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Abstract

The order in which the variables of a linear system are processed determines the total amounts of
fill and work to perform LU decomposition on the system. We identify a trade-off between the
amounts of fill and work for a given order and the parallelism inherent in that order. We present two
algorithms: one that tries to parallelize sequential orders, and another that tries to produce low-fill
orders, while, in the process, producing somewhat sequential orders.

The first algorithm takes a sequential order for a matrix and produces a parallel one with at most
a constant factor more nonzeros and work. We also show that, for certain graphs, any parallel order
requires an amount of additional fill that is a function of the amount of parallelism exhibited. The
more parallel the order, the more fill it introduces.

We identified a particular “deficiency” of nested dissection that arises from the parallel nature
of the orders it produces. Thus, when shifting our goal towards fill and work minimization, we
choose to modify nested dissection to obtain a similar algorithm that produces orders that introduce
less fill and work than a traditional nested dissection order would, but that are also less parallel than
the orders that would be produced by the traditional nested dissection algorithm.

Our experimental work comparing this variant of nested dissection and a number of other pub-
licly available ordering algorithms indicates that while a few of the algorithms produce comparable-
quality orders, the minimum-degree algorithm stands out as the worst one. Contrary to common
belief, the minimum-degree algorithm produces poor quality orders in terms of fill and work. Our
variant of nested dissection compares favorably with state-of-the-art ordering algorithms, including
implementations of nested dissection, minimum-degree and their hybrids.
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Chapter 1

Introduction

Among the most common problems to be solved in both operations research and scientific com-
puting is that of finding a vectorx that satisfies a linear system of equationsAx = b, whereA is
a known matrix andb is a known vector. Systems of this sort arise in scientific computing when
modeling physical systems, such as the flow of air over an airfoil, and in operations research when
solving optimization problems, such as assigning production tasks to machines in a workshop.
Often these systems are quite large, making their solution on even the most powerful computers
challenging. Two common approaches to solving linear systems in practice are direct methods such
as Gaussian elimination, and iterative methods such as conjugate gradient. This thesis focuses on
Gaussian elimination.

A system of equationsAx = b can be simplified if the matrixA can first be decomposed into
the product of two matricesA = L � U , whereL is a lower triangular matrix, andU is an upper
triangular matrix. The solution,x, can then be found by first solvingLy = b for y, and then solving
Ux = y for x. These two systems are easier to solve than the original systemAx = b because
when the known matrix is upper or lower triangular, a fast algorithm called back substitution can be
applied. The factorizationA = L � U can be found through Gaussian elimination. One advantage
to solving linear systems throughL � U decomposition in the scientific computing domain is that
systems of the formAx = b are often solved repeatedly for a fixed matrixA but with different
matricesb. This scenario arises, for example, when using the popular finite-element method for
solving a set of partial differential equations describing a physical system. In this case, the cost of
factoringA intoL � U can be amortized against the cost of repeatedly solving the system.

The basic step in Gaussian elimination is to add or subtract a multiple of one row of the matrix
A to another row ofA. In L � U decomposition, a multiple of theith row ofA is subtracted from
each of the following rows in order to eliminate theith entry of each of these rows. In particular, for
j > i, a multiple ofAji=Aii of theith row ofA is subtracted from thejth row so that the new value
of Aji isAji � (Aji=Aii)Aii = 0. This operation is referred to as pivoting onAii, and the multiple
Aji=Aii is recorded asLji = Aji=Aii. Processing theith row ofA corresponds to eliminating the
ith variablexi from the system of equations. The rows ofA are processed in order, so that once
the last row has been processedA has been reduced to an upper triangular matrixU . At this point,
A = L � U .

1



2 CHAPTER 1. INTRODUCTION

When a multiple of theith row ofA is subtracted from thejth row ofA in order to eliminate
Aji, the entries in rowi in all columnsk beyond theith column are also subtracted from the
corresponding entries in thejth row. When the entryAik is non-zero, but the entryAjk is zero, we
say thatfill has occurred, because the new value ofAjk is no longer non-zero. In general, fill is
considered to be undesirable because it increases the amount of memory required to store the linear
system and because there is a high correlation between the amount of fill and the total number of
floating point operations (thework) required to complete theL � U factorization. Minimizing the
amount of memory required is crucial because in practice the size of the largest system that can
feasibly be solved is typically limited by the size of a computer’s main memory. Unfortunately, the
process of elimination may turn a sparse matrixA into a dense matrixU .

TheL � U decomposition algorithm, as described so far, allows no freedom in the choice of
pivots, and hence provides no mechanism for avoiding fill. For the purposes of solvingAx = b,
however, the order in which the rows ofA (and henceb) appear does not affect the solution to the
system. Hence the rows ofA andb can be permuted by a permutation matrixP , and then Gaussian
elimination can be applied to the system(PA)x = Pb rather thanAx = b. The permutation
specifies the order in which the original rows of the matrixA are to be processed. Different orders
may create wildly different amounts of fill.

The matrixA can be viewed as a graph. In particular, ann � n symmetric matrixA can be
viewed as an undirected graph consisting ofn vertices,f1; : : : ; ng, with an edge between vertices
i andj if the matrix entryAij = Aji is non-zero. The operation of eliminating theith variable
xi then corresponds to the graph operation of removing vertexi from the graph and adding edges
between all of the neighbors ofi so that they form a clique [Par61, Ros70]. To see why such edges
must be added, note that in pivoting onAii, a non-zero entry may be created atAjk for anyj such
thatAij � 0 (i.e., for any neighborj of i) and for anyk such thatAik 6= 0 (i.e., for any neighbork
of i). The newly added edges are calledfill edges(or justfill ). Minimizing either the fill or the work
by performing symmetric permutations of symmetric matrices, that is, by re-ordering the rows and
columns of the matrix, has been shown to be NP-hard [Yan81].

The Gaussian elimination algorithm discussed so far breaks down if it encounters a pivotAii

whose value is zero, since such a pivot cannot be used to eliminate non-zero elements in the follow-
ing rows. To dodge this issue, we restrict our discussion to the class ofsymmetric positive definite
matrices. If a matrix is symmetric positive definite, then during the course of Gaussian elimination,
no matter how the variables are ordered, no pivot elementAii will have value zero. Symmetric pos-
itive definite matrices are not unusual in practice. Furthermore, there are a variety of approaches
for dealing with a zero-valued pivot, including exchanging the row with another row, and replacing
the pivot value with a small non-zero value (and later adjusting the final solution).

In this thesis we identify a trade-off between the amounts of fill and work for a given order
and the parallelism inherent in that order. We present two algorithms: one that tries to parallelize
sequential orders, and another that tries to produce low-fill orders, while, in the process, producing
somewhat sequential orders.
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1.1 Existing ordering heuristics

Over the years a number of algorithms for producing elimination orders with low fill and work have
been proposed. The most popular of these areminimum degree[Mar57, TW67, Liu85] andnested
dissection[Geo73, GL78, LRT79]. At each step, the minimum-degree heuristic selects a vertex
with the smallestdegree(number of neighbors), removes this vertex from the graph by pivoting
on it (making its neighborhood a clique), and then looks for the next vertex with the smallest
degree in the new graph. It proceeds in this fashion until all vertices have been selected. The
orders produced are typically good. There exist, however, minimum-degree orders with significant
amounts of fill. For example, minimum degree can produce orders with
(nlog3 4) fill for the
toroidaln� n mesh [BS90], while the optimal order for the same graph requires only�(n � log n)
fill.

Nested dissection, on the other hand, examines the graph as a whole before ordering it. Unlike
minimum degree, nested dissection orders the vertices of the graph backwards, that is, it begins by
deciding which vertices should be eliminated last. Nested dissection works by selecting abalanced
separator, i.e., a set of vertices that, when removed from the graph, partitions it into connected
components each of which has at most a constant fraction of the total number of vertices in the
graph. The vertices in the separator are placed last in the elimination order. Then nested dissec-
tion recursively orders each of the connected components until the whole graph has been ordered.
Because the separator is eliminated last, and there are no edges connecting vertices in different
connected components, no fill can be created between different components as they are eliminated.
Hence, the various components can be eliminated either sequentially or in parallel without affecting
the quality of the order in terms of both fill and work. For planar graphs and graphs with bounded
genus [GT87, LRT79], and for graphs with bounded degree [AKR93], nested dissection has been
shown to produce orders that have fill within a poly-logarithmic factor of the optimum.

Even though minimum-degree algorithms can produce elimination orders that introduce more
fill than the worst-case nested dissection order, minimum degree is usually preferred to nested
dissection, and is said, in practice, to produce orders with less fill. However, the “in practice”
wisdom on this is changing. The currently accepted champion algorithms are hybrids of nested
dissection and minimum degree [AL96, HR96] and benefit from the strengths of both methods but
do not, however, provide any performance guarantees.

1.2 Parallel elimination

The performance of Gaussian elimination can be improved on parallel computers by generalizing
the basic elimination step to allow for more than one vertex to be eliminated at a time. In order
for such an operation to make sense, the vertices that are eliminated in one step must form an
independent set, i.e., a set of vertices no two of which are adjacent. As an example, in the nested
dissection algorithm a set of vertices consisting of one from each of the connected components
constitutes an independent set, and hence can be eliminated in parallel. Theheightof a graph is the
minimum number of parallel elimination steps needed to eliminate all of the vertices of the graph.

Finding the height of a graph is NP-hard [Pot88], but minimum-height orders may be found
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for specific classes of graphs. Aspvall and Heggernes [AH94] present an algorithm that finds elim-
ination orders with minimum height for interval graphs, but the orders produced have not been ana-
lyzed in terms of fill. A family of chordal graphs for which any minimum-height order must produce
fill that is more than a constant factor larger than the total number of nonzeros in a minimum-fill
decomposition is presented in [Asp95]. Manne [Man91] shows how to produce minimum-height
orders for trees with fill linear in the number of edges in the tree.

The height of an order is a measure of its parallelism. The more parallel an order, the smaller
its height. Some graphs are inherently more sequential than others. For example, the vertices
of a clique (a graph in which every pair of vertices is connected by an edge) must be eliminated
sequentially, because a clique contains no independent sets of size greater than one. More generally,
if a graph contains a clique, or if a clique is created during the course of elimination, then that clique
must be eliminated sequentially. There are, however, alternative parallel algorithms for solving
these dense linear systems of equations. This suggests modifying Gaussian elimination so that
when a large dense subgraph is encountered, a different algorithm is used to eliminate it. In a single
stageof such a hybrid algorithm, an independent set of cliques may be eliminated in parallel.

We begin our study by examining parallel orders for specific classes of graphs, namely interval
graphs and chordal graphs. The purpose of the study was twofold. First, the rich structure of these
graphs provides some insight into the problem of finding orders that minimize both fill and work.
Second, because chordal graphs are precisely those graphs with zero-fill elimination orders, any
graphG along with the fill edges introduced by a given order is a chordal graph, called thechordal
completionof G. This suggests that an algorithm designed to find a parallel order for a chordal
graph can be applied to the chordal completion of a graphG generated by some other (possibly
sequential) ordering heuristic, and the resulting order, which may be more parallel, can then be
applied to the original graphG.

Although zero-fill orders for chordal and interval graphs can be computed in linear time [RTL76],
these orders do not necessarily have low height. Our goal was to obtain an algorithm that takes a
chordal graph and produces an order with low height and with fill linear in the number of edges
of the graph. Although zero fill is preferable, allowing linear fill increases the amount of space
required for Gaussian elimination by only a constant factor.

We started by analyzing nested dissection on the classes of interval and chordal graphs. We
showed that if the separators are required to partition the graph into components with no more than
half the number of vertices in the graph, then nested dissection may introduce a super-linear amount
of fill even on interval graphs. We also showed that by allowing a constant-factor imbalance in the
size of the subgraphs generated by the choice of the separator, a specific nested dissection algorithm
produces orders with linear fill and linear work for interval graphs.

The bounds we obtained for this nested dissection algorithm corroborate the common notion
that allowing some imbalance in the size of the subgraphs produced by removing a separator can
help produce better orders. With this imbalance, nested dissection is a suitable algorithm for pro-
ducing parallel orders for interval graphs. Unfortunately, we also showed that there exist chordal
graphs for which, even when allowing some constant-factor imbalance, the nested dissection algo-
rithm will produce orders with super-linear fill.

There is a trade-off between the parallelism exhibited by an order and the amount of extra
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fill introduced by that order. In fact, by slightly reducing the amount of parallelism in an order,
we obtained an algorithm that produces parallel orders for chordal graphs with linear fill. One
technique for “sequentializing” the order is the use ofsentinels. Sentinels are separators that help
to sequentialize an order just enough to localize the fill within subgraphs of a chordal graph. The
orders produced by our algorithm have linear fill and height within anO(log2 n) factor of the
optimal.

Our experience parallelizing and sequentializing elimination orders for chordal graphs led us
down an interesting avenue. Nested dissection produces orders that are naturally parallel. This
same parallelism is also responsible for some of the fill required by nested dissection orders. Thus,
perhaps nested dissection could be improved by reducing the amount of parallelism in the orders it
produces.

We have designed an algorithm that is a variant of nested dissection that produces orders with
low fill but which are usually less parallel than orders produced by standard nested dissection algo-
rithms. While still using separators to guide the ordering process, the algorithm does not necessarily
assume that a separator should be ordered last, but only that it should be used to avoid fill between
the different connected components it defines in the graph. That is, as long as the vertices within all
but one of the components are ordered before the separator vertices, then the requirement that the
separator vertices be ordered last no longer exists. Instead, the algorithm recurses on the subgraph
formed by the last of the components along with the, as yet unordered, separator vertices. The ac-
tual algorithm is more involved, and cannot always decide which component should be ordered last.
It sometimes reverts to regular nested dissection. This algorithm behaves very much like nested dis-
section, except that in certain cases when nested dissection misbehaves, this algorithm works better
and produces low-fill orders. Unfortunately, have not yet been able to provide a theoretical analysis
for this algorithm on general graphs. However we have proved that this algorithm produces zero-fill
orders when applied to chordal graphs, which is not, however, the case for nested dissection.

1.2.1 Empirical results

We performed experiments with an implementation of this variant of nested dissection and state-
of-the-art implementations of other ordering heuristics on matrices commonly used as benchmarks.
We observed that nested dissection performed on average almost as well as a hybrid of minimum
degree and nested dissection, the current champion algorithm. When given good enough separators,
our modified version of nested dissection outperformed this hybrid algorithm by about 5 percent in
terms of fill and 10 percent in terms of work on average, over the set of test matrices. It outper-
formed a minimum-degree ordering algorithm by about 20 percent in terms of fill, and 66 percent
in terms of work on average, on the same benchmarks.

Nested dissection versus minimum degree

Even though we advocate nested dissection as a better approach for producing elimination orders
than minimum degree, we cannot deny that, on certain graphs, minimum degree does generate
better elimination orders in terms of both fill and work.
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Nonzeros on  nxk grids
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Figure 1.1: Number of nonzeros introduced by different elimination orders forn � k rectangular
grids relative to a special-purpose order.

Figures 1.1 and 1.2 show the number of nonzeros and the amount of work for decomposing
grids according to various ordering algorithms. In these experiments we used rectangular two-
dimensional grid graphs of various aspect ratios, each of which had a total of216 vertices. Four
ordering algorithms were applied to each graph, namely nested dissection (ND), the hybrid algo-
rithm that we mentioned previously (BEND) [HR96, HR97], our “less parallel” variation of nested
dissection (LPND) and a version of minimum degree (AMD) [ADD96]. We also applied a special-
purpose algorithm that works only on two-dimensional grids, and uses diagonal separators as a basis
for the ordering. The results for all orders were normalized to the results for this special-purpose
order.

On graphs with large aspect ratios, the minimum-degree algorithm does best in terms of fill, but
poorly in terms of parallelism. On these same graphs, the nested dissection and the hybrid algorithm
produce orders that are substantially more parallel, but require more fill and work. For each of the
orders produced by these algorithms we computed the minimum-height order that is equivalent to
the order produced, in the sense that the new order produces the same fill edges. The heights of
these minimum-height orders are shown in Figure 1.3, again, relative to the special-purpose order.
We note that the LPND algorithm produces very sequential orders that are only a few percent more
parallel than those produced by AMD. At least part of the additional fill experienced by the nested
dissection and hybrid orders is a function of the additional parallelism in these orders.
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Work on  nxk grids
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Figure 1.2: Work for different orders relative to a special-purpose order.

The following results stand out:

1. Contrary to popular belief, our results indicate that even though minimum-degree orders have
low fill on graphs with large aspect ratios, in practice they are not very good for large graphs,
such as the ones found in a number of sparse matrix applications. For smaller graphs, and in
particular for small enough subgraphs of the input graphs, we often use minimum-degree as
an ordering heuristic.

2. There exists a trade-off between exposing parallelism and producing low-fill orders. This
trade-off can play a significant role when comparing orders that differ by only a few percent.
We show that to obtain a parallel order for certain graphs we must allow some extra fill. Since
nested dissection orders are highly parallel, this effect can sometimes make other ordering
heuristics more attractive. By limiting the amount of parallelism that is exposed, we obtained
a new algorithm that is a variant of nested dissection that, on our test cases, outperforms
existing algorithms on average.

3. Given a sequential order, our parallelizing algorithm will produce a parallel elimination order
with only a constant factor more fill and work than the initial order, while achieving a height
within a factor ofO(log2 n) of optimum.
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Height on  nxk grids
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Figure 1.3: Height relative to a special-purpose order.



Chapter 2

Background and definitions

2.1 Gaussian elimination and LU decomposition

We start by reviewing Gaussian elimination and LU decomposition. Gaussian elimination solves a
linear system ofn equations andn variables by adding a multiple of the first equation to the remain-
ing equations so as to remove the first variable from those equations, in what we call an elimination
step. After the first elimination step we obtain a system ofn� 1 equations andn� 1 variables, that
can be processed in the same fashion. This method results in a system that corresponds to an upper
triangular matrix, and can be easily solved by back-substitution.

