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Abstract

Developing intelligent agents for multi-agent, inaccessible, adversarial environments is ar-
guably one of the most challenging areas in arti�cial intelligence today. Great strides have
been made in developing emergent cooperation among teammates, but less progress has
been made in quickly and automatically changing overall team strategy in response to ad-
versary actions. One way that humans do such adaptation is by noting a similarity to a

past adversary. This project is a system to do that sort of classi�cation. The system is fully

implemented in the simulated robotic soccer environment as used in RoboCup. The system
does the following: Each agent observes the adversary and records relevant features. Based
on these observations, each agent then classi�es the adversary with regards to a set of pre-

de�ned behavioral classes. The agents record their classi�cation, and the team classi�cation

is decided by a simple majority. The e�ectiveness of this system on some simple behavior
classes is shown. Future directions can include machine learning of behavior classes and

strategy changes for those behavior classes, as well as developing more complicated classes.

This report was produced as an undergraduate senior honors thesis during the 1998-1999 academic year.
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1 Introduction

Developing intelligent agents for multi-agent, inaccessible, adversarial environments is ar-

guably one of the most challenging areas of research in arti�cial intelligence today. Great

strides have been made in developing emergent cooperation among agents. Less progress has

been made in automatically changing overall team strategy in response to adversary actions.

Individual decisions are often a�ected by the adversaries' behavior, but strategy decisions at

the level of all of the cooperating agents are often �xed or can only be changed by human

intervention.

Ideally, agents should e�ectively adjust their group behavior in response to adversary

actions. One way of doing this is suggested by one way that human sports teams adjust.

As they play, each player consciously or subconsciously compares the current opponent to

previously played opponents. Once they have identi�ed the particular style of play, they

generally try whatever strategy was e�ective against the previous adversary.

The test environment for this research is simulated robotic soccer as used in RoboCup
(Section 2). Some attempts have been made to do online adaption in this domain. At the
level of individual skills, there has been some success. One example is the ISIS team, which
changes ball interception strategies based on successes and failures during a game[4]. At a

team level, the Andhill'98 team uses observationally based reinforcement learning to try and
adjust the team formation[1], but this has not been very e�ective. Peter Stone has developed
a novel reinforcement learning paradigm called TPOT-RL[7] which has been shown to be
e�ective in learning team passing strategies. However, the learning time is such that it is
not useful during the course of a normal game.

A �rst step in the endeavor to make arti�cial agents exhibit the same high-level adaptive
behavior as humans is to be able to e�ectively classify adversary behaviors to determine what
strategy change is appropriate. Because the environment is multi-agent and inaccessible, this
step is non-trivial. It is a signi�cant challenge to use low-bandwidth, unreliable communi-

cation to e�ectively combine the partial information from all the agents into a consistent
whole which can be used to create an e�ective change of strategy.

This is the step which is addressed in this research. The algorithms are implemented

in the test environment of simulated robotic soccer. The agents observe the adversary

behaviors, using continuous, low bandwidth communication to keep a consistent view of the
world. Then, by a global trigger they classify the adversary and record that information.
Deciding on a strategy change based on that classi�cation is not addressed in this research.

2 The Test Environment

2.1 Overview

The test environment for the algorithms and data structures developed here is the Soccer

Server System used by the international arti�cial intelligence research initiative RoboCup[3].

The Soccer Server System was developed by Noda Itsuki[5]. It is undergoing constant revi-

sion, though an attempt is made to keep a manual[2], which describes in full the features

outlined below.
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The Soccer Server System is a server-client system which simulates soccer in a discrete

fashion. Clients communicate using a standard network protocol with well-de�ned actions.

The server keeps track of the current state of the world, executes the actions that the clients

request, and periodically sends each agent noisy, incomplete information about the world.

Agents get noisy information about the direction and distance of objects on the �eld (the

ball, players, goals, etc.), but only for objects in the direction that the agent is facing.

2.2 Communication

Besides the natural soccer actions such as running, kicking, and turning around, the agents

are able to \shout" to each other. During every cycle in the server, each agent can say a

message of up to 512 characters. The reception (or \hearing") of the messages is somewhat

restricted in the following ways:

� Limited Range: Agents only hear other agents shouting if they are within 50m of
each other (the full �eld is 105m � 68m). This generally means that players in the
middle can hear most of what is shouted, but those closer to the ends can not hear
each other.

