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Abstract

This article provides a comprehensive introduction into the field of robotic mapping, with a focus on indoor
mapping. It describes and compares various probabilistic techniques, as they are presently being applied
to a vast array of mobile robot mapping problems. The history of robotic mapping is also described, along
with an extensive list of open research problems.
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1 Introduction

Robotic mapping has been a highly active research area in robotics and AI for at least two decades. Robotic
mapping addresses the problem of acquiring spatial models of physical environments through mobile robots.
The mapping problem is generally regarded as one of the most important problems in the pursuit of building
truly autonomous mobile robots. Despite significant progress in this area, it still poses great challenges. At
present, we have robust methods for mapping environments that are static, structured, and of limited size.
Mapping unstructured, dynamic, or large-scale environments remains largely an open research problem.

This article attempts to provide a comprehensive overview of the state of the art in robotic mapping, with
a focus on indoor environments. Virtually all state-of-the-art robotic mapping algorithms are probabilistic.
Some algorithms are incremental, and hence can be run in real time, whereas others require multiple passes
through the data. Some algorithms require exact pose information to build a map, whereas others can do so
using odometry measurements. Some algorithms are equipped to handle correspondence problems between
data recorded at different points in time, whereas others require features to carry signatures that makes them
uniquely identifiable.

When writing this article, we tried to keep the level of mathematics at a minimum, focusing instead on
the intuition behind the different techniques. However, some mathematical notation was deemed necessary
to communicate the basic concepts in a crisp way. The serious reader is invited to read some of the articles
referenced in this paper, which discuss many of the ideas presented here in more depth.

2 Historical Overview

We begin with a brief overview of the history of robotic mapping. The reader not interested in the historical
perspective is encouraged to skip this section.

Robotic mapping research has a long history. In the 1980s and early 1990s, the field of mapping was
widely divided into metric and topological approaches. Metric maps capture the geometric properties of the
environment, whereas topological maps describe the connectivity of different places. An early representative
of the former approach was Elfes and Moravec’s importantoccupancy grid mapping algorithm[31, 32, 69],
which represents maps by fine-grained grids that model the occupied and free space of the environment.
This approach has been used in a great number of robotic systems, such as [8, 9, 10, 42, 83, 98, 106,
107]. An alternative metric mapping algorithm was proposed by Chatila and Laumond [15], using sets of
polyhedra to describe the geometry of environments. Examples of topological approaches include the work
by Mataríc [62], Kuipers [53] and many others [17, 18, 34, 52, 76, 87, 86, 102, 105, 108]. Topological maps
represent environments as a list of significant places that are connected via arcs. Arcs are usually annotated
with information on how to navigate from one place to another. However, the distinction between metric
and topological has always been fuzzy, since virtually all working topological approaches rely on geometric
information. In practice, metric maps are finer grained than topological ones. Higher resolution comes
at a computational price, but it helps to solve various hard problems, such as the correspondence problem
discussed further below.

Historically, a second taxonomy of mapping algorithms isworld-centricversus robot-centric. World-
centric maps are represented in a global coordinate space. The entities in the map do not carry information
about the sensor measurements that led to their discovery. Robot-centric maps, in contrast, are described in
measurement space. They describe the sensor measurements a robot would receive at different locations. At
first glance, robot-centric maps might appear easier to build, since no ‘translation’ of robot measurements
into world coordinates are needed. However, robot-centric maps suffer two disadvantages. First, it is often
difficult to extrapolate from individual measurements to measurements at nearby, unexplored places—an
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extrapolation that is typically straightforward in world-centric approaches. Put differently, there is usually
no obvious geometry in measurement space that would allow for such extrapolation. Second, if different
places look alike, robot-centric approaches often face difficulties to disambiguate them, again due to the lack
of an obvious geometry in measurement space. For these reasons, the dominant approaches to date generate
world-centric maps.

Since the 1990s, the field of robot mapping has been dominated by probabilistic techniques. A series
of seminal papers by Smith, Self, and Cheeseman [91, 92] introduced a powerful statistical framework for
simultaneously solving the mapping problem and the induced problem of localizing the robot relative to its
growing map. Since then, robotic mapping has commonly been referred to asSLAMor CML, which is short
for simultaneous localization and mapping[25, 30], andconcurrent mapping and localization[56, 101],
respectively. One family of probabilistic approaches employ Kalman filters to estimate the map and the
robot location [14, 20, 27, 38, 55, 73, 104]. The resulting maps usually describe the location of landmarks,
or significant features in the environment, although recent extensions exist that represent environments by
large numbers of raw range measurements [60]. An alternative family of algorithms [23, 86, 87, 97, 101]
is based on Dempster’sexpectation maximizationalgorithm [24, 65]. These approaches specifically address
thecorrespondence problemin mapping, which is the problem of determining whether sensor measurement
recorded at different points in time correspond to the same physical entity in the real world. A third family
of probabilistic techniques seek to identifyobjectsin the environment, which may correspond to ceilings,
walls [44, 58, 61], doors that might be open or closed [2], of furniture and other objects that move [6,
83]. Many of these technique have counterparts in the computer vision and photogrammetry literature—-a
connection that is still somewhat underexploited [1, 3, 5, 16, 21, 43, 88].

Robot exploration in the context of mapping has also been studied extensively. Today’s approaches
are usually greedy, that is, they chose control by greedily maximizing information gain [12, 17, 89, 105],
sometimes under consideration of safety constraints [37]. However, the topic of robot exploration is beyond
the scope of this article, hence will not be addressed any further.

3 The Robotic Mapping Problem

The problem of robotic mapping is that of acquiring a spatial model of a robot’s environment. Maps are
commonly used for robot navigation (e.g., localization) [7, 51]. To acquire a map, robots must possess
sensors that enable it to perceive the outside world. Sensors commonly brought to bear for this task in-
clude cameras, range finders using sonar, laser, and infrared technology, radar, tactile sensors, compasses,
and GPS. However, all these sensors are subject to errors, often referred to as measurement noise. More
importantly, most robot sensors are subject to strict range limitations. For example, light and sound cannot
penetrate walls. These range limitations makes it necessary for a robot to navigate through its environment
when building a map. The motion commands (controls) issued during environment exploration carry im-
portant information for building maps, since they convey information about the locations at which different
sensor measurements were taken. Robot motion is also subject to errors, and the controls alone are therefore
insufficient to determine a robot’s pose (location and orientation) relative to its environment.

A key challenge in robotic mapping arises from the nature of the measurement noise. Modeling prob-
lems, such as robotic mapping, are usually relatively easy to solve if the noise in different measurements
is statisticallyindependent. If this were the case, a robot could simply take more and more measurements
to cancel out the effects of the noise. Unfortunately, in robotic mapping, the measurement errors are sta-
tistically dependent. This is because errors in control accumulate over time, and they affect the way future
sensor measurements are interpreted. This is illustrated in Figure 1a, which shows an example path of a
mobile robot in a given map of the environment. As this example shows, a small rotational error on one end
of a long corridor can lead to many meters of error on the other. As a result, whatever a robot infers about its
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(a) (b)

Figure 1: (a) Example of odometry error: Shown here is a robot’s path as obtained by its odometry, relative to a given map. Small
odometry (or control) errors can have large effects on later position estimates. (b) One of the many faces of the correspondence
problem: Shown here is a robot traversing a cyclic environment during which it accrues significant odometry error. For building
consistent maps the robot has to establish correspondence between the present and past positions, which is particularly difficult
when closing a cycle. Establishing this correspondence is one of the most challenging problems in robotic mapping.

environment is plagued by systematic, correlated errors. Accommodating such systematic errors is key to
building maps successfully, and it is also a key complicating factor in robotic mapping. Many existing map-
ping algorithms are therefore surprisingly complex, both from a mathematical and from an implementation
point of view.

The second complicating aspect of the robot mapping problem arises from the high dimensionality of the
entities that are being mapped. To understand the dimensionality of the problem, the reader may consider
how many numbers it may take to describe an environment like his/her own home. If one confines oneself to
the description of major topological entities, such as corridors, intersections, rooms and doors, a few dozen
numbers might suffice. A detailed two-dimensional floor plan, which is an equally common representation
of robotic maps, often requires thousands of numbers. But a detailed 3D visual map of a building (or of
an ocean floor) may easily require millions of numbers. From a statistical point of view, each such number
is a dimension of the underlying estimation problem. Thus, the mapping problem can be extremely high-
dimensional.

