

Formalizing a Specification for Analysis:
The HLA Ownership Properties

Craig A. Damon, Ralph Melton, Robert J. Allen, Elizabeth Bigelow,
James M. Ivers, David Garlan

April, 1999
CMU-CS-99-126

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

This research was supported by the Defense Advanced Research Projects Agency and Rome
Laboratory, USAF, under Cooperative Agreement F30602-97-2-0031, and by the Defense
Modeling and Simulation Office (DMSO). Views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of Rome Laboratory, the US Department of Defense, or DMSO. The US
Government is authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation thereon.

Keywords

Formal specification, model checking, Z specification language, distributed simulation.

We would like to acknowledge the help of Richard Weatherly and Reed Little, our main sources of
wisdom for the intended behavior of the HLA.

Abstract

Interfaces are commonly specified using informal or semi-formal
techniques, relying primarily on natural language descriptions.
Such specifications, however, can easily overlook significant details
and are not amenable to analysis by automated tools. This paper
looks at formalizing one portion of a substantial specification, the
ownership management chapter of the DoD HLA framework, and
at the subsequent analysis using the tool Ladybug.

1

1. Introduction

Developers typically specify interfaces informally, or perhaps semi-formally, relying primarily on
a natural language description of each function in the interface to explain its operation and
interactions. These informal specifications are undeniably simpler and faster to produce than ones
making significant usage of a formal notation, such as Z or CSP. The informal specifications are
also accessible to a much broader audience; relatively few people, even among well-trained
practicing software engineers, are fluent in any of the formal notations.

There are, however, advantages gained from the effort of producing a formal specification. A
clarity of precision is the most obvious of these advantages. Whereas a natural language
description can often be ambiguous, a formal notation definition is precise and unambiguous. The
rigor of formalization may also force the consideration of poorly understood areas that are easily
swept under the rug of natural discourse.

A second advantage of formalization is the opportunity to use automated analysis tools to check
certain desired properties of the design. Model checkers and similar automated tools now exist for
many formal notations [CW+96]. These tools accept a formal description of a system and one or
more claims about that system as their input, outputting a concrete counter-example for each
claim that is found to be false.

This paper describes the formalization into Z of one portion of the semi-formal specification of a
large system, the HLA distributed simulation architecture. The goal of this formalization was to
find inconsistencies and ambiguities in the original specification, through the formalization itself
as well as through the use of an automated analysis tool, Ladybug. This paper documents five of
the issues discovered in this process, any of which could have led to incompatibilities in
apparently conforming components.

1.1 Overview of HLA

Beginning in 1996, the Defense Modeling and Simulation Office (DMSO) of the United States
Department of Defense developed a component integration standard for distributed simulation
called the “High Level Architecture” (HLA). Informally, the HLA prescribes a kind of
“simulation bus” into which simulations can be “plugged” to produce a joint (distributed)
simulation. A goal of the standard was to allow independent vendors to develop simulations that
can be combined for use in a single, unified simulation with minimal complications.

In the HLA design, members of a

federation

 — the HLA term for a distributed simulation —
coordinate their models of parts of the world by sharing objects of interest and the attributes that
define them. Each member of the federation is called a

federate

. A federate is responsible for
calculating some part of the larger simulation and broadcasting updates using the facilities of the
runtime infrastructure, termed the

RTI

.

Routines that support communication both from the federates (e.g., to indicate new values) and to
the federates (e.g., to request updates for a particular attribute) are defined in the “Interface
Specification” document or

IFSpec

 [DoD97]. Routines, or “services”, in the IFSpec are defined
by a name, the initiator (either a federate or the RTI), a set of parameters, a possible return value,
pre- and post-conditions, and a list of exceptions that may occur as a result of executing the
service.

2 Formalizing a Specification for Analysis

An example of a typical RTI service is shown in Figure 1 (taken from [DoD97]). This service is
initiated by a federate when it wants to relinquish ownership values for some attributes of a
particular object being simulated by the federate. The federate relinquishes ownership, however,
only when informed by the RTI using the

Attribute Divestiture Notification

 service.

The HLA is a complex integration framework. The current IFSpec includes over 125 different
services, and the full document is over 400 pages of description. While the part of the HLA design
that deals with attribute broadcast is relatively straightforward, the overall framework is
complicated significantly by the need to deal with issues such as starting, stopping, and pausing;
allowing one federate to transfer object ownership to another; and distributed clock management
and time-ordered message sequencing.

To make the integration framework manageable, the IFSpec is divided into six chapters:
federation management, declaration management, object management, ownership management,
time management, and data distribution management. Federates use the federation management
services to initiate a federation execution, to join or leave an execution in progress, to pause and
resume, and to save execution state. Declaration management services communicate what kinds
of object attributes are available and of interest, whereas object management services
communicate actual object values. Ownership management services allow responsibility for
calculating the value of an attribute to be transferred from one federate to another. Time
management services coordinate the logical time advancements of federates and to ensure that
messages are delivered in time-stamp order. Data distribution management services filter attribute
updates for each federate based on defined criteria, reducing message traffic and processing
requirements.

1.2 The HLA Model of Attribute Ownership

The remainder of this paper focuses on the ownership management services, which control the
transfer of ownership of attributes. The HLA adopts an object view of a distributed simulation; the
simulation universe consists of a collection of objects, each of which has a set of attributes. The
job of the overall simulation is to calculate and update values of these attributes over time.
Different federates can calculate values of different attributes of the same underlying object.

Every object in an HLA simulation is an instance of some object class

1

. These classes define the
attributes for their instances; the IFSpec defines an attribute to be “a distinct, identifiable portion
of the object state”. Version 1.2 of the IFSpec is at times inconsistent in its usage of the term
attribute, sometimes meaning a value associated with a single object and at other times meaning
the generic attribute across all objects of a particular class. We will use the phrase

object attribute

to describe the former case and

class attribute

 to describe the latter case.

2

The object classes defined by the IFSpec support inheritance, which introduces some additional
complexity. None of the properties we model depend in any way upon this inheritance, so we

1. The IFSpec discusses two kinds of classes: object classes and interaction classes. Interaction classes are
irrelevant to the work presented here, so we will use the word class to refer to object classes.

2. Partially in response to our concerns about this distinction, later versions of the IFSpec consistently dis-
tinguish object attributes from class attributes. They chose, however, to use the term instance attribute
rather than object attribute.

The HLA Ownership Properties 3

5.1 Request Attribute Ownership Divestiture
 Federate Initiated

Notifies the RTI that the federate no longer wants to own the specified attributes of the specified object. The federate supplies
an object ID and set of attribute designators.

Options:

 1. The federate can specify which federate(s) can take ownership of the released attributes, otherwise any federate may
own them.

 2. The federate can indicate if the requested ownership divestiture is to be negotiated or unconditional. If the
divestiture is negotiated, ownership will be transferred only if some federate(s) accepts. An unconditional transfer
will relieve the divesting federate of the ownership, causing the attribute(s) to go into (possibly temporarily) the
unowned state, without regard to the existence of an accepting federate.

The federate must continue its publication responsibility for the specified attributes until it receives permission to stop via the
Attribute Ownership Divestiture Notification service. The federate may receive one or more Attribute Ownership Divestiture
Notification invocations for each invocation of this service.

Supplied Parameters
An object ID designator

A set of attribute designators

Ownership divestiture condition (negotiated or unconditional)

A user-supplied tag

Optional set of federates

Returned Parameters
None

Pre-conditions
The federation execution exists

The federate is joined to that federation execution

An object instance with the specified ID exists

The federate owns the specified attributes

Post-conditions
No change in attribute ownership

The federate has informed the RTI of its request to divest ownership of the specified attributes

Exceptions
Object not known

Attributes not defined in the FED

Federate does not own attribute

Invalid divestiture condition

Invalid candidate federate

Federate is not a federation execution member

Save in progress

Restore in progress

RTI internal error

Related Services
Request Attribute Ownership Assumption

Attribute Ownership Divestiture Notification

Attribute Ownership Acquistion Notification

Figure 1: The Request Attribute Ownership Divestiture service of the RTI, as specified in the IFSpec [DoD97]
(version 1.2).

4 Formalizing a Specification for Analysis

dropped consideration of inheritance. The choice of which portions of the model to consider and
which to ignore is an important aspect of modeling a system for analysis.

HLA propagates object attribute updates using a publish and subscribe system, although they use
the standard terminology in a somewhat non-standard way. A brief glossary of the terminology (as
used in the IFSpec) is presented in Figure 2.

As an overview, an object attribute of a given object is updated only if some federate

•

publishes

 the corresponding class attribute,

•

owns

 the object attribute for that object, and

•

updates

 the value

Another federates “sees” the updated value for the object attribute only if it

subscribes

 to the
corresponding class attribute. The receipt of this new value is known as a

reflection

.

A federate may own an object attribute only if it publishes the corresponding class attribute and
no other federate owns that object attribute. A federate begins the acquisition of ownership of an
object attribute by requesting ownership from the RTI using the

Request Attribute Ownership
Acquisition

service. The RTI will respond, if possible, by granting ownership using the

Attribute
Ownership Acquisition Notification

 service.

A federate can similarly disown an object attribute by initiating the

Request Attribute Ownership
Divestiture

 service and waiting for the corresponding

Attribute Ownership Divestiture
Notification

 service invocation from the RTI. The divestiture request can either be unconditional,
leading to a possibly unowned object attribute (which will therefore not be updated until another
federate claims ownership), or it can be negotiated, with the federate maintaining ownership until
the RTI can locate another federate willing to own the object attribute.

The RTI searches for possible owners of an object attribute that is being divested by invoking the

Request Attribute Ownership Assumption

 service on federates that are currently publishing the
corresponding class attributes. An interested federate may then be granted ownership of the object
attribute by the RTI.

Updates A federate updates an object attribute when it sends out a new value for the attribute. An update
is an event, not a state.

Reflects A federate reflects an object attribute when it receives a new value for the attribute. A reflection
is also an event, not a state.

Owns A federate owns an object attribute if it has the privilege to update values for that attribute. An
attribute should have no more than one owner at a time. Ownership is a state.

Publishes A federate publishes a class attribute if it could provide updates for that kind of attribute,
whether or not it currently has the privilege to do so for any particular object. Publishing is a state, not a
point event. Multiple federates may publish the same class attribute at the same time.

Subscribes A federate subscribes to a class attribute if it wants to receive updates to that kind of attribute.
Subscribing is a state.

Figure 2: Brief glossary of IFSpec terms

The HLA Ownership Properties 5

1.3 An Outline of the Approach Used

We described the ownership management sections of the HLA specification using Z [Spi92], a
formal notation built from standard sets, functions and relations. We chose Z to model these
aspects because it is particularly good at describing structural properties of a system. Other
notations, such as CSP [Hoa85], are weaker in their support of structural properties, but offer
strong support for describing dynamic properties of the system.

We then translated the Z notation to NP [JD96a], the input language used by the Ladybug checker.
NP is essentially a first-order subset of Z with the many special characters used in Z remapped to

ASCII equivalents. Ladybug

3

 is a new tool that analyzes claims about a specification, producing
concrete counter-examples to contradict each invalidated claim. Ladybug considers all possible
cases using a small number of elements, such as objects, federates and object attributes for the
HLA, as specified by the user. The analysis is sound within those user-specified bounds, meaning
that Ladybug will produce a counter-example if any exist. Ladybug’s predecessor, Nitpick
[JD96b], was the first tool able to perform fully automatic semantic analyses of specifications
written using a Z-like notation.

Special care must be taken when formalizing a specification for analysis. The simplest translation
may prevent the discovery of some interesting flaws. To be checkable, the specification must
clearly delineate those properties that are guaranteed to be true from those properties that are
desired to be true.

Consider the ownership relationship from HLA as an example. We can model this relationship in
Z as a relation mapping federates to object attributes, with each federate-attribute pair describing
the ownership of a single object attribute by a federate. However, only a single federate is allowed
to own a given object attribute at a time. We can encode this constraint in the Z description by
making the relation injective. However, placing this encoding on the basic description of the
system prevents Ladybug from discovering possible corruptions of the system involving multiple
simultaneous owners. Instead, we encode this constraint as a separate property, allowing it to be
checked. (See the description of

NoTwoOwners

 in the next section for more details.)

