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ABSTRACT   

When  used  in  K-12  classrooms,  AI-based  educational  software  such  as  intelligent  tutoring  systems  (ITSs)               
allows  students  to  work  at  their  own  pace,  while  also  freeing  up  the  teacher  to  spend  more  time  working                    
one-on-one  with  students.  A  common  intuition  is  that,  in  many  situations,  human  teachers  may  be  better                 
suited  to  support  students  than  ITSs  alone  (e.g.,  by  providing  socio-emotional  support,  supporting  student               
motivation,  or  flexibly  providing  conceptual  support  when  further  problem-solving  practice  may  be             
ineffective).  Yet  ITSs  are  not  typically  designed  to  work  together  with  teachers  during  a  class  session,  to                  
take   advantage   of   these   complementary   strengths.   

This  dissertation  explores  how  AI  tutors  might  be  better  designed  to  work  together  with  human  teachers                 
in  real-time,  to  amplify  teachers’  abilities  to  help  their  students.  Working  together  with  36  middle  school                 
math  teachers,  I  conducted  the  first  broad  exploration  in  the  literature  of  teachers’  needs  for  real-time                 
analytics  and  orchestration  support  in  AI-supported,  personalized  classrooms.  As  part  of  this  work,  I               
worked   with   teachers   to   design   a   form   of   real-time,   wearable   teacher   augmentation   called    Lumilo .   

Lumilo is  a  set  of  mixed-reality  smart  glasses  that  direct  teachers’  attention  during  a  class  session,  towards                  
situations  the  tutoring  software  may  be  ill-suited  to  handle  on  its  own,  and  support  teachers  in  deciding                  
how  best  to  respond.  Lumilo  has  been  used  by  teachers  and  students  in  over  40  middle  school  classrooms                   
so  far.  An  in-vivo  classroom  experiment  showed  that  teacher–AI  co-orchestration,  as  supported  by              
Lumilo ,  enhanced  students’  learning  compared  with  an  AI-supported  classroom  in  which  the  teacher  did               
not   have   such   support.   

Over  the  course  of  this  research,  I  have  also  developed  new  design  and  prototyping  methods  to  address                  
challenges  in  the  co-design,  experience  prototyping,  and  evaluation  of  data-driven  AI  systems.  To  support               
the  use  of  these  methods  within  the  area  of  education,  my  collaborators  and  I  have  extended  an  existing                   
technical  architecture  ( CTAT/TutorShop )  to  facilitate  rapid  prototyping  of  data-driven  educational  AI            
applications.  

In  the  final  chapters  of  this  dissertation,  I  explore  how  the  concepts  embodied  by Lumilo  might  be                  
prepared  for  wider  use,  from  two  angles.  First,  I  involve  students,  as  well  as  teachers,  in  the  next  phase  of                     
design  to  better  serve  the  needs  and  respect  the  boundaries  of  both  stakeholder  groups.  Second,  through  a                  
newly-formed  academic–industry  partnership  with  Carnegie  Learning  (a  major  educational  AI  company)            
I  begin  to  explore  how  real-time,  wearable  teacher  augmentation  might  be  generalized  to  work  with  a                 
broader   range   of   AI   tutoring   systems   and   curricula.  
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Background   
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To  facilitate  more  personalized  learning,  AI-based  educational  software  is  increasingly  being            
used  in  K-12  classrooms  (Bingham,  Pane,  Steiner,  and  Hamilton,  2018;  Luckin,  Holmes,             
Griffiths,  and  Forcier,  2016).  Intelligent  tutoring  systems  ( ITSs ),  a  major  class  of  AI-based              
educational  software,  have  been  shown  through  several  meta-analyses  to  significantly  enhance            
student  learning  when  used  in  classrooms,  compared  with  traditional  classroom  instruction  and             
other  forms  of  educational  technology  (e.g.,  Kulik  &  Fletcher,  2016;  Ma,  Adesope,  Nesbit,  &               
Liu,  2014;  Steenbergen-Hu  &  Cooper,  2013;  2014;  VanLehn,  2011;  Xu,  Wijekumar,  Ramirez,             
Hu,  &  Irey,  2019).  These  systems  provide  step-by-step  feedback  and  guidance  to  students  –               
tailoring  instruction  to  individual  learners  as  they  work  through  problem-solving  activities  at             
their  own  pace  (Corbett,  Koedinger,  &  Hadley,  2001;  Ritter,  Anderson,  Koedinger,  &  Corbett,              
2007;   VanLehn,   2006).   

In  the  first  year  of  my  PhD,  I  spent  over  100  hours  conducting  field  observations  of  ITS  use  in  a                     
diverse  range  of  elementary  and  middle  school  classrooms  around  the  Pittsburgh  area  (see  row  1                
of  Table  1).  These  field  observations  were  conducted  in  the  context  of  a  research  project  aimed  at                  
training  and  evaluating  machine-learned  instructional  policies  for  ITSs,  with  the  ultimate  vision             
of  creating  autonomous,  self-improving  tutors  (Doroudi,  Aleven,  &  Brunskill,  2017;  Doroudi,            
Holstein,  Aleven,  &  Brunskill,  2015;  2016;  O’Shea,  1982).  However,  as  I  observed  more              
classrooms,  I  was  struck  by  the  highly  active  roles  that  teachers  played  during  ITS  class  sessions                 
(cf.   Schofield,   Eurich-Fulcer,   &   Britt,   1994).   

