
Towards Robust Teams with Many Agents

Gal A. Kaminka and Michael Bowling

November 2001
CMU-CS-01-159

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Agents in deployed multi-agent systems monitor other agents to coordinate and col-
laborate robustly. However, as the number of agents monitored is scaled up, two key
challenges arise: (i) the number of monitoring hypotheses to be considered can grow
exponentially in the number of agents; and (ii) agents become physically and logically
unconnected (unobservable) to their peers. This paper examines these challenges in
teams of cooperating agents, focusing on a monitoring task that is of particular impor-
tance to robust teamwork: detecting disagreements among team-members. We present
YOYO, a highly scalable disagreement-detection algorithm which guarantees sound
detection in time linear in the number of agents despite the exponential number of hy-
potheses. In addition, we present new upper bounds about the number of agents that
must be monitored in a team to guarantee disagreement detection. Both YOYO and
the new bounds are explored analytically and empirically in thousands of monitoring
problems, scaled to thousands of agents.

Keywords: Artificial Intelligence, Distributed Artificial Intelligence, Coherence
and coordination

1 Introduction

Agents in realistic, complex, multi-agent domains must monitor other agents to accom-
plish their tasks, detect failures, coordinate, and collaborate. Indeed, the importance of
agent monitoring in deployed multi-agent systems has long been recognized in theory
(e.g., [4, 7, 8]), and in practice, ranging from industrial systems (e.g., [12]), to virtual
environments for training and research (e.g., [21, 22]), to human-computer interaction
(e.g., [16]), and multi-agent robotics (e.g., [18, 2]). Agent monitoring infrastructure
is of particular importance in teams of cooperating agents, since the correct execution
of teamwork mandates that team-members come to agree on the task that is jointly
executed by the team, and manage interdependencies among team-members [4, 8].

As the number of agents in the system increases, a monitoring agent cannot mon-
itor all activities of all other agents at all times [12, 7, 8]. Much of previous work has
therefore explored different approaches to reducing monitoring activities to accommo-
date the bandwidth in the target application, by relying on focused communications
[12, 20], using plan-recognition to infer agents’ state based on their observable behav-
ior [10, 16], and monitoring a shared environment [22].

However, key challenges raised by a scale-up in the number of monitored agents
remain largely unaddressed. First, as bandwidth is used more selectively, less infor-
mation is available about monitored agents, and thus there is some uncertainty about
their state. However, in many monitoring tasks (e.g., coordination, teamwork mon-
itoring) the computational complexity of reasoning about multiple agents and their
possible interactions can increase exponentially in the number of agents, even under
limited uncertainty [14]. Second, previous monitoring approaches rely, in general, on
the monitoring agent to be able to communicate or observe all monitored agents. How-
ever, as the number of agents increase, agents become more physically and logically
separated, and thus a monitoring agent may not be able to observe (or communicate
with) the agents it is to monitor. We call this challenge limited connectivity.

This paper addresses these difficulties in the context of a particularly important
monitoring task in robust multi-agent teams—that of detecting disagreements among
teammates. Theoretical and empirical research on teamwork in synthetic agents [4, 12,
8, 20, 15] and in humans, (e.g, [3]) stresses agreement as a cornerstone to effective
teamwork (although the literature differs in the terms used and in grounding agreement
in various theoretical and practical constructs). Thus disagreements are a source of
great concern in all of these different investigations (see Section 2 for details).

We present two sets of contributions. First, we present YOYO, a disagreement-
detection monitoring algorithm, which navigates the (potentially exponential) space
of monitoring hypotheses by representing only hypotheses in which all agents are in
agreement. This allows YOYO to represent the relevant state of all monitored agents
together, in a single highly scalable structure. YOYO is an example of a Socially-
Attentive monitoring algorithm, exploiting knowledge of the social relationships in the
monitored team. It is based on earlier work on visualization [13], but differs from it in
many ways (see Section 6).

A second set of results tackles the challenge of limited connectivity by providing
new bounds on the number of agents that must be monitored in a team to detect dis-
agreements. Previous work has shown analytically that disagreement detection can

1

sometimes be guaranteed if all team-members monitor all of certain key agents in the
team [14]. However, in practice, limited connectivity restricts the the usefulness of
this bound, as often not all key agents can be observed or communicated with. To ad-
dress this, we show analytically that sound and complete detection can be guaranteed in
practice even if all key-agents monitor each other, but other agents just monitor one key
agent. In addition, we show that unfortunately, while some potential for limiting the
number of monitored agents exists in centralized settings, the worst case still requires
monitoring all agents in a team.

These results are motivated by practical concerns raised in our application domains,
as monitoring settings become realistic and the number of agents is scaled up. Using
the techniques presented, a monitoring agent can detect disagreements in large teams,
involving thousands of agents, that are guaranteed to perform specific monitoring tasks
under conditions of limited connectivity. In addition to the analytic results, we present
an empirical evaluation in thousands of monitoring problems, scaled to thousands of
agents.

This paper is organized as follows. Section 2 presents motivating examples and
background. Section 3 presents an overview of the monitoring task. Section 4 presents
the YOYO algorithm. Section 5 presents new bounds on the number of agents that
must be monitored. Section 6 addresses related work, and Section 7 concludes.

2 Motivation and Background

Teamwork literature, addressing human and synthetic teams, has often emphasized the
importance of team-members being in agreement on various features of their state,
such as goals, plans, and beliefs1. Teamwork theory often defines agreement as a state
of mutual belief, where agents reason to infinite recursion about their beliefs and their
beliefs in others’ beliefs in a proposition. For instance, SharedPlans theory requires
team-members to mutually believe in a shared recipe [8] during the planning and exe-
cution phases of the task; the Joint Intentions framework emphasizes mutual belief in
the team goals’ selection, as well as in team-members’ beliefs about the goals’ achiev-
ability and relevance [4, 15]. Other investigations of agent teams have emphasized
agreement on team plans to be jointly executed by team-members [12], on hierarchi-
cal team operators [20], on tasks to be executed collectively [18], etc. Investigations
of human teamwork have not only emphasized agreement on the joint task, but also
agreement on features of the environment that are important to the task being carried
out by the team [3].

However, the literature also recognizes that achieving and maintaining agreement
can be difficult. Teamwork theory recognizes that attainment of agreement by mu-
tual belief is undecidable [9] and must therefore be approximated in practice. Such
approximations frequently involve assumptions of trustworthiness of team-members,
of foolproof communications [12], of team-members being able to observe each other
[10], and/or of a mutually-visible environment. As is often the case with approxi-
mations, they sometimes fail in practice (e.g., due to communications failures), and

1Of course, the literature also addresses other critical features of teamwork aside from agreement. But
agreement is a repeating theme in recent work.

2

therefore team-members may find themselves in disagreement with each other. Such
disagreements are often catastrophic, due to the unique importance of agreement in
collaboration.

