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Abstract
Over the past decade, wearable computing devices (“smart glasses”) have under-

gone remarkable advancements in sensor technology, design, and processing power,
ushering in a new era of opportunity for high-density human behavior data. Equipped
with wearable cameras, these glasses offer a unique opportunity to analyze non-
verbal behavior in natural settings as individuals interact. Our focus lies in predicting
engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aim-
ing to detect signs of disinterest or confusion. Leveraging such analyses may revo-
lutionize our understanding of human communication, foster more effective collab-
oration in professional environments, provide better mental health support through
empathetic virtual interactions, and enhance accessibility for those with communi-
cation barriers.

In this work, we collect a dataset featuring 34 participants engaged in casual
dyadic conversations, each providing self-reported engagement ratings, augmented
with external raters’ assessments of engagement. We introduce a novel fusion strat-
egy using Large Language Models (LLMs) to integrate multiple behavior modali-
ties into a “multimodal transcript” that can be processed by an LLM for behavioral
reasoning tasks. This fusion method is one of the first to approach “reasoning”
about real-world human behavior through a language model. This work also ex-
plores the creation and features derived from LLMs for multimodal models to aid
the task of engagement modeling. Smart glasses provide us the ability to unobtru-
sively gather high-density multimodal data on human behavior, paving the way for
new approaches to understanding and improving human communication with the
potential for important societal benefits. The features and data collected during the
studies will be made publicly available to promote further research.
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Chapter 1

Introduction

Wearable computing devices, also known as “smart glasses,” offer new approaches to quanti-
fying and understanding human behavior through unobtrusive, high-density behavior tracking.
Equipped with sensors such as a video scene camera to monitor the wearer’s view, an eye camera
to estimate gaze, a microphone to record speech, and an inertial measurement unit to measure
head orientation, smart glasses can capture and respond to human behavior as it unfolds in real-
time and real-world contexts. There are numerous potential future applications for such systems:
for example, facilitating navigation among the visually impaired, or augmenting social cues for
individuals with difficulties reading nonverbal signals.

Although there has been substantial prior research in laboratory settings [8, 62, 76] and
human-agent interaction [6, 11, 44], there are still many rich, unexplored opportunities in natural
social contexts, for which smart glasses offer unique capabilities for study. With smart glasses,
we can capture authentic social interactions that are not constrained by the artificial settings of a
laboratory, but rather occur in the natural course of daily life, as we seek help, share information,
learn, and maintain social bonds through face-to-face communication. These interactions are
rich, nuanced, and impacted moment-by-moment by multimodal cues both overt and subtle. The
stakes can be high: human conflict — between couples, among friends and families, in leadership
and governing bodies, and even among societies — occurs when communication breaks down.
Face-to-face communication plays a fundamental role in maintaining group cohesion, preserving
mental health, fostering academic learning, and supporting developmental growth.

The concept of engagement has been long recognized as a key determinant of communication
success. Engagement, while lacking a precise definition, can be loosely defined as the level of
attentional and emotional investment that an individual puts forth during communication [55].
The numerous other ways of defining and annotating engagement are explored in section 2.1. The
ability to captivate in conversation can determine life-changing interactions, whether it’s acing a
job interview or making a favorable impression on a first date. The depth of our engagement and
that of our partner shapes the outcomes of many social, educational, and professional activities.

For the most part, humans automatically and implicitly pick up on the subtle, variable cues
that convey engagement in a conversation. Yet, building systems that accurately measure and
gauge conversational engagement remains a formidable challenge. Difficulties arise with the
complexity and subtlety of human behavior, its context-dependence, and its variability across
personal histories and cultural backgrounds. Further complicating matters, social communica-
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Figure 1.1: Visual representation of recorded behavior modalities during casual conversation and
a sample of the multimodal transcript illustrating their fusion as introduced in this work. The goal
is to predict engagement from this multimodal data. Color-coded modality names correspond to
lines of the same color in the multimodal transcript.

tion is inherently multifaceted, with engagement likely to be conveyed across verbal content,
nonverbal cues like tone of voice, facial expressions, hand and head gestures, and also through
the absence of overt signals, such as extended periods of silence or few gazes to a partner’s face.
The unpredictable and dynamic nature of social exchanges likewise makes predicting engage-
ment difficult, as patterns of engagement can shift rapidly and vary widely across contexts. Thus,
techniques able to perform effectively with minimal or no in-domain training are of particular
interest.

The dearth of relevant data presents another challenge. Although there is an abundance of
openly available datasets of dyadic interactions from a third-person viewpoint, such as IEMO-
CAP [7], SEMAINE [44], MEISD [20], MELD [57], or NoXi [8], naturalistic dyadic interactions
captured from an egocentric viewpoint are scarce. Collectively, these factors pose significant
challenges for building socially-aware artificial systems that accurately interpret and respond in
a manner that feels authentic and engaging to humans. Nonetheless, there is good reason to work
to meet these challenges. Imagine a system that can gauge audience engagement with a teacher’s
lecture and provide on-the-fly feedback they can use to better engage their students. Or consider
assistive technologies that can offer alternative presentations of challenging social signals for
those living with communication disorders. The potential applications are extensive.

There are three main contributions to this work. We firstly introduce a novel dataset including
recordings of natural, unscripted conversations among unfamiliar dyads described in chapter 3.
This is defined as a pair of people, wearing Pupil Invisible smart glasses, as illustrated in the
left-hand segment of Figure 1.1. This dataset contains conversations between 19 unique dyads,
including video and audio recordings, eye tracking, self-reported information on demographic,
political, and personality factors from the participants. Each session also contains first-person
ratings of engagement, captured by each participant’s answers on a multi-item survey, and third-
person ratings of engagement, captured by ratings of engagement by third-party annotators for
10 second thin slices of the session.
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The second contribution is a novel fusion approach described in chapter 4, which uses a large
language model (LLM) as a “reasoning” engine to predict post-session self-report measures of
engagement. This is achieved by fusing behavioral measures into a multimodal textual represen-
tation. A sample transcript can be seen in Figure 1.1 and the full sample transcript is displayed
in Appendix A. This approach is a powerful, simple, and flexible framework for future work on
modeling human behavior and developing socially intelligent technologies.

The third contribution of this work explores the potential of features derived from LLMs in or-
der to predict external rater evaluations at 10-second intervals, described in chapter 5. Given the
relationship between first-person self-reports of engagement and third-party ratings, we explore
whether an LLM’s prediction of self-reported engagement assists in prediction of third-party la-
bels. This opens the possibility of deriving semantically meaningful features from LLMs that
may assist in downstream tasks.
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Chapter 2

Related Work

This section provides an overview on the definitions of engagement, the types of engagement
that been explored, and existing work on understanding analyzing human behavior with classical
machine learning models and large language models.

2.1 Definitions of Engagement

Engagement is a well studied concept in various domains that range from human-computer in-
teraction to psychology [52]. There is a large amount of variation, ambiguity, and overlap in
the definitions that do exist in literature. The range of definitions highlight the complex and
multi-faceted nature of engagement. However, one can observe that these definitions are not
contradictory but rather complementary and capture different aspects of this intuitive notion of
engagement we hold in addition to the definition presented in chapter 1.

