
- sq 3;
val it = 9 : int

This example demonstrates that object expressions of λ� can be reflected, i.e. coerced from the object-
level into the meta-level. The opposite coercion which is referred to as reification, however, is not possible.
This suggests that λ� should be given a more specific model in which reflection naturally exists, but reifi-
cation does not. A possible interpretation exhibiting this behavior considers object terms as actual syntactic
expressions, or abstract syntax trees of source programs of the calculus, while the meta terms are compiled
executables. Because λ� is typed, in this scenario the object terms represent not only syntax, but higher-
order syntax as well. The operation of reflection corresponds to the natural process of compiling source code
into an executable. The opposite operation of reconstructing source code out of its compiled equivalent is
not usually feasible, so this interpretation does not support reification, just as required.

3 Modal calculus of names

3.1 Motivation, syntax and overview

The λ� staging of exp3 from the previous section, is somewhat displeasing. For example, the residual
programs that exp3 produces, e.g. sqbox, contain unnecessary variable-for-variable redexes, and hence are
not as optimal as one would want. This may not be a serious criticism from the perspective of code generation,
but it certainly is severe if we adhere to the interpretation of object terms as higher-order syntax. It exhibits
the fact that λ� is too restrictive to allow for arbitrary composition of higher-order syntax trees. The
reason for this deficiency is that λ� requires that its boxed object terms must always be closed. In that
sense, the type �A is a type of closed syntactic expressions of type A. As can be observed from the typing
rules in Figure 1, the �-introduction rule erases all the meta variables before typechecking the argument
term. It allows for object level variables, but in run-time they are always substituted by other closed object
expressions to produce a closed object expression at the end. Worse yet, if we only have a type of closed
syntactic expressions at our disposal, we can’t even type the body of a λ-abstraction in isolation from the
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Typechecking

x:A ∈ Γ

∆; Γ ` x : A

u:A ∈ ∆

∆; Γ ` u : A

∆; (Γ, x:A) ` e : B

∆; Γ ` λx:A. e : A→ B

∆; Γ ` e1 : A→ B ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : B

∆; · ` e : A

∆; Γ ` box e : �A

∆; Γ ` e1 : �A (∆, u:A); Γ ` e2 : B

∆; Γ ` let box u = e1 in e2 : B

Operational semantics

e1 7−→ e′1

e1 e2 7−→ e′1 e2

e2 7−→ e′2

v1 e2 7−→ v1 e
′
2

(λx:A. e) v 7−→ [v/x]e

e1 7−→ e′1

let box u = e1 in e2 7−→ let box u = e′1 in e2
let box u = box e1 in e2 7−→ [e1/u]e2

Figure 1: Typing and evaluation rules for λ�.

λ-binder itself – subterms of a closed term are not necessarily closed themselves. Thus, it would be impossible
to ever inspect, destruct or recurse over object-level expressions with binding structure.

The solution should be to extend the notion of object level to include not only closed syntactic expressions,
but also expressions with free variables. This need has long been recognized in the meta-programming
community, and Section 6 discusses several different meta-programming systems and their solutions to the
problem. The technique predominantly used in these solutions goes back to the Davies’ λ©-calculus [Dav96].
The type constructor© of this calculus corresponds to discrete temporal logic modality for propositions true
at the subsequent time moment. In meta-programming setup, the modal type ©A stands for open object
expression of type A, where the free variables of the object expression are modeled by meta-variables from
the subsequent time moment, bound somewhere outside of the expression.

Our ν�-calculus adopts a different approach. It seems that for purposes of higher-order syntax, one
cannot equate bound meta-variables with free variables of object expressions. For, imagine recursing over
two syntax trees with binding structure to compare them for syntactic equality modulo α-conversion. When-
ever a λ-abstraction is encountered in both expressions, we need to introduce a new entity to stand for the
bound variable of that λ-abstraction, and then recursively proceed comparing the bodies of the abstrac-
tions. But then, introducing this new entity standing for the λ-bound variable must not change the type
of the surrounding term. In other words, free variables of object expressions cannot be introduced into the
computation as λ-bound variables, as it is the case in λ© and other languages based on it.

Thus, we start with the λ�-calculus, and introduce a separate semantic category of names, motivated
by the works of Pitts and Gabbay [PG00, GP02], and also of Odersky [Ode94]. Just as before, object and
meta stages are separated through the �-modality, but now object terms can use names to encode abstract
syntax trees with free variables. The names appearing in an object term will be apparent from its type.
In addition, the type system must be instrumented to keep track of the occurrences of names, so that the
names are prevented from slipping through the scope of their introduction form.

Informally, a term depends on a certain name if that name appears in the meta-level part of the term.
The set of names that a term depends on is called the support of the term. The situation is analogous to
that in polynomial algebra, where one is given a base structure S and a set of indeterminates (or generators)
I and then freely adjoins S with I into a structure of polynomials. In our setup, the indeterminates are the
names, and we build “polynomials” over the base structure of ν� expressions. For example, assuming for a
moment that X and Y are names of type int, and that the usual operations of addition, multiplication and
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exponentiation of integers are primitive in ν�, the term

e1 = X3 + 3X2Y + 3XY 2 + Y 3

would have type int and support set {X,Y }. The names X and Y appear in e1 at the meta level, and
indeed, notice that in order to evaluate e1 to an integer, we first need to provide definitions for X and Y .
On the other hand, if we box the term e1, we obtain

e2 = box (X3 + 3X2Y + 3XY 2 + Y 3)

which has the type �(int[X,Y ]), but its support is the empty set, as the names X and Y only appear at
the object level (i.e. under a box). Thus, the support of a term (in this case e1) becomes part of the type
once the term itself is boxed. This way, the types maintain the information about the support of subterms
at all stages. For example, assuming that our language have pairs, the term

e3 = 〈X2,box Y 2〉

would have the type int×�(int[Y ]) with support {X}.
We are also interested in compiling and evaluating syntactic entities in ν� when they have empty support

(i.e. when they are closed). Thus, we need a mechanism to eliminate a name from a given expression’s
support, eventually turning unexecutable expressions into executable ones. For that purpose, we use explicit
substitutions. An explicit substitution provides definitions for names which appear at a meta-level in a
certain expression. Notice the emphasis on the meta-level; explicit substitutions do not substitute under
boxes, as names appearing at the object level of a term do not contribute to the term’s support. This way,
explicit substitutions provide extensions, i.e., definitions for names, while still allowing names under boxes
to be used for the intensional information of their identity (which we utilize in Section 5).

We next present the syntax of the ν�-calculus and discuss each of the constructors.

Names X ∈ N
Support sets C,D ∈ N ∗
Types A : : = b | A1 → A2 | A1 9 A2 | �CA
Explicit substitutions Θ : : = · | X → e,Θ
Terms e : : = c | X | x | 〈Θ〉u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2 |
νX:A. e | choose e

V alue variable contexts Γ : : = · | Γ, x:A
Expression variable contexts ∆ : : = · | ∆, u:A[C]
Name contexts Σ : : = · | Σ, X:A

Just as λ�, our calculus makes a distinction between meta and object levels, which here too are interpreted
as the level of compiled code and the level of source code (or abstract syntax expressions), respectively. The
two levels are separated by a modal type constructor �, except that now we have a whole family of modal
type constructors – one for each finite set of names C. In that sense, values of the type �CA are the abstract
syntax trees of the calculus freely generated over the set of names C. We refer to the finite set C as a support
set of thus generated syntax trees. All the names are drawn from a countably infinite universe of names N .

As before, the distinction in levels forces a split in the variable contexts. We have a context Γ for
meta-level variables (we will also call them compiled code variables, or value variables), and a context ∆
for object-level variables (which we also call syntactic expression variables, or just expression variables).
The context ∆ must keep track not only of the typing of a given variable, but also of the support set that
syntactic expression bound to that variable is allowed to have.

The set of terms includes the syntax of the λ�-calculus from Section 2. However, there are two important
distinctions in ν�. First, we can now explicitly refer to names on the level of terms. Second, it is required
that all the references to expression variables that a certain term makes are always prefixed by some explicit
substitution. For example, if u is an expression variable bound by some let box u = e1 in e2 term, then u
can only appear in e2 prefixed by an explicit substitution Θ (and different occurrences of u can have different
substitutions associated with them). The explicit substitution is supposed to provide definitions for names in
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the expression bound to u. When the reference to the variable u is prefixed by an empty substitution, instead
of 〈·〉u we will simply write u. The explicit substitutions used in ν�-calculus are simultaneous substitutions.
We assume that the syntactic presentation of a substitution never defines a denotation for the same name
twice.

Example 1 Assuming that X and Y are names of type int, the code segment below creates a polynomial
over X and Y and then evaluates it at the point (X = 1, Y = 2).

- let box u = box (X3 + 3X2Y + 3XY2 + Y3)
in

〈X -> 1, Y -> 2〉 u
end

val it = 27 : int

�

The terms νx:A. e and choose e are the introduction and elimination form for the type constructor
A 9 B. The term νX:A. e binds a name X of type A that can subsequently be used in e. The term
choose picks a fresh name of type A, substitutes it for the name bound in the argument ν-abstraction of
type A9 B, and proceeds to evaluate the body of the abstraction. To prevent the bound name in νX:A. e
from escaping the scope of its definition and thus creating an observable effect, the type system will enforce
a discipline on the occurrence of X in e; X can appear in e only in the scope of some explicit substitution
which provides it with a definition, or in computationally irrelevant (i.e. dead code) positions.

Finally, enlarging an appropriate context by a new variable or a name is subject to Barendregt’s Variable
Convention: the new variables and names are assumed distinct, or are renamed in order not to clash with
already existing ones. Terms which differ only in the syntactic representation of their bound variables
and names are considered equal. The binding forms in the language are λx:A. e, let box u = e1 in e2

and νX:A. e. As usual, capture-avoiding substitution [e1/x]e2 of expression e1 for the variable x in the
expression e2 is defined to rename bound variables and names when descending into their scope. Given a
term e, we denote by fv(e) and fn(e) the set of free variables of e and the set of names appearing in e at the
meta-level. In addition, we overload the function fn so that given a type A and a support set C, fn(A[C])
is the set of names appearing in A or C.

Example 2 To illustrate our new constructors, we present a version of the staged exponentiation function
that we can write in ν�-calculus. In this and in other examples we resort to concrete syntax in ML fashion,
and assume the presence of the base type of integers, recursive functions and let-definitions. In any case,
these additions do not impose any theoretical difficulties.

fun exp (n : int) : �(int -> int) =
choose (νX : int.

let fun exp’ (m : int) : �Xint =
if m = 0 then box 1
else

let box u = exp’ (m - 1)
in

box (X * u)
end

in
let box v = exp’ (n)
in

box (λx:int. 〈X -> x〉 v)
end

end)
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- sq = exp 2;
val sq = box (λx:int. x * (x * 1)) : �(int->int)

The function exp takes an integer n and generates a fresh name X of integer type. Then it calls the helper
function exp’ to build the expression v = X ∗ · · · ∗X︸ ︷︷ ︸

n

∗1 of type int and support {X}. Finally, it turns

the expression v into a function by explicitly substituting the name X in v with a newly introduced bound
variable x. Notice that the generated residual code for sq does not contain any unnecessary redexes, in
contrast to the λ� version of the program from Section 2. �

3.2 Explicit substitutions

In this section we formally introduce the concept of explicit substitution over names and define related oper-
ations. As already outlined before, substitutions will serve to provide definitions for names, thus effectively
removing the substituting names from the support of the term in which they appear. Once the term has
empty support, it can be compiled and evaluated.

Definition 1 (Explicit substitution, its domain and range)
An explicit substitution is a function from the set of names to the set of terms

Θ : N → Terms

Given a substitution Θ, its domain dom(Θ) is the set of names that the substitution does not fix. In other
words

dom(Θ) = {X ∈ N | Θ (X) 6= X}

Range of a substitution Θ is the image of dom(Θ) under Θ:

range(Θ) = {Θ (X) | X ∈ dom(Θ)}

For the purposes of this work, we only consider substitutions with finite domains. A substitution Θ with
a finite domain has a finitary syntactical representation as a set of ordered pairs X → e, relating a name
X from dom(Θ), with its substituting expression e. The opposite also holds – any finite and functional
set of ordered pairs of names and expressions determines a unique substitution. We will frequently equate
a substitution and its syntactic representation when it does not result in ambiguities. Just as customary,
we denote by fv(Θ) the set of free variables in the terms from range(Θ). The set of names appearing in
range(Θ) is denoted by fn(Θ).

