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Abstract. There is a growing need to provide low-overhead software-based pro-
tection mechanisms to protect against malicious or untrusted code. Type-based
approaches such as proof-carrying code and typed assembly language provide
this protection by relying on untrusted compilers to certify the safety properties
of machine language programs. Typed Module Assembly Language (TMAL) is
an extension of typed assembly language with support for the type-safe manipu-
lation of dynamically linked libraries. A particularly important aspect of TMAL
is its support for shared libraries.

1 Introduction

Protection of programs from other programs is an old and venerable problem, given
new urgency with the growing use of applets, plug-ins, shareware software programs
and ActiveX controls (and just plain buggy commercial code). Historically the conven-
tional approach to providing this protection has been based on hardware support for
isolating the address spaces of different running programs, from each other and from
the operating system. The OS kernel and its data structures sit in a protected region of
memory, and machine instructions are provided to “trap” into the kernel in a safe way
to execute kernel code.

While this approach to protection is widely popularized by “modern” operating
systems such as Windows 2000 and Linux, there is a growing desire to find alterna-
tives. The problem is that this technique is a fairly heavyweight mechanism for pro-
viding protection, relying on expensive context switching between modes and between
address spaces. Although application designers have learned to program around this
expensive context switching (for example, buffering I/O in application space), this ap-
proach breaks down very quickly in software systems composed of separately authored
subsystems that do not place much trust in each other, and where context switches may
occur much more frequently than in an OS/application scenario [39].

In the OS research community, investigation of alternatives has been motivated by
the demands of modular micro-kernel operating systems, where OS modules outside
the kernel might not be trusted. Software fault isolation (where the loader inserts soft-
ware sandboxing checks into machine code [38]) and the SPIN project (where type-safe
OS modules are compiled by a trusted compiler [30]) are examples of approaches to
providing protection in software rather than hardware. Sandboxing in Java VMs has
also been motivated by the expense of hardware-based memory protection for applets
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[39]. The commercial world is seeing an explosion in the use of component technology,
exemplified by Java Beans and ActiveX controls. This use of component technology
again motivates the need to find some relatively lightweight software-based approach
to protection in running programs.

Proof-carrying code [32, 31] and typed assembly language [29, 28] are type-based
approaches to providing this protection at low run-time cost. These approaches are ex-
amples ofself-certifying code. A compiler produces a certificate that a program satisfies
some safety property, for example, that the program is well-typed. The user of a com-
piled program can check that the certificate supplied with a program is valid for that
program. If the check succeeds, the program can be run without run-time checks for the
safety properties verified by the certificate. This approach has the advantage of moving
the compiler out of the trusted computing base, and limiting the cost of safety checking
to a single pass over the code at load time.

Typed assembly language (TAL) enforces a type discipline at the assembly language
level, ensuring that malicious or carelessly written components cannot use “tricks” such
as buffer overflows or pointer arithmetic to corrupt the data structures in a running pro-
gram. Unlike the typed machine language underlying the JVM, TAL is not tied to a
particular language’s type system or interpreter architecture. Instead the type system is
a moderately generic high-level type system with procedures, records and parametric
polymorphism, while the target assembly language is any modern RISC or CISC assem-
bly language. The type system is designed to be rich enough that a compiler can produce
well-typed low-level assembly language, while at the same time having as much free-
dom as possible in its choice of code optimizations, parameter-passing conventions, and
data and environment representations [9].

Given the importance of component technology as a motivating factor for TAL, it is
clear that there should be support for manipulating components in a type-safe but flexi-
ble manner. Modular Typed Assembly Language (MTAL) extends TAL to typed object
files and type-safe linking [15]. However this is limited by the assumption that all of a
program is linked together before the program is run, with linking happening outside of
the program itself. Any program that uses a GUI for example must make use of dynamic
linking of libraries, both to avoid loading an entire library when only a small part of the
library will be needed, and also to allow several processes to share a commonly used
library. Indeed one can consider the operating system itself as a shared library, one that
is made available in a protected region of memory to all running programs.

Our interest is in extending TAL with support for dynamic linking and shared li-
braries. Glew and Morrisett [15] consider some alternative approaches to extending
MTAL with dynamic linking1, but this consideration is only informal. One issue that
they do not consider, that is central to our work, is what model dynamic linking should
use for software components and and for linking components.

1 Glew and Morrisett refer to “dynamic linking” as the process of linking an executable with
libraries when it is first invoked, while they refer to “dynamic loading” as the linking and load-
ing of libraries at an arbitrary point during execution. Our use of the generic termdynamic
linking is meant in the latter sense. We provide separate operations for “loading” a module (re-
flecting it from the core language to the module language) and for “linking” (linking together
two modules).
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An obvious candidate is the ML module system [27], which provides fairly sophis-
ticated support for type-safe linking as a language construct [24, 5]. Indeed this is the
philosophy underlying MTAL, which relies on a phase-splitting transformation to trans-
late ML modules to TAL object files. However the problem with this approach is that it
leads to two different models of linking:

1. At the source language level, linking is based on applying parameterized modules.
Higher-order parameterized modules may be useful for separate compilation [17,
16, 19, 25, 20], but there are still problems with supporting recursive modules [7]
(as are found in Java and C).

2. At the assembly language level, linking is based on a type-safe version of the Unix
ld command. Circular imports present no problem at this level, but much of the
sophistication of the type system for ML modules is lost. This is unfortunate, since
there are many lessons to be learned from ML that could fruitfully be applied to
develop rich linking operations for languages such as Java.

This article describes Typed Module Assembly Language (TMAL), an extension of
TAL with run-time support for loading, linking and running modules. TMAL pursues a
model of linking that is closer to the MTAL approach than the ML approach, because it
is closer to the form of linking used by popular languages such as Java. TMAL enriches
the MTAL approach in several ways, drawing lessons from the ML experience, but also
limiting the ML approach in some ways that are not limiting for Java applications, but
do avoid problems with extending ML modules to support Java.

We make the following contributions to TAL:

1. We enrich TAL with coercive interface matching, which allows a module to be
coerced to an expected type that makes some fields of the module “private.” This
is present in for example the ML module system, but not in MTAL. On the other
hand, ML does not provide the same linking primitives as MTAL.

2. We enrich TAL with support for shared libraries. This is supported in the ML mod-
ule language but not in MTAL. On the other hand, ML does not support recursive
modules, which are present in MTAL and which complicate the definition of shared
libraries.

3. We extend TAL with primitives for type-safe dynamic linking. Our approach re-
solves some open problems with dynamic linking and abstract data types.

TMAL arises out of work on a high-level module language, incorporating ideas
from ML but with application to languages such as Java, including support for recur-
sive DLLs and shared libraries [13]. It can be viewed as a demonstration of how the
semantics of that module language can be incorporated into typed assembly language.
A central aspect of this scheme is the proper treatment of shared libraries, an impor-
tant issue that is addressed in the ML module language but not in more low-level typed
module languages [6, 15]. A related issue is aphase distinctionin module languages,
between the link-time phase of a module and the run-time phase of a module. This issue
is not often explicitly acknowledged in the literature. In TMAL it is recognized by an
explicit initialization operation,dlopen , that provides the demarcation point between
these two phases in the lifetime of a module.
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In Sect. 2 we give a brief review of TAL and MTAL. In Sect. 3 we reconsider the
approach used in MTAL to represent abstract types that are exported by typed object
files, and in particular how type equality and type definitions are handled. In Sect. 4 we
give an overview of TMAL. The next four sections describe the operations of TMAL in
more detail. In Sect. 5 we describe TMAL’s support for coercive interface matching. In
Sect. 6 we describe how types and values can be dynamically obtained from a module
in TMAL. In Sect. 7 we describe how shared libraries can be constructed in TMAL.
In Sect. 8 we describe how DLLs are loaded in a type-safe manner in TMAL. Finally
Sect. 10 provides our conclusions.