While  students  worked  with  the  ITS  throughout  a  class  period,  teachers  did  not  typically  sit  back                 
behind  their  desks  while  the  software  took  over  the  role  of  primary  instructor.  In  most  of  the                  
classrooms  I  observed,  teachers  were  nearly  constantly  moving  from  student  to  student  and              
providing  one-on-one  support  –  for  example,  by  providing  conceptual  explanations  beyond  what             
the  ITS  was  able  to  provide,  by  comforting  and  motivating  students  when  they  became               
frustrated,  or  by  providing  remedial  instruction  to  students  who  lacked  key  prerequisite             
knowledge.  In  line  with  prior  findings  (e.g.,  Schofield  et  al.,  1994),  teachers  reported  viewing               
these  AI-supported  class  sessions  as  opportunities  for more  one-on-one  interaction  with  their             
students,   not   less   (Holstein   et   al.,   2017a;   2017b;   2019a).  

At  the  same  time,  in  speaking  with  teachers  after  these  class  sessions,  some  reported  feeling  “left                 
out  of  the  loop”  in  their  own  classrooms  (Holstein  et  al.,  2017b;  Kulkarni,  2019;  Segedy,  Sulcer,                 
&  Biswas,  2010;  Yacef,  2002).  For  instance,  teachers  found  it  challenging  to  monitor  classes  of                
students  who  may  all  be  working  on  different  activities  at  any  one  time,  particularly  given  that                 
unlike  human  teaching  assistants,  ITSs  were  unable  to  communicate  with  them  (Holstein  et  al.,               
2017b;  2019a;  2019b;  Holstein,  2018).  The  role  of  the  teacher  and  the  impacts  of  teachers’                
on-the-spot  help-giving  are  not  commonly  considered  in  the  design  of  ITSs,  student  modeling              
methods,  or  instructional  policies  for  these  systems  (Aleven,  Xhakaj,  Holstein,  &  McLaren,             
2016;  Holstein  et  al.,  2017a;  2017b;  2018b;  2019a;  2019b;  Lesta  &  Yacef,  2002;  Miller  et  al.,                 
2015;   Yacef,   2002).   
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Table   1.    Overview   of   key   sets   of   studies   conducted   during   my   PhD,   which   informed   this   dissertation.  
 

Set   of   studies  Dates  Participant   totals  Key   outcomes   /   publications  

(1)    Classroom   field   observations  
and   piloting   of   multiple   outer-  
loop   tutoring   policies    (using   the  
Fractions   Tutor )  

Fall   2015  1,547    students,    58    classes,  
and    25    teachers   from    16  
schools   /   districts  

Key   publications:   
Doroudi,   Holstein,   Aleven,   &   Brunskill,  
2015;   2016;   Doroudi,   Aleven,   &   Brunskill,  
2017  
 
Key   outcomes:   
Classroom   field   observations   of   substantial  
teacher   help   during   class   sessions   (e.g.,   to  
“compensate”   for   limitations   of   AI   tutors)  
directly   inspired   my   subsequent   research  
focus:   designing   to   support   shared   teacher–AI  
orchestration   during   class.  
 

(2)    Classroom   field   observations,  
teacher   interviews,   and   data  
mining   of   teacher–student  
interactions    in   AI-supported   K-12  
classrooms   (using    Lynnette )  

Spring   -  
Summer   2016  

299    students,    17    classes,  
and    5    teachers   from    2  
schools   /   districts  

Key   publications:   
Holstein   et   al.,   2016;    2017a;    2017b;    2019a;  
Xhakaj,   Aleven,   &   McLaren,   2017  
 

Key   outcomes:   
● See:    Chapter   1   and   Chapter   2  

(3)    Formative   design   research   for  
teacher–AI   co-orchestration  
tools:   
Love   and   breakup   letters,   directed  
storytelling,   generative   card   sorting,  
and   speed   dating  

Summer   -   
Fall   2016  

10    teachers   from    5    schools  
/   districts  

Key   publications:   
Holstein   et   al.,   2017b;    2019a  
 

Key   outcomes:   
● See:    Chapter   1  

(4)    Iterative   co-   design   and  
prototyping   of   a   teacher–AI  
co-orchestration   tool   ( Lumilo )    in  
AI-supported   K-12   classrooms  

Winter   2016   -  
Fall   2017  

8    teachers   from    8    schools  
and    7    school   districts  

Key   publications:   
Holstein,   Hong,   et   al.,   2018;    Holstein,   2018;  
Holstein   et   al.,   2019a;    Holstein,   Yu,   et   al.,  
2018  
 

Key   outcomes:   
● See:     Chapter   3,   Chapter   4,   and   

Chapter    5  
● This   research   formed   the   foundation   for  

two   major   research   grants   that   I  
co-wrote   during   my   PhD.   These   grants  
will   fund   various   research   projects   that  
build   upon   the   present   work.  
○ IES   grant   R305A180301 :  

Enhancing   Student   Learning   with  
an   Orchestration   Tool   for  
Personalized   Teacher-Student  
Interactions   in   Classrooms   Using  
Intelligent   Tutoring   Software  
Education   Technology    (co-written  
with   Vincent   Aleven,   Bruce   M.  
McLaren,   and   Carnegie   Learning)   

○ NSF   grant   #1822861:   
Human/AI   Co-Orchestration   of  
Dynamically-   Differentiated  
Collaborative   Classrooms  
(co-written   with   Vincent   Aleven  
and   Nikol   Rummel)  
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(5)   Iterative   Replay   Enactments  
studies   with    Lumilo     (and    Lynnette )  