Within fields like affective computing, human-computer interaction, and human-agent inter-
action, engagement is typically defined as a state or process [52]. Inoue et al. presents engage-
ment in a binary manner, whereby a person either has no interest or is following the conversation
[31]. One of the most commonly used definition of engagement is “the process by which inter-
actors start, maintain, and end their perceived connections to each other during an interaction”
originally defined in [66] and used in [18, 30, 67]. There is also a distinction based on the entity
receiving the engagement: social engagement refers to engagement between human-human or
human-agent interactions, and task engagement refers to engagement in the task the human and
agent are involved in [52].

It’s also important to note the definitions of engagement in other domains. In a review of
engagement at work in business and health, Simpson presents one definition of engagement
as “employing or expressing of oneself physically, cognitively, and emotionally during work
role performances” [68]. In the context of student engagement, Wong and Liem defines it as
“psychological state of activity that affords them to feel activated, exert effort, and be absorbed
during learning activities” [80].
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2.1.1 Types of Engagement Annotations

Engagement is typically annotated in two ways: first-person and third-person perceptions of
engagement[52].

The first is a session level, first-person annotations. This are typically collected through sur-
veys designed to capture aspects of engagement and captures the participant’s perception of the
entire interaction. Jaques et al. designed a model to predict bonding in novel conversations be-
tween dyads [34]. They utilized post-study surveys completed by each participant that captured
different aspects of bonding, and a median split of scores on this survey corresponded to the high
or low bonding labels used to train their model. The creation of such a study is also used in
Psychology in works like [15]. Self-report measures are also common means to assess student
and patient engagement [21, 25].

The third-person perception of engagement employs an external rater or raters to annotate
the interaction. These annotations are done on a frame level [18, 23] or “thin-slice” level, which
refers to segments ranging from 5 to 30 seconds [40], which provides a temporal dimension to
the engagement annotations and attempts to capture conversational dynamics.

Finally, there is a smaller body of work that utilizes another metric as a proxy for engagement.
Gray and Perkins employ student attendance as a means to gauge student engagement [27], and
Naik and Kamat use logs from an Moodle, an online learning platform instead[48].

2.2 Multimodal Fusion

This section presents existing work on modeling social interactions and human behavior with
machine learning, and different multimodal fusion techniques to achieve this. Multimodal Fu-
sion refers specifically to integrating information from multimodal modalities with the goal of
predicting an outcome measure [4], like engagement in this setting.

Curhan and Pentland used speech features (conversational engagement, prosodic emphasis,
and vocal mirroring) in the first five minutes of a simulated negotiation to predict the outcomes
of the negotiation [16]. Using these features, they predicted 30% of variance in negotiation out-
comes, demonstrating the value of speech features in conversational dynamics. This result sug-
gests that speech features have a similar importance in predicting conversational engagement.
Activity level and mirroring had differing relationships with outcome depending on the assigned
position of participants showing that perceived status can affect how conversational dynamics re-
late to negotiation success. This interaction poses the question of how status affects how features
predict conversational engagement.

Pellet-Rostaing et al. used prosodic-acoustic, prosodic-temporal, mimo-gestural, and linguis-
tic features to predict the engagement level of the target participant while holding the speaking
turn [55]. The study showed the value of using both visual and audio features achieving the best
results with the prosodic-acoustic, prosodic-temporal, and mimo-gestural modalities. Achieving
similar results to studies using annotator-defined segments demonstrated that annotating engage-
ment at a turn level can be effective.

In our study, we attempted to use gaze as a means of gauging dyadic interaction, along with
other modalities, as it is evidenced by some to have correlations with engagement [24, 61].
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Goodwin emphasizes the interconnected nature of gaze behavior among participants in a con-
versation and points out that the way individuals direct their gaze is not a solitary or random act
but is deeply intertwined with the social dynamics of the interaction [24]. This gaze behavior
acts as a nuanced signal of a participant’s level of attention and engagement, reflecting whether
they are actively participating or disengaging from the conversation. Furthermore, Goodwin ex-
plores the concept of gaze withdrawal as a strategic communicative gesture that participants use
to signal their intentions within the conversation, such as making a bid for closure or expressing
a particular understanding of the conversation’s trajectory.

Moreover, Ranti et al. underscore the potential of utilizing eye-blink measures as a reliable
indicator of an individual’s subjective engagement with various stimuli [61]. By closely analyz-
ing the timing of blink inhibition in response to unfolding scene content, they found that they
can uncover the viewers’ unconscious, subjective evaluations of the importance and engagement
level of what they are observing. A notable observation is that a slower blinking rate is often
associated with a higher degree of engagement, suggesting that individuals are more absorbed
and attentive to the conversation or content in front of them.

Given the dominance and success of the transformer architecture and an extremely wide
range of domains, Transformer-based multimodal learning has become a widely studied topic
in the field of Multimodal Machine Learning [81]. Particularly interesting architectures include
methods proposed by Nagrani et al., in which the authors propose a novel method “bottleneck fu-
sion” layer which utilizes the attention mechanism to force information between different modal-
ities to pass through a small number of bottleneck latents, which in turn requires the model to
learn important information relevant to each modality [47]. They also contrast this approach
with vanilla cross attention for multimodal fusion. Another inspiring architecture was proposed
by Pramanick et al., in which they combine cross-attention and an optimal transport kernel to
perform multimodal fusion.

2.3 Large Language Models (LLMs)
The capabilities and accessibility of LLMs have opened up a wide range of potential applications,
particularly the case in fields related to human subjects like psychology. They range from creat-
ing synthetic datasets of LLM-generated responses in humanless experiments [17] to providing
automated feedback to clinicians [69].

One application involves exploring the ability of LLMs to mimic human behavior, because of
their potential to reduce the need for human subject experiments and power realistic, interactive
interactions. Aher et al. explore the ability of LLMs to reproduce human subjects’ behavior in
classic experiments, such as the “Wisdom of Crowds” [1]. Argyle et al. investigate the potential
of LLMs as proxies for human sub-populations in social science research [2]. Park et al. intro-
duce generative agents powered by LLMs that simulate believable human behavior in a virtual
environment [54], also similarly seen in [84]. There is also a body of work on understanding the
personality of LLMs, identifying ways to manipulate the personality embodied by an LLM, and
injecting personality into LLMs to predict human responses with respect to values [35, 65].

Another application involves exploring the ability of LLMs to understand human behavior.
This line of work involves evaluating their theory of mind abilities, which refers to the ability to
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understand the mental states of others, such as purpose or intention [59]. Prior work has proposed
various benchmarks and methods to evaluate an agent’s theory of mind [37, 63, 64].

These works are essential to assessing the ability of LLMs to simulate and understand human
behavior. However, they are all limited to static benchmarks or simplified, virtual interactions.
There is a lack of work exploring the ability of LLMs to simulate and predict the outcomes of a
real, human social interaction, such as the task of predicting a person’s responses to a survey that
measures engagement. We argue that this is another dimension that should be considered when
developing LLMs to simulate and understand behavior.

Our work proposes a dataset and method for unifying the work on simulating and understand-
ing engagement in social interactions with LLMs grounded in real, in-the-wild social interactions
data. Given that LLMs provide a promising path towards developing, utilizing real social inter-
actions in research on the social intelligence of LLMs and AI systems more broadly is a crucial
next step towards the development of models that can successfully model engagement be socially
intelligent.