A third and possibly the hardest problem in robotic mapping is thecorrespondence problem, also known
as thedata association problem. The correspondence problem is the problem of determining if sensor
measurements taken at different points in time correspond to the same physical object in the world. Figure 1b
shows an instance of this problem, in which a robot attempts to map a large cyclic environment. When
closing the cycle, the robot has to find out where it is relative to its previously built map. This problem
is complicated by the fact that at the time of cycle closing, the robot’s accumulated pose error might be
unboundedly large. The correspondence problem is difficult, since the number of possible hypotheses can
grow exponentially over time. Most scientific progress on the correspondence problem has emerged in
the past five years, after a long period in which the problem was basically ignored in the robot mapping
community.

Fourth, environments change over time. Some changes may be relatively slow, such as the change
of appearance of a tree across different seasons, or the structural changes that most office buildings are
subjected to over time. Others are faster, such as the change of door status or the location of furniture items,
such as chairs. Even faster may be the change of location of other agents in the environment, such as cars or
people. The dynamism of robot environments creates a big challenge, since it adds yet another way in which
seemingly inconsistent sensor measurements can be explained. To see, imagine a robot facing a closed door
that previously was modeled as open. Such an observation may be explained by two hypotheses, namely
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that the door status changed, or that the robot is not where it believes to be. Unfortunately, there are almost
no mapping algorithms that can learn meaningful maps of dynamic environments. Instead, the predominant
paradigm relies on a static world assumption, in which the robot is the only time-variant quantity (and
everything else that moves is just noise). Consequently, most techniques are only applied in relatively short
time windows, during which the respective environments are static.

A fifth and final challenge arises from the fact that robots must choose their way during mapping. The
task of generating robot motion in the pursuit of building a map is commonly referred to asrobotic explo-
ration. While optimal robot motion is relatively well-understood in fully modeled environments, exploring
robots have to cope with partial and incomplete models. Hence, any viable exploration strategy has to be
able to accommodate contingencies and surprises that might arise during map acquisition. For this reason,
exploration is a challenging planning problem, which is often solved sub-optimally via simple heuristics.
When choosing where to move, various quantities have to be traded off: the expected gain in map informa-
tion, the time and energy it takes to gain this information, the possible loss of pose information along the
way, and so on. Furthermore, the underlying map estimation technique must be able to generate maps in
real-time, which is an important restriction that rules out many existing approaches.

As noted above, the literature refers to the mapping problem often in conjunction with the localiza-
tion problem, which is the problem of determining a robot’s pose. The reason for suggesting that both
problems—the problem of estimating where things are in the environment and the problem of determining
where a robot is—have to be solved in conjunction will become a bit more obvious below, when we state
the basic statistical estimators that underlie all state-of-the-art techniques. In essence, both the robot local-
ization and the map are uncertain, and by focusing just on one the other introducessystematicnoise. Thus,
estimating both at the same time has the pleasing property that both the measurement and the control noise
are independent with regards to the properties that are being estimated (the state). Postponing further detail
on this issue to further below, we notice that the robot mapping problem is like a chicken and egg problem:
If the robot’s pose was known all along, building a map would be quite simple. Conversely, if we already
had a map of the environment, there exist computationally elegant and efficient algorithms for determining
the robot’s pose at any point in time [7, 36]. In combination, however, the problem is much harder.

Today, mapping is largely considered the most difficult perceptual problem in robotics. Progress in
robot mapping is bound to impact a much broader range of related perceptual problems, such as sensor-
based manipulation and interaction with people.

4 Why Probabilities?

Virtually all state-of-the-art algorithms for robotic mapping in the literature have one common feature: They
are probabilistic. They all employ probabilistic models of the robot and its environment, and they all rely
on probabilistic inference for turning sensor measurements into maps. Some authors make the probabilistic
thinking very explicit, e.g., by providing mathematical derivations of their algorithms from first probabilistic
principles. Others use techniques that on the surface do not look specifically probabilistic, but that in fact
can be interpreted as probabilistic inference under appropriate assumptions.

The reason for the popularity of probabilistic techniques stems from the fact that robot mapping is
characterized by uncertainty and sensor noise. As discussed above, perceptual noise is complex and not
trivial to accommodate. Probabilistic algorithms approach the problem by explicitly modeling different
sources of noise and their effects on the measurements. In the evolution of mapping algorithms, probabilistic
algorithms have emerged as the sole winner for this difficult problem. It is probably the complexity of
this problem—mapping is arguably the hardest perceptual inference problems in mobile robotics—that has
forced the community to adopt a singular view and use a single mathematical methodology for solving it.
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The basic principle underlying virtually every single successful mapping algorithm is Bayes rule:

p(x | d) = η p(d | x) p(x) (1)

Bayes rule is the archetype of probabilistic inference. Suppose we want to learn about a quantityx (e.g., a
map), based on measurement datad (e.g., range scans, odometry). Then Bayes rule tells us that the problem
can be solved by multiplying two terms:p(d | x) andp(x). The termp(d | x) specifies the probability
of observing the measurementd under the hypothesisx. Thus,p(d | x) is a generativemodel, in that it
describes the process of generating sensor measurements under different worldsx. The termp(x) is called
the prior. It specifies our willingness to assume thatx is the case in the worldbeforethe arrival of any data.
Finally, η is a normalizer that is necessary to ensure that the left hand side of Bayes rule is indeed a valid
probability distribution.

In robotic mapping, data arrives over time. Further above in this article, we already distinguished two
different types of data: Sensor measurements and controls. Let us denote sensor measurements (e.g., camera
images) by the variablez, and the controls (e.g., motion commands) byu. For convenience, let us assume
that the data is collected in alternation:

z1, u1, z2, u2, . . . , (2)

Here subscripts are used as time index. In particular,zt is the sensor measurement taken at timet, andut
specifies the robot motion command asserted in the time interval[t− 1, t). Sometimes, odometry measure-
ments or measurements from inertial navigation units (INUs) are used foru instead of controls, since they
may more accurately reflect the actual robot motion.

In the field of robot mapping, the single dominating scheme for integrating such temporal data is known
asBayes filter[45], which is highly related to Kalman filters [49, 64], hidden Markov models [78], dynamic
Bayes networks [82], and partially observable Markov decision processes [48, 59, 66, 93]. The Bayes filter
extends Bayes rule to temporal estimation problems. It is a recursive estimator for computing a sequence of
posterior probability distributions over quantities that cannot be observed directly—such as a map. Let us
call this unknown quantity thestateand refer to it asxt, wheret is the time index. The generic Bayes filter
calculates a posterior probability over the statext via the following recursive equation:

p(xt | zt, ut) = η p(zt | xt)
∫
p(xt | ut, xt−1) p(xt−1 | zt−1, ut−1) dxt−1 (3)

Here we follow common notation by using a superscriptt to refer toall data leading up to timet, that is:

zt = {z1, z2, . . . , zt} (4)

ut = {u1, u2, . . . , ut} (5)

Equation (3) might look complex, but in fact it embodies the most simple approach of probabilistic inference
from temporal data. We notice that Bayes filters are recursive, that is, the posterior probabilityp(xt | zt, ut)
is calculated from the same probability one time step earlier. The initial probability at timet = 0 is
p(x0 | z0, u0) = p(x0). The recursiveness suggests that the time per update is constant, enabling Bayes
filters to integrate information indefinitely.

A crucial requirement of Bayes filters is that the statext contain all unknown quantities that may influ-
ence sensor measurements at multiple points in time. In the context of robotic mapping, there are typically
two such quantities: the map and the robot’s pose in the environment. Both of them influence sensor mea-
surements over time. Hence, when using probabilistic techniques, the mapping problem is truly one where
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both the map and the robot pose have to be estimated together. If we usem to denote the map ands for the
robot’s pose, we obtain the following Bayes filter:

p(st,mt | zt, ut)

= η p(zt | st,mt)
∫ ∫

p(st,mt | ut, st−1,mt−1) p(st−1,mt−1 | zt−1, ut−1) dst−1 dmt−1 (6)

Most mapping algorithms assume that the world is static, which implies that the time index can be omitted
when referring to the mapm. Also, most approaches assume that the robot motion is independent of the
map. This leads to the convenient form of the Bayes filter in the robot mapping problem:

p(st,m | zt, ut) = η p(zt | st,m)
∫
p(st | ut, st−1) p(st−1,m | zt−1, ut−1) dst−1 (7)

Notice that this estimator does not require an integration over mapsm, as was the case for the previous
one (6). Such an integration is difficult, due to the high dimensionality of the space of all maps. Thus, the
assumptions the static world assumption has great practical importance.