Checking that the

Attribute Ownership Divestiture Notification

 service maintains this property
requires checking the claim

NoTwoOwners

¶

 AttrOwnDivestNotify

fi

 NoTwoOwners

'

This formula says that if

NoTwoOwners

 holds initially and

AttrOwnDivestNotify

 is
executed, then

NoTwoOwners

 will still hold afterwards. If

NoTwoOwners

 is not invariant across

AttrOwnDivestNotify

, Ladybug will provide concrete counterexamples demonstrating the
violation of

NoTwoOwners

.

1.4 Related Work

This effort is far from being unique. Allen and others have formalized and analyzed other
segments of the HLA system using Wright, a tool based on CSP [AGI98]. Just as the work
described in this paper builds on the strengths of Z to analyze selected structural properties of the

3. Ladybug, and its predecessor Nitpick, are freely available at http://www.cs.cmu.edu/~nitpick.

6 Formalizing a Specification for Analysis

HLA system, that work builds on the inherent strengths of CSP to analyze selected dynamic
properties of the HLA system.

At least two other efforts have considered the formalization and analysis of systems using NP and
a Ladybug-like tool. In [JD96b], Jackson formalizes the paragraph style mechanism in a word
processing program, finding anomalous behaviors with the use of Nitpick. Ng also uses Nitpick to
analyze a formalization of the mobile IPv6 protocol, discovering a flaw that can lead to cycles in
the packet forwarding algorithm [JNW98].

2. The Formal Model

This section describes the formal model of HLA that we derived from version 1.2 of the IFSpec.
To reduce the reader’s burden, this section details only a representative sampling of properties and
operations. The remaining properties and operations are similar to those described here. The
complete Z model of the ownership management services is given in Appendix A.

The Z model of ownership management can be broken down into four major pieces:

• classes, objects, and attributes, which are global to all of HLA

• the state required (explicitly or implicitly) by the ownership management specification

• properties about the state

• operations on the state

We assume that the reader is familiar with Z notation.

For readers unfamiliar with the specifics of
Z, a summary of the operators used in this specification is given in Appendix B.

2.1 Classes, Objects, and Attributes

Figure 3 gives the Z model of HLA classes and class attributes that will be used as the basis for all
further descriptions. The first line introduces two basic kinds of entities: classes and class
attributes. The axiomatic definition describes two functions and a constraint between them that
must always be maintained. The

AttributesToClass

 function maps every class attribute to a single
class.

Within the HLA, the ability to delete an object is obtained by becoming the owner of the special
attribute, called the

privilegeToDeleteObject

 attribute, for that object. Although

[CLASS, CLASSATTR]

AttributesToClass : CLASSATTR f CLASS
privToDeleteObject : CLASS ƒ CLASSATTR

privToDeleteObject~ z AttributesToClass

Figure 3: Z model of classes and class attributes

The HLA Ownership Properties 7

privilegeToDeleteObject

 is a fully defined class attribute, it is expected that federates will rarely
associate a value with it. This special attribute, which must be defined for every class, is modeled
by the

privToDeleteObject

 function in the Z model. The constraint requires that the privilege to
delete attribute that is specially denoted for a class must be a class attribute for that class.

Figure 4 gives the Z description of objects in HLA. The schema

ObjectCollection

 introduces two
variables describing HLA objects:

Objects

, the set of objects currently recognized by the RTI, and

ObjectsToClass

, the mapping that identifies the class associated with each object. The set

ObjectAttrs contains all the object attributes related to the currently known objects, as required by
the first state invariant. The two projection functions, ObjectAttrToObject and
ObjectAttrToClassAttr, relate object attributes back to the corresponding objects and class
attributes. As indicated by its double-headed arrow, ObjectAttrToObject is a function that maps
onto its range: that is, every object has at least one object attribute, the one associated with the
privToDeleteObject class attribute.

The final two state invariants define the required correspondence between object attributes,
objects, and class attributes. The first of these constraints specifies that for any object and any
class attribute defined by that object’s class, a corresponding object attribute relates the object and
the class attribute. The final constraint specifies that no two object attributes relate the same object
and class attribute.

[OBJECT, OBJECTATTR]

ObjectCollection
Objects : P OBJECT
ObjectsToClass : OBJECT f CLASS
ObjectAttrs : P OBJECTATTR
ObjectAttrToObject: OBJECTATTR ∆ OBJECT
ObjectAttrToClassAttr : OBJECTATTR f CLASSATTR

ObjectAttrs = dom (ObjectAttrToObject t Objects)
ObjectToClass ; AttributesToClass~ = ObjectAttrToObject~ ; ObjectAttrToClassAttr
(ObjectAttrToObject ; ObjectAttrToObject~) I

(ObjectAttrToClassAttr ; ObjectAttrToClassAttr~)
z id OBJECTATTR

Figure 4: Z model of objects and object attributes

8 Formalizing a Specification for Analysis

There is an alternative formulation of the object attribute construct. As shown in Figure 5, each
object attribute could be viewed as an ordered pair, with the complete collection of object
attributes constructed directly from the existing variables. However, the Ladybug input language
NP does not support denoting a particular object attribute in this formulation, so we chose to use
the otherwise more cumbersome representation shown in Figure 4.

2.2 Required State

The simulation state, as shown in Figure 6, describes the state of the simulation that is explicitly
described in the IFSpec. We have chosen to separate the explicit state from the implicit state
(represented by the internal state given in Figure 7) for three reasons:

• Ease of validation. Because the simulation state is explicitly described in the IFSpec, it is
easily checked against the informal specification (the IFSpec). The implicit state, on the
other hand, requires significantly more effort to check against the original specification.
By culling it out separately, the original specification writers are likely to pay closer
attention to the implicit state.

• Isolation for analysis. Some claims require only the explicit state. By separating the
implicit state, we reduce the number of cases required for Ladybug to check for these
claims.

• Implementation freedom. The simulation state must be faithfully implemented in any
actual code. Although the behavior of the implicit state is required in some form, the
implementors have more freedom to choose an alternative structuring of this information
in the final design.

The SimulationState schema introduces three new variables, but no new constraints. Federates is
the set of federates currently joined in the simulation. Publishing and Owns describe the attributes
published and owned by each federate, as described in the IFSpec. A full model would also

ObjectAttrs : P (OBJECT x CLASSATTR)

ObjectAttrs = Objects r ObjectToClass ; AttributesToClass~

Figure 5: Alternative model of object attributes

[FEDERATE]

SimulationState
ObjectCollection
Federates : P FEDERATE
Publishing: FEDERATE j CLASSATTR
Owns : FEDERATE j OBJECTATTR

Figure 6: Model of (explicit) simulation state.

The HLA Ownership Properties 9

introduce a variable describing the subscribe relations, but subscribing is irrelevant to the
properties that we will be checking and has been omitted.

Figure 7 lists the schema OwnershipInternalState, which models the implicitly described state.
This schema includes two variables that indicate each federate’s willingness to accept or divest
ownership of a specific object attribute. These variables were introduced based on statements in
the IFSpec such as

The federate has informed the RTI of its intent to divest ownership of the specified attributes.

which appears in the post-condition of the description of the Request Attribute Ownership
Divestiture service (see Figure 1). This state also records the set of federates that may gain
ownership of an object attribute as indicated by the Request Attribute Ownership Divestiture
service.

For convenience, we combine the explicit state and the implicit state into a single schema,
ExecutionState.

2.3 Two Properties: NoTwoOwners and CompleteOwners

We specified eight properties in the full Z model. In this section, we describe two of these
properties in detail, NoTwoOwners and CompleteOwners.

We model all the properties as constraints on the state, including either the explicit state or the
implicit state, or both. By describing the properties separately from the base description, we can
pose questions about whether the system does or does not have a specified property. Ladybug can
also check whether operations (or sequences of operations) maintain these properties.

The schema NoTwoOwners, given in Figure 9, is based on the IFSpec statement
The privilege to update a value for an attribute is uniquely held by a single federate at any given
time during a federation execution.

This property depends only on the explicit state that is described by the schema SimulationState.
The condition on this property requires the inverse of Owns to be a function from OBJECTATTR
to FEDERATE, implying that Owns itself is injective. This, in turn, implies that every object

OwnershipInternalState
WillingToDivest: FEDERATE j OBJECTATTR
WillingToAccept : FEDERATE j OBJECTATTR
TargetOwners : FEDERATE j OBJECTATTR

Figure 7: Model of (implicit) internal state.

ExecutionState
SimulationState
OwnershipInternalState

Figure 8: Model of complete required state.

10 Formalizing a Specification for Analysis

attribute is owned by no more than one federate. The designers of the HLA view this as a property
an invariant.

The second property detailed here, CompleteOwners, requires that every object attribute be owned
by some federate. Figure 10 lists the Z model of CompleteOwners. Unlike most of the properties
modeled, CompleteOwners is not required by the IFSpec and is not an invariant, as some services
(including unconditional divestitures, unpublishing class attributes, and resigning from the
federation) may leave object attributes unowned. However, this property is still worth considering
as it should be invariant across some complete protocols, such as negotiated divestiture and
acquisition. This property is checked by verifying that if every attribute is owned when a protocol
begins (and there are no other concurrent services), then every attribute is owned when the
protocol finishes.

2.4 Two Operations: RequestAttrOwnDivestiture and AttrOwnDivestNotify

Of the ten total operations specified in the full Z model of ownership management, we detail two
operations, RequestAttrOwnDivestiture and AttrOwnDivestNotify. These operations combine to
implement the simplest unconditional divestiture protocol execution.

The model of these operations, as with all others, consists of three pieces: the arguments, the pre-
conditions, and the post-conditions. We follow the Z convention, appending a question mark (?) to
the end of the name of each input parameter. As detailed below, we have chosen to model only the
subset of the parameters that is relevant to our analysis. We translate the pre-conditions into state
invariants on the pre-state, again ignoring pre-conditions irrelevant to our needs. We similarly
translate the post-conditions as state invariants of the post-state (as indicated by the primed
variables).

The Request Attribute Ownership Divestiture service, which is described informally in Figure 1,
allows a federate to notify the RTI that it (the federate) no longer wishes to be responsible for
updating any of a set of object attributes. When the RTI responds with an invocation of the
Attribute Ownership Divestiture Notification, the originating federate is no longer responsible for
the object attributes in question.

NoTwoOwners
SimulationState

Owns~ e (OBJECTATTR ß FEDERATE)

Figure 9: Z model of unique ownership property.

CompleteOwners
SimulationState

ran Owns = ObjectAttrs

Figure 10: Z model of universal ownership property.

The HLA Ownership Properties 11

Figure 11 shows the model of the Request Attribute Ownership Divestiture service. This operation
requires all the execution state, including the implicit state described by OwnershipInternalState.
The operation takes four inputs, fed?, the federate seeking to relinquish ownership, targets?, the
set of potential new owners, obj?, the object whose attributes are being disowned, and cattrs?, a
set of class attributes describing the object attributes to be disowned.

The IFSpec states that the targets? parameter is optional, but Z does not directly support optional
parameters. To handle this complication, we assume that the set of all Federates is passed when
no constraint is requested. We have also chosen to ignore two of the actual arguments specified in
the IFSpec. The user-supplied tag, although important in any actual implementation, does not
affect any interesting properties. The conditional divestiture flag is ignored here because it
represents control flow, rather than the resulting structure. The model does not require divestiture
(or disallow unconditional divestiture), so the analysis will consider both cases of the flag.

The first four conditions capture the relevant pre-conditions, whereas the final four conditions
capture the post-conditions. The first two conditions assert that the set of object attributes, referred
to by oattrs, is the set matching the object, referred to by obj?, and the class attributes, referred to
by the set cattrs?. The third condition, fed? e Federates, enforces the second pre-condition in the
IFSpec

The federate has joined the federation execution.