It is therefore critical that teams are monitored to detect such disagreements. A
monitoring agent that identifies the state of team-members can compare the state of
different team-members and detect differences on state features that, by design or by
selection, should have been agreed upon [14]. However, as the number of monitored
agents is scaled up, two challenges arise: (i) monitoring algorithm complexity due to
uncertainty about the state of agents; and (ii) difficulty to observe or communicate with
all agents (limited connectivity). We have come to realize the need to address these
challenges while working on developing robust multi-agent teams in two dynamic,
complex, domains: ModSAF, a commercially-developed, high-fidelity virtual environ-
ment, where we have been involved in the development of synthetic helicopter pilot
agents that carry out a variety of missions [21]); and RoboCup soccer simulation, a
dynamic research-oriented simulation which requires real-time teamwork and coordi-
nation, where we have been involved in the development of both soccer-playing agents
and a coach agent [22].

Monitoring Algorithm Complexity As discussed above, agents cannot continu-
ously communicate with a monitoring agent about their state. Thus in general, the
monitoring agent has uncertainty about the state of monitored agents, i.e., the the mon-
itoring agent entertains multiple hypotheses as to the state of each individual agent. To
detect disagreements, the monitoring agent must compare the state of one agent to the
state of another. Since there may be multiple hypotheses as to the state of each of the
agents, the monitor must select possible combinations of the hypotheses of different
agents, to serve as the basis for the decision on whether a disagreement has occurred.
However, the number of combinations of individual hypotheses can grow exponen-
tially in the number of agents. Thus it would seem that we would need to go through
an exponential number of hypotheses just to pick those that are useful for monitoring
purposes. Consider an example, borrowed from [14]:

Example 1. In the ModSAF domain, three helicopters are executing the WAIT-FOR-
SCOUT plan, in which one of them (role: scout) is flying towards the enemy while
its two teammates (role: attackers), have landed. Once the scout identifies the enemy,
it radios back to the attackers, causing all three agents to switch to the JOIN-SCOUT

plan, in which the scout lands, while the attackers fly forward to join it. Due to a ra-
dio equipment malfunction, one attacker failed to receive the message from the scout,
causing it to continue waiting. Thus a state of disagreement occurs among the agents.
Suppose this attacker is monitoring its teammates by observing their actions and in-
ferring their currently executing plans: The scout has landed, and so may have started
the JOIN-SCOUT plan, or may be responding to a command to land immediately (the
HALT-ORDER plan). The other attacker, flying towards the scout, may be executing its
role in the JOIN-SCOUT plan, or a completely different plan (the FLY plan). Although
there are only two hypotheses for each individual monitored agent, there are four hy-
potheses as to the overall state of the team (Table 1), and as the size of the team grows,
the number of hypotheses increases exponentially.

3

Monitoring Attacker Other Attacker Scout
WAIT-FOR-SCOUT FLY JOIN-SCOUT

WAIT-FOR-SCOUT FLY HALT-ORDER

WAIT-FOR-SCOUT JOIN-SCOUT JOIN-SCOUT

WAIT-FOR-SCOUT JOIN-SCOUT HALT-ORDER

Table 1: Hypotheses for state of team in Example 1.

Limited Connectivity As the number of agents grows, agents become more log-
ically and physically distributed, and cannot maintain continuous contact with each
other. We use the term limited connectivity in a general sense, to denote both limited
ability to observe a particular agent’s actions (e.g., because of occlusion or physical dis-
tribution), and limited communications (e.g., due to interference, range, or reliability
issues). Consider the following example:

Example 2. In the RoboCup domain, the 11 soccer-playing agents switch between two
high-level game plans, triggered by referee messages. The INTERRUPT plan is called in
the beginning of the game, at half-time, etc., and requires players to place themselves in
pre-determined home positions, standing still. The PLAY plan requires players to play
soccer freely. Due to failures on the agents perception skills, some players sometimes
fail to hear the referee, and so fail to switch plans. They are then in disagreement with
their peers who did hear the referee. Under perfect connectivity, players would be able
to communicate with their teammates, or see their teammates standing still, and thus
detect disagreements. However, players have communication range and bandwidth
limitations, and have a limited field of view. They can therefore not normally see or
communicate with all their teammates. They therefore face difficulties in detecting
disagreements.

Our own previous work [14] has shown that sometimes only certain key agents
must be monitored to guarantee detection. And yet, every agent must monitor all of
these key agents. Furthermore, in a worst case, all agents are key agents, and therefore
would seem to require full connectivity. Indeed, this is the case in Example 2.

3 Disagreement Detection

Disagreement detection involves a key step of representing the state of monitored
agents, such that the state of different agents can be compared to detect disagreements.
This section briefly describes a general representation of monitored agents’ states, and
a basic inference algorithm which uses the representation for observation-based and
communication-based monitoring. The representation, inference algorithm, and their
use for disagreement detection have been discussed in detail in [14].

3.1 Representation and Inference

Much of contemporary theoretical and empirical work on teamwork (collaboration),
both in synthetic agents and in humans, has emphasized agreement on a hierarchical

4

ISIS’97

Midfielders Defenders Forwards Goalies

Interrupt Play

winGame

AttackDefend Midfield

Careful−Defense Simple−Advance Flank−Attack

Score−Goal Kick−Out

(a) (b)

Figure 1: Plan-hierarchy (a) and team-hierarchy (b) in the RoboCup domain. Boxed
plans denote team-plans, which must be agreed-upon by team-members.

recipe, or plan, as a key to effective teamwork, (see, for instance, [12, 8, 20]). Given this
emphasis, we focus on a monitoring representation that follows two key constraints:
(i) representing agents in terms of their currently executing plans (and plan-steps); (ii)
allowing the designer, or monitoring agent to mark plans that have to be agreed upon, so
that they are executed jointly (together) by all members of a team (or subteam). These
two constraints give rise to two structures that are used by the monitoring system: A
plan-decomposition hierarchy, and a team organization hierarchy. These have been
fully described in [23, 13], and so we only provide a brief overview here.

A plan-hierarchy is used to represent a monitored agent’s plan. It is defined to be a
directed connected graph, where vertices are plan steps, and edges signify hierarchical
decomposition of a plan into sub-plans. Each vertex has at most one parent (i.e., one
incoming hierarchical decomposition edge); a plan that conceptually has many parents
(i.e., it is a component in the decomposition of different parent plans) is represented
by different vertices in the plan-hierarchy. Multiple outgoing edges signify alternatives
available to the agent, of the first subplan to be executed. The graph forms a tree along
hierarchical decomposition edges, so that no plan can have itself as a descendent. A
vertex with no children edges denotes an atomic step.

For example, Figure 1-a presents a portion of the plan-hierarchy used to monitor the
ISIS’97 RoboCup Simulation team [22]. The top-level plan, WINGAME, is selected
by all players as soon as they join a game. It has one first child, the INTERRUPT plan,
which is assumed to be selected by the agent whenever the game is interrupted by
the referee. WINGAME’s other child, PLAY, follows INTERRUPT in order of execution,
and is selected when the game is currently playing. Thus INTERRUPT and PLAY follow
each other to the end of the game. In service of PLAY, players choose a plan (ATTACK,
DEFEND, etc.) based on their role in the team: forwards, defenders, etc. (discussed
later). This decomposition continues. For instance, at a particular given moment, a
forward may be monitored to be engaged in executing the following path (from root to
leave): WINGAME — PLAY — ATTACK — SIMPLE-ADVANCE — SCORE-GOAL.