Each substitution can be uniquely extended to a function over arbitrary terms in the following way.

Definition 2 (Substitution application)
Given a substitution Θ and a term e, the operation {Θ}e of applying Θ to the meta level of e is defined
recursively on the structure of e as given below. The substitution application is capture-avoiding.

{Θ} X = Θ(X)
{Θ} x = x
{Θ} (〈Θ′〉u) = 〈Θ ◦Θ′〉u
{Θ} (λx:A. e) = λx:A. {Θ}e x 6∈ fv(Θ)
{Θ} (e1 e2) = {Θ}e1 {Θ}e2

{Θ} (box e) = box e
{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2 u 6∈ fv(Θ)
{Θ} (νX:A. e) = νX:A. {Θ}e X 6∈ fn(Θ)
{Θ} (choose e) = choose {Θ}e
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The most important aspect of the above definition is that substitution application does not recursively
descend under box. This is of utmost importance for the soundness of our language as it preserves the
distinction between the meta and the object levels. It is also justified, as explicit substitutions are intended
to only remove names which are in the support of a term, and names appearing under box do not contribute
to the support.

The operation of substitution application depends upon the operation of substitution composition Θ1◦Θ2,
which we define next.

Definition 3 (Composition of substitutions)
Given two substitutions Θ1 and Θ2 with finite domains, their composition Θ1 ◦Θ2 is the substitution defined
as

(Θ1 ◦Θ2)(X) = {Θ1}(Θ2(X))

The composition of two substitutions with finite domains is well-defined, as the resulting mapping from
names to terms is finite. Indeed, for every name X 6∈ dom(Θ1)∪dom(Θ2), we have that (Θ1 ◦Θ2)(X) = X,
and therefore dom(Θ1 ◦Θ2) ⊆ dom(Θ1) ∪ dom(Θ2). Now, since this dom(Θ1 ◦Θ2) is finite, the syntactic
representation of the composition can easily be computed as the set

{X → {Θ1}(Θ2 (X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}

It would occasionally be beneficial to represent this set as a disjoint union of two smaller sets Θ′1 and Θ′2
defined as:

Θ′1 = {X → Θ1 (X) | X ∈ dom(Θ1) \ dom(Θ2)}
Θ′2 = {X → {Θ1}(Θ2 (X)) | X ∈ dom(Θ2)}

It is important to notice that, though the definitions of substitution application and substitution com-
position are mutually recursive, both the operations are terminating. Substitution application is defined
inductively over the structure of its argument, so the size of terms on which it operates is always decreasing.
Composing substitutions with finite domain also terminates. Indeed, as the above equations show, only a
finite amount of work is needed to compute the domain of a composition. After the domain is obtained, the
syntactic representation of the composition is computed in finite time by substitution application.

3.3 Type system

The type system of our ν�-calculus consists of two mutually recursive judgments:

Σ; ∆; Γ ` e : A [C]

and
Σ; ∆; Γ ` 〈Θ〉 : [C]⇒ [D]

Both of them are hypothetical and work with three contexts: context of names Σ, context of expression
variables ∆, and a context of value variables Γ (the syntactic structure of all three contexts is given in
Section 3.1). The first judgment is the typing judgment for expressions. Given an expression e it checks
whether e has type A, and is generated by the support set C. The second judgment types the explicit
substitutions. Given a substitution Θ and two support sets C and D, the substitution has the type [C]⇒ [D]
if it maps expressions of support C to expressions of support D. This intuition will be proved in Section 3.4.

The contexts deserve a few more words. Because the types of ν�-calculus depend on names, and types of
names can depend on other names as well, we must impose some conditions on well-formedness of contexts.
Henceforth, variable contexts ∆ and Γ will be well-formed relative to Σ if Σ declares all the names that
appear in the types of ∆ and Γ. A name context Σ is well-formed if every type in Σ uses only names
declared to the left of it. Further, we will often abuse the notation and write Σ = Σ′, X:A to define the set
Σ′ obtained after removing the name X from the context Σ. Obviously, Σ′ does not have to be a well-formed
context, as types in it may depend on X, but we will always transform Σ′ into a well-formed context before
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Explicit substitutions

C ⊆ D

Σ; ∆; Γ ` 〈 〉 : [C]⇒ [D]

Σ; ∆; Γ ` e : A [D] Σ; ∆; Γ ` 〈Θ〉 : [C \ {X}]⇒ [D] X:A ∈ Σ

Σ; ∆; Γ ` 〈X → e,Θ〉 : [C]⇒ [D]

Hypothesis

X:A ∈ Σ

Σ; ∆; Γ ` X : A [X,C] Σ; ∆; (Γ, x:A) ` x : A [C]

Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [C]⇒ [D]

Σ; (∆, u:A[C]); Γ ` 〈Θ〉u : A [D]

λ-calculus

Σ; ∆; (Γ, x:A) ` e : B [C]

Σ; ∆; Γ ` λx:A. e : A→ B [C]

Σ; ∆; Γ ` e1 : A→ B [C] Σ; ∆; Γ ` e2 : A [C]

Σ; ∆; Γ ` e1 e2 : B [C]

Modality

Σ; ∆; · ` e : A [C]

Σ; ∆; Γ ` box e : �CA [D]

Σ; ∆; Γ ` e1 : �DA [C] Σ; (∆, u:A[D]); Γ ` e2 : B [C]

Σ; ∆; Γ ` let box u = e1 in e2 : B [C]

Names

(Σ, X:A); ∆; Γ ` e : B [C] X 6∈ fn(B[C])

Σ; ∆; Γ ` νX:A. e : A9 B [C]

Σ; ∆; Γ ` e : A9 B [C]

Σ; ∆; Γ ` choose e : B [C]

Figure 2: Typing rules of the ν�-calculus.

plugging it back into our judgments. Thus, we will always take care, and also implicitly assume, that all the
contexts in the judgments are well-formed. The same holds for all the types and support sets that we use in
the rules.

The typing rules of ν� are presented in Figure 2. A pervasive characteristic of the type system is support
weakening. Namely, if a term is in the set of expressions of type A freely generated by a support set C, then
it certainly is among the expressions freely generated by some support set D ⊇ C. We make this property
admissible to both the judgments of the type system, and it will be proved as a lemma in Section 3.4.

Explicit substitutions A substitution with empty syntactic representation is the identity substitution.
When an identity substitution is applied to a term containing names from C, the resulting term obviously
contains names from C. But the support of the resulting term can be extended by support weakening to
a superset D, as discussed above, so we bake this property into the side condition C ⊆ D for the identity
substitution rule. We implicitly require that both the sets are well-formed, i.e. that they both contain only
names already declared in the name context Σ.

The rule for non-empty substitutions is quite expected. It recursively checks each of its component terms
for being well typed in the given contexts and support. It is worth noticing however, that a substitution
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Θ can be given a type [C] ⇒ [D] where the “domain” support set C is completely unrelated to the set
dom(Θ). In other words, the substitution can provide definitions for more names or for less names than
the typing judgment actually cares for. For example, the substitution Θ = (X → 10, Y → 20) has domain
dom(Θ) = {X,Y }, but it can be given (among others) the typings: [ ] ⇒ [ ], [X] ⇒ [ ], as well as
[X,Y, Z]⇒ [Z].

Hypothesis rules Since there are three kinds of variable contexts, we have three hypothesis rules. First
is the rule for names. A name X can be used provided it has been declared in Σ and is accounted for
in the supplied support set. The implicit assumption is that the support set C is well-formed, i.e. that
C ⊆ dom (Σ) The rule for value variables is straightforward. The typing x:A can be inferred, if x:A is
declared in Γ. The actual support of such a term can be any support set C as long as it is well-formed, which
is implicitly assumed. Expression variables occur in a term always prefixed with an explicit substitution.
The rule for expression variables has to check if the expression variable is declared in the context ∆ and if
its corresponding substitution has the appropriate type.

λ-calculus fragment The rule for λ-abstraction is quite standard. Its implicit assumption is that the
argument type A is well-formed in name context Σ before it is introduced into the variable context Γ.
Application rule checks both the function and the application argument against the same support set.

Modal fragment Just as in λ�-calculus, the meaning of the rule for �-introduction is to ensure that the
boxed expression e represents an abstract syntax tree. It checks e for having a given type in a context without
compile code variables. The support that e has to match is supplied as an index to the 2 constructor. On
the other hand, the support for the whole expression box e is empty, as the expression obviously does not
contain any names at the meta level. Thus, the support can be arbitrarily weakened to any well-formed
support set D. The �-elimination rule is also a straightforward extension of the corresponding λ� rule. The
only difference is that the bound expression variable u from the context ∆ now has to be stored with its
support annotation.

Names fragment The introduction form for names is νX:A. e with its corresponding type A 9 B. It
introduces an “irrelevant” name X:A into the computation determined by e. It is assumed that the type A
is well-formed relative to the context Σ. The term constructor choose is the elimination form for A9 B. It
picks a fresh name and substitutes it for the bound name in the ν-abstraction. In other words, the operational
semantics of the β-redex choose (νX:A. e) (formalized in Section 3.5) proceeds with the evaluation of e in
a run-time context in which a fresh name has been picked for X. It is justified to do so because X is bound
by ν and, by convention, can be renamed with a fresh name. The irrelevancy of X in the above example
means that X will never be encountered during the evaluation of e in a computationally significant position.
Thus, (1) it is not necessary to specify its run-time behavior, and (2) it can never escape the scope of its
introducing ν in any observable way. The the side-condition to ν-introduction serves exactly to enforce this
irrelevancy. It effectively limits X to appear only in dead-code subterms of e or in subterms from which it
will eventually be removed by some explicit substitution. For example, consider the following term

νX : int. νY : int.
box (let box u = box X

box v = box Y
in

〈X -> 1〉 u
end)

It contains a substituted occurrence of X and a dead-code occurrence of Y , and is therefore well-typed (of
type int9 int9 �int).

One may wonder what is the use of entities like names which are supposed to appear only in computa-
tionally insignificant positions in the computation. The fact is, however, that names are not insignificant at
all. Their import lies in their identity. For example, in Section 5 on intensional analysis of syntax, we will
compare names for equality – something that cannot be done with ordinary variables. For, ordinary variables
are just placeholders for some values; we cannot compare the variables for equality, but only the values that
the variables stand for. In this sense we can say that λ-abstraction is parametric, while ν-abstraction is
deliberately designed not to be.
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It is only that names appear irrelevant because we have to force a certain discipline upon their usage.
In particular, before leaving the local scope of some name X, as determined by its introducing ν, we have
to “close up” the resulting expression if it depends significantly on X. This “closure” can be achieved by
turning the expression into a λ-abstraction by means of explicit substitutions. Otherwise, the introduction
of the new name will be an observable effect. To paraphrase, when leaving the scope of X, we have to turn
the “polynomials” depending on X into functions. An illustration of this technique is the program already
presented in Example 2.

The previous version of this work [Nan02] did not use the constructors ν and choose, but rather combined
them into a single constructor new. This is also the case in the work of Pitts and Gabbay [PG00]. The
decomposition is given by the equation

new X:A in e = choose (νX:A. e)

We have decided on this reformulation in order to make the types of the language follow more closely the
intended meaning of the terms and thus provide a stronger logical foundation for the calculus.

3.4 Structural properties

This section explores the basic theoretical properties of our type system. The lemmas developed here will be
used to justify the operational semantics that we ascribe to ν�-calculus in Section 3.5, and will ultimately
lead to the proof of the Type preservation and Progress theorems.