To put the estimator (7) into action, two generative probabilities have to be specified:p(st | ut, st−1)
andp(zt | st,m). These distributions are usually assumed to be time invariant, that is, they do not depend
on the timet. Thus, they are commonly writtenp(s | u, s′) andp(z | s,m). Both of them are generative
models of the robot and its environment. The probabilityp(z | s,m) is often referred to asperceptual model
in robotics, since it describes in probabilistic terms how sensor measurementsz are generated for different
posess and mapsm. The perceptual model is a generative model that describes the workings of a robot’s
sensors. The probabilityp(s | u, s′) specifies the effect of the controlu on the states. It describes the
probability that the controlu, if executed at the world states′, leads to the states. For moving robots, this
probability is usually referred to asmotion model.

We also notice that the mapping equation (7) cannot be implemented on a digital computer in its general
form stated above. This is because the posterior over the space of all maps and robot poses is a probability
distribution over a continuous space, hence possesses infinitely many dimension. Therefore, any working
mapping algorithm has to resort to additional assumptions. These assumptions and their implications on the
resulting algorithms and maps constitute the primary differences between the different solutions to the robot
mapping problem.

The remainder of this paper describes specific mapping algorithms that can be directly derived from
Bayes filters, and relates them to each other. Table 1 summarizes key properties of some of the most
important algorithms. Such a comparison has to be taken with a grain of salt, since it is necessarily inaccurate
given the flood of publications on this topic. Our goal is to instead report current strengths and limitations of
proven algorithms in a way that enables novices to the field to understand the advantages and shortcomings
of individual approaches.

The map representation is summarized in the fieldrepresentation, which will be defined in more detail
when discussing the individual algorithms in depth. The field labeleduncertaintyin Table 1 refers to the
way uncertainty is represented in the resulting map. A Bayesian posterior characterizes the map along
with its uncertainty, whereas a maximum likelihood estimate generates a single map only, hence is less
informative. The fieldconvergencestates what is known about the convergence properties of an algorithm,
under appropriate assumptions. Different mapping paradigms come with different convergence properties.
In particular, the notion of convergence in EM is a local one, where the resulting solution might characterize
a locally optimal map. In the table, we call such convergenceweak, to distinguish it from stronger results
concerning the optimality of the estimate. Whether or not an algorithm is subject to local minima is specified
in the next row. The fieldincrementaltell us whether maps can be build incrementally (and possibly in real-
time), or whether multiple passes through the data are necessary. In general, incrementality is a desirable
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Kalman Lu/Milios EM Incremen-
tal ML

Hybrid Occupancy
Grids

Multi-
Planar
Maps

Dogma

Representation landmark
locations

point ob-
stacles

point ob-
stacles

landmark
locations
or grid
maps

point ob-
stacles

occupancy
grids

objects
and
polygons

occupancy
grids

Uncertainty posterior
poses
and map

posterior
poses
and map

maximum
likeli-
hood
map

(local)
max-
imum
likeli-
hood
map

maximum
likeli-
hood
map

posterior
map

maximum
likeli-
hood
map

posterior
map

Convergence strong no weak? no no strong weak weak
Local Minima no yes yes yes yes no yes yes
Incremental yes no no yes* yes yes no no
Requires Poses no no no no no yes yes yes
Sensor Noise Gaussian Gaussian any any any any Gaussian any
Can map cycles yes no yes no yes,

but not
nested

n/a n/a n/a

Map dimensionality ∼ 103 unlimited unlimited unlimited unlimited unlimited unlimited unlimited
Correspondence no yes yes yes yes yes yes yes
Handles raw data no yes yes yes yes yes yes yes
Dynamic env’s limited no no no no limited no yes

Table 1: An attempt to compare the major mapping algorithms described in this paper.

property, especially for robots that explore autonomously while building a map. The fieldrequires poses
is an important one: Only a subset of mapping algorithms attack the full mapping problem above, where
the robot poses are unknown. Other algorithms require exact pose information. The latter ones are usually
used in conjunction with the former ones, to post-process the data. The nature of sensor noise is listed in
the field below, as is the dimensionality of the maps that can be generated in practical implementations. The
itemcorrespondencespecifies whether an algorithm can cope with unknown correspondence problems, that
is, accommodate features in the environment that look alike—a property that is highly desirable. The next
item,raw data, tell us whether in practical implementations data pre-processing and filtering is necessary or,
alternatively, an algorithm can build maps from raw sensor data. Maps computed from raw sensor data often
possess more detail. Finally, the itemdynamic environmentsstates whether the approach is tailored towards
dynamic environments. Certain approaches can accommodate limited types of dynamics, as indicated by
the term “limited.” From the range of algorithms discussed here, only one addresses environment change at
its core.

5 Kalman Filter Approaches

A classical approach to generating maps is based on Kalman filters [49, 64]. This approach can be traced
back to a highly influential series of papers by Smith, Self, and Cheeseman [91, 92], who in 1985 through
1990 proposed a mathematical formulation of the approach that is still in widespread use today. In the
following years, a number of researchers developed this approach further [13, 14, 30, 26, 27, 56, 73], most
notably a group of researchers located at the University of Sydney in Australia. In the literature, Kalman
filter-based mapping algorithms are often referred to asSLAMalgorithms, where SLAM stands for simul-
taneous localization and mapping as noted above. Technically speaking, SLAM is a problem and not a
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solution, but the term is now closely affiliated with a family of algorithms that use Kalman filters for jointly
estimating the map and the robot pose.

Kalman filters are Bayes filters that represent posteriorsp(st,m | zt, ut) with Gaussians. Gaussians are
unimodal distributions that can be represented compactly by a small number of parameters. In the context
of the robotic mapping problem, the Gaussian model is the full state vectorx, which comprises the robot’s
poses and the mapm:

xt = (st,m)T (8)

Here and in the following,T refers to the transpose a vector or matrix. For robots operating on a planar
surface, the robot poses is usually modeled by three variables: the Cartesian coordinates in the plane, and
the heading direction. Let us denote those coordinates bysx, sy, andsθ, respectively. Maps in the Kalman
filter approach are commonly represented by the Cartesian coordinates of sets of features. Appropriate
feature may be landmarks, distinctive objects or shapes in the environment. Denoting the number in the
map byK, the corresponding state vector is given by the following2K + 3-dimensional vector:

xt = (sx,t, sy,t, sθ,t,m1,x,t,m1,y,t,m2,x,t,m2,y,t, . . . ,mK,x,t,mK,y,t)T (9)

Heremk,x,t,mk,y,t are the Cartesian coordinates of thek-th feature in the map. As commonly the case in
Kalman filtering, the Gaussian representing the posterior over the joint pose and map estimatep(st,m |
zt, ut) is given by a meanµt and a covariance matrixΣt. The mean vector possesses2K + 3 dimensions,
and the covariance(2K + 3)2 dimensions.

Before discussing the Kalman filter-based mapping algorithm, let us inspect an example. Figure 2
shows an image of a map obtained using the Kalman filter approach (courtesy of Stefan Williams and Hugh
Durrant-Whyte [104]). Shown in this image is the path of an underwater vehicle, along with range mea-
surements obtained using a pencil sonar. The map itself consist of 14 point features, extracted from the
sonar data. Five of those features correspond to thin, vertical artificial landmarks; the other correspond to
other reflective objects in the environment. The ellipses around these landmarks illustrate the residual un-
certainty that remains after mapping, as specified by the covariance matrixΣ. Similarly, the robot’s path
itself is uncertain, as indicated by the ellipses that can be found in regular intervals along the path. All these
ellipses, are two-dimensional projections of a single Gaussian〈µ,Σ〉 that represents the joint posterior over
all landmark locations and the robot pose. Additional dots in Figure 2 depict hypotheses for the location
of additional landmarks whose evidence is too weak for them to be included in the map. Figure 3 illus-
trates the result after successful mapping, using a simulation example. Of importance is the matrix shown
in Figure 3b, which depicts the correlation (normalized covariance matrixΣ) between the robot’s three-
dimensional pose and all 20 landmarks’ two-dimensional location. The checkerboard appearance suggests
that there are strong correlations between all location estimates in thex- andy-dimensions. This makes
sense, since measurements convey only information about therelative location of the robot to landmarks
(and, by induction, between the landmarks themselves), not about their absolute coordinates. Consequently,
the final map in Figure 3a is still somewhat uncertain.