Summer   -   
Fall   2017  

10    teachers   from    5    schools  
and    3    school   districts  
(experience   prototyping  
using   replays   of    5    classes  
from    2    schools   /   districts)  

Key   publications:   
Holstein,   Hong,   et   al.,   2018;    Holstein   et   al.,  
2019a;   Zhang   et   al.,   2019  
 

Key   outcomes:   
● See:     Chapter   5   and   Chapter   6  

 

(6)   Iterative   classroom   piloting  
with    Lumilo     (and    Lynnette )  

Fall   2017   -  
Spring   2018  

355    students,    18    classes,  
and    6    teachers   from    3  
schools   /   districts  

Key   publications:   
Holstein   et   al.,   2018a;    2019a  
 

Key   outcomes:  
● See:     Chapter   6   and   Chapter   8  

 

(7)    In-vivo   classroom   experiment  
with    Lumilo    (and    Lynnette )  

Winter   2017   -  
Spring   2018  

343    students,    18    classes,  
and    8    teachers   from    4  
schools   /   districts  

Key   publications:   
Holstein   et   al.,   2018b;    2019a  
 

Key   outcomes:   
● See:    Chapter   7   and   Chapter   8  

 

(8)    Concept   generation   and  
validation   studies    to   better  
understand   both   teachers’   and  
students’   needs   for   co-orchestration  
support  
 

Spring   -  
Summer   2019  

14    students   and    10  
teachers,   spanning    12  
schools   /   districts,   and    2  
major   US   cities  

Key   publications:   
Holstein   et   al.,   2019b  
 

Key   outcomes:  
● See:     Chapter   9  

(9)    Classroom   piloting   with  
Lumilo    and   Carnegie   Learning’s  
MATHia    tutor  
 

Spring   -  
Summer   2019  

138    students,    5    classes,   and  
4    teachers   from    1    school   /  
district  

Key   outcomes:   
● See:     Chapter   10  

 

These   classroom   observations   inspired   the   overarching   question   driving   this   thesis:   

How  might  AI-based  educational  software  best  be  designed  to  work  together  with             
teachers,  in  real-time,  to  actively  leverage  human  teachers’  complementary  strengths           
and   support   them   in   co-regulating   students’   learning?  

Over  a  decade  ago,  Yacef  proposed  a  reframing  of  intelligent  tutoring  systems  as  “intelligent               
teaching  assistants”  (ITAs):  systems  designed  with  the  joint  objectives  of  helping  human  teachers              
teach  and  helping  students  learn,  rather  than  only  the  latter  of  these  objectives  (Yacef,  2002).                
Other  researchers  have  since  proposed  optimizing  student  learning  by  leveraging  complementary            
strengths  of  human  and  AI  instruction  (e.g.,  Baker,  2016;  Ritter,  Yudelson,  Fancsali,  &  Berman,               
2016b).  That  is,  ITSs  might  be  more  effective  if  they  could  adaptively  enlist  human  teachers’                
help,  in  situations  teachers  may  be  better  suited  to  handle  than  the  ITS  (cf.  Alkhatib  &  Bernstein,                  
2019;  Davidoff,  Lee,  Dey,  &  Zimmerman,  2007;  Holstein,  Lucas,  &  Kemp,  2014;  Kamar,  2016;               
Lake,  Ullman,  Tenenbaum,  &  Gershman,  2017;  Lubars  &  Tan,  2019;  Ritter  et  al.,  2016b).  Yet                
while  there  has  been  some  work  on  real-time  teacher  support  tools  for  ITS  classrooms  since  the                 
vision  of  ITAs  was  introduced  (e.g.,  Feng  &  Heffernan,  2007;  Mavrikis  et  al.,  2016),  little  work                 
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has  investigated  teachers’  actual  needs  and  desires  for  such  support  (i.e.,  through  needfinding              
studies),   or   how   human   and   automated   instruction   might   be   most   effectively   combined.  

In  this  dissertation,  I  explore  how  AI  and  human  teachers  might  best  support  one  another,                
leveraging  one  another’s  complementary  strengths  to  achieve  outcomes  greater  than  either  could             
achieve  alone  (cf.  Alkhatib  &  Bernstein,  2019;  Forlizzi  &  Zimmerman,  2013;  Kamar,  2016;              
Ritter  et  al.,  2016b).  I  approach  this  work  from  both  an empowerment  and  an efficiency                
perspective  (see  Kulkarni  et  al.,  2019  for  a  related  discussion).  From  an empowerment              
perspective,  I  seek  to support  and  extend  teachers’  abilities  to  personalize  instruction,  and  help               
them fulfill  the  roles  they  aspire  to  play  during  AI-supported  class  sessions  (e.g.,  see  Aiken  &                 
Epstein,  2000;  Feng  &  Heffernan,  2007;  Holstein  et  al.,  2017b;  2019a;  2019b;  Holstein,  Hong  et                
al.,  2018;  Mavrikis  et  al.,  2016;  Yacef,  2002).  From  an efficiency  perspective,  I  seek  to  design                 
human/AI  systems  that  will measurably  benefit  students’  learning by  making  more  effective  use              
of  existing  classroom  resources,  compared  with  human  teachers  or  AI  tutors  working  in  a               
less-integrated  fashion  (e.g.,  see  Baker  et  al.,  2016;  Fancsali  et  al.,  2018;  Holstein  et  al.,  2017a;                 
2018a;   2018b;   Holstein,   2018;   Kamar,   2016;   Ritter   et   al.   2016b).  