2 Modular Typed Assembly Language

K 2 Kind ::= ty j (K1 ! K2)

A;B2 Type Cons ::= t j int j (λt : K:A) j A(B) j

8[t1; : : : ;tm]Γ j hAi1
1 ; : : : ;Aik

k i

Φ 2 Type Heap IFace ::= ft1 : K1; : : : ;tk : Kkg

Ψ 2 Value Heap IFace ::= fx1 : A1; : : : ;xk : Akg

Γ 2 Register File Type ::= fr1 : A1; : : : ; rk : Akg

∆ 2 Type Var Context ::= t1 : K1; : : : ;tk : Kk

h2Heap Value ::= code [t1; : : : ;tm]Γ:I j hw1; : : : ;wki

r 2 Register Name ::= r0 ; r1 ; : : :

w2 Word Value ::= n j x j : : :

v2 Small Value ::= w j r

TH2 Type Heap ::= ft1 7! A1; : : : ;tk 7! Akg

VH 2 Value Heap ::= fx1 7! h1; : : : ;xk 7! hkg

R2Register File ::= fr1 7!w1; : : : ; rk 7!wkg

I 2 Instruction Sequence ::= i1; : : : ; ik
i 2 Instruction ::= add r1; r2;v j malloc r[A] j jmp v j : : :

Int 2 Interface ::= (Φ;Ψ)

O2 Object File ::= [IntI ) (TH;VH) : IntE]

E 2 Executable ::= (TH;VH;x)

P2 Program State ::= (TH;VH;R; I)

Fig. 1.Syntax of MTAL
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In this section, we review Typed Assembly Language (TAL) and Modular Typed
Assembly Language (MTAL). This review is largely based on descriptions in the lit-
erature [29, 9, 15]. The syntax of MTAL is given in Fig. 1. Typed Assembly Language
can be explained as the result of carrying types in a high-level language through the
compilation process, all the way to the final output of assembly language in the back-
end. Starting with a high-level language, say with procedures and records, programs are
translated to an assembly language where procedures have been translated to code seg-
ments (with code for environment-handling) and records have been translated to heap
blocks. Thus for example the procedure definition:

int fact (int x) f

int y = 1;
while (x != 0) y = (x--) * y;
return y;

g

is translated to the code segment:

fact: code[] fa0:int,ra: 8[] fv0:int gg.
mov v0,1
jmp loop

loop: code[] fa0:int,v0:int,ra: 8[] fv0:int gg.
bz a0,ra
mul v0,a0,v0
sub a0,a0,1
jmp loop

The registerra is the continuation or return address register, pointing to the code to be
executed upon return. Thefact procedure expects an integer in the argument register
a0 , and returns to its caller with an integer in the value return registerv0 . We use MIPS
gcc calling conventions to name the registers in examples.

In general heap valuesh have the form:

1. A code segmentcode [t1; : : : ; tm]Γ:I , with register file typeΓ= fr1 : A1; : : : ; rn : Ang.
This is a code segment parameterized overm type variablest1; : : : ; tm and expecting
its n arguments in the argument registersr1; : : : ; rn. The types of the values in the ar-
gument registers are specified in the register file type.I is the sequence of assembly
instructions for the code sequence. This segment has the code type8[t1; : : : ; tm]Γ.

2. A heap blockhw1; : : : ;wki where thek valuesw1; : : : ;wk are word values. Such a
heap block has a heap block typehAi1

1 ; : : : ;Aik
k i, where eachi j 2 f0;1g indicates if

the jth slot has been initialized.

Parametric polymorphism is used in an essential way to abstract over the call stack
in typing a procedure definition. For example the most general definition offact is:

fact: code[EnvT] fa0:int,sp:EnvT,ra: 8[] fv0:int,sp:EnvT gg. ...

where thesp register points to the environment of the calling procedure. The type
parameterEnvT ensures that the continuation is passed the calling procedure’s envi-
ronment upon return.
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An operational semantics is specified using program states of the form(VH;R; I),
where

1. VH = fx 7! hg is a value heap, a mapping from labels to heap valuesh;
2. R= fr 7! hg is a register file, a mapping from register names to values; and
3. I is a sequence of typed assembly instructions.

Configurations are typed using register file typesΓ = fr : Ag and heap typesΨ =
fx : Ag, where the latter maps from labels to types. The heap contents are unordered
and may contain circular references.

Modular TAL (MTAL) extends these concepts to object files for independent com-
pilation and type-safe linking. An untyped object file imports some values and exports
some values, identified by labels pointing into the object file heap. A MTAL object file
places types on the imported and exported labels. Furthermore, to support the expor-
tation of abstract data types, a MTAL object file imports and exports types and type
operators, identified by labels pointing into a type heap in the object file. An object file
O in MTAL has the form

[(ΦI ;ΨI )) (TH;VH) : (ΦE;ΨE)]

whereΦI andΦE are type interfaces mapping labels to kinds,ΨI andΨE are value
interfaces mapping labels to types,TH = ft 7! Ag is a type heap mapping labels to
type and type operator definitions andVH = fx 7! hg is a value heap mapping labels
to initial values.ΦI andΨI provide the interfaces for imported types and values, while
ΦE andΨE provide the interfaces for exported types and values. An interface is a pair
Int = (Φ;Ψ) of type and value heap interfaces.

There are three operations in the MTAL module language:

1. LinkingO1 link O2 ; O combines the object filesO1 andO2 into the single ob-
ject fileO. Imports inO1 andO2 may be resolved during linking. Interface checking
ensures that resolved imports have the correct type.

2. Executable formation(O;x)
prg
; E identifies the label for executing the code of the

object file. Type-checking ensures that this label is bound in the value heap, and
that all imports have been resolved.

3. Execution of an executableE
exec
; P produces a program state of the operational

semantics from an executable. Program states are extended to include a type heap,
and have the form(TH;VH;R; I).

3 Type Heap Reconsidered

Before giving a description of TMAL, it is useful to explain how our treatment of the
type heap and type identity differs from that of MTAL. In MTAL there are two views
of a type:

1. Within an object file, a type exported by that object file is completely transparent.
The definition of a type label is given by its binding in the type heap,TH. Be-
cause the type heap may contain circular bindings, there are word value operations
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unroll (w) androll t(w) that unfold and fold the definition of a type label in the
type ofw, respectively. For example if a file system module defines a file abstract
typet ashint 1

; int 1i, andw is a word value with this type, thenroll t(w) gives
a word value with typet, that is with the concrete type folded to the defined type.
This means that all types defined in object files are datatypes.

2. Outside of an object file, a type exported by that object file is completely opaque.
The interface only provides the kind, and the type heap is only visible within the
module.

The advantage of requiring all defined types to be datatypes is that recursive types
are assured to be iso-recursive types2, thus greatly simplifying the problem of type-
checking. The problem with this approach is that it does not adequately handle type
sharing for shared libraries. This is explained in more detail in [13]. Consider for ex-
ample the following Objective ML code [33]:

module type S = sig type t; val x:t end
module S1 : S = struct type t = C; val x = C end
module S2 : (S where type t = S1.t) = S1
if true then S1.x else S2.x

The last conditional type-checks becauseS2.x has typeS2.t , and the type ofS2
includes the constraintt=S1.t , which is also the type ofS1.x . The structureS1
is an example of ashared library, in the sense that the identity of its (abstract) type
componentS1.t is shared withS2.t . The datatype restriction, on the other hand,
requires the insertion of marshalling and unmarshalling code at the interface of a shared
library, severely curtailing its usability.