Each of the elimination steps described above corresponds to multiplying the matrix represent-
ing the linear system by a matrix that is readily inverted. While multiplying this matrix by another
matrix adds a multiple of the pivot row to a number of other rows, multiplying its inverse by a
matrix subtracts that same multiple of the pivot row from the other rows. Thus, each one of these
matrices and their inverses have the same non-zero pattern. These matrices have non-zeros in the
diagonal and in the positions that correspond to each of the equations from which the variable is
being eliminated in the current step.

The process known asLU decomposition consists of “storing” the sequence of such elementary
operations. IfE1; E2; � � � ; En are the elementary matrices corresponding to the Gaussian elimina-
tion of a matrixA, then the matrixU obtained by Gaussian elimination can be written asU =

(En � (En�1 � � � (E2 � (E1 �A)) � � �)). Thus we haveA = LU , whereL = E�1
1 �E�1

2 � � �E�1
n�1 �E�1

n

is a lower triangular matrix. The non-zero structure ofL corresponds to the non-zero structure of
all the matricesEi added together, that is,L can only have a non-zero in columni row j if at least
one of the matricesEi also does. Each column ofL has non-zeros corresponding exactly to the
non-zero entries on that column, below and including the diagonal, at the time the corresponding
variable was eliminated.

9
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2.2 Definitions

Entries in the matrixL produced in theLU decomposition of a matrixA can be classified in two
categories:original entries that correspond to non-zeros inA, andfill entries that correspond to new
non-zeros introduced during the elimination process. The total number of floating-point operations
to perform anLU decomposition is called thework to decompose the matrix. The total amount
of fill and work for a matrix decomposition depends onA, but also depends on the order of the
equations and variables. Instead of decomposing the matrixA, we first find a suitable order for the
rows and columns of the matrix. We can then either think of the decomposition process as choosing
a pivot at each step according to the order, or we can permute the matrix, so that the elements are
listed in the order they should be pivoted in. To maintain the symmetry of the matrix, we perform
both row and column permutations, that is, given a permutation matrixP for the matrixA we
actually decompose the matrixPAP T . The order corresponding toP is said to be anelimination
order. When dealing with sparse matrices, it is interesting to consider the problem of finding the
elimination order that minimizes either fill or work.

In order to understand and try to find low-fill and low-work orders, we model matrices as graphs,
and LU decomposition as a graph operation, following Parter and Rose [Par61, Ros70]. LetM =

(mi;j) be a squaren � n matrix. We associate withM the graphG with verticesv1; � � � ; vn and
edges(vi; vj) iff mi;j 6= 0, i 6= j. WhenM is symmetricG is an undirected graph.

Given a graphG = (V;E) and a vertexv in V we callN(v), the set of vertices adjacent tov
in G, the neighborhoodof v in G. WhenG is unclear, we will refer toN(v) asNG(v). A pair
of verticesv andw are said to betwins if N(v) [ fvg = N(w) [ fwg. A clique of G is a set of
vertices any two of which are adjacent inG. A clique is said to bemaximalif it is not contained in
any larger clique. Anindependent setof vertices ofG is a set of vertices none of which are pairwise
adjacent. An independent set ismaximalif it is not contained in any larger independent set.

pivot
fill

Figure 2.1: The elimination of the vertex corresponding to the pivot in a given step introduces fill
edges between its neighbors.

Each step of Gaussian elimination on a symmetric matrixM corresponds to finding the next
variable and the corresponding vertexvi to be eliminated, adding edges toG where necessary to
makevi’s neighborhood into a clique, and then removingvi from G. The vertexvi is said to have
beeneliminatedfrom G. Any new edges introduced by the elimination of a vertex are calledfill
edges, or simplyfill , and have a one-to-one correspondence with the fill entries inL. Figure 2.1
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illustrates the process of eliminating a vertex.

Alternatively, we can think of theLU decomposition process in terms of a different graph
operation. In this case we do not remove the vertex being eliminated from the graphG, but rather
mark it, just so it is not included in later steps in the neighborhoods of other vertices. This process
augmentsG into a supergraphG+ obtained fromG by inserting all the fill edges intoG. This
augmented graphG+ is referred to as thefilled graph. Given two non-adjacent verticesvi andvj
in G, there exists a fill edge(vi; vj) in G+ iff there exists a path fromvi to vj going only through
verticesvk, k < min(i; j), wherev1; v2; � � � ; vn is the elimination order used to perform the LU
decomposition [RTL76]. Two elimination orders are said to beequivalentif they produce the same
filled graph.

An orderv1; v2; � � � ; vn of the vertices ofG is aperfect elimination orderif the elimination of
the vertices ofG according to the order does not introduce any fill edges. A vertexv is simplicial in
a graphG if N(v) is a clique inG. Simplicial vertices are of special interest since the elimination
of a simplicial vertex does not introduce any fill edges. An orderv1; v2; � � � ; vn is perfectiff vi is
simplicial inG n fv1; � � � ; vi�1g.

v3 v6 v2

v4 v5
v1

G T

v2 

v1

v4

v3

v6

v5

Figure 2.2: A graphG and its elimination treeT according to the orderv1; v2; : : : ; v6.

We can represent an elimination order by anelimination tree, i.e., a tree that encodes the actual
precedence relations between the vertices of the graph. Given a graphG, and the graphG+ obtained
fromG by adding all the fill edges introduced by a given order� of the vertices ofG, the elimination
tree ofG corresponding to� is defined as follows: every vertex ofG is a vertex of the elimination
tree and the parent of a vertexv is the first of the neighbors ofv in G+ that is ordered afterv in �.
Figure 2.2 represents a graphG, and the graphG+ obtained by adding the fill edges corresponding
to the elimination orderv1; v2; : : : ; v6 toG. The fill is represented in the figure by the dotted edges.
Figure 2.2 also shows the elimination treeT of G corresponding to the same elimination order.

Any vertices that do not have any children in the elimination tree can be eliminated in a sin-
gle parallel step. Theheightof an elimination order is given by the height of the corresponding
elimination tree plus one. The height of an order corresponds to the minimum number of steps to
perform LU decomposition on the graph while respecting the precedence constraints imposed by
the order. TheheightH(G) of a graphG is the minimum height over all elimination orders for that
graph.
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If we implement LU decomposition as a parallel algorithm, we can, at each step of the algo-
rithm, eliminate an independent set of simplicial vertices. This parallel LU decomposition algo-
rithm must eliminate vertices in a clique sequentially. We can also conceive a parallel decompo-
sition algorithm that handles cliques as dense subgraphs. This new algorithm can take advantage
of the sparsity of a matrix while applying a different, parallel dense decomposition algorithm to
the dense sub-matrix corresponding to a clique, resulting in a very parallel algorithm. We define
the number ofstagesof an order as the minimum number of parallel clique elimination steps to
decompose a graph while respecting the precedence constraints imposed by the order.

Thereordering heightof a graphG given an elimination order� is the minimum height among
all orders ofG equivalent to�. The number of reordering stagesof a graphG given an order
� is defined analogously. The reordering height of a graph given an order can be computed effi-
ciently [JK82, LPP89], and so can the number of reordering stages of the graph.

A graphG is said to bechordal if and only if every simple cycle with more than three vertices
has achord, that is, an edge connecting two non-consecutive vertices in the cycle. The class of
chordal graphs is also the class of perfect elimination graphs [Dir61, Ros70].

Now consider the graphG+ obtained from a graphG by adding all fill edges introduced by
some order. When eliminatingG+ according to the same order used to obtainG+ form G, we
observe that no new fill is created, and in factG+ is a perfect elimination graph. Thus, we also
refer to the filled graphG+ as achordal completionof G. Chordal graphs have also been studied
in other contexts, and have a number of interesting properties. Some NP-hard problems such as
k-coloring and finding a maximum clique have linear time solutions for chordal graphs. Chordal
graphs are also known by the names of triangulated graphs and rigid circuit graphs.

Chordal graphs have also been characterized as a particular class of intersection graphs. The
intersection graphof a familyF of setsSi is the graph obtained by associating a vertexvi with each
setSi, and edges(vi; vj) wheneverSi intersectsSj. Chordal graphs correspond to the intersection
graphs of subtrees of a tree, i.e., each of the setsSi defining the intersection graph is a set of nodes
that induces a connected subgraph of a tree. We call the tree in question askeletonof the chordal
graph. The skeleton along with the various subtrees forms atree representationof the graph. A
tree representation of a graphG is said to beminimal if the associated skeleton has the minimum
number of nodes possible. Gavril [Gav74] and Buneman [Bun74] showed that in a minimal tree
representation there is a one-to-one correspondence between vertices of the skeletonT and maximal
cliques ofG. Thus, a minimal tree representation ofG is called aclique treeof G.

Figure 2.3 exhibits a chordal graphG with 8 vertices, numberedv1 throughv8. The clique tree
T of G (in this case unique) is also depicted in the figure. Each node of the clique tree corresponds
to a maximal clique ofG, namely the set of vertices ofG whose representative subtrees include
that node of the skeletonT . Since all these subtrees include the particular node of the skeleton, the
corresponding vertices inG are connected and form a clique. For instance, the nodeC128 in Figure
2.3 corresponds to the clique formed byv1, v2 andv8 in G.

Each vertex ofG can appear in a number of different maximal cliques. The representative
subtree for a vertex ofG is the subtree induced by the set of cliques that contain that vertex. For
instance, the vertexv2 is in the cliquesC128, C2468 andC234. These cliques induce the subtreeTv2
that representsv2 in the tree representation ofG. Vertexv3 on the other hand, is in only one clique,



2.2. DEFINITIONS 13

so that its representative subtreeTv3 corresponds to the nodeC234. These representative subtrees
are represented in the figure slightly off from the skeleton tree, which is drawn with thinner lines.

v7

v1

v2

v6

v8

v4

v5

v3

v1

C678

C456

C234

C128

G
T

v6
T

v2
T

v5
T

v7
T v3

Tv4
T

v8
T

C2468

T

Figure 2.3: A chordal graphG and its clique treeT . The nodes ofT , labeledC128, C234, C456,
C678 andC2468, correspond to the maximal cliques ofG.

Interval graphs constitute an important subclass of chordal graphs. These are chordal graphs
that have paths for skeletons. In other words, aninterval graphis the intersection graph of sub-
paths of a path. The skeleton in question can be thought of as the real line, and the sub-paths as
intervals, hence the name. A tree representation with a path for a skeleton is also called aninterval
representation. An asteroidal tripleis an independent set of three vertices such that there is a path
between each pair of vertices that avoids the neighborhood of the third. Interval graphs correspond
to chordal graphs without asteroidal triples.

I

L

P

Figure 2.4: Representations of an interval graphI as an intersection graph.

Figure 2.4 shows equivalent representations of the interval graphI. I is represented as the
intersection graph of subpaths of the pathP and as the intersection graph of intervals of the lineL.

Throughout this thesis we refer to vertices in a graph, but we will usually use the termnodeto
refer to vertices that correspond to sets of vertices in some other graph. For instance, we will refer
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to vertices of a chordal graph, but nodes of its skeleton, for each node corresponds to a clique in the
chordal graph. Given a tree representation of a graphG, the subtreeTv is said tocovera node/edge
of the skeleton if that node/edge is inTv. Theply of an edgee of a skeleton is the number of distinct
subtreesTv that covere. A terminal branchof T is a maximal path from a leafv to a nodew in T
that, except forv andw, contains only nodes of degree two inT .

Let G = (V;E) be a graph. We denote byG n v andG n S the subgraphs ofG induced by
V n v andV n S respectively. Given a subgraphH of G, theboundaryNG(H) of H in G is the
set of vertices inG n H that have neighbors inH. A separatorS of G is a set of vertices such
G n S consists of two or more connected components. A separator isminimal if it does not contain
any smaller separators. It can be shown that a graph is chordal if and only if every minimal vertex
separator is a clique.

An �-balanced separatorof G is a set of nodesS � V such that no connected component of
G n S has more than� � jV j vertices, for some� < 1. An �-balanced separator treeof G is a
tree whose nodes are�-balanced separators of the subgraphs ofG. The root of the separator tree
corresponds to an�-balanced separatorS of G, and its children correspond to�-balanced separator
trees of the connected components ofG nS. We also use the termbalanced separatorto refer to an
�-balanced separator, for some constant�. A class of graphs satisfies anf(n)-separator theorem
with constants� < 1 and� > 0 if every graphG with n vertices in the class has an�-balanced
separatorS with no more than� �f(n) vertices. Planar graphs satisfy a

p
n-separator theorem with

� = 2=3 and� = 2 � p2 [LT79].



Chapter 3

Related work

In this chapter we present some existing ordering heuristics and look at some of the many ways of
representing chordal graphs. We also mention related work on interval graph completion and work
on elimination orders with low height.

3.1 Fill minimizing heuristics

In this section we present a brief overview of some popular heuristics for producing orders with low
fill.

3.1.1 Minimum deficiency

The number of edges that are needed to make the neighborhood of a vertexv into a clique is the
deficiencyof v, also known as thelocal fill atv. This corresponds to the amount of fill introduced by
the elimination ofv in G. The minimum deficiency heuristic [Mar57, TW67] is a greedy algorithm
that tries to minimize the overall amount of fill introduced by the elimination process by, at each
step, choosing to eliminate a vertex with minimum deficiency.

Every chordal graph has at least one vertex with zero deficiency (a simplicial vertex). Eliminat-
ing a simplicial vertex corresponds to removing that vertex from the graph since its neighborhood
already forms a clique. The graph obtained is an induced subgraph of the initial graph and is thus
chordal since any induced cycle of length greater than three in this new graph must have a chord
(for it had one in the initial chordal graph). By repeatedly applying this argument we find that every
chordal graph has a perfect elimination order, and that the minimum deficiency heuristic produces
perfect elimination orders on chordal graphs.

In practice, the minimum deficiency heuristic is discarded in favor of other ordering heuristics,
probably because of the large amount of time necessary to update the deficiency information as the
ordering algorithm progresses. Recently, however, Rothberg and Eisenstat [RE98] pointed out that,
in practice, the minimum deficiency heuristic produces elimination orders with low fill. In fact,

15
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in their experiments, the minimum-deficiency heuristic produced orders that were better than the
ones produced by the minimum-degree heuristic, which is often used in practice. We describe the
minimum-degree heuristic in the next section.

Rothberg and Eisenstat [RE98] propose approximate versions of the minimum deficiency heuris-
tic, that they callapproximate minimum local fill(AMF) andapproximate minimum mean local fill
(AMMF). These heuristics work by computing cheaper approximations of the deficiency of the
vertices in the graph, thus avoiding the prohibitive cost of computing a minimum deficiency order,
while still producing elimination orders with low fill.

3.1.2 Minimum-degree

The minimum-degreeheuristic originated with the work of Markowitz in the late 50’s and has
undergone several enhancements in the years since. In its simplest form, the minimum-degree
algorithm repeatedly finds a vertex of minimum degree and eliminates it. This very natural greedy
algorithm works surprisingly well in practice.

A simple enhancement that does not affect the quality of the orders but makes for a more
efficient algorithm, is the identification of twin vertices, i.e., vertices that have the same set of
neighbors, into sets calledsupervariablesor supernodes. After a vertex within a supernode is
eliminated all other vertices within that same supernode become simplicial – for the elimination of
that first vertex makes its neighborhood into a clique. If the vertex removed had minimum degree in
the graph, then the remaining vertices in the same supernode must also have had minimum degree,
and still do, since their degree is reduced by one when the vertex is removed, and the minimum
degree in the graph wasd, so that after the removal of one vertex it must be at leastd � 1. Thus,
supernodes can be treated as a single vertex in the graph, reducing the amount of work needed to
compute an elimination order. All the heuristics that we describe can take advantage of supernodes.

To further reduce the running times for the minimum-degree algorithm, Liu proposed the mul-
tiple minimum-degree algorithm (MMD) [Liu85]. In this algorithm, an independent set of nodes
with minimum degree is eliminated at each step, thus allowing for a smaller number of degree
update steps, while producing a naturally parallel order.

Amestoy et al. [ADD96] proposed an approximate minimum degree algorithm (AMD). This al-
gorithm uses estimates for the degree of the vertices instead of actually computing the exact degrees.
The implementations of both the AMD and the MMD algorithms, state-of-the-art improvements
upon the minimum-degree heuristic, produce similar quality orders.

Another enhancement present in both AMD and MMD is the use of external degrees for the
supernodes. The external degree of a supernode is the degree of any vertex in that supernode minus
the number of neighbors of that vertex that are in that same supernode. This alternate measure tries
to compensate for the fact that after the first vertex is eliminated no additional fill is introduced by
the elimination of the remaining vertices in the supernode.

With all these algorithmic improvements, minimum-degree orders can be computed in very lit-
tle time. The orders produced usually have relatively low fill. Nonetheless, a minimum degree
algorithm algorithm can produce orders with large amounts of fill. Berman and Schnitger [BS90]
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show that on a toroidal square mesh there are orders consistent with the minimum degree heuristic
that exhibit
(nlog3 4) fill, substantially more than the the optimal fill for toroidal square meshes
which isO(n logn). However, there do exist minimum-degree orders for the toroidal square mesh
with low fill. In any case, in the absence of a good tie-breaking strategy, a minimum-degree algo-
rithm is likely to exhibit, to some extent, the same behavior described by Berman and Schnitger,
namely the presence of large cliques in the chordal completion. We elaborate on their example in
Section 3.2.

3.1.3 Nested dissection

Nested dissectionwas first proposed by George [Geo73] as a method for ordering vertices in a
mesh. It was later generalized by George and Liu [GL78] to work on arbitrary graphs. Unlike the
heuristics we have considered so far, nested dissection builds the elimination order in the reverse
direction, that is, it finds a vertex separator and orders those vertices to be eliminated last. It
then recurses on the connected components defined by the removal of the separator vertices. The
various components can be ordered in any relative order (or even be interleaved), without affecting
the work or fill for the order produced, since the separators stop any fill from forming between the
components.