One  promising  way  to  support  effective  teacher–AI  partnerships  is  through  the  design  of              
classroom  analytics  tools  (Holstein  et  al.,  2018a;  Rodriguez-Triana  et  al.,  2017;  Tissenbaum  et              
al.,  2016;  Verbert  et  al.,  2013)  and  classroom  orchestration  systems  more  broadly  (Dillenbourg  &               
Jermann,  2010;  Dillenbourg,  Prieto,  &  Olsen,  2018;  Prieto,  Holenko,  Gutierrez,  Abdulwahed,  &             
Balid,  2011;  Martinez-Maldonado,  2016;  van  Leeuwen  et  al.,  2018).  Classroom  analytics  tools             
such  as  dashboards  are  commonly  designed  to  enhance  teachers’  awareness  of  what  goes  on  in                
their  classrooms,  for  example  by  presenting  teachers  with  real-time  information  about  students’             
learning  as  they  work  with  educational  technologies.  Classroom  orchestration  systems  represent            
a  broader  class  of  technologies  that  may  provide  more  comprehensive  support  for  managing  and               
effectively  supporting  a  class  of  students  as  they  work  through  instructional  activities             
(Dillenbourg   &   Jermann,   2010;   Dillenbourg,   Prieto,   et   al.   2018).  

In  the  current  work,  I  created  a  real-time,  wearable  classroom  orchestration  tool  to  support  and                
empower  K-12  teachers  who  use  ITSs  in  their  classrooms.  To  this  end,  I  adopted  a  participatory                 
design  approach,  directly  involving  teachers  at  each  stage,  from  initial  needfinding  to  the              
selection  and  tuning  of  real-time  analytic  measures  through  iterative  prototyping  (see Chapters  1,              
4,  5,  and  6 ,  and  Holstein,  Hong,  Tegene,  McLaren,  &  Aleven,  2018;  Holstein  et  al.,  2017b;                 
2018a;   2019a).   

The  prototype  that  emerged  from  this  iterative  co-design  process  was  a  pair  of  mixed-reality               
smart  glasses  called Lumilo  (see Chapter  4  and  Holstein,  Hong,  et  al.,  2018),  which  tunes                
teachers  in  to  the  rich  analytics  generated  by  ITSs,  alerting  them  to  situations  the  ITS  may  be                  
ill-suited  to  handle  and  providing  additional  information,  upon  request,  to  support  teachers  in              
determining  how  to  address  these  situations.  In  doing  so, Lumilo  is  designed  to  facilitate               
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productive  mutual  support  or co-orchestration  between  the  teacher  and  the  ITS  (Holstein  et  al.,               
2017b;  2018b;  Payne  et  al.,  2008;  Prieto,  2012;  Sharples,  2013),  by  leveraging  the              
complementary  strengths  of  each  (Holstein  et  al.,  2019b).  Through  an  in-vivo  classroom             
experiment  (see Chapter  7 ,  and  Holstein  et  al.,  2018b),  I  found  that  this  form  of  teacher–AI                 
co-orchestration  had  a  positive  overall  impact  on  student  learning,  and  helped  teachers  better              
support   students   with   lower   prior   domain   knowledge.  

Over  the  course  of  this  research,  I  have  also  developed  new  UX  design  and  prototyping  methods                 
to  address  challenges  in  the  co-design,  experience  prototyping,  and  evaluation  of  data-driven  AI              
systems.  These  include  Replay  Enactments  (see Chapters  5 and  6, and  Holstein,  Hong,  et  al.,                
2018;  Holstein  et  al.,  2018a;  2019a),  Causal  Alignment  Analysis  (see Chapter  6  and  Holstein  et                
al.,  2018a),  a  participatory  variant  of  the  Speed  Dating  method  (Davidoff,  Lee,  Dey,  &               
Zimmerman,  2007;  Zimmerman  &  Forlizzi,  2017)  called  Participatory  Speed  Dating  (see            
Chapter  9  and  Holstein  et  al.,  2019b),  and  the  use  of  spatial  classroom  replay  visualizations  to                 
inform  design  (see Chapters  2 and  6 ,  and  Holstein  et  al.,  2017a;  2018a).  To  support  the  use  of                   
these  methods  in  the  area  of  AI-supported  education,  my  colleagues  and  I  have  extended  the                
existing CTAT/TutorShop  architecture  to  facilitate  rapid  prototyping  of  data-driven,  educational           
AI  applications  –  including  both  student-  and  teacher-facing  tools  (see Chapter  3  and  Holstein,               
Yu,   et   al.,   2018).  

My  work  on Lumilo  demonstrates  promise  for  approaches  that  integrate  human  and  machine              
intelligence  to  support  student  learning.  However,  the  prototyping  sessions  and  classroom  studies             
mentioned  above  also  revealed  broader  needs  for  orchestration  support  in  AI-supported            
classrooms  –  among  both  teachers  and  students  –  extending  beyond  those  addressed  by Lumilo ’s               
current  design  (see Chapter  8  and 9, and  Holstein,  Hong,  et  al.,  2018;  Holstein  et  al.,  2017b;                  
2019a).  For  example,  both  teachers  and  students  expressed  needs  for  better  mechanisms  to              
support  “private”  teacher–student  communication  during  a  class  session  (e.g.,  to  enable  students             
to  signal  help-need  during  class  without  losing  face  to  peers).  In  addition,  after  using Lumilo  in                 
live  K-12  classrooms,  teachers  began  to  reveal  more  nuanced  preferences  for  which  classroom              
tasks  should  be  handled  by  the  AI,  which  should  be  handled  by  the  teacher,  and  which  should  be                   
handled  by  students  (and  under  which  circumstances)  (cf.  Davidoff  et  al.,  2007;  Lubars  &  Tan,                
2019;  Olsen,  2017;  Prieto,  2012;  Rummel,  2018).  Similarly,  students  began  to  reveal  needs  for               
greater  agency  over  how  their  personal  analytics  are  used  and  interpreted  than Lumilo  (and               
associated   ITSs)   currently   provides.  