2.3.1 Socratic Models
Understanding and interpreting the reasoning of machine learning models is widely recognized to
be a significant challenge. Typically, models encode behavioral features into a high-dimensional,
abstract vector space, which is then mapped onto the target prediction space. To understand a
model’s inner workings, we usually project these intermediate data into a space that is more com-
prehensible to humans, often through visualization techniques. However, consider the possibility
of the inverse — rather than allowing the model to obscure information into abstract dimensions,
we could direct its operation into a universally interpretable space: the domain of language itself.
When studying a topic like human behavior from a computational perspective, AI systems like
LLMs that utilize language to “reason” about said topics are worth further study because the
language allows for nuance and ambiguity that inherently exists in these fields.

Socratic Models, named for the ancient Greek philosopher’s method of teaching through
cross-examination, use language to integrate information from a diverse set of modalities [82].
Within this framework, pre-trained models fine-tuned toward specific modalities or behaviors
translate their interpretations of inputs into natural language. This translation is formulated into
a language prompt to direct the reasoning of an LLM. This approach allows a set of pre-trained
models to “discuss” various multimodal information, akin to asking and answering questions in
a Socratic dialogue. By framing the task as a language-driven exchange, the Socratic Model
framework allows a set of pre-trained models, each specialized in a distinct domain, to perform
downstream multimodal tasks without the need for further training or fine-tuning.

Thus far, there have been only a few early attempts at applying this framework for prediction.
In the domain of image captioning, one study revealed that an ensemble of models within the
Socratic Models framework generated captions that substantially improve upon the capabilities
of the zero-shot state-of-the-art ZeroCap [72]. However, when compared to fine-tuned models
such as ClipCap [45], performance was not as impressive; yet, this performance gap narrowed
considerably when the ensemble was provided a small set of example captions from the training
set, suggesting its potential in few-shot learning scenarios [82].

This concept of “many-to-one” alignment has been explored from other angles as well.
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ImageBind, for instance, develops a multimodal representation through a set of image-paired
modalities [22] while LanguageBind extends video-language pre-training to a broader range of
language-paired modalities [85]. However, both of these models still face the challenge of ab-
stracting information. ImageBind and LanguageBind create “bindings” centered around a spe-
cific modality but do not explicitly work within that modality itself. Instead, they map a primary
modality into an abstract space and then align information from other modalities to this space,
resulting in a multimodal representation that resembles the embedding of the primary modal-
ity. While this approach has proven effective at abstract tasks such as video-text alignment and
image-text retrieval, it is less effective in providing human users with a coherent understanding
of its reasoning. Our research aims to follow a similar path but with a crucial distinction: our em-
bedding space is designed to be language itself, which may offer a more direct and interpretable
framework for multimodal learning.

Previous studies have established the value of the language modality in understanding com-
plex social phenomena, such as rapport [9], affinity [32, 33], and, as in the present work, engage-
ment [3]. A variety of computational methods have been employed to extract this information
from language, from rudimentary bag-of-words approaches to more sophisticated neural net-
work models [70, 74]. Recent advancements, however, have seen a considerable increase in
LLMs adapted to augment tasks requiring social intelligence: notable applications have included
refining persuasive communication for public health campaigns [13, 36] and identifying adverse
social determinants of health within free-form clinical notes [28]. One of the objectives of the
present work is to explore the utility of LLMs for behavior analysis of social interactions: in
our case, estimating the conversational engagement of speakers in a dyadic interaction. The
proposed approach centers around employing OpenAI’s GPT models to impersonate each partic-
ipant in the conversation by responding to the self-reported questionnaire in a zero-shot manner.
This is achieved through reconstructing the conversation using multimodal-informed prompting
that combines behavioral information, inspired by the Socratic Models framework proposed by
Zeng et al. [82].

9
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Chapter 3

Dyadic Interaction Dataset

In our work, we collected and studied recordings of pairs of strangers wearing smart glasses
conversing in a recording room, depicted in Figure 3.1. While the initial prompt encouraged
discussion about personal experiences during COVID-19 as a shared ice-breaker, they were in-
formed that they were not obligated to limit the conversation to that topic and could discuss
whatever topic they felt comfortable with.

3.1 Population

Our study contained 34 unique participants and 19 unique dyads1. Demographically, 14 partici-
pants identified as male, 19 identified as female, and one identified as non-binary; 47% identified
as Asian and 38% identified as White/Caucasian. All participants were 18–35 years of age but
were primarily in their early twenties. Participants were recruited from Carnegie Mellon univer-
sity through various physical and digital media and word-of-mouth. Participants were required
to be fluent in English and have normal or corrected vision with contact lenses (to avoid conflict
with the smart glasses).

3.2 Procedure

The entire recording session lasted approximately 15 minutes, including introductions and clos-
ing. Each participant was equipped with a pair of smart glasses (refer to section 3.3 for detailed
specifications) capturing their field of vision, head motion, and gaze. While the smart glasses
are advertised to work well across recording sessions without calibration, they benefit from cali-
bration when changing users [73]2, so we conducted a calibration procedure for each participant
before the beginning of the session. At the start of the session, participants were suggested an
ice-breaker: their experience during COVID-19, a universally shared topic, but the conversation
was not constrained to this topic. Following the session, participants completed questionnaires

1Two participants appeared in multiple dyads, but all dyads were unique.
2Note that the referenced study was conducted by the manufacturer of the device.
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Figure 3.1: Side view of dyad in dataset Figure 3.2: Frames from egocentric video

on their beliefs, personality, and engagement during this interaction (refer to section 3.4 for de-
tails on the questionnaires).

3.3 Recording Instruments
Each session was recorded using Pupil Invisible smart glasses worn by all participants and a
centrally placed external microphone to record the dialogue.

3.3.1 Pupil Smart Glasses
Each participant was equipped with Pupil Invisible3 smart glasses manufactured by Pupil Labs,
specially designed to closely resemble regular eyeglasses for user comfort and a discreet appear-
ance. The key features of these smart glasses that we leverage in our work include the following:

• Scene camera: A detachable camera mounted on the left arm of the glasses frame captures
the wearer’s field of view with an 82◦ × 82◦ viewing angle, at a resolution of 1088× 1080
pixels and a frame rate of 30 Hz.

• Eye gaze tracking: Two IR cameras, positioned near the would-be hinges of the glasses
frame, record eye movements at a resolution of 192 × 192 pixels and a frame rate of 200
Hz. Post-processing software provided by the manufacturer converts this data into 2D
gaze points at 120 Hz in scene camera coordinates. This system is advertised to achieve
an uncalibrated accuracy of approximately 4.6◦, but calibration per user can enhance ac-
curacy [73].

3.3.2 Stereo Microphone
In addition to the recordings captured by the smart glasses’ scene camera, we used an external
high-quality stereo microphone to record the conversation at a standard 44.1 kHz sampling rate.
This decision was made after determining that the quality of the audio captured by the smart
glasses scene camera was insufficient for acoustic analysis. To synchronize the media streams,

3https://pupil-labs.com/products/invisible

12

https://pupil-labs.com/products/invisible


participants were instructed to perform a hand clap at the start of each session, emulating the
clapperboard technique commonly used in film production.