Kalman filter mapping relies on three basic assumptions. First, the next state function (motion model)
must be linear with added Gaussian noise. Second, the same characteristics must also apply to the per-
ceptual model. And third, the initial uncertainty must be Gaussian. We will now elaborate on these three
assumptions.

A linear next state function is one where the robot posest and the mapmt at timet dependlinearly
on the previous posest−1 and mapmt−1, and also linearly on the controlut. For the map, this is trivially
the case since by assumption, the map does not change. However, the posest is usually governed by a
nonlinear trigonometric function that depends nonlinearly on the previous posest−1 and the controlut.
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Figure 2: Example of Kalman filter estimation of the map and the vehicle pose. Courtesy of Stefan Williams and Hugh Durrant-
Whyte of the Australian Centre for Field Robotics at the University of Sydney [104].

To accommodate such nonlinearities, Kalman filters approximate the robot motion model using a linear
function obtained via Taylor series expansion. The resulting Kalman filter is known asextended Kalman
filter [64] (see also [47]), and single motion commands are often approximated by a series of much smaller
motion segments, to account for nonlinearities. For most robotic vehicles, such an approximation works
well. The result of the linearization is that the state transition function can be written as a linear function
with added Gaussian noise:

p(x | u, x′) = Ax′ +Bu+ εcontrol (10)

HereA andB are matrices that implement linear mappings from statesx′ and the motion commandu to the
next state variablex, respectively. Noise in perception is modeled via the variableεcontrol, which is assumed
to be normal distributed with zero mean and the covarianceΣcontrol.

As with robot motion, sensor measurements in robotics are usually nonlinear, with non-Gaussian noise.
Thus, they are also approximated through a first degree Taylor series expansion. Put into equations, Kalman
filter methods require thatp(z | x) with x = 〈s,m〉 is of the following form:

p(z | x) = Cx+ εmeasure (11)

HereC is a matrix (a linear mapping), andεmeasure is normal distributed measurement noise with zero
mean and covarianceΣmeasure. Such approximations are known to work well for robots that can measure
the ranges and bearings to landmarks. Under the linearity and Gaussian noise approximation, the Bayes filter
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(a) (b) (c)

Figure 3: (a) A map of landmarks obtained in simulation, (b) a correlation matrix after 278 iterations of Kalman filter mapping.
The checker-board appearance verifies the theoretical finding that in the limit, all landmark location estimates are fully correlated.
(c) The normalized inverse covariance matrix of the same estimate shows that dependencies are local, an effect that is exploited by
some algorithms that build local maps.

in Equation (7) can be calculated conveniently using the standard Kalman filter equations [49, 64, 103]:

µ′t−1 = µt−1 +But

Σ′t−1 = Σt−1 + Σcontrol

Kt = Σ′t−1C
T (CΣ′t−1C

T + Σmeasure)−1

µt = µ′t−1 +Kt(o− Cµ′t−1)
Σt = (I −KtC)Σ′t−1 (12)

As the reader may verify, these equations are equivalent to the standard Kalman filter update equations [64].
Their mathematical derivation from the Bayes filter is mathematically straightforward.

In practical implementations, the number of features in the map lies usually between a dozen and a few
hundreds. Sensor measurements are usually sparse (e.g., the robot observes one landmark at a time). The
most costly operations in updating the Kalman filter are matrix multiplications (and not matrix inversions),
which can be implemented inO(K2) time, whereK is the number of features in the map—not to be
confused with the matrixKt in (12). Recent research has led to a range of extensions that can handle larger
number of features, by decomposing the problem into multiple smaller ones [56, 38]. Some techniques,
such as the FastSLAM algorithm described in [67], promise a reduction toO(logK) complexity for certain
situation, by using non-classical statistical sampling techniques for robot path estimation [29, 71] along with
efficient tree representations.

In practice, the number of features is not known a priori. State-of-the-art implementations often grow
this list dynamically. To do so, they maintain a list of candidate features, using a separate Kalman filter for
these candidates. If a feature is observed sufficiently often, it is permanently added to the list of features
in the map. Outliers, that is, measurements that do not correspond to any known feature with sufficient
likelihood, are usually ignored. These techniques work particularly well when features are scarce in the
environment.

Some of the key characteristics of the Kalman filter approach to robot mapping are summarized in
Table 1. The primary advantage of the Kalman filter approach is the fact that it estimates the full posterior
over mapsm in an online fashion. To date, the only algorithms that are capable of estimating the full
posterior are based on Kalman filters or extensions thereof, such as mixture of Gaussian methods [30], or a
Rao-Blackwellized particle filter [29, 67, 71]. There are many advantages to estimating the full posterior:
In addition to the most likely map and robot poses, Kalman filters maintain the full uncertainty in the map,
which can be highly beneficial when using the map for navigation. Additionally, the approach can be shown
to converge with probability one to the true map and robot position, up to a residual uncertainty distribution
that largely stems from an initial random drift [73, 26, 27]. As is commonly the case with theoretical results,
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Figure 4: (a) Raw range data of a large hall in a museum. (b) Data aligned with EM using artificial but indistinguishable landmarks.
(c) Result of applying the Lu/Milios algorithm to the pre-aligned data.

they only hold under the specific conditions discussed above. They also require that the robot encounters
each landmark infinitely often. Nevertheless, this result is the strongest convergence result that presently
exists in the context of robotic mapping.

Probably the most important limitation of the Kalman filter approach lies in the Gaussian noise assump-
tion. In particular, the assumption that the measurement noiseεmeasure must be independent and Gaussian
poses a key limitation, with important implications for practical implementations. Consider, for example, an
environment with two indistinguishable landmarks. Measuring such a landmark will induce a multimodal
distribution over possible robot poses, which is at odds with the (unimodal) Gaussian noise assumption.
More generally, Kalman filter approaches are unable to cope with thecorrespondence problem, which is the
problem of associating individual sensor measurements with features in the map.

This limitation has important practical ramifications. Implementations of the Kalman filter approach
usually require a sparse set of features which are sufficiently distinctive—either by their sensor characteris-
tics or by their location—so that they can be identified reliably. Errors in the identification of environment
features usually imply failure of the mapping algorithm. For this reason, Kalman filter approaches are usu-
ally forced to ignore large portions of the sensor data, and work with a small number of landmark-type
features only. The resulting maps contain the locations of these landmarks but usually lack detailed geomet-
ric descriptions of the environment.

A recent extension of the basic paradigm is known as the Lu/Milios algorithm [60]. This algorithm
was successfully implemented by Gutmann [39, 41]. The Lu/Milios algorithm is somewhat specific to laser
range data. It combines two basic estimation phases: A phase where Kalman filters are used to calculate
posteriors over maps, and another where the range measurements in multiple range scans are associated
with each other. The correspondence is obtained viamaximum likelihooddata association, that is, the
algorithm simply pairs up nearby measurements. However, by iterating both phases, the correspondence
is calculated repeatedly, enabling the approach to recover from wrong correspondences. In practice, this
approach is able to build maps from raw data with unknown correspondences. However, the fact that it
uses maximum likelihood to ‘guess’ the correspondences—instead of calculating the full posterior over
correspondences and maps—imposes important limitations. In practice, the algorithm works amazingly
well when the errors in the initial pose estimates are small (e.g., smaller than 2 meters). Larger pose errors,
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such as typically encountered when mapping a cyclic environment, cannot be accommodated. Moreover,
this approach requires multiple passes through the data, hence is not a real-time algorithm. Figure 4c
depicts a map generated using this algorithm from the range data shown in Figure 4b. The final map is
highly accurate and exhibits detailed structure. However, the reader should notice that the data fed into this
algorithm is pre-aligned. The raw data using the robot’s odometry for pose estimation, shown in Figure 4a,
is too erroneous for the Lu/Milios algorithm. The problem with such erroneous data is the failure of the
maximum likelihood correspondence step, which in turn leads to wrong maps when using Kalman filtering.
This result illustrates the strength and weakness of the basic approach. We note that the pre-alignment from
Figure 4a to Figure 4b was performed using an algorithm described in the next section.