Building  upon  these  and  other  findings,  in  the  final  chapters  of  this  thesis  ( Part  Four ),  I  involve                  
students,  as  well  as  teachers,  in  the  next  phase  of  design  (Forlizzi  &  Zimmerman,  2013).                
Through  iterative  concept  generation  and  validation  exercises,  I  work  with  students  and  teachers              
to  better  understand  their  respective  needs  and  boundaries  ( Chapter  9 ,  and  Holstein  et  al.,               
2019b).  Drawing  upon  my  own  work,  as  well  as  prior  literature  on  supporting  self-regulated,               
collaborative,  and  teacher  learning,  these  investigations  take  an  initial  step  towards  addressing             
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the  following,  broader  formulation  of  the  question  that  originally  motivated  this  thesis  (see              
above):  

How  might  AI-based  educational  software  best  be  designed  to  work  together  with             
teachers and  students ,  in  real-time,  to  actively  leverage  their  complementary           
strengths   and   support   them   in   co-regulating    both   teacher   and   student   learning ?  

Further  explorations  in  this  broader  direction  are  left  for  future  work  (see Conclusions,              
Contributions,  and  Future  Directions  for  a  discussion).  In  particular,  I  plan  to  explore  the  design                
space  of student–teacher–AI  co-orchestration  systems  in  a  new  grant-funded  project  with            
Vincent  Aleven  and  Nikol  Rummel: Human/AI  Co-Orchestration  of  Dynamically-  Differentiated           
Collaborative   Classrooms    (NSF   grant   #1822861).  

In  addition,  through  a  newly-formed  academic–industry  partnership  with  Carnegie  Learning  (a            
major  educational  AI  company)  in Chapter  10 ,  I  begin  to  explore  how  tools  like Lumilo  might  be                  
designed   for   wider-spread   use.  

Beyond  the  scope  of  this  dissertation,  the  explorations  presented  in Part  Four  will  help  prepare                
for  the  next  phase  of  this  research,  funded  by  a  new  grant  with  Vincent  Aleven,  Bruce  McLaren,                  
and  Carnegie  Learning  (IES  R305A180301):  a  large-scale  classroom  experiment  (using  an            
updated  and  miniaturized  version  of Lumilo )  with  over  60  middle  school  classrooms  that  use               
Carnegie  Learning’s MATHia  ITS,  with  the  aim  of  better  understanding  the  effects  of  teacher–AI               
co-orchestration   on   student   learning   and   other   classroom   outcomes.   

In  sum,  this  dissertation  makes  a  total  of  7  main  contributions  to  the  areas  of  human–computer                 
and  human–AI  interaction  ( HCI/HAI ),  design  ( DES ),  and  learning  sciences  and  technologies            
( LS&T ).  These  contributions  are  briefly  summarized  in  Table  2,  organized  by  area.  Each              
contribution  is  summarized  in  greater  detail  under Conclusions,  Contributions,  and  Future            
Directions .   

Following  Wobbrock  and  Kientz’s  high-level  taxonomy  of  research  contribution  types  in  HCI             
(Wobbrock  &  Kientz,  2016),  contributions  are  categorized  by  each  contribution’s  primary  type             
(out  of  “Empirical”,  “Artifact”,  “Methodological”,  “Theoretical”,  “Dataset”,  “Survey”,  and          
“Opinion”).  Secondary  contribution  types  are  also  listed  where  applicable.  I  have  further  divided              
the  “Empirical”  category  into  two  subcategories  (which  are  not  mutually  exclusive):  “Design             
research”   and   “Classroom   experiments   and   data   mining”.  
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Table   2.    Brief   overview   of   this   dissertation’s   seven   main   contributions.  

Areas  Contribution  Contribution   type(s)  

HCI/HAI,  
DES,  
LS&T  

(1)  First  broad  design  exploration  of  needs  for         
real-time   teacher   analytics   and   orchestration   support:  
This  dissertation  presents  the  first  broad  exploration  in  the          
literature  of  teachers’  needs  for  real-time  analytics  and         
orchestration  support  in  AI-supported,  personalized      
classrooms.  More  broadly,  the  design  explorations       
presented  in  this  dissertation  represent  a  case  study  of  the           
design  of  real-time  AI  augmentation  for  workers  in  a          
“caring  profession”  (K-12  teaching)  which  may  defy  full         
automation.  
 
 

Design   Research  
(and   Theoretical)  
 

HCI/HAI,  
DES,  
LS&T  

(2)  First  design  exploration  and  prototypes  of        
wearable,  heads-up  displays  to  support  orchestration       
of   personalized   classrooms:  
This  dissertation  presents  the  first  design  exploration  in         
the  literature  of  the  use  of  wearable,  heads-up  displays  to           
support  teachers  in  orchestrating  personalized  classrooms,       
yielding Lumilo ,  a  classroom-tested  prototype  of  mixed        
reality  smart  glasses  for  teachers.  More  broadly,  the  design          
explorations  presented  in  this  dissertation  represent  a  case         
study  of  the  use  of  head-mounted  displays  in  a  real-world           
social   space   (K-12   classrooms).   
 