The fourth condition, {fed?} x oattrs z Owns, enforces the IFSpec pre-condition
The federate owns the specified attributes.

The next three conditions describe the change to the internal state. After the request, the federate
is willing to divest the indicated object attributes, but there is no change in any federate’s

RequestAttrOwnDivestiture
DExecutionState
fed? : FEDERATE
targets? : P FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
{ fed?} x oattrs z Owns

WillingToDivest' = WillingToDivest U ({ fed?} x oattrs)
WillingToAccept' = WillingToAccept
TargetOwners' = TargetOwners U (targets? x oattrs)

SimulationState' = SimulationState

Figure 11: The Z model of the Request Attribute Ownership Divestiture service.

12 Formalizing a Specification for Analysis

willingness to accept new ownership. This change, modeled by the fifth condition, is required by
the IFSpec post-condition

The federate has informed the RTI of its request to divest ownership of the specified attributes.

We assume that the willingness to accept ownership does not change due to this operation, as
modeled by the next condition. This assumption, although reasonable and the likely intent of the
specifiers, indicates a lacking in the original specification and is closely related to other
assumptions described later in this section.

The target owners to consider, as described by the targets? parameter, are recorded, supporting
option 1 in the IFSpec.

The federate can specify which federate(s) can take ownership of the released attributes, otherwise any
federate may own them.

The final condition, SimulationState' = SimulationState, captures the IFSpec post-condition
No change in attribute ownership.

Figure 12 shows the response service from the RTI. The AttrOwnDivestNotify operation takes four
arguments, similar to those used as inputs to ReqAttrOwnDivest operation. The operation requires
that the federate being notified is currently a member of the federation and owns the object
attributes in question.

After the operation, the ownership has changed, with the target federate no longer owning the
target object attributes. In addition, the WillingToDivest relation is updated, removing the pending
desire to divest (which has now been fulfilled). This latter change is not specified in the IFSpec. In
fact, version 1.2 of the IFSpec never states when a willingness to divest (or accept) should be

AttrOwnDivestNotify
DExecutionState
fed? : FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
{ fed?} x oattrs z Owns

Owns' = Owns \ ({ fed?} x oattrs)
Objects' = Objects
Publishing' = Publishing
ObjectAttrs' = ObjectAttrs
Federates' = Federates

WillingToAccept' = WillingToAccept
WillingToDivest' = WillingToDivest \ ({ fed?} x oattrs)
TargetOwners' = TargetOwners

Figure 12: The Z model of the Attribute Ownership Divestiture Notify service.

The HLA Ownership Properties 13

cancelled (or maintained). Based at least partially on our feedback, version 1.3 of the IFSpec
[DoD98] does state when these intentions should be cancelled. To progress in the analysis, we
chose to specify “reasonable” points for cancelling the intentions.

In draft 4 of version 1.2 (no longer available on the web), the IFSpec placed no pre-condition on
the Attribute Ownership Divestiture Notification service requiring that the federate had previously
attempted to divest ownership of the specified attributes. Draft 6 of version 1.2 partially repairs
this flaw with the pre-condition

A federate has previously attempted to divest ownership of the specified attributes

This pre-condition is still flawed. It should require that the federate that currently owns the
attribute has requested to divest ownership, without any subsequent cancellation of its willingness
to divest.

It should not come as a surprise that both of these inconsistencies (as well as other, similar ones
discovered with other services) arise in conjunction with the state that has been only implicitly
specified.

We also discovered an ambiguity during this formalization. The IFSpec does not indicate if the
RTI is allowed to satisfy the divestiture partially. It is similarly unclear if the RTI may combine
multiple ownership divestiture requests, returning a single divestiture notification. We have
assumed in our model that both possibilities are allowable, but some conforming implementations
may disallow one or both variations.

3. Analyzing the Formal Model

The final step in this process is to analyze the model produced with our chosen tool, Ladybug.
This analysis consists of three steps, detailed in the following sections: translating the Z model to

14 Formalizing a Specification for Analysis

Ladybug’s input language NP, constructing claims about the model to be checked, and reviewing
the results of checking the claims with Ladybug.

3.1 Translating the Z Model

In order to check the specification, Ladybug requires the specification to be written in its input
language, NP. The translation from Z to NP is generally straightforward, mostly consisting of
transliterating special Z symbols into the equivalent NP ASCII constructs. Only a few items
within the translation are worth noting specifically. The complete NP specification is given in
Appendix C.

Figure 13 shows the ObjectCollection schema, translated from the Z schema ObjectCollection
given in Figure 4. NP does not the support the axiomatic definitions used in Figure 3 (only
schemas), so these initial definitions have been merged into the ObjectCollection schema.
The privilegeToDeleteObject attribute is never used by any of the properties considered, so we
have not introduced any equivalent of the privToDeleteObject variable into the NP specification.

We separated two of the conditions in ObjectCollection into a separate schema, called
GoodObjColl . As noted earlier, this separation enables these properties to be checked. Because

/* Define the basic universe */
ObjectCollection = [
 Objects: set OBJECT
 Object_Attrs: set OATTR
 ObjectToClass: tot OBJECT -> CLASS
 ClassAttrsToClass: tot ATTR -> CLASS
 ObjAttrsToClassAttrs: tot OATTR -> ATTR
 ObjAttrsToObject: tot suj OATTR -> OBJECT
|
 /* Only object attributes about known objects are of interest */
 Object_Attrs = dom (ObjAttrsToObject :> Objects)
]

GoodObjColl = [
 ObjectCollection
|
 ObjectToClass;ClassAttrsToClass~ =

ObjAttrsToObject~;ObjAttrsToClassAttrs
 ObjAttrsToObject;ObjAttrsToObject~ &
 ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~ <= Id

/* First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes).
second invariant states that the intersection of the
two equivalence relations on ObjAttrToObject and ObjAttrsToClassAttrs
intersect only when the same object attributes
are the subject, i.e., two object attributes canÕt be of the
same type and belong to the same object instance. */
]

Figure 13: The NP schemas ObjectCollection and GoodObjColl

The HLA Ownership Properties 15

all the later properties we will check assume a sound ObjectCollection , the GoodObjColl
schema, rather than the raw ObjectCollection schema, is imported into SimState . Figure
14 shows the NP translation of the explicit state into the schema SimState , as well as the
implicit and total state.

To simplify the analysis, we model the operations as directly accepting a set of object attributes,
rather than the actual set of class attributes. We feel that explicitly specifying the requirement to
translate from class attributes to object attributes is important in the formal specification, as this is
a possible stumbling block in an actual implementation. However, a faulty translation from class
attributes to object attributes is a flaw in the implementation, not the overall HLA design. This

/* Explicitly defined state */
SimState = [
 GoodObjColl
 Federates: set FED
 Publishing: FED <-> ATTR
 Owns: FED <-> OATTR
]

/* Implicitly defined state */
OwnershipInternalState = [
 WillingToDivest:FED <-> OATTR
 WillingToAccept: FED <-> OATTR
 TargetOwners : FED <-> OATTR
]

/* Total state to consider */
ExecutionState =
[SimState
OwnershipInternalState]

Figure 14: The NP specification of the explicit, implicit, and total state.

RequestAttrOwnDivestiture(fed?:FED, obj?:OBJECT, targets?:set FED,
oattrs?:set OATTR) =

[
 ExecutionState
 const SimState
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 /* ({fed?} <: Un :> oattrs?) is the same as Z {fed?} x oattrs */
 ({fed?} <: Un :> oattrs?) <= Owns

 WillingToDivest' = WillingToDivest U ({fed?} <: Un :> oattrs?)
 WillingToAccept' = WillingToAccept
 TargetOwners' = TargetOwners U (targets? <: Un :> oattrs?)
]

Figure 15: The NP specification of the Request Attribute Ownership Divestiture service.

16 Formalizing a Specification for Analysis

analysis is attempting to check the design, so this complication is unnecessary in the NP
translation. Removing this complication both makes the NP specification easier to read and
reduces the number of cases to be considered by the checker Ladybug. Figure 15 shows the NP
operation RequestAttrOwnDivestiture .

Because NP does not directly support cross products, some of the conditions within the operation
definitions need to be recast slightly. The Z expression

{ fed?} x oattrs

can be translated to the NP expression

{fed?} <: Un :> oattrs?

where Un is the universal relation, forced by type to be FEDERATE <-> OATTR.

3.2 Constructing the Claims

We have constructed two kinds of claims about the ownership management specification. The
simpler claims assert that a property is invariant across any possible invocation on a single
operation. The more complicated claims describe an entire protocol execution, asserting that some
property holds after the entire execution if it holds prior to the execution.

Figure 16 shows a simple operation invariant claim written in NP. Unlike schemas in NP, which
use an equals sign (=) to separate the header of the schema from its body, claims in NP separate
the header from the body with a double colon (::). The AttrDivNotSoundOwns claim asserts
that for any federate, object, and set of object attributes, the properties described in the schema
SoundOwners (which requires unique valid ownership, but not universal ownership), is
invariant across the Attribute Ownership Divestiture Notify service (as described in the NP schema

/* Check if the non-empty state allows two owners */

NoTwoOwners = [NonEmpty | fun Owns~]

NoBadOwnedAttrs = [SimState | ran Owns = Object_Attrs]

NoBadOwners = [SimState | dom Owns <= Federates]

OwnsOnlyIfPublishes = [SimState | Owns;ObjAttrsToClassAttrs <=
Publishing]

SoundOwners = [
NoTwoOwners
NoBadOwnedAttrs
NoBadOwners
OwnsOnlyIfPublishes]

AttrDivNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundOwners and AttrOwnDivestNotify(fed,obj,oattrs) => SoundOwners'

Figure 16: The NP sound ownership properties and the NP claim that the sound ownership properties are
invariant across the Attribute Ownership Divestiture Notify service.

The HLA Ownership Properties 17

AttrOwnDivestNotify), using that federate, object, and set of object attributes as the
arguments to AttrOwnDivestNotify .

The remaining claims are more complex, as they check properties that are not invariants, but
should hold at specified points during the protocol. We do not recheck properties that have been
shown invariant across all operations, as they must also hold invariant across any combination of
operations that comprise a complete protocol. Figure 17 shows the NP claim that asserts that a
conditional divestiture protocol does not lose ownership of objects.

The five indented lines near the end of the claim describe one possible sequence of services for
this protocol. A federate (fed1) initiates the protocol by requesting conditional divestiture of a
set of object attributes (oattrs1). The RTI then requests that a second federate (fed2) assume
ownership of those attributes. The second federate agrees to take ownership of a subset of the
attributes (oattrs2) and requests that ownership from the RTI. The RTI can then respond to the
first federate with a divestiture notification of the subset of attributes. Finally, the RTI grants
ownership of a subset of the object attributes divested to the second federate.

3.3 The Analysis

Analyzing the claims using Ladybug is nearly automatic. The only significant choice left to the
analyst at this stage is to bound the number of elements to be considered by Ladybug in the
analysis. Ladybug only searches for counter-examples in a limited finite space. The scope limits
how many instances of each given type (such as FED or OATTR) should be considered.

/* Check for complete ownership after a simple conditional divestiture */

ConditionalCompleteOwners(fed1:FED, fed2:FED, targets : set FED,
 obj:OBJECT, oattrs1:set OATTR,
 oattrs2:set OATTR)::

[
 ExecutionState
|
 /* require the case we are interested in */
 not fed2 = fed1 and
 fed2 in targets and
 oattrs2 <= oattrs1 and
 SoundOwners and

 CompleteOwners and
 /* conditional divestiture of oattrs1, actually divesting oattrs2 */
 (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
 RequestAttrOwnAssumption(fed2,obj,oattrs1);
 RequestAttrOwnAcquisition(fed2,obj,oattrs2);
 AttrOwnDivestNotify(fed1,obj,oattrs2);
 AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
 CompleteOwners'
]

Figure 17: The NP claim asserting that all object attributes are owned after a conditional divestiture.