3.4 Self-Report Questionnaires
The participants were asked to complete a questionnaire that measured self-reported engagement
after each interaction. The engagement questionnaire consisted of 53 items based primarily
those used in previous studies on perception of interaction quality [14]: refer to Appendix A
for detailed information and statistics regarding the items in the engagement questionnaire. The
participants were also asked to complete the Big Five Inventory [42] for personality information
and a handcrafted questionnaire on political views. We based our political typology questionnaire
on a set of socio-cultural issues that have been studied to gauge polarization along the political
spectrum [56].

3.5 Observer Ratings of Engagement
In addition to gathering self-reported data from participants after each session, we collected third-
party annotations of perceived engagement, a similar but distinct concept that has also been the
focus of prior literature [52]. The recordings were segmented into ten-second intervals, which
were subsequently provided to the annotators in randomized order, presenting both members of
the dyad simultaneously but preventing exposure to the temporally surrounding context. The
annotators watch paired egocentric video, similar to what is seen in Figure 3.2, except the faces
remained visible.

Annotators were tasked with rating the participants’ engagement within each conversation
segment using a Likert scale ranging from 1 (not engaged at all) to 7 (extremely engaged). We
deliberately provided limited instruction to capture the annotators’ instinctive sense of engage-
ment through their personal interpretation of behavior cues. This method aimed to gather a
genuine and diverse range of perspectives on this definition.

To assess the reliability of our annotation approach for subsequent analysis, we conducted
a pilot inter-annotator agreement study. Seven annotators independently rated a representative
sample of 19 segments, one segment per session, constituting roughly 4% of the total dataset.
Upon completion, we calculated the level of inter-annotator agreement using the ordinal variation
of Krippendorff’s alpha [29]. The resulting score of approximately 0.70 reflected a moderate
level of agreement across annotators, a satisfactory outcome given the highly subjective nature
of the engagement construct and the intentionally unstructured annotation approach. With this
level of agreement, we were confident in the robustness of our annotation protocol, and the
remaining data was annotated by a single annotator.

3.6 Feature Extraction
After gathering the recordings, the data required pre-processing. Initially, we adjusted the video
to eliminate the radial distortion introduced by the lens of the scene camera. This was achieved
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Figure 3.3: Convex hull and features from Mediapipe

by applying the distortion coefficients provided by the manufacturer4. Due to the differing frame
rates between the eye-tracking camera and the egocentric scene-view camera, we also synchro-
nized the data to a unified 30 fps timestamp.

3.6.1 Facial Expression

Facial action units (FAU) from the processed video were extracted with OpenFace 2.0 [5]. Since
OpenFace achieves optimal performance when the face in the image exceeds a width of 100px,
we needed to upscale our data to meet this suggestion. For each frame, we used MediaPipe [41] to
identify the location of the face in the image, then cropped and rescaled the image to ensure that
the face was centered and was at least 240px wide and the final dimensions were 1080x1080px.
If no face was detected for a particular frame, the location of the face in the previous frame was
used.

3.6.2 Gaze Tracking

For every frame, we determined whether a participant’s gaze is directed towards their partner’s
face, recognizing the significance of gaze in forecasting engagement [10, 49]. This was accom-
plished by creating a convex hull using the 478 2-dimensional face landmarks extracted from
MediaPipe to outline the face. A gaze point captured by Pupil smart glasses was deemed to be
on the face if it fell within the convex hull (including its boundary) or within 30% of the width
of the face’s convex hull to account for the potential possible inaccuracy of gaze prediction from
Pupil smart glasses described in its specifications. The convex hull is visualized in Figure 3.3
with the blue dot corresponding to the gaze location.

4For details on the information provided by the manufacturer, see Pupil Lab Invisible recording and export
instructions: https://docs.pupil-labs.com/invisible/data-collection/data-format/.
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3.6.3 Dialogue Transcription
OpenAI’s Whisper [60] was used to transcribe the recording from each session. Whisper outputs
fine-grained segments with start and stop times around a few seconds long. For each segment,
a speaker was assigned. If the segment contained speech from both speakers, the speaker who
spoke most was assigned. Diarization tools like PyAnnote and source separation tools performed
poorly with audio from our dataset, so manual labeling was chosen.

3.6.4 Audio Features
Each session’s main audio recording was processed with Torch Audio to extract MFCCs, which
are 39 dimensional features. They are created from 13 MFCC features, 13 delta MFCC features
which are the first order derivatives of the MFCCs, 13 delta-delta MFCC which are the second
order derivatives of the MFCCs, which are typically used in ASR systems [38].
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Chapter 4

LLM Fusion

This section discussed how we to used large language models (LLMs) to “reason” about a social
interaction using multimodal information. Our method involves prompting an LLM to simulate a
study participant, answering the end-of-session engagement questionnaire as though it were the
participant themselves.

One of the objectives of the present work is to explore the utility of LLMs for behavior anal-
ysis of social interactions: in our case, estimating the conversational engagement of speakers in
a dyadic interaction. The proposed approach centers around employing OpenAI’s GPT models
to impersonate each participant in the conversation by responding to the self-reported question-
naire in a zero-shot manner. This is achieved through reconstructing the conversation using
multimodal-informed prompting that combines behavioral information, inspired by the Socratic
Models framework proposed by Zeng et al. [82].

4.1 Algorithms for LLM Fusion
The LLM Fusion approach enables an LLM to impersonate a participant by creating a mul-
timodal prompt augmented with textual representations of non-verbal behavioral information.
These textual representations are formed from data provided by the smart glasses, multiple pre-
trained models, and personality information. This multimodal transcript effectively captures the
dynamics of a social interaction. This method can be extended to contain any number of other
behavioral cues. The multimodal prompt enables an LLM to effectively gauge the level of self-
reported engagement. OpenAI’s chat models GPT-4 and GPT-3.5 1 were used in this work,
but any other LLM could be used.

4.1.1 Modalities:
The gaze, facial expression, and audio modalities were used because of their ability to be repre-
sented by text and significance to modeling engagement.

The speech modality forms the backbone of the prompt. This information comes from the
transcript augmented with speaker labeled segments described in subsection 3.6.3.

1Fixed to be GPT-4-0613 and GPT-3.5-turbo-0613 for consistency.
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The gaze modality is a string that containing the percentage of time a speaker’s gaze is on the
face of the other person. The percentage is rounded to the nearest 10% for brevity.

The face modality facial action unit is converted into a description of the dominant facial
expression for a given snippet of video. Using the FAUs obtained from OpenFace 2.0 described
previously, each frame was mapped to one of the following emotions {happy, sad, surprise, fear,
anger, disgust, contempt, neutral} with the table from [19], which is a method used in other pub-
lications like [71] and software like iMotion’s Affectiva [43]. Neutral was assigned if none of
these emotions were applicable. The emotion that occurred most often was assigned to a snippet,
and the text descriptions of the emotion are from [83], which was obtained from prompting Chat-
GPT and achieved state-of-the-art performance on the Dynamic Facial Expression Recognition
problem.

The participants’ responses to the Big-5 personality survey and political beliefs survey were
also incorporated as part of the system message in different ablations, which provides additional
context to guide model behavior. This information was included because a participant’s person-
ality and beliefs will likely influence their behavior during the dyadic interaction and response to
the engagement questionnaire.

4.1.2 Creating the Multimodal Transcript
The messages provided to GPT use the start and end times from segments of Whisper’s transcrip-
tion as atomic units to which information from other modalities is added. Consecutive segments
with the same speaker are merged to combine speech and other modalities into a larger temporal
window.