It is common to represent nested dissection orders as elimination or separator trees. Aseparator
tree is the tree we obtain by grouping the vertices in the top level separator into a node, and then
making its children correspond to the separator trees for the connected components obtained by the
removal of the top level separator. A nested dissection order corresponds to any order in which
every vertex is eliminated after its descendants in the separator tree.

Separator trees make for a convenient representation of elimination orders and the correspond-
ing fill. A separator “blocks” the creation of fill between sibling subtrees, so that fill can only occur
between vertices that have an ancestral relationship in the separator tree. As a component is elim-
inated, some fill is introduced between the vertices of the separator, which will typically become
a clique. Thus, it is advantageous to keep separators small to limit the amount of fill produced.
Local heuristics, such as minimum-degree and minimum local fill, cannot find good separators for
the higher levels of the separator tree in general. By examining the graphs as a whole and finding
small balanced separators, nested dissection produces orders that are provably good in terms of fill.

The first analysis for a variant of nested dissection for a class of graphs closed under subgraphs
(that is, a class of graphs such that every subgraph of a graph in the class is also in the class),
for which a

p
n-separator theorem holds, was given by Lipton, Rose and Tarjan [LRT79]. This

variant of nested dissection, LRT, produces orders withO(n logn) fill on ann-node graph in these
classes. Subsequently, Gilbert and Tarjan [GT87] analyzed the original nested dissection algorithm
of George and Liu and showed that it also yieldsO(n log n) fill for planar graphs, graphs with
bounded genus, and graphs with bounded degree that haveO(

p
n) separators [LT80]. They also

point out that this method does not work in general for graphs withO(
p
n) separators by con-

structing a counterexample, hence showing that the modifications in [LRT79] are essential in this
case. Unlike George and Liu’s algorithm, LRT includes the separators in the recursive calls, that
is, if a separatorS divides the graph into componentsA andB then the original generalized nested
dissection algorithm would recurse onA andB, and would order the vertices inS last. The LRT
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algorithm also orders the vertices inS last, but recurses onA[S andB [S, while taking note that
in the recursive calls all the nodes inS have already been ordered, and are only present to help find
the appropriate separators.

Both versions of nested dissection [GT87, LRT79] produce orders withO(n
3

2 ) work on planar
graphs. It is interesting to note that there aren-node planar graphs (square grids in particular) for
which any elimination ordering has�(n logn) fill and�(n

3

2 ) work [HMR73].

Agrawal et al. [AKR93] gave the first approximation algorithms for elimination orders that
simultaneously minimize the fill, height, and work, all within a polylogarithmic factor of optimal
when the degree of the input graph is bounded. In general, their elimination orders have fill within
a factor ofO(

p
d log4 n) of the minimum number of nonzeros (including fill and original edges),

and height within a factor ofO(log2 n) of optimum whered is the maximum degree of the graph.
Their algorithm is the nested dissection algorithm using approximate minimum-sized balanced-
node separators [LR88] to construct the recursive decomposition. If they were actually able to
obtain minimum-sized balanced node separators their algorithm would produce an order with fill
within a factor ofO(

p
d log2 n) of the minimum number of nonzeros, and height within a factor of

O(log n) of the optimum.

Although the proof is not constructive, Gilbert [Gil87] showed that for any graph there exists a
nested dissection order with fill within a factor ofO(d log n) of optimal, whered is the maximum
degree of the vertices in the graph. In Section 4.2 we exhibit a graph for which a nested dissec-
tion algorithm that chooses minimal balanced separators produces orders that induce a factor of

(
p
d log n) more fill than the minimum number of nonzeros.

We note that in practice finding good separators accounts for the large running times of nested-
dissection-based algorithms when compared to other heuristics. It is common practice to finish off
a nested dissection order by applying a faster ordering algorithm to order small enough subgraphs.
Constrained minimum degree, i.e., a minimum degree algorithm that orders vertices of a sub-graph
according to increasing degrees when eliminated from a larger graph, is usually the heuristic of
choice for these small graphs.

3.1.4 Hybrid algorithm

Once we have understood how the minimum-degree and nested dissection heuristics work and
what are the advantages and drawbacks of each, it is natural to consider hybrid algorithms that take
advantage of the best characteristics of each. Using a few levels of separators seems like the ideal
remedy to control the the amount of fill introduced by minimum degree orders.

Recently, Hendrickson and Rothberg [HR96] and independently, Liu and Ashcraft [AL96] pro-
posed hybrid algorithms that, in practice, produce orders that compare favorably with state-of-
the-art nested dissection and minimum degree algorithms. Neither hybrid algorithm has known
worst-case fill or work analyses.

We concentrate here on the hybrid algorithm of Hendrickson and Rothberg in [HR96, HR97],
which, to our knowledge, is the current champion as far as elimination order algorithms go. Hence-
forth, we refer to Hendrickson and Rothberg’s algorithm asthehybrid algorithm, or as they chose
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to refer to it, as the BEND algorithm.

The BEND algorithm works as follows. It finds a few levels of separators, just like nested
dissection would. It sets those vertices aside for elimination at the end. It then finds a constrained
minimum-degree order for each of the connected subgraphs formed. Finally, the algorithm re-orders
the vertices that it set aside, i.e., the vertices within the separators that were initially found. This
final step is accomplished by applying the AMD algorithm to the graph obtained by eliminating
the vertices that have already been ordered, i.e., the usual nested dissection order among separator
vertices is thrown away and a new order is computed.

This way, the algorithm is able to ignore the nested dissection assumptions as to what a good
elimination order should be, while still avoiding fill between the various subgraphs defined by
the separator vertices and keeping the boundaries of the subgraphs small. The resulting hybrid
algorithm produces orders with very little fill in a small amount of time.

Liu and Ashcraft’s algorithm is very similar to that of Hendrickson and Rothberg’s although it is
cast in a different light. Liu and Ashcraft’s algorithm finds a set of vertices that partitions the graph
in a large number of connected components at once, instead of finding multiple levels of separators
that, taken together, achieve a similar effect.

3.2 Elimination orders

Elimination orders can be viewed in different lights. We discuss a few of these different views in
this section.

3.2.1 Elimination trees

As we mentioned before, chordal graphs coincide with the class of graphs that have perfect elim-
ination orders, so that finding an order that produces the minimum amount of fill corresponds to
finding a chordal supergraph of an initial graph with the fewest possible number of edges. On the
other hand, chordal graphs correspond to intersection graphs of subtrees of a tree. In this section we
show how to construct a tree representation for a chordal completion of a graph based on a given
elimination order.

In an elimination tree, a vertex precedes its tree ancestors in the elimination order and any order
that respects the ancestral precedence constraints is equivalent to the initial one, in the sense that it
produces the same chordal completion. By construction, the edges of a graphG can only connect
vertices that have an ancestral relationship in its elimination treeT .

Figure 3.1 represents a graphG and its chordal completion according to the orderv1, v2, v3,
v4, v5, v6. The dotted edges represent the fill introduced during the elimination process. Figure 3.1
also depicts the elimination tree ofG according to the same order. Each vertex of the elimination
tree corresponds to a vertexv in the original graph, and can be thought of as corresponding to the
maximal clique formed byv and its neighbors at the timev is eliminated. We also represent these
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Figure 3.1: The chordal completion ofG and the corresponding elimination tree.

cliques in Figures 3.1 and 3.2. The labelC125 for instance, corresponds to a clique formed by
vertices 1, 2 and 5 in the chordal completion of the graphG.

Figure 3.2 depicts two equivalent representations of the chordal completion ofG; the chordal
completion can be either viewed as the intersection graph of the subtreesTi in the figure, or as
the graph obtained by connecting vertices whenever they both belong to one of the setsCfg that
correspond to cliques in the chordal completion. This representation also requires a tree structure
for the cliques, namely it requires that when we restrict our attention to the cliques that contain any
specific vertex, they span a connected subgraph of a fixed tree. This subgraph is exactly the tree
one would use to represent the vertex in the intersection-of-subtrees representation of the graph.

Both representations can be easily obtained from the elimination tree. LetT be an elimination
tree forG. Let Tv be the maximal subtree of the elimination treeT rooted atv whose leaves are
neighbors ofv in G, that is, the tree obtained as the union of all pathsv � w from the vertexv to
all neighborsw of v in G that are descendants ofv in T . The elimination treeT along with the
subtreesTv form a tree representation of the chordal completion ofG corresponding to the order
given. That is to say, the chordal completion ofG is the intersection graph of the subtreesTv.

Note that the nodes labeledC6 andC56 in Figure 3.2 do not add to the representation, since
they are superseded byC256. Both nodes can be removed and replaced by an edge connectingC456

directly toC256. In general, any chordal graph has a minimal tree representation with a one-to-one
correspondence between nodes and the maximal cliques of the chordal graph. Two nodes that are
adjacent in the tree representation can be contracted when the set corresponding to the first contains
the set corresponding to the second, since all adjacencies implied by the second are already implied
by the first. A minimal representation (in which every node corresponds to a maximal clique) can
always be obtained in this fashion.

For the sake of completeness, we also mention that a perfect elimination order can be obtained
from a tree representation of a chordal graphG as follows. Letl be a leaf of the skeleton for the
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C256
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Figure 3.2: Tree representation of the chordal completion of the graph in Figure 3.1. The subtreeT6
corresponding to the vertexv6 intersects all other subtrees, except forT1, since after the fill edges
are insertedv6 is adjacent to all vertices of the graph except forv1.

given tree representation. Either no representative subtree consists solely ofl, in which case we
can removel from the skeleton tree, or there exists at least one such subtreeTv. In this case,Tv
corresponds to a simplicial vertex and can be taken as the first vertex in the elimination order ofG.
We proceed by removingTv from the tree representation and iterating the same algorithm, until all
vertices have been ordered. More than one elimination order can be produced in this fashion. In
the tree representation in Figure 3.1, for instance, the orderv3; v4; v6; v5; v1; v2 would produce the
same chordal completion.

3.2.2 Graphs with “almost” planar representations

In this section we describe how elimination orders for certain graphs can be visualized in the plane.
This is yet another way of representing the process of eliminating a graph and can provide some
insight into different ordering heuristics.

We examine graphs that can be easily represented on a 2-D surface. These include planar
graphs, but also non-planar graphs, such as a torus. To more easily visualize some of these graphs
we will omit some of their edges so as to obtain a planar representation. For the sake of argument,
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we further assume that the faces that are internal in the planar representation correspond to cliques,
that is, we assume that each face represents a clique formed by the vertices on the face. During the
elimination process we will remove vertices and make their neighborhoods into cliques. As long
as the vertex is not in the external face of the planar representation, its neighbors correspond to the
set of vertices that share a face with it in the planar graph. By removing that vertex we effectively
merge the various faces the vertex belongs to. Instead of adding the new fill edges, we maintain
the planar representation, and think of every internal face as corresponding to a clique. In practice
even if some small faces do not form cliques we can just consider them as forming cliques anyway,
without changing our understanding of the elimination process by much. Any elimination order
can be visualized in this somewhat imprecise fashion. This is essentially the same model used by
George in the early 70’s to describe and analyze nested dissection on square meshes [Geo73].

Figure 3.3(a) represents a stage in the elimination of a square32�32 grid according to a nested
dissection order. All of the vertices to the left of the center vertical line have already been eliminated
at this step, but instead of being removed from the picture, they were represented in gray. All other
vertices in gray have also been removed. From the progression of the elimination we notice that the
center vertical line corresponds to the top-level separator. Subsequent separators were chosen by
recursively cutting the graph approximately in half, horizontally and then vertically, as can be seen
in the figure.

After the vertices to the left of the center vertical line are removed the vertices on that line “see”
each other and form a clique. The vertices in the smaller faces that are created also form cliques.

(a) (b)

Figure 3.3: Partial elimination according to a nested dissection order.

A global view of a nested dissection order is given by the corresponding separator tree. Figure
3.3(a) implicitly depicts one of the branches of the separator tree. Instead, we can visualize the
elimination according to a different order, in which a few levels of leaf nodes of the separator tree
are eliminated, as shown in Figure 3.3(b). If we do not have an explicit separator tree, a parallel
order equivalent to a given nested-dissection order would achieve the same effect.

A minimum-degree order would look very different from Figure 3.3(a) but somewhat similar
to Figure 3.3(b). Vertices along the boundaries of the grid would be eliminated first, and then a
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(a) (b)

(c) (d)

Figure 3.4: Different points in the elimination of a square grid according to an AMD order.

large independent set of internal vertices would be eliminated. The minimum-degree order that
would follow would likely eliminate vertices not necessarily close in the graph in successive steps.
However, whenever a vertex is eliminated, its twins would be eliminated in the next few steps,
for they would have minimum degree at that time. The faces in the pictorial representation would
merge with neighboring faces and “grow” as the elimination progresses. Figure 3.4 depicts various
stages of Gaussian elimination on a32 � 32 grid, according to an order produced by AMD. When
a vertex internal to the grid is eliminated, its four neighbors become a clique, which is not clearly
indicated in the figure, for we did not include the corresponding diagonal edges. Nevertheless, we
can see how the order progresses.

Figure 3.5 shows a point in a parallel order that respects the precedence constraints of an
AMD order (a) and a point in a parallel order that respects the precedence constraints of a nested-
dissection order (b) for a square 256� 256 grid. In both cases about 5000 of the 65536 vertices still
remain to be eliminated. The grid given as input to each ordering algorithm had its vertices listed
in a random order. In this pictorial representation we can see that the faces created by the nested
dissection order are smoother, that is, have contours that are closer to straight lines, than the faces
from the AMD order.



24 CHAPTER 3. RELATED WORK

(a) (b)

Figure 3.5: Partially eliminated views of a square grid. The order used in (a) was produced by a
minimum-degree algorithm, while the one used in (b) was produced by a nested dissection algo-
rithm.

Berman and Schnitger [BS90] show that minimum-degree orders can produce very large faces.
By carefully breaking ties among vertices with the same degree, they were able to construct a
minimum-degree order for which the faces in our pictorial representation develop into fractals.
The resulting order has
(nlog3 4) fill and 
(n1:5 log3 4) work, while optimal orders for the same
graphs haveO(n logn) fill and O(n1:5) work. On the other hand, nested dissection is guaranteed
to produce orders with fill and work within a constant of the optimal for these graphs.

The problem with minimum-degree orders lies in this fractaling effect. Berman and Schnitger
pointed out that since minimum-degree is a local heuristic it cannot adequately control the “shape”
of the faces. On small graphs, this is not much of an issue, but on larger graphs, long, irregular
boundaries form between faces. These boundaries correspond to large cliques in the chordal com-
pletion, and thus to additional fill and work. Figure 3.5 accurately reflects the difference in quality
between the two orders depicted; The AMD algorithm produced an order with 21 percent more fill
and 62 percent more work than the nested dissection order. If we do not present the vertices of the
input graph in a random order then both algorithms produce better orders. Local algorithms such as
minimum-degree are more susceptible to the initial order of the vertices, while nested dissection,
having a global view of the graph, should be less affected by the order.

Nested dissection on square grids

We can use the knowledge and intuition we gained from examining elimination orders in the previ-
ous sections to show how to obtain better elimination orders for square grids. This improves on the
more traditional horizontal and vertical separators for square grids. This result was first presented
in [BG73] but nonetheless is interesting to re-visit it.
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Traditionally, nested dissection on square grids and toroidal grids uses vertical and horizontal
separators, as depicted in Figure 3.3. The pictorial representation of the resulting elimination order
can help guide us through an analysis, similar to the original one presented by George [Geo73], that
shows that indeed the order produced for ann� n grid (or torus) has7:75 � n2 logn+O(n2) fill.

(a) (b)

Figure 3.6: Steps in the elimination of a 32� 32 grid according to a parallel nested dissection order
with diagonal separators.

Looking at pictures such as the one in Figure 3.5 we notice an interesting fact. In a grid graph,
the subgraph contained in ak � k square whose edges are horizontal and vertical containsk2

vertices, while the subgraph contained in ak � k square whose edges are diagonal has about twice
as many vertices. Figure 3.6 shows two steps in a nested dissection order obtained using diagonal
separators instead of the traditional horizontal and vertical ones.

This extra factor of two in the ratio between the perimeter of these (square) regions squared and
the number of vertices in the region, translates to an order that has a factor of 2 less fill than the
traditional nested dissection on square grids.

Take ann � n square toroidal grid, and a nested dissection order for that grid using diagonal
separators. Since a grid is a subgraph of the toroidal grid, the same analysis works for square
grids. The first step of that order eliminates every other vertex of the graph, as can be seen in
Figure 3.6(a). This step causesO(n2) fill to be introduced. The graph obtained can be thought of
as composed of twon=2 � n=2 square grids that have been rotated 45 degrees, and have had each
1�1 square made into a clique. But the same analysis that was used on square grids with horizontal
and vertical separators can be used to show thatk � k grids such as these can be eliminated with
7:75 � k2 log k + O(k2) fill. The total amount of fill for this nested dissection order is2 � 7:75 �
(n=2)2 log(n=2) +O(n2), i.e.,3:875 � n2 log n+O(n2).
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3.3 Interval graph completion

Interval graph completion, that is, finding a set of edges of minimum cardinality that when added
to a graph make it into an interval graph, is closely related to the chordal completion problem. Just
as with chordal completion, we measure how close a solution is to optimal with respect to the total
number of edges in the interval completion.

Ravi et al. [RAK91] present anO(log2 n) approximation algorithm for the interval graph com-
pletion problem. Even et al. [ENRS95] present an approximation algorithm that among other prob-
lems, solves the interval completion problem within anO(logn � log log n) factor of optimal. Their
approach consists of casting a solution in terms of a linear program that includes a set of constraints
that try to ensure a good quality solution by imposing an average distance within sets of vertices,
in what is called aspreading metric. The cost function is a lower bound on the cost of any solution
for this problem, so that a solution within a certain factor of the minimum cost is also within that
same factor of optimal. Rao and Richa [RR98] improve on their result by presenting an algorithm
that uses the same cost function and obtains a solution within anO(log n) factor of the optimal.