18 Formalizing a Specification for Analysis

The default scope assumes three elements of each type, which suffices for many specifications.
For the ownership management specification, however, we chose to vary the scope from the
default to gain more confidence in the analysis. For these claims, we chose to limit the number of
classes to only one, as class distinctions are irrelevant to our concerns here. We limited the
number of federates and class attributes to two apiece, permitting potentially divided ownership of
a single object. We limited the number of objects to three. These restrictions in turn require the
support of six object attributes (three objects with two object attributes apiece). When choosing
the scope, interactions such as this must be carefully noted if the analysis is to be trusted. Limiting
the number of object attributes to fewer than six would force the analysis to consider fewer than
three objects in order to satisfy the other requirements.

The Ladybug analysis was completed quickly using both the default and selected scopes. Most of
the checks required a few seconds to complete (when run on a 400Mhz Pentium II using the Sun
JDK 1.1.6). The complete protocol executions required more time to check with the same scope
(ranging from ten minutes to over a day), so we have chosen a different scope to check these
claims, reducing their check time to a few seconds.

The first issue arising from the analysis involves the set of federates joined in the federation. The
IFSpec never explicitly states that this set is unchanged by the execution of these operations,
although the clear intent is that the only means that a federate can leave the federation is through
the use of the Resign Federation Execution service. We adjusted the NP specification to capture
this requirement, which should also be propagated back to the IFSpec.

With that omission repaired, we again analyzed the specification. As indicated by the output
shown in Figure 18, the Ladybug analysis found that the Attribute Ownership Acquisition Notify
service does not hold the sound ownership properties invariant. In particular, the RTI may grant
ownership of an object attribute to a federate that is not publishing the corresponding class
attribute. This can most clearly by seen by noticing that the Publishing' relationship is empty,
indicating that no class attributes are being published and therefore no object attributes can be
owned.

Reviewing the IFSpec, the only relevant pre-condition for this service is
The federate has previously attempted to acquire ownership of the attribute.

Publishing the corresponding class attribute is a pre-condition of requesting ownership, so this
combination might be expected to hold the invariant against any actual protocol execution.
However, if the federate unpublishes the class after requesting ownership, but prior to being
granted ownership, a condition occurs where a federate can be granted ownership of an object
attribute while not publishing the corresponding class attribute. An instance of this problem can
be shown with the counterexample generated for the UnpublishInAcquisition claim.

Version 1.3 of the IFSpec adds the pre-condition
The federate is publishing the corresponding class attributes at the known class of the specified
object instance.

An alternative solution to this inconsistency is to have the unpublish operation cancel the
federate’s willingness to acquire any related object attributes.

Table 1 summarizes the results of the checks made with the non-default scopes. The columns
listing the names of given types indicate the scope limit given for those types. The times given are
in seconds. The entire state space was checked for all claims but the case presenting a

The HLA Ownership Properties 19

Found Counterexample to Claim
AttrAcqNotSoundOwns:
ClassAttrsToClass : tot ATTR->CLASS =

{ a0 -> c0,
 a1 -> c0 }
ClassAttrsToClass' : tot ATTR->CLASS =

{ a0 -> c0,
 a1 -> c0 }
fed : FED =

f0
Federates : set FED =

{ f0 }
Federates' : set FED =

{ f0 }
oattrs : set OATTR =

{ oa0 }
obj : OBJECT =

ob0
ObjAttrsToClassAttrs : tot OATTR->ATTR =

{ oa0 -> a0,
 oa1 -> a1,
 oa2 -> a0,
 oa3 -> a1,
 oa4 -> a0,

 oa5 -> a1 }
ObjAttrsToClassAttrs' : tot OATTR->ATTR =

{ oa0 -> a0,
 oa1 -> a1,
 oa2 -> a0,

 oa3 -> a1,
 oa4 -> a0,
 oa5 -> a1 }

ObjAttrsToObject : tot OATTR->OBJECT =
{ oa0 -> ob0,

 oa1 -> ob0,
 oa2 -> ob1,

 oa3 -> ob1,
 oa4 -> ob2,
 oa5 -> ob2 }

ObjAttrsToObject' : tot OATTR->OBJECT =
{ oa0 -> ob0,
 oa1 -> ob0,
 oa2 -> ob1,
 oa3 -> ob1,
 oa4 -> ob2,
 oa5 -> ob2 }

Object_Attrs : set OATTR =
{ oa0, oa1 }

Object_Attrs' : set OATTR =
{ oa0, oa1 }

Objects : set OBJECT =
{ ob0 }

Objects' : set OBJECT =
{ ob0 }

ObjectToClass : tot OBJECT->CLASS =
{ ob0 -> c0,
 ob1 -> c0,
 ob2 -> c0 }

ObjectToClass' : tot OBJECT->CLASS =
{ ob0 -> c0,
 ob1 -> c0,
 ob2 -> c0 }

Owns : FED<->OATTR =
{ }

Owns' : FED<->OATTR =
{ f0 -> {oa0 } }

Publishing : FED<->ATTR =
{ }

Publishing' : FED<->ATTR =
{ }

TargetOwners : FED<->OATTR =
{ f0 -> {oa0 } }

TargetOwners' : FED<->OATTR =
{ }

WillingToAccept : FED<->OATTR =
{ f0 -> {oa0 } }

WillingToAccept' : FED<->OATTR =
{ }

WillingToDivest : FED<->OATTR =
{ }

WillingToDivest' : FED<->OATTR =
{ }

Figure 18: Output demonstrating a counterexamples discovered by Ladybug to the claim AttrAcqNotSoundOwn.

20 Formalizing a Specification for Analysis

counterexample, where the search was halted after the first counterexample was found. All checks
were made using the default Ladybug settings (except for scope).

The complete output from the non-default scope Ladybug runs is given in Appendix D.

4. Conclusions

We discovered several inconsistencies and ambiguities during the formalization and analysis of an
informal specification. While generally minor in nature, these flaws could introduce significant
difficulties into the HLA development, if not caught at design time. Components, being developed
by disparate organizations with possibly disparate interpretations of the IFSpec, could fail when

Claim Description ATTR CLASS FED OATTR OBJ Time

ReqAttrDivSoundOwns Check that the Request Attribute
Divestiture service maintains

sound ownership.

2 1 2 6 3 7.1

ReqAttrAcqSoundOwns Check that the Request Attribute
Acquisition service maintains

sound ownership.

2 1 2 6 3 19.8

AttrDivNotSoundOwns Check that the Attribute
Divestiture Notification service

maintains sound ownership.

2 1 2 6 3 3.2

AttrAcqNotSoundOwns Check that the Attribute
Acquisition Notification service

maintains sound ownership.

2 1 2 6 3 1.2*

PublishSoundOwns Check that the Publish Object
Class service maintains sound

ownership.

2 1 2 6 3 2.6

UnpublishSoundOwns Check that the Unpublish Object
Class service maintains sound

ownership.

2 1 2 6 3 2.2

ConditionalCompleteOwners Check that a simple conditional
divestiture protocol execution

maintains complete ownership.

3 1 2 3 1 0.1

UnconditionalSoundTargets Check that a simple unconditional
divestiture protocol execution

leaves all targets unowned.

3 1 2 3 1 0.1

ConditionalSoundTargets Check that a simple conditional
divestiture protocol execution
leaves the targets set sound.

3 1 2 3 1 4.4

Table 1: Summary of the checks done by Ladybug. The time for AttrAcqNotSoundOwns is the time required to find the
first counterexample.

The HLA Ownership Properties 21

joined together, forcing expensive testing and re-writes. With help from our feedback, these issues
have been resolved in a new version of the IFSpec [DoD98].

Not surprisingly, most of the issues uncovered involved the implicitly-specified state. In our
experience, lack of detailed consideration of portions of the system leads to many of the flaws in
system designs. Informal specifications facilitate this lack of consideration by allowing seemingly
obvious portions of the system to remain unspecified or implicitly specified. Formalization helps
identify these missing pieces.

In addition to the two counterexamples discovered, Ladybug made two notable contributions to
the analysis:

• As a forcing function. Issues with what properties should be checked in the specification
and how to check those properties in the specification force additional consideration of the
problem that an alternative formalization might have missed. In particular, the problems
with mismatch in the set of object attributes is more apparent when attempting to define
specific protocol executions.

• Increased assurance of the correctness of the design. A lack of flaws is the eventual goal of
any design. Assurance that at least selected possible flaws are not present is a significant
first step. Experiences with analysis of other specifications, such as the new Mobile IPv6
standard [JNW98], have shown that flaws in systems can be discovered using a tool
similar to Ladybug.

However, any automated analysis tool has fundamental limitations that should also be kept in
mind:

• Only properties explicitly described are checked. Many flaws that have not been
considered may remain. Ladybug cannot generate interesting claims, but rather can only
check claims made by the analyst.

• The structure of the specification may hide flaws allowed by the design. As an example,
the structure of the Z model requires that the services be treated atomically, with no
concurrent interaction. With a distributed system such as HLA, such interactions are
likely, leaving possible flaws undetected. Performing analyses of the same system with
multiple tools and formalisms can help reduce these holes.

• The specification itself may be consistent, but it may not correctly capture the intent of the
designers. Actual implementations, developed by humans who may understand that intent,
may introduce flaws present in the design, but not captured in the formal specification.

• Finite checkers, such as Ladybug, place bounds on the problem to enable analysis. Flaws
may exist only in systems which exceed those artificial bounds. Although we have yet to
find a flaw in a design missed by a reasonable scope in any of our analyses, such flaws
certainly exist in at least some designs.

In summary, our formalization and subsequent analysis discovered some flaws in the IFSpec and
achieved a reasonable level of assuredness that other potential flaws are not present.

Additional analysis of these specifications are possible. Many other protocol sequences are
meaningful and could be checked. Manual generation of these protocol executions is tedious and
time-consuming. Due to time constraints, we have chosen at this time to only investigate a handful

22 Formalizing a Specification for Analysis

of these possible protocols. An ideal analysis tool could consider both a CSP specification, which
can express the possible protocol executions succinctly, and a Z specification, which can express
the outcomes of a particular protocol execution succinctly, and thus automate this task. One
possible future path being considered is the generation of interesting executions using a CSP
checker (FDR [FDR97]), with a manual, or possibly automated, conversion of the output into NP
claims.

The HLA Ownership Properties 23

5. Bibliography

[AGI98] Robert J. Allen, David Garlan, and James Ivers. Formal Modeling and Analysis of
the HLA Component Integration Standard, Proceedings of the Sixth International
Symposium on the Foundations of Software Engineering (FSE-6), November 1998.

[CW+96] Edmund M. Clarke, Jeanette M. Wing, et al. Formal Methods: State of the Art and
Future Directions. ACM Computing Surveys, Vol. 28, No. 4, December 1996, pp.
626–643.

[DoD97] Defense Modeling and Simulation Office. High Level Architecture Interface Spec-
ification Version 1.2. August 13, 1997. http://www.dmso.mil/projects/hla/tech/if-
spec.

[DoD98] Defense Modeling and Simulation Office. High Level Architecture Interface Spec-
ification Version 1.3. April 20, 1998. http://www.dmso.mil/projects/hla/tech/if-
spec.

[FDR97] Failures Divergence Refinement: FDR2 User Manual, version 2.22. Formal Sys-
tems (Europe) Ltd, Oxford, England, October 1997.

[Hoa85] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall, 1985.

[JD96a] Daniel Jackson and Craig A. Damon. Nitpick: A Checker for Software Specifica-
tions (Reference Manual). Technical Report CMU-CS-96-109, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, January 1996.

[JD96b] Daniel Jackson and Craig A. Damon. Elements of Style: Analyzing a Software De-
sign Feature with a Counterexample Detector. IEEE Transactions on Software En-
gineering, July 1996, Vol. 22, No. 7, pp. 484–495.

[JNW98] Daniel Jackson, Yuchang Ng, and Jeannette M. Wing. A Nitpick Analysis of Mobile
IPv6. Technical Report CMU-CS-98-113, Carnegie Mellon University, Pittsburgh,
PA, March, 1998.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual, Second edition, Prentice Hall,
1992.