It is informally mentioned in the description of MTAL that the implementation in-
cludes singleton kinds to expose type definitions to clients of object files. However
this is not formalized in the type system and therefore several important issues are left
unresolved. For example it is not hard, using singleton kinds, to define two mutually re-
cursive types in separate object files, and linking those files then results in equ-recursive
types. This problem can be avoided by only allowing singleton kinds to contain type la-
bels, where the definitions remain encapsulated in the type heap in the object file. In
terms of the type system presented here, this amounts to only allowing type sharing
constraints in the interface, and not allowing type definitions to be exposed.

In our type system we allow both exposure of type definitions, and type sharing, to
be expressed in module interfaces. This is done without allowing equ-recursive types
in the type system. This is done by separating these two uses of type information in the
interface:

1. Exposure of type definitions is expressed usingbox kinds. Box kinds differ from
singleton kinds in the following way: whereas singleton kinds allow implicit equal-
ity of a type identifier with the type in its singleton kind, box kinds require explicit

2 Harper, Crary and Puri [7] make the distinction betweeniso-recursiveandequ-recursivetypes.
The latter require an equality theory for types that includes a rule for implicitly unrolling a
recursive type. The former do not require this equality, and instead rely on operations in the
language for explicitly folding and unfolding recursive types.



8 Dominic Duggan

coercions in the term language between a type identifier and the type in its box
kind.

2. Type sharing is expressed usingtype sharing constraints. The type system includes
an equality theory that is merely the congruence closure of an equality between
type identifiers defined by a context of type sharing constraints. Since equality is
only between identifiers, there is no problem with analysing recursive constraints.
This is particularly important when we consider dynamic type-checking of DLLs.

TMAL replaces theroll t andunroll operations of MTAL, with operations for
constructing and deconstructing values of types with box kind:

Introduction Elimination

MTAL Expression roll t(w) unroll (w)

MTAL Side-Conditionw : A; TH(t) = A w : t; TH(t) = A

TMAL Expression fold t(w) unfold t(w)

TMAL Side-Condition t :�A; w : A t :�A; w : t

Because the TMAL operations are typed independently of the type heap, box kinds can
be used to expose type definitions in the interface of an object file. In contrast with
singleton kinds, because explicit coercions are required between a type with box kind
and the type in its kind, recursive types are guaranteed to be iso-recursive types.

4 Typed Module Assembly Language

Fig. 2 provides the syntax of Typed Module Assembly Language. In comparison with
MTAL, the major changes in module interfaces are:

1. We enrich kinds with box kinds�A. For simplicity we only consider simple types
in this account. Box kinds generalize to type operators with some care [13].

2. We enrich import and export interfacesInt with a type sharing contextΞ. This is a
context of equality constraints between type identifiers.

3. To support coercive interface matching, we add external labels to type and value
heap interfaces. As explained in the next section, this allows some of the fields in
a module to be safely made private, whereas allowing private fields in MTAL leads
to the possibility of run-time name clashes.

There are two forms of module values in TMAL:

1. Modules or object filesO� [IntI ) (TH;VH) : IntE]. This defines a type heapTH
and a value heapVH, that may be linked with other such heaps using the TMAL
operations.IntI � (ΦI ;ΨI ;ΞI ) is the interface of symbols imported by the module,
while IntE � (ΦE;ΨE;ΞE) is the interface of symbols exported to clients of the
module.
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K 2 Kind ::= ty j �A

A;B2 Type Cons ::= t j int j 8[t1 : K1; : : : ;tm : Km]Γ

j hAi1
1 ; : : : ;Aik

k i j hh ii j OT j Int

Φ 2 Type Heap Interface ::= ft1 :: t1 : K1; : : : ; tk :: tk : Kkg

Ψ 2 Value Heap Interface ::= fx :: x1 : A1; : : : ;x :: xk : Akg

Ξ 2 Type Sharing Cons ::= ft1 �= t 0

1 2 K1; : : : ;tk �= t 0

k 2 Kkg

Γ 2Register File Type ::= fr1 : A1; : : : ; rk : Akg

∆ 2 Type Var Context ::= t1 : K1; : : : ;tk : Kk

h2Heap Value ::= code [t1 : K1; : : : ;tm : Km]Γ:I

j hw1; : : : ;wki j hhw;R (OT)ii j O j ST

r; rm
; rs2Register Name ::= r0 ; r1 ; : : :

w2 Word Value ::= n j x j w[A] j : : :

v2 Small Value ::= w j r

TH2 Type Heap ::= ft1 :: t1 : K1BA
1 ; : : : ; tk :: tk : KkBA

k g

BA 2 Type Binding ::= ,A (Type Definition)

j �= t (Shared Type Binding)

VH 2 Value Heap ::= fx1 :: x1 : A1Be
1; : : : ;xk :: xk : AkBe

kg

Be 2 Value Binding ::= , h (Value Definition)

j �= x (Shared Value Binding)

R2 Register File ::= fr1 7!w1; : : : ; rk 7!wkg

ρ 2Renaming Substitution ::= fn1 7! n0

1; : : : ;nk 7! n0

kg

I 2 Instruction Sequence ::= i1; : : : ; ik
i 2 Instruction ::= add r1; r2;v j malloc r[A] j jmp v j : : :

Int 2 Interface ::= (Φ;Ψ;Ξ)

OT2Object File Type ::= [IntI ) IntE]

O2Object File ::= [IntI ) (TH;VH) : IntE]

ST2 Symbol Table ::= ft 7! t; x 7! yg

P2 Program State ::= (TH;VH;R; I)

Fig. 2. Syntax of TMAL
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Purpose Instruction Semantics

Linking, dllink rm
1 ; rm

2 ; rm
3 Link modules

interface dlcoerce rm
1 ; rm

2 ;OT Coerce to interface

matching dlrename rm
1 ; rm

2 ;ρ Rename external labels

Dynamic dlopen rs
; rm Initialize module

imports dlsym t [t]rs
1; rs

2; t Import type

dlsym v r; rs
;x Import value

Shared dlsetsym t rm
1 ; rm

2 ;t; t Set shared type

definitionsdlsetsym v rm
1 ; rm

2 ; r;x Set shared value

Dynamic dldynamic r;v;R (OT) Construct DLL

linking dlload rm
; r1; r2;R (OT) Extract module

Fig. 3. Summary of TMAL instructions

2. Symbol tablesST� ft 7! t;x 7! xg. A symbol table arises from the initialization
of a module. Initializing a module adds its type and value definitions to the type
and value heaps, respectively, of the running program. The symbol table provides
mappings from the external labels of the module to the heap addresses of its defi-
nitions. TMAL provides operations for dynamically importing these addresses into
a running program, using a symbol table to perform a run-time lookup based on
external labels.

A type heap definitiont :: t : KBA has one of two forms:

1. A definition of the formt :: t : K , A defines a branded typet with external namet
and definitionA. External names are explained in the next section. The most general
kind for such a type is�A, revealing the structure of the type definition. This is a
subkind ofty, the kind of simple types that makes type definitions opaque.

2. A definition of the formt :: t : K �= t 0 defines a shared typet that is equated to the
type t 0. Such a type sharing definition can be exposed in an interface by a type
sharing constraintt �= t 0 2 K.