3.4 Related work

3.4.1 Height

Computing an elimination ordering for a given graph with minimum height is NP-hard [Pot88], and
remains so even if an additive error in the estimate of the height is allowed [BGHK95]. However,
given a chordal graph there are efficient algorithms that find perfect elimination orders for the graph
with minimum height [JK82, Liu89].

Pan and Reif give one of the first analyses of the parallel height of nested dissection orderings
as well as how nested dissection can be used for solving the shortest-path problem in graphs [PR85,
Pan93]. Bodlaender et al. [BGHK95] uses an approach similar to [LRT79] and [AKR93] to find
elimination orders with bounds on the height and several related parameters. Both [AKR93] and
[BGHK95] give elimination orders with height at mostO(log2 n) times the minimum possible,
for anyn-node graph. Numerous heuristics without performance guarantees are also known for
the problem of finding a chordal completion with minimum height [Gea90, JK82, LL87, LPP89,
Liu89, LM89].

Manne [Man91] shows how to produce optimal height orders for trees with fill linear in the
number of edges in the tree. Aspvall [Asp95] presents a class of chordal graphs for which a perfect
elimination order has height equal to the minimum possible height plus one, but for which every
minimum height elimination order has super-linear fill. Aspvall and Heggernes [AH94] present a
polynomial time algorithm that finds elimination orders with optimal height for interval graphs. We
discuss the trade-offs between low-height and low-fill orders in the next chapters.



Chapter 4

Parallel Gaussian elimination

We begin our study by examining parallel orders for specific classes of graphs, namely interval and
chordal graphs. The purpose of this study is twofold. First we note that any graph along with the fill
edges introduced by a given order is a chordal completion of the graph. We are thus studying how
we can, given a certain order (and the corresponding chordal graph), produce another order that
is parallel and does not have too much additional fill or work. Second, the rich structure of these
classes of graphs provides us with insight into the related problem of finding orders that minimize
fill and work.

Efficient algorithms that find perfect elimination orders for chordal and interval graphs are
known. However, perfect elimination orders might not be suitable for elimination in parallel. Our
goal is to obtain an algorithm that will take a chordal graph and produce a parallel elimination order
for that graph while introducing fill that is at most linear in the number of edges in the initial chordal
graph. We start by showing that for interval graphs a certain nested dissection algorithm has this
property. However, the same nested dissection algorithm can introduce a super-linear amount of
fill on chordal graphs. We accomplish our goal by introducing the notion of sentinels. Sentinels
are separators that sequentialize the orders just enough to localize the fill to within subgraphs. Our
final algorithm obtains orders withO(m) fill, work within a constant factor of optimal, and height
within anO(log2 n) factor of optimal, on chordal graphs.

In this and in the next chapters, we measure how close an order is to having optimal fill as a
function of the total number of nonzeros in the minimum-fill elimination order of the graph. That
is, when we say an order has linear fill, we really mean that the amount of fill it introduces is at
most a constant times the total number of nonzeros in the minimum-fill elimination order of the
graph which includes both fill and original entries.

4.1 Nested dissection on interval graphs

Nested dissection produces naturally parallel orders. Empirical results suggest that nested dissec-
tion produces better elimination orders if allowed to choose slightly imbalanced but smaller separa-
tors. In this section we help substantiate this belief by showing that a 1/2-balanced nested dissection

27
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algorithm working on an interval graph can produce orders with up to
(m � plog n) fill, while a
2/3rds-balanced nested dissection always produces an order with linear fill for interval graphs.

Nested dissection on interval (and chordal) graphs has a simple interpretation in terms of the
path (tree) representation of the graph. Consider one such representation. For non-trivial graphs
every minimal separator is a set of vertices that correspond to the intervals covering some edge
in the path representation (skeleton) of the graph. In these terms, each step in nested dissection
can be thought of as selecting an edge of the skeleton. The corresponding separator is formed
by the intervals that cover that edge and have not been included in previous separators. Some
representative intervals might span a single node of the skeleton, and thus will not be selected in
this process. Any such singletons are selected last, as leaves of the elimination tree. We cannot
guarantee the existence of an�-balanced separator that covers an edge of the skeleton, due to the
existence of these intervals that only span a single node of the skeleton. By ordering these single
node intervals beforehand, as first to be eliminated, and not changing the tree representation of the
graph we can restrict ourselves to separators that cover an edge of the skeleton of the representation
of the graph. These intervals must correspond to singletons in the graph, and their elimination
causes no fill.

Throughout this section, we order separator trees of interval graphs so that an in-order traversal
of the tree corresponds to a left-to-right traversal of the skeleton path of the graph. When necessary
we will refer to anorderedseparator tree to make it clear that we are considering a separator tree
whose children are ordered as described here. In the lemmas that follow, we only consider non-
trivial interval graphs, that is, we assume that the graphs in question are not complete.

4.1.1 Balanced nested dissection

We proceed to derive an upper bound on the total number of fill edges introduced by an�-balanced
nested dissection algorithm on an interval graph. We show this bound is tight for� = 1

2 , but not
for other values of�.

A

B

v

w

x

Figure 4.1: Fill among vertices in a separator tree of an interval graph.
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Figure 4.1 shows part of a separator tree of an interval graphI. Each node in the tree corre-
sponds to a clique separator of the subgraph induced by the subtree rooted at that node. The shaded
subtrees correspond to vertices that are neighbors inI of a given vertexv contained in the node
A, while the striped nodes contain vertices that have fill edges tov in the chordal completion ofI.
The striped edge betweenv andw represents one such fill edge. A vertex has fill edges tov if at
least one of its descendants in the separator tree, sayx, is adjacent tov, as represented by the solid
edge betweenv andx. Moreover, when that is the case, all vertices betweenv andx in the in-order
traversal of the separator tree must also be adjacent tov in I. When the separator tree is balanced,
we can use the edges between these vertices andv to account for the fill tov.

We define aninner-pathof a nodeA in an ordered binary tree as the path that starts with the
edge to the left or right child ofA, and goes all the way to the in-order predecessor or successor
of A, respectively. We say that a fill edge between a vertex inA and a vertex in a node inA’s
inner-path is aninner fill edge. A fill edge between a vertex inA and a vertex that is a descendant
of A in the elimination tree but that is not inA’s inner-path is called anouter fill edge.

v

x
w

B

A

Figure 4.2: Right inner path of a node.
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Figure 4.2 depicts a nodeA and its right inner-path. A vertexv in A has an outer fill edge to
vertexw. That implies the existence of a nodex, also not inA’s inner-path, that is adjacent tov and
is a descendant ofw in the elimination tree. The existence of the edge betweenv andx implies that
all vertices in the shaded area in Figure 4.2 are also adjacent tov. We can use this fact to prove the
next lemma that states that the total amount of outer fill introduced by orders for interval graphs,
given by an ordered balanced separator tree isO(m).

Lemma 1 Let I be a connected interval graph. The total amount of outer fill in an ordered�-
balanced separator tree ofI is at most�m=(1� �).

Proof. The lemma is proved via an amortized analysis of the total amount of outer fill introduced
by the elimination order, in which we use existing edges to help account for all outer fill. We
count each fill edge at its highest endpoint. Letv be a vertex ofI and letA be the separator node
containingv. Let’s examine the right subtree ofA. The left one is analogous. LetB be a node on
A’s right inner-path, whose right subtree contains vertices that have fill tov. Then the vertices in
B and inB’s left subtree are all adjacent tov in I, and no ancestor ofB has vertices in its right
subtree with fill tov, for otherwise all vertices inB’s right subtree would have edges tov to start
with. Since the separator tree is�-balanced,v is adjacent to at least a fraction1� � of the vertices
in the subtree rooted atB, and thusd(v) � (1 � �) � n0, wheren0 is the number of vertices in the
subtree rooted atB. The total amount of outer fill fromv to its right subtree is at most� � n0 which
is less than or equal to� � d(v)=(1 � �). By applying this same argument to every vertex in the
graph we can account for all outer fill and obtain a total of� �m=(1��) outer fill edges.

Lemma 1 allows us to concentrate on inner fill. Now, consider one inner-path.

Lemma 2 Let I be a connected interval graph, and letV0 be a node in an ordered separator tree
of I. LetV1; V2; : : : ; Vk be the nodes inV0’s right inner-path. The total amount of inner fill fromV0
to the vertices in its right inner-path is at mostO(

p
k �Pk

i=0 jVij2).

Proof. Let ni = jVij. The total amount of inner fill fromV0 to vertices in its right inner-path is at
mostn0 � (n1 + : : : + nk). Letn1 + n2 + : : : + nk = d. We want to bound the amount of fill as a
function of the sum of the squares of theni’s, which is on the order of the number of edges to[Vi,
since each nodeVi forms a clique and thus hasni(ni � 1)=2 edges. The caseni = 1 is dealt with
by noting that the graph is connected, so that each vertex has at least one edge incident to it. We
are looking for the smallest numberx satisfyingn0 � d � x � (Pk

i=0 n
2
i ). But

Pk
i=1 n

2
i � k(d=k)2.

Let’s definef(x) = x �n20� d �n0+x � d2=k � 0. For positivex, f(x) is positive for large enough
n0. The functionf(x) is non-negative if and only if the second degree equation onn0 has at most
one real root. Thusx must satisfyd2 � 4x2d2=k � 0, i.e.,x � p

k=2. Therefore the total amount

of fill is at most
p
k�
P

k

i=0
n2
i

2 .

A given separator is in at most 4 inner-paths: two starting at itself, one starting at its parent,
and possibly another starting at some other ancestor. Since a balanced separator tree hasO(log n)
depth, Lemmas 1 and 2 give the following corollary:
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Corollary 1 LetI be a connected interval graph, with a balanced separator tree of clique separa-
tors. The total amount of fill induced by the order specified by the tree isO(m � plogn).

Proof. According to Lemma 1, the total amount of fill is at mostO(m) plus the amount of fill in
inner-paths. Apply Lemma 2 to all inner-paths. Each separator is the root of at most one left and
one right inner-path and is in at most two other inner-paths. Since the tree is balanced, the largest
inner-path hasO(logn) length. All that remains to be shown is that the sum of the squares of the
sizes of the separators in the tree isO(m). But each separator is a clique, and each vertex occurs
in only one separator. Thus, a separator withni vertices hasni(ni � 1)=2 edges inG that do not
appear in any other separator. Forni > 1, n2i � 2(ni(ni � 1)). To handle the caseni = 1 we note
that the graph is connected and thus every vertex must be adjacent to at least one other vertex in
the graph. The corresponding edge can be used to account for fill and we have the desired result.

4.1.2 Strictly balanced nested dissection

In this section we show that there exist interval graphs on which the nested dissection algorithm that
chooses minimal 1/2-balanced separators produces an order with
(m � plog n) fill, thus matching
our upper bound.

We will build an example by constructing the appropriate separator tree. We start with a right
inner-path and construct the example as follows: we insert vertices into each of the nodes of the
inner-path so as to form cliques. We insertn0 vertices to form the top clique, ands vertices to form
each of the cliques in the remaining nodes. Finally, we finish off the graph by inserting paths, each
corresponding to a balanced subtree of the separator tree being constructed, in a bottom-up fashion,
as depicted in Figure 4.3. We insert a single vertex between the root node’s clique and the node
that follows it in the in-order traversal of the inner path. We also attach a right subtree to each node
in the inner-path. Each subtree corresponds to a 1/2-balanced nested dissection of a path with as
many nodes as needed so as to make the subtree rooted at its parent node balanced. We insert a left
subtree so as to also make the top level separator a 1/2-balanced separator. We could either use a
mirrored version of the right subtree, or use a path with as many vertices as needed. The endpoints
of the inserted paths are made adjacent to the vertices in each of the pre-existing separator nodes
that “neighbor” it in this separator tree.

For s > 1, a 1/2-balanced nested dissection order that uses minimal separators must be such
that its separator tree has the inner-path we started with as an inner-path, for those are the only
choices for1=2-balanced minimal separators.

A graph built in this fashion, withk + 1 nodes in the initial inner-path hasn0 + 2 � N(k)
vertices total, whereN(i) is the number of vertices in a subtree of heighti, given byN(0) = 1;
N(i) = 2 � N(i � 1) + s, i � k. If we makek = log2 n0 then the total number of vertices
n in the graph isO(n0 � s). The vertices in each of the paths inserted have at most 2 neighbors,
except for possibly the first and last vertices of the path, which might have clique separators as their
neighbors. But each of the vertices within each clique has at most two neighbors in paths, so that
the total number of edges from these paths isO(n). The cliques along the root’s inner path have a
total ofO(n20+k �s2) edges, so the graph has a total ofO(n20+n0 �s+k �s2) edges. An elimination
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Figure 4.3: Separator tree and our example graph fork = 3.

order that removes the vertices of the root’s inner path in the order prescribed by the separator tree
will introduce edges from all vertices in the nodes along the root’s inner path to the root, giving a
total of
(n0 � s � log2 n0) fill. If we chooses = n0=

p
log2 n0, the total number of edges isO(n20),

while the amount of fill is
(n20 �
p
log2 n0).

4.1.3 Adding a little freedom

We can change nested dissection to obtain an algorithm that produces orders with fill linear in the
number of edges in the initial interval graph. Instead of insisting on 1/2-balanced separators, we
can choose the smallest (with the minimum number of vertices) 2/3rds-balanced minimal separator,
and recurse. Unlike the case for 1/2-balanced nested dissection, there no longer exists an interval
graph for which this algorithm will incur more than linear fill. A separator will only be chosen as
the root of the separator tree if at least a third of the vertices in the graph are adjacent to at least as
many vertices as are present in the separator. That is to say, a large top level separator implies that
the graph must have many edges and thus can “support” considerable fill. As our analysis shows,
this is enough to ensure linear fill.



4.1. NESTED DISSECTION ON INTERVAL GRAPHS 33

Lemma 3 LetI be a connected interval graph withn vertices, and letp0 be the number of vertices
in its smallest 2/3rds-balanced minimal separator. ThenI has at leastn=3 vertices of degreep0.

Proof. The lemma is trivial ifI is a complete graph. Otherwise a skeleton path forI contains
at least one edge, and every minimal separator ofI corresponds to a set of intervals that cover
some edge of its skeleton path. Moreover, given two distinct skeleton edges corresponding to one-
third-two-thirds separators, every edge of the skeleton between those two edges also corresponds
to one-third-two-thirds separators. If we scan the edges from left to right, there is a leftmost edgel
and a rightmost edger, such that all edges of the skeleton between and includingl andr correspond
to one-third-two-thirds separators. There are less thann=3 vertices whose representative intervals
are entirely contained to the left ofl. Otherwise the edge to the left ofl would also correspond to
a one-third-two-thirds separator. Analogously there are less thann=3 vertices whose intervals are
entirely contained to the right ofr, so that at leastn=3 vertices correspond to intervals that cover at
least one node in the path between and includingl andr. Every edge in that path has ply at least
p0, that is, is covered by at leastp0 intervals, thus concluding this proof.

The next lemma allows us to distribute enough credits to each vertexv of I to pay for the
inner-fill from v to all its ancestors. Letl(v) be the level of a vertexv in T .

Lemma 4 LetI be a connected interval graph , and letT be a separator tree obtained by applying
a one-third-two-thirds nested dissection algorithm toI. LetV0; : : : ; Vl(v) be the nodes in the path
from the root ofT to Vl(v), the node ofT that containsv. Moreover, letp0; : : : ; pl(v) be the number
of vertices inV0; : : : ; Vl(v). Then we can assignP(v) = maxi�l(v)(pi) credits to each vertexv in I
such that

P
v2V P(v) isO(m).

Proof. We present an amortized analysis. In our analysis, we distributeO(1) credits per edge,
i.e., each vertexv in the graph initially hasO(d(v)) credits to “spend”, so that the total amount of
credits distributed isO(m). We will redistribute these credits.

We use Lemma 3 recursively. At the top level there are at leastn=3 vertices with degree at least
p0, enough to distributep0=3 credits to each vertex inI. Since we want a total ofO(m) credits, we
can actually distribute 3 credits per edge, and thusp0 credits to each vertex.

The same vertices whose edges were used to help distribute credits at a given level might be
used in again in the analysis. Assume by induction that down to levell � 1 we can distribute
maxi�(l�1)(pi) to every vertex in the subtree rooted atVl, while using at most3 � maxi�(l�1)(pi)
credits from any single vertex in that subtree.

Let nl be the number of nodes in the subgraph induced byVl’s subtree. Applying Lemma 3
to this subgraph we find that at leastnl=3 vertices in that subgraph have degree at leastpl. By
induction, we have used at most3 �maxi�(l�1)(pi) credits from any vertex in that subgraph. Thus,
we can use an additional3 � (pl �maxi�(l�1)(pi)) credits from thenl=3 vertices of degree at least
pl, which is enough to distribute a total ofmaxi�(l)(pi) to each vertex in the subtree rooted atVl.
If pl � maxi�(l�1)(pi) � 0 then the vertices already had enough credits and we do not need to
distribute any additional credits.
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Lemma 5 The one-third-two-thirds balanced nested dissection algorithm produces an order that
has fill linear in the number of edges of the input interval graphI.

Proof. Since the algorithm chooses balanced separators at each level, Lemma 1 allows us to only
consider fill within the inner-paths ofI ’s separator tree. Every nodeVi in the separator tree can
be the root of at most two inner-paths, and otherwise appears in at most two other inner-paths, one
rooted at its parent, and one rooted at another of its ancestors. Letp be the number of vertices in the
largest of these two ancestors ofVi. AssigningO(m) total credits as described in Lemma 4, each
vertex inVi has potential at leastp, and can thus “pay” for the at most2 � p upward fill to the two
nodes on whose inner-pathsVi lies. This accounts for all upward inner-fill, since an inner-fill edge
must connect a vertex with a vertex in one of the nodes that is its descendant in an inner-path. All
fill that remains unaccounted for is outer-fill, and by Lemma 1 a 2/3rds-balanced nested dissection
has at mostO(m) outer-fill.