24 Formalizing a Specification for Analysis

Appendix A. Full Z Description of the HLA Specification.

[CLASS,CLASSATTR,OBJECT, OBJECTATTR, FEDERATE]

AttributesToClass : CLASSATTR f CLASS
privToDeleteObject : CLASS ƒ CLASSATTR

privToDeleteObject~ z AttributesToClass

ObjectCollection
Objects : P OBJECT
ObjectsToClass : OBJECT f CLASS
ObjectAttrs : P OBJECTATTR
ObjectAttrToObject: OBJECTATTR ∆ OBJECT
ObjectAttrToClassAttr : OBJECTATTR f CLASSATTR

ObjectAttrs = dom (ObjectAttrToObject t Objects)
ObjectToClass ; AttributesToClass~ = ObjectAttrToObject~ ; ObjectAttrToClassAttr
(ObjectAttrToObject ; ObjectAttrToObject~) I

(ObjectAttrToClassAttr ; ObjectAttrToClassAttr~)
z id OBJECTATTR

SimulationState
ObjectCollection
Federates : P FEDERATE
Publishing: FEDERATE j CLASSATTR
Owns : FEDERATE j OBJECTATTR

OwnershipInternalState
WillingToDivest: FEDERATE j OBJECTATTR
WillingToAccept : FEDERATE j OBJECTATTR
TargetOwners : FEDERATE j OBJECTATTR

ExecutionState
SimulationState
OwnershipInternalState

The HLA Ownership Properties 25

NoTwoOwners
SimulationState

Owns~ e (OBJECTATTR ß FEDERATE)

NoBadOwnedAttrs
SimulationState

ran Owns z ObjectAttrs

NoBadOwners
SimulationState

dom Owns z Federates

OwnsOnlyIfPublishes
SimulationState

(Owns ; ObjectAttrToClassAttr) z Publishing

CompleteOwners
SimulationState

ran Owns = ObjectAttrs

SoundDivestments
ExecutionState

WillingToDivest z Owns

SoundAccepts
ExecutionState

WillingToAccept I Owns = 0

TargetsUnowned
ExecutionState

ranTargetOwners I ran Owns = 0

26 Formalizing a Specification for Analysis

CreateFedExecution
ExecutionState'

Objects' = 0
Federates' = 0
Publishing' = 0
Owns' = 0

WillingToAccept' = 0
WillingToDivest' = 0
TargetOwners' = 0

JoinFedExecution
DExecutionState
fed? : FEDERATE

fed? ‰ Federates

Federates' = Federates U { fed?}
ObjectCollection' = ObjectCollection
OwnershipInternalState' = OwnershipInternalState
Publishing' = Publishing
Owns' = Owns

RequestAttrOwnDivestiture
DExecutionState
fed? : FEDERATE
targets? : P FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
{ fed?} x oattrs z Owns

WillingToDivest' = WillingToDivest U ({ fed?} x oattrs)
WillingToAccept' = WillingToAccept
TargetOwners' = TargetOwners U (targets? x oattrs)

SimulationState' = SimulationState

The HLA Ownership Properties 27

RequestAttrOwnAssumption
XExecutionState
fed? : FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
({ fed?} x oattrs) ; ObjectAttrToClassAttr z Publishing
({ fed?} x oattrs) I Owns = 0

RequestAttrOwnAcquisition
DExecutionState
fed? : FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
({ fed?} x oattrs) ; ObjectAttrToClassAttr z Publishing
({ fed?} x oattrs) I Owns = 0

SimulationState' = SimulationState

WillingToAccept' = WillingToAccept U ({ fed?} x oattrs)
WillingToDivest' = WillingToDivest
TargetOwners' = TargetOwners

28 Formalizing a Specification for Analysis

AttrOwnDivestNotify
DExecutionState
fed? : FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
{ fed?} x oattrs z Owns

Owns' = Owns \ ({ fed?} x oattrs)
Objects' = Objects
Publishing' = Publishing
ObjectAttrs' = ObjectAttrs
Federates' = Federates

WillingToAccept' = WillingToAccept
WillingToDivest' = WillingToDivest \ ({ fed?} x oattrs)
TargetOwners' = TargetOwners

AttrOwnAcquisitionNotify
DExecutionState
fed? : FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
Owns~·oattrs ‚ = 0
oattrs z TargetOwners · { fed?} ‚

Owns' = Owns U ({ fed?} x oattrs)
Objects' = Objects
Publishing' = Publishing
ObjectAttrs' = ObjectAttrs
Federates' = Federates

WillingToAccept' = WillingToAccept \ ({ fed?} x oattrs)
WillingToDivest' = WillingToDivest
TargetOwners' = TargetOwners u oattrs

The HLA Ownership Properties 29

RequestAttrOwnRelease
XExecutionState
fed? : FEDERATE
obj? : Object
cattrs? : P CLASSATTR
oattrs : P OBJECTATTR

ObjectAttrToClassAtttr·oattrs‚ = cattrs?
ObjectAttrToObject·oattrs‚ = {obj?}
fed? e Federates
({ fed?} x oattrs) = Owns

PublishObjectClass
DExecutionState
fed? : FEDERATE
class? : CLASS
cattrs? : P CLASSATTR

AttributesToClass·cattrs?‚ = {class?} ¶ cattrs? = 0
fed? e Federates

Publishing' = Publishing \ ({ fed?} r Publishing t AttributesToClass~·{ class?}‚)
U ({ fed?} x cattrs?)

Owns' = Owns \ ({ fed?} r Owns t (ObjectAttrToClassAttr ; AttributesToClass)~·{ class?}‚)

ObjectCollection' = ObjectCollection
OwnershipInternalState' = OwnershipInternalState

UnpublishObjectClass
DExecutionState
fed? : FEDERATE
class? : CLASS

class? e AttributesToClass·Publishing·{ fed?}‚ ‚
fed? e Federates

Publishing' = Publishing \ ({ fed?} r Publishing t AttributesToClass~·{ class?}‚)
Owns' = Owns \ ({ fed?} r Owns t (ObjectAttrToClassAttr ; AttributesToClass)~·{ class?}‚)

ObjectCollection' = ObjectCollection
OwnershipInternalState' = OwnershipInternalState

30 Formalizing a Specification for Analysis

Appendix B. Summary of Selected Z Operators Used

Name Operator Definition

Powerset P set { s | s z set }

Cross product set1 x set2 { (x,y) | x e set1 ¶ y e set2 }

Relations set1 j set2 P (set1 x set2)

Partial functions set1 ß set2 { f : set1 j set2 | ((x,y) e f ¶ (x,z) e f) fi y = z }

Total functions set1 f set2 { f : set1 ß set2 | dom f = set1 }

Total surjections set1 ∆set2 { f : set1 f set2 | ran f = set2 }

Domain dom rel { x | Ey.(x,y) e rel }

Range ran rel { y | Ex.(x,y) e rel }

Domain restriction set r rel { (x,y) | (x,y) e rel ¶ x e set }

Range restriction rel t set { (x,y) | (x,y) e rel ¶ y e set }

Range anti-restrictionrel u set { (x,y) | (x,y) e rel ¶ y ‰ set }

Relational inverse rel ~ { (y,x) | (x,y) e rel)

Relational compositionrel1 ; rel2 { (x,z) | Ey. ((x,y) e rel1 ¶ (y,z) e rel2) }

Relational image rel·set‚ { y | Ey. ((x,y) e rel ¶ y e set) }

Relational differencerel1 \ rel2 { (x,y) | (x,y) e rel1 ¶ (x,y) ‰ rel2) }

The HLA Ownership Properties 31

Appendix C. NP Description of the HLA Ownership Properties.
/* Define the basic kinds of entities to consider */
[CLASS, ATTR, FED, OATTR, OBJECT]

/* Define the basic universe */
ObjectCollection = [
 Objects: set OBJECT
 Object_Attrs: set OATTR
 ObjectToClass: tot OBJECT -> CLASS
 ClassAttrsToClass: tot ATTR -> CLASS
 ObjAttrsToClassAttrs: tot OATTR -> ATTR
 ObjAttrsToObject: tot OATTR -> OBJECT
|
 /* Only object attributes about known objects are of interest */
 Object_Attrs = dom (ObjAttrsToObject :> Objects)
]

GoodObjColl = [
 ObjectCollection
|
 ObjectToClass;ClassAttrsToClass~ = ObjAttrsToObject~;ObjAttrsToClassAttrs
 (ObjAttrsToObject;ObjAttrsToObject~ &

ObjAttrsToClassAttrs;ObjAttrsToClassAttrs~) <= Id

/* First invariant says that each instance has the attributes
specified by its class (or has the right number of attributes

2nd invariant states that the intersection of the
two equivalence relations on AttrTo Object and ObjAttrsTo
ClassAttributes intersect only when the same object attributes
are the subject, i.e., two object attributes canÕt be of the
same type and belong to the same object instance */

]

/* Explicitly defined state */
SimState = [
 GoodObjColl
 Federates: set FED
 Publishing: FED <-> ATTR
 Owns: FED <-> OATTR
]

/* Implicitly defined state */
OwnershipInternalState = [
 WillingToDivest:FED <-> OATTR
 WillingToAccept: FED <-> OATTR
 TargetOwners : FED <-> OATTR
]

/* Total state to consider */
ExecutionState =
[SimState
OwnershipInternalState]

32 Formalizing a Specification for Analysis

/* Define any properties of the state */

 NoTwoOwners = [SimState | fun Owns~]

/* Force a non-empty state */
NonEmpty = [
 SimState

|
 Publishing != {}
 Owns != {}
 Federates != {}
]

/* Check that the non-empty state allows two owners */
NoTwoOwnersForced = [NonEmpty | fun Owns~]

NoBadOwnedAttrs = [SimState | ran Owns <= Object_Attrs]

NoBadOwners = [SimState | dom Owns <= Federates]

OwnsOnlyIfPublishes = [SimState | Owns;ObjAttrsToClassAttrs <= Publishing]

SoundOwners = [
 NoTwoOwners
 NoBadOwnedAttrs
 NoBadOwners
 OwnsOnlyIfPublishes
]

CompleteOwners = [SimState | ran Owns = Object_Attrs]

/* Properties defined about implicit state */

SoundDivestments = [ExecutionState | WillingToDivest <= Owns]

SoundAccepts = [ExecutionState | WillingToAccept & Owns = {}]

TargetsUnowned = [ExecutionState | ran TargetOwners & ran Owns = {}]

The HLA Ownership Properties 33

/* Operations defined on the state */

CreateFedExecution() =
[
 ExecutionState
 SimState
|
 Objects' = {}
 Object_Attrs' = {}
 Federates' = {}
 Publishing' = {}
 Owns' = {}
 WillingToAccept' = {}
 WillingToDivest' = {}
 TargetOwners' = {}
]

JoinFedExecution(fed?:FED) =
[
 ExecutionState
 const ObjectCollection
 const OwnershipInternalState
|
 fed? not in Federates

 Federates' = (Federates U {fed?})
 Publishing = Publishing'
 Owns' = Owns
]

RequestAttrOwnDivestiture(fed?:FED, obj?:OBJECT, targets?:set FED,
oattrs?:set OATTR) =

[
 ExecutionState
 const SimState
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 obj? in Objects
 ({fed?} <: Un :> oattrs?) <= Owns

 WillingToDivest' = WillingToDivest U ({fed?} <: Un :> oattrs?)
 WillingToAccept' = WillingToAccept
 TargetOwners' = TargetOwners U (targets? <: Un :> oattrs?)
]

34 Formalizing a Specification for Analysis

RequestAttrOwnAssumption(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
 const ExecutionState
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 obj? in Objects

 ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
 ({fed?} <: Un :> oattrs?) & Owns = {}
]

RequestAttrOwnAcquisition(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
 ExecutionState
 const SimState
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 obj? in Objects
 ({fed?} <: Un :> oattrs?);ObjAttrsToClassAttrs <= Publishing
 ({fed?} <: Un :> oattrs?) & Owns = {}