Similarly a value heap definitionx :: x : ABe has one of the two formsx :: x : A, h
(analogous to a value heap definitionx 7! h in MTAL) or x :: x : A�= y (a value sharing
definition). Module initialization transforms a value sharing definition to a value heap
definitionx :: x : A, h by looking up the definition ofy in the heap. Initialization may
detect circular value sharing definitions, which correspond to values with no clearly
defined initial values.

In TMAL, modules are manipulated (loaded, coerced and linked) at run-time. This
does not necessarily require modules as first-class values, and indeed TMAL is based on
a module language where there is a strict separation between module values and simple
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values [13]. Nevertheless a critical part of the transition from a high-level language to
TAL is closure conversion, where environment slots are allocated for local variables in
a procedure, and the contents of the register file are saved to the environment on a pro-
cedure call. Since some local variables may be bound to module values, it is necessary
in TMAL to make modules into first-class values. For example, the kernel language
described in [13] includes aletmod construct for binding a local module identifier to
a module:

letmod s= Mod in Expr

whereMod is a module language expression andExpra core language expression. Clo-
sure conversion then requires that an environment slot be allocated for the free module
identifiers, leading to the need for first-class modules.

This potentially has some unpleasant consequences. For example Lillibridge [23]
has demonstrated that type-checking is undecidable for a type system with first-class
modules. The source of this undecidability is a subtype relation between modules that
allows fields to be made private, and allows type definitions to be made opaque. There is
no such subtype relation in the core language of TMAL, and therefore no such subtyp-
ing for modules. This makes “first-class” modules in TMAL strictly less powerful than
general first-class modules. For example with general first-class modules, it is possible
for the two arms of a conditional to return modules with different interfaces, by having
the result interface contain the intersection of the fields of the two modules. However
the weak type system for modules in TMAL is sufficient for the purposes of closure
conversion, and avoids the undecidability problems with more general type systems.

Rather than allowing type subsumption for modules, TMAL has adlcoerce in-
struction for explicitly coercing a module to a required type. This coercion operation
requires that the module’s type be a subtype of the required type:

OT�OT0 () OT� [IntI ) IntE]; OT0 � [Int0I ) Int0E];

Int0I � IntI andIntE � Int0E
Int� Int0 () Int� (Φ;Ψ;Ξ); Int0 � (Φ0

;Ψ0
;Ξ0);

Φ�Φ0
; Ψ�Ψ0

; andΞ entailsΞ0

Φ�Φ0 () Φ� ftk :: tk : IKkg; Φ0 � ftm :: tm : IKmg; k�m; IKm� IK 0

m

Ψ�Ψ0 () Ψ� fxk :: xk : Akg; Ψ0 � fxm :: xm : Amg; k�m; Am = A0

m

So interface containment reduces to kind containment (where the only containments
are of the form�A� ty) and equality between types. The latter equality relation is
the congruence closure of the equalities between type identifiers given by the sharing
constraints (type operators addβ-conversion).

The type formation rules for modules (object files) and symbol tables are provided
in App. A.

5 Coercive Interface Matching

MTAL assumes that all field names are globally defined, and interface matching is
based on these global field names. Any “implicit” renaming of an identifier requires
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it to be rewritten globally. There is no notion (as in our approach) of differentiating
between external and internal names, with internal names locally bound, and therefore
allowing local renaming of these internal names to avoid name clashes during linking.
As a consequence, if fields of an object file are made private in MTAL, there is no way
to rename the private fields in order to avoid name clashes when this object file is linked
with other object files.

We want to support run-time linking where a library is loaded from disk into the
program address space and linked with other libraries. Type safety requires a run-time
type check at some point in this scenario. This type check requires that the labels do not
admit implicit renaming (such as alpha-conversion in the lambda-calculus). We do not
expect that all labels of the loaded library are known, only those labels specified in the
expected interface in the run-time type check. Following the MTAL approach, there is
the potential for confusion of labels because some of the “hidden” labels in the loaded
library may be the same as labels in the libraries it is linked with.

This is the motivation for generalizing labels in type and value heap interfaces to
include external namest andx. Type and value heap interfaces have the form

Φ = ft :: t : Kg andΨ = fx :: x : Ag

The internal namest andx represent local (type and value) heap addresses. These names
admit implicit renaming or alpha-conversion, corresponding to relocating symbols in a
heap. The external namest andx represent external labels that allow reference to the
internal contents of a heap component of a module from outside. To allow fields of
a module to be made private, external type and value names in type and value heaps
include the special symbol?, the name of a private field. Fields in a module are made
private using thedlcoerce instruction, that changes the external names of fields made
private to?. The private external name? should never appear in a type or value heap
type.

Before the contents of a module can be used by a running program, its heaps must
be combined with the program heaps. This combination ensures that the internal labels
of the module heaps are distinct from the internal labels in the program heaps.

Following [13], we provide three operations for combining and adapting modules.
The choice of these operations is informed by an analogy between module combination
and process composition in process algebras such as CCS [26]:

OperationTMAL CCS

Linking dllink rm
1 ; rm

2 ; rm
3 (P jQ)

Coercion dlcoerce rm
1 ; rm

2 ;OT (Pnx)

Renamingdlrename rm
1 ; rm

2 ;ρ P[ρ]

Thedllink instruction links together two modules, combining the type and value
heaps. The modules being linked together are in the source registersrm

2 andrm
3 , and the

result of linking is left in the destination registerrm
1 . The exports of the resulting module

are the union of the exports of the two modules, while the imports are the union of the
imports of the linked modules minus any imports that are resolved by linking. To obtain
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a coherent result, the type rules require that the external labels of the exports of the two
linked modules are distinct. To maintain this restriction, the external labels of a module
must always be visible in the type of the module. The linking operation also requires
that the internal labels of the exports of the modules be distinct. Since internal names
are bound within a module, they can be renamed to avoid name clashes when merging
the fields of the modules being linked. In a concrete implementation, this renaming is
handled straightforwardly by relocating the internal addresses of two object files that
are linked together.

Thedlcoerce instruction is necessary because of the absence of a subsumption
rule based on interface containment for modules. This latter subsumption rule is not
allowable because of the requirement that the external labels of a module must always
be visible in its type. The coercion operation performs a run-time adaptation of a mod-
ule, removing some of its external labels. The corresponding definitions are no longer
visible to external clients of the module, but are still accessible via their internal labels
to other definitions within the module. The source module is in registerrm

2 , while the
result of coercion is left in the destination registerrm

1 . The type to which the module
is coerced is specified by the object file typeOT. This type annotation is mostly only
for type-checking, and can be removed before execution. The part of the annotation that
must be preserved during execution is the association between external names and inter-
nal names; TMAL includes instructions for looking up a field in an initialized module
based on its external name.

Thedlrename instruction is a second operation for coercive interface matching,
and renames some of the external labels in a label. A renaming substitutionρ is an
injective mapping from external labels to external labels. Since external names are used
at run-time, this renaming substitution must be applied at run-time.