GPT imitates each participant using the following procedure. Each merged Whisper segment
forms a message in the messages field of OpenAI’s ChatCompletion API. For each message in
the list of messages, the role field is set to assistant if the segment is uttered by the participant
being imitated and user if the segment is uttered by their conversation partner. The last user
message before GPT’s response will always be from the perspective of the experimenter who
introduces a question from the engagement questionnaire (see Appendix A).

The last assistant message is the response to the engagement questionnaire question and is
generated by GPT. The experiments also only used the transcripts where the end timestamp is less
than or equal to 5 minutes in accordance with traditional psychology literature, whereby the first
5 minutes of a conversation enables people to relatively successfully predict its outcome [16].
This also helped reduce the cost.

4.2 Experiments
For each question on the engagement questionnaire, GPT-4 was provided the multimodal tran-
script and prompted to predict the participant’s response. A few of the items on the questionnaire
explicitly reference laughing or eye contact; we decided to include these questions to explore
whether GPT-4 could infer information about modalities with limited information. Note that
only 17 sessions were used out of the 19 because they had satisfactory transcriptions by Whisper.
This corresponds to 34 sets of responses, but five sets of responses came from two participants
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as they appeared in five out of the 17 sessions already in dataset. We performed a set of ablation
experiments to explore the significance of various feature sets:

• 4: Raw transcript only.
• 4S: Raw transcript plus participant personality and belief questionnaire responses (pro-

vided as (S)ystem dialogue).
• 4G/4SG: Addition of (G)aze features to 4/4S
• 4F/4SF: Addition of (F)acial expression features to 4/4S.
• 4GF/4SGF: Adds both (G)aze and (F)acial expression features to 4/4S.

The length of the multimodal transcript exceeded the input constraints of GPT-4 in three cases:
two sessions for 4SGF and one session for 4GF). In these cases, the transcript was truncated: a
t-test comparing the residuals of the truncated sessions with those of the other sessions yielded
p-values of 0.186 and 0.648, indicating no significant difference between the full and truncated
sessions. Based on this evidence, we felt confident including all sessions in subsequent analysis.

The temperature parameter, which determines the LLM’s decoding strategy, was set to 0 to
ensure sampling from the most-likely responses to the questionnaire. In cases where GPT-4 did
not return a numeric response, we selected the most-likely numeric response from the top 20
tokens by log probability for the first generated token (see Appendix C for more details on these
cases).

4.2.1 LLM Fusion Results

Our analysis explores the ability of GPT-4 to predict each participant’s exact answer to survey
items, as well as its ability to predict the valence and arousal associated with their responses.
Valence refers to the positive or negative degree of emotion (e.g., pleasure/displeasure), while
arousal refers to the intensity of emotion (high or low) [46]. In the context of our study, valence
is defined by a response in the disagree range (1–3), neutral (4), or agree range (5–7), and arousal
is defined as the “absolute value” from neutral, i.e., |response − 4|. Although GPT-3.5 was
tested as well, its results have been omitted due to significantly poorer performance compared to
GPT-4. Full results are displayed in Table 4.1.

Exact Response Notably, when considering the Krippendorff’s alpha metric, GPT-4 achieves
a “moderate” level of agreement with our study’s participants on average and falls within the
range of [0.470, 0.543]. However, we observe that when considering the precise level of agree-
ment, it is still below the typically acceptable threshold level of around 0.6 [79].

Valence
Most remarkably, the valence of GPT-4’s responses achieve a significant level of agreement

with the study’s participants. As demonstrated in Table 4.1, all responses fall within the interval
of [0.61, 0.80] outlined in [39].

Upon closer inspection of the valence predictions of the LLM-4Smodel, the ablation with the
highest value of inter-annotator agreement for exact responses (presented in detail in Table 4.2),
we can observe that GPT-4 reliably responds “agree” to participant “agree” responses, with
an extremely high class accuracy of 91.8%. GPT-4 is less reliable to respond “disagree” to
participant “disagree” responses, achieving a class accuracy of 66.1%. Notably, GPT-4 rarely
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Ablation Exact Valence Arousal

4 0.470 (0.209) 0.634 (0.246) 0.055 (0.169)
4S 0.518 (0.217) 0.687 (0.252) 0.071 (0.174)
4F 0.513 (0.203) 0.686 (0.250) 0.053 (0.164)
4GF 0.520 (0.212) 0.695 (0.259) 0.066 (0.180)
4S 0.543 (0.206) 0.680 (0.244) 0.054 (0.185)
4SG 0.535 (0.210) 0.702 (0.247) 0.039 (0.172)
4SF 0.532 (0.202) 0.698 (0.247) 0.055 (0.170)
4SGF 0.531 (0.193) 0.703 (0.248) 0.047 (0.180)

Table 4.1: Krippendorff’s Alpha scores, mean and standard deviation, for each ablation (higher
is better).

Predicted

Actual Agr. Neu. Dis. All Cl. Acc.

Agr. 1072 44 52 1168 91.8
Neu. 91 18 33 142 12.7
Dis. 105 62 325 492 66.1

All 1268 124 410 1802 56.9

Table 4.2: 4S Valence Prediction Confusion Matrix: Responses are categorized as (Dis)agree
(1–3), (Neu)tral (4), or (Agr)ee (5–7). Class accuracy is also reported.

responds with “neutral” to participant “neutral” responses, only achieving a class accuracy of
12.7%. While worse performance on the neutral response may be expected given that the label
range is smaller (the response must match “4” exactly), we can observe that GPT consistently
generates answers in the agree/disagree class, with a tendency for the agree class. We hypothe-
size that GPT’s process of reinforcement learning from human feedback (RLHF) [53] to follow
instructions and reduce toxicity may contribute to overly positive responses from GPT-4. This
calibration may inadvertently introduce bias against “negative” responses.

Arousal On the other hand, across all ablations, GPT-4 is unable to accurately predict the
level of arousal of a participant’s response, performing only marginally better than chance with
Krippendorff’s alpha scores in the range of [0.047, 0.071] (see Table 4.1 for detail). While GPT-4
appears able to predict the general attitude of the participant towards a questionnaire statement,
it is not able to reliably determine the strength of the participant’s feelings.

Contribution of each modality

We study the impact of each modality described in subsection 4.1.1 on the exact predictions
of GPT-4 by conducting a two-tailed paired t-test of each ablation’s residuals against those of
the LLM-4 text baseline. The addition of every single/combination of modalities results in a
statistically significant positive contribution (p < 0.05) to the performance of GPT-4.
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However, when comparing the 4SG, 4SF, 4SGF ablations against the 4S ablation, the addi-
tion of gaze or facial expression information or both appear to negatively impact the ability of
GPT-4 to predict the raw response, while improving its ability to match the valence. In a paired
t-test of residuals comparing exact predictions, the addition of facial expressions in the 4SF and
4SGF ablations worsened performance significantly (p = 0.003 and p = 0.021, respectively),
whereas gaze did not have a notable impact (p = 0.164).