 WillingToDivest' = WillingToDivest
 WillingToAccept' = WillingToAccept U ({fed?} <: Un :> oattrs?)
 TargetOwners' = TargetOwners
]

AttrOwnDivestNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
 ExecutionState
 const ObjectCollection
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 obj? in Objects
 ({fed?} <: Un :> oattrs?) <= Owns
 ({fed?} <: Un :> oattrs?) <= WillingToDivest

 Owns' = Owns \ ({fed?} <: Un :> oattrs?)
 Federates' = Federates
 Publishing' = Publishing

 WillingToDivest' = WillingToDivest \ ({fed?} <: Un :> oattrs?)
 WillingToAccept' = WillingToAccept
 TargetOwners' = TargetOwners
]

The HLA Ownership Properties 35

AttrOwnAcquisitionNotify(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
 ExecutionState
 const ObjectCollection
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 Owns~.oattrs? = {}
 /* Only look for owners amongst the target owners */
 obj? in Objects
 oattrs? <= TargetOwners.{fed?}
 ({fed?} <: Un :> oattrs?) <= WillingToAccept

 Owns' = Owns U ({fed?} <: Un :> oattrs?)
 Federates' = Federates
 Publishing' = Publishing

 WillingToAccept' = WillingToAccept \ ({fed?} <: Un :> oattrs?)
 WillingToDivest' = WillingToDivest
 TargetOwners' = TargetOwners ;> oattrs?
]

RequestAttrOwnRelease(fed?:FED, obj?:OBJECT, oattrs?:set OATTR) =
[
 const ExecutionState
|
 fed? in Federates
 ObjAttrsToObject.oattrs? = {obj?}
 obj? in Objects
 ({fed?} <: Un :> oattrs?) <= Owns
]

PublishObjectClass(fed?:FED, class?:CLASS, cattrs?: set ATTR) =
[
 ExecutionState
 const ObjectCollection
 const OwnershipInternalState
|
 ClassAttrsToClass.cattrs? = {class?} or cattrs? = {}
 fed? in Federates

 Federates' = Federates
 Publishing' = Publishing \ ({fed?} <: Publishing :>

(ClassAttrsToClass~.{class?}))
 U ({fed?} <: Un :> cattrs?)
 Owns' = Owns \ ({fed?} <: Owns :>

 ((ObjAttrsToClassAttrs;ClassAttrsToClass)~.{class?}))

]

36 Formalizing a Specification for Analysis

UnpublishObjectClass(fed?:FED, class?:CLASS) =
[
 ExecutionState
 const ObjectCollection
 const OwnershipInternalState
|
 fed? in Federates
 class? in ClassAttrsToClass.(Publishing.{fed?})

 Federates' = Federates
 Publishing' = Publishing \ ({fed?} <: Publishing :>

 (ClassAttrsToClass~.{class?}))
 Owns' = Owns \ ({fed?} <: Owns :>

 ((ObjAttrsToClassAttrs;ClassAttrsToClass)~.{class?}))

]

The HLA Ownership Properties 37

/* Now construct the claims to test */

/* Check that each modifying operation maintains sound ownership */

ReqAttrDivSoundOwns(fed:FED, obj:OBJECT, targets:set FED, oattrs:set OATTR)::
 SoundOwners and RequestAttrOwnDivestiture(fed,obj,targets,oattrs) =>
SoundOwners'

ReqAttrAcqSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundOwners and RequestAttrOwnAcquisition(fed,obj,oattrs) => SoundOwners'

AttrDivNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundOwners and AttrOwnDivestNotify(fed,obj,oattrs) => SoundOwners'

AttrAcqNotSoundOwns(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundOwners and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundOwners'

PublishSoundOwns(fed:FED, class:CLASS, cattrs:set ATTR)::
 SoundOwners and PublishObjectClass(fed,class,cattrs) => SoundOwners'

UnpublishSoundOwns(fed:FED, class:CLASS)::
 SoundOwners and UnpublishObjectClass(fed,class) => SoundOwners'

/* Check that willing to divest and accept stays sound */

ReqAttrDivSoundDiv(fed:FED, obj:OBJECT, targets:set FED, oattrs:set OATTR)::
 SoundDivestments and RequestAttrOwnDivestiture(fed,obj,targets,oattrs) =>
SoundDivestments'

AttrDivNotSoundDiv(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundDivestments and AttrOwnDivestNotify(fed,obj,oattrs) =>
SoundDivestments'

ReqAttrAcqSoundAcc(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundAccepts and RequestAttrOwnAcquisition(fed,obj,oattrs) => SoundAccepts'

AttrAcqNotSoundAcc(fed:FED, obj:OBJECT, oattrs:set OATTR)::
 SoundAccepts and AttrOwnAcquisitionNotify(fed,obj,oattrs) => SoundAccepts'

38 Formalizing a Specification for Analysis

/***/
/* Check against protocol executions, not just single operations */
/***/

/* Check for complete ownership after a simple conditional divestiture */

ConditionalCompleteOwners(fed1:FED, fed2:FED, targets : set FED, obj:OBJECT,
 oattrs1:set OATTR, oattrs2:set OATTR)::

[
 ExecutionState
|
 /* require the case we are interested in */
 not fed2 = fed1 and
 fed2 in targets and
 oattrs2 <= oattrs1 and
 SoundOwners and

 CompleteOwners and

 /* the conditional divestiture of oattrs1, actually divesting oattrs2 */

 (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
 RequestAttrOwnAssumption(fed2,obj,oattrs1);
 RequestAttrOwnAcquisition(fed2,obj,oattrs2);
 AttrOwnDivestNotify(fed1,obj,oattrs2);
 AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
 CompleteOwners'
]

/* How about an unpublish in the middle of an acquisition */

UnpublishInAcquisition(fed:FED, obj:OBJECT, oattr : OATTR)::
[
 ObjectCollection
 const class : CLASS
|
 class = ClassAttrsToClass.(ObjAttrsToClassAttrs.oattr)
 obj = ObjAttrsToObject.oattr

 SoundOwners and
 RequestAttrOwnAcquisition(fed,obj,{oattr});
 UnpublishObjectClass(fed,class);
 AttrOwnAcquisitionNotify(fed,obj,{oattr}) =>
 SoundOwners'
]

The HLA Ownership Properties 39

/* Now check that target owners is maintained correctly when ownership is
transferred unconditionally */

UnconditionalSoundTargets(fed1:FED, obj:OBJECT, targets:set FED,
oattrs1:set OATTR, fed2:FED, oattrs2:set OATTR)::

[
|
 /* require the case we are interested in */
 not fed2 = fed1 and
 oattrs2 <= oattrs1 and
 SoundOwners and

 TargetsUnowned and
 (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
 AttrOwnDivestNotify(fed1,obj,oattrs1);
 AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
 TargetsUnowned'
]

/* And check for conditionally as well */

ConditionalSoundTargets(fed1:FED, obj:OBJECT, targets:set FED,
oattrs1:set OATTR,fed2:FED, oattrs2:set OATTR)::

[
 ExecutionState
|
 /* require the case we are interested in */
 not fed2 = fed1 and
 oattrs2 <= oattrs1 and
 SoundOwners and

 /* the targetowners still owned should be owned by the originating and be
willing to divest */
 TargetsUnowned and
 (RequestAttrOwnDivestiture(fed1,obj,targets,oattrs1);
 AttrOwnDivestNotify(fed1,obj,oattrs2);
 AttrOwnAcquisitionNotify(fed2,obj,oattrs2)) =>
 (ran TargetOwners' & ran Owns' = oattrs1 \ oattrs2 and
 dom (Owns' :> (oattrs1 \ oattrs2)) <= { fed1 } and
 {fed1} <: Un :> (oattrs1 \ oattrs2) <= WillingToDivest')
]

40 Formalizing a Specification for Analysis

Appendix D. Ladybug results.
Log run by script hla-own-tr.script2 at Wed Apr 14 23:16:50 EDT 1999
checking hla ownership properties
11:16:51 PM : Parsing tests/hla4.np...
11:16:56 PM : tests/hla4.np loaded successfully

now check chosen scope

check that Request Attribute Divestiture maintains sound ownership properties

#FED = 2
#OBJECT = 3
#ATTR = 2
#OATTR = 6
#CLASS = 1
11:16:57 PM : Computing facts for ReqAttrDivSoundOwns clause 1 ...
11:16:58 PM : Translating ReqAttrDivSoundOwns clause 1 ...
Completed translation of ReqAttrDivSoundOwns clause 1
Required 0:00:04.7 starting at 11:16:57 PM
11:17:02 PM : Checking ReqAttrDivSoundOwns clause 1 ...
Completed checking ReqAttrDivSoundOwns clause 1
Found 0 Counterexamples
Checked 38,973 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.555633e50 total values and 2.844367e50 total cases
Required 0:00:00.9 starting at 11:17:02 PM
11:17:03 PM : Checking ReqAttrDivSoundOwns clause 2
11:17:03 PM : Computing facts for ReqAttrDivSoundOwns clause 2 ...
11:17:03 PM : Translating ReqAttrDivSoundOwns clause 2 ...
Completed translation of ReqAttrDivSoundOwns clause 2
Required 0:00:00.9 starting at 11:17:03 PM
11:17:04 PM : Checking ReqAttrDivSoundOwns clause 2 ...
Completed checking ReqAttrDivSoundOwns clause 2
Found 0 Counterexamples
Checked 151,485 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.555633e50 total values and 2.844367e50 total cases
Required 0:00:01.6 starting at 11:17:04 PM
11:17:06 PM : Checking ReqAttrDivSoundOwns clause 3
11:17:06 PM : Computing facts for ReqAttrDivSoundOwns clause 3 ...

The HLA Ownership Properties 41

11:17:06 PM : Translating ReqAttrDivSoundOwns clause 3 ...
Completed translation of ReqAttrDivSoundOwns clause 3
Required 0:00:01.0 starting at 11:17:06 PM
11:17:07 PM : Checking ReqAttrDivSoundOwns clause 3 ...
Completed checking ReqAttrDivSoundOwns clause 3
Found 0 Counterexamples
Checked 38,955 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.555633e50 total values and 2.844367e50 total cases
Required 0:00:00.4 starting at 11:17:07 PM
11:17:07 PM : Checking ReqAttrDivSoundOwns clause 4
11:17:07 PM : Computing facts for ReqAttrDivSoundOwns clause 4 ...
11:17:07 PM : Translating ReqAttrDivSoundOwns clause 4 ...
Completed translation of ReqAttrDivSoundOwns clause 4
Required 0:00:00.8 starting at 11:17:07 PM
11:17:08 PM : Checking ReqAttrDivSoundOwns clause 4 ...
Completed checking ReqAttrDivSoundOwns clause 4
Found 0 Counterexamples
Checked 332,893 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.555633e50 total values and 2.844367e50 total cases
Required 0:00:04.1 starting at 11:17:08 PM
11:17:12 PM : Completed checking ReqAttrDivSoundOwns
Completed checking ReqAttrDivSoundOwns
Found 0 Counterexamples
Checked 0 cases and 562,306 values
Assignment space includes 1.422253e51 total values and 1.137747e51 total cases
Required 0:00:07.1 starting at 11:16:57 PM
11:17:12 PM : Completed checking Claim ReqAttrDivSoundOwns

check that Request Attribute Acquisition maintains sound ownership properties

#FED = 2
#OBJECT = 3
#ATTR = 2
#OATTR = 6
#CLASS = 1
11:17:12 PM : Computing facts for ReqAttrAcqSoundOwns clause 1 ...
11:17:12 PM : Translating ReqAttrAcqSoundOwns clause 1 ...
Completed translation of ReqAttrAcqSoundOwns clause 1
Required 0:00:00.3 starting at 11:17:12 PM
11:17:13 PM : Checking ReqAttrAcqSoundOwns clause 1 ...