To make use of the representation, a monitoring agent must have a way of associ-
ating information it senses about another agent with paths in a plan-hierarchy used to
represent the monitored agent’s state. An algorithm for doing this, called RESL, has
been previously described in [14] and is presented here briefly: The designer of the

5

monitoring system associates with each plan a set of observables, condition monitors
that tie in sensor readings and received communications with particular plans in the hi-
erarchy. When a condition monitor matches the sensor reading (e.g., when a message
is received that is consistent with the plan in action, or when an action associated with
a plan is observed), we tag the plan matching. If its observables fail to match, the plan
is tagged not-matching. RESL infers the state of unobservable plans from their chil-
dren and parents: An otherwise untagged parent with at least one successfully-matched
child is tagged successfully-matching, otherwise it is tagged as failing to match. And
an untagged child with a successfully-tagged parent is tagged successfully-matching,
unless all of its own children are tagged as failing to match. In this way, all plans in the
hierarchy are tagged as matching or not-matching the observations. Multiple matching
siblings denote multiple hypotheses. The process is linear-time in the size of the plan
hierarchy.

To monitor multiple agents using the above representation, we construct a separate
plan-hierarchy for each monitored agent. When a specific agent is observed, its state is
updated in the hierarchy which represents it. This method has been successfully used
in monitoring agents deployed in ModSAF [21], RoboCup [22], the civilian evacuation
simulation, and enterprise scheduling [23]. In general, it can be useful in monitoring
agents whose behavior is controlled by a hierarchical process, e.g., hierarchical behav-
iors [2], Soar [17], or HAC [1]. Its generality is derived from its use in monitoring
rather than execution and control. It avoids any details which determine how the actual
decisions of agents are made (e.g., in preferring one decomposition over another) since
it is only used to organize and keep track of their decisions after the fact.

3.2 Detecting Disagreements

In order to detect disagreements, the monitoring agent must first know which plans are
ideally to be agreed upon. Plans in the hierarchy must be marked as team plans [12, 20].
We assume that team plans are marked by the designer, or by the monitoring agent,
for instance based on executable teamwork models such as STEAM [20] or GRATE*
[12]). Different subteams can execute different team plans. In our experiments, team
plans were known since the monitored agents had actually used STEAM, and therefore
used team plans explicitly. In Figure 1-a, team plans are boxed: WINGAME, PLAY,
and INTERRUPT are to be executed by the all members of the RoboCup team ISIS’97.
MIDFIELD, DEFEND, etc. are to be executed jointly only by members of the corre-
sponding subteams of ISIS’97 (midfielders, defenders, etc.).

The monitoring agent, after hypothesizing the state of agents as previously dis-
cussed, matches team plans across members of teams—if agents are in agreement about
their selected team plans, then all is well. If agents are not in agreement about their
team plans, then a disagreement is announced. Note that agents do not have to be in
agreement about all plans—only about those plans that are marked as team plans. Fur-
thermore, the plan-hierarchies used for different agents may themselves be different
(other than in the team plans), facilitating monitoring of behaviorally-heterogeneous
agents.

As previously discussed there can be in general multiple hypotheses for each indi-
vidual, and an exponential number of hypotheses for the team as a whole. To evaluate

6

hypotheses, previous work has formally defined the coherence of a multi-agent hy-
pothesis as the ratio of the number of agents to the number of different selected team
plans [14]. Intuitively, coherence is a measure of the Agreement in a team. For ex-
ample, the hypotheses in Table 1, Rows 1, 2, & 4 have coherence level of 1. The
maximally-coherent hypothesis (Row 3) has coherence level 1.5 (3/2), since unlike the
other hypotheses, it has at least two agents in agreement. Optimal coherence has all

�
agents in agreement, and has value

�
.

It was shown that as long as the monitoring process is complete (see formal defini-
tion in Section 5), the agent is guaranteed that its detection results are going to be sound,
by selecting maximally-coherent hypotheses: Any detection is going to be of a real
failure [14, Theorem 1], but not all failures are guaranteed to be detected. Soundness
is very important to a monitoring system, since it prevents false alarms which would
otherwise task the agent needlessly. However, a difficulty emerges in applying this
result in monitoring an increasing number of agents. While only a single maximally-
coherent hypothesis is needed, the process of finding such an hypothesis potentially
still requires going through all exponential number of hypotheses to rank them based
on coherence. Formally, the space required for monitoring multiple agents using an
array of plan-hierarchies (as described above and in previous work) is ��� ����� , where�

is the number of agents, and
�

is the size of the plan-hierarchy. However, sorting
through the hypotheses can take ��� �	�
� , as previously demonstrated (Example 1).

4 Scaling Up Monitoring

To address the challenges raised by the time and space complexity of previously known
techniques, we present YOYO, an algorithm that utilizes knowledge about the team or-
ganization to carry out disagreement detection in linear time. The intuition behind
YOYO is to represent only coherent hypotheses (of which there is a linear, not expo-
nential, number), and then recognize disagreements as cases where the representation
fails. YOYO is based upon earlier work on the YOYO* visualization algorithm [13],
but differs from it in several important ways (discussed in depth in Section 6).

The key idea in YOYO is to represent all agents together, in a single shared plan
hierarchy. The shared plan-hierarchy is fully expanded to contain the plans and transi-
tions for all subteams, annotated so that YOYO can determine which subteam is to take
which transitions, execute which plans, etc. A plan � in this hierarchy, when tagged as
successfully matching, represents the hypothesis that all agents in the team associated
with � are executing � . Observations about agents are then matched against the shared
plan-hierarchy. Intuitively, the process of detection proceeds as follows: If some team
members are executing � , while others are executing a different plan � , and assuming
the observations allow us to differentiate �	�� then both will be marked matching and
not-matching at the same time, and we will know that a disagreement has occurred.

However, members of different subteams execute different plans by design. There-
fore, YOYO needs to differentiate cases where members of the same team have se-
lected different plans �	�� , and cases where members of different teams have selected
�	�� . To do this, YOYO exploits knowledge of the social structure within the moni-
toring system, in the form of a designer-specified team-hierarchy, a tree-like structure

7

which encodes knowledge about the relationships between teams, subteams, and team-
members: Each node in the team-hierarchy corresponds to a monitored organizational
unit. The top (root) team represents the entire monitored team. These teams are then
split into several subteams, etc., until the leaves of the hierarchy contain roles of in-
dividual agents, if such different roles exist. For instance, Figure 1-b presents the
team-hierarchy of the ISIS’97 RoboCup team [22], composed of a root node for the
entire team, and four nodes for its four subteams.

The team-hierarchy contains pointers from each node to plan nodes in the shared
plan-hierarchy. The plans pointed to are the hypothesized coherent plans of the moni-
tored team, and thus multiple pointers are allowed from a single team-hierarchy node.
The pointers in the team-hierarchy point at the lowest-level plans that are consistent
with the observations, and are to be executed by the team in question. For example,
suppose all RoboCup players are executing the PLAY plan together, and that members
of each subteam are in agreement with their teammates on the plan chosen for the sub-
team. A player that observes its teammates using the team- and plan-hierarchies in
Figure 1 will have pointers from the ISIS’97 node in the team hierarchy (Figure 1-b)
to the PLAY plan in the plan-hierarchy (Figure 1-a). Each of the subteam nodes in the
team-hierarchy will have pointers to plans in the plan-hierarchy which are executed by
the different subteams. For instance, the Forwards subteam may have a pointer to the
SIMPLE-ADVANCE plan, signifying the all members of the subteam are executing this
plan.