Lemma 4 (Structural properties of contexts)
1. Exchange Let Σ′, ∆′ and Γ′ be well-formed contexts obtained by permutation from Σ, ∆ and Γ

respectively. Then

(a) if Σ; ∆; Γ ` e : A [C], then Σ′; ∆′; Γ′ ` e : A [C]

(b) if Σ; ∆; Γ ` 〈Θ〉 : [C]⇒ [D], then Σ′; ∆′; Γ′ ` 〈Θ〉 : [C]⇒ [D], then

2. Weakening Let Σ ⊆ Σ′, ∆ ⊆ ∆′ and Γ ⊆ Γ′. Then

(a) if Σ; ∆; Γ ` e : A [C], then Σ′; ∆′; Γ′ ` e : A [C]

(b) if Σ; ∆; Γ ` 〈Θ〉 : [C]⇒ [D], then Σ′; ∆′; Γ′ ` 〈Θ〉 : [C]⇒ [D]

3. Contraction on variables

(a) if Σ; ∆; (Γ, x:A, y:A) ` e : B [C], then Σ; ∆; (Γ, w:A) ` [w/x,w/y]e : B [C]

(b) if Σ; ∆; (Γ, x:A, y:A) ` 〈Θ〉 : [C]⇒ [D], then Σ; ∆; (Γ, w:A) ` 〈[w/x,w/y]Θ〉 : [C]⇒ [D]

(c) if Σ; (∆, u:A[D], v:A[D]); Γ ` e : B [C], then Σ; (∆, w:A[D]); Γ ` [w/u,w/v]e : B [C].

(d) if Σ; (∆, u:A[D], v:A[D]); Γ ` 〈Θ〉 : [C1] ⇒ [C2], then Σ; (∆, w:A[D]); Γ ` 〈[w/u,w/v]Θ〉 : [C1] ⇒
[C2].

Proof: By straightforward induction on the structure of the typing derivations. �

Notice that contraction on names does not hold in ν�. Indeed identifying two different names in a
term may make the term syntactically ill-formed. Typical examples are explicit substitutions which are in
one-one correspondence with their syntactic representations. Identifying two names may make a syntactic
representation assign two different images to a same name which would break the correspondence with
substitutions.

The next series of lemmas establishes the admissibility of support weakening, as discussed in Section 3.3.

Lemma 5 (Support weakening)
Support weakening is covariant on the right-hand side and contravariant on the left-hand side of the judg-
ments. More formally, let C ⊆ C ′ ⊆ dom(Σ) and D′ ⊆ D ⊆ dom(Σ) be well-formed support sets. Then
the following holds:
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1. if Σ; ∆; Γ ` e : A [C], then Σ; ∆; Γ ` e : A [C ′].

2. if Σ; ∆; Γ ` 〈Θ〉 : [D]⇒ [C], then Σ; ∆; Γ ` 〈Θ〉 : [D]⇒ [C ′].

3. if Σ; (∆, u:A[D]); Γ ` e : B [C], then Σ; (∆, u:A[D′]); Γ ` e : B [C]

4. if Σ; ∆; Γ ` 〈Θ〉 : [D]⇒ [C], then Σ; ∆; Γ ` 〈Θ〉 : [D′]⇒ [C].

Proof: The first two statements are proved by straightforward simultaneous induction on the given deriva-
tions. The third and the fourth part are proved by induction on the structure of their respective derivations.

�

Lemma 6 (Support extension)
Let D ⊆ dom(Σ) be a well-formed support set. Then the following holds:

1. if Σ; (∆, u:A[C1]); Γ ` e : B [C2] then Σ; (∆, u:A[C1 ∪D]); Γ ` e : B [C2 ∪D]

2. if Σ; ∆; Γ ` 〈Θ〉 : [C1]⇒ [C2], then Σ; ∆; Γ ` 〈Θ〉 : [C1 ∪D]⇒ [C2 ∪D]

Proof: By induction on the structure of the derivations. �

Lemma 7 (Substitution merge)
If Σ; ∆; Γ ` 〈Θ〉 : [C1] ⇒ [D] and Σ; ∆; Γ ` 〈Θ′〉 : [C2] ⇒ [D] where dom(Θ) ∩ dom(Θ′) = ∅, then
〈Θ,Θ′〉 : [C1 ∪ C2]⇒ [D].

Proof: By induction on the structure of Θ′. �

The following lemma shows that the intuition behind the typing judgment for explicit substitution ex-
plained in Section 3.3 is indeed valid.

Lemma 8 (Explicit substitution principle)
Let Σ; ∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ; ∆; Γ ` e : A [C] then Σ; ∆; Γ ` {Θ}e : A [D].

2. if Σ; ∆; Γ ` 〈Θ′〉 : [C1]⇒ [C], then Σ; ∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D].

Proof: By simultaneous induction on the structure of the derivations. We just present the proof of the
second statement.

Given the substitutions Θ and Θ′, we split the representation of Θ ◦Θ′ into two disjoint sets:

Θ′1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}
Θ′2 = {X → {Θ}(Θ′X) | X ∈ dom(Θ′)}

and set out to show that

(a) Σ; ∆; Γ ` 〈Θ′1〉 : [C1 \ dom(Θ′)]⇒ [D], and

(b) Σ; ∆; Γ ` 〈Θ′2〉 : [C1 ∩ dom(Θ′)]⇒ [D].

These two typings imply the result by the substitution merge lemma (Lemma 7). The statement (b) fol-
lows from the typing of Θ′ by support weakening (Lemma 5.4), and the first part of the lemma. To es-
tablish (a), observe that from the typing of Θ it is clear that Θ′1 : [C \ dom(Θ′)] ⇒ [D]. But, since
C1 \dom(Θ′) ⊆ C \dom(Θ′) readily follows from the typing of Θ′, the result is obtained by support weak-
ening. �

The following lemma establishes the hypothetical nature of the two typing judgment with respect to the
ordinary value variables.
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Lemma 9 (Value substitution principle)
Let Σ; ∆; Γ ` e1 : A [C]. The following holds:

1. if Σ; ∆; (Γ, x:A) ` e2 : B [C], then Σ; ∆; Γ ` [e1/x]e2 : B [C]

2. if Σ; ∆; (Γ, x:A) ` 〈Θ〉 : [C ′]⇒ [C], then Σ; ∆; Γ ` 〈[e1/x]Θ〉 : [C ′]⇒ [C]

Proof: Simultaneous induction on the two derivations. �

The situation is not that easy with expression variables. A simple substitution of an expression for some
expression variable will not result in a syntactically well-formed term. The reason is, as discussed before,
that occurrences of expression variables are always prefixed by an explicit substitution to form a kind of
closure. But, explicit substitutions in ν�-calculus can occur only as part of closures, and cannot be freely
applied to arbitrary terms1. Hence, if a substitution of expression e for expression variable u is to produce a
syntactically valid term, we need to follow it up with applications over e of explicit name substitutions that
were paired up with u. This also gives us a control over not only the extensional, but also the intensional
form of boxed expressions (which is necessary, as the later are supposed to represent abstract syntax trees).
The definition below generalizes capture-avoiding substitution of expression variables in order to handle this
problem.

Definition 10 (Substitution of expression variables)
The capture-avoiding substitution of e for an expression variable u is defined recursively as follows

[[e/u]] 〈Θ〉u = {[[e/u]]Θ}e
[[e/u]] 〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v
[[e/u]] x = x
[[e/u]] X = X
[[e/u]] λx:A. e′ = λx:A. [[e/u]]e′ x 6∈ fv(e)
[[e/u]] e1 e2 = [[e/u]]e1 [[e/u]]e2

[[e/u]] box e′ = box [[e/u]]e′

[[e/u]] let box v = e1 in e2 = let box v = [[e/u]]e1 in [[e/u]]e2 u 6∈ fv(e)
[[e/u]] νX:A. e′ = νX:A. [[e/u]]e′ X 6∈ fn(e)
[[e/u]] choose e′ = choose ([[e/u]]e′)

[[e/u]] (·) = (·)
[[e/u]] (X → e′,Θ) = (X → [[e/u]]e′, [[e/u]]Θ)

Notice that in the first clause 〈Θ〉u of the above definition the resulting expression is obtained by carrying
out the explicit substitution.

Lemma 11 (Expression substitution principle)
Let e1 be an expression without free value variables such that Σ; ∆; · ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]); Γ ` e2 : B [D], then Σ; ∆; Γ ` [[e1/u]]e2 : B [D]

2. if Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D], then Σ; ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]

Proof: By simultaneous induction on the two derivations. We just present one case from the proof of the
first statement.

case e2 = 〈Θ〉u.

1. by derivation, A = B and Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [C]⇒ [D]
2. by second part of the lemma, Σ; ∆; Γ ` 〈[[e1/u]]Θ〉 : [C]⇒ [D]
3. by principle of explicit substitution (Lemma 8.1), Σ; ∆; Γ ` {[[e1/u]]Θ}e1 : B [D]
4. but this is exactly equal to [[e1/u]]e2

�

1Albeit this extension does not seem particularly hard, we omit it for simplicity.
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Σ, e1 7−→ Σ′, e′1

Σ, (e1 e2) 7−→ Σ′, (e′1 e2)

Σ, e2 7−→ Σ′, e′2

Σ, (v1 e2) 7−→ Σ′, (v1 e
′
2) Σ, (λx:A. e) v 7−→ Σ, [v/x]e

Σ, e1 7−→ Σ′, e′1

Σ, (let box u = e1 in e2) 7−→ Σ′, (let box u = e′1 in e2)

Σ, (let box u = box e1 in e2) 7−→ Σ, [[e1/u]]e2

Σ, e 7−→ Σ′, e′

Σ, choose e 7−→ Σ′, choose e′ Σ, choose (νX:A. e) 7−→ (Σ, X:A), e

Figure 3: Structured operational semantics of ν�-calculus.

3.5 Operational semantics

We define the small-step call-by-value operational semantics of the ν�-calculus through the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The relation is defined on expressions with no free
variables. An expression can contain free names, but it must have empty support. In other words, we only
consider for evaluation those terms whose names appear either on the object level, or in computationally
irrelevant positions, or are removed by some explicit substitution. Because free names are allowed, the
operational semantics has to account for them by keeping track of the run-time name contexts. The rules of
the judgment are given in Figure 3, and the values of the language are generated by the grammar below.

V alues v : : = c | λx:A. e | box e | νX:A. e

The rules are standard, and the only important observation is that the β-redex for the type constructor 9
extends the run-time context with a fresh name before proceeding. This is needed for soundness purposes.
The freshly introduced name will indeed not appear in computationally significant positions during the sub-
sequent evaluations, but it may appear in “insignificant” positions (i.e. dead-code or under a substitution),
so we keep the name and its typing in the run-time context. This will come handy in the formulation of the
Type preservation and Progress theorems below. It will also play a role in intensional analysis of higher-order
syntax in Section 5 whose operational semantics sometimes proscribes typechecking the expressions against
which we pattern-match.

The evaluation relation is sound with respect to typing, and it never gets stuck, as the following theorems
establish.

Theorem 12 (Type preservation)
If Σ; ·; · ` e : A [ ] and Σ, e 7−→ Σ′, e′, then Σ′; ·; · ` e′ : A [ ].

Proof: By a straightforward induction on the structure of e using the substitution principles. �

Theorem 13 (Progress)
If Σ; ·; · ` e : A [ ], then either

1. e is a value, or
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2. there exist a term e′ and a context Σ′ extending Σ, such that Σ, e 7−→ Σ′, e′.

Proof: By a straightforward induction on the structure of e. �

The progress theorem seems to indicate that the evaluation relation is not deterministic, as each term
may have more then one reduct. However, all these reducts are different only in the identity of the newly
introduced irrelevant names, as the lemma below establishes.

Lemma 14 (Determinacy)
If Σ; ·; · ` e : A [ ] and Σ, e 7−→ Σ1, e1 and Σ, e 7−→ Σ2, e2, then there exists a permutation of names
π : N → N , fixing dom(Σ), such that Σ1 = π(Σ2) and e1 = π(e2).