Performance across questions and following up with GPT

The following statements achieved the best performance across all ablations (mean accuracy and
standard deviation):

1. I felt like my conversation partner really listened to me
(mean 64.0%, std. dev. 7.1%);

2. I became irritated with my partner at some points in the conversation (mean 60.7%, std.
dev. 5.9%); and

3. My conversation partner seemed like a warm person
(mean 53.7%, std. dev. 6.2%).

The following statements achieved the worst performance across all ablations (mean accuracy
and standard deviation):

1. My conversation partner was quite sensitive
(mean 4.0%, std. dev. 1.6%);

2. I would trust my conversation partner with sensitive information (mean 8.8%, std. dev.
5.2%); and

3. My partner and I laughed during our interaction
(mean 10.3%, std. dev. 4.1%).

Unsurprisingly, prediction performance on the question about laughter is quite poor, as the
transcript does not explicitly include laughter. This situation is similar to the case of GPT-4
and statements about eye contact in ablations without gaze information. Interestingly, while the
transcript did not explicitly contain laughter information, GPT-4 responds with the assumption
that laughter did occur, given that its responses were not consistently negative. Although numer-
ous caveats apply to these results, they nonetheless seem to reflect the opinions of our study’s
participants.
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Chapter 5

LLMs as feature extractors

GPT-4 can reasonably predict each participant’s first-person perception of engagement. Given
that there exists a relationship between the scores from the self-reported measures and the third-
party annotator’s labels, this raises another key question: Is it possible to derive and use features
from GPT-4’s predicted responses in combination raw modalitites to improve the ability to pre-
dict the level of dyadic engagement? Namely, for behavioral related problems, can we utilize
Large Language Models (LLMs) to extract semantically meaningful features? This is because
there exist very few pretrained models designed to extract behavioral data, and as shown in chap-
ter 4, LLMs like GPT-4 are already capable of predicting behavioral features to a reasonable
degree.

5.1 Experiments
This section explores models to predict the third-party annotator’s perception of engagement that
utilize the predicted self-report scores from GPT-4 as a feature. Note that of the 19 dyads, only
15 dyads were used 1. 1 participant appeared in 3 sessions and 1 appeared in 2 sessions.

The two novel models I propose are slight variants of each other, which firstly utilize the
early fusion of the self-reported scores to “augment” the raw representation of each modality,
and the late fusion of each “augmented” modality to form the final prediction. Given the small
size of the dataset, I attempted to design a model to be as expressive as possible while balancing
the complexity to account for the bias-variance trade-off, so they needed to be relatively simple
to avoid overfitting.

Cross-attention is the main mechanism I explored to to fuse modalities. As described above,
cross-modality attention, is a variant of cross-attention proposed in the original transformer [75]
paper, whereby the query matrix and key matrix come from different modalities as a method to
map different modalities into a common feature space, and thus learns inter-modality interaction.
Since this is a transformer based model, I employed sinusoidal positional embeddings to add
temporal information to each raw modality before passing it into the model.

Each 10 second interval of a dyadic interaction from our dataset is accompanied by the third
party annotator’s labels, which is an integer in the range [1, 7] where 1 means the dyad is not

12 sessions were omitted because of labeling errors and 2 sessions were omitted because of poor transcription
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engaged at all and 7 represents the dyad being highly engaged. Each participant has the following
features from four separate modalities for each participant:

• Gaze: this is a 6 dimensional vector, which comprise of the features if the participant’s gaze
is on their partner’s face, the distance of the gaze to their participant’s face, the distance of
their gaze to their partner’s left eye, right eye, nose, and mouth.

• Facial Action Units: a 35 dimensional vector, which are either real valued numbers in the
range [0, 5] or indicator variables directly extracted from OpenFace [5].

• Mel-frequency cepstral coefficients (MFCCs): a 39 dimensional vector that represents the
participant’s speech.

• Predicted self-report engagement : a feature of dimension (53 × 1) or (53 × 7). The
first representation corresponds to the numeric response from the 4S ablation section 4.2
prediction of self-report because it resulted in the highest Krippendorff’s alpha value when
predicting the exact response. The second (53 × 7) representation comes from using the
probabilities over the tokens corresponding to each value in the [1−7] likert scale collected
from GPT-4’s responses.

The gaze (g), facial expressions, represented by facial actions units from OpenFace [5] (f ),
and audio represented by MFCCs (a) were selected because they are crucial predictors of en-
gagement seen in related work described below and previous experiments are.

Most notably, there is a relationship between true participant’s responses’ relationship to
the third-party annotator’s labels. Data from each modality m ∈ {g, f, a, gpt} will be denoted
Xm ∈ R(Lm,dm) where Lm, dm refers to the length and dimensionality of each modality. Note
that Lf = Lg = 300, which is the number of frames in a 10 second slice.

5.1.1 Early Fusion
The cross-attention mechanism used in this work is described in Equation 5.1.

CrossAttention(QGPT,m, Km, Vm) = softmax
(
QGPTK

T
m/

√
d
)
Vm (5.1)

Where m ∈ {g, a, f} represents on of the modalities we utilize. Typically, given the input
Xm, the query, key, and value matrices are formed by a linear projection of Xm. However, here

QGPT = XGPTWQ,m, Km = XmWK,m, Vm = XmWV,m

The intuition behind this that I wanted to explore the possibly of using the predicted self-
reported scores to augment the raw modalities and somehow add behavioral information. Fortu-
nately, the self-attention mechanism is one candidate method to do this. We learn a query matrix
for the GPT scores for each modality. Then, as an analogue to the original self-attention mech-
anism, one element (QGPTK

T
m)i,j represents the similarity between a behavioral feature and the

raw modality’s feature at a certain time during the interval being processed. The softmax should
therefore form a representation of the raw modality during a 10 second interval that is weighed
with behavioral information.

The cross-attention mechanism is in the cross-attention block, which takes inspiration from
a simplified transformer block. The last layer-norm layer is removed to reduce the complexity of
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Figure 5.1: Early Fusion Cross Attention Block with GPT Features

the model. The entire block is displayed in the following fiture, and is repeated for each modality
in the ablations containing all modalities.

5.1.2 Late Fusion
Each model uses an MLP as a method to predict the raw scores. For ablations that combine
multiple modalities, inspired by the works of Pramanick et al. 58, the final feature vector passed
into the MLP is of the following form, which is the concatenation of the tensors weighed with a
learned multiplicative constant

Zmultimodal = [wgZg, waZa, wfZf ] (5.2)

Where Zg,a,f are the outputs of the modules containing the cross attention layers described in
Equation 5.1, and wg,a,f are weights initialized to 1. The idea behind this is that they will dy-
namically adapt to the importance of each modality.

The desirable feature of self-attention enables each modality’s representation Zg,a,f to be of
the same shape so when weighing each modality’s representation, it could be more fair.

5.1.3 Multimodal model
I’ve developed the single and dyadic multimodal model, which entail different methods of han-
dling and fusing the data from each participant in a dyadic interaction as visualized in 5.2

1. Single Multimodal model: Each participant’s features are concatenated together, and passed
onto a single cross-attention module that attends to each modality. That is, each modal-
ity from both participant’s are passed through the same module. Finally, the outputs are
concatenated together with the late fusion approach described in subsection 5.1.2.