YOYO (Algorithm 1) maintains the pointers such that the hypotheses they represent
are coherent with each other at all times. If it fails, then this means that the team’s state
is unambiguously incoherent, i.e., a disagreement exists. YOYO operates as follows:
When an observation is made about an agent (called the focus), we not only update the
pointers for this agent, but also re-align the pointers of its parent (sub)teams, such that
their own pointers point at plans that are coherent with the new hypothesized state of
the focus. We then go up and down the team-hierarchy to re-align the pointers of the
other agents which are either part of the focus’ subteam or its siblings’ subteam. This is
done by moving the pointers of non-focus agents (and the subteams of which they are
members) such that they point at a plan that is coherent with the plans hypothesized for
the focus. If the initial set of pointers for any non-focus agent is already coherent, no
re-alignment is necessary. If no plan can be found for them, or if all plans for a team are
tagged both matching and not-matching at the same time, then a state of disagreement
has been detected.

For example, suppose that the players are known to be executing the INTERRUPT

plan (Figure 1). Suppose now that a defender observes a forward player running to-
wards the opponent goal (i.e., executing the ATTACK plan, in service of PLAY). The de-
fender tags Interrupt as matching, and Play as not matching (based on its own selected
plans). However, YOYO (executed by the monitoring defender) will create pointers for
observed attacker to point to the ATTACK plan (lines 1–8), and will tag as not-matching
other plans, in particular INTERRUPT. It will then enter the loop on line 9. For the AT-
TACK plan, it will propagate its successful tag up to the PLAY plan (line 12), and the
create a pointer from the root node in the team hierarchy, representing the ISIS’97 team
(the root in Figure 1-b) to PLAY, since the team that executes PLAY is the ISIS’97 team
(the parent of the the Forwards subteam). It will then climb up in both hierarchies (lines

8

Algorithm 1 YOYO(plan hierarchy
�

, team-hierarchy �)
1: for all observations ��� at time � do
2: for all plans � that have conditionals testing ��� do
3: let ��� be the agent observed in ���
4: if � matches ��� and � executable by ��� then
5: tag � as successfully matching
6: create pointer from ��� node (in) to �
7: else
8: tag � as not matching
9: for all plans � tagged matching or not matching do

10:
��������������� , ����
11: while ������� �!�"�#�$�&%' �)(+*,* do
12: propagate any tags to ���-�.� �)�"�/�$� (match or not match)
13: if �������0� ������� �!�"�#�$�1� ' ������� �!�12/354�67�,
�� then
14: propgate tags down to untagged plans
15: create pointer from �+�����8�)� 2#394�6 �,
�� to ���-�.� �)�"�/�$�
16:
��:���-�.� �)� 2#394�6 �,
��
17: �;�:�+�����8�)�"�/�$�
18: for all teams
 in 	 do
19: if
 only points to plans matching and not matching then
20: a disagreement has occurred.

16 and 17) and begin another iteration. Later on, the same process will be repeated for
the INTERRUPT plan. Since both INTERRUPT and PLAY are pointed to from the node
representing the team ISIS’97, a disagreement will be detected.

YOYO requires a slightly modified inference procedure than previously described
(Section 3). First, in following children transitions, YOYO is careful to only take
paths legal to the team in question (i.e., plans and transitions that the team is allowed
to execute in its role): It thus makes the assumption that transitions in the plan hi-
erarchy are marked for the subteams that are allowed to take them. Second, YOYO
must use a time-stamp to tag plans, so that observations that arrive simultaneously (but
processed serially) will cause a detection of disagreements (if one exists), instead of
overwriting the effects of each other. Per the example above, if the monitoring de-
fender observes another forward to be executing INTERRUPT, while the first forward
is executing PLAY, then the inference process for the two observations would tag these
plans as both matching and not-matching at the same time, and a disagreement would
be detected.

Evaluation YOYO’s first part matches plans against all observations (lines 1–8), and
thus takes ��� ����� , where

�
is the number of agents (observations), and

�
the size

of the plan-hierarchy. The nested loops potentially traverse the entire plan-hierarchy
��� ��� for each team. Since the team-hierarchy grows with

�
, we use that to denote its

size; a traversal of the team-hierarchy is ��� � � . The propagation down in line 14 may
still traverse the entire ��� � � plan-hierarchy (in a theoretical worst case). The process
thus takes ��� ���=< �

. Finally, the disagreement detection goes from every team in the
team-hierarchy to every plan (in the worst case), thus ��� � � � again. Overall, YOYO’s
complexity is ��� ���=< �

. The key to this complexity is that YOYO only maintains co-
herent hypotheses. If it cannot, then a disagreement has occurred—but YOYO does

9

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 C
PU

 S
ec

on
ds

 p
er

 D
et

ec
tio

n

Number of Agents

RESL ModSAF
RESL ModSAF Simple

RESL RoboCup
RESL RoboCup Simple

(a) RESL

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000

YOYO ModSAF
YOYO ModSAF Simple

YOYO RoboCup
YOYO RoboCup Simple

(b) YOYO

Figure 2: Comparing YOYO to RESL. The X axis marks the number of agents mon-
itored; the Y axis denotes computation time in CPU seconds. Note (a) and (b) have
different ranges on the Y axis.

not represent the underlying incoherent hypothesis. This time complexity should be
contrasted with RESL’s

���������
. YOYO’s space complexity also compares well with

RESL: With each additional agent, YOYO’s space requirements grow by one node
which represents the agent in 	 . In contrast, RESL uses an additional copy of the
entire plan hierarchy for every additional agent.

To provide empirical evaluation, the run-time performance of RESL and YOYO
was compared as the number of monitored agents is scaled up. Trials were carried
out in 4 different domains: ModSAF, RoboCup (both previously described), ModSAF-
simple (uses smaller plan-hierarchy than ModSAF), and RoboCup-simple. RoboCup-
simple involved no uncertainty in monitoring: It is not intended to be realistic, but
allows exploration of the performance boundaries of RESL and YOYO. In each trial,
the number of monitored agents was fixed, and then a monitoring problem (given by
the observables available to the monitoring agent) was randomly generated. The same
monitoring problem was given as input to RESL and to YOYO, and their execution
time (matching observations, inference, and disagreement detection) was recorded. 30
trials were done for each fixed number of agents.

Figure 2 summarizes the results of the comparison, projecting average computation
time (per trial) against the number of agents. Figure 2-a shows that the computation
time for RESL in the ModSAF, ModSAF-simple, and RoboCup domain is clearly non-
linear as predicted. A monitoring problem of 3000 agents takes, on average, 400–
650 CPU seconds in these domains. However, in the RoboCup-simple domain the
curve is linear since there is no uncertainty in the domain. As a result, the number
of hypotheses to be considered does not grow exponentially, and the only factor in
run-time complexity is observation matching and inference.

In contrast to RESL, YOYO’s complexity curve (Figure 2-b) is roughly linear (due
to the randomness of the monitoring problems, YOYO solves some problems quicker
than others of the same size, thus the averages do not form a perfect linear curve), and
its execution time is measured in milliseconds, rather than seconds. Note that even
when monitoring 3000 agents, YOYO takes less than half a second to complete its task
(compared to 400–650 seconds).