Proof: By induction on the structure of e. The only interesting case is when e = choose (νX:A. e′). Then
it must be e1 = [X1/X]e′, e2 = [X2/X]e′, and Σ1 = (Σ, X1:A), Σ2 = (Σ, X2:A), where X1, X2 ∈ N are
fresh. Obviously, the involution π = (X1 X2) which swaps these two names has the required properties. �

4 Support polymorphism

It is frequently necessary to write programs which are polymorphic in the support of their syntactic object-
level arguments, because they are intended to manipulate abstract syntax trees whose support is not known
at compile time. A typical example would be a function which recurses over some syntax tree with binding
structure When it encounters a λ-abstraction, it has to place a fresh name instead of the bound variable,
and recursively continue scanning the body of the λ-abstraction, which is itself a syntactic expression but
depending on this newly introduced name.2 For such uses, we extend the ν�-calculus with a notion of
explicit support polymorphism in the style of Girard and Reynolds [Gir86, Rey83]. It turns out that the
constructs explained here will also play a role in intensional analysis of higher-order syntax in Section 5 as a
representation mechanism for encoding object-level functions as meta functions over object-level expressions.

The addition of support polymorphism to the simple ν�-calculus starts with syntactic changes that we
summarize below.

Support variables p, q ∈ P
Support sets C,D ∈ (N ∪ P)∗

Types A : : = . . . | ∀p. A
Terms e : : = . . . | Λp. e | e [C]
Name context Σ : : = . . . | Σ, p
V alues v : : = . . . | Λp. e

We introduce a new syntactic category of support variables, which are intended to stand for unknown support
sets. In addition, the support sets themselves are now allowed to contain these support variables, to express
the situation in which only a portion of a support set is unknown. Consequently, the function fn(−) must
be updated to now return the set of names and support variables appearing in its argument. The language
of types is extended with the type ∀p. A expressing universal support quantification. Its introduction form
is Λp. e, which abstracts an unknown support set p in the expression e. This Λ-abstraction will also be a
value in the extended operational semantics. The corresponding elimination form is the application e [C]
whose meaning is to instantiate the unknown support set abstracted in e with the provided support set C.
Because now the types can depend on names as well as on support variables, the name contexts must declare
both. We assume the same convention on well-formedness of the name context as before.

The typing judgment has to be instrumented with new rules for typing support-polymorphic abstraction
and application.

(Σ, p); ∆; Γ ` e : A [C] p 6∈ C

Σ; ∆; Γ ` Λp. e : ∀p. A [C]

Σ; ∆; Γ ` e : ∀p. A [C]

Σ; ∆; Γ ` e [D] : ([D/p]A) [C]

2The calculus described here cannot support this scenario yet because it lacks type polymorphism and type-polymorphic
recursion, but support polymorphism is a necessary step in that direction.
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The ∀-introduction rule requires that the bound variable p does not escape the scope of the constructors ∀
and Λ which bind it. In particular it must be p 6∈ C. The convention also assumes implicitly that p 6∈ Σ,
before it can be added. The rule for ∀-elimination substitutes the argument support set D into the type
A. It assumes that D is well-formed relative to the context Σ, i.e. that D ⊆ dom(Σ). The operational
semantics for the new constructs is also not surprising.

Σ, e 7−→ Σ′, e′

Σ, (e [C]) 7−→ Σ′, (e′ [C]) Σ, (Λp. e) [C] 7−→ Σ, [C/p]e

The extended language satisfies the following substitution principle.

Lemma 15 (Support substitution principle)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting D for p. Then the
following holds.

1. if Σ; ∆; Γ ` e : A [C], then (Σ1,Σ′2); ∆′; Γ′ ` e′ : A′ [C ′]

2. if Σ; ∆; Γ ` Θ : C1 → C2, then (Σ1,Σ′2); ∆′; Γ′ ` Θ′ : C ′1 → C ′2

Proof: By simultaneous induction on the two derivations. �

The structural properties presented in Section 3.4 readily extend to the new language with support
polymorphism. We present the extended versions, as well as their proofs, in the Appendix. The same is
true of the Type preservation and Progress theorems (Theorem 12 and 13) whose additional cases involving
support abstraction and application are handled using the above Lemma 15.

Example 3 In a support-polymorphic ν�-calculus we can slightly generalize the program from Example 2
by pulling out the helper function exp’ and parametrizing it over the exponentiating expression. In the
concrete syntax below we symbolize by [p] that p is a support variable abstracted in the function definition.

fun exp’ [p] (e : �pint) (n : int) : �pint =
if n = 0 then box 1
else

let box u = exp’ [p] e (n - 1)
box w = e

in
box (u * w)

end

fun exp (n : int) : �(int -> int) =
choose (νX : int.

let box w = exp’ [X] (box X) n
in

box (λx:int. 〈X -> x〉 w)
end)

- sq = exp 2;
val sq = box (λx:int. x * (x * 1)) : �(int->int)

�

In the development of the ν�-calculus we have had a particular semantic interpretation in mind of object
level expressions as abstract syntax trees representing templates for source programs. This interpretation
will be exploited in an essential way in Section 5. Notice, however, that the fragment presented thus far is
not necessarily committed to viewing the object expressions as syntax. It is quite possible (and it remains
an important future work) that boxed expressions of core ν� with support polymorphism can be stored
in run-time in some intermediate or even compiled form, which might be beneficial to the efficiency of the
calculus.

17



5 Intensional analysis of higher-order syntax

5.1 Syntax and typechecking

As explained in Section 3, we interpret the type �CA as a set of syntactic expressions of type A freely
generated over the set of “indeterminates” C. The calculus presented so far was capable of constructing
values of type �CA, but it is obviously desirable to provide capabilities for inspecting and destructing these
syntax trees. Here we extend the support-polymorphic ν�-calculus with primitives for pattern-matching
against syntactic expressions with binding structure. For reasons of simplicity, we develop the extension in
the setup of our calculus, where the languages used in the meta and the object levels are the same. But this
is not necessary, as the same mechanism would work for any object level calculus with binding structure.
As a matter of fact, it is probably more appropriate to emphasize the distinction between meta and object
calculi, because even the pattern-matching presented here can recognize only a subset of term constructors of
ν�. In particular, we can only test if an expression is a name, or a λ-abstraction or an application. It is not
clear whether the expressiveness of pattern-matching can be extended to handle a larger subset of the object-
language without significant additions to the meta-language. But this would in turn require extensions to
pattern-match against the additions, which would in turn require new extensions to the meta-language, and
so on.

The syntactic additions that we consider in this section are summarized in the the table below.

Pattern variables w ∈ W
Higher-order patterns π : : = (w x1 . . . xn):A[C] | X | x | λx:A. π | π1 π2

Pattern assignments σ : : = · | w → e, σ
Terms e : : = . . . | case e of box π ⇒ e1 else e2

We use higher-order patterns [Mil90] to match against syntactic expressions with binding structure. Higher-
order patterns introduce two unrelated notions of variables that we must distinguish between. First is the
concept of free variables. These are introduced by patterns for binding structure λx:A. π and are syntactic
entities that can match only themselves. Second is the concept of pattern variables. They are placeholders
intended to bind syntactic subexpressions in the process of matching and pass them to the subsequent
computation. We use x, y and variants to range over bound variables, and w and variants to range over
pattern variables.

The basic pattern (w x1 . . . xn):A[C] declares a pattern variable w which will be allowed to match a
syntactic expression of type A and support C subject to the condition that the expression’s free variables are
among x1, . . . , xn. Pattern X matches a name X from the global name context. Pattern λx:A. π matches a
λ-abstraction of domain type A. It declares a new free variable x which is local to the pattern, and demands
that the body of the matched expression conforms to the pattern π. A free variable x matches only the
pattern x. Pattern π1 π2 matches a syntactic expression representing application. Notice that the decision
to explicitly assign types to every pattern variable forces the pattern for application to be monomorphic.
In other words, the application pattern cannot match a pair of expressions representing a function and its
argument if the domain type of the function is now known in advance. It is an important future work to
extend intensional analysis to allow patterns which are type-polymorphic in this sense. The patterns are
assumed to be linear, i.e. no pattern variable occurs twice.

The typing judgment for patterns has the form

Σ; Γ ` π : A [C] =⇒ Γ1

It is hypothetical in the global context of names Σ, and the context of locally declared free variables Γ. It
checks whether the pattern π has type A and support C and if the pattern variables from π conform to
the typings given in the residual context Γ1. The typing rules are presented in Figure 4. Most of them are
straightforward and we do not explain them, but the rule for pattern variables deserves special attention.
As it shows, in order for the pattern expression (w x1 . . . xn):A[C] to be well-typed, the free variables
x1:A1, . . . , xn:An have to be declared in the local context Γ and the support set D ⊆ C. Then w will match
only expressions of type A with the given free variables and the names declared in D. The residual context
types w as a meta-level function over types �pAi with polymorphic support. This hints at the operational
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D ⊆ C p 6∈ dom(Σ)

Σ; (Γ, x1:A1, . . . , xn:An) ` ((w x1 . . . xn):A[D]) : A [C] =⇒ w:∀p. �pA1 → · · · → �pAn → �p,DA

X:A ∈ Σ

Σ; Γ ` X : A [X,C] =⇒ · Σ; (Γ, x:A) ` x : A [C] =⇒ ·

Σ; (Γ, x:A) ` π : B [C] =⇒ Γ1

Σ; Γ ` λx:A. π : A→ B [C] =⇒ Γ1

Σ; Γ ` π1 : A→ B [C] =⇒ Γ1 Σ; Γ ` π2 : A [C] =⇒ Γ2 fn(A) ⊆ dom(Σ)

Σ; Γ ` π1 π2 : B [C] =⇒ (Γ1,Γ2)

Figure 4: Typing rules for patterns.

semantics that will be assigned to higher-order patterns. If an expression e with a local free variable x:A
matches to a pattern variable w, then w will residualize to a meta-level function whose meaning is as follows:
it takes a syntactic expression e′:A and returns back the syntactic expression [e′/x]e.

In order to incorporate pattern matching into ν�, the syntax is extended with a new term constructor
case e of box π ⇒ e1 else e2. The intended operational interpretation of case is to evaluate the argument
e to obtain a boxed expression box e′, then match e′ to the pattern π. If the matching is successful, it
creates an environment with bindings for the pattern variables, and then evaluates e1 in this environment.
If the matching fails, the branch e2 is taken.

Example 4 Consider the (rather restricted) function reduce that takes a syntactic expression of type A,
and checks if it is a β-redex (λx:A. w1) (w2). If the answer is yes, it applies the “call-by-value” strategy: it
reduces w2, substitutes the reduct for x in w1 and then continue reducing thus obtained expression. If the
answer is no, it simply returns the argument.

fun reduce (e : �A) : �A =
case e of

box ((λx:A. ((w1 x):A[])) (w2:A[])) =>
(* w1 : ∀q. �qA -> �qA *)
(* w2 : ∀q. �qA *)

let val e2 = reduce (w2 [])
in

reduce (w1 [] e2)
end

else e

Ideally, one would want to reduce an arbitrary expression, not just simple top-level redexes. We cannot
currently write such a function mainly because our language lacks type-polymorphic patterns and type-
polymorphic recursion. In particular, if the syntactic argument we are dealing with is an application of a
general term of type A→ A rather than a λ-abstraction, we cannot recursively reduce that term first unless
the language is equipped with type-polymorphic recursion.

Nevertheless, reduce is illustrative of the way higher-order patterns work. Patterns transform an expres-
sion with a free variable into a function on syntax that substitutes the free variable with a given argument.
That way we can employ meta-level reduction to perform object-level substitution. This is reminiscent of the
idea of normalization-by-evaluation [BS91, BES98] and type-directed partial evaluation [Dan96]. �
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The typing rule for case is:

Σ; ∆; Γ ` e : �DA [C] Σ; · ` π : A [D] =⇒ Γ1 Σ; ∆; (Γ,Γ1) ` e1 : B [C] Σ; ∆; Γ ` e2 : B [C]

Σ; ∆; Γ ` case e of box π ⇒ e1 else e2 : B [C]

Observe that the second premise of the rule requires an empty variable context, so that patterns cannot
contain outside value or expression variables. However (and this is important), they can contain names. It
is easy to incorporate the new syntax into the language. We first extend explicit substitution over the new
case construct

{Θ} (case e of box π ⇒ e1 else e2) = case ({Θ}e) of box π ⇒ ({Θ}e1) else ({Θ}e2)

and similarly for expression substitution, and then all the structural properties derived in Section 3.4 easily
hold. The only complication comes in handling names and support substitution because patterns are allowed
to depend on names and support variables from the global context Σ. However, the lemmas below establish
the required invariants.