� Limited Sender Info: The only information about the sender that the hearing
agent gets is the time and direction from which the message came. This can easily be
remedied by including that information in the message itself. However, that requires
that the agents have a shared frame of reference, such as global coordinates, which can
only be noisily calculated.

� Limited Bandwidth/Frequency: As mentioned before, the messages are of limited
length. More importantly though, each player can only hear 1 message from each team
every two cycles. Therefore, if several agents shout at the same time, some will not be
heard.

� No Guaranteed Delivery: No communication with the server has guaranteed net-

work delivery, and as mentioned above, some messages will be dropped by the server

if too many agents shout at the same time.

In spite of these restrictions, the agents can communicate e�ectively quite frequently.

The 512 characters allowed in each message can carry a large amount of data.

2.3 Inaccessibility

The environment is inaccessible in two major mays. First of all, the agents visual information

reects only objects that are in the direction the agent is facing (see Figure 1). The agent
can trade o� size of the view cone for frequency of information, but for the purposes of this

work, that trade o� was generally held constant.

Secondly, and more importantly for this work, the amount of information received de-

creases as the distance to the object increases. When the seen object is very close, the agent

receives information about its relative position and velocity. As the object is moved farther
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Figure 1: The Incompleteness of Visual Information

away, there is a decreasing probability that the agent will receive information about the ob-
ject's velocity. Also, for seen players, there is a decreasing probability of seeing the player's
number, and then further away, a decreasing probability of even seeing which team the

player is on. This is shown in Figure 1. This means that if an agent watches a player moving
away, it will gradually receive less and less information. This has important implications for
observing the opponents, which is discussed further in Section 4.1.

2.4 Development Base

The agents used here are based upon the CMUnited '98 simulator team developed by Pe-

ter Stone, Manuela Veloso, and Patrick Riley [8]. The team won the simulator league at
RoboCup'98, outscoring opponents by a combined score of 66-0. The team is based partially

on the CMUnited '97 simulator team developed by Peter Stone and Manuela Veloso [6].

3 Classi�cation

3.1 Overview

The classi�cation of adversary behavior is done in several steps:

1. Observe the opponents' behavior and record relevant features (Section 3.2).

2. Each agent classi�es the adversary based on its observations (Section 3.4).

3. Record the information (Section 3.5).
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This items are performed on a �xed time schedule, which is easy since the game clock is

a globally accessible feature of the world. In an environment without such global triggers,

one can imagine each agent keeping track of their own time perceptions and then using

communication to synchronize. This cycle of observe/classify/record is known as an epoch.

3.2 Observations

In general, the observations are domain-dependent. They should record some feature and

de�ne a similarity metric over di�erent epochs of observations.

The observations are basically just feature extractions over all the visual and auditory

information which the agents get. At every action opportunity (every cycle of the server),

each agent updates its world model to be as accurate as possible, then records some piece

of the world model for each observation. For all of the observations described here, the time

internal to the epoch is discarded. For example, if we have an observation that records events
of a particular type, and one happens at time 50 of a 500-cycle epoch, it will be recorded
exactly the same as if it had occurred at time 400. This allows signi�cant simpli�cation of
the data recorded, but is not an essential feature of observations.

3.2.1 RectGrid and RectGridMulti

Two data structures are used to record the observation information.
            

Figure 2: A example RectGrid

A RectGrid is just a division of the �eld into small geographic regions (or bins). The

recording of an observation is just adding a count to one of the bins. The end result can be

represented as a 3d-plot as in Figure 2. In all the experiments performed here, the RectGrid
dimensions are 8�15, with the longer dimension in the longer dimension of the �eld.
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RectGridMulti is simply a RectGrid with an additional dimension representing direction.

In other words, each bin of a RectGrid is further divided into directions. This is useful for

storing information such as the direction of a pass as well as where it occurred. For the ex-

periments here, the directions were divided into 4 bins:[�45�; 45�], [45�; 125�], [135�;�135�],

[�135�;�45�].