10

The difference in performance is not just a function of YOYO’s maintenance of a
single structure (rather than than the

�
structures maintained by RESL), but the fact

that it considers only coherent hypotheses, of which only a linear number (in the size
of the plan hierarchy) exist. However, YOYO’s scalability comes at the expense of
the ability to represent failure hypotheses: When a disagreement is detected, YOYO
knows that it has occurred, but cannot identify what agents are involved, or the extent
of the disagreement. Thus for more advanced monitoring tasks, such as diagnosis
[14], YOYO has to be augmented by mechanisms that allow the monitoring agent to
reconstruct the hypotheses underlying the disagreement. In contrast, RESL facilitates
explicit reasoning about each agent separately from its teammates. It is also the case
that YOYO’s run-time complexity is still dominated by a key factor—the number of
observed monitored agents: As long as simultaneous observations are coming in about
agents, YOYO still needs to process all of them, much like the full array approach. We
address ways to reduce the number of agents which require observations in the next
section.

5 Limited Connectivity

As the number of monitored team-members increases, it becomes increasingly difficult
to monitor all of them (Section 2). Furthermore, as we have seen, the run-time of mon-
itoring algorithms can be dominated by the number of monitored agents, even with
efficient algorithms such as YOYO. Thus a key question is how to guarantee detec-
tion results while limiting the number of agents that must be monitored. This section
provide new bounds on the number of agents that must be monitored to guarantee dis-
agreement detection.

We begin with a short overview of key agents, first introduced in [14] for their
important role in disagreement detection. We show that centralized monitoring requires
monitoring only (but all) key agents to guarantee sound detection. We also re-examine
the role of key agents in distributed monitoring settings. Previous work has shown that
sound and complete detection can take place if all agents monitor all key agents. We
provide a stricter bound and show that non-key agents must monitor only a single key
agent. However, key agents must still monitor each other.

Key Agents for Disagreement Detection We abstract the underlying monitoring al-
gorithm, such as YOYO, by providing the following notation when discussing agent�

’s hypotheses as to the state of an agent � : Suppose � ’s state is � (for instance,
� is a plan selected by �). We denote by � � � ���� � � the set of agent-monitoring
hypotheses that

�
constructs based on communications from � , or inference based on

� ’s observable behavior. In other words, � � � ���� � � is the set of all
�

’s hypotheses
as to � ’s state, when � ’s state (e.g., selected plan) is � . Note that when

�
monitors

itself, it has direct access to its own state and so � � � � � � ���	� ��
 .
We make the following definitions which ground our assumptions about the under-

lying monitoring process that implements � :

11

Definition 3. Given a monitoring agent
�

, and a monitored agent � , we say that�
’s monitoring of � is complete if for any plan � that may be executed by B,

� � � � � ���� � � . If
�

is monitoring a team of agents ��� ������ ���� , we say that�
’s team-monitoring of the team is complete if

�
’s monitoring of each of ��� ������ ����

is complete.

Monitoring completeness is commonly assumed (in its individual form) in plan-
recognition work, (e.g., [19, 6, 11]), and generally holds in our own applications. It
means that the set � � � ���� � � includes the correct hypothesis � , but will typically in-
clude other matching hypotheses besides � . Using this notation, we can now formally
explore the role of key agents in disagreement detection.

Key agents have the property that their behavior when executing two given plans
is sufficiently unambiguous, such that any agent that monitors them and is executing
either one of the two plans can identify with certainty whether a disagreement exists
between it and the key agents. Thus these agents play an important role in limiting
the number of agents that must be observed to guarantee disagreement detection. We
repeat here the formal definition of key agents from [14].

Definition 4. Let �	� �� < be two team plans. Suppose an agent
�

is monitoring an agent
� . If � � � ���� �	� ��
 � � � ���� � < ����

for any agent
�

, we say that � has observably-
different roles in �	� and � < , and call � a key agent for ��� � < . We assume symmetry
so that if two plans are not observably different, then � � � ���� � � ��
 � � � ��� � < ���� � ��� � <
 .

For instance, both attackers and the scout have observably-different roles in the
plans executed in Example 1: The attackers land in WAIT-FOR-SCOUT, but fly in JOIN-
SCOUT. The scout flies in WAIT-FOR-SCOUT, but lands in JOIN-SCOUT. Note that
observably-different behavior does not imply complete disambiguation. For instance, if
the scout is observed to be flying, that does not allow the hypothesis that it is executing
JOIN-SCOUT, but permits two other hypotheses: WAIT-FOR-SCOUT and FLY.

The key-agent is the basis for the conditions under which a team-member
�
� will

detect a disagreement with a team-member
� < using a maximal-coherence hypothesis.�

� (executing a team-plan ���) will detect a disagreement with a team-member
� <

(executing different team-plan � <) if
� < is a key agent for the plans ��� �� < [14, Lemma

1].
�
� knows that it is executing � � . If

� < is executing � < , and is a key-agent in � �
and � < , then

�
� is guaranteed to notice that a disagreement exists between itself and� < , since

� < is acting observably different than it would if it had been executing � � .�
� can now alert its teammate, diagnose the failure, etc.

Bounding the Number of Observed Agents. As the previous section demonstrates,
agents who wish to detect disagreement must focus their attention on the key agents in
a team. Indeed, in centralized monitoring settings, a team-member which is monitoring
itself and its teammates using maximal-coherence can focus its attention only on key-
agents, since it cannot expect to detect disagreements with non-key agents, as their
behavior is ambiguous. Such monitoring is guaranteed to be sound for centralized
settings [14, Theorem 1]. However, in such centralized settings, all key agents must be
monitored.

12

We now consider the case of distributed monitoring settings, where team-members
monitor each other. Previous work has shown that if at least a single key agent exists for
every pair of plans (i.e., the team employs an observably-partitioned set of team plans),
and if all team-members monitor all key agents, then detection is not only sound, but
also complete [14, Theorem 4]: At least one team-member will detect a disagreement
if one occurs, and no false detections will take place. This result is of particular in-
terest to building practical robust teams, and fortunately the conditions for it are often
easy to satisfy: Teams are very often composed such that not all agents have the same
role in the same plan, and in general, roles do have observable differences between
them (e.g., Examples 1 & 2). Often, the set � � � ��� � � can be computed offline, in
advance; this allows the designer to identify the key agents in a team prior to deploy-
ment. Furthermore, any agent can become a key-agent simply by communicating its
state to the monitoring agent and therefore eliminating ambiguity; thus a team can use
highly-focused communications to guarantee detection.

However, the requirement that all key-agents be monitored prohibits deployment
of scaled-up applications: First, as the size of the team grows, limited connectivity be-
comes more common, since agents become more physically and logically distributed.
Thus not all agents, and in particular key agents, are going to be visible. Second, the
run-time of monitoring, even using the efficient YOYO algorithm presented earlier,
is dominated by the need to process observations of each agent. Thus reducing the
number of observed agents can improve monitoring run-time in practice.