Lemma 16 (Structural properties of pattern matching)
1. Exchange Let Σ′, Γ′ and Γ′1 be well-formed contexts obtained by permutation from Σ, Γ and Γ1

respectively and Σ; Γ ` π : A [C] =⇒ Γ1. Then Σ′; Γ′ ` π : A [C] =⇒ Γ′1

2. Weakening Let Σ ⊆ Σ′ and Σ; Γ ` π : A [C] =⇒ Γ1. Then Σ′; Γ ` π : A [C] =⇒ Γ1

Proof: By straightforward introduction on the structure of the typing derivations. �

Lemma 17 (Support substitution principle for pattern matching)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting D for p. Assume
also that Σ; Γ ` π : A [C] =⇒ Γ1. Then (Σ1,Σ′2); Γ′ ` π′ : A′ [C ′] =⇒ Γ′1.

Proof: By straightforward induction on the structure of π. �

5.2 Operational semantics

Operational semantics for pattern matching is given through the new judgment

Σ; Γ ` e� π =⇒ σ

which reads: in a global context of names and support variables Σ and a context of locally declared free
variables Γ the matching of the expression e to the pattern π generates an assignment of values σ to the
pattern variables of π. The rules for this judgment are given in Figure 5. Most of the rules are self-evident,
but the rule for pattern variables deserves more attention. Its premise requires a run-time typecheck of the
expression e in the given contexts. That is why the operational semantics of ν�-calculus (see Section 3.5)
must carry around at run-time the list of currently defined names and their typings. The following lemma
relates the typing judgment for patterns and their operational semantics.

Lemma 18 (Soundness of pattern matching)
Let π be a pattern such that Σ; Γ ` π : A [C] =⇒ Γ1, where Γ1 = (w1:A1, . . . , wn:An). Furthermore, let
e be an expression matching π to produce a pattern assignment σ, i.e. Σ; Γ ` e � π : A =⇒ σ. Then
σ = (w1 → e1, . . . , wn → en) where Σ; ·; · ` ei : A1, for every i = 1, . . . , n.

Notice that in the lemma we did not require that e be well-typed, or even syntactically well-formed. If it
were not well-formed, the matching simply would not succeed.

Proof: By induction on the structure of π. We present the base case below.
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Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D]

Σ; (Γ, x1:A1, . . . , xn:An) ` e� ((w x1 . . . xn):A[D]) : A =⇒ [w → Λp. λyi:�pAi. let box xi = yi in box e]

(Σ, X:A); Γ ` X �X : A =⇒ · Σ; (Γ, x:A) ` x� x : A =⇒ ·

Σ; (Γ, x:A) ` e� π : B =⇒ σ

Σ; Γ ` λx:A. e� λx:A. π : (A→ B) =⇒ σ

Σ; Γ ` e1 � π1 : A→ B =⇒ σ1 Σ; Γ ` e2 � π2 : A =⇒ σ2

Σ; Γ ` e1 e2 � π1 π2 : B =⇒ (σ1, σ2)

Figure 5: Operational semantics for pattern matching.

case π = (w x1 . . . xn):A[D], where Γ = Γ2, xi:Ai.

1. let e′ = (Λp. λyi:�pAi. let box xi = yi in box e) and A′ = ∀p. �pA1 → · · · → �pAn → �p,DA
2. by typing derivation, D ⊆ C and xi:Ai ∈ Γ and also Γ1 = (w:A′)

3. by matching derivation, Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D], and σ = (w → e′)

4. by straightforward structural induction, Σ; (x1:A1, . . . , xn:An); · ` e : A [D]

5. by support weakening, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` e : A [D, p]

6. and thus also, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` box e : �D,pA [ ]

7. and (Σ, p); ·; (y1:�pA1, . . . , yn:�pAn) ` let box xi = yi in box e : �D,pA [ ]

8. and finally, Σ; ·; · ` e′ : A′ [ ]

�
The last piece to be added is the operational semantics for the case statement, and the required rules are
given below. Notice that the premise of last rule makes use of the fact that the operational semantics for
patterns is deterministic; the rule applies if the expression and e and the pattern π cannot be matched.

Σ, e 7−→ Σ′, e′

Σ, (case e of box π ⇒ e1 else e2) 7−→ Σ′, (case e′ of box π ⇒ e1 else e2)

Σ; · ` e� π : A =⇒ (w1 → e′1, . . . , wn → e′n)

Σ, (case box e of box π ⇒ e1 else e2) 7−→ Σ, [e′1/w1, . . . , e
′
n/wn]e1

Σ; · ` e� π 6=⇒ σ for any σ

Σ, (case box e of box π ⇒ e1 else e2) 7−→ Σ, e2

Finally, using the lemmas established in this section, we can augment the proof of the Type preservation and
Progress theorems (Theorem 12 and 13) to cover the extended language. The complete proof is presented
in the Appendix.

Example 5 The following examples present a generalization of our old exponentiation function. Instead of
powering only integers, we can power functions too, i.e. have a functional computing f 7→ λx. (fx)n. The
functional is passed the source code for f , and an integer n, and returns the source code for λx. (fx)n. The
idea is to have the resulting source code be as optimized as possible, while still computing the extensionally
same result. We rely on programs presented in Section 2 and Examples 2 and 3.

For comparison, we first present a λ� version of the function-exponentiating functional.
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fun fexp1 (f : �(int->int)) (n : int) : �(int->int) =
let box g = f

box p = exp3 n
in

box (λv:int. (p (g v)))
end

- fexp1 (box λw:int. w + 1) 2;
val it = box (λv:int. (λx.x*(λy.y*(λz.1)y)x) ((λw.w+1)v)) : �(int->int)

Observe that the residual program contains a lot of unnecessary redexes. As could be expected, the ν�-
calculus 3 provides a better way to stage the code, simply by using the function exp from Example 2 instead
exp3 from Section 2.

fun fexp2 (f : �(int->int)) (n : int) : �(int->int) =
let box g = f

box p = exp n
in

box (λv:int. p (g v))
end

-fexp2 (box λw:int. w + 1) 2;
val it = box (λv:int. (λx.x*(x*1)) ((λw.w+1) v)) : �(int->int)

In fact, there is at least one other way to program this functional: we can eliminate the outer β-redex from
the residual code, at the price of duplicating the inner one.

fun fexp3 (f : �(int->int)) (n : int) : �(int->int) =
choose (νX:int.
let box g = f

box e = exp’ [X] (box (g X)) n
in

box (λv:int. 〈X -> v〉e)
end)

- fexp3 (box (λw:int. w + 1)) 2;
val it = box (λv:int. ((λw.w+1) v) * ((λw.w+1) v) * 1) : �(int->int)

However, neither of the above implementations is quite satisfactory, since, evidently, the residual code in all
the cases contains unnecessary redexes. The reason is that we do not utilize the intensional information that
the passed argument is actually a boxed λ-abstraction, rather than a more general expression of a functional
type. In a language with intensional code analysis, we can do a bit better. We can test the argument at
run-time and output a more optimized result if the argument is a λ-abstraction. This way we can obtain
the most simplified, if not the most efficient residual code.

fun fexp (f : �(int->int)) (n : int) : �(int->int) =
case f of

box (λx:int. (w x:int[])) =>
(* w : ∀q. �qint -> �qint *)
choose (νX : int.

let box F = exp’ [X] (w [X] (box X)) n
in

box (λv:int. 〈X->v〉F)
end)

else fexp2 f n

3And for that matter, λ© and MetaML, as well.
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- fexp (box λx:int. x + 1) 2;
val it = box(λv:int.(v + 1) * (v + 1) * 1) : �(int->int)

�

Example 6 This example is a (segment of the) meta function for symbolic differentiation with respect to
a distinguished indeterminate X.

fun diff (e : �Xreal) : �Xreal =
case e of
box X => box 1

| box ((w1:real[X]) + (w2:real[X])) =>
let box e1 = diff (w1 [])

box e2 = diff (w2 [])
in

box (e1 + e2)
end

| box ((λx:real. ((FX x):real[X])) (GX:real[X])) =>
(* FX : ∀q. �qreal -> �q,Xreal *)
(* GX : ∀q. �q,Xreal *)
(* check if FX really depends on X *)
choose (νY : real.

case (FX [Y] (box Y)) of
box (F:real[Y]) =>

(* FX is independent of X; apply the chain rule *)
let box f = F []

box f’ = diff (box 〈Y->X〉f)
box gx = GX []
box gx’ = diff (GX [])

in
box (〈X->gx〉f’ * gx’)

end
else diff (FX [X] (GX [])))

else (box 0) (* the argument is a constant *)

The most interesting part of diff is its treatment of application. The same limitations encountered in
Example 4 apply here too, in the sense that we can pattern match only when the applying function is
actually a λ-abstraction. Although it is wrong, we currently let all the other cases pass through the default
case. Nevertheless, the example is still illustrative. After splitting the application into the function part
f and the argument part g we test if f is independent of X. If that indeed is the case, it means that our
application was actually a composition of functions f (g X), and thus we can apply the chain rule to compute
the derivative as f ′ (g X) ∗ (g′ X). Otherwise, if f contains occurrences of X, the chain rule is inapplicable,
so we only reduce the β-redex and differentiate the result. �

6 Related work

The work presented in this paper lies in the intersection of several related areas: meta-programming, modal
logic, run-time code generation and higher-order abstract syntax. The direct motivation and foundation
for our type system is provided by the λ� and λ© calculi. The λ�-calculus evolved as a type theoretic
explanation of run-time code-generation [LL96, WLP98] and logical analysis of staged computation [DP01,
WLPD98], and we explained it in Section 2.
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The calculus λ©, formulated by Davies in [Dav96], is the first attempt at handling object expressions
with free variables. It is the proof-term calculus for discrete temporal logic, and it provides a notion of open
object expression where the free variables of the object expression are represented by meta variables on a
subsequent temporal level. The original motivation of λ© was to develop a type system for binding-time
analysis in the setup of partial evaluation, but it was quickly adopted for meta-programming through the
development of MetaML [MTBS99, Tah99, Tah00].

MetaML adopts the “open code” type constructor of λ© and generalizes the language with several
features. The most important one is the addition of a type refinement for “closed code”. Values classified by
these “closed code” types are those “open code” expressions which happen to not depend on any free meta
variables. It might be of interest here to point out a certain relationship between our concept of names and
the phenomenon which occurs in the extension of MetaML with references [CMT00, CMS01]. A reference in
MetaML must not be assigned an open code expression. Indeed, in such a case an eventual free variable from
the expression may escape the scope of the λ-binder that introduced it. For technical reasons, however, this
actually cannot be prohibited, so the authors resort to a hygienic handling of scope extrusion by annotating
a term with the list of free variables that it is allowed to contain in dead-code positions. These dead-code
annotations are not a type constructor in MetaML, and the dead-code variables belong to the same syntactic
category as ordinary variables, but they nevertheless very much compare to our names and ν-abstraction.
Thus, it seems that names are important for meta-programming, even if one is not interested in intensional
code analysis.

Another interesting calculus for meta-programming is Nielsen’s λ[] described in [Nie01]. It is based on
the same idea as our ν�-calculus – instead of defining the notion of closed code as a refinement of open
code of λ© or MetaML, it relaxes the notion of closed code of λ�. Where we use names to stand for free
variables of object expression, λ[] uses variables introduced by box (which thus becomes a binding construct).
Variables bound by box have the same treatment as λ-bound variables. The type-constructor � is updated
to reflect the types (but not the names) of variables that its corresponding box binds, and thus it becomes
questionable whether it can be used for intensional analysis of higher-order syntax. The language also lacks a
concept corresponding to our support polymorphism which is one of the important ingredients for intensional
analysis.

Nielsen and Taha in [NT03] present another system for combining the notions of closed and open code. It
is based on λ� but it can explicitly name the object stages of computation through the notion of environment
classifiers. Because the stages are explicitly named, each stage can be revisited multiple times and extended
with new bound variables. This provides a functionality of open code. In many respects, the environment
classifiers behave like universally quantified bound variables. In fact, it seems that environment classifiers
and our support polymorphism are formalizing the same phenomenon in different base calculi.