3.2.2 Implemented Observations

� Ball Position: The ball's position is stored in a RectGrid

� Opponent Position: Each opponent's position is stored in RectGrid (so there are 11

separate RectGrids in all)

� Opponent Passing: This observation records all opponent passes in a RectGridMulti.
A pass is de�ned as follows: Some opponent is in control of the ball at some cycle.
Within 50 cycles, a di�erent opponent controls the ball, with no more than 2 other
players controlling the ball in the middle. It is important to allow some control of the
ball by other players in the middle of a pass because if a pass goes near another player,

noise in the world info can make an agent believe a player has control when he does
not.

� Opponent Dribbling: This observation records all opponent dribbles in a Rect-
GridMulti. A dribble is de�ned as follows: Some opponent is in control of the ball
continuously (with no more than 4 cycles in a row where he does not control the ball)

and his position changes by at least 3m.

3.3 Behavior Classes

The goal is to match the observed behavior to prede�ned behavior classes. The format for
behavior classes is fairly simple. Each behavior class is a list of target con�gurations for

some or all of the observations. For example, the RectGrid shown in Figure 2 represents the

position of one mid�elder in the normal 433 formation.

Each target con�guration also has a weight that is used for matching. This way some
con�gurations can be considered more important for a particular adversary type.

3.4 Similarity Metrics

3.4.1 Overall Matching

The procedure for matching observations to behavior classes is illustrated in Figure 3. On the
left side are the di�erent behavior classes, which include varying numbers of observation types

(each shading represents a distinct observation). In the middle are the actual observations

from the game in progress. As is shown, each target con�guration in the behavior classes is
matched to the appropriate observation from the game (a detail of this is discussed below).

The similarities are then added and normalized to within [0; 1].
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Figure 3: Matching Adversary Classes to Observations
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Figure 4: Matching a Target Con�guration to an Observations

The procedure for matching a target con�guration to an observation is also straightfor-

ward. The target and actual observed con�gurations are put into a similarity function (see
Section 3.4.2), whose output is multiplied by the weight of this target con�guration in the
behavior class.

3.4.2 Observation Similarity

The similarity of the other observations is based on the metric of similarity de�ned for Rect-
Grid and RectGridMulti. The only other question is for the opponent position observation:

How is it decided which numbers match up? It should not be required that the same number

players play the same position in order to be considered similar. Since the players can gen-
erally be distinguished by how far forward they play, the average forward/backward position

of each player is calculated. The RectGrids are ordered that way and each observed player
is compared to the �ve most closely ranked corresponding adversary class RectGrids. The

most similar of those is used in the total similarity count.
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3.4.3 RectGrid: A Discrete Spatial Similarity Metric

Qualitatively, the desired properties of a RectGrid similarity function S are:

� For all RectGrids a; b, 0 � S(a; b) � 1, with 0 representing no similarity and 1 occurring

if and only if a = b.

� If RectGrid a has the same topology as RectGrid b, just shifted slightly, then S(a; b)

should be large. If RectGrid c is shifted even more, then S(a; b) > S(c; b).

� If RectGrid a has the same topology as RectGrid b, just scaled down, then S(a; b)

should also be large, but not as good as if they had the same size.

� Symmetry: S(a; b) = S(b; a)

            

Figure 5: A example di�erence of RectGrids

A new metric was devised in order to achieve all of these properties. It works as follows.

First, scale the RectGrids so the total in all the bins is the same. Reduce the end similarity

calculated (equation (5)) by a factor according to how much scaling was required. Then,
compute the di�erence of the RectGrids by subtracting each of the bins. This gives a new

RectGrid something like what is shown in Figure 5, with some peaks and valleys. If there are
no peaks and valleys, then a = b, so return 1. Imagine each valley vj exerts a gravitational

attraction on each peak pi.

Fij =
jpijjvjj

(dist(pi; vj))
2

(1)

Then divide each peak into pieces proportional to the forces acting on them.

�ij =
FijP
j
Fij

(2)

7



Next multiply the amount of each piece by the distance it has to go to get to the valley

corresponding to it.

Si =
X

j

(�ijjpij) dist(pi; vj) (3)

The similarity is simply

S =
1P
i Si

(4)

The only problem is that this is not a symmetric relation. This is easily solved though:

S0 = S(a; b) + S(b; a) (5)

One can easily see that the qualitative properties desired are achieved.