To formally address this challenge, we define the monitoring graph of a team as
follows:

Definition 5. A monitoring graph of a team
�

is a directed (possibly cyclic) graph in
which nodes correspond to team-members of

�
, and edges correspond to monitoring

conditions: If an agent
�

is able to monitor an agent � (either visually or by commu-
nicating with it), then an edge � � �� � exists in the graph. We say that the monitoring
graph is connected, if its underlying undirected graph is connected.

If the monitoring graph of a team is not connected, then there is an agent which is
not monitored by any agent, and is not monitoring any agent. Obviously, a disagree-
ment can go undetected in such a team: If the isolated agent chooses a plan different
from its peers, it would go undetected. However, the fact that a monitoring graph is
connected does not guarantee detection, since an agent that is monitoring a non-key
agent would not necessarily detect a disagreement with the non-key agent.

Previous work has shown that if all agents monitor all key agents, then sound and
complete detection is guaranteed [14]. However, in the case of Examples 1 & 2, this
translates to an unrealistic requirement that all key agents are monitored at all times,
by everyone in the team. This is difficult to guarantee in practice, for instance due
communication range restrictions or limited ability to observe all key agents. Certainly,
for the case of Example 2, our experiments shown that on average, a player can see at
most 2–3 team-members at any given time.

The theorem below takes a step towards addressing this issue by providing more
relaxed conditions on the connected nature of the monitoring graph, in particular with
respect to the connectiveness of the nodes representing key agents. These conditions
are: (i) every non-key agent executing a plan � monitors a single key agent for each

13

possible pair of plans involving � (i.e., for each pair of plans, where one of the plans is
�); and (ii) the monitoring graph for all key agents in a given pair of plans is a clique
(i.e., key agents are fully connected between themselves).

Theorem 6. Let T be a team in which: (i) Each team-member
�

, executing a plan
� � , who is not a key agent for � � � < monitors a key agent for � � � < ; (ii) all key
agents for a pair of plans

� �� monitor all other key agents for
� �� (forming a

bidirectional clique in the underlying monitoring graph); (iii) the team employs an
observably-partitioned set of plans; and (iv) all monitoring carried out is complete,
and uses maximal-coherence. Then disagreement detection in

�
is sound and com-

plete.

Proof. By induction on the number of agents in
�

. The full proof stretches over a
number of pages, and is therefore presented in the appendix.

This theorem allows teams to overcome significant connectivity limitations, without
sacrificing detection quality. The theorem translates into significant freedom for the
designer or the agents in choosing whom (if any) to monitor; when a monitored agent
is unobservable, an agent may choose to monitor another: Non-key agents need mon-
itor only a single key agent, rather than all key agents (for every pair of plans). The
upper-bound the theorem provides is more general than may seem at first glance. First,
while we refer to plans in the theorem, there is in fact nothing in the result that uses the
representation we discuss in the previous section. The theorem holds for any state fea-
ture of interest—beliefs about a shared environment, goals, etc.; it is up to the designer
to pick a monitoring technique that acquires the needed information for constructing
the monitoring hypotheses. Second, the theorem does not depend at all on the method
by which monitoring occurs, whether by communications or by observations. Thus the
connectivity of a monitoring graph does not have to be maintained visually. Some or
all of the edges in the monitoring graph may actually correspond to communication
links between agents.

Though this theorem represents a significant advance in lowering the bound on the
number of agents that must be monitored, all key agents must still monitor each other.
This is a critical constraint in practice: We have reconstructed the visual monitoring
graph in thousands of RoboCup game situations, to find that even with this new bound,
sound and complete disagreement detection would have been possible without com-
munications only in small percentage (approximately 5%). Typically, each RoboCup
player can only see 2–3 key agents. To illustrate, Figure 3 shows the monitoring graph
of two teams overlayed on a screen-shot of an actual game situation. For both teams,
the monitoring graph does not guarantee sound and complete disagreement detection
under the known bound.

This empirical constraint raises the bar on the challenge to find a lower-bound on
the number of agents that must be monitored to guarantee detection. We have strong
evidence that leads us to believe that in fact a much lower bound than that which is
described above may be possible, but as of now, it remains unproven. We believe that
it may be possible to guarantee sound and complete detection in all cases where each
key agent is either monitored or is monitoring a single other key agent (rather than all
of them). If so, this would translate to guaranteeing failure detection in over 70% of the

14

Figure 3: Monitoring graphs in actual game situation.

thousands of RoboCup monitoring cases we have examined. We present this formally
as a conjecture.

Conjecture 7. Let
�

be a team in which: (i) Each team-member � executing a plan�����
who is not a key-agent in

�����	��

(where

����� ��

) monitors a key agent in

�����	��

;

(ii) every key-agent for a pair of plans � ���
monitors or is monitored by one other

key-agent in � ���
(if more than one exists); (iii) the team employs an observably-

partitioned set of plans; and (iv) all monitoring carried out is complete, and uses
maximal-coherence. Then disagreement detection in

�
is sound and complete.

6 Related Work

Most closely related to YOYO is our own earlier work on the YOYO* visualization
algorithm [13], deployed in different domains. YOYO differs from its predecessor in
several important ways: (i) YOYO utilizes a non-probabilistic representation scheme,
while YOYO* utilizes a probabilistic representation; (ii) YOYO is focused on disagree-
ment detection, and in fact does quite poorly in visualization tasks on which YOYO*
performs well; and (iii) YOYO includes explicit checks for failure detection. Also,
while YOYO* has revealed a potential tradeoff between expressivity and scalability in
visualization algorithms, YOYO provides the same detection results as the full array
approach.������������� �

[19] is a multi-agent plan-recognition scheme which implicitly uses
coherence as a key constraint in representation.

�������!�����"�
represents only a sin-

gle coherent hypotheses, while YOYO represents all coherent hypotheses. However,������� ����� �
can reason about the assignment of agents to roles/subteams, while YOYO

assumes this knowledge is given a-priori. Intille and Bobick [11] rely entirely on co-
ordination constraints among football players to recognize team-tactics. Devaney and
Ram [6] use pattern-matching to recognize team-tactics in military maneuvers. Huber

15

[10] proposes using automatically built plan-recognition Bayesian networks to allow
agents to coordinate without communications. In contrast to our work, all of these
approaches utilize probabilistic representations, do not detect failures, and have not
explicitly addressed scalability.

Durfee [7] discussed decision-theoretic and heuristic methods for reducing the
amount of knowledge that agents consider in coordinating. The methods include prun-
ing nested (recursive) models, using communications to alleviate uncertainty, using
hierarchies and abstractions, etc. Our work complements Durfee’s in several way: (i)
we focus on monitoring in teams of cooperating (rather than self-interested) agents, al-
lowing exploitation of socially-attentive means; (ii) we provide bounds on the number
of agents that must be monitored; (iii) Durfee’s work focuses on reducing computa-
tional loads in monitoring each single agent, while our work on YOYO demonstrates
significant savings that are achieved when considering all monitored agents together.

Dellarocas and Klein [5] present complementary failure detection techniques for
contract-net protocol interactions, using a centralized monitoring scheme that monitors
all agents using pre-built fault-models. While their techniques complement ours, they
do not address limited connectivity, or scalability concerns.