Coming from the direction of higher-order abstract syntax [PE88], probably the first work pointing to the
importance of a “non-parametric” binder like our ν-abstraction is Miller’s [Mil90]. The connection of higher-
order abstract syntax to modal logic has been recognized by Despeyroux, Pfenning and Schürmann in the
system presented in [DPS97], which was later simplified into a two-level system in Schürmann’s dissertation
[Sch00]. There are also the works of Hofmann [Hof99], which discusses various presheaf models for higher-
order abstract syntax, then Fiore, Plotkin and Turi’s [FPT99] which explores untyped abstract syntax in a
categorical setup, and an extension to arbitrary types by Fiore [Fio02].

However, the work that explicitly motivated our developments is the series of papers on Nominal Logic
and FreshML by Pitts and Gabbay [GP02, PG00, Pit01, Gab00]. The names of Nominal Logic are introduced
as the urelements of Fraenkel-Mostowsky set theory. FreshML is a language for manipulation of object syntax
with binding structure based on this model. Its primitive notion is that of swapping of two names which is
then used to define the operations of name abstraction (producing an α-equivalence class with respect to the
abstracted name) and name concretion (providing a specific representative of an α-equivalence class). The
earlier version of our paper [Nan02] contained these two operations, which were almost orthogonal to add.
Name abstraction was used to encode abstract syntax trees which depend on a name whose identity is not
known. Typically, the need for this would appear during pattern-matching of λ-binders when a new name
must be introduced to stand for the bound variable. Since this name is out of the scope of the subsequent
computation branch, it has to be abstracted. In the current version, that role is given to λ-abstraction and
support polymorphism as illustrated in Example 4.
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Unlike our calculus, FreshML does not keep track of a support of a term, but rather its complement.
FreshML introduces names in a computation by a construct new X in e, which can roughly be interpreted
in ν�-calculus as

new X in e = choose (νX. e)

Except in dead-code position, the name X can appear in e in a scope of an abstraction which hides X.
One of the main differences between FreshML and ν� is that names in FreshML are run-time values – it
is possible in FreshML to evaluate a term with a non-empty support. On the other hand, while our names
can have arbitrary types, FreshML names must be of a single type atm (though this can be generalized
to an arbitrary family of types disjoint from the types of the other values of the language). Our calculus
allows the general typing for names thanks to the modal distinction of meta and object levels. For example,
without the modality, but with names of arbitrary types, a function defined on integers will always have to
perform run-time checks to test if its argument is a valid integer (in which case the function is applied), or
if its argument is a name (in which case the evaluation is suspended, and the whole expression becomes a
syntactic entity). An added bonus is that ν� can support an explicit name substitution as primitive, while
substitution must be user-defined in FreshML.

On the logic side, the direct motivation for this paper comes from Pfenning and Davies’ [PD01] which
presents a natural deduction formulation for propositional S4. But in general, the interaction between
modalities, syntax and names has been of interest to logicians for quite some time. For example, logics that
can encode their own syntax are the topic of Gödel’s Incompleteness theorems, and some references in that
direction are Montague’s [Mon63] and Smoryński’s [Smo85]. Attardi’s viewpoints [AS95] and McCarthy’s
contexts [McC93] are similar to our notion of support, and are used to express relativized truth. Finally,
the names from ν� resemble virtual individuals of Scott [Sco70] and also [Sco79], non-rigid designators of
Fitting and Mendelsohn [FM99], and names of Kripke [Kri80]. All this classical work seems to indicate that
meta-programming and higher-order syntax are just but a concrete instance of a much broader abstract
phenomenon. We hope to draw on the cited work for future developments.

7 Conclusions and future work

This paper presents the ν�-calculus, which is a typed functional language for meta-programming, employing
a novel way to define a modal type of syntactic object programs with free variables. The system combines
the λ�-calculus [PD01] with the notion of names inspired by developments in FreshML and Nominal Logic
[PG00, GP02, Pit01, Gab00]. The motivation for combining λ� with names comes from the long-recognized
need of meta-programming to handle object programs with free variables [Dav96, Tah99, MTBS99]. In
our setup, the λ�-calculus provides a way to encode closed syntactic code expressions, and names serve to
stand for the eventual free variables. Taken together, they give us a way to encode open syntactic program
expressions, and also compose, evaluate, inspect and destruct them. Names can be operationally thought of
as locations which are tracked by the type system, so that names cannot escape the scope of their introduction
form. The set of names appearing in the meta level of a term is called support of a term. Support of a term
is reflected in the typing of a term, and a term can be evaluated only if its support is empty.

We also considered constructs for support polymorphism and for intensional analysis of higher-order
syntax. The later is a pattern-matching mechanism to compare, inspect and destruct object expressions at
run-time. We hope this feature can find its use in programming code optimizations in a setup of scientific
and symbolic computation.

The ν�-calculus presented here supersedes the language considered in the previous version of this paper
[Nan02]. Some of the changes we have adopted involve simplification of the operational semantics and the
constructs for handling names. Furthermore, we decomposed the name introduction form new into two new
constructors ν and choose which are now introduction and elimination form for a new type constructor
A9 B. This gives a stronger logical foundation to the calculus, as now the level of types follows much more
closely the behavior of the terms of the language. We hope to further investigate these logical properties.
Some immediate future work in this direction would include the embedding of discrete-time temporal logic
and monotone discrete temporal logic into the logic of types of ν�, and also considering the proof-irrelevancy
modality of [Pfe01] and [AB01] to classify terms of unknown support.
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A Proofs

A.1 Structural properties

Lemma 5 (Support weakening)
Let C ⊆ C ′ ⊆ dom(Σ) and D′ ⊆ D ⊆ dom(Σ) be well-formed support sets. Then the following holds:

1. if Σ; ∆; Γ ` e : A [C], then Σ; ∆; Γ ` e : A [C ′].

2. if Σ; ∆; Γ ` 〈Θ〉 : [D]⇒ [C], then Σ; ∆; Γ ` 〈Θ〉 : [D]⇒ [C ′].

3. if Σ; (∆, u:A[D]); Γ ` e : B [C], then Σ; (∆, u:A[D′]); Γ ` e : B [C]

4. if Σ; ∆; Γ ` 〈Θ〉 : [D]⇒ [C], then Σ; ∆; Γ ` 〈Θ〉 : [D′]⇒ [C].

Proof: The first two statements are proved by straightforward simultaneous induction on the given deriva-
tions. We present only selected cases.

1. case e = 〈Θ〉u.

(a) by derivation, u:A[C ′′] ∈ ∆ and Σ; ∆; Γ ` 〈Θ〉 : [C ′′]⇒ [C]
(b) by 2. Σ; ∆; Γ ` 〈Θ〉 : [C ′′]⇒ [C ′]
(c) result follows by typing
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2. case Θ = (·)
By derivation, D ⊆ C ⊆ C ′ so the result follows by the typing rules.

case Θ = (X → e′,Θ′).

(a) by derivation, Σ; ∆; Γ ` e′ : A [C] and Σ; ∆; Γ ` 〈Θ′〉 : [D \ {X}]⇒ [C]
(b) by 1. Σ; ∆; Γ ` e′ : A [C ′]
(c) by induction hypothesis, Σ; ∆; Γ ` 〈Θ′〉 : [D \ {X}]⇒ [C ′]
(d) result follows by typing

3. Induction on the structure of the derivation.

case e = 〈Θ〉u.

(a) by derivation, Σ; (∆, u:A[D]); Γ ` 〈Θ〉 : [D]⇒ [C]
(b) by induction on the structure of Θ, we get Σ; (∆, u:A[D]); Γ ` 〈Θ〉 : [D]⇒ [C]
(c) by 4. Σ; (∆, u:A[D]); Γ ` 〈Θ〉 : [D′]⇒ [C]
(d) result follows by typing

4. Induction on the structure of the derivation.

case Θ = (·). Then D′ ⊆ D ⊆ C.

case Θ = (X → e,Θ′).

(a) by derivation, Σ; ∆; Γ ` 〈Θ′〉 : [D \ {X}]⇒ [C] and Σ; ∆; Γ ` e : A [C]
(b) by induction hypothesis, Σ; ∆; Γ ` 〈Θ′〉 : [D′ \ {X}]⇒ [C]
(c) result follows by typing

�

Lemma 6 (Support extension)
Let D ⊆ dom(Σ) be a well-formed support set. Then the following holds:

1. if Σ; (∆, u:A[C1]); Γ ` e : B [C2] then Σ; (∆, u:A[C1 ∪D]); Γ ` e : B [C2 ∪D]

2. if Σ; ∆; Γ ` 〈Θ〉 : [C1]⇒ [C2], then Σ; ∆; Γ ` 〈Θ〉 : [C1 ∪D]⇒ [C2 ∪D]

Proof:

1. By induction on the structure of the derivation.

case e = x,X is trivially true by support weakening.

case e = 〈Θ〉u, where A = B.

(a) by derivation, Σ; (∆, u:A[C1]); Γ ` 〈Θ〉 : [C1]⇒ [C2]
(b) by induction on the structure of Θ, we get Σ; (∆, u:A[C1 ∪D]); Γ ` 〈Θ〉 : [C1]⇒ [C2 ∪D]
(c) by 2. Σ; (∆;u:A[C1 ∪D]); Γ ` 〈Θ〉 : [C1 ∪D]⇒ [C2 ∪D]
(d) result follows by typing

2. By induction on the structure of the derivation.

case Θ = (X → e,Θ′), where X:A ∈ Σ.

(a) by derivation, Σ; ∆; Γ ` e : A [C2] and Σ; ∆; Γ ` 〈Θ′〉 : [C1 \ {X}]⇒ [C2]
(b) by support weakening, Σ; ∆; Γ ` e : A [C2 ∪D]
(c) by induction hypothesis and support weakening, Σ; ∆; Γ ` 〈Θ′〉 : [(C1 ∪D) \ {X}]⇒ [C2 ∪D]
(d) result follows by typing
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Lemma 7 (Substitution merge)
If Σ; ∆; Γ ` 〈Θ〉 : [C1] ⇒ [D] and Σ; ∆; Γ ` 〈Θ′〉 : [C2] ⇒ [D] where dom(Θ) ∩ dom(Θ′) = ∅, then
〈Θ,Θ′〉 : [C1 ∪ C2]⇒ [D].
Proof: By induction on the structure of Θ′.

case Θ′ = (·). Then C2 ⊆ D and results follow by support extension (Lemma 6.2).

case Θ′ = (X → e,Θ′1).

1. by derivation, Σ; ∆; Γ ` 〈Θ′1〉 : [C2 \ {X}]⇒ [D]

2. by induction hypothesis, Σ; ∆; Γ ` 〈Θ,Θ′1〉 : [C1 ∪ (C2 \ {X})]⇒ [D]

3. by support weakening, Σ; ∆; Γ ` 〈Θ,Θ′1〉 : [(C1 ∪ C2) \ {X}]⇒ [D]

4. result follows by typing

�

A.2 Substitution principles

Lemma 8 (Explicit substitution principle)
Let Σ; ∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ; ∆; Γ ` e : A [C] then Σ; ∆; Γ ` {Θ}e : A [D].

2. if Σ; ∆; Γ ` 〈Θ′〉 : [C1]⇒ [C], then Σ; ∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D].

Proof: By simultaneous induction on the structure of the derivations. We just present selected cases.

1. case e = x. The judgment is derived by weakening at the hypothesis, so we can also derive x:A[D].
This is sufficient, as {Θ}x = x.

case e = 〈Θ′〉u.

(a) by derivation, u : A [C1] ∈ ∆ and Σ; ∆; Γ ` 〈Θ′〉 : [C1]⇒ [C].
(b) by 2. Σ; ∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D].
(c) result follows by typing

case e = X, where X:A ∈ Σ.