42 Formalizing a Specification for Analysis

Completed checking ReqAttrAcqSoundOwns clause 1
Found 0 Counterexamples
Checked 75,297 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.8 starting at 11:17:13 PM
11:17:13 PM : Checking ReqAttrAcqSoundOwns clause 2
11:17:13 PM : Computing facts for ReqAttrAcqSoundOwns clause 2 ...
11:17:13 PM : Translating ReqAttrAcqSoundOwns clause 2 ...
Completed translation of ReqAttrAcqSoundOwns clause 2
Required 0:00:00.6 starting at 11:17:13 PM
11:17:14 PM : Checking ReqAttrAcqSoundOwns clause 2 ...
Completed checking ReqAttrAcqSoundOwns clause 2
Found 0 Counterexamples
Checked 296,781 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:02.9 starting at 11:17:14 PM
11:17:17 PM : Checking ReqAttrAcqSoundOwns clause 3
11:17:17 PM : Computing facts for ReqAttrAcqSoundOwns clause 3 ...
11:17:17 PM : Translating ReqAttrAcqSoundOwns clause 3 ...
Completed translation of ReqAttrAcqSoundOwns clause 3
Required 0:00:00.6 starting at 11:17:17 PM
11:17:17 PM : Checking ReqAttrAcqSoundOwns clause 3 ...
Completed checking ReqAttrAcqSoundOwns clause 3
Found 0 Counterexamples
Checked 75,297 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.8 starting at 11:17:17 PM
11:17:18 PM : Checking ReqAttrAcqSoundOwns clause 4
11:17:18 PM : Computing facts for ReqAttrAcqSoundOwns clause 4 ...
11:17:18 PM : Translating ReqAttrAcqSoundOwns clause 4 ...
Completed translation of ReqAttrAcqSoundOwns clause 4
Required 0:00:00.7 starting at 11:17:18 PM
11:17:19 PM : Checking ReqAttrAcqSoundOwns clause 4 ...
Completed checking ReqAttrAcqSoundOwns clause 4
Found 0 Counterexamples
Checked 1,431,621 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:15.4 starting at 11:17:19 PM
11:17:34 PM : Completed checking ReqAttrAcqSoundOwns

The HLA Ownership Properties 43

Completed checking ReqAttrAcqSoundOwns
Found 0 Counterexamples
Checked 0 cases and 1,878,996 values
Assignment space includes 2.845062e50 total values and 2.844367e50 total cases
Required 0:00:19.8 starting at 11:17:12 PM
11:17:34 PM : Completed checking Claim ReqAttrAcqSoundOwns

check that Attribute Divestiture Notification maintains sound ownership properties

#FED = 2
#OBJECT = 3
#ATTR = 2
#OATTR = 6
#CLASS = 1
11:17:34 PM : Computing facts for AttrDivNotSoundOwns clause 1 ...
11:17:34 PM : Translating AttrDivNotSoundOwns clause 1 ...
Completed translation of AttrDivNotSoundOwns clause 1
Required 0:00:00.4 starting at 11:17:34 PM
11:17:35 PM : Checking AttrDivNotSoundOwns clause 1 ...
Completed checking AttrDivNotSoundOwns clause 1
Found 0 Counterexamples
Checked 34,505 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.5 starting at 11:17:35 PM
11:17:35 PM : Checking AttrDivNotSoundOwns clause 2
11:17:35 PM : Computing facts for AttrDivNotSoundOwns clause 2 ...
11:17:35 PM : Translating AttrDivNotSoundOwns clause 2 ...
Completed translation of AttrDivNotSoundOwns clause 2
Required 0:00:00.6 starting at 11:17:35 PM
11:17:36 PM : Checking AttrDivNotSoundOwns clause 2 ...
Completed checking AttrDivNotSoundOwns clause 2
Found 0 Counterexamples
Checked 53,873 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.6 starting at 11:17:36 PM
11:17:36 PM : Checking AttrDivNotSoundOwns clause 3
11:17:36 PM : Computing facts for AttrDivNotSoundOwns clause 3 ...
11:17:37 PM : Translating AttrDivNotSoundOwns clause 3 ...
Completed translation of AttrDivNotSoundOwns clause 3
Required 0:00:00.6 starting at 11:17:36 PM

44 Formalizing a Specification for Analysis

11:17:37 PM : Checking AttrDivNotSoundOwns clause 3 ...
Completed checking AttrDivNotSoundOwns clause 3
Found 0 Counterexamples
Checked 34,505 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.4 starting at 11:17:37 PM
11:17:37 PM : Checking AttrDivNotSoundOwns clause 4
11:17:37 PM : Computing facts for AttrDivNotSoundOwns clause 4 ...
11:17:38 PM : Translating AttrDivNotSoundOwns clause 4 ...
Completed translation of AttrDivNotSoundOwns clause 4
Required 0:00:00.9 starting at 11:17:37 PM
11:17:38 PM : Checking AttrDivNotSoundOwns clause 4 ...
Completed checking AttrDivNotSoundOwns clause 4
Found 0 Counterexamples
Checked 182,835 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:01.7 starting at 11:17:38 PM
11:17:40 PM : Completed checking AttrDivNotSoundOwns
Completed checking AttrDivNotSoundOwns
Found 0 Counterexamples
Checked 0 cases and 305,718 values
Assignment space includes 2.845062e50 total values and 2.844367e50 total cases
Required 0:00:03.2 starting at 11:17:34 PM
11:17:40 PM : Completed checking Claim AttrDivNotSoundOwns

check that Attribute Acquisition Notification maintains sound ownership properties

#FED = 2
#OBJECT = 3
#ATTR = 2
#OATTR = 6
#CLASS = 1
11:17:40 PM : Computing facts for AttrAcqNotSoundOwns clause 1 ...
11:17:40 PM : Translating AttrAcqNotSoundOwns clause 1 ...
Completed translation of AttrAcqNotSoundOwns clause 1
Required 0:00:00.4 starting at 11:17:40 PM
11:17:41 PM : Checking AttrAcqNotSoundOwns clause 1 ...
Completed checking AttrAcqNotSoundOwns clause 1
Found 0 Counterexamples
Checked 23,919 values and 0 cases

The HLA Ownership Properties 45

Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.4 starting at 11:17:41 PM
11:17:41 PM : Checking AttrAcqNotSoundOwns clause 2
11:17:41 PM : Computing facts for AttrAcqNotSoundOwns clause 2 ...
11:17:41 PM : Translating AttrAcqNotSoundOwns clause 2 ...
Completed translation of AttrAcqNotSoundOwns clause 2
Required 0:00:00.6 starting at 11:17:41 PM
11:17:42 PM : Checking AttrAcqNotSoundOwns clause 2 ...
Completed checking AttrAcqNotSoundOwns clause 2
Found 0 Counterexamples
Checked 23,919 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.3 starting at 11:17:42 PM
11:17:42 PM : Checking AttrAcqNotSoundOwns clause 3
11:17:42 PM : Computing facts for AttrAcqNotSoundOwns clause 3 ...
11:17:42 PM : Translating AttrAcqNotSoundOwns clause 3 ...
Completed translation of AttrAcqNotSoundOwns clause 3
Required 0:00:00.7 starting at 11:17:42 PM
11:17:43 PM : Checking AttrAcqNotSoundOwns clause 3 ...
Completed checking AttrAcqNotSoundOwns clause 3
Found 0 Counterexamples
Checked 23,919 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.3 starting at 11:17:43 PM
11:17:43 PM : Checking AttrAcqNotSoundOwns clause 4
11:17:43 PM : Computing facts for AttrAcqNotSoundOwns clause 4 ...
11:17:43 PM : Translating AttrAcqNotSoundOwns clause 4 ...
Completed translation of AttrAcqNotSoundOwns clause 4
Required 0:00:01.0 starting at 11:17:43 PM
11:17:44 PM : Checking AttrAcqNotSoundOwns clause 4 ...

Found Counterexample to Claim AttrAcqNotSoundOwns:
ClassAttrsToClass : tot ATTR->CLASS =

{ a0 -> c0,
 a1 -> c0 }
ClassAttrsToClass' : tot ATTR->CLASS =

{ a0 -> c0,
 a1 -> c0 }
fed : FED =

f0

46 Formalizing a Specification for Analysis

Federates : set FED =
{ f0 }

Federates' : set FED =
{ f0 }

oattrs : set OATTR =
{ oa0 }

obj : OBJECT =
ob0

ObjAttrsToClassAttrs : tot OATTR->ATTR =
{ oa0 -> a0,

 oa1 -> a1,
 oa2 -> a0,
 oa3 -> a1,
 oa4 -> a0,
 oa5 -> a1 }
ObjAttrsToClassAttrs' : tot OATTR->ATTR =

{ oa0 -> a0,
 oa1 -> a1,
 oa2 -> a0,
 oa3 -> a1,
 oa4 -> a0,
 oa5 -> a1 }
ObjAttrsToObject : tot OATTR->OBJECT =

{ oa0 -> ob0,
 oa1 -> ob0,
 oa2 -> ob1,
 oa3 -> ob1,
 oa4 -> ob2,
 oa5 -> ob2 }
ObjAttrsToObject' : tot OATTR->OBJECT =

{ oa0 -> ob0,
 oa1 -> ob0,
 oa2 -> ob1,
 oa3 -> ob1,
 oa4 -> ob2,
 oa5 -> ob2 }
Object_Attrs : set OATTR =

{ oa0, oa1 }
Object_Attrs' : set OATTR =

{ oa0, oa1 }
Objects : set OBJECT =

{ ob0 }
Objects' : set OBJECT =

The HLA Ownership Properties 47

{ ob0 }
ObjectToClass : tot OBJECT->CLASS =

{ ob0 -> c0,
 ob1 -> c0,
 ob2 -> c0 }
ObjectToClass' : tot OBJECT->CLASS =

{ ob0 -> c0,
 ob1 -> c0,
 ob2 -> c0 }
Owns : FED<->OATTR =

{ }
Owns' : FED<->OATTR =

{ f0 -> {oa0 } }
Publishing : FED<->ATTR =

{ }
Publishing' : FED<->ATTR =

{ }
TargetOwners : FED<->OATTR =

{ f0 -> {oa0 } }
TargetOwners' : FED<->OATTR =

{ }
WillingToAccept : FED<->OATTR =

{ f0 -> {oa0 } }
WillingToAccept' : FED<->OATTR =

{ }
WillingToDivest : FED<->OATTR =

{ }
WillingToDivest' : FED<->OATTR =

{ }

11:17:44 PM : Found 1 Counterexamples
Found 1 Counterexamples
Checked 694 values and 1 cases
Covered 1% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:01.2 starting at 11:17:40 PM
11:17:44 PM : Stopped checking Claim AttrAcqNotSoundOwns
Completed checking AttrAcqNotSoundOwns clause 4
Found 1 Counterexamples
Checked 694 values and 1 cases
Covered 1% of the total assignment space
Assignment space includes 7.112655e49 total values and 7.110918e49 total cases
Required 0:00:00.1 starting at 11:17:44 PM

48 Formalizing a Specification for Analysis

11:17:44 PM : Completed checking AttrAcqNotSoundOwns
Completed checking AttrAcqNotSoundOwns
Found 1 Counterexamples
Checked 1 cases and 72,451 values
Assignment space includes 2.845062e50 total values and 2.844367e50 total cases
Required 0:00:01.2 starting at 11:17:40 PM
11:17:44 PM : Completed checking Claim AttrAcqNotSoundOwns

check that Publishing a class maintains sound ownership properties

#FED = 2
#OBJECT = 3
#ATTR = 2
#OATTR = 6
#CLASS = 1
11:17:44 PM : Computing facts for PublishSoundOwns clause 1 ...
11:17:44 PM : Translating PublishSoundOwns clause 1 ...
Completed translation of PublishSoundOwns clause 1
Required 0:00:00.7 starting at 11:17:44 PM
11:17:45 PM : Checking PublishSoundOwns clause 1 ...
Completed checking PublishSoundOwns clause 1
Found 0 Counterexamples
Checked 10,943 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.481838e48 total values and 1.481441e48 total cases
Required 0:00:00.2 starting at 11:17:45 PM
11:17:45 PM : Checking PublishSoundOwns clause 2
11:17:45 PM : Computing facts for PublishSoundOwns clause 2 ...
11:17:45 PM : Translating PublishSoundOwns clause 2 ...
Completed translation of PublishSoundOwns clause 2
Required 0:00:00.9 starting at 11:17:45 PM
11:17:46 PM : Checking PublishSoundOwns clause 2 ...
Completed checking PublishSoundOwns clause 2
Found 0 Counterexamples
Checked 65,318 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.481838e48 total values and 1.481441e48 total cases
Required 0:00:00.8 starting at 11:17:46 PM
11:17:47 PM : Checking PublishSoundOwns clause 3
11:17:47 PM : Computing facts for PublishSoundOwns clause 3 ...
11:17:47 PM : Translating PublishSoundOwns clause 3 ...
Completed translation of PublishSoundOwns clause 3