6 Dynamic Imports

The instructions given in the previous section operate on values at the module language
level. At the heart of the TMAL approach are the instructions that connect the module
language level to the core language level. In theλmod

box module language described in
[13], this connection is provided by aninit operation that initializes a module and
introduces its definitions into a local scope in a core language program. In TMAL the
init operation is realized by three instructions, for initializing a module and for im-
porting its definitions into the scope of a running thread:

Operation TMAL

Initialize moduledlopen rs; rm

Import type dlsym t [t]rs
1; r

s
2; t

Import value dlsym v r; rs;x

These operations allow a program to import some of the symbols from a DLL, using
the external labels of a DLL to access its definitions.
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// Assume s1 points to loaded file system module
dlopen s2,s1 // Initialize module
dlsym t [FileT] s3,s2, File // Import file type
dlsym v s4,s3, open // Import file open operation
mov a0,file name // Load file name
mov ra,retpt[FileT] // Load continuation
jmp s4[EnvT] // Jump to file open operation

retpt: code[FileT] fv0:FileT,sp:EnvT g ...
file name: "/etc/passwd"

Fig. 4.Example of dynamic imports

Fig. 4 gives an example of the use of these operations. Assuming thes1 register
points to a module, thedlopen instruction initializes that module, addings its type
and value heap definitions to those of the running program. The result of initialization
is a pointer, in thes2 register, to a symbol table mapping from the external labels
of the module to the addresses of its definitions in the program heaps. Thedlsym t
instruction imports a type definition into the local context of the current thread, while
thedlsym v instruction imports a value definition.

The dlsym v operation imports (the heap address of) a value definition from a
DLL into a register, using the external label of the value definition and the symbol
table of the DLL to map to the internal label. Note that the internal label cannot be
known statically; the internal label is chosen at the point where the DLL is initialized
and its value definitions are added to the program’s value heap. This is in contrast with
MTAL, where heap locations are referenced by globally bound internal names, and
where renaming to avoid name clashes is not possible. In TMAL, the internal label is
chosen so that there is no clash with the labels already given to program heap contents.
Since the complete contents of the program heap are not known until run-time, there is
no way to know the internal label during type-checking.

The important proviso in thedlsym v operation is that none of the free type vari-
ables in the type of a value definition are bound by the type heap definitions addressed
by the symbol table. For example, recalling the example in Fig. 4, assume that the sym-
bol table resulting from initializing the file system module has type:

type File:: File : ty
val open:: open :

8[EnvT:ty] fa0:String,sp:EnvT,ra: 8[] fv0: File ,sp:EnvT g

The abstract file typeFile occurs free in the type of theopen operation. Therefore
thedlsym v instruction cannot import this definition immediately. The reason is that
the register file type resulting from this importation would have no binding for the type
identifierFile in the type of thes4 register.

In order to import theopen operation, the type identifierFile that occurs free in
its type must first be imported from the DLL. This is done using thedlsym t operation.
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In the example in Fig. 4, thedlsym t instruction binds a local type identifierFileT to
the abstract typeFile defined by the DLL. Thes3 register is bound to a new symbol
table with type:

val open:: open :

8[EnvT:ty] fa0:String,sp:EnvT,ra: 8[] fv0: FileT ,sp:EnvT g

The abstract file type in the type of theopen operation has been relocated to a type
bound in the local context of the current thread, therefore it is now possible to import
theopen definition from the DLL.

7 Shared Libraries

Heaps in modules may contain shared type bindingst :: t : K �= t 0 and shared value
bindingsx :: x : A�= y. If all linking is performed before a program runs, then shared
bindings are unnecessary. However shared bindings become crucial in an environment
where modules are initialized at run-time.

For example, consider a module implementing a network protocol. This implemen-
tation requires some operations and types that are only provided by the operating sys-
tem. Module linking can be used to combine these modules into a single module imple-
menting the operating system with that protocol:

// Assume s1 points to loaded OS module
// Assume s2 points to loaded protocol module
dllink s3,s1,s2 // Link OS, protocol modules
dlopen s4,s3 // Initialize module
dlsym t [Conn] s5,s4, Conn // Import connection type
dlsym v s6,s5, open // Import conn open operation

However there is a difficulty with this approach: the operating system will have
already been initialized when the program runs. In fact the operating system is really
the first module to be initialized, and a running program is just another module that has
been loaded and initialized by code defined in the operating system module.

Similar remarks apply to access to OS operations from a process. The process must
somehow have access to labels into the OS type and value heaps3, but it is unrealistic to
expect a program to be linked with its own copy of the OS module before execution can
begin. The OS is one example of a shared library, a library that is loaded and initialized
once, and that is subsequently available to other libraries as they are loaded.

The following instructions allow a program to construct a shared library:

Operation TMAL

Set shared typedlsetsym t rm
1 ; rm

2 ; t; t

Set shared valuedlsetsym v rm
1 ; rm

2 ; r;x

3 As mentioned in Sect. 1, approaches such as typed assembly language should be regarded as
an alternative to current heavyweight protection mechanisms such as hardware-based memory
protection and the use of library stubs to trap to the OS.
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Thedlsetsym t instruction allows a reference to a type to be added to the export list
of a module, whiledlsetsym v instruction allows a reference to a value to be added.
Once such a shared library has been constructed, thedllink instruction allows it to
be linked with other modules.

Returning to the example above of a protocol module, suppose that this module
requires a typeProtID of protocol identifiers and an operationdeliver from the
OS. The latter operation is used by this protocol module to deliver a protocol data unit
to the next protocol above it in the protocol stack.

// Assume s1 points to initialized OS module
// Assume s2 points to loaded protocol module (PM)
dlsym t [ProtId] s1,s1, ProtId // Import prot id type
dlsym v s3,s1, deliver // Import deliver operation
dlsetsym t s2,s2,ProtId, ProtId // Export protocol id to PM
dlsetsym v s2,s2,s3, deliver // Export deliver to PM
dlopen s4,s2 // Initialize PM

Alternatively, if the code for initializing the protocol module is in the OS itself, then
this code can be defined as:

// Assume s2 points to loaded protocol module (PM)
dlsetsym t s2,s2,ProtId, ProtId // Export protocol id to PM
dlsetsym v s2,s2,deliver, deliver // Export deliver to PM
dlopen s4,s2 // Initialize PM

whereProtId anddeliver are direct references into the type and value heaps, re-
spectively, in the module implementing the OS.

For example, considering the example above of assigning theProtId anddeliver
fields of a protocol module, assume that the protocol module has type:

import type ProtId:: ProtId
import val deliver:: deliver : 8[EnvT] fa0:ProtId,... g

export type Conn:: Conn
export val open:: open : 8[EnvT] fa0:String,... g

Then setting theProtId field with theProtId type defined in the OS module
results in a module with type:

export type ProtId’:: ProtId
import val deliver:: deliver : 8[EnvT] fa0:ProtId’,... g

export type Conn:: Conn
export val open:: open : 8[EnvT] fa0:String,... g

sharing type ProtId’ �= ProtId

If the OS module has a value heap labeldeliver with type

8[EnvT] fa0:ProtId,... g

then the type sharing constraint allows this type to be equated with the type of the
deliver heap label in the protocol module. This allows thedlsetsym v instruction
to be used to assign this value field.
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8 Dynamic Linking

The final set of instructions are used to attach run-time type information to a DLL.
This type information is used in a run-time type check, to ensure that a DLL that is
loaded from disk or from the network has the required module type. There is an instruc-
tion dldynamic for bundling a value with a type description, and another instruction
dlload for checking that a DLL has a specified type.

Operation TMAL

Construct DLLdldynamic r;v;R (OT)

Extract moduledlload rm; r1; r2;R (OT)

The typehh ii is the type of a DLL. Thedldynamic instruction associates a type
tagR (OT) with the heap address of a module in a DLL valuehhw;R (OT)ii, of DLL
type. Although module values contain annotations of both import and export interfaces,
type identifiers and type annotations are stripped before execution. ThereforeR (OT)
denotes a value representation of a module type [11, 10].

The dlload instruction extracts a module from a DLL. This instruction also re-
quires the value representation of a module type, the type that is expected of the module
in the DLL. The instruction performs a run-time interface containment check, and if this
succeeds it coerces the module in the DLL to the required type. If the interface check
fails, control transfers to the failure continuation in registerr2.