The discussion of Kalman filter approaches raises the more general question as to whether it is prin-
cipally possible to perform full posterior estimation in the face of unknown correspondences. The basic
Kalman filter algorithm cannot cope with ambiguous features, and even extensions such as the Lu/Milios
algorithm resort to (brittle) maximum likelihood techniques to guess the best correspondence during map-
ping. Unfortunately, calculating the full posterior under unknown correspondences is hard. If there exist
n ambiguous features in the world, each measurement of such a feature will in the worst case multiply the
modes of the posterior by a factor ofn. Thus, the number of modes in the posterior may grow exponentially
over time. This suggests that no incremental algorithm exists that can calculate the full posterior under
unknown correspondences. However, recent research suggests that it may suffice to maintain a small num-
ber of those modes, using a mixture of Gaussian representation [30] or a—highly related—particle filter
representation [67, 71]. Such representations have been applied with great success in lower dimensional
robot localization problems [19, 46, 79, 80], commonly under the namemulti hypothesis Kalman filters.
The development of techniques for posterior estimation with unknown correspondence is currently subject
of ongoing research, with enormous potential for practical applications.

6 Expectation Maximization Algorithms

A recent alternative to the Kalman filter paradigm is known as theexpectation maximizationfamily of
algorithms, or in short,EM. EM is a statistical algorithm that was developed in the context of maximum
likelihood (ML) estimation with latent variables, in a influential paper by Dempster, Laird and Rubin [24].
A recent book on this topic illustrates the wealth of research that presently exists on the EM algorithm [65].

Applied to the robotic mapping problem, the EM algorithm has quite orthogonal characteristics. EM
algorithms constitute today’s best solutions to the correspondence problem in mapping [11, 101]. In partic-
ular, EM algorithms have been found to generate consistent maps of large-scale cyclic environment even if
all features look alike and cannot be distinguished perceptually. However, EM algorithms do not retain a
full notion of uncertainty. Instead, they perform hill climbing in the space of all maps, in an attempt to find
the most likely map. To do so, they have to process the data multiple times. Hence, EM algorithms cannot
generate maps incrementally, as is the case for many Kalman filter approaches.

The EM algorithm exploits the chicken-and-egg nature of the mapping problem. In particular, it builds
on the insight that determining a map when the robot’s path is known (in expectation) is relatively simple, as
is the determination of a probabilistic estimate of the robot’s location for a given map. To exploit this insight,
EM iterates two steps: Anexpectation stepor E-step, where the posterior over robot poses is calculated for
a given map, and amaximization stepor M-step, in which EM calculates the most likely map given these
pose expectations. The result is a series of increasingly accurate maps,m[0],m[1],m[2], . . .. The initial map,
m[0], is an empty map.

Formally, the function that is being maximized is the expectation over the joint log likelihood of the data
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dt and the robot’s pathst = {s1, . . . , st}:

m[i+1] = argmax
m

Est [log p(dt, st | m) | m[i], dt] (13)

This equation follows from the Bayes filter under several mild assumptions. The(i+ 1)-th map is obtained
from thei-th map by maximization of a log likelihood function. The logarithm is a monotonic function;
hence maximizing the logarithm is equivalent to likelihood maximization. Part of the likelihood that is being
maximized is the robot’s pathst. However, in mapping the path is unknown. Equation (13), thus, computes
the expectation of this likelihood over all possible paths the robot may have taken. Under mild assumptions,
(13) can be re-expressed as the following integral:

m[i+1] = argmax
m

∑
τ

∫
p(sτ | m[i], dt) log p(zτ | sτ ,m) dsτ (14)

Here the right-hand side contains the termp(sτ | m[i], dt), which is the posterior for the posesτ conditioned
on the datadt and thei-th mapm[i]. Further above, we have already encountered various such estimation
problems, and have shown how to use Bayes filters to solve them. The specific problem here is a low-
dimensional robot localization problem, since we are given thei-th map and only need to compute the
posterior over the robot pose. The key difference to standard localization is that in our case, data in the
entire time interval{1, . . . , t} is used to estimate the posterior pose at timeτ , even forτ < t. Thus, we
need to incorporate past and future data relative to the time stepτ . Luckily, under further mild assumptions
this can be achieved by running Bayes filters twice: once forward in time, and once backwards in time.
The forward run provides us with a posteriorp(sτ | m[i], dτ ) conditioned on all data leading up to timeτ .
The backwards pass gives us the posteriorp(sτ | m[i], dτ+1, . . . , dt) conditioned on all data collected after
time stepτ . Multiplication of these two estimates and subsequent normalization gives us indeed the desired
probabilityp(sτ | m[i], dt). This calculation is known as the E-step in EM, since it calculates expectations
(probabilities) for different poses at all points in time.

The final step, the M-step, is the maximization in (14). Here the expectationsp(sτ | m[i], dt) are fixed,
as obtained in the E-step. The goal of the M-step is to find a new mapm that maximizes the log likelihood of
the sensor measurementslog p(zτ | sτ ,m), for all τ and all posesst and under the expectation calculated in
the E-step. Unfortunately, there exist no known closed form solution to this high-dimensional maximization
problem. A common approach is to solve the problem for each map location〈x, y〉 independently [11,
101]. This assumes that the map is represented by a finite number of locations, e.g., by a fine-grained grid.
The component-wise maximization is then relatively straightforward. Existing implementations of the EM
paradigm rely on grid representations for all densities involved in the estimation process. They also rely on
probabilistic maps instead of zero-one maps, which has a smoothing effect on the maximization and avoids
getting trapped in local maxima during the optimization.

Key characteristics of the EM algorithm are summarized in Table 1. A key advantage of the EM al-
gorithm over Kalman filtering lies in the fact that it solves the correspondence problem. It does so by
repeatedly relocalizing the robot relative to the present map in the E-step. The pose posteriors calculated in
the E-step correspond to different hypotheses as to where the robot might have been, and hence imply dif-
ferent correspondences. By building maps in the M-step, these correspondences are translated into features
in the map, which then either get reinforced in the next E-step or gradually disappear.

Figure 5a shows an example of a data set mapped using EM. In this specific example, the robot measures
28 landmarks that are perceptually indistinguishable. These landmarks correspond to corners, intersections
and distinctive places; however, for the exercise of mapping with unknown correspondence, the robot is not
given any perceptual information that would help disambiguate them. When traversing the large loop in the
environment for the first time, the error in the pose estimate using odometry is too large to use it to resolve
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Figure 5: (a) Raw data of a large-scale cyclic environment with indistinguishable landmarks. (b) Occupancy grid map built from
raw data using sonar sensors. (c) Map and robot path aligned by EM, demonstrating EM’s ability to solve hard correspondence
problems. (d) Occupancy grid map built on top of the outcome of the EM mapping algorithm.

the correspondence problem. Such large loops are known to be challenging to map [40]. Figure 5c shows
the result of applying EM to this data set. The resulting map and path is topologically correct. To illustrate
the accuracy of the map, Figures 5b and d show occupancy grid maps built from sonar range measurements
using the raw range data without and with the poses estimated by EM, respectively.

Such results cannot be obtained using present-day Kalman filtering techniques, since those techniques
do not address the correspondence problem in ways that would scale to environments of this complexity.
However, we notice that EM is inferior to Kalman filter algorithms in that it is an offline algorithm that is
subject to local maxima. Generating maps like the one shown here may take several hours on a low-end PC.

7 Hybrid Approaches

The literature on robotic mapping provides ample examples of hybrid solutions which integrate probabilistic
posteriors with computationally more efficient maximum likelihood estimates.

One of the most common approaches, which from a mathematical point of view is inferior to both
Kalman filters and EM, is theincremental maximum likelihood method[32, 69, 94, 105, 107]. The basic idea
is to incrementally build a single map as the sensor data arrives, but without keeping track of any residual
uncertainty. Such a methodology can be viewed as a M-step in EM, without an E-step. The advantage of
this paradigm lies in its simplicity, which accounts for its popularity.

Mathematically, the basic idea is to maintain a series of maximum likelihood maps,m∗1,m
∗
2, . . ., along

with a series of maximum likelihood posess∗1, s
∗
2, . . .. The t-the map and pose are constructed from the
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Figure 6: Incremental maximum likelihood mapping: At every time step, the map is grown by finding the most likely continuation.
This non-probabilistic approach works well in non-cyclic environment but is generally unable to handle cycles.

(a) (b) (c)

Figure 7: Hybrid approach, which maintains a posterior estimate over the robot poses, represented by a set of particles. When
closing the loop, these samples are used to relocalize the robot in the map and correct the map accordingly.