7 Discussion and Future Work

Multi-agent literature has often emphasized that an agent must monitor other agents in
order to carry out its tasks. However, as the numbers of agents in deployed teams is
scaled up, two key challenges are raised: (i) the number of hypotheses a monitoring
agent has of its peers increases exponentially in the number of agents, and thus large
teams cannot be monitored effectively; and (ii) agents become more physically and
logically separated, and so are less visible (less connected) to the monitoring agent.
Thus not all agents can be monitored.

This paper has begun to address these challenges, in the context of a critical mon-
itoring task—detection of critical disagreements between teammates. We have pre-
sented YOYO, a linear-time sound disagreement detection algorithm, exploiting the
organizational structure of the monitored team to monitor any number of agents in a
single structure. We addressed the challenge of limited connectivity of agents by show-
ing new bounds on the number of agents that must be monitored in a team to guarantee
sound and complete disagreement detection in distributed and centralized monitoring
settings. This new result in the distributed case shows that in fact high-quality detection
can be guaranteed despite situations where many agents do not monitor others, or are
not monitored by others. Our empirical and analytical evaluation demonstrates that the
results indeed constitute significant advancement to the practice of monitoring large
teams.

Acknowledgement. We thank Milind Tambe, Jeff Rickel, George Bekey, Victor Lesser,
David Pynadath, Orna Raz and Dan Peleg for useful discussions. As always, thanks to
K. Ushi.

16

References

[1] Marc S. Atkin, Gary W. King, and David L. Westbrook. Hierarchical agent con-
trol: A framework for defining agent behavior. In Proceedings of the Fifth Inter-
national Conference on Autonomous Agents (Agents-01), 2001.

[2] Tucker Balch. Behavioral Diversity in Learning Robot Teams. PhD thesis, Geor-
gia Institute of Technology, 1998.

[3] John J. Burns, Eduardo Salas, and Janis A. Cannon-Bowers. Team training, men-
tal models, and the team model trainer. In Advancements in Integrated Delivery
Technologies, Denver, CO, 1993.

[4] Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 35, 1991.

[5] Chrysanthos Dellarocas and Mark Klein. An experimental evaluation of domain-
independent fault-handling services in open multi-agent systems. In Proceedings
of the Fourth International Conference on Multiagent Systems (ICMAS-00), pages
95–102, Boston, MA, 2000. IEEE Computer Society.

[6] Mark Devaney and Ashwin Ram. Needles in a haystack: Plan recognition in
large spatial domains involving multiple agents. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence (AAAI-98), pages 942–947, Madi-
son, WI, 1998.

[7] Edmund H. Durfee. Blissful ignorance: Knowing just enough to coordinate
well. In Proceedings of the First International Conference on Multiagent Sys-
tems (ICMAS-95), pages 406–413, 1995.

[8] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group actions.
Artificial Intelligence, 86:269–358, 1996.

[9] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. distributed computing, 37(3):549–587, 1990.

[10] Marcus J. Huber and Edmund H. Durfee. Deciding when to commit to action
during observation-based coordination. In Proceedings of the First International
Conference on Multiagent Systems (ICMAS-95), pages 163–170, 1995.

[11] Stephen S. Intille and Aaron F. Bobick. A framework for recognizing multi-agent
action from visual evidence. In Proceedings of the Sixteenth National Conference
on Artificial Intelligence (AAAI-99), pages 518–525. AAAI Press, July 1999.

[12] Nicholas R. Jennings. Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions. Artificial Intelligence, 75(2):195–240,
1995.

[13] Gal A. Kaminka, David V. Pynadath, and Milind Tambe. Monitoring deployed
agent teams. In Proceedings of the Fifth International Conference on Autonomous
Agents (Agents-01), 2001.

17

[14] Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via socially-
attentive monitoring. Journal of Artificial Intelligence Research, 12:105–147,
2000.

[15] Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque. The adaptive agent ar-
chitecture: Achieving fault-tolerance using persistent broker teams. In Proceed-
ings of the Fourth International Conference on Multiagent Systems (ICMAS-00),
pages 159–166, Boston, MA, 2000. IEEE Computer Society.

[16] Neal Lesh, Charles Rich, and Candace L. Sidner. Using plan recognition in
human-computer collaboration. In Proceedings of the Seventh International Con-
ference on User Modelling (UM-99), Banff, Canada, 1999.

[17] Allen Newell. Unified Theories of Cognition. Harvard University Press, Cam-
bridge, Massachusetts, 1990.

[18] Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multirobot coop-
eration. IEEE Transactions on Robotics and Automation, 14(2):220–240, April
1998.

[19] Milind Tambe. Tracking dynamic team activity. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), August 1996.

[20] Milind Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

[21] Milind Tambe, W. Lewis Johnson, Randy Jones, Frank Koss, John E. Laird,
Paul S. Rosenbloom, and Karl Schwamb. Intelligent agents for interactive simu-
lation environments. AI Magazine, 16(1), Spring 1995.

[22] Milind Tambe, Gal A. Kaminka, Stacy C. Marsella, Ion Muslea, and Taylor
Raines. Two fielded teams and two experts: A robocup challenge response from
the trenches. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-99), volume 1, pages 276–281, August 1999.

[23] Milind Tambe, David V. Pynadath, Nicholas Chauvat, Abhimanyu Das, and
Gal A. Kaminka. Adaptive agent integration architectures for heterogeneous team
members. In Proceedings of the Fourth International Conference on Multiagent
Systems (ICMAS-00), pages 301–308, Boston, MA, 2000.

A Proofs

This appendix presents the full proof of Theorem 6. This proof relies on a lemma and
a couple of theorems from [14], and they are therefore reprinted here to provide the
reader with the necessary context.

Theorem 8. [14, Theorem 1] Let a monitoring agent
�

monitor a simple team
�

. If�
’s team-modeling of

�
is complete, and

�
uses a maximally team-coherent hypothesis

for detection, then the teamwork failure detection results are sound.

18

Proof. We will show that if no failure has occurred, none will be detected, and thus that
any failure that is detected is in fact a failure. Let � � ������ � � be the agent members of
�

. Each agent ��� is executing some plan � � � ���
	��
� �
. Thus collectively, the group

is executing � �	� ������ � � � . If no failure has occurred, then all the agents are executing
the same plan �� , i.e., � 	 � � � �� . Since

�
’s team-modeling is complete, the correct

hypothesis � �� ������ ��� � is going to be in the set of team-modeling hypotheses � .
Since it is a maximally team-coherent hypothesis, either it will be selected, or that a
different hypothesis of the same coherence level will be selected. Any hypothesis with
the same coherence level as the correct one implies no failure is detected. Thus the
detection procedure is sound.

Lemma 9. [14, Lemma 1] Suppose an agent
�
� is monitoring a teammate

� < using
the maximally team-coherent heuristic (and under the assumption that team-modeling
is complete).

�
� , executing � � , would detect a disagreement with an agent

� < execut-
ing a different plan � < , if

� < has an observably different role in � � and � < (i.e.,
� < is

a key agent in � � � <).

Proof.
�
� knows that it is executing ��� , and is monitoring

� < , who has an observably
different role in �	� and � < . Since

� < is executing � < , and following the observably
different role, �	� �� � � � � � < � � < � . Therefore from the perspective of

�
� , it cannot be

the case that it assigns ��� in any agent-modeling hypothesis, and therefore any team-
modeling hypothesis that

�
� has will have

�
� executing �	� , and

� < executing some
plan other than � � . In other words, from

�
� ’s perspective there is no team-coherent

hypothesis, and so a difference would be detected between
�
� and

� < .