The HLA Ownership Properties 49

Required 0:00:01.2 starting at 11:17:47 PM
11:17:48 PM : Checking PublishSoundOwns clause 3 ...
Completed checking PublishSoundOwns clause 3
Found 0 Counterexamples
Checked 10,943 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.481838e48 total values and 1.481441e48 total cases
Required 0:00:00.1 starting at 11:17:48 PM
11:17:48 PM : Checking PublishSoundOwns clause 4
11:17:48 PM : Computing facts for PublishSoundOwns clause 4 ...
11:17:49 PM : Translating PublishSoundOwns clause 4 ...
Completed translation of PublishSoundOwns clause 4
Required 0:00:01.4 starting at 11:17:48 PM
11:17:49 PM : Checking PublishSoundOwns clause 4 ...
Completed checking PublishSoundOwns clause 4
Found 0 Counterexamples
Checked 58,043 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.481838e48 total values and 1.481441e48 total cases
Required 0:00:00.8 starting at 11:17:49 PM
11:17:50 PM : Checking PublishSoundOwns clause 5
11:17:50 PM : Computing facts for PublishSoundOwns clause 5 ...
11:17:51 PM : Translating PublishSoundOwns clause 5 ...
Completed translation of PublishSoundOwns clause 5
Required 0:00:01.1 starting at 11:17:50 PM
11:17:51 PM : Checking PublishSoundOwns clause 5 ...
Completed checking PublishSoundOwns clause 5
Found 0 Counterexamples
Checked 5,043 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.482196e48 total values and 1.481441e48 total cases
Required 0:00:00.1 starting at 11:17:51 PM
11:17:51 PM : Checking PublishSoundOwns clause 6
11:17:51 PM : Computing facts for PublishSoundOwns clause 6 ...
11:17:52 PM : Translating PublishSoundOwns clause 6 ...
Completed translation of PublishSoundOwns clause 6
Required 0:00:01.2 starting at 11:17:51 PM
11:17:53 PM : Checking PublishSoundOwns clause 6 ...
Completed checking PublishSoundOwns clause 6
Found 0 Counterexamples
Checked 22,355 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.482196e48 total values and 1.481441e48 total cases

50 Formalizing a Specification for Analysis

Required 0:00:00.3 starting at 11:17:53 PM
11:17:53 PM : Checking PublishSoundOwns clause 7
11:17:53 PM : Computing facts for PublishSoundOwns clause 7 ...
11:17:54 PM : Translating PublishSoundOwns clause 7 ...
Completed translation of PublishSoundOwns clause 7
Required 0:00:01.3 starting at 11:17:53 PM
11:17:54 PM : Checking PublishSoundOwns clause 7 ...
Completed checking PublishSoundOwns clause 7
Found 0 Counterexamples
Checked 6,025 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.482196e48 total values and 1.481441e48 total cases
Required 0:00:00.1 starting at 11:17:54 PM
11:17:54 PM : Checking PublishSoundOwns clause 8
11:17:54 PM : Computing facts for PublishSoundOwns clause 8 ...
11:17:55 PM : Translating PublishSoundOwns clause 8 ...
Completed translation of PublishSoundOwns clause 8
Required 0:00:01.4 starting at 11:17:54 PM
11:17:56 PM : Checking PublishSoundOwns clause 8 ...
Completed checking PublishSoundOwns clause 8
Found 0 Counterexamples
Checked 19,572 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.482196e48 total values and 1.481441e48 total cases
Required 0:00:00.3 starting at 11:17:56 PM
11:17:56 PM : Completed checking PublishSoundOwns
Completed checking PublishSoundOwns
Found 0 Counterexamples
Checked 0 cases and 198,242 values
Assignment space includes 1.185614e49 total values and 1.185153e49 total cases
Required 0:00:02.6 starting at 11:17:44 PM
11:17:56 PM : Completed checking Claim PublishSoundOwns

check that Unpublishing a class maintains sound ownership properties

#FED = 2
#OBJECT = 3
#ATTR = 2
#OATTR = 6
#CLASS = 1
11:17:56 PM : Computing facts for UnpublishSoundOwns clause 1 ...
11:17:56 PM : Translating UnpublishSoundOwns clause 1 ...

The HLA Ownership Properties 51

Completed translation of UnpublishSoundOwns clause 1
Required 0:00:00.3 starting at 11:17:56 PM
11:17:56 PM : Checking UnpublishSoundOwns clause 1 ...
Completed checking UnpublishSoundOwns clause 1
Found 0 Counterexamples
Checked 46,042 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.704599e47 total values and 3.703603e47 total cases
Required 0:00:00.5 starting at 11:17:56 PM
11:17:57 PM : Checking UnpublishSoundOwns clause 2
11:17:57 PM : Computing facts for UnpublishSoundOwns clause 2 ...
11:17:57 PM : Translating UnpublishSoundOwns clause 2 ...
Completed translation of UnpublishSoundOwns clause 2
Required 0:00:00.4 starting at 11:17:57 PM
11:17:57 PM : Checking UnpublishSoundOwns clause 2 ...
Completed checking UnpublishSoundOwns clause 2
Found 0 Counterexamples
Checked 71,935 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.704599e47 total values and 3.703603e47 total cases
Required 0:00:00.7 starting at 11:17:57 PM
11:17:58 PM : Checking UnpublishSoundOwns clause 3
11:17:58 PM : Computing facts for UnpublishSoundOwns clause 3 ...
11:17:58 PM : Translating UnpublishSoundOwns clause 3 ...
Completed translation of UnpublishSoundOwns clause 3
Required 0:00:00.4 starting at 11:17:58 PM
11:17:58 PM : Checking UnpublishSoundOwns clause 3 ...
Completed checking UnpublishSoundOwns clause 3
Found 0 Counterexamples
Checked 49,750 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 3.704599e47 total values and 3.703603e47 total cases
Required 0:00:00.5 starting at 11:17:58 PM
11:17:59 PM : Checking UnpublishSoundOwns clause 4
11:17:59 PM : Computing facts for UnpublishSoundOwns clause 4 ...
11:17:59 PM : Translating UnpublishSoundOwns clause 4 ...
Completed translation of UnpublishSoundOwns clause 4
Required 0:00:00.4 starting at 11:17:59 PM
11:17:59 PM : Checking UnpublishSoundOwns clause 4 ...
Completed checking UnpublishSoundOwns clause 4
Found 0 Counterexamples
Checked 46,042 values and 0 cases
Covered 100% of the total assignment space

52 Formalizing a Specification for Analysis

Assignment space includes 3.704599e47 total values and 3.703603e47 total cases
Required 0:00:00.5 starting at 11:17:59 PM
11:18:00 PM : Completed checking UnpublishSoundOwns
Completed checking UnpublishSoundOwns
Found 0 Counterexamples
Checked 0 cases and 213,769 values
Assignment space includes 1.48184e48 total values and 1.481441e48 total cases
Required 0:00:02.2 starting at 11:17:56 PM
11:18:00 PM : Completed checking Claim UnpublishSoundOwns

check that a simple conditional divestiture maintains ownership

#FED = 2
#OBJECT = 1
#ATTR = 3
#OATTR = 3
#CLASS = 1
11:18:00 PM : Computing facts for ConditionalCompleteOwners ...
11:18:01 PM : Translating ConditionalCompleteOwners ...
Completed translation of ConditionalCompleteOwners
Required 0:00:01.9 starting at 11:18:00 PM
11:18:02 PM : Checking ConditionalCompleteOwners ...
11:18:02 PM : Completed checking ConditionalCompleteOwners
Completed checking ConditionalCompleteOwners
Found 0 Counterexamples
Checked 3,764 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 2.287481e64 total values and 2.251739e64 total cases
Required 0:00:00.1 starting at 11:18:00 PM
11:18:02 PM : Completed checking Claim ConditionalCompleteOwners

check that unconditional divestiture leaves all targets unowned

#FED = 2
#OBJECT = 1
#ATTR = 3
#OATTR = 3
#CLASS = 1
11:18:02 PM : Computing facts for UnconditionalSoundTargets ...
11:18:03 PM : Translating UnconditionalSoundTargets ...
Completed translation of UnconditionalSoundTargets

The HLA Ownership Properties 53

Required 0:00:01.2 starting at 11:18:02 PM
11:18:04 PM : Checking UnconditionalSoundTargets ...
11:18:04 PM : Completed checking UnconditionalSoundTargets
Completed checking UnconditionalSoundTargets
Found 0 Counterexamples
Checked 5,274 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.232860e52 total values and 1.213597e52 total cases
Required 0:00:00.1 starting at 11:18:02 PM
11:18:04 PM : Completed checking Claim UnconditionalSoundTargets

check that conditional divestiture leaves all targets unowned

#FED = 2
#OBJECT = 1
#ATTR = 3
#OATTR = 3
#CLASS = 1
11:18:04 PM : Computing facts for ConditionalSoundTargets clause 1 ...
11:18:04 PM : Translating ConditionalSoundTargets clause 1 ...
Completed translation of ConditionalSoundTargets clause 1
Required 0:00:01.5 starting at 11:18:04 PM
11:18:06 PM : Checking ConditionalSoundTargets clause 1 ...
Completed checking ConditionalSoundTargets clause 1
Found 0 Counterexamples
Checked 20,973 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.232860e52 total values and 1.213597e52 total cases
Required 0:00:00.3 starting at 11:18:06 PM
11:18:06 PM : Checking ConditionalSoundTargets clause 2
11:18:06 PM : Computing facts for ConditionalSoundTargets clause 2 ...
11:18:06 PM : Translating ConditionalSoundTargets clause 2 ...
Completed translation of ConditionalSoundTargets clause 2
Required 0:00:01.7 starting at 11:18:06 PM
11:18:07 PM : Checking ConditionalSoundTargets clause 2 ...
Completed checking ConditionalSoundTargets clause 2
Found 0 Counterexamples
Checked 10,553 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.232860e52 total values and 1.213597e52 total cases
Required 0:00:00.2 starting at 11:18:07 PM
11:18:08 PM : Checking ConditionalSoundTargets clause 3

54 Formalizing a Specification for Analysis

11:18:08 PM : Computing facts for ConditionalSoundTargets clause 3 ...
11:18:08 PM : Translating ConditionalSoundTargets clause 3 ...
Completed translation of ConditionalSoundTargets clause 3
Required 0:00:01.9 starting at 11:18:08 PM
11:18:10 PM : Checking ConditionalSoundTargets clause 3 ...
Completed checking ConditionalSoundTargets clause 3
Found 0 Counterexamples
Checked 524,226 values and 0 cases
Covered 100% of the total assignment space
Assignment space includes 1.232860e52 total values and 1.213597e52 total cases
Required 0:00:03.9 starting at 11:18:10 PM
11:18:13 PM : Completed checking ConditionalSoundTargets
Completed checking ConditionalSoundTargets
Found 0 Counterexamples
Checked 0 cases and 555,752 values
Assignment space includes 3.698580e52 total values and 3.640790e52 total cases
Required 0:00:04.4 starting at 11:18:04 PM
11:18:13 PM : Completed checking Claim ConditionalSoundTargets
Script hla-own-tr.script2 finshed