(t− 1)-th map and pose via maximization of the marginal likelihood:

〈m∗t , s∗t 〉 = argmax
mt,st

p(zt | st,mt) p(st,mt | ut, s∗t−1,m
∗
t−1) (15)

This equation directly follows from the Bayes filter (6) under the assumption that the(t − 1)-th map and
robot pose are known. In practice, it usually suffices to search in the space of posesst, since the mapmt is
usually uniquely determined once the posest is known. Thus, the incremental ML method simply requires
search in the space of all posesst when a new data item arrives, to determine the poses∗t that maximizes the
marginal posterior likelihood. Like Kalman filters, this approach can build maps in real-time, but without
maintaining a notion of uncertainty. Like EM, it maximizes likelihood. However, the incremental one-step
likelihood maximization differs from the likelihood maximization over an entire data setdt. In particular,
once a poses∗t and a mapm∗t have been determined, they are frozen once and forever and cannot be revised
based on future data—a key feature of both the Kalman filter and the EM approach.

This weakness manifests itself in the inability to mapcyclic environments, where the error in the poses
s∗t may grow without bounds. Figure 6 shows an example where the incremental maximum likelihood
approach is used to map a cyclic environment, with a robot equipped with a 2D laser range finder. While
the map is reasonably consistent before closing the loop, the large residual error leads to inconsistencies
that cannot be resolved by the incremental maximum likelihood approach. This is a general limitation of
algorithms that do not consider uncertainty when building maps, and that possess no mechanism to use
future data to adjust past decisions.

Hybrid approaches overcome this limitation by maintaining an explicit notion of uncertainty during
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Figure 8: Map built by three autonomously exploring robots. The initial robot poses are on the left as marked by the letters A, B,
and C.

mapping, short of the full posterior over maps and poses maintained by Kalman filters. A good example
are the algorithms described in [40, 97, 100]. Both of these algorithms use the incremental maximum
likelihood approach to build maps, but in addition maintain a posterior distribution over robot posesst. This
distribution is calculated using the standard Bayes filter (3) applied to robot posesst (but not maps):

p(st | zt, ut) = η p(zt | st)
∫
p(st | ut, st−1) p(st−1 | zt−1, ut−1) dst−1 (16)

The idea is that by retaining a notion of the robot’s pose uncertainty, conflicts like the one faced by the
incremental maximum likelihood method can be identified, and the appropriate corrective action can be
taken. Figure 7 shows a sequence of map estimation steps using this approach, for the same data that were
used to generate Figure 6. The pose posterior estimatep(st | zt, ut) is implemented usingparticle filters[22,
28, 57, 77], which is a version of the Bayes filter that represents posteriors by samples. The samples can be
seen in all three diagrams in Figure 7. When the robot traverses a cyclic environment, it uses the samples to
localize itself relative to the previously built map. When it has determined its pose with high likelihood, it
uniformly spreads the resulting error along the cycle in the map. Consequently, the approach still maintains
just a single map, which is computationally advantageous. But unlike the incremental maximum likelihood
methods, it also has the ability to correct its map backwards in time whenever an inconsistency is detected.
Mathematically, this hybrid algorithm can be derived as a rather crude approximation to the EM algorithm,
which performs the E-step and the M-step selectively, as discrepancies are detected.

However, the hybrid approach suffers many deficiencies. First and foremost, the decision to change the
map backwards in time is a discrete one which, if wrong, can lead to catastrophic failure. Moreover, the
approach cannot cope with complex ambiguities, such as the uncertainty that arises when the robot traverses
multiple nested cycles. Finally, the hybrid approach is—strictly speaking—not a real-time algorithm, since
the time it takes to correct a loop depends on the size of the loop. However, practical implementations
appear to work well in real-time when used in office-building type environments.

The hybrid mapping algorithm has been extended to handle multiple robots that jointly acquire a single
map [50, 97]. Figure 8 plots a map acquired by three autonomous robots, which coordinated their explo-
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Figure 9: (a) Occupancy grid map and (b) architectural blueprint of a recently constructed building. The blueprint is less accurate
than the map in several locations.

ration efforts while the map was being built [12, 89]. Such results exploit the approximate real-time property
of the hybrid algorithm.

8 Occupancy Grid Maps

The mapping algorithms described above all address the mapping problem with unknown robot poses which,
as pointed out above, is known as the simultaneous localization and mapping (SLAM) problem. The simpler
case—mapping withknownposes—has also received attention in the literature. One mapping algorithm,
known asoccupancy grid mapsdeveloped by Elfes and Moravec in the mid-Eighties [32, 69], has enjoyed
enormous popularity. This algorithm is used by a number of autonomous robots, typically in combination
with one of the algorithms described above.

The central problem addressed by occupancy grid mapping and related algorithm is the problem of
generating a consistent metric map from noisy or incomplete sensor data. Even if the robot poses are known,
it is sometimes difficult to say whether a place in the environment is occupied or not, due to ambiguities in
the sensor data. The best-explored applications of occupancy grid maps require robots with range sensors,
such as sonar sensors or laser range finders. Both sensors are characterized by noise. Sonars, in addition,
cover an entire cone in space, and from a single sonar measurement it is impossible to saywherein the cone
the object is. Both sensors are also sensitive to the angle of an object surface relative to the sensor and the
reflective properties of the surface (absorption and dispersion).

Occupancy grid maps resolve such problems by generating probabilistic maps. As the name suggests,
occupancy grid maps are represented by grids, which are usually two-dimensional [69] but may also cover
all three spatial dimensions [70]. The standard occupancy grid mapping algorithm is a version of Bayes
filters, just like any other major mapping algorithm. In particular, Bayes filters are used to calculate the
posterior over the occupancy of each grid cell. Let〈x, y〉 be the coordinates of a grid cell andmx,y its
occupancy. Occupancy is a binary variable: Either the cell is occupied or it is free. The problem, thus,
is to calculate a posterior over a set of binary variables, each of which is a single numerical probability
p(mx,y | zt, xt). Again, Bayes filters provide the framework for calculating these posteriors.
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The binary Bayes filter is often written usingodds. The oddsof an eventx with probability p(x) is
defined as p(x)

1−p(x) . In odds notation, the binary Bayes filter for a static maps and with known posesst works
as follows:

p(mx,y | zt, st)
1− p(mx,y | zt, st)

=
p(mx,y | zt, st)

1− p(mx,y | zt, st)
1− p(mx,y)
p(mx,y)

p(mx,y | zt−1, st−1)
1− p(mx,y | zt−1, st−1)

(17)

The basic update equation is often implemented in logarithmic form, which is computational advantageous
(additions are faster than multiplications) and also avoids numerical instabilities that arise when probabilities
are close to zero:

log
p(mx,y | zt, st)

1− p(mx,y | zt, st)

= log
p(mx,y | zt, st)

1− p(mx,y | zt, st)
+ log

1− p(mx,y)
p(mx,y)

+ log
p(mx,y | zt−1, st−1)

1− p(mx,y | zt−1, st−1)
(18)

It is easy to see that the desired probability of occupancy,p(mx,y | zt, st), can be recovered from the log-
odds representation. Moreover, we notice that the occupancy grid mapping algorithm is recursive, allowing
for incrementally updating the individual grid cells as new sensor data arrives. Finally, occupancy grid maps
require two probability densities,p(mx,y | zt, st) andp(mx,y). The latter probabilityp(mx,y) is theprior
for occupancy which, if set to 0.5, makes an entire term disappear in Equation (17).

The remaining probabilityp(mx,y | zt, st), is called aninverse sensor model. It specifies the probability
that a grid cellmx,y is occupied based on a single sensor measurementzt taken at locationst. The literature
has devised numerous versions of this probability, for sensors such as sonars, lasers, cameras (mono and
stereo), and infrared sensors [72, 99]. Inverse models for range sensors usually attribute high probability of
occupancy for grid cells that overlap with detected range, and low probability for grid cells in between this
range and the sensor. These functions can be crafted by hand [69] or learned from sensor data [99].

We already encountered examples of occupancy grid maps in Figures 1a and 5. The maps shown there
were built using sonar sensors. Figure 9 gives another example, constructed from laser range finders. In
this example, the pose informationst was obtained using the hybrid mapping algorithm described in the
previous section. The resulting occupancy grid map exhibits a great level of accuracy when compared with
a CAD map of the building, shown on the right.

The occupancy grid mapping algorithm enjoys the reputation of being extremely robust and easy to
implement, which has contributed to its popularity. Its major shortcoming is the lack of a method for
accommodating pose uncertainty. A second deficiency is inherited from the Bayes filter, which assumes
independent noise. When sensor noise is strongly correlated, the resulting maps can be erroneous. This is
particularly the case when sonar measurements are integrated while the robot stands still. Most implemen-
tations remedy this problem by simply discarding all sensor measurements, unless the robot is in motion. A
final, more subtle deficiency stems from the independence assumption between multiple grid cells. Such an
assumption, while convenient, can lead to inferior maps. See [96] for more details.