3.4.4 RectGridMulti

The RectGridMulti similarity metric ignores the extra direction information and performs
the RectGrid similarity metric described above. It would be possible to assign an additional
attraction/repulsion for the direction info, but that would have to be weighted against the
peak/valley attraction. More experimentation would be needed to establish the proper
balance.

3.5 Multi-Agent Agreement

After classi�cation, each agent records its vote, and a simple majority rule is used to deter-
mine the team opinion. At this point, the agents do not negotiate this opinion during the
game through communication, though this sort of vote could easily be incorporated into the

current communication system.

4 Experiments and Results

4.1 Continuous Communication

While the game is being played, the agents use the Soccer Server's communicationmechanism
(see Section 2.2) to exchange information quite frequently. They will always \shout" at least

once in every 100 action opportunities. Included in every communication is the best guess

for the location of the ball and every player, with the con�dence the agent has about that
information. Details of this mechanism are discussed in [8].

As discussed in Section 2.3, the visual information of far away objects is incomplete.
However, the players do some basic visual tracking implemented by Peter Stone [8]. There-

fore, if they see a player's number, they track that player's movement (as long as they are

receiving information about the player's location), even when they no longer see the player's
number. This suggests a useful procedure that the agents use. Take the simple case of two
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Figure 6: An Example for the Usefulness of Continuous Communication

cooperating agents looking at an opponent. As shown in Figure 6, one agent is further away,
so it may not ever see the opponents number. However, the agent that is closer may have
that information, which is exchanged in routine communication. Once the agent further
away knows the number of the player, it can track that player as it moves around and be
reasonably sure that it it is the same opponent even if it never gets visual con�rmation of

the number of the opponent.
It was hoped that this sort of communication would allow each agent to have a more

complete view of the world. This is supported by the results. For each player, the percentage
of the time that it knows where each of the opponents are was recorded. Those percentages
were then averaged over all opponents. This was done when the agents were and were not

communicating. In Figure 7, this di�erence is illustrated. Some players bene�t more from
communication; for example, the goalie (number 1) sees an increase of about 50% in the
amount of time it knows where the opponents are.

The classi�cation agreement (discussed in Section 4.2.3) further supports the agents
having a fairly consistent view of the world.

4.2 Adversarial Classi�cation

4.2.1 The Teams and Classes Used

In order to test the classi�cation, three separate formations were used:

� Normal 433: This is the formation that was used most often for RoboCup'98, with
1 goalie, 4 defenders, 3 mid�elders, and 3 attackers.

� Left: All of the players home positions in the formations are on one long side of the

�eld. That is, if you draw a line from one goal to the other, all but one of the players

line up on one side. There is one mid�elder who lines up slightly on the other side.
This formation is also a bit defensive; it has 1 goalie, 4 defenders, 4 mid�elders, and 2

strikers.
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Figure 7: Results of Using Communication

� Right: This is the same as the left formation, but on the other side of the �eld.

Identi�cation of these three teams is not as simple as it �rst seems. There are three
behaviors that complicate this:

� Marking: \Marking" basically means that the defenders are assigned to opponents
and position themselves nearby to intercept passes, prevent dribbling, and block shots.
The players home position is completely ignored here. If the opponent strikers spread

across the �eld, then so do the defenders who mark them.

� SPAR: SPAR is an o�ensive positioning algorithm used in CMUnited'98[8]. When one
striker has control of the ball, the others position themselves by taking into account

the the position of the ball, the opponents, and the opponents goal. Once again, the
home position in the formation is not taken into account.

� Set plays: Set plays are used in all free-kick situations. This includes any time the
ball goes out of bounds (thrown-ins, goal kicks, corner kicks, etc) as well as penalty

calls like o�sides. A subset of the players have de�nite positions and roles in a set play.
For example, if there is a throw-in on the right side of the �eld, even the left team will

send several players over to that side to perform the set play. The set play can take

several hundred cycles to start and execute, so this can signi�cantly a�ect the results
of a 500 cycle epoch.
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In order to generate adversary classes for these three formations, each formation was

played against a normal formation team who gathered all the observations described in

Section 3.2.2. The teams played several games for a total of 75-100 epochs. The recorded

observations were then averaged together to form the behavior class.