The interface check includes a check for entailment of type sharing constraints. The
simple form of type sharing constraints, only relating type identifiers, and the fact that
the bindings in the type heap are opaque, facilitate this entailment check. The fact that
type heap bindings are opaque also has the benefit that the dynamic type check cannot
violate encapsulation of abstract types; this is explained in more detail in [13].

An interesting issue arises if the type of a module encapsulated in a DLL contains
free type identifiers. The type descriptionR (OT) bundled in a DLL then requires run-
time descriptors corresponding to these free type parameters. This can be done by, for
example, making the run-time descriptor typeR (OT) into a value type [11, 10].

However a simpler approach is possible if we require that, in the source language,
all free type identifiers in module types are bound to type components of other mod-
ules. This means that ultimately all free type identifiers in TMAL type descriptors are
references to the type heap. Some of these free type identifiers may be bound in the type
context, but ultimately instantiated to type heap addresses, because of thedlsym t in-
struction. Although we do not elaborate on it in this account, it is possible to extend the
type heap with run-time type tags for types exported by modules. This involves extend-
ing value types with tag typesTag(t), and extending values with type tagsa2 Tag(t).
The representation of module typesR (OT) is defined inductively on types, interfaces
and modules types, with a base case defined by:

R (t) = Tag(t)
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9 Related Work

There has been a great deal of work on the semantics of MILs, particularly in the context
of the ML module system [17, 16, 19, 20, 36]. The notion of separating external and
internal field names, with the latter allowing renaming to avoid name clashes, originated
with Harper and Lillibridge [16]. A related idea is used by Riecke and Stone to allow
fields of an object to be made private, and the object then extended with a field with
the same external name. Similar notions of internal and external names appear in the
module calculi of Ancona and Zucca [4] and Wells and Vestergaard [40].

Cardelli [6] gives a semantics for Unix-style linking in terms of a simpleλ-calculus,
ensuring that all symbols in a program are resolved before it is executed. Flatt and
Felleisen [14] and Glew and Morrisett [15] extend this work to consider typed module
contents and circular import dependencies. It is not clear what the type of a module
is in these approaches (linking simply resolves imports against exports in a type-safe
way). Glew and Morrisett do not support shared libraries (type sharing) or dynamic
linking. Flatt and Felleisen allow dynamic linking of units. However theinvokeoper-
ation for initializing a unit returns a single core language value; there is no other way
for a program to access the contents of a unit. Theinvokeoperation takes as arguments
types and values from the running program that can be provided as imports to a library
before initialization. So there are really two linking operations with units, the linking
operation for merging units and the more limited linking that is implicitly part of the
semantics of initialization. Our approach provides a single linking operation, and ad-
dresses the problem of sharing type (and value) identity that is not considered by these
other approaches.

Crary et al [7] give an explanation of recursive modules in terms of the structure cal-
culus [17]. Their work is predicated on the assumption that module linking is based on
functor instantiation, and phase-splitting allows this to be transformed to core-language
function application. As discussed in [13], it is difficult to generalize this model of
linking to the kinds of module operations we consider.

Work on dynamic linking has focussed on class loading in the Java virtual machine
[22]. Java has the problem of a weak MIL. On the other hand, ML has a powerful MIL
but no support for dynamic linking. The current work was originally motivated by the
desire to bridge this gap. Work on dynamic linking in ML has focussed on dynamic
types [2, 21, 1, 37, 12]. With these approaches a dynamic value tags a value with a run-
time type tag, of typeDynamic. This is similar to our approach to dynamic linking, but
extended to modules rather than simple values, as a way of reifying modules into the
core language.

A perennial problem with dynamics is that they violate encapsulation, in the sense
that the underlying representation type of a value with abstract type can be exposed, by
first bundling the value as a dynamic and then using runtime type checks to examine
the representation type. This is an artifact of the fact that types are bound at runtime
using beta-reduction. As mentioned in Sect. 8, and explained more fully in [13], our
approach to DLLs avoids this problem, because the bindings in the type heap remain
opaque during program execution.

Russo [35] considers an approach to adding first-class modules to ML, based on
converting module values to core language values and back again. Explicit type an-
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notations for modules ensure there are no unpleasant interactions with type inference.
Russo avoids the undecidability of type-checking with first-class modules by omitting
type subsumption for modules converted to core language values. This is similar to our
approach to ensuring decidability with first-class modules. Our reflective treatment of
DLLs is different from Russo’s treatment of first-class modules. A module reified into
the core language in Russo’s approach retains its type, though reified to a core language
type. In contrast, our reification operation (for building a DLL) masks the type entirely,
and there must then be a reflection operation (with a dynamic type check) that extracts
a module from a DLL. Dynamic typing is not necessary with Russo’s approach, since
his purpose is not to provide DLLs.

Ancona and Zucca [4], building on earlier work in mixin modules [3], provide a
primitive calculus of modules that supports circular dependencies. Types are restricted
to branded types. They do not consider dynamic linking or shared libraries (and the
resulting issues with recursive type constraints).

Wells and Vestergaard [40] present a calculus for equational reasoning about first-
class modules. They do not place any restrictions on circular import dependencies (in-
cluding dependencies between value components), allowing circular definitions that
lazily unwind. They verify strong normalization and confluence for their calculus, rely-
ing on a lazy reduction semantics. They do not consider typing aspects of their calculus.
So for example they do not consider the problem of equ-recursive versus iso-recursive
types, and they provide no support for shared libraries. Finally as with Russo’s work
there is no consideration of narrowing a DLL to a specific interface, an important prac-
tical facility for dynamic linking.

Crary, Hicks and Weirich [8, 18] extend TAL with primitive operations for build-
ing type-safe DLLs, on top of which more expressive dynamic linking mechanisms can
be constructed. For example they are able to provide a type-safe implementation of
the Unix dynamic linking API, as well as an implementation of units. Their approach
amounts to extending the TAL kernel with dynamics (as described above), providing
a functionality analogous to theIQuery interface in COM [34]. This is undeniably
a smaller extension of the kernel than that suggested here. On the other hand, their
approach is vulnerable to the same deficiencies with dynamics as described above. Fur-
thermore, although their approach is type-safe, it is also more low-level than the ap-
proach described here, and so many errors that are caught statically in our type system
are only caught dynamically by thetypecase construct of dynamics. The single type
failure point in our calculus is thedlload operation, that reflects a DLL from the core
language into the module language.

10 Conclusions

We have described Typed Module Assembly Language (TMAL), an extension of typed
assembly language with instructions for manipulating modules at run-time. These in-
structions include support for coercive interface matching, dynamically importing def-
initions from a library, constructing shared libraries, and using DLLs in a type-safe
manner. A possible application of these mechanisms is in component-based program-
ming environments, as demonstrated by commercial platforms based on COM or Java.
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The mechanisms described here can be used to enrich such environments with flexible
but type-safe operations for interconnecting modules under program control.
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A Type Rules for Modules and Symbol Tables

This appendix summarizes the type rules for modules and symbol tables. The type rules
for values and heaps are specified using judgements of the form given in Fig. 5. The
contexts of type and value heap bindings are defined by:

eΦ = f(t : K) j (t :: t : K) 2ΦgeΨ = f(x : A) j (x :: x : A) 2Ψg

The type rules for modules (object files) require that the type heap satisfies the
exported type heap interface, that the value heap satisfies the exported value heap in-
terface, and that the exported type sharing constraints are entailed by the type sharing
implied by the type heap, the type sharing context, and the type sharing constraints
imposed on the imports.