2. Dyadic Multimodal Model: Inspired by the work of Dermouche and Pelachaud 18, the
features from each participant are attended to separately. The model implemented here
differs in the sense that there is no module that attends to features from both participants
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Figure 5.2: Single and Dyadic multimodal model. Left: Single, Right: Dyadic. Each Modality
Cross-Attn is the Early Fusion Cross Attention Block shown in Figure 5.1

as originally proposed. The architecture of the model that processes a single participant’s
data is identical to that of the singular multimodal model with the exception of the last
MLP’s layer, and the output of both models are concatenated together and passed through
a final MLP to predict the engagement score.

The model details are as follows:
• Attention Dimension: All models have the attention dimension (The second dimension of

the matrix that forms Q,K, V ) be 256.
• Single Multimodal Model: There are 3 layers of dimension 512, 128, 1.
• Dyadic Multimodal Model: The MLP for each dyad has two layers and dimensions 512,

256, and final MLP has two layers of dimensions 512, 256, 1.

5.2 Results

These parameters gave rise to a model of around 20 million parameters. All experiments used
Mean Squared Error (MSE) loss, because the task is now regression and MSE effectively handles
outliers. Adam was the optimizer used across all experiments, including baselines. The learning
rate was fixed to be 1e− 3.

The full results are outlined in Table 5.1. They are reported from leave-one dyad out cross
validation, that is a separate model is trained on 14 dyads and evaluated on all the intervals from
the 1 dyad left out, and the results are the average of each model evaluated on the left out dyad
without picking the best performing epoch so as to avoid cherrypicking results. This process
is repeated for every dyad in the dataset. It’s important to note why this is done instead of
the traditional k-fold cross validation where the dyad the interval comes from is not taken into
account. The MLP baseline numbers for each of the combinations of modalities were ommitted
because they yielded similar/worse performance than the Bi-LSTM.

The single and dyadic multimodal models do appear to be promising ways to fuse represen-
tations from GPT and raw modalities in order to predict engagement. We can observe that the
new Single and Dyadic multimodal model using the GPT and MFCC features achieve the lowest
RMSE loss as well as the highest value of Krippendorff alpha. The Krippendorff alpha value is
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Model Modalities RMSE (SD) Acc Class Acc
Bi-LSTM Gaze 1.789 (0.787) 0.298 0.134
Bi-LSTM FAU 2.415 (0.961) 0.275 0.156
Bi-LSTM MFCC 2.273 (0.959) 0.243 0.14
Single Gaze 1.672 (0.647) 0.3 0.166
Single FAU 2.136 (1.039) 0.261 0.15
Single Audio 1.586 (0.772) 0.303 0.172
Single Gaze, FAU, Audio 1.755 (0.832) 0.316 0.176
Single (Probs) Gaze, FAU, Audio 2.880 (1.414) 0.192 0.154
Dyadic Gaze 1.766 (0.857) 0.303 0.162
Dyadic FAU 2.545 (1.492) 0.26 0.141
Dyadic Audio 1.541 (0.549) 0.318 0.18
Dyadic Gaze, FAU, Audio 1.862 (0.878) 0.288 0.161
Dyadic (Probs) Gaze, FAU, Audio 2.368 (1.284) 0.211 0.16

Table 5.1: Table of results: Top 2 performing models bolded. Lower is better for RMSE, higher
is better for Krippendorff Alpha. Single and Dyadic refer to the Single and Dyadic Multimodal
Model described in section 5.1. (prob) refers to the usage probabilities from GPT-4 described in
section 5.1. Class Acc refers to the average class accuracy (accuracy averaged across all classes).

calculated from rounding the prediction to the nearest integer, then passing it through the func-
tion used to calculate this metric because it only handles exact integer values. Furthermore, the
ordinal version of Krippendorff alpha is used because our values are recorded on a Likert scale.

While the best model’s performance with an average RMSE of 1.541 and standard deviation
of 0.549 may appear reasonable on a subjective task and scale of 1-7, and it does outperform the
baseline models, there is still a lot of room for improvement given the large standard deviation.
Given that there are 7 classes, most models are better than random guessing 1/7 ≈ 14%. The
average class accuracy tell a similar story.

While it does seem like the features derived from GPT-4 through the self-reported scores
do help the prediction of engagement, it’s difficult to assert this with confidence given the small
dataset and model.

Extensive experiments were run in order to investigate which modality or combination of
modalities were most helpful in predicting engagement. It’s interesting to note that for the Bi-
LSTM baseline, the Gaze modality was the most helpful. However, the Audio modality repre-
sented by MFCCs were most helpful in the Single and Dyadic multimodal models. Furthermore,
it’s also interesting to note that combining all modalities never yielded better performance that
using just a single modality. This may be a result of noise arising from combining multiple
modalities, but is worth further exploring because this social interactions as perceived by hu-
mans include all modalities used in these experiments.

This observation indicates that firstly, the contribution of the self-reported scores predicted
by GPT-4 do appear to help the prediction of dyadic engagement. Secondly, the way in which
the late fusion of different modalities are performed need to be changed or improved through
hyperparameter optimization or changing the architecture all together.
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Chapter 6

Conclusion

6.1 Potential Applications
In addition to using LLMs to simulate human participants in future research, the opened ended
responses of LLMs could provide researchers access to more meaningful and explainable results
in studies. For example, when GPT-4 was unconstrained when responding to My conversation
partner appreciated my points, even if we disagreed., one generated response was I would rate it
a 7. Even though we come from different academic backgrounds and have had different experi-
ences, I felt that my conversation partner was genuinely interested in my responses and shared
her perspective openly. During the time of writing, LLMs are unable to reason about their gen-
erations, so directly asking for explanations now yields marginal value. However, it’s likely that
future models will be more interpretable and, therefore, asking the LLM for explanations can
provide meaningful insight. This offers an intriguing means to provide researchers with better
insight into their studies. Consider the possibility of being able to ask for possible reasons a
human participant answered a particular way in a study whenever a researcher desires. Future
experiments could include including recording participants’ reasoning about each response, and
comparing the alignment between the LLM “reasoning” each participant. This could provide
deeper insight into how well the textual model is capturing outcomes.

6.2 Limitations
The first main limitation is the size of the dataset. 17 and 15 dyadic interactions for the two
experiments is still a very limited number of recorded interactions for a model to learn from and
to generalize to unseen dyads, and to make strong claims about the ability of LLMs to infer the
mental states of participants in real social interactions. However, given that the LLM Fusion
method achieved such performance in a zero-shot manner, this is worth further exploration.

Given the limited size and variance in demographics of our participants and engagement
experiences within our dataset, it also raises the question of how well LLMs can simulate en-
gagement questionnaire responses for different populations and conversational experiences. It’s
also possible that a person’s responses to the Big Five Inventory and belief questionnaire may
not accurately reflect their true personality and beliefs.
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It is also crucial to acknowledge the limitations and biases associated with the models used.
LLMs inadvertently learn and incorporate positional, racial, gender, and other social biases [12,
51, 77, 78]. They are also sensitive to the wording of provided prompts. Furthermore, given
that our multimodal transcript relies on pre-trained models such as OpenFace, MediaPipe, and
Whisper, possible issues of bias and robustness in those models [26, 50] should also be taken into
consideration. Additional noise may be created from the usage of multiple pre-trained models.
The ability of the multimodal transcript to accurately represent the conversation is inherently
limited by the accuracy of the pre-trained models used.

LLMs such as GPT-4 have been fine-tuned with RLHF to produce responses that are safer
and better aligned with the user’s intent. While this process reduces response toxicity and im-
proves the ability to follow instructions, we note that this calibration may interfere with the
ability of the LLM to emulate human-like responses in a research setting.