 

Design   Research  
(and   Artifact)  
 
 

HCI/HAI,  
DES,  
LS&T  

(3)  First  experimental  study  to  demonstrate  student        
learning   benefits   of   real-time   teacher   analytics:  
This  dissertation  presents  the  first  experimental  study  to         
demonstrate  that  real-time  teacher  analytics  can       
measurably  enhance  students’  pre-post  learning  outcomes       
(either  within  or  outside  the  areas  of  AI-supported         
education   and   intelligent   tutoring   systems).  
 

 

Classroom  
Experiments   and   Data  
Mining  

HCI/HAI,  
DES,  
LS&T  

(4)    Novel   design   and   prototyping   methods:  
This  dissertation  introduces  novel  design  and  prototyping        
methods  to  support  the  co-design,  experience  prototyping,        
and  evaluation  of  data-driven  AI  systems,  and  case  studies          
exploring  how  these  methods  can  be  applied  to  involve          
non-technical   stakeholders   in   the   design   of   such   systems.  
 
 

Methodological  
(and   Design   Research)  
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LS&T  (5)  First  investigations  of  relationships  between  teacher        
movement/monitoring  and  student  behavior  and      
learning   in   AI-supported   classrooms:  
This  dissertation  presents  the  first  investigations  in  the         
literature  of  relationships  between  teachers’  physical       
movement  and  classroom  monitoring  behaviors,  and       
students’  behaviors  and  learning  outcomes,  in       
AI-supported,  personalized  classrooms.  Findings  from  this       
research  indicate  that,  when  evaluating  the  impacts  of         
teacher-facing  learning  analytics  tools,  future  research       
should  take  care  to  tease  apart  potential  effects  of  a           
teacher’s  use  of  a  monitoring  tool  versus  teachers’  use  of           
learning   analytics.  
 
  

Classroom  
Experiments   and   Data  
Mining  

LS&T  (6)  Causal  Alignment  Analysis  (CAA),  a  framework        
for  the  data-informed,  iterative  design  of  teacher        
augmentation:  
This  dissertation  introduces  Causal  Alignment  Analysis       
(CAA),  a  framework  for  the  data-informed,  iterative        
design  of  teacher  augmentation  (e.g.,  real-time  awareness        
and  orchestration  tools),  which  links  the  design  of  such          
technologies  to  educational  goals;  and  a  case  study         
illustrating   CAA’s   application   and   utility.  
 
 

Methodological  
(and   Theoretical)  

LS&T  (7)  CTAT/TutorShop  Analytics  (CT+A),  an  extended       
technical  architecture  for  ITS  development  that       
supports   “extensible   student   modeling”:  
Finally,  this  dissertation  presents  CTAT/TutorShop      
Analytics  (CT+A),  an  extended  technical  architecture  for        
ITS  development  that  supports  “extensible  student       
modeling”:  the  sharing,  re-mixing,  use,  and  prototyping  of         
advanced   student   modeling   techniques.  
 

Artifact  
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Document   Organization  
 

This  dissertation  is  organized  into  four  main  parts,  each  of  which  consists  of  multiple  chapters.                
Figure  1  provides  a  graphical  overview  of  how  these  four  parts  relate  to  my  published  work  and                  
other   research   directions   I   have   pursued   during   my   PhD.  

In Part  One ,  I  present  initial  needfinding  studies  with  K-12  teachers  ( Chapter  1 ),  exploratory               
classroom  data  analyses  ( Chapter  2 ),  and  technical  groundwork  ( Chapter  3 )  that  set  a  foundation               
for   all   of   my   subsequent   research.   

In Part  Two  I  present  an  iterative  prototyping  process  with  K-12  teachers,  yielding  new               
prototyping  methods  and  the  development  of  a  new  form  of  real-time  teacher  augmentation              
called    Lumilo    ( Chapters   4    and    5 ).   

Part  Three  focuses  on  the  evaluation  of  real-time  teacher  augmentation  in  live  classroom              
settings.  I  present  and  demonstrate  a  design  framework  for  the  iterative,  data-informed  design              
and  evaluation  of  real-time  teacher  augmentation  ( Chapter  6 ),  culminating  in  an  in-vivo             
classroom  experiment  that  evaluates Lumilo ’s  impacts  on  teacher  and  student  behavior  and             
students’   learning   ( Chapters   7    and    8 ).   

In Part  Four  I  begin  to  explore  how  the  concepts  embodied  by Lumilo  might  be  prepared  for                  
wider  use,  through  design  studies  ( Chapters 9  and 10 )  and  classroom  piloting  with  teachers  and                
students   ( Chapter   10 ).   