IntI = (ΦI ;ΨI ;ΞI ) IntE = (ΦE;ΨE;ΞE)eΦ[fΦI ;∆;Ξ[ΞI [SHARE(TH) ` TH : ΦEeΦ[fΦI [TENV(TH);∆;Ξ[ΞI [SHARE(TH) ` ΞEeΦ[fΦI [TENV(TH);∆;Ξ[ΞI ; eΨ[fΨI ` VH : ΨEeΦ;∆;Ξ; eΨ ` [IntI ) (TH;VH) : IntE] : [IntI ) IntE]
(VAL OBJECT FILE)

k�m ftk+1; : : : ; tmg= f?g fΦ0 = eΦ[ftm : Kmg fΦ0;∆ `fΦ0fΦ0;∆ ` K0

k
fΦ0;∆ ` BA

m : Km
fΦ0;∆;Ξ ` Kk � K0

keΦ;∆;Ξ ` ftm :: tm : KmBA
mg : ftk :: tk : K0

kg

(TYPE HEAP)

eΦ;∆ ` ΞeΦ;∆ ` K0

k
eΦ;∆ ` tk; t 0

k : K0

k
eΦ;∆;Ξ ` tk = t 0

k 2 K0

keΦ;∆;Ξ ` ftk �= t 0

k 2 K0

kg
(SHARE HEAP)
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eΦ;∆ ` � Type context formation

eΦ;∆ `Φ0 Type heap interface

eΦ;∆;Ξ `Φ0
= Φ00 Type heap interface equality

eΦ;∆;Ξ `Φ0 � Φ00 Type heap interface containment

eΦ;∆;Ξ ` TH : Φ0 Type heap

eΦ;∆ ` BA : K Type definition

eΦ;∆ ` Ξ Sharing heap interface

eΦ;∆;Ξ ` Ξ0 Entailment of type sharing constraints

eΦ;∆ `Ψ Value heap interface

eΦ;∆;Ξ `Ψ0
= Ψ00 Value heap interface equality

eΦ;∆;Ξ `Ψ0 � Ψ00 Value heap interface containment

eΦ;∆;Ξ; eΨ ` VH : Ψ0 Value heap

eΦ;∆;Ξ; eΨ ` Be : A Value definition

eΦ;∆ ` K Kind formation

eΦ;∆;Ξ ` K = K0 Kind equality

eΦ;∆;Ξ ` K � K0 Kind containment

eΦ;∆ ` A : K Type formation

eΦ;∆;Ξ ` A= B2 K Type equality

eΦ;∆;Ξ ` [IntI ) IntE]� [Int0I ) Int0E] Module type containment

eΦ;∆;Ξ; eΨ ` h : A Type of heap value

eΦ;∆;Ξ; eΨ `w : A Type of word value

eΦ;∆ ` Γ Register file type

eΦ;∆;Ξ; eΨ `R : Γ Register file

eΦ; eΨ;Ξ ` f∆;Γg I f∆0;Γ0g Instruction formation

Fig. 5.Judgement Forms of TMAL
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k�m fxk+1; : : : ;xmg= f?g fΨ0 = eΨ[fxm : Amg eΦ;∆ `fΨ0eΦ;∆ ` A0

k : ty eΦ;∆;Ξ;fΨ0 ` Be
m : Am eΦ;∆;Ξ ` Ak = A0

k 2 tyeΦ;∆;Ξ; eΨ ` fxm :: xm : AmBe
mg : fxk :: xk : A0

kg

(VAL HEAP)

The type rule for symbol tables is relatively straightforward. A symbol table is a
mapping from type and value external names to type and value labels, respectively,
in the global type and value heaps. The side-conditions thatfΦ0 � eΦ means that, in
checking the well-formedness of types and kinds, global type heap labels are chosen to
be consistent with the internal type names used in the interface of the symbol table.

IntE = (Φ0
;Ψ0

;Ξ0) ST= ft 7! t; x 7! xgeΦ;∆ `Φ0 eΦ;∆ `Ψ0 eΦ;∆;Ξ ` Ξ0

Φ0 = ft :: t : Kg fΦ0 � eΦ Ψ0 = fx :: x : AgeΦ;∆;Ξ; eΨ ` ST: IntE
(VAL SYMBOL TABLE)

TheTENVandSHAREmetafunctions are defined as follows:

TENV(TH) = f(t : K) j (t :: t : KBA) 2 THg

SHARE(TH) = f(t1 �= t2 2 ty) j (t1 :: t1 : K �= t2) 2 THg

B Semantics of Module Linking Instructions

In this appendix we provide more details of the static and dynamic semantics of the
instructions of TMAL. The reduction rules use configurations of the form

(fTH; fVH;R; I)

whereR is a register file andI an instruction stream, andfTH = f(x : A Be) j (x :: x : A Be) 2 THgfVH = f(t : IK BA) j (t :: t : IK BA) 2 VHg

Since the type annotations are not necessary for the dynamic semantics, we sometimes
abbreviate(x : A, v) and(t : IK �= t 0) as(x 7! v) and(t 7! t 0), respectively. The type
rules fordllink , dlcoerce anddlrename are similar to that for similar constructs
described in [13]. The reduction rules for these instructions are given by:

R(rm
i ) = xi andfVH(xi) = [IntiI ) (THi ;VHi) : IntiE]; i = 2;3

Int1E = (Int2E[ Int3E) Int1I = (Int2I t Int3I )� Int3E
TH1 = TH2[TH3 VH1 = VH2[VH3 x1 =2 dom(fVH)gVH0 = fVH[fx1 7! [Int1I ) (TH1;VH1) : Int1E]g

(fTH; fVH;R;(dllink rm
1 ; rm

2 ; rm
3 ; I))�! (fTH;gVH0

;R[rm
1 7! x1]; I)

(RED DL L INK )
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R(rm
2 ) = x2 andfVH(x2) = [Int0I ) (TH0

;VH0) : Int0E]

OT = [IntI ) IntE] x1 =2 dom(fVH)gVH0 = fVH[fx1 7! [IntI ) (TH0
;VH0) : IntE]g

(fTH; fVH;R;(dlcoerce rm
1 ; rm

2 ;OT; I))�! (fTH;gVH0;R[rm
1 7! x1]; I)

(RED DL COERCE)

R(rm
2 ) = x2 andfVH(x2) = [IntI ) (TH0

;VH0) : IntE]

x1 =2 dom(fVH) gVH00 = fVH[fx1 7! [ρ(IntI )) (ρ(TH0);ρ(VH0)) : ρ(IntE)]g

(fTH;fVH;R;(dlrename rm
1 ; rm

2 ;ρ; I))�! (fTH; gVH00;R[rm
1 7! x1]; I)

(RED DL RENAME)

The following type rule and reduction rule explain the semantics of thedlopen
operation. This operation expects registerrm to point to a module with type[IntI )
IntE], whereIntI = (fg;fg;fg). The operation leaves in registerrs a pointer to a symbol
table with interfaceIntE, after adding the heaps of the module to the program heaps:

eΦ;∆; eΨ;Ξ ` rm : [(fg;fg;fg)) IntE] Γ0 = Γ[rs : IntE]eΦ; eΨ;Ξ ` f∆;Γg (dlopen rs
; rm) f∆;Γ0g

(INSTR DL OPEN)

bR(rm) = x andfVH(x) = [(fg;fg;fg)) (TH0
;VH0) : IntE]