An even simpler proof that does not use Lemma 1 can be obtained for the nested dissection
algorithm that includes the separator vertices in the recursive subgraphs, knowing, however, that
those vertices have already been ordered last. The proofs are identical, except that, since the sep-
arators are included in the recursive calls, all the upward fill is to the vertices in whose inner-path
the vertex lies, i.e., there is no outer fill. In this separator tree a vertex might appear multiple times,
but is ordered at its highest occurrence in the tree, that is, in the node closest to the root in which it
appears. Lemma 4 can be proved for this tree, which allows us to conclude the proof.

4.2 Parallel elimination orders for chordal graphs.

We proceed to show that although the one-third-two-thirds nested dissection we defined in the
previous section produces orders with linear fill for interval graphs it can produce orders with super-
linear fill for chordal graphs. We also show an algorithm that produces parallel orders that do
achieve linear fill on chordal graphs, but are less parallel than nested dissection orders.

4.2.1 Nested dissection.

Even though the one-third-two-thirds nested dissection is guaranteed to produce orders with linear
fill for interval graphs, it may create more than linear fill on chordal graphs. We proceed to show
an example that demonstrates this fact.

Just as we did for the example in Section 4.1.2, we build a graph based on the desired separator
tree. We start with what will end up being the inner-path of the root node of the nested dissection
separator tree. The root separator is made of sizen0, and all other nodes in the initial inner-path
are made of sizes. Unlike what we did in Section 4.1.2, we do not build a binary tree. We make
every node except the root have 3 children in the separator tree. Again, from bottom up, we add a
path (whose representation in terms of a separator tree can be a balanced binary tree) with as many
vertices as needed so as to make the subtrees have the same total number of vertices, just as we did
in Section 4.1.2; but we also add a second path, with as many vertices as the first one, and make only
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one of the endpoints of the path adjacent to the vertices in the node (from the original inner-path)
being considered. This extra path makes sure the node is the only choice for a one-third-two-thirds
minimal separator. We then attach to the root node a number of copies, sayl, of the graph we just
attached to the root node.

The total number of vertices in this graph is bounded byn = 4k �s � l+n0, wherek is the height
of the node path we started with. The number of edges in this graph is on the order of the number
of edges within each separator node, plusO(n), that is,O(k � s2 � l + n20 + n). On the other hand
we have at least
(l � s � k � n0) fill. For k = (log4 n0)=2, s =

p
n0=
p
log4 n0, andl = n0, we get

a total of no more thann = n20=
p
log4 n0 + n0 vertices andO(n20) edges in the graph. The total

amount of fill is
(n20 �
p
n0 � log4 n0=2), a factor of
(

p
n0 � log4 n0) times the number of edges

in a perfect elimination order. Note thatn0 is not
(n), but rather roughly
(d), whered is the
maximum degree of the graph, sincen0 is about the degree of the vertices in the root node.

4.2.2 A (less) parallel order with linear fill

In this section we show how to find an elimination order for a chordal graphG by repeatedly
applying an interval graph algorithm to branches ofG’s skeleton. The resulting order has linear fill,
but has an extraO(log n) factor in height when compared to the height of an order that a nested
dissection algorithm would produce, bringing us to a factor ofO(log2 n) off the optimal height.

To more easily describe our algorithm, we need additional definitions. An edge of a skeleton
treeT is said to be an extremity ofT if one of its endpoints is a leaf. A path is said to be a terminal
branch ofT if it is a maximal path containing a leaf ofT , and all its internal vertices have degree 2
in T . Given a tree representation of a chordal graphG, with skeletonT and representative subtrees
Ti, we denoteP (l; r) the interval graph obtained by restrictingG to the pathPl;r between the edges
l and r (inclusive) ofT ; P (l; r) is the interval graph whose representation consists ofPl;r and
representative subtreesfTi jTi \ Pl;r 6= ;g.

LetG be a chordal graph, and letT be the skeleton of a representation ofG. Vertices that appear
in a terminal branch, but also appear outside the branch are not to be ordered within that branch.
We shall refer to these vertices asdepletedin the terminal branch, meaning edges between vertices
whose representative intervals lie entirely within a terminal branch to depleted vertices can help us
account for fill within the terminal branch, but edges between pairs of depleted vertices cannot, for
those edges can also be present in a number of other interval subgraphs that we will consider. The
vertices ofGwhose representative subtrees are entirely contained in some terminal branch ofT can
be eliminated independently and in parallel with the vertices entirely contained in other terminal
branches.

We say a vertex ofG is pinnedat an edge ofT if its representative subtree covers that edge.
Let A be an ordering algorithm for interval graphs. Lete andf be two edges of the skeleton of
an interval graph. LetKl(e; f) denote the graph obtained fromP (e; f) by removing all vertices
pinned atl as well as those that cover both skeleton edgese andf . Let r0 be an extremity ofT ,
and letl be the other extremity of the terminal branch ofT that containsr0. To make it easier to
describe our algorithm, imagine an artificial edger with zero ply, so thatr is the extremity of the
terminal branch, instead ofr0. The algorithm works by pruning all terminal branches ofT and
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then recursing on what is left of the skeleton treeT , until only a path is left for a skeleton. To
the interval graph corresponding to the last path, we can apply algorithmA directly. Each of the
terminal branches are ordered using the algorithm that follows. All branches obtained in a given
pruning step are processed in parallel, the vertices in the corresponding subgraphs being ordered
before those in later pruning steps. A total ofO(log n) pruning steps are needed to order the whole
graph.

We apply the following algorithm to each terminal branch:

Kill (T; l; r)

Mark the edger. TraversePl;r from r to l and mark the first edge ofPl;r that is covered
by an interval pinned atl. Keep scanningPl;r towardsl, and marking the next edge that
is covered by at least twice as many intervals pinned atl as did the last marked edge.
Call thesemilestoneedges. Mark the edges adjacent to the milestones, which are closer
to r than the corresponding milestone, and call thosesentinels. Also markl.
Let k + 1 be the number of edges marked, and letei, i � k be thei-th edge closest tol
that was selected, i.e.,e0 = l andek = r. Remove the vertices pinned atl from P (l; r).
For i from 1 to k, order the vertices pinned atei last among the remaining, unordered
vertices ofP (l; r), and remove them fromP (l; r).
Apply Homogenize to each of the subgraphsKl(ei; ei+1).

sentinel

milestone

Figure 4.4: The Kill procedure orders separators that we call sentinels and milestones last. The
subgraphs formed are then passed to the Homogenize procedure.

Figure 4.4 depicts the choice of sentinels and milestones on an interval graph. The intervals
that cover the leftmost edge of the skeleton are depleted. The sentinels play an important role in the
ordering algorithm. Along with the milestones, they impose a sequential step in the midst of the
parallel order and ultimately allow us to control the amount of fill introduced. Because the vertices
pinned atei andei+1 are ordered by the kill procedure, we cannot directly apply a regular interval
graph algorithm to the subgraphsKl(ei; ei+1) and expect to obtain low fill. Instead, we apply the
following algorithm to control the amount of fill that can be created to vertices whose intervals
cover eitherei or ee+1. The algorithm we describe next divides an interval graph into somewhat
homogeneous subgraphs, for the vertices in each of them have some minimum degree guarantee,
namely every vertex in a subgraph obtained by the homogenize procedure has degree greater than
half of the number of intervals pinned at either the left or the rightmost edge of the skeleton path
that defines the subgraph.
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Homogenize(T; l0 ; r0)

Mark l0, and transversePl0;r0 towardsr0, marking the first edge whose ply is at most half
the ply of the last marked edge. Repeat untilr0 is reached. Apply the same algorithm
from r0 to l0. Let fi, 0 � i � k+1, be the edges that were marked ordered froml0 to r0,
including l0 = f0 andr0 = fk+1. Number the as of yet unnumbered vertices pinned at
the various marked edges, in an arbitrary order, last among the vertices ofPl0;r0 . Apply
the interval graph algorithm (A) to each of the subgraphs obtained by removing any
vertices pinned atfi or fi+1 from P (fi; fi+1).

Let I be an interval graph withn vertices andm edges. Let’s assume that when the interval
graph algorithmA is applied toI it produces an order with heightO(h(n) �H(I)), fill O(f(n) �m),
and workO(w(n) �W (I)), for non-decreasing functionsf(n), h(n) andw(n), each greater than
1, whereH(I), m andW (I) correspond to the height ofI, the number of edges inI, and the
minimum amount of work to eliminateI, respectively. We can then prove the following lemmas
about the chordal graph algorithm we have just described:

Lemma 6 Our chordal graph algorithm produces an order with heightO(logn � (h(n) + logn) �
H(G)).

Proof. Only logn pruning steps are necessary to divide the entire graph into various interval graphs
each of which are passed to thekill algorithm. That is so because by pruning all the existing leaves
and corresponding terminal branches, the number of vertices ofT with degree not equal to two goes
down by at least a factor of two.

The kill procedure marks at mostO(log n) edges of a terminal branch of the skeleton, and
orders the cliques covering each edge sequentially. Since the size of any existing clique is a lower
bound on the height of any elimination order for a given graph, this part of the order has height
O(log n �H(G)). It then orders the subgraphs in parallel, using Homogenize.

Each call to Homogenize marks up to2 � logn edges of a skeleton pathP . The total number
of vertices pinned at the various edges is at most 4 times the ply at the endpoint ofP with largest
ply, for the edges are chosen so that they have plies that decrease geometrically, by a factor of 2
at each time. The vertices pinned at the largest of the two endpoints ofP form a clique, and thus
any elimination order forG must have height at least as large as the number of such vertices. Thus
Homogenize adds at most a constant timesH(G) to the height of the order.

Finally, the interval graph algorithm produces orders with heightO(h(n) �H(G)).

Each terminal branch is ordered with heightO((4 + h(n) + log n) �H(G)), and since there are
log n pruning steps, we get the desired bound.

Lemma 7 When applied to an interval graphI, withn vertices andm edges, and using the interval
graph algorithmA, the Homogenize procedure produces an order withO(f(n) �m) fill.
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Proof. There is no fill between vertices in the different subgraphs to whichA is applied, regardless
of what order the procedureA produces, since there are separators between the various subgraphs.
The total amount of fill within all those subgraphs isO(f(n) �m), sincef() is non-decreasing and
any given vertex ofI can appear in only one subgraph.

Let a andb be the number of vertices pinned at each of the endpoints of the skeleton ofI used in
the algorithm. Then at most2 � (a+ b) vertices are selected by the Homogenize procedure. The fill
between these vertices is at most2 � (a+ b)2, which is within a constant factor of(a(a� 1)+ b(b�
1))=2, the number of edges in the cliques corresponding to the two endpoints, when eithera or b
is larger than 1. Since the graphI is connected, the case in whicha andb are one can be handled
by noting that every vertex has at least one edge since the graph is connected and the existing edge
can be used to pay for a constant amount of fill. The only other source of fill is between the vertices
in the various subgraphs ordered usingA, and those vertices that were selected. But there is only
fill to the vertices pinned at the two edges that delimit the skeleton path for a given subgraph. The
homogenize algorithm ensures that the ply at every edge within that path, and thus the degree of
the nodes in each subgraph, is at least half the number of vertices pinned at either extremity. Thus,
every vertex in the subgraph has enough edges to pay for its fill to the vertices pinned at the two
extremities of the skeleton path. Thus, the fill introduced is linear in the number of edges ofI.

LetG be a chordal graph, withn vertices andm edges:

Lemma 8 Our chordal graph algorithm applied toG produces an order withO(f(n) �m) fill.

Proof. There is no fill between vertices in the differentKl(ei; ei+1) subgraphs, since the vertices
pinned at the various selected edges form separators between the subgraphs, and the vertices in the
separators are eliminated after the vertices within each of the subgraphs.

Any vertices removed fromKl(ei; ei+1) because they were pinned at bothei and ei+1 are
already adjacent to all vertices ofKl(ei; ei+1), and thus have no fill to vertices inKl(ei; ei+1).

If ei andei+1 are a milestone and its sentinel then they are already adjacent inPl;r, and no fill
is created between vertices pinned at those edges, for they were also adjacent to start with.

LetL be the set of vertices ofP (l; r) pinned atl. The sources of fill are:

1. Fill within each of the subgraphs that were created;

2. Fill between vertices pinned at edgesei andei+1, not including those vertices inL;

3. Fill between vertices ofKl(l
0; r0) andL.

Fill of types (1) and (2) has been accounted for in Lemma 7.

We need to account for fill to vertices inL (type 3). We accomplish this by using already
existing edges from each vertex to a subset ofL. The order imposed on the vertices pinned at the
edgesei ensures that any vertex that has fill to a subset of the vertices inL is adjacent inG to at
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least half as many vertices inL, so that this component of the fill is linear in the number of edges
fromKl(l; r) toL.

No edge is reused in the accounting, so that there is no over-counting when we apply the same
argument to the various terminal branches, in this and future pruning steps. Therefore, the total
amount of fill isO(f(n) �m), proving the lemma.

If we combine the results from Section 4.1.3 on the one-third-two-thirds nested dissection algo-
rithm with the results in this section, we get:

Corollary 2 Our chordal graph algorithm, using a one-third-two-thirds nested dissection algo-
rithm on interval graphs, produces orders withO((log n)2 �H(G)) height, andO(m) fill.

4.2.3 Work analysis

In this section we provide an analysis of the work to eliminate a graph according to an order pro-
duced by the linear fill algorithms we have presented so far. We show that the one-third-two-thirds
nested dissection algorithm on interval graphs and our chordal graph algorithm both produce orders
that are within a constant factor of optimal in terms of work. We proceed to prove these results.

We “charge”d + 1 + d2 to eliminate a single vertexv from a graphG, whered is the degree
of v in G, for this is proportional to the total number of floating-point operations to perform the
corresponding matrix operation. We use this charging scheme throughout this section whenever
analyzing the work of a given elimination order.

Let cv be the size of the largest clique ofG that containsv:

Lemma 9 The total work necessary to perform Gaussian elimination on a graphG is at least

W 0(G) =
P

v(
cv
2 + (cv�1)2

3 ).

Proof. The base case, with a single vertex is trivial – it costs us 1 unit of work. Assume the lemma
holds for graphs with less thank vertices. Letv be the first vertex to be eliminated in a minimum
work elimination order of a graphG with k vertices. The lemma holds forG � fvg. Let d be
the degree ofv in G. For each of the neighbors ofv, either the largest clique it is in has the same
size in bothG � fvg and inG, or it decreases by 1 whenv is removed, in which casev must be
part of that clique. Letw be a neighbor ofv in G such that the largest clique that containsw in
G� fvg has sizex, while the largest clique containingw in G has sizex+ 1. Thenw contributes
1=2 + (x2 � (x� 1)2)=3 = 1=2 + (2 � x� 1)=3 more toW 0(G) than toW 0(G� fvg). Butx � d
so that the contributions of all neighbors ofv toW 0(G) minus their contributions toW 0(G� fvg)
add up to at mostd=2 + d � (2 � d � 1)=3. The contribution of the vertexv to W’(G) is at most
(d+ 1)=2 + d2=3, so thatW 0(G)�W 0(G0) � d+ 1 + d2.

By induction, the amount of work necessary to perform Gaussian elimination inG is at least
W 0(G0) plusd+ 1 + d2, the amount of work to eliminatev, and thus at leastW 0(G).



40 CHAPTER 4. PARALLEL GAUSSIAN ELIMINATION

The next lemma is just a simple observation that allows us to account for work in a constant
number of parcels. It says that as long as we have at most a constant numberc of parts that can be
accounted for separately, then all of them taken together can also be accounted for, by increasing
the constants involved in theO() notation. Let!0(x) = x+ 1 + x2.

Lemma 10 LetG be a graph, andv be a vertex ofG. If v has neighbors in at most c sets of vertices
V1, V2, : : :, Vc whenv is eliminated fromG, then the work involved in eliminatingv fromG is at
mostw0(x) wherex = jV1 [ V2 [ : : : [ Vcj which isO(!0(jV1j) + !0(jV2j) + : : :+ !0(jVcj)).

Proof. Follows from the facts thatjV1 [V2[ : : :[Vcj is at most c times the maximum ofjV1j, jV2j,
: : :, jVcj and!0(cx) � c2 � !0(x) for x � 0.

What follows is almost identical to Lemma 7 and its proof. We account for the amount of
work created by an order by usually showing that the amount of work to eliminate vertices within
a subgraph is within a certain bound, and then showing that the vertices of the graph have degree,
at the time the vertices are eliminated, which consists of the degree they had within that subgraph
at the time they were eliminated plus either edges that existed in the original graph or fill edges.
We show that the work associated with the existence of these edges is within a factor of amount of
work associated with cliques in the original graph (Lemma 9), and then use Lemma 10 to add the
various contributions to estimate the total amount of work for the given order.

LetA be an interval graph algorithm that produces orders withO(w(n) �W (I)) work for any
interval graphI.

Lemma 11 When applied to an interval graphI, with n vertices, and using the interval graph
algorithmA, the Homogenize procedure produces an order withO(w(n) �W (I)) work.

Proof. We follow the steps of the proof of Lemma 7, and account for the work to eliminate each
vertex. The amount of work to eliminate a vertex isd2 + d + 1, whered is the total number
neighbors the vertex has at the time it is eliminated. Thus, we need to examine each vertex, and
find the number of fill edges it has at the time it is eliminated.

Let H be one of the subgraphs to which algorithmA is applied, and letn0 be the number
of vertices inH. The elimination ofH according to the order produced byA requires at most
O(w(n0) �W (H)) work. Consider fill edges betweenH and vertices ofI not inH. The vertices
of H can only have fill edges to the vertices ofI nH that are pinned at the two edges that delimit
the skeleton path ofH. By construction, the ply at every edge withinH ’s skeleton path is within a
constant ofp, the number of vertices pinned at the endpoints of the skeleton. Therefore, given any
vertexv in H, the number of neighbors ofv in I nH is within a constant of the largest clique ofH
containingv. By Lemmas 9 and 10 the extra amount of work involved in the elimination ofH and
the other subgraphs to which algorithmA is applied as subgraphs ofI adds up toO(w(n) �W (I)).
Since the subgraphs are disjoint, the total amount of work to eliminate the subgraphs is also at most
O(w(n) �W (I)).