Lemma 10. If an agent � is not key agent for �	�� , and it is not a key agent for �	�� ,
then it is not a key agent for ���� .

Proof. � is not a key agent for �	���� Therefore, it is not observably different in �	�� .
Therefore it is observably the same in �	�� . Therefore

� � � �� � � �
 � � � �� � � � � � �	���

By the same reasoning, since � is not a key agent in �	�� ,

� � � �� � � �
 � � � �� ��� � � � �	��

Therefore,

� � � �� � � �
 � � � �� ��� � � � ��
�����

Thus � is not a key agent in ���� .

Based on Theorem 8 and Lemma 9, we can now proceed with the main theorem.

Theorem. (Number 6, Page 14). Let T be a team in which: (i) Each team-member�
, executing a plan � � , who is not a key agent for � � � < monitors a key agent for

� � � < ; (ii) all key agents for a pair of plans
� �� monitor all other key agents for� �� (forming a bidirectional clique in the underlying monitoring graph); (iii) the

team employs an observably-partitioned set of plans; and (iv) all monitoring carried
out is complete, and uses maximal-coherence. Then disagreement detection in

�
is

sound and complete.

19

Lemma 11. If every agent t there exist some pair of plans
� �� such that is

�
a key

agent for
� �� , then Theorem 6 holds.

Proof. First, since all monitoring is complete and is done using maximal-coherence,
we know monitoring results are sound (Theorem 8). We will show that the monitoring
results are complete. We consider the monitoring graph ��� of the team

�
, and partition

it into � partitions, such that each partition holds the vertices corresponding to agents
executing the same plan. We will show that necessarily, � � �

, i.e., all agents are
executing the same plan.

Assume for contradiction that ��� �
. Let us pick any partition, and mark it after

the plan selected by the agents in it,
�

. Since � � is connected, the partitions for
a connected graph, though not necessarily all partitions are connected to all others.
Therefore,

�
must be connected to partitions � � ������ ����
	�� � . We will first show that

� 	 � � 	 �� ��� � � �� is not a key agent for
� �� � .

Assume for contradiction that there exists an agent � � �
which is key for

� �� � ,
and no disagreement is detected by any agent. Pick an agent � � � � . There are two
cases:

� � is a key agent for
� �� � . In this case ��� is monitoring � (because all key

agents for
� �� � monitor each other), and would detect a disagreement with � .

Contradiction.

� � is not a key agent for
� �� � . Therefore, it must be monitoring a key agent� for

� �� � . Because all key agents for
� �� � monitor each other, ��� is also

monitoring � . Since no disagreement is detected, � cannot be executing � � or�
, and must therefore be executing some other plan � �� � �� � � , such that �

must not be a key agent for � � , nor is it be a key agent for � �� � . But based on
Lemma 10, it follows that � is not a key agent for

� �� � . Contradiction.

Therefore, � 	 � � 	 �� ��� � � �� is not a key agent for
� �� � . Pick an agent

� � � �
. � � cannot be a key agent for any pair of plans

� �� � , and yet it must be a key
agent for some pair � �� . It must be that � 	 �� s � � � � � � � , and � � �
� , since the
partitions for � �� must be connected to

�
. Therefore, � � is a key agent for � � ��
� .

But � � is not a key agent for
� �� � , and is not a key agent for

� �� � , and therefore
(Lemman 10), it is not a key agent for � � ��
� . Contradiction.

Since in all possible cases the assumption �!� �
leads to contradiction, necessarily

� � �
, that is all agents are in agreement. Thus it cannot be the case that two or

more agents are in disagreement, and none detects a failure. Therefore monitoring is
complete, and since it must be sound (see beginning of proof), the theorem holds if
every agent is a key agent.

With Lemma 11 in place, we can now prove Theorem 6.

Proof. We will first show disagreement detection completeness by induction on the
number of agents

�
. The idea here is to show that if any two agents

�
� � < have

selected two different plans ��� � < where �	� �� � < , then a member of the team
�

will detect the failure. In otherwords, to show completeness we need to show that if a
disagreement occurs, it will be detected.

20

Induction base: Obviously if there is only one agent no disagreement can oc-
cur, so we begin with the case of two agents,

�
� � < , who have selected plans

�	� � < respectively where �	� �� � < , and are therefore in disagreement. We know that
at least a single key agent exists for ��� � < , because the team employs an observably-
partitioned set of plans. Without loss of generality, assume the key agent is

� < . Then�
� is monitoring it, and since

� < is key agent in �	� �� < then
�
� will detect the dis-

agreement (Lemma 9).

Induction hypothesis: Assume the theorem holds for a team with up to
�

�

�
agents.

We will show that it holds for a team with
�

agents. There are two cases:

� Case 1:
�

has an agent
�

which is non-key for all pairs of plans
� �� . We

examine � � , the directed monitoring graph of
�

(see Definition 5). Since the
monitoring graphs of all key agents are connected, and since all non-key agents
are monitoring key agents, it follows that � � is connected. We examine the
incoming and outgoing edges of the vertex representing

�
. Since � � is con-

nected,
�

has incoming monitoring edges (
�

is monitored by other agents), or
�

has outgoing monitoring edges (
�

monitors other agents), or both.

Let us now remove
�

from the graph. Since
�

is a non-key agent in all pairs
of plans

� � , it follows that removing it results in a reduced graph � � � � which
satisfies the conditions of the theorem, for a reduced team of only

�
�

�
agents:

(i) All other non-key agents are continuing to monitor key agents (we have not
modified monitoring edges from these other non-key agents to key-agents); (ii)
all key agents continue to monitor all other key agents; (iii) the team still employs
an observably-partitioned set of plans—since the removal of

�
did not change

the set of key agents nor the set of plans; and obviously (iv) monitoring is still
complete and uses maximal coherence). We are now left with a team of

�
�

�
agents.

If
�
� � < are within the

�
�

�
agents left, then the disagreement would be

detected (based on the induction hypothesis), and so we are done. If no disagree-
ment is detected, then it follows from the induction hypothesis that no disagree-
ment exists among the

�
�

�
agents, i.e., one of

�
� � < is included within the�

�

�
agents, and the other is

�
. Without loss of generality, assume

� � � < .
Then

�
� , executing �	� is one of the

�
�

�
agents in the reduced team, and since

they are not in disagreement with
�
� , they must all be executing ��� . Let us now

re-create the original graph � � , reintroducing
�

into the team by putting back
the original incoming and outgoing edges. Since

� � � < , it is � < . And since it
not a key-agent, it must be monitoring a key-agent for � � �� < . However, this key
agent must be executing � � . Therefore,

�
would have detected a disagreement

(Lemma 9).

� Case 2: T does not have an agent that is non-key agent for all pairs of plan.
Thus every agent is a key agent in some pair of plans

� � . Then the theorm
holds for

�
agents based on Lemma 11.

21

In all possible cases, a failure is detected if a disagreement exists, thus failure detection
is complete. Since monitoring is complete, failure detection is also sound (Theorem
8).

22