9 Object Maps

Another family of mapping algorithms described in this paper addresses the problem of building maps
composed of basic geometric shapes or objects, such as lines, walls, and so on. In mobile robotics, the idea
of representing maps by simple geometric shapes can be traced back to a paper by Chatila and Laumond [15],
who proposed to represent 2D maps by collection of lines rather than grids. However, they did not provide a
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Figure 10: (a) Polygonal model generated from raw data, not using any geometric shape information. (b) Texture superimposed
onto this model.

practical algorithmic solution. Since then, researchers have devised a few practical algorithms that can use
object information in the process of mapping, such as [6, 58, 61].

There are four basic advantages of object maps over grid maps: First, object maps can be more compact
than occupancy grid maps, especially if the environment is structured. Second, they can also be more
accurate, assuming that the basic objects in the approach are adequate to describe the actual objects found
in the environment at hand. Third, object representations appear to be necessary for describing dynamic
environments where objects might change their location over time. And fourth, object maps are often closer
to people’s perception of environments than grid maps, thereby facilitating the interaction between humans
and robots. However, object maps also suffer a major disadvantage. In particular, they are usually confined
to environments that can be expressed through simple geometric shapes and objects. Real environments
are complex, and any list of shapes and objects will typically be incomplete. One way to overcome this
limitation is to allow for hybrid maps, which represent some parts of the environment via objects and others
using grid map-style representations. Another is to broaden the notion of objects, and learn models of object
concurrently to learning the map.

A good example of learning with parametric object models is described in [58, 61]. The specific prob-
lem addressed in both of these papers is that of constructing three-dimensional maps. The data used for the
mapping task is collected by the robot equipped with two 2D laser range finders. One of those 2D sensors
is pointed forward to accomplish localization during mapping. A second sensor is pointed upward perpen-
dicular to the robot’s motion direction, enabling the robot to scan the 3D structure of the environment as
it moves about the environment. Figure 10 shows a slightly pre-processed raw data set of a 3D structure,
represented by small polygons that connect adjacent range measurements. This structure was constructed
with the help of the hybrid 2D mapping algorithm described in Section 7, to obtain accurate localization.
The surface structure in Figure 10 is extremely rugged, reflecting the noise in the sensor measurements.
One might be tempted to apply occupancy grid-style techniques for reducing the noise, as in [70]. However,
in this specific data set each feature in the environment is sensed at most once, whereas techniques like
occupancy grids require that a grid cell can be measured many times, so that information can be integrated
using Bayes filters.

The object mapping approach in [58, 61] remedies this problem by assuming that parts of the environ-
ment consists of large flat surfaces—which is the one and only type of object that is accommodated in this
approach. This assumption is certainly valid for corridor-like environment with flat walls and ceilings. The
technical problem, thus, is how to determine the number, sizes, and locations of these surfaces.

Interestingly enough, this problem can be solved with a variant of the expectation maximization algo-
rithm that we already encountered above. EM generates a sequence of object maps that explain the data
with increasing accuracym[0],m[1],m[2], . . .. Above, the EM algorithm was used to generate maps, where
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(a) Polygonal models generated from raw data

(b) Low-complexity multi-surface model

Figure 11: 3D Model generated (a) from raw sensor data, and (b) using our algorithm, in which 94.6% of all measurements are
explained by 7 surfaces. Notice that the model in (b) is much smoother and appears to be more accurate.

the latent variables were robot poses. Here, the poses are known. Instead, the latent variables are corre-
spondence variables that specify which of the measurements were caused by which of the flat surfaces—or
whether a measurement was caused by a surface at all. For simplicity, let us assume that each measurement
zt is a single range measurement which, by virtue of knowing the robot’s posest, can be mapped into 3D
coordinates using the standard geometric laws. Let us assume the world containsJ flat surfaces, called
m1,m2, . . . ,mJ . For now, let us assumeJ is given, although the work in [58, 61] provides techniques for
estimatingJ along the way (see below). The correspondence variables will be written asctj andct∗, where
ctj is 1 if and only if a measurementzt was caused by surfacej, andct∗ is 1 if and only if this measurement
was not caused by any of the surfaces. The set of all correspondence variables at timetwill be denoted byct,
and the correspondences leading up to timet by ct. Clearly, these variables are not observable. However, it
turns out that calculating expectations for these correspondence variables for any given mapm is relatively
straightforward, as is generating a new improved map under knowledge of these expectations. Thus, the
problem lends itself nicely to the EM algorithm.

Applied to this mapping problem, the EM algorithm generates a sequence of maps by maximizing the
following expected log likelihood function:

m[i+1] = argmax
m

Ect [log p(zt, ct | m, st) | m[i], zt] (19)

Notice the similarity to Equation (13). In both cases, EM maximizes a log-likelihood function over the
datazt and some hidden variables. In both cases, the hidden variables are integrated out by calculating
the expectation over them. However, in the present mapping problem the posesst are known. Instead, the
correspondencesct are not.

Under the familiar conditional independence assumptions and further mild assumptions on the nature of
sensor noise, this expression unfolds to the following one:

m[i+1] = argmin
m

∑
t

∑
j

p(ctj | m[i], zt, st) dist(zt,mj) (20)
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Here “dist” is the Euclidean distance function, which is obtained by taking the logarithm of a Gaussian noise
model. EM maximizes Equation (20) in two steps: The E-step calculates the expectation of the correspon-
dence variablesp(cij | m[i], zt, st) andp(ci∗ | m[i], zt, st) for a fixed, given mapm[i]. Put differently, the
E-step calculates the probability that a measurementzt was caused by any of the surfaces in the present
model. The M-step generates a new mapm[i+1] by maximizing the data log likelihood under these fixed
expectations. Both steps are mathematically straightforward and can be implemented in closed form [58].
The result, as stated above, is a sequence of maps that successively maximizes the expected log likelihood
of the data or, put differently, generates maps that are increasingly accurate.

The basic algorithm in [58] contains two additional ideas. First, while the EM map itself consists exclu-
sively of flat surfaces, the underlying mathematical framework allows for the possibility that measurements
are not caused by such surfaces. This makes it possible to include such ‘unexplained’ measurements into
the final map, effectively devising a hybrid approach that integrates flat surfaces with raw polygonal models.
This property is important when applying any object-based mapping algorithm in practice.

Second, the EM algorithm provides no answer as to how many surfaces are contained in the world.
This is not a trivial question, as it is unclear how small a surface we are willing to accept. The approach
in [58] solves this through a Bayesian model selection algorithm, which varies the number of surfacesJ in
the model concurrently while running EM. The specific approach realizes a Bayesian prior that effectively
requires the presence a certain number of measurements in a certain spatial density to warrant the creation
of a surface. The algorithm itself is stochastic, seed-starting surfaces at random locations and terminating
others whose posterior probabilities, after running EM for a few iterations, do not warrant their existence
under the Bayesian prior. The resulting algorithm is a strict maximum likelihood algorithm that generates
a single map, which combines large flat surfaces and many small polygons. In a recent paper, the approach
was extended as an online algorithm [61].

Figure 11 compares example views, generated without (top row) and with (bottom row) EM and the flat
surface model. The object model is 20 times as compact as the original one. In fact, 95% of all original
measurements are easily explained byJ = 7 flat surfaces. It is also visually much more accurate, due to the
fact that the texture is mapped onto a flat surface, instead of a rugged surface like the one shown in Figure 10.
The online algorithm described in [61] requires less than two minutes to construct maps of comparable sizes.
Clearly, these results are encouraging, though they only hold in cases where the basic geometric object
templates describe significant portions of the environment. The remaining challenge is to find richer models
that can describe more complex environments than the relatively simple corridor environment.