Finally, we need to account for the work to eliminate the vertices pinned at the various selected
edges. Leta andb be the number of vertices pinned at each of the endpoints of the skeleton ofI
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used in the algorithm. Then there is a clique of size at leastmax(a; b) in I, and even if we make all
of the at most2 � (a + b) vertices that are selected by the Homogenize procedure into a clique, the
total amount of work to eliminate these vertices is withinO(W (I)).

Lemma 12 Our chordal graph algorithm produces an order withO(w(n) �W (G)) work.

Proof. Just as we did in the proof of the previous lemma, we consider the amount of work involved
in eliminating each of theKl(ei; ei+1) subgraphs, and then the work to eliminate the remaining
vertices.

By Lemma 11, the work involved in eliminating eachKl(ei; ei+1) using an order produced by
applying Homogenize toA is O(w(n0) �W (Kl(ei; ei+1))), wheren0 is the number of vertices in
Kl(ei; ei+1).

There is no fill between vertices in the differentKl(ei; ei+1), since the vertices pinned at the
various selected edges form separators between the subgraphs, and the vertices in the separators are
eliminated after the vertices within each of the subgraphs.

Any vertices removed fromKl(ei; ei+1) because they were pinned at bothei and ei+1 are
already adjacent to all vertices ofKl(ei; ei+1) and form a clique. By Lemmas 9 and 10 the existence
of these edges adds at mostO(w(n)�W (G)) more work as a result of the elimination process, when
summed over all subgraphsKl(ei; ei+1) ever created by the algorithm.

LetL be the set of vertices ofP (l; r) pinned atl. Vertices inL are not ordered at this step of the
algorithm, but there are fill edges to those vertices. The Kill algorithm ensures that any vertex that
has fill to a subset of the vertices inL is adjacent to at least half as many vertices inL. SinceL is
a clique, Lemmas 9 and 10, and the repeated application of this argument to all terminal branches
ever ordered by the algorithm, imply that the total amount of work involved in eliminatingG is
O(w(n) �W (G)).

To show that our algorithm produces orders with work within a constant factor of optimum, we
need to show that the one-third-two-thirds nested dissection produces orders with linear work.

Lemma 13 Let I be a connected interval graph. The one-third-two-thirds nested dissection algo-
rithm applied toI produces an order withO(W (I)) work, i.e., w(n) = O(1) for this algorithm.

Proof. To bound the amount of work involved in the elimination order, we need to count the number
of edges out of each vertex at the time it is eliminated.

We examine fill by looking at the ordered balanced elimination tree created by the algorithm.
Let’s examine the fill from each vertex to vertices that lie in its ancestors in the separator tree. Let
v be a vertex in a nodeV at levelk of the separator tree. LetL andR be, respectively, the left and
right lowest ancestors ofV in the elimination tree. Any ancestor ofv to which it is adjacent to at
the time it is eliminated must cover the edge of the skeleton corresponding to eitherL orR.

Consider the fill fromv to vertices that coverL. Fill to vertices coveringR is analogous. The
work caused by edges to vertices that are adjacent tov and coverL (and thus form a clique) adds
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up to at mostO(W (I)) over all vertices ofI, by Lemmas 9 and 10 and the fact that these are edges
in I. Let l and l’ be the number of vertices inL and the number of vertices that coverL but are
not adjacent tov in I and are not included inL, because they are part of higher-level separators,
respectively.

All vertices inL’s left subtree must have edges (inI) to thel’ vertices that coverL and are in
higher-level separators. Moreover, thosel’ vertices must form a clique inI. Since the subtree is
balanced, this implies that at least a third of the vertices in the subtree rooted atL are in cliques of
size at leastl0. No other subtree will use these cliques to account for work to a left ancestor node
(they might also be used to account for a right ancestor) so that again, by Lemmas 9 and 10 we
have a total ofO(W (I)) work.

The last component of the work corresponds to fill to thel vertices in the separatorL. Again,
these form a clique, and we can proceed just as in the proof of Lemma 4.

Let pi be the number of vertices in a nodeVi at leveli of the separator tree. At the top level
there are at leastn=3 vertices ofI that are adjacent to a clique of size at leastp0. At each recursive
level letn0 be the number of vertices in a given subtree. Then, at leastn0=3 of these vertices are
adjacent to a clique of size at leastpl. This adds up to enough potential for each vertex within a
subtree to pay for work related to a clique of sizemaxi�l(pi), while maintaining the sum of the
potentials of all vertices inI within O(W (I)). Therefore,v can pay for its work related to thel
vertices inL. By Lemma 10, we conclude the total amount of work induced by this order is indeed
O(W (I)).

4.3 Empirical results

We implemented the linear fill and work algorithm described in the previous sections. We present
here the results we obtained by applying that algorithm as a post-processing step to orders obtained
using different heuristics.

The “bcsstk” matrices used in our experiments come from structural engineering problems, and
were obtained from the Harwell-Boeing collection [IDL89], and from Timothy Davis’s “Univer-
sity of Florida Sparse Matrix Collection” [Dav94] (the matrices were provided to Davis by Roger
Grimes, at Boeing.) The nasasrb matrix models the structure of the NASA Langley shuttle rocket
booster, while the “sf” matrices are used in the simulation of an earthquake in the San Fernando
Valley [OS96]. The “g” matrices areh� w grids. The number of vertices and edges in each graph
can be found in Table 4.1.

We applied our algorithm as a post-processing step to the orders produced by a version of the
approximate minimum-degree heuristic (AMD)1 [ADD96], to the nested dissection orders pro-
duced by METIS-3.02 [KK95], and to the orders produced by the BEND algorithm obtained from
Rothberg [HR96, HR97]. Given each order we applied our chordal algorithm to the corresponding
chordal completion. The order obtained was then used as an elimination order for the original,
non-chordal graph.

1code from ftp://ftp.cise.ufl.edu/pub/umfpack/AMD/
2code from ftp://ftp.cs.umn.edu/dept/users/kumar/metis/
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Matrix vertices edges

3dtube 45330 1584144

bcsstk30 28924 1007284

bcsstk31 35588 572914

bcsstk32 44609 985046

bcsstk33 8738 291583

bcsstk35 30237 709963

bcsstk36 23052 560044

bcsstk37 25503 557737

cfd1 70656 878854

cfd2 123440 1482229

g256x256 65536 130560

g64x1024 65536 129984

gearbox 153746 4463329

hex256 393216 2359296

hex64 24576 147456

hsct16k 16152 376432

nasasrb 54870 1311227

pwt 36519 144794

sf10 7294 44922

sf5 30169 190377

shuttle-eddy 10429 46585

struct3 53570 560062

Table 4.1: Number of vertices and edges in each test graph

Table 4.2 shows the fill produced by the various orders, and the amount of fill our post-processing
order induces, relative to the amount of fill the original order induces, that is, we divide the amount
of fill of the post-processed order by the amount of fill for the order used as an input to our algo-
rithm, whether produced by AMD, BEND or Metis. The amount of fill includes entries that are in
the original graph as well as any fill entries, bellow and including the diagonal.

Table 4.3 shows the amount of work involved in performing Gaussian elimination according to
each of the initial orders and the amount of work for the post-processed orders relative to the initial
orders.

The heights measured correspond to the reordering heights for the various orders and are pre-
sented in Table 4.4 while the number of reordering stages, that is, the number of parallel dense
elimination steps, for the various orders are presented in Table 4.5.

Our results indicate that our algorithm usually produces orders that have a small amount of extra
fill when compared to the chordal completion it starts with. In some cases, our post-processing ac-
tually produces small improvements in the number of non-zeros. Contrary to what we expected, for
most graphs, the AMD orders were very parallel, thus making it harder for us to obtain significant
improvements in the height or number of stages. It is interesting to notice that for grids with large
aspect ratio the AMD orders cannot be directly parallelized. In those test cases, our orders induce
a slightly lower number of non-zero entries than the nested dissection orders, and a small constant
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Matrix AMD (�103) Post fill BEND (�103) Post fill Metis (�103) Post fill

3dtube 26355 1.019 17906 1.002 18468 0.999

bcsstk30 3854 1.108 3892 1.026 4439 0.993

bcsstk31 5557 1.064 4183 1.015 4412 0.998

bcsstk32 4987 1.033 5067 1.018 5731 0.996

bcsstk33 2571 1.004 1880 1.015 2307 0.997

bcsstk35 2732 1.038 2776 1.011 3132 0.992

bcsstk36 2733 1.012 2555 1.022 3037 0.994

bcsstk37 2799 1.033 2693 1.017 3146 0.987

cfd1 37734 1.105 22386 1.011 22845 0.999

cfd2 75008 1.014 39026 1.034 38937 1.000

g256x256 1971 1.014 1675 1.006 1760 0.997

g64x1024 1425 1.190 1351 1.026 1455 0.996

gearbox 48556 1.042 38089 1.012 38147 0.999

hex256 54841 1.000 50091 1.001 45434 0.999

hex64 2422 1.000 2080 1.006 2017 0.998

hsct16k 2680 1.018 2479 1.004 2817 0.993

nasasrb 11954 1.168 9765 1.051 10582 0.996

pwt 1592 1.011 1494 1.005 1389 0.996

sf10 676 1.030 531 1.010 570 1.000

sf5 5244 1.020 3873 1.083 3997 1.000

shuttle-eddy 327 1.123 330 1.062 368 0.998

struct3 5093 1.013 4452 1.008 4574 0.992

Table 4.2: Amount of fill for each order and the corresponding post processed order

factor more nonzeros than the AMD orders. In these cases, the orders our algorithm produced are
significantly more parallel then the original AMD orders, and only slightly less parallel than the
nested dissection orders. The hybrid algorithm produces orders that are usually good in terms of
both fill and height.

In the next chapter we provide some indication that this trade-off between low-fill and low-
height orders is inherent to the chordal completion problem.
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Matrix AMD (�106) Post work BEND (�106) Post work Metis (�106) Post work

3dtube 30030 1.064 12740 1.005 12130 0.999

bcsstk30 942 1.406 936 1.089 1179 0.993

bcsstk31 2898 1.214 1159 1.045 1190 1.003

bcsstk32 948 1.098 959 1.061 1288 0.996

bcsstk33 1240 1.004 590 1.033 896 0.996

bcsstk35 383 1.145 394 1.026 509 0.990

bcsstk36 620 1.045 483 1.099 706 0.993

bcsstk37 532 1.131 477 1.071 691 0.981

cfd1 44520 1.278 13360 1.031 17930 1.000

cfd2 136400 1.037 28710 1.130 34340 1.000

g256x256 261 1.066 190 1.028 223 0.999

g64x1024 85 1.909 83 1.123 98 0.998

gearbox 47020 1.189 22020 1.032 23330 1.000

hex256 47860 1.000 41620 1.001 34960 1.000

hex64 691 1.000 562 1.028 468 1.000

hsct16k 718 1.057 578 1.005 784 0.991

nasasrb 4771 1.724 2820 1.188 3548 0.993

pwt 172 1.039 140 1.014 112 0.985

sf10 137 1.090 71 1.025 80 1.002

sf5 2781 1.055 1275 1.358 1374 1.001

shuttle-eddy 17 1.514 18 1.237 23 0.998

struct3 1091 1.049 706 1.031 769 0.993

Table 4.3: Amount of work for each order and the corresponding post processed order
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Matrix AMD Post height BEND Post height Metis Post height

3dtube 5041 0.867 3477 0.905 2655 1.000

bcsstk30 2764 0.747 1800 0.833 1350 0.963

bcsstk31 2285 1.021 1641 1.000 1291 0.997

bcsstk32 2457 0.818 1774 0.931 1386 0.953

bcsstk33 1792 1.000 1534 0.961 1250 0.999

bcsstk35 1262 0.948 1084 0.989 970 0.939

bcsstk36 1540 0.932 1255 1.042 1166 0.990

bcsstk37 1333 1.065 1162 1.022 1232 1.000

cfd1 7921 0.878 3438 1.003 3228 1.000

cfd2 9494 1.000 5538 0.967 4068 1.000

g256x256 1617 0.978 995 0.997 744 0.999

g64x1024 2791 0.319 979 0.733 438 0.995

gearbox 5589 1.124 3899 1.000 3640 1.000

hex256 4549 1.000 5423 1.002 4362 0.999

hex64 1105 1.000 1226 1.076 1018 0.988

hsct16k 1917 0.942 1307 0.995 1163 1.000

nasasrb 4829 0.549 3360 0.725 1662 1.112

pwt 944 0.935 778 0.857 571 0.993

sf10 793 0.974 703 0.983 557 1.000

sf5 2341 1.000 1830 1.033 1523 0.998

shuttle-eddy 851 0.677 659 0.730 335 0.988

struct3 1542 0.982 1440 1.002 1093 0.992

Table 4.4: Reordering height of each order
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Matrix AMD Post stages BEND Post stages Metis Post stages

3dtube 17 0.941 18 1.000 23 1.043

bcsstk30 38 0.684 24 0.917 23 0.826

bcsstk31 29 0.931 30 0.967 30 0.833

bcsstk32 40 0.775 27 0.963 30 0.867

bcsstk33 23 1.043 22 0.864 19 1.000

bcsstk35 32 0.844 29 0.966 30 0.833

bcsstk36 24 0.958 24 1.000 26 0.769

bcsstk37 31 0.935 27 0.926 29 0.793

cfd1 48 0.812 35 1.000 38 0.737

cfd2 38 1.000 40 0.925 34 0.853

g256x256 52 0.942 46 0.913 33 0.788

g64x1024 109 0.413 47 0.809 31 0.774

gearbox 33 0.939 30 1.000 32 0.969

hex256 16 1.000 22 1.000 37 0.730

hex64 12 1.000 17 0.941 29 0.759

hsct16k 28 0.964 25 0.880 23 0.870

nasasrb 33 0.606 28 0.821 30 0.800

pwt 25 1.000 43 1.000 28 0.857

sf10 24 0.958 31 0.903 32 0.812

sf5 29 0.966 38 0.947 41 0.878

shuttle-eddy 39 0.667 26 0.769 21 0.857

struct3 29 0.966 30 0.967 27 0.815

Table 4.5: Number of reordered stages
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Chapter 5

Parallelism and fill minimization

It is interesting to look at the quality of the orders that nested dissection produces on chordal graphs,
as we did in Chapter 4. The analysis of nested dissection on chordal graphs indicates that even if we
had an oracle that could provide us with the minimal separators that form cliques in the minimum-
fill solution, nested dissection would still produce orders with an amount of fill that is more than a
constant times the size of the minimum-fill completion of the graph.

In this chapter we show that there exist graphs for which any parallel elimination order must
have at least
(n) extra fill. We also present an algorithm that is a variation of nested dissection
that tries to obtain low fill orders that are less parallel than regular nested dissection orders. When
applied to chordal graphs this new algorithm produces zero fill. Our algorithm is very similar to
nested dissection, but does not have the performance guarantees in terms of fill, height and work
that make nested dissection so attractive from a theoretical point of view, except when applied to
chordal graphs. Our experiments show this algorithm outperforms, on average, previous state-of-
the-art implementations of other ordering heuristics, including minimum-degree, nested dissection
and a hybrid of minimum-degree and nested dissection.

5.1 Studying height

The lemmas that follow help us analyze parallel elimination orders, and allow us to change a given
order into a more parallel one without introducing any fill.

Lemma 14 (Jess and Kess [JK82]) The set of simplicial vertices of a graphG consists of discon-
nected cliques.

Based on this fact, Jess and Kess proposed an algorithm to produce elimination orders with low
height, namely to recursively eliminating at each step of the algorithm a maximal set of independent
simplicial vertices. Liu later proved that this algorithm indeed produces orders that achieve the
reordering height on chordal graphs, as stated in the next lemma.

49
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Lemma 15 (Liu [Liu89] ) Let G be a chordal graph. Then a perfect elimination order forG with
minimum height can be obtained by applying the algorithm of Jess and Kess described above. The
height corresponds to the number of maximal independent sets the algorithm eliminates.

An order for a graph can be used for any of its subgraphs. We thus obtain the following lemma:

Lemma 16 (Manne [Man91]) LetH be a subgraph of a graphG. Then the height ofH is less
than or equal to the height ofG.

The notion of optimal height of a graph allows for fill to be introduced into the graph. However,
we can still eliminate a maximal independent set of simplicial vertices at each step, without com-
promising the final height of the order. In general, however, some non-simplicial vertices might be
included in the maximal independent set to be eliminated in a given step of a parallel elimination
order. This is indicated in the lemmas that follow.

Lemma 17 LetG be a graph and let� be an order for the vertices ofG with heighth that intro-
ducesf fill and w work. There exists an order in which any set of independent vertices that are
simplicial inG are eliminated in the first parallel elimination step, the amount of fill is no larger
thanf , the amount of work is no larger thanw, and the height is no larger thanh.

Proof. It suffices to show that a simplicial vertexv can be added to the first step or can replace a
vertex to which it is adjacent in the first step of the elimination.

If v andw are two adjacent simplicial vertices, andw is in the first step of the elimination, then
we can simply replace it byv, sincev andw must be twins.

If a simplicial vertexv is adjacent tow, andw is not simplicial but appears in the first step of�,
again we can replacew by v. In this case, the neighborhood ofv is contained in the neighborhood
of w, and thus the graph obtained by the elimination ofv is isomorphic to a subgraph of the graph
obtained by the removal ofw. This subgraph can be eliminated with no more height (by Lemma
16), fill or work than the graph obtained by the elimination ofw and the remaining vertices in the
first step of the elimination, simply because it is a subgraph of that graph. The same argument is
valid no matter how many vertices get replaced by simplicial neighbors.

The only case remaining is the case in whichv is simplicial but neitherv nor any of its neighbors
are in the first step of the elimination order. Consider the first (future) step in which eitherv or one of
its neighbors is eliminated according to�. At that point, by the argument in the previous paragraph,
we can insist thatv be eliminated in that step. Since none ofv’s neighbors are eliminated before
that step, we can movev to any earlier elimination step.