(a) by derivation, X ∈ C.
(b) if X ∈ dom(Θ) with e′ = Θ (X), then by typing of Θ, Σ; ∆; Γ ` e′ : A [D]
(c) if X 6∈ dom(Θ), then by derivation of Θ, it must be X ∈ D since we assumed X ∈ C
(d) by support weakening, Σ; ∆; Γ ` X : A [D]
(e) result follows by typing

2. Given the substitutions Θ and Θ′, we split the representation of Θ ◦Θ′ into two disjoint sets:

Θ′1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}
Θ′2 = {X → {Θ}(Θ′X) | X ∈ dom(Θ′)}

and set out to show that

(a) Σ; ∆; Γ ` 〈Θ′1〉 : [C1 \ dom(Θ′)]⇒ [D], and

(b) Σ; ∆; Γ ` 〈Θ′2〉 : [C1 ∩ dom(Θ′)]⇒ [D].
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These two typings imply the result by the substitution merge lemma (Lemma 7). The statement (b)
follows from the typing of Θ′ by support weakening (Lemma 5.4), and the first part of the lemma. To
establish (a), observe that from the typing of Θ it is clear that Θ′1 : [C \ dom(Θ′)]⇒ [D]. But, since
C1 \ dom(Θ′) ⊆ C \ dom(Θ′) readily follows from the typing of Θ′, the result is obtained by support
weakening.

�

Lemma 9 (Value substitution principle)
Let Σ; ∆; Γ ` e1 : A [C]. The following holds:

1. if Σ; ∆; (Γ, x:A) ` e2 : B [C], then Σ; ∆; Γ ` [e1/x]e2 : B [C]

2. if Σ; ∆; (Γ, x:A) ` 〈Θ〉 : [C ′]⇒ [C], then Σ; ∆; Γ ` 〈[e1/x]Θ〉 : [C ′]⇒ [C]

Proof: Simultaneous induction on the two derivations.

1. case e2 = x,X obvious.

case e2 = 〈Θ〉u.

(a) by derivation, Σ; ∆; (Γ, x:A) ` 〈Θ〉 : [C ′]⇒ [C] and u : B [C ′] ∈ ∆.
(b) by 2., Σ; ∆; Γ ` 〈[e1/x]Θ〉 : [C ′]⇒ [C]
(c) result follows by typing.

case e2 = λy:B′. e′, where B = B′ → B′′.

(a) by derivation, Σ; ∆; (Γ, x:A, y:B′) ` e′ : B′′ [C]
(b) by induction hypothesis, Σ; ∆; (Γ, y:B′) ` [e1/x]e′ : B′′ [C]
(c) result follows by typing

case e2 = e′ e′′.

(a) by derivation, Σ; ∆; (Γ, x:A) ` e′ : B′ → B [C] and Σ; ∆; (Γ, x:A) ` e′′ : B′ [C]
(b) by induction hypothesis, Σ; ∆; Γ ` [e1/x]e′ : B′ → B [C], and Σ; ∆; Γ ` [e1/x]e′′ : B′ [C]
(c) result follows by typing

case e2 = box e′.
Trivial, since x 6∈ fv(e′).

case e2 = let box u = e′ in e′′.

(a) by derivation, Σ; ∆; (Γ, x:A) ` e′ : �C′B′ [C] and Σ; (∆, u:B′[C ′]); (Γ, x:A) ` e′′ : B [C]
(b) by induction hypothesis, Σ; ∆; Γ ` [e1/x]e′ : �C′B′ [C] and Σ; (∆, u:B′[C ′]); Γ ` [e1/x]e′′ :

B [C].
(c) result follows by typing

case e2 = νX:B′. e′, where B = B′ 9 B′′.

(a) by derivation, (Σ, X:B′); ∆; (Γ, x:A) ` e′ : B′′ [C] and X 6∈ fn(B′′[C])
(b) by induction hypothesis, (Σ, X:B′); ∆; Γ ` [e1/x]e′ : B′′ [C]
(c) result follows by typing

case e2 = choose e′, where Σ = (Σ′, X:B′).

(a) by derivation, Σ′; ∆; (Γ, x:A) ` e′ : B′ 9 B [C]
(b) by induction hypothesis, Σ′; ∆; Γ ` [e1/x]e′ : B′ 9 B [C]
(c) result follows by typing

case e2 = Λp. e′ where B = ∀p. B′.
(a) by derivation, (Σ, p); ∆; (Γ, x:A) ` e′ : B′ [C]
(b) by induction hypothesis, (Σ, p); ∆; Γ ` [e1/x]e′ : B′ [C]
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(c) result follows by typing

case e2 = e′ [C ′], where B = [C ′/p]B′.

(a) by derivation, Σ; ∆; (Γ, x:A) ` e′ : ∀p. B′ [C]
(b) by induction hypothesis, Σ; ∆; Γ ` [e1/x]e′ : ∀p. B′ [C]
(c) result follows by typing

case e2 = case e′ of box π ⇒ e′1 else e′2.

(a) by derivation:
i. Σ; ∆; (Γ, x:A) ` e′ : �DA1 [C]
ii. Σ; · ` π : A1 [D] =⇒ Γ1

iii. Σ; ∆; (Γ, x:A,Γ1) ` e′1 : B [C]
iv. Σ; ∆; (Γ, x:A) ` e′2 : B [C]

(b) by induction hypothesis:
i. Σ; ∆; Γ ` [e1/x]e′ : �DA1 [C]
ii. Σ; ∆; (Γ,Γ1) ` [e1/x]e′1 : B [C]
iii. Σ; ∆; Γ ` [e1/x]e′2 : B [C]

(c) result follows by typing

2. case Θ = (·) is trivial.

case Θ = (X → e′,Θ′).

(a) by derivation, Σ; ∆; (Γ, x:A) ` e′ : B′ [C] and Σ; ∆; (Γ, x:A) ` 〈Θ′〉 : [C ′ \ {X}]⇒ [C]
(b) by 1. Σ; ∆; Γ ` [e1/x]e′ : B′ [C]
(c) by induction hypothesis, Σ; ∆; Γ ` 〈[e1/x]Θ′〉 : [C ′ \ {X}]⇒ [C]
(d) result follows by typing

�

Lemma 11 (Expression substitution principle)
Let e1 be an expression without free value variables such that Σ; ∆; · ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]); Γ ` e2 : B [D], then Σ; ∆; Γ ` [[e1/u]]e2 : B [D]

2. if Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D], then Σ; ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]

Proof:

1. By simultaneous induction on the two derivations.

case e2 = x,X obvious.

case e2 = 〈Θ〉u.

(a) by derivation, A = B and Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [C]⇒ [D]
(b) by 2. Σ; ∆; Γ ` 〈[[e1/u]]Θ〉 : [C]⇒ [D]
(c) by principle of explicit substitution (Lemma 8.1), Σ; ∆; Γ ` {[[e1/u]]Θ}e1 : B [D]
(d) but this is exactly equal to [[e1/u]]e2

case e2 = 〈Θ〉v, where v:B[D′] ∈ ∆

(a) by derivation, Σ; (∆, u:A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D]
(b) by 2., Σ; ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]
(c) result follows by typing

case e2 = λx:B′. e′, where B = B′ → B′′.
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(a) by derivation, Σ; (∆, u:A[C]); (Γ, x:B′) ` e′ : B′′ [D]
(b) by induction hypothesis, Σ; ∆; (Γ, x:B′) ` [[e1/u]]e′ : B′′ [D]
(c) result follows by typing

case e2 = e′ e′′.

(a) by derivation, Σ; (∆, u:A[C]); Γ ` e′ : B′ → B [D] and also Σ; (∆, u:A[C]); Γ ` e′′ : B′ [D]
(b) by induction hypothesis, Σ; ∆; Γ ` [[e1/u]]e′ : B′ → B [D], and also Σ; ∆; Γ ` [[e1/u]]e′′ : B′ [D]
(c) result follows by typing

case e2 = box e′, where B = �D′B′

(a) by derivation, Σ; (∆, u:A[C]); Γ ` e′ : B′ [D′]
(b) by induction hypothesis, Σ; ∆; Γ ` [[e1/u]]e′ : B′ [D′]
(c) result follows by typing

case e2 = let box v = e′ in e′′.

(a) by derivation, Σ; (∆, u:A[C]); Γ ` e′ : �D′B′ [D] and also Σ; (∆, u:A[C], v:B′[D′]); Γ ` e′′ :
B [D]

(b) by induction hypothesis, Σ; ∆; Γ ` [[e1/u]]e′ : �D′B′ [D] and Σ; (∆, v:B′[D′]); Γ ` [[e1/u]]e′′ :
B [D].

(c) result follows by typing

case e2 = νX:B′. e′, where B = B′ 9 B′′.

(a) by derivation, (Σ, X:B′); (∆, u:A[C]); Γ ` e′ : B′′ [D] and also X 6∈ fn(B′′[D])
(b) by induction hypothesis, (Σ, X:B′); ∆; ∆ ` [[e1/u]]e′ : B′′ [D]
(c) result follows by typing

case e2 = choose e′, where Σ = (Σ′, X:B′).

(a) by derivation, Σ′; (∆, u:A[C]); Γ ` e′ : B′ 9 B [D]
(b) by induction hypothesis, Σ′; ∆; Γ ` [[e1/u]]e′ : B′ 9 B [D]
(c) result follows by typing

case e2 = Λp. e′ where B = ∀p. B′.
(a) by derivation, (Σ, p); (∆, u:A[C]); Γ ` e′ : B′ [D]
(b) by induction hypothesis, (Σ, p); ∆; Γ ` [[e1/u]]e′ : B′ [D]
(c) result follows by typing

case e2 = e′ [D′], where B = [D′/p]B′.

(a) by derivation, Σ; (∆, u:A[C]); Γ ` e′ : ∀p. B′ [D]
(b) by induction hypothesis, Σ; ∆; Γ ` [[e1/u]]e′ : ∀p. B′ [D]
(c) result follows by typing

case e2 = case e′ of box π ⇒ e′1 else e′2.

(a) by derivation:
i. Σ; (∆, u:A[C]); Γ ` e′ : �D′A1 [D]
ii. Σ; · ` π : A1 [D′] =⇒ Γ1

iii. Σ; (∆, u:A[C]); (Γ,Γ1) ` e′1 : B [D]
iv. Σ; (∆, u:A[C]); Γ ` e′2 : B [D]

(b) by induction hypothesis:
i. Σ; ∆; Γ ` [[e1/u]]e′ : �D′A1 [D]
ii. Σ; ∆; (Γ,Γ1) ` [[e1/u]]e′1 : B [D]
iii. Σ; ∆; Γ ` [[e1/u]]e′2 : B [D]
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(c) result follows by typing

2. case Θ = (·) is trivial.

case Θ = (X → e′,Θ′).

(a) by derivation, Σ; (∆, u:A[C]); Γ ` e′ : B′ [D] and also Σ; (∆, u:A[C]); Γ ` 〈Θ′〉 : [D′ \ {X}]⇒
[D]

(b) by 1., Σ; ∆; Γ ` [[e1/u]]e′ : B′ [D]
(c) by induction hypothesis, Σ; ∆; Γ ` 〈[[e1/u]]Θ′〉 : [D′ \ {X}]⇒ [D]
(d) result follows by typing

�

Lemma 15 (Support substitution principle)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting D for p. Then the
following holds.

1. if Σ; ∆; Γ ` e : A [C], then (Σ1,Σ′2); ∆′; Γ′ ` e′ : A′ [C ′]

2. if Σ; ∆; Γ ` Θ : C1 → C2, then (Σ1,Σ′2); ∆′; Γ′ ` Θ′ : C ′1 → C ′2

Proof:

1. case e = x,X is trivial.

case e = 〈Θ〉u.

(a) by derivation Σ; ∆; Γ ` Θ : C1 → C and u:A[C1] ∈ ∆
(b) by definition u:A′[C ′1] ∈ ∆′

(c) by 2. (Σ1,Σ′2); ∆′; Γ′ ` Θ′ : C ′1 → C ′

(d) result follows by typing

case e = λx:A1. e1 where A = A1 → A2.

(a) by derivation, Σ; ∆; (Γ, x:A1) ` e1 : A2 [C]
(b) by induction hypothesis, (Σ1,Σ′2); ∆′; (Γ′, x:A′1) ` e′1 : A′2 [C ′]
(c) result follows by typing

case e = e1 e2.

(a) by derivation, Σ; ∆; Γ ` e1 : A1 → A [C], and Σ; ∆; Γ ` e2 : A1 [C]
(b) by induction hypothesis (Σ1,Σ′2); ∆′; Γ′ ` e′1 : A′1 → A′ [C ′] and (Σ1,Σ′2); ∆′; Γ′ ` e′2 : A′1 [C ′]
(c) result follows by typing

case e = box e1, where A = �C1A1.