6.3 Conclusion
Engagement is fundamental to all human interactions, representing the intrinsic interest or emo-
tional investment of the individuals involved. Despite humans’ intuitive understanding of en-
gagement, developing computational systems capable of recognizing and measuring engagement
remains a significant challenge. Our work studies this core element of communication through
smart glasses worn by participants in natural conversation. We collected a dataset of casual
conversations between pairs of strangers, each outfitted with a pair of smart glasses, to capture
behavioral cues such as facial expressions, eye contact, and verbal exchanges. We introduce a
novel fusion method using large language models (LLMs) to include behavioral features, gener-
ating a “multimodal transcript” of the conversation to prompt an LLM to predict the participants’
self-reported engagement levels. Our work is one of the first to use language to “reason” about
real world human behavior, laying the groundwork for promising directions for future research in
computational behavior analysis. Finally, we explore the usage of features derived from GPT-4’s
prediction of first-person engagement to aid the prediction of third-party engagement ratings.

There are a few key directions for future work. The first direction involves developing a
more comprehensive dataset of dyadic engagement and interactions, which contain a more di-
verse range of experiences. A path could involve recording dyads engaging in a game to gather
more negative experiences. The second direction concerns research on studying and improving
the social intelligence of AI systems. We encourage future research on the social intelligence
of AI systems to benchmark performance with respect to real human interactions in addition to
existing static and virtual benchmarks. While existing benchmarks are necessary, they are only
proxies for understanding human behavior in-the-wild, which is the setting these systems will
inevitably be deployed in. Finally, the third direction involves exploring this paradigm of us-
ing foundation models to extract abstract features such as ones relating to behavior in order to
augment or supplement raw modalities. The rapid development of foundation models raises the
question of how can we utilize them to supplement existing or create new models that handle
novel modalities. Exploring this path could prove to be a fruitful avenue for future research in
the field of affective computing, multimodal machine learning, Psychology, and a wide range of
other domains.
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Appendix A

Self Report Engagement Questionnaire

The following questionnaire was completed by each participant at the end of the recording ses-
sion. Also displayed is the distribution of responses received in our participant sample; red rows
indicate negatively-coded items.
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Figure A.1: Participants completed the questionnaire described above
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Appendix B

LLM Fusion: Multimodal Transcript
Template
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This appendix contains a detailed version of the sample multimodal transcript depicted in
Figure 1.1. Magenta text corresponds to information from personal inventories. Red text
corresponds to information from OpenFace. Violet text corresponds to information from
MediaPipe and Pupil Invisible eye tracking. Blue text corresponds to information from the
Whisper transcription. Green text corresponds to information from the post-session engagement
survey. Black text is always present. The last row with “assistant” is what the LLM generates.

Role Content

System You are a student at ... You are participating in a psychology study that aims to understand
how people communicate, and you are participating in a conversation with ... as part of
this study. There will be a questionnaire at the end of this conversation. Others will read
what you answer; your goal is to convince them it was answered from the perspective of
the persona that participated in the following conversation.
Your personality traits are defined by the scores to the following statements. The scores
range from 1 to 5, where 1 means strongly disagree and 5 means strongly agree.

[Alice’s personality defined by responses to the big-5 personality survey.]
Your political beliefs are defined by the following statements:

[Alice’s beliefs defined by responses to the beliefs survey.]

Assistant [You]
[You are looking at your partner’s face about 80% of the time.

You are speaking with a smiling mouth, raised cheeks...
Your partner is looking at your face about 80% of the time.
Your partner is listening with relaxed facial expression...]

Hi, I’m Alice! What year are you?

User [Partner]
[You are looking at your partner’s face about 60% of the time.

You are listening with a smiling mouth, raised cheeks...
Your partner is looking at your face about 80% of the time.
Your partner is speaking with a smiling mouth, raised cheeks...]

Hi Alice, I’m Bob. I’m a sophomore.

[five minutes of conversation]

User [Experimenter] On a scale of 1 to 7, where 1 means strongly disagree and 7 means strongly
agree, how would you rate the following statement given the conversation you just had?
I found this conversation to be interesting.
Your answers will be kept private and your conversation partner will not see the responses,
so please be as honest as possible. Provide your answer in the form of an integer between
1 and 7.

Assistant 7
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Appendix C

LLM Fusion: Non-Numeric Responses

There were 80 cases across all ablation experiments where the first generated token returned by
the LLM was non-numeric (1.1% of all responses). For 57 of these questions, GPT-4 declined
to respond because it was prompted to answer questions that referenced modalities not explicitly
provided in the ablation feature sets. Sample responses are included below for illustration.

Q8: My partner tended to make eye contact during the conversation.
• “As an AI, I don’t have the ability to make or observe eye contact.”
• “As this conversation was text-based and not in person, I cannot
accurately rate my partner’s tendency to make eye contact. Therefore,
I would rate it as N/A.”

• “As this conversation was text-based and didn’t involve any form
of video or face-to-face interaction, I cannot rate my partner’s
eye contact. Therefore, I would rate it as N/A.”

Q47: My conversation partner made a lot of eye contact.
• “As an AI, I don’t have the ability to make or perceive eye contact.
Therefore, I can’t provide a rating for this statement.”

• “As an AI, I don’t have the ability to make or perceive eye contact.
Therefore, I would rate this statement as 1, strongly disagree.”

• “Given the nature of the conversation, it’s hard to determine
the level of eye contact as it was a text-based interaction.
However, if we consider the level of engagement and attentiveness
as a form of "eye contact" in this context, I” [text cut off ]
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Token Prob. Token Prob.

1 As 0.316 11 Sorry 0.002
2 [ 0.283 12 Because 0.002
3 Since 0.214 13 The 0.001
4 I 0.104 14 5 0.001
5 Given 0.042 15 4 0.001
6 Considering 0.007 16 It 0.001
7 This 0.007 17 Without 0.001
8 Unfortunately 0.004 18 N 0.001
9 Ap 0.003 19 3 0.001
10 Due 0.003 20 My 0.001

Table C.1: Sample top 20 tokens from a questionnaire response by the LLM where the first
response is non-numeric.

For example, consider the following response to Q8: “As this conversation was
text-based, I cannot provide a rating for eye contact”. A sample of
the top 20 tokens with highest probability are displayed in Table C.1.

The other 23 responses exceeded 50 generated tokens and were cut off. This occurred often in
the 4F ablation experiments when the GPT-4would prefix its answers with the facial expression
string, such as the following example.

“[You] [You are speaking mostly with relaxed facial muscles, a straight
mouth, a smooth forehead, and unremarkable eyebrows. Your partner
is listening to you mostly with relaxed facial muscles, a straight
mouth, a smooth forehead, and unremark” [text cut off ].

It’s interesting to note that not all GPT models are able to impersonate a participant. For
example, nearly all experiments with gpt-4-1106-preview would result in an example
similar to the following:

“As an AI language model, I don’t have personal experiences or opinions.
However, if I were to simulate a response for the scenario described
where a participant has engaged in an interesting conversation that
touched on computer science, philosophy of neuroscience, differ-
ences between cities, and personal experiences, they might rate the
conversation on the higher end of the scale indicating that they
found it to be engaging and intellectually stimulating.”
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