The next lemma allows us to only consider elimination orders that eliminate twin vertices in
consecutive steps.

Lemma 18 Let v andw be twin vertices in a graphG. Then given any elimination order forG
there exists another elimination order in whichv andw are eliminated in consecutive steps and for
which neither the fill, work or height exceed that of the original order.
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Proof. If v andw are twins, they remain so until eitherv or w is eliminated fromG. Sayv is
eliminated first. Oncev is eliminated,w becomes a simplicial vertex, and by Lemma 17 there
exists an order for the graph obtained by the elimination ofv with no more height, fill or work than
the original order, and such thatw is eliminated in the first step of the order.

The next lemmas indicate that there exists an interesting trade-off in producing elimination
orders that are optimized for height or fill, at least on some simple graphs.

Lemma 19 LetP be a path withn vertices. Any elimination order forP with heighth requires at
leastn� 2 � h fill.

Proof. Eliminating any vertex ofP produces a path one vertex shorter. Eliminating a leaf node
produces no fill, while eliminating an internal node produces one fill edge. Since there are only
two leafs at every step of the elimination process, at most2 � h leafs can be eliminated inh steps.
Therefore, at leastn�2�h other vertices that are also to be eliminated during thoseh steps introduce
one fill edge each.

Lemma 20 LetG be a graph, and letH be an induced subgraph ofG. If any elimination order
for H with heighth requires at leastf(h) fill, wheref(h) is a non-increasing function, then any
elimination order forG with heighth0 requires at leastf(h0) fill.

Proof. SinceH is an induced subgraph ofG, any elimination order of heighth0 for G is also
an elimination order forH and has height less than or equal toh0. Sincef is non-increasing,
eliminatingH according to this order introduces at leastf(h0) fill. SinceH is an induced subgraph
of G, this same order must introduce at leastf(h0) fill in G.

Now consider the following graph. Take a path of lengthn and replace each node by a clique
with k vertices. Also introduce all possible edges between cliques that are in adjacent nodes of the
path. Call this ak-path of lengthn.

Lemma 21 Any elimination order for thek-path of lengthn with heighth introduces at least
k2 � (n� 2 � h=k) fill.

Proof. If we identify all the twin vertices of thek-path graph we obtain a path of lengthn, every
node of which representsk vertices of the original graph. According to Lemma 18 any order for the
k-path can be modified so that when a vertex is eliminated all its twins are eliminated in successive
steps. Thus an order with heighth for thek-path corresponds to an order of heighth=k for then-
node path graph. Every fill edge introduced in the elimination of then-node path graph corresponds
tok2 fill edges in the originalk-path elimination. By Lemma 19 any elimination order for thek-path
has at leastk2 � (n� 2 � h=k) fill.

It is interesting to note that thek-path graph is very similar to a graph created during the elim-
ination of 2-dimensional grids with large aspect ratio. We triangulated a 5� 100 rectangular grid
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and then ordered its vertices using the BEND algorithm. Figure 5.1 represents a step in the elimina-
tion of this graph according to the order produced by BEND. The vertices in grey have already been
eliminated. The vertices that remain to be eliminated appear to be part of the top level separators
that the BEND algorithm uses to partition the graph into smaller subgraphs (that are then ordered
using minimum-degree.) At this particular point of the elimination it is not possible to distinguish
between this order and a parallel nested dissection order. The partially filled graph obtained at this
step is very similar to thek-path.

Figure 5.1: Partial elimination of a graph, according to a BEND order.

Consider the nested dissection ordering for a grid with widthn and heightk, k << n. A likely
nested dissection order would involve selecting roughlyn=k vertical separators withk vertices
each. Thek � k subgraphs obtained this way would be recursively ordered, causing fill between
consecutive separators. Each separator would become itself a clique. At this stage of the elimination
process, the graph would correspond to ak-path of lengthn=k. Therefore by Lemma 21, after this
point, any elimination order with low height would require an additional
(n � k) fill.

This explains in part why nested dissection produces orders with higher amounts of fill than
other ordering heuristics on such graphs. In an attempt to show this effect empirically, we performed
an additional experiment. We took rectangular grids of different aspect ratios and computed an
AMD and a nested dissection order for each graph. We then applied the parallelizing algorithm
of the previous chapter as a post processing step to the AMD orders. We used a special purpose
ordering algorithm for rectangular grids as the base for normalizing all the results. This algorithm
is based on nested dissection and diagonal separators, but does not use the nested dissection order
for the top levels of separators.

Although not conclusive, the results obtained corroborate the hypothesis that the trade-off be-
tween minimizing height and minimizing fill and work plays an important role in the comparison
between minimum-degree and nested dissection orders. The parallel orders obtained required a
little more fill and work than the corresponding nested dissection orders, as seen in Figure 5.2.

5.2 A less parallel nested dissection algorithm

Our goal was to redeem nested dissection by obtaining a new algorithm that would behave much
like nested dissection, but would produce orders with less fill and work. We propose the following
algorithm that takes a subgraphG of a graphH and the setT = H nG of vertices to be eliminated
after the vertices ofG and produces an elimination order for the vertices ofG. Henceforth, we call
this algorithm the less parallel nested dissection algorithm (LPND).

The algorithm starts with an empty setT , and finds a minimal separatorS of G, and the con-
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Figure 5.2: Comparison between orders produced by nested dissection (ND), minimum-degree
(AMD), and the order obtained by applying the parallelizing algorithm of the previous chapter as a
post processing step to the AMD order (PAMD).

nected componentsGk of GnS. If a non-trivial minimal separator cannot be found then it must be
the case thatG is a clique. In this case its vertices are ordered according to increasing degrees, that
is, according to the number of neighbors each vertex has inT . At each step, if a non-trivial minimal
separator can be found, the algorithm computes the number of neighbors that each componentGk

has inT . If at least two components have the maximum number of neighbors inT over all compo-
nentsGk, then the algorithm recurses on each componentGk as a subgraph ofGk [ S [ T (with a
setT 0 = T [ S), exactly like nested dissection would. Vertices within each component are num-
bered so as to be eliminated before the vertices inS, exactly like nested dissection would number
them. Then the vertices ofS are ordered according to increasing degrees in the graph induced by
S [ T . If however, a subgraphGi has a number of neighbors inT that is larger than the number of
neighbors any other component has inT , then the algorithm treatsGi andS in a different manner.
All components ofG n S except forGi are recursively ordered, just as before. However, instead of
recursing onGi, the algorithm recurses on the subgraphGi[S of Gi[S[T , after inserting edges
corresponding to the fill created by the elimination of the other components ofG n S. The vertices
in Gi [ S are numbered after the vertices in the other components ofG n S.

We start by proving a lemma that says that, under certain conditions, the step of the LPND
algorithm that orders the vertices of a clique does not introduce any fill.
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Lemma 22 LetC be a clique in a chordal graphH, such thatNH(C) is also a clique. The vertices
ofC can be eliminated fromH according to any minimum-degree order with zero fill.

Proof. Since bothC andNH(C) are cliques we have to show that ifv andw are vertices inC
such thatd(w) � d(v) thenw is adjacent to all neighbors ofv, which implies that any vertex with
minimum degree inC is simplicial inH.

Assume by contradiction that this is not the case. SinceC is a clique, it must be the case that
there exists a vertexnv 62 C that is adjacent tov but not tow. Also, sinced(w) � d(v), there must
exist a vertexnw 62 C that is adjacent tow but not tov. But thennv andnw are both inNH(C),
and thus are adjacent. That forms a chordless cycle of length four and contradicts the assumption
thatH is chordal.

The next lemma allows us to show that the LPND algorithm produces perfect elimination orders
for chordal graphs.

Lemma 23 Let G be an induced subgraph of a chordal graphH, such thatNH(G) is a clique.
Then the LPND algorithm orders the vertices ofG so that they can be eliminated fromH with zero
fill.

Proof. If G is a clique then it has no non-trivial minimal separators, and the algorithm orders the
graph using minimum degree, so that we can apply Lemma 22 proving the result. AssumeG is not
a clique. Then it has a minimal separatorS that will be used by the algorithm to partitionG into
connected componentsG1; : : : ; Gn, n > 1. SinceG is an induced subgraph ofH it is also chordal.
Every minimal separator of a chordal graph is a clique, and thusS is a clique.

If there is a componentGi that has more neighbors inNH(G) than any of the other component
of G n S, then the algorithm will first order the vertices within the components other thanGi, and
then order the vertices ofGi [ S. By induction, we can assume that the order produced forGi [ S
will eliminate these vertices fromGi [ S [ (H n G) with zero fill, since the set of neighbors of
Gi[S in H nG is contained inNH(G), which is a clique by hypothesis. Next, we will show that if
a componentGk does not have more neighbors inNH(G) than any other component, thenNH(Gk)

is a clique. In this caseGk can be eliminated with zero-fill by induction.

Without loss of generality, take a componentG1 of G n S. AssumeNH(G1) is not a clique.
Then there must exist verticess1 in S andt1 in NH(G) that are adjacent to vertices inG1 but are
not adjacent to each other. SinceS is a minimal separator, all other componentsGk of G n S have
at least one vertex adjacent tos1, for otherwises1 could be removed fromS. EitherG1 is the
component with the largest number of neighbors inNH(G) or there exists some other component
G2 with no less neighbors inNH(G) thanG1, so that some vertices ofG2 are, without loss of
generality, either adjacent tot1 or to a vertext2 in NH(G) that does not have neighbors inG1.

In the first case, consider a shortest path betweens1 andt1 going only throughs1, t1 and vertices
in G1 and a shortest path betweens1 andt1 going only thoroughs1, t1 and vertices inG2. There
are no edges between vertices inG1 and vertices inG2. SinceH is chordal the cycle formed by
these paths must have a chord. The only place where this chord can be is betweens1 and t1, a
contradiction.
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If no vertex ofG2 is adjacent tot1, then again take a shortest path betweens1 andt1 in G1. The
vertext2 is adjacent tot1, and eithert2 is also adjacent tos1, in which case the shortest path inG1

along with the paths1 � t2 � t1 is chordless, a contradiction, ors1 andt2 are not adjacent. In this
case we consider the cycle composed of the shortest path froms1 to t1 in G1, along with the edge
(t1; t2) and a shortest path betweent2 ands1 in G2. This cycle is again chordless, a contradiction.
This concludes the proof that the subgraphsGk are ordered with zero fill.

The only case that remains is when all components ofG n S are eliminated first, and the set of
verticesS is left to be eliminated at the end (as nested dissection would do). ButS is a clique, and
so isNH(S), sinceNH(G) is clique. Thus we can apply Lemma 22.

Corollary 3 The LPND algorithm produces a perfect elimination order when applied to a chordal
graph.

Proof. LetH be a chordal graph. IfH is a clique, then any order will produce zero fill. Otherwise,
the algorithm finds a minimal separatorS. S is a clique sinceH is chordal. The algorithm orders
the vertices ofS last. As long as all other vertices have been eliminated, the vertices inS can be
eliminated in any order with zero fill. The algorithm will recurse on each of the components of
H n S, and by Lemma 23 it will order each of these components with zero fill.

Unlike nested dissection, the algorithm we described will not necessarily generate orders with
low height. In particular, given a path of lengthn, this algorithm will not introduce any fill edges
so that any order it produces must have height at leastn=2.

5.3 Experimental results

We implemented the algorithm described in Section 5.2 and performed experiments that compare
the orders it produces with orders produced by state-of-the-art implementations of a number of other
heuristics. We proceed to describe a few aspects of the implementation of the LPND algorithm.

Separators:

The algorithm only requires minimal separators, without any balance constraints. However,
in the actual implementation the algorithm tries to obtain separators with a bounded amount
of imbalance allowed, thus mimicking nested dissection.

Obtaining small balanced separators is an NP-hard problem on its own, but there are provably
good approximation algorithms for finding separators as well as a number of algorithms that,
in practice, produce very good separators. We side-stepped the issues associated with finding
separators and use vertex separators produced by Chaco1 [HL94, HL95], a graph partitioning
algorithm by Hendrickson and Leland at Sandia Labs.

Chaco is a multilevel algorithm that works by coarsening the graph into smaller and smaller
graphs that approximate the initial graph. The smallest such graph is partitioned. This par-
tition is mapped to a partition of the next smallest graph, from which the coarse graph was

1http://www.cs.sandia.gov/CRF/chac.html
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obtained. The process proceeds, as partitions are propagated back to finer and finer graphs.
Every so many of these mapping steps, a variant of the Kernigan-Lin algorithm is applied
as a local refinement method that improves the partitioning. Chaco uses this combination of
heuristics to directly produce high quality edge and vertex separators. Parameters to Chaco
affect our algorithm and the orders it produces. Among the parameters to Chaco is the permis-
sible fraction of imbalance between the partitions to be produced. Chaco uses randomization,
most noticeably in the coarsening steps. This makes our ordering algorithm also sensitive to
the initial random seeds used. Even though Chaco produces good separators, we noticed that
we obtain even better solutions at the cost of speed, by running Chaco more than once with
different random seeds on the same input graph and then choosing the smallest separator
produced.

Minimum degree:

Most descriptions of nested dissection do not prescribe any ordering for vertices within a
given separator because these vertices usually end up forming a clique after the components
into which the separator breaks the graph have been eliminated. It is natural however, to
try to minimize the fill from vertices in a separator to vertices higher up in the separator
tree. An important part of the LPND algorithm is the use of a constrained minimum-degree
rule to order the vertices within separators and to order the vertices in subgraphs that could
not be further divided. The constrained minimum-degree heuristic orders the vertices in
the subgraphs by eliminating first the vertex of minimum degree among the vertices of the
subgraph, while however considering the degrees measured in the whole graph.

We also used constrained minimum degree as the ordering heuristic for subgraphs that were
smaller than some threshold. This widely adopted practice allows us to reduce the amount of
time needed to produce our orders, while not affecting the quality of the orders produced by
much.

Sorting recursive subproblems:

The step that differentiates the LPND algorithm from nested dissection involves choosing
whether to treat all subgraphs defined by the separator identically, or to save one subgraph
for last and merge it with the separator. As we have shown with Corollary 3, the choice of
which subgraph should be left for last is clear when the graph being ordered is already a
chordal graph. In practice we made the conditions under which the algorithm deviates from
nested dissection more strict. Instead of requiring a component to have a number of neighbors
outside the subgraph being ordered that is larger than the number of neighbors of any other
component, in the implementation, we actually require that this component have at least some
constant fraction more neighbors than any other component. This is a conservative measure
that tries to avoid making bad decisions based on the imperfect information that is available
during the computation by defaulting to the nested dissection behavior.

We also implemented a version of the Lipton, Rose and Tarjan (LRT) nested dissection algo-
rithm that uses the same separator and minimum-degree algorithms that were used in implementing
our own algorithm. In the tables that follow we report the results obtained for our LPND algorithm,
our implementation of the LRT algorithm, as well as the AMD2 algorithm [ADD96], the BEND

2code from ftp://ftp.cise.ufl.edu/pub/umfpack/AMD/
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algorithm, obtained from Rothberg [HR96, HR97], and the nested dissection order produced by
METIS-3.03 [KK95]. As for the results reported for the approximate minimum deficiency algo-
rithm (AMMF), these are quoted from [RE98], and are not available for all the test matrices. Any
unavailable results are represented with a “-” in the tables that follow.

As described in the previous chapter, the “bcsstk” matrices used in our experiments come from
structural engineering problems, and were obtained from the Harwell-Boeing collection, and from
Timothy Davis’s “University of Florida Sparse Matrix Collection” [Dav94] (the matrices were pro-
vided to Davis by Roger Grimes, at Boeing). The “cfd”, gearbox and struct3 matrices were provided
by Rothberg, while the nasasrb, pwt and shuttle-eddy matrices came from NASA. All these matri-
ces can be obtained from the University of Florida Sparse Matrix collection. The “sf” matrices
come from the simulation of an earthquake in the San Fernando Valley [OS96]. The “g” matrices
aren� k grids, while the “hex” matrices are meshes of hexagons. The CAR, hsct16k, 50K, 172K
and 178K matrices came from Olaf Storaasli at NASA Langey.

Matrix vertices edges c-vertices jLj/103 work/106 height stages front

shuttle-eddy 10429 46585 10363 330 18 659 26 143

sf10 7294 44922 7294 531 71 703 31 296

g64x1024 65536 129984 65536 1351 83 979 47 188

pwt 36519 144794 36515 1494 140 778 43 222

g256x256 65536 130560 65536 1675 190 995 46 390

bcsstk35 30237 709963 6611 2776 394 1084 29 430

bcsstk37 25503 557737 7093 2693 477 1162 27 518

bcsstk36 23052 560044 4351 2555 483 1255 24 536

hex64 24576 147456 24576 2080 562 1226 17 814

hsct16k 16152 376432 7911 2479 578 1307 25 491

bcsstk33 8738 291583 4344 1880 590 1534 22 677

struct3 53570 560062 41644 4452 706 1440 30 446

bcsstk30 28924 1007284 9289 3892 936 1800 24 579

bcsstk32 44609 985046 14821 5067 959 1774 27 564

bcsstk31 35588 572914 17403 4183 1159 1641 30 623

sf5 30169 190377 30169 3873 1275 1830 38 829

50K 49790 1253700 11224 7313 2235 2716 36 879

nasasrb 54870 1311227 24954 9765 2820 3360 28 620

3dtube 45330 1584144 15909 17906 12740 3477 18 1607

cfd1 70656 878854 70656 22386 13360 3438 35 1417

CAR 263574 6292129 61983 34352 13970 3824 40 1571

gearbox 153746 4463329 56175 38089 22020 3899 30 1846

172K 172400 7229603 36062 35601 24700 4790 26 2073

cfd2 123440 1482229 123440 39026 28710 5538 40 1754

hex256 393216 2359296 393216 50091 41620 5423 22 3319

178K 178044 6277614 145112 132100 183110 - - -

sf2 378747 2509064 378747 188240 339500 - - -

Table 5.1: Matrices and statistics for a BEND order

3code from ftp://ftp.cs.umn.edu/dept/users/kumar/metis/
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The number of vertices and edges in each graph/matrix can be found in Table 5.1. Under the
label “c-vertices” this table lists the number of vertices in the compressed graph that is obtained by
identifying each set of twin vertices into a supernode. We applied the BEND algorithm to order
each of these matrices, and use the numbers obtained to normalize the results that are presented in
the next tables. The results for the BEND order are also included in Table 5.1. The fill and work
entries indicate the number of nonzeros in the matrixL and the amount of work to decompose
each matrix according to the BEND order. This and the remaining tables that we present are sorted
according to increasing amounts of work. Finally, the height, stages, and front entries correspond to
the reordering height, to the number of reordering stages, and to the front size for the BEND order.
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Figure 5.3: Histograms of the fill of each order for the various matrices relative to the BEND order.
They-axis indicates the number of matrices whose fill-ratio is in each bucket.