(a) by derivation, Σ; ∆; Γ ` e1 : A1 [C1]
(b) by induction hypothesis, (Σ1,Σ′2); ∆′; Γ′ ` e′1 : A′1 [C ′1]
(c) result follows by typing

case e = let box u = e1 in e2

(a) by derivation, Σ; ∆; Γ ` e1 : �C1A1 [C] and Σ; (∆, u:A1[C1]); Γ ` e2 : A [C]
(b) by induction hypothesis, (Σ1,Σ′2); ∆′; Γ′ ` e′1 : �C′1A

′
1 [C ′] and (Σ1,Σ′2); (∆′, u:A′1[C ′1]); Γ′ `

e′2 : A′ [C ′]
(c) result follows by typing

case e = νX:A. e1 where A = A1 9 A2

(a) by derivation, (Σ, X:A); ∆; Γ ` e1 : A2 [C]
(b) by induction hypothesis (Σ1,Σ′2, X:A′); ∆′; Γ′ ` e′1 : A′2 [C ′]
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(c) result follows by typing

case e = choose e1.

(a) by derivation, Σ; ∆; Γ ` e1 : A1 9 A [C]
(b) by induction hypothesis (Σ1,Σ′2); ∆′; Γ′ ` e′1 : A′1 9 A′ [C ′]
(c) result follows by typing

case e = Λq. e1 where A = ∀q. A1.

(a) by derivation, (Σ, q); ∆; Γ ` e1 : A1 [C]
(b) by induction hypothesis, (Σ1,Σ′2, q); ∆′; Γ′ ` e′1 : A′1 [C ′]
(c) result follows by typing

case e = e1 [C1].

(a) by derivation, Σ; ∆; Γ ` e1 : ∀q. A1 [C] and A = [C1/q]A1

(b) by induction hypothesis, (Σ1,Σ′2); ∆′; Γ′ ` e′1 : ∀q. A′1 [C ′]
(c) it is easy to see that [C ′1/q]A

′
1 = ([C1/q]A1)′

(d) result follows by typing

case e = case e0 of box π ⇒ e1 else e2.

(a) by derivation:
i. Σ; ∆; Γ ` e0 : �D1A1 [C]
ii. Σ; · ` π : A1 [D1] =⇒ Γ1

iii. Σ; (Γ,Γ1) ` e1 : A [C]
iv. Σ; Γ ` e2 : A [C]

(b) by induction hypothesis:
i. (Σ1,Σ′2); ∆′; Γ′ ` e′0 : �D′1A

′
1 [C ′]

ii. (Σ1,Σ′2); (Γ′,Γ′1) ` e′1 : A′ [C ′]
iii. (Σ1,Σ′2); Γ′ ` e′2 : A′ [C ′]

(c) by principle of support substitution for pattern (Lemma 17), (Σ1,Σ′2); · ` π′ : A′1 [D′1] =⇒ Γ′1
(d) result follows by typing

2. case Θ = (·) is trivial.

case Θ = (X → e1,Θ1), where X:B ∈ Σ.

(a) by derivation, Σ; ∆; Γ ` e1 : B [D] and Σ; ∆; Γ ` Θ1 : C1 \ {X} → C2

(b) by 1. (Σ1,Σ′2); ∆′; Γ′ ` e′1 : B′ [C ′2]
(c) by induction hypothesis, (Σ1,Σ′2); ∆′; Γ′ ` Θ′1 : C ′1 \ {X} → C ′2
(d) result follows by typing

�

A.3 Operational semantics

Theorem 12 (Type preservation)
If Σ; ·; · ` e : A [ ] and Σ, e 7−→ Σ′, e′, then Σ′; ·; · ` e′ : A [ ].
Theorem 13 (Progress)
If Σ; ·; · ` e : A [ ], then either

1. e is a value, or

2. there exist a term e′ and a context Σ′ extending Σ, such that Σ, e 7−→ Σ′, e′.
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Proof: We prove both theorems at once. The proof is by induction on the common typing derivation.

case e = x, u,X cannot occur.

case e = λx:A. e′ is already a value.

case e = e1 e2 where e1 is not a value.

1. by derivation, Σ; ·; · ` e1 : A1 → A and Σ; ·; · ` e2 : A1

2. by induction hypothesis, Σ, e1 7−→ Σ′, e′1 where Σ′; ·; · ` e′1 : A1 → A

3. then e 7−→ e′1 e2 which has the correct typing

case e = v1 e2 where e2 is not a value.

1. by derivation, Σ; ·; · ` v1 : A1 → A and Σ; ·; · ` e2 : A1

2. by induction hypothesis, Σ, e2 7−→ Σ′, e′2 where Σ′; ·; · ` e′2 : A1

3. then e 7−→ v1 e
′
2 which has the correct typing

case e = (λx:A1. e
′) v.

1. by derivation, Σ; ·;x:A1 ` e′ : A and Σ; ·; · ` v : A1

2. by value substitution principle (Lemma 9.1), Σ; ·; · ` [v/x]e′ : A

case e = box e′ is already a value.

case e = let box u = e1 in e2 where e1 is not a value.

1. by induction hypothesis, Σ, e1 7−→ Σ′, e′1 of the same type

case e = let box u = box e1 in e2

1. by derivation, Σ; ·; · ` e1 : B [C] and Σ;u:B[C]; · ` e2 : A

2. by expression substitution principle (Lemma 11.1), Σ; ·; · ` [[e1/u]]e2 : A

case e = νX:A1. e is a value.

case e = choose e1 where e1 is not a value.

1. by induction hypothesis, Σ, e1 7−→ Σ′, e′1 with a preserved type

case e = choose νX:A1. e.

1. by derivation, (Σ, X:A1); ·; · ` e : A

2. take Σ′ = (Σ, X:A1) for result

case e = Λp. e1 is a value.

case e = e1 [C] where e1 is not a value, and A = [C/p]A1

1. by derivation, Σ; ·; · ` e1 : ∀p. A1

2. by induction hypothesis, Σ, e1 7−→ Σ′, e′1 where Σ′; ·; · ` e′1 : ∀p. A1

3. the result follows by typing

case e = (Λp. e1) [C], where A = [C/p]A1.

1. by derivation, Σ; ·; · `p e1 : A1 and C ⊆ dom(Σ)
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2. by support substitution principle (Lemma 15.1), Σ; ·; · ` [C/p]e1 : A [ ]

case e = case box e0 of box π ⇒ e1 else e2

1. by derivation:

(a) Σ; ·; · ` e0 : B [C]
(b) Σ; · ` π : B [C] =⇒ Γ1

(c) Σ; ·; Γ1 ` e1 : A [ ]
(d) Σ; ·; · ` e2 : A [ ]

2. assume Γ1 = (w1:A1, . . . , wn:An)

3. if Σ; · ` e0 � π : B =⇒ σ, then by soundness of pattern matching (Lemma 18), σ = (w1 →
e′1, . . . , wn → e′n), where Σ; ·; · ` e′i : Ai [ ]

4. furthermore, Σ, e 7−→ Σ, [e′1/w1, . . . , e
′
n/wn]e1

5. by repeated use of value substitution principle (Lemma 9.1) over the derivation Σ; ·; Γ1 ` e1 : A [ ],
we obtain Σ; ·; · ` [e′1/w1, . . . , e

′
n/wn]e1 : A [ ]

6. if the matching fails, then Σ, e 7−→ Σ, e2, but then by assumption Σ; ·; · ` e2 : A [ ]

�

A.4 Intensional analysis of higher-order syntax

Lemma 17 (Support substitution principle for pattern matching)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substituting D for p. Assume
also that Σ; Γ ` π : A [C] =⇒ Γ1. Then (Σ1,Σ′2); Γ′ ` π′ : A′ [C ′] =⇒ Γ′1.
Proof: By induction on the derivation.

case π = (w x1 . . . xn):A[C1].

1. by derivation, x1:A1, . . . , xn:An ∈ Γ and Γ1 = ∀q. �qA1 → · · · → �qAn → �q,CA and also
C1 ⊆ C

2. by definition of the operation (−)′, x1:A′1, . . . , xn:A′n ∈ Γ′ and Γ′1 = ∀q. �qA′1 → · · · → �qA′n →
�q,C′A′ and also C ′1 ⊆ C ′

3. result follows by typing

case π = X, where X:A ∈ Σ.

1. by derivation, X:A ∈ Σ and C = (C1, X)

2. by definition, X:A′ ∈ Σ′ and C ′ = (C ′1, X)

3. result follows by typing

case π = x, where Γ = Γ1, x:A.

1. by derivation, Γ = Γ1, x:A

2. by definition, Γ′ = Γ′1, x:A′

3. result follows by typing

case π = λx:A1. π1 where A = A1 → A2.

1. by derivation, Σ; (Γ, x:A1) ` π1 : A2 [C] =⇒ Γ1

2. by induction hypothesis (Σ1,Σ′2); (Γ′, x:A′1) ` π′1 : A′2 [C ′] =⇒ Γ′1
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3. result follows by typing

case π = π1 π2.

1. by derivation, Σ; Γ ` π1 : A1 → A [C] =⇒ Γ2 and Σ; Γ ` π2 : A1 [C] =⇒ Γ3, where Γ1 = (Γ2,Γ3),
and also fn(A1) ⊆ dom(Σ)

2. by induction hypothesis, (Σ1,Σ′2); Γ′ ` π′1 : A′1 → A′ [C ′] =⇒ Γ′2 and (Σ1,Σ′2); Γ′ ` π′2 : A′1 [C ′] =⇒
Γ′3

3. fn(A′) ⊆ dom(Σ1,Σ′2)

4. result follows by typing

�

Lemma 18 (Soundness of pattern matching)
Let π be a pattern such that Σ; Γ ` π : A [C] =⇒ Γ1, where Γ1 = (w1:A1, . . . , wn:An). Furthermore, let
e be an expression matching π to produce a pattern assignment σ, i.e. Σ; Γ ` e � π : A =⇒ σ. Then
σ = (w1 → e1, . . . , wn → en) where Σ; ·; · ` ei : A1, for every i = 1, . . . , n.
Proof: By induction on the structure of π.

case π = (w x1 . . . xn):A[D], where Γ = Γ2, xi:Ai.

1. let e′ = (Λp. λyi:�pAi. let box xi = yi in box e) and A′ = ∀p. �pA1 → · · · → �pAn → �p,DA
2. by typing derivation, D ⊆ C and xi:Ai ∈ Γ and also Γ1 = (w:A′)

3. by matching derivation, Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D], and σ = (w → e′)

4. by straightforward structural induction, Σ; (x1:A1, . . . , xn:An); · ` e : A [D]

5. by support weakening, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` e : A [D, p]

6. and thus also, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` box e : �D,pA [ ]

7. and (Σ, p); ·; (y1:�pA1, . . . , yn:�pAn) ` let box xi = yi in box e : �D,pA [ ]

8. and finally, Σ; ·; · ` e′ : A′ [ ]

cases π = X,x are trivial.

case π = λx:A1. π1, where A = A1 → A2.

1. by typing derivation, Σ; (Γ, x:A1) ` π1 : A2 [C] =⇒ Γ1

2. by matching derivation, e = λx:A1. e1 and Σ; Γ, x:A1 ` e1 � π1 =⇒ σ

3. result follows by induction hypothesis on π1

case π = π2 π3.

1. by typing derivation, Σ; Γ ` π2 : A′ → A [C] =⇒ Γ2 and Σ; Γ ` π3 : A′ [C] =⇒ Γ3, where
Γ1 = (Γ2,Γ3)

2. (by derivation also fn(A′) ⊆ dom(Σ) but that will not be used in the proof)

3. let Γ1 = (w1:A1, . . . , wn:An) and Γ2 = (w′1:A′1, . . . , w
′
m:A′m)

4. by matching derivation, e = e2 e3 and σ = (σ2, σ3), where Σ; Γ ` e2 � π2 : A′ → A =⇒ σ2 and
Σ; Γ ` e3 � π3 : A′ =⇒ σ3

5. by induction hypothesis, σ1 = (w1 → e1, . . . , wn → en) and σ2 = (w′1 → e′1, . . . , w
′
m → e′m) with

the appropriate typings, and so the result follows

�
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