ST= f(t 7! t) j (t :: t : K) 2 IntEg[f(x 7! x) j (x :: x : A) 2 IntEg

x0
=2 idom(VH)[ idom(VH0) idom(fTH)\ idom(TH0) = fg gTH00 = fTH[gTH0

idom(VH)\ idom(VH0) = fg gVH00 = CLOS(fVH[gVH0[fx0 7! STg)

(fTH; fVH;R;(dlopen rs
; rm; I))�! (gTH00;gVH00;R[rs : IntE , x0]; I)

(RED DL OPEN)

TheCLOS(VH) operation removes shared value bindings of the formx : A�= y from
the value heap, by dereferencingy to its heap value definition:

CLOS(fVH) = f(x : A, h) j (x : ABe) 2 fVH; h= DEREF
fVH(x)g

DEREF
fVH(x) =

(
h if (x : A, h) 2 fVH
h if (x : A�= y) 2 fVH; h= DEREF

fVH(y)

The result ofCLOS(fVH) is undefined iffVH contains circular shared value bindings.
This corresponds to an initialization failure due to cycles in the specification of initial
values.
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The type rule and reduction rule for thedlsym v instruction are as follows:

eΦ;∆; eΨ;Ξ ` rs : (Φ0
;Ψ0

;Ξ0)

Ψ0 = (Ψ1;x :: x : A;Ψ2) FV(A)\ idom(Φ0) = fg Γ0 = Γ[r : A]eΦ; eΨ;Ξ ` f∆;Γg (dlsym v r; rs
;x) f∆;Γ0g

(INSTR DL SYMV )

fVH(bR(rs)) = ST

(fTH; fVH;R;(dlsym v r; rs
;x; I))�! (fTH; fVH;R[r 7! ST(x)]; I)

(RED DL SYMV )bR(v) denotes the application of the register fileR to the small value (register or word
value)v:

bR(v) =

�
w if v= w
R(r) if v= r

The type rule and reduction rule for thedlsym t instruction are as follows:

eΦ;∆; eΨ;Ξ ` rs
2 : (Φ0

;Ψ0
;Ξ0)

Φ0 = (Φ1; t :: t : K;Φ2) eΦ[fΦ0;∆;Ξ[Ξ0 ` K � K0 t =2 dom(eΦ)

∆0 = ∆[ft : K0g Γ0 = Γ[rs
1 : (Φ1[Φ2;Ψ0

;Ξ0)]eΦ; eΨ;Ξ ` f∆;Γg (dlsym t [t : K0]rs
1; r

s
2; t) f∆0;Γ0g

(INSTR DL SYMT )

fVH(bR(rs)) = ST ST= ST0[ft 7! tg R0 = R[rs
1 7! ST0]

(fTH; fVH;R;(dlsym t [t 0 : K0]rs
1; r

s
2; t; I))�! (fTH; fVH;R0

;ft=t 0gI)
(RED DL SYMT )

In the reduction rule, the local type identifiert 0 is bound to the global type heap address
t of the type definition pointed to by the symbol table. This allows the remainder of the
instruction streamI to access the value heap definitions, pointed to by the symbol table,
that have references to this type heap address.

Type heap addresses and type identifiers serve only to support type-checking of
the assembly code, and are stripped for run-time execution. The substitutionft=t 0gI is
performed only in the abstract reduction semantics. Although we do not elaborate on it
further here, thedlsym t instruction can be generalized to import run-time type tags
from a DLL, for languages such as Java and Modula-3 that associate type tags with
some values.

The type rule for thedlsetsym v instruction is reasonably straightforward. The
only complication is that the type of the value field being assigned may have free type
identifiers that are bound in the module. The typing rule relies on type sharing con-
straints in the module type that relate these locally bound type identifiers to global
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identifiers bound by the program type heap:

eΦ;∆; eΨ;Ξ ` v : A eΦ;∆; eΨ;Ξ ` rm
2 : [IntI ) IntE]

IntI = (ΦI ;ΨI ;ΞI ) IntE = (ΦE;ΨE;ΞE) (x :: x : B) 2ΨIeΦ[fΦI [ fΦE;∆;Ξ[ΞI [ΞE ` A= B2 ty
Γ0 = Γ[rm

1 7! [(IntI �fx :: x : Bg)) (IntE [fx :: x : Bg)]]eΦ; eΨ;Ξ ` f∆;Γg (dlsetsym v rm
1 ; rm

2 ;v;x) f∆;Γ0g
(INSTR DL SETSYMV )

fVH(bR(rm
2 )) = [IntI ) (TH0

;VH0) : IntE] (x :: x : A) 2 IntI bR(v) = y

Int0I = IntI �fx :: x : Ag Int0E = IntE [fx :: x : Ag

z =2 dom(fVH) gVH00 = fVH[fz 7! [Int0I ) (TH0
;VH0[fx :: x : A�= yg) : Int0E]g

(fTH; fVH;R;(dlsetsym v rm
1 ; rm

2 ;v;x; I))�! (fTH; gVH00;R[rm
1 7! z]; I)

(RED DL SETSYMV )

Thedlsetsym t instruction for assigning a type field in a module similarly relies
on type sharing to equate any local type identifiers with global type identifiers in the
kind of the type being assigned. Free type identifiers may appear free in the kind of
a field with box kind. Once a type field has been assigned, a type sharing constraint
is added to the export interface of the module, to allow subsequent value fields to be
assigned:

eΦ;∆ ` t 0 : K eΦ;∆; eΨ;Ξ ` rm
2 : [IntI ) IntE]

IntI = (ΦI ;ΨI ;ΞI ) IntE = (ΦE;ΨE;ΞE) (t :: t : K0) 2ΦIeΦ[fΦI [ fΦE;∆;Ξ[ΞI [ΞE ` K = K0

Γ0 = Γ[rm
1 7! [(IntI �ft :: t : K0g)) (IntE [f(t :: t : K0);(t �= t 0 2 K0)g)]]eΦ; eΨ;Ξ ` f∆;Γg (dlsetsym t rm

1 ; rm
2 ; t 0

; t) f∆;Γ0g

(INSTR DL SETSYMT )

fVH(bR(rm
2 )) = [IntI ) (TH0

;VH0) : IntE] (t :: t : K) 2 IntI
Int0I = IntI �ft :: t : Kg Int0E = IntE[f(t :: t : K);(t �= t 0 2 K)g

z =2 dom(fVH) gVH00 = fVH[fz 7! [Int0I ) (TH0[ft :: t : K �= t 0g;VH0) : Int0E]g

(fTH; fVH;R;(dlsetsym t rm
1 ; rm

2 ; t 0
; t; I))�! (fTH;gVH00

;R[rm
1 7! z]; I)

(RED DL SETSYMT )

Finally the reduction rules for the instructions for creating a DLL, and for extracting
a module from a DLL, are as follows:

x =2 dom(VH) gVH0 = fVH[fx 7! hhbR(v);R (OT)iig

(fTH; fVH;R;(dldynamic r;v;R (OT); I))�! (fTH;gVH0
;R[r 7! x]; I)

(RED DL DYNAMIC )
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bR(r1) = x andfVH(x) = hhy;R (OT)ii

OT= [IntI ) IntE] OT00 = [Int00I ) Int00E] fVH(y) = [Int0I ) (TH0
;VH0) : Int0E]

TENV(fTH);fg;SHARE(fTH) ` [IntI ) IntE]� [Int00I ) Int00E]

z =2 dom(fVH) gVH00 = fVH[fz 7! [Int00I ) (TH0
;VH0) : Int00E]g

(fTH;gVH00;R;(dlload rm
; r1; r2;R (OT00); I))�! (fTH;gVH00;R[rm 7! z]; I)

(RED DL DYNAMIC )