In Conclusions,  Contributions,  and  Future  Directions ,  I  present  methodological  reflections           
and  recommendations  based  on  my  experiences  designing  real-time  teacher  augmentation  with            
and  for  K-12  teachers  (see Conclusions ),  followed  by  a  summary  of  this  dissertation’s  seven               
main  contributions  (see Summary  of  Contributions ).  Finally,  I  present  a  design  space  and              
discussion  of  future  directions  for  educational  systems  that  leverage  human/AI  complementarity            
(see    Future   Directions ).  
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Figure  1. An  overview  of  major  research  projects  or  subprojects  I  have  worked  on  during  my  PhD,                  
illustrating  both  breadth  and  depth.  Nodes  highlighted  in  green  (the  middle  cluster)  are  the  focus  of  this                  
dissertation;  others  lie  beyond  its  scope.  Broader  explorations  (e.g.,  needfinding  studies)  are  positioned              
towards  the  left  side  of  this  diagram,  and  narrower,  more  focused  investigations  (e.g.,  experimental               
evaluations)  are  positioned  to  the  right.  Dark  arrows  indicate  strong  dependencies  (i.e.,  where  one  project                
directly  builds  upon  another).  Light  arrows  acknowledge  indirect  influences  among  projects  (e.g.,  where              
observations   and   findings   from   one   project   help   to   inform   the   other).   
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In Part  One of  this  thesis,  I  present  initial  design  and  data  mining  explorations  and  technical                 
groundwork   that   set   a   foundation   for   all   of   my   subsequent   research.  

In Chapter  1 ,  I  present  initial  needfinding  studies  with  K-12  teachers  who  use  AI  tutors  in  the                  
classroom,  aimed  at  understanding  the  challenges  teachers  face  in  orchestrating  these            
personalized   classrooms,   as   well   as   opportunities   to   better   support   teachers.  

To  complement  the  investigations  presented  in Chapter  1 ,  and  to  further  inform  the  design  of                
real-time  teacher  support  tools,  I  also  wanted  to  better  understand  the  nature  of  teacher–student               
interactions  in  AI-supported  classrooms.  In Chapter  2 ,  I  investigate  potential  relationships            
between  teacher–student  interactions  and  student  behaviors  and  learning  in  these  classrooms,            
using  a  new  replay-based  visualization  method  called  Spatial  Classroom  Log  Exploration            
(SPACLE).  

Finally,  in Chapter  3 ,  I  present  an  extended  version  of  the CTAT/TutorShop architecture  for  ITS                
authoring  and  deployment,  which  facilitates  the  rapid  development  and  prototyping  of            
data-driven  educational  AI  applications  –  including  both  student-  and  teacher-facing  tools.  In             
turn,  this  extended  technical  architecture  supported  most  of  the  subsequent  research  presented  in              
this   dissertation.  
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Chapter   1  
Exploring   K-12   Teacher   Needs   and   Desires   for   Real-time  
Analytics   in   AI-supported   Personalized   Classrooms  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   McLaren,   B.   M.,   &   Aleven,   V.    (2017b).    Intelligent   tutors   as   teachers'  
aides:   Exploring   teacher   needs   for   real-time   analytics   in   blended   classrooms.   In  
Proceedings   of   the   Seventh   International   Learning   Analytics   &   Knowledge   Conference  
(LAK   2017),    (pp.   257-266).   ACM.  

● Holstein,   K.,   McLaren,   B.   M.   &   Aleven,   V.    (2019a).   Co-designing   a   real-time   classroom  
orchestration   tool   to   support   teacher–AI   complementarity.    Journal   of   Learning   Analytics  
(JLA).  

 

1.1   Background   and   Motivation  
In  recent  years,  many  real-time  analytics  tools  have  been  designed  and  developed  to  aid  teachers                
in  orchestrating  complex  technology-enhanced  learning  scenarios  (e.g.,  van  Alphen  &  Bakker,            
2016;  Martinez-Maldonado,  Clayphan,  Yacef,  &  Kay,  2016;  Matuk,  Gerard,  Lim-Breitbart,  &            
Linn,  2016;  Mavrikis,  Gutierrez-Santos,  &  Poulovassilis,  2016;  McLaren,  Scheuer,  &  Mikšátko,            
2010;  Molenaar  &  Knoop-van  Campen,  2017;  Tissenbaum  et  al.,  2016).  However,  design             
decisions  about  which  analytics  to  present  to  teachers  often  appear  to  be  driven  more  by  the                 
availability  of  data  or  pre-existing  analytics  measures  than  by  an  understanding  of  teachers’              
actual  real-time  information  needs  (Rodriguez-Triana  et  al.,  2017).  To  the  best  of  my  knowledge,               
no  prior  work  has  conducted  broad  needfinding  studies  –  untethered  from  specific,  pre-existing              
prototypes  –  to  understand  teachers’  needs  and  desires  for  real-time  analytics .  Furthermore,  work              
on  real-time  analytics  tools  for  personalized  classrooms  has  tended  to  focus  heavily  on  designing               
tools  for  use  in  university  contexts,  rather  than  for  K-12  teachers  (Rodriguez-Triana  et  al.,  2017),                
and  has  rarely  focused  on  supporting  teachers  in  personalized,  non-synchronous  classroom            
contexts  such  as  ITS  classrooms  (Holstein,  Hong,  et  al.,  2018;  Olsen,  2017;  but  see  van  Alphen                 
&   Bakker,   2016).  