10 Mapping Dynamic Environments

Physical environments change over time. As noted in Section 3, the vast majority of published algorithm
make a static world assumption, hence are principally unable to cope with dynamic environments. Some
of these algorithms, however, can be modified to cope withcertain types of changes. For example, the
Kalman filter approach is easily adapted to one in which landmarks move slowly over time, on trajectories
that resemble—for example—Brownian motion. Technically, this is achieved by adding a Gaussian motion
variable into the landmark’s location. The effect is an increase in the location uncertainty of each landmark
over time, which subsequently may be counteracted by sensing. Such algorithms are popular in the target
tracking literature [4, 68, 85]. Similarly, occupancy grid maps may accommodate certain types of motions,
by decaying occupancy over time as discussed in [106]. Extensions of occupancy grids exist that can detect
frequently-changing locations such as doors [83] and, once detected, quickly estimate their present status
during everyday navigation [2]. Nevertheless, the issue of robotic mapping dynamic environments remains
poorly explored, and the approaches outlined above cover only a narrow set of cases.
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Figure 12: (a) Nine occupancy grid maps maps of a changing indoor environment recorded at different points in time. (b) Map,
generated by the standard occupancy grid mapping algorithm with static world assumption. (c) Four different objects identified by
the Dogma algorithm in seven iterations of EM.

A final algorithm discussed in this paper addresses environment change at its very core. The assumption
here is that the environment possesses objects whose locations are static in the short run, but which change
over longer periods in time. The static world assumption, thus, may be sufficient to develop snapshots at
individual points in time, but it is insufficient to capture the changes that might occur. A motivating example
of such a situation is our typical office environment, where the location of furniture and other larger items
(e.g., boxes) may frequently change over time.

Biswas and colleagues [6] recently proposed an algorithm calledDogma, short fordynamic occupancy
grid mapping algorithm. As the name suggest, the algorithm is based on the occupancy grid mapping
algorithm described in Section 8. On top of that, Dogma learns models of dynamic objects, represented by
local, object-specific occupancy grid maps. For example, Dogma may learn the characteristic shape of a
chair as represented in occupancy grid maps, and use this as a model of a new object. As the environment is
inspected, the algorithm assumes that this object may have moved, and as a result the global occupancy grid
map may have changed.

The key challenge for learning models of objects is again a correspondence problem. Figure 12a illus-
trates this problem. Shown there are nine conventional occupancy grid maps, acquired in the same environ-
ment but at different points in time. Clearly, some of the objects move, and not all of the objects are present
in all maps. To learn models of the moving objects, the robot has to establish correspondence between the
individual footprints found in the occupancy grid maps.

It should come at little surprise that Dogma’s method for solving this problem is a variant of the EM al-
gorithm. Similar to the multi-planar object modeling technique, the Dogma algorithm constructs a sequence
of object models, denotedθ[0], θ[1], θ[2], . . .. Each such modelθ[i] is a collection of local occupancy grid
maps, each describing individual objects in the environment. From the locally built occupancy grid maps
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mt, Dogma extracts local object footprints using standard image differencing techniques known from the
computer vision literature [109]. The correspondence variablesct associate sets of object footprints with
sets of objects in the modelθ. This is again done via maximizing an expected log-likelihood function of the
form:

θ[i+1] = argmax
θ

Ect [log p(mt, ct | θ) | θ[i],mt] (21)

The exact optimization is subject to amutual exclusivity constraint[23, 75], which specifies that the same
object cannot be seen twice in the same map. This constraint is important—as otherwise there may be a
tendency to map multiple similar-looking objects to the same object in the modelθ. The mutual exclusivity
constraint is easily incorporated into the E-step of the EM estimation.

A typical trace of Dogma’s EM is shown in Figure 12c, starting with a random set of object models on
the top, and a final set at the bottom. The number of objects is obtained using a Bayesian model selection
criterion similar to the one applied for learning multi-planar maps. Once such an object model is learned,
dynamic objects can quickly be identified and their locations updated.

The Dogma algorithm is among the first to address dynamic environments. The idea of learning object
models is particularly appealing in environments that chance, since local object characteristics are inde-
pendent of the location of a particular object. However, Dogma is far from being a general solution to
this important problem. In particular, this algorithm is unable to accommodate fast-moving objects such as
people, it is limited to objects that can easily be segmented in a pre-processing step, and it cannot handle
non-contiguous objects or objects that may change shape. Further research is warranted on more powerful
algorithms that can cope with a wider variety of dynamic environments.

11 Summary and Open Problems

The goal of this paper was to survey major algorithms in the field of robotic mapping. The major paradigms
surveyed here included Kalman filter techniques, approaches based on Dempster’s expectation maximization
algorithm, occupancy grid techniques, and techniques for learning object models. Emphasis was placed on
relating these techniques to each other, to point out their relative strengths and weaknesses.

We believe that the algorithms described in this article are representative examples of the state of the
art in robotic mapping, specifically in the area of indoor navigation. It is quite remarkable that virtually
all state-of-the-art algorithms in robotic mapping share the same mathematical foundation: They are all
probabilistic. Moreover, they are all versions of Bayes filters and an underlying generative probabilistic
description of robot motion and perception. This development parallels a much broader trend in mobile
robotics, where probabilistic techniques are commonly the method of choice over more ad hoc approaches,
such as behavior-based techniques [95].

Overall, the situation in robot mapping is encouraging. After approximately two decades of research,
the field has matured to a point where detailed maps of complex environments can be built in real-time,
specifically indoors. Many existing techniques are robust to noise and can cope with a large range of
environments. Nevertheless, there still exists a large number of challenging open problems worth many
more decades of research.

In particular, most published methods assume that the world does not change during mapping. Real
environments are dynamic. Despite some initial successes—some of which was discussed in Section 10—
we are still far away from practical algorithms for mapping dynamic environments, and from a theoretical
framework accompanying such methods. Clearly, the issue has to be addressed if robots shall operate in
environments over long periods of time, such as the long-envisioned personal service robots [81, 33, 54, 84].
A viable research goal, thus, would be to develop a lifelong mapping robot, one that is capable of continually
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updating its map (and its object models) over its lifetime. We also need technologies forunderstanding
environment dynamics, rather than just adapting to changes, so that we can anticipate them.

A second shortcoming of current technology arises from the vast amount of knowledge that we, as
people, possess about environments, but that is presently not brought to bear for the mapping problem. The
3D object mapping algorithm exploited one very basic piece of information, namely the frequent occurrence
of large flat surfaces in corridor-type environments. Clearly, we have tremendous knowledge about the
objects that surround us in typical indoor environment, the vegetation objects in outdoor environment, the
objects found on the sea bed, and so on. In many cases, we have additional information about a specific
environment, such as satellite imagery or architectural blueprints. Methods are needed that can make use of
such information during mapping.

From a statistical point of view, the holy grail of mapping is to calculate full posteriors over maps, robot
poses, and object models, under hard problems such as unknown correspondences. While this problem
is hard and effectively unsolved even for static environments, it is even more challenging for dynamic
environments. At present, it is unclear if calculating posteriors is feasible for reasonably complex problems
at all, or if we will have to resort to solutions such as the EM algorithm, which maximize likelihood and are
subjects to local maxima.

This article placed considerably little emphasis on multi-robot collaboration during mapping. Clearly,
many envisioned operational scenarios involved teams of robots [63, 74, 90], and using multiple collabo-
rative robot for building maps is clearly a worthwhile research goal. Existing techniques work well if the
relative starting positions of all robots are known [12, 89], as the existence of multiple robots simply adds a
few dimension to the statistical mapping problem. However, building reasonable maps if the relative initial
position of the robots is unknown is largely an open problem. A complicating factor in multi-robot mapping
is that the overlap of the maps acquired locally by the robots may be unknown. This makes it challenging
to estimate the relative location of the robots as they acquire local map information. Moreover, if robots can
detect each other [35], complex correspondence problems may arise related to the identification of individual
robots.

Another dimension worth exploring is the topic of unstructured environments. Most examples in this
survey focused on indoor environments, which possess a lot of structure. Outdoor, underwater, and planetary
environments also possess some structure, but come in a much larger variety. In the extreme, the environ-
ment may be entirely unstructured, such as piles of rubble that a robot might want to explore after a natural
disaster or a terrorist attack. Many of the techniques described in this paper are inapplicable. Extending
existing mapping techniques to such environments is therefore an important goal of ongoing research.

Finally, none of the approaches reviewed in this article addresses the issue of robot control. The ultimate
goal of robotics is to make robots do the right thing. During map acquisition, this might mean to control
the exploration of the robot(s) acquiring the data. In a broader context, this issue involves the question of
what elements of the environment have to be modeled for successfully enabling a robot to perform its task
therein. While these issues have been addressed for decades in ad hoc ways, little is known about the general
interplay between mapping and control under uncertainty.

In summary, it is difficult to imagine a truly autonomous robot that would not be able to acquire a model
of its environment. This list provides only a sample of important open problems. We hope that this article
documents why we believe that robot mapping will continue to be a highly active and viable research area,
with significant relevance to the goal of building truly autonomous robots.
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