Tables 5.2 and 5.3 present the number of nonzeros (below and including the diagonal, i.e,
the number of nonzeros inL) and work for decomposing each matrix according to the various
orders produced. Both LRT and LPND usedtwo calls to Chaco per separator. These results are
presented as ratios with respect to the BEND order. Numbers smaller than 1 indicate an order that
compares favorably with the BEND order. In an attempt to summarize the results in each table, we
included the average and standard deviation of these normalized results, as well as the histograms
in Figures 5.3 and 5.4.



5.3. EXPERIMENTAL RESULTS 59

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
AMD

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6
METIS

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7
LRT

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

1

2

3

4

5

6

7
LPND

Figure 5.4: Histograms of the work of each order for the various matrices relative to the BEND
order. They-axis indicates the number of matrices whose work-ratio is in each bucket.

These results indicate that both LRT and LPND orders are on average slightly better than the
BEND order. However, the differences observed are of only a few percent, making it difficult to
draw any definite conclusions. The running times for both LRT and LPND are comparable and are
significantly higher than those for the BEND algorithm. Table 5.4 compares the amount of time to
produce the BEND and the LPND orders for the various matrices. It is unclear how much the BEND
orders could improve if the algorithm were given more time to compute the orders. However, these
results indicate that significant gains in terms of both fill and work might justify investing more
time into obtaining good elimination orders.

The fill and work results for the AMD orders stand out. Although occasionally better in individ-
ual cases, the AMD algorithm produces orders that are significantly worse than the orders produced
by the remaining algorithms. This is consistent with the results obtained by Hendrickson and Roth-
berg in [HR96], when they found that their implementation of the nested dissection algorithm was
significantly better than the minimum-degree algorithms, and that the BEND algorithm was a few
percent better than their own implementation of the nested dissection algorithm.
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Figure 5.5: Histograms of the reordering height of each order for the various matrices relative to
the BEND order. They-axis indicates the number of matrices whose reordering-height ratio is in
each bucket.

Tables 5.5 and 5.6 show the reordering height and number of reordering stages for each of
the orders. The results for the AMMF order are not available. The results for the two largest cases
are omitted, for they would take too long to compute. As expected, we can see in the tables that
the orders produced by the LPND algorithm are less parallel than the corresponding LRT orders
while the AMD orders are even less parallel than the LPND orders in terms of height, but in most
cases are more parallel than the LPND orders in terms of the number of stages. This difference
indicates that AMD orders are probably likely to produce larger cliques than the LPND orders, as
corroborated by Table 5.7, which lists the maximum front size for each order (again, except for the
AMMF orders).

We also performed an additional experiment using the 7 largest matrices in the test set. We ran
the LPND algorithm 10 times using different random seeds (the numbers 1 through 10) and one
call to Chaco per separator (LPND1) and another 10 times, with two calls to Chaco per separator
(LPND2). In the first call the same seeds (1 through 10) were used, and in the second call the seed
was obtained by applying a fixed affine function to the original seed. Figure 5.6 shows the average
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Ratio AMD AMMF METIS LRT LPND

shuttle-eddy 0.9910 - 1.1144 1.0139 0.9415

sf10 1.2726 - 1.0737 1.0205 0.9905

g64x1024 1.0553 - 1.0771 0.9686 0.8757

pwt 1.0656 1.1205 0.9295 0.8740 0.8754

g256x256 1.1772 - 1.0512 0.9056 0.8986

bcsstk35 0.9843 0.9645 1.1284 0.9944 0.9733

bcsstk37 1.0395 1.0154 1.1682 0.9564 0.9567

bcsstk36 1.0695 1.0375 1.1887 1.0145 1.0028

hex64 1.1644 - 0.9699 0.9105 0.9103

hsct16k 1.0808 - 1.1361 1.0276 1.0080

bcsstk33 1.3680 1.2757 1.2271 1.0929 1.0775

struct3 1.1441 1.1185 1.0274 0.9468 0.9667

bcsstk30 0.9903 0.8869 1.1407 1.0196 0.9102

bcsstk32 0.9840 0.9541 1.1310 1.0135 0.9824

bcsstk31 1.3286 1.0525 1.0549 0.9449 0.9575

sf5 1.3541 - 1.0320 0.9595 0.9521

50K 1.2086 - 1.1721 1.0003 0.9982

nasasrb 1.2242 - 1.0837 1.0086 0.9560

3dtube 1.4719 1.5511 1.0314 0.9548 0.9548

cfd1 1.6856 1.3106 1.0205 0.8597 0.8047

CAR 1.1028 - 1.0631 0.9769 0.9846

gearbox 1.2748 1.2614 1.0015 0.9227 0.9166

172K 0.8196 - 1.0203 0.9249 0.9010

cfd2 1.9220 1.6969 0.9977 0.9218 0.9411

hex256 1.0948 - 0.9070 0.8420 0.8420

178K 1.7301 - 0.9272 0.8650 0.8645

sf2 2.0333 - 0.8558 0.8311 0.8306

AVERAGE 1.2458 1.1727 1.0567 0.9545 0.9360

STDEV 0.2959 0.2400 0.0911 0.0650 0.0618

Table 5.2: Fill relative to the BEND order

results normalized by dividing each average by the corresponding result for the BEND order. Each
average is accompanied by an error bar corresponding to the normalized standard deviation over
each set of 10 runs. These deviations are sometimes too small to show up in the figure. Again,
these results indicate that the orders produced are on average slightly better than the ones produced
by the BEND algorithm.
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Ratio AMD AMMF METIS LRT LPND

shuttle-eddy 0.9642 - 1.2855 1.1027 0.8422

sf10 1.9313 - 1.1294 1.0865 0.9736

g64x1024 1.0160 - 1.1778 0.9716 0.6271

pwt 1.2305 1.3761 0.8017 0.7194 0.7215

g256x256 1.3736 - 1.1728 0.8519 0.8087

bcsstk35 0.9721 0.9110 1.2905 1.0233 0.9642

bcsstk37 1.1150 1.0106 1.4479 0.8705 0.8869

bcsstk36 1.2833 1.1255 1.4609 1.0786 1.0075

hex64 1.2301 - 0.8330 0.7139 0.7137

hsct16k 1.2415 - 1.3558 1.0901 1.0337

bcsstk33 2.1035 1.6197 1.5193 1.2053 1.1730

struct3 1.5455 1.4126 1.0895 0.9266 0.9841

bcsstk30 1.0057 0.7022 1.2592 1.1182 0.7630

bcsstk32 0.9885 0.9305 1.3432 1.1273 1.0396

bcsstk31 2.5004 1.3932 1.0267 0.8645 0.9077

sf5 2.1812 - 1.0776 0.8996 0.8824

50K 2.2367 - 1.4872 1.0224 1.0336

nasasrb 1.6918 - 1.2582 1.1411 0.9199

3dtube 2.3571 2.4563 0.9521 0.8673 0.8673

cfd1 3.3323 1.7663 1.3421 0.8293 0.6635

CAR 1.6600 - 1.0014 0.9556 1.0193

gearbox 2.1353 2.0058 1.0595 0.9382 0.9260

172K 0.6138 - 0.9425 0.7854 0.7186

cfd2 4.7510 3.4315 1.1961 0.9871 1.0355

hex256 1.1499 - 0.8400 0.6540 0.6540

178K 3.8589 - 1.0334 0.9012 0.8941

sf2 5.5022 - 0.8999 0.8315 0.8031

AVERAGE 1.9249 1.5493 1.1586 0.9468 0.8838

STDEV 1.1934 0.7459 0.2100 0.1441 0.1409

Table 5.3: Work relative to the BEND order
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Matrix BEND(secs) Slow-down: LPND/BEND

shuttle-eddy 0.981 3.258

sf10 0.962 3.534

g64x1024 4.730 4.599

pwt 3.049 3.938

g256x256 4.407 4.975

bcsstk35 7.365 0.351

bcsstk37 5.539 0.610

bcsstk36 5.400 0.313

hex64 2.805 3.646

hsct16k 3.322 2.079

bcsstk33 2.133 1.915

struct3 7.131 3.565

bcsstk30 7.680 0.893

bcsstk32 10.142 0.837

bcsstk31 7.063 1.684

sf5 3.491 5.916

50K 11.594 0.465

nasasrb 11.817 1.805

3dtube 12.485 0.988

cfd1 13.385 8.632

CAR 42.983 0.850

gearbox 33.132 1.378

172K 47.357 0.688

cfd2 18.237 13.141

hex256 41.574 6.313

178K 54.393 9.461

sf2 59.876 17.186

Table 5.4: Amount of time to compute BEND order, in seconds, and ratio between the time to
compute the LPND order and the BEND order
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Ratio AMD METIS LRT LPND

shuttle-eddy 1.2914 0.5083 0.4431 1.1897

sf10 1.1280 0.7923 0.8990 0.9900

g64x1024 2.8509 0.4474 0.5455 2.0409

pwt 1.2134 0.7339 0.6530 0.7558

g256x256 1.6251 0.7477 0.8151 0.9980

bcsstk35 1.1642 0.8948 0.8792 1.0563

bcsstk37 1.1472 1.0602 0.8614 1.0258

bcsstk36 1.2271 0.9291 0.9211 0.9793

hex64 0.9013 0.8303 0.8051 0.8051

hsct16k 1.4667 0.8898 0.9082 1.2754

bcsstk33 1.1682 0.8149 0.7640 0.7823

struct3 1.0708 0.7590 0.6479 0.9868

bcsstk30 1.5356 0.7500 0.7361 1.4728

bcsstk32 1.3850 0.7813 0.7418 1.2272

bcsstk31 1.3924 0.7867 0.7569 1.0049

sf5 1.2792 0.8322 0.8066 1.0443

50K 1.0670 0.7323 0.6116 0.6554

nasasrb 1.4372 0.4946 0.4726 1.2711

3dtube 1.4498 0.7636 0.8332 0.8332

cfd1 2.3040 0.9389 0.7833 1.5852

CAR 1.2644 0.7858 0.8413 1.1462

gearbox 1.4334 0.9336 0.9646 1.1749

172K 0.9305 0.7931 0.7975 0.8929

cfd2 1.7143 0.7346 0.6844 1.1685

hex256 0.8388 0.8044 0.7640 0.7533

178K - - - -

sf2 - - - -

AVERAGE 1.3714 0.7816 0.7575 1.0846

STDEV 0.4301 0.1380 0.1348 0.2999

Table 5.5: Reordering height relative to the BEND order
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Ratio AMD METIS LRT LPND

shuttle-eddy 1.5000 0.8077 0.6538 1.4615

sf10 0.7742 1.0323 0.8387 1.1290

g64x1024 2.3191 0.6596 0.5319 2.0213

pwt 0.5814 0.6512 0.6977 0.7674

g256x256 1.1304 0.7174 0.5435 0.7391

bcsstk35 1.1034 1.0345 0.9655 1.1379

bcsstk37 1.1481 1.0741 1.0000 1.1481

bcsstk36 1.0000 1.0833 0.8333 0.9583

hex64 0.7059 1.7059 1.0588 1.0588

hsct16k 1.1200 0.9200 0.7600 1.1200

bcsstk33 1.0455 0.8636 0.8636 0.9545

struct3 0.9667 0.9000 0.7667 1.0333

bcsstk30 1.5833 0.9583 0.8750 1.6667

bcsstk32 1.4815 1.1111 0.9630 1.7778

bcsstk31 0.9667 1.0000 1.0000 1.2333

sf5 0.7632 1.0789 1.0526 1.3158

50K 0.7778 1.5000 0.8611 0.9722

nasasrb 1.1786 1.0714 0.6786 1.5714

3dtube 0.9444 1.2778 1.0000 1.0000

cfd1 1.3714 1.0857 0.7143 1.4857

CAR 1.4000 0.8500 0.8250 1.0500

gearbox 1.1000 1.0667 1.0667 1.3000

172K 1.0385 1.2308 0.8462 1.1154

cfd2 0.9500 0.8500 0.7000 1.4750

hex256 0.7273 1.6818 1.0909 1.0909

178K - - - -

sf2 - - - -

AVERAGE 1.1071 1.0485 0.8475 1.2233

STDEV 0.3642 0.2717 0.1617 0.3108

Table 5.6: Number of reordered stages relative to the BEND order
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Ratio AMD METIS LRT LPND

shuttle-eddy 0.8462 1.1748 1.1049 0.7762

sf10 1.5135 1.0980 1.1858 0.9155

g64x1024 0.7766 1.0266 1.0160 0.6755

pwt 1.1351 1.1577 0.8649 0.8559

g256x256 1.0974 1.1103 1.0179 1.0179

bcsstk35 0.8814 1.0442 1.0977 0.9953

bcsstk37 1.0174 1.2046 0.8301 0.9093

bcsstk36 1.2705 1.0989 1.2425 0.9757

hex64 0.9349 0.7850 0.7064 0.7064

hsct16k 1.2077 1.3910 1.2322 1.2688

bcsstk33 1.3870 1.1152 1.0295 1.0295

struct3 1.4507 1.5045 1.0067 1.0942

bcsstk30 1.0294 1.2003 1.1796 0.8497

bcsstk32 0.9521 1.2801 1.1915 1.2305

bcsstk31 1.9695 0.9791 0.9310 0.9727

sf5 1.5416 1.0567 0.8492 0.8480

50K 1.8794 1.4710 0.9317 0.9807

nasasrb 1.5339 1.3339 1.3403 1.1016

3dtube 1.3759 0.8693 0.8693 0.8693

cfd1 2.0487 1.4912 1.0974 0.8772

CAR 1.3997 0.9236 1.0102 1.0993

gearbox 1.4588 1.1647 1.1712 1.1712

172K 0.8997 0.8886 0.8886 0.8886

cfd2 2.3176 1.3871 1.2229 1.1431

hex256 0.9235 0.8566 0.6939 0.6939

178K - - - -

sf2 - - - -

AVERAGE 1.3139 1.1445 1.0285 0.9578

STDEV 0.4106 0.2047 0.1721 0.1613

Table 5.7: Front sizes relative to the BEND order
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Figure 5.6: Average and standard deviation of 10 orders produced by the LPND algorithm with 1
and 2 calls to Chaco, relative to the orders produced by BEND.
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Chapter 6

Final remarks

In this thesis we identify a trade-off between low-fill and low-height elimination orders and present
two opposing ideas as to how to produce good elimination orders. We provide a parallelizing
algorithm that takes an order and produces a parallel order with height within anO(log2 n) factor
of the optimal height of the chordal completion of the graph according to the original order. To
obtain such parallel orders we incur some extra overhead in terms of both fill and work. We show
that the parallel order obtained creates at most a constant factor more nonzeros and work than the
original order.

On the other hand, we obtain an algorithm that produces low-fill orders that are fairly sequen-
tial. The sequential nature of the orders is the price we pay to obtain low fill. Even though this
algorithm is based on nested dissection, we do not, as of yet, have any performance guarantees for
this algorithm on general graphs. Our experiments show that the orders produced are competitive
with the orders produced by the current-champion ordering algorithm (BEND). While the orders
we produce usually require a little less fill, the BEND algorithm is usually faster in producing its or-
ders. This indicates that if the BEND algorithm spent more time in producing its order, say, looking
for better separators, it might produce even better orders.

While the first algorithm we presented tries to parallelize orders and the second one tries to
produce fairly sequential ones, they both indicate that there exists a trade-off between producing
low-fill elimination orders and producing elimination orders that are very parallel. It is interesting
that, in order to produce parallel orders with only a constant factor more nonzeros than the chordal
completion the algorithm starts with, an important step of the parallelizing algorithm was to in-
troduce sentinels, which are nothing more than separators used to sequentialize the elimination of
certain vertices in the graph. This is a compromise that allows us to produce very parallel orders
while limiting the amount of fill introduced.

In a side remark, we observe that in our experiments, as well as in the experiments performed
by Hendrickson and Rothberg in [HR96], a state-of-the-art minimum-degree algorithm performed
poorly in comparison with nested dissection and the BEND algorithm. Our algorithm produced
orders that on average required about half the amount of work, and about3=4-ths of the number of
nonzeros the minimum-degree orders required.
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A comparison of these ordering algorithms on square grids shows that the minimum-degree
algorithm is the best on grids with large aspect ratio. These are graphs for which nested dissection
and the BEND algorithm both produce very parallel orders, in contrast with the very sequential
orders produced by minimum-degree. Minimum-degree orders can be computed in very little time.
However, unlike the BEND algorithm, minimum-degree is unlikely to benefit much from any ad-
ditional allotted running time. The comparison of the various ordering algorithms on graphs from
a number of different areas reflects poorly on the quality of minimum-degree orders, and certainly
justifies the additional time to compute better orders.

We list some areas that deserve further attention. Among other things, we would like to be able
to obtain:

� a more comprehensive study of parallelism versus fill/work;

� tighter lower/upper bounds on the fill in chordal completions of grid graphs;

� non-trivial lower bounds on the size of the chordal completion of planar graphs and graphs
in general;

� an analysis of the minimum-degree heuristic on chordal and interval graphs;

� ordering algorithms and analyses for asymmetric matrices.
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