After the behavior classes were generated, each of the teams was played against a clas-

sifying team (which used the normal 433 formation). The game was run for 100 epochs, or

50000 cycles altogether, and each of the agents of the classifying team recorded their decision

at the end of each epoch. The next two sections discuss those results.

4.2.2 Classi�cation Accuracy
            

Figure 8: Classi�cation Accuracy

The percentage of the time that the team decision (decided by majority vote) was the same

as the actual formation of the observed team is shown in Figure 8. When playing against
the left team, the accuracy was above 80%, but for the other two, the accuracy was only

about 50%. In any case, the selection is still signi�cantly better than random (33%). It

is not known why there is such a disparity between the di�erent trials. It is possible that
the teams were stuck in a set play for a long period of time, which could push down the
classi�cation accuracy. Also, for the Right team trial, one of the observing players stopped

recording votes after 21 epochs. It is possible it also stopped playing after that time. Its

failing to move may have thrown o� other opponent position based behaviors in the observed
team.

4.2.3 Classi�cation Agreement

The other important feature of the team votes is the agreement between them. The number
of votes not cast for the majority are illustrated in Figure 9. The dissenting votes are

counted regardless of whether the classi�cation with the most number of votes is the correct
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Trial Average Standard Deviation

Left 1.56 1.77
Right 0.64 1.31

Normal 0.87 1.61

Total 1.02 1.62

Figure 9: Dissenting Votes for Team Classi�cation

one. This gives some measure of how consistent a world picture is given to the agents through

continuous communication (Section 4.1). It should be noted that since one player stopped
recording votes during the right trial, one would expect a slightly lower average dissenting
vote count. The average of approximately 1 out of 11 votes disagreeing is quite good, but
the standard deviation is high. The players are occasionally getting into situations where
the majority is decided by as slim a margin as 1 vote.

5 Conclusions and Future Work

All in all, the results are not totally conclusive. The system is able to e�ectively classify
signi�cantly better than average in some test cases, but performs signi�cantly better in some

cases rather than others (as demonstrated by the left results). More trials could be performed

to explore why the classi�cation accuracy varies such a great deal. Also, the multi-agent
agreement needs to be worked on. In most cases it is good, but on some epochs there are
wildly disagreeing opinions.

Adding more observations and more behavior classes would also help to test the system.

The observations here were very simplistic. Creating observations that record more inter-

esting and critical features would be a big step in making the system applicable to a real

game situation. Also, the adversary classes demonstrated here were very simple. Identifying

how to group adversaries into strategic classes is a signi�cant challenge. Also, with more

adversary classes to choose from, picking the right one would be more di�cult, and would
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further demonstrate the e�ectiveness of the system.

Another thing to add to the system would be a notion of a priori probabilities for behavior

classes. Once there is a signi�cant library of behavior classes, having these probabilities may

help choose between them.

This system could also be applied to an on-line coach. The Soccer Server System is

implementing a facility for a coach as an additional research outlet. The coach has a global

world view and can shout to the players only when the ball is not in play. The coach could

perform the observations and classi�cation himself, shouting to the players just the class

into which the opponent falls. Each agent would then have the appropriate behavior change

stored.

There are two excellent learning opportunities in this system. The �rst is in creating

observations. The observations used here were hand coded, and automatic extraction of

these features is an interesting challenge. Taylor Raines and Milind Tambe are developing

the ISAAC system which does an automatic feature extraction over soccer server games[9],

though the features are slightly di�erent than those used here .

Second, the part of the process which should occur after classi�cation is not addressed
here. This part is team selection of a strategy which will improve performance against the
adversary. With the system given here, the team will have a consistent classi�cation of the
adversary, so a simple mapping of behavior type to strategy is needed. This is once again
an excellent opportunity for machine learning.

Overall, this system has shown some e�ectiveness at classi�cation in a very small amount
of time in the Soccer Server System. Further expanding the system both in the soccer
environment and to other environments is an interesting research task. Developing systems
which can adapt during the course of a game is an important step in the long term AI goal
of developing agents with abilities more like humans.
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