In  this  chapter,  I  present  the  first  broad  investigation  in  the  literature  of  teachers’  challenges  and                 
needs  for  support  in  AI-supported  personalized  classrooms ( see  item  1  under  Summary  of              
Contributions  –  “First  broad  design  exploration  of  needs  for  real-time  teacher  analytics  and              
orchestration  support”) .  In  particular,  I  focus  on  classrooms  that  use  intelligent  tutoring  systems              
(ITSs):  a  class  of  AI-based  educational  technologies  that  provide  students  with  step-by-step             
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guidance  during  complex  problem-solving  practice  and  other  learning  activities.  These  systems            
continuously  adapt  instruction  to  students’  current  ‘state’  (a  set  of  measured  variables,  which              
may  include  moment-by-moment  estimates  of  student  knowledge,  metacognitive  skills,  affective           
states,  and  more)  (Desmarais  and  Baker,  2012).  Several  meta-reviews  have  indicated  that  ITSs              
can  enhance  student  learning,  compared  with  other  educational  technologies  or  traditional            
classroom  instruction  (e.g.,  Kulik  &  Fletcher,  2016).  However,  design  and  ethnographic  studies             
have  revealed  that,  in  K-12  classroom  settings,  teachers  and  students  often  use  ITSs  in  ways  not                 
originally  anticipated  by  system  designers  (e.g.,  Holstein  et  al.,  2017a;  2017b;  Ogan  et  al.,  2012;                
2015;  Schofield,  Eurich-Fulcer,  &  Britt,  1994).  For  example,  Schofield  et  al.  (1994)  found  that               
rather  than  replacing  the  teacher,  a  key  benefit  of  using  such  AI  tutors  in  the  classroom  may  be                   
that  they  free  teachers  to  provide  more  individualized  help  while  students  work  with  the  tutor.                
Although  students  in  the  Schofield  et  al.  study  tended  to  perceive  that  teachers  provide  better                
one-on-one  help  than  an  ITS,  they  also  preferred  ITS  class  sessions  to  more  traditional  class                
sessions   –   in   part   because   of   this   increase   in   one-on-one   teacher-student   interactions.  

Despite  these  benefits,  modern  ITSs  have  also  been  shown  to  have  various  limitations  (e.g.,  Beck                
&  Gong,  2013;  Kai  et  al.,  2018;  Käser  et  al.,  2016;  Ogan  et  al.,  2012;  2015).  Rich  strands  of                    
literature  in  human–computer  interaction  (HCI)  human  factors  engineering  (HF)  have  studied            
problems  of  “task/function  allocation”  between  humans  and  machines  in  contexts  where            
automation  is  helpful  yet  imperfect  (e.g.,  Horvitz,  1999;  Landén,  Heintz,  &  Doherty,  2010;  Sujan               
&  Pasquini,  1998;  Wickens,  Gordon,  Liu  &  Lee,  1998;  Wright,  Dearden,  &  Fields,  2000).  Yet                
the  question  of  how  best  to  combine  strengths  of  human  and  automated  instruction  has  received                
relatively  little  attention  within  the  HCI,  Learning  Analytics,  and  AI  in  Education  literatures  thus               
far.  Over  a  decade  ago,  Yacef  proposed  a  reframing  of  intelligent  tutoring  systems  as  “intelligent                
teaching  assistants”  (ITAs):  systems  designed  with  the  joint  objectives  of  helping  human  teachers              
teach  and  helping  students  learn,  rather  than  only  the  latter  of  these  objectives  as  is  typical  of                  
ITSs  (Yacef,  2002).  In  line  with  the  literature  on  task/function  allocation  in  human-machine              
systems,  other  researchers  have  since  proposed  optimizing  student  learning  by  leveraging            
complementary  strengths  of  human  and  AI  instruction  (e.g.,  Baker,  2016;  Ritter,  Yudelson,             
Fancsali,  &  Berman,  2016).  That  is,  ITSs  might  be  more  effective  if  they  could  adaptively  enlist                 
the  help  of  human  teachers  (cf.  Kamar,  2016),  in  situations  teachers  may  be  better  suited  to                 
handle.  While  there  has  been  some  prior  work  on  real-time  teacher  support  tools  for  ITS                
classrooms  since  the  vision  of  ITAs  was  introduced  (e.g.,  Feng  &  Heffernan,  2007;  Segedy,               
Sulcer,  &  Biswas,  2010),  little  work  has  explored  teachers’  actual  needs  and  desires  for  such                
support,   or   how   human   instruction   might   most   effectively   be   combined   with   AI   instruction.   
 

1.2   Overview   of   Methods  
To  better  understand  K-12  teachers’  challenges  and  needs  for  support  in  AI-supported             
personalized  classrooms,  I  conducted  a  series  of  formative  design  studies  with  10  middle  school               
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math  teachers,  across  five  schools  and  school  districts  in  Pittsburgh  and  surrounding  areas  (see               
Table  1-1).  All  participating  teachers  had  previously  used  some  form  of  adaptive  learning              
software  in  the  classroom,  and  all  but  one  had  previously  used  an  ITS  as  part  of  their  classroom                   
instruction.  As  detailed  in  the  following  sections,  these  studies  included  activities  such  as              
love/breakup  letters  (Hanington  &  Martin,  2012),  directed  storytelling  (Evenson,  2006),           
generative  card  sorting  exercises  (Cairns  &  Cox,  2008),  semi-structured  interviews  and  field             
observations  (Hanington  &  Martin,  2012),  and  speed  dating  (Davidoff  et  al.,  2007;  Zimmerman              
&  Forlizzi,  2017).  Choices  of  design  research  methods  were  made  iteratively  and  adaptively,              
based   on   our   research   team’s   areas   of   greatest   uncertainty   at   a   given   stage   of   the   process.  
 

Table   1-1.    Demographic   information   for   participating   schools.  

School  Region  Free/Reduced   Price   Lunch  1 #   of   teachers  
#   of   teachers   with    <    2  

years’   experience  

A  Suburban  18%  1  0  

B  Urban  N/A  1  1  

C  Suburban  23%  2  0  

D  Suburban  29%  4  0  

E  Rural  34%  2  1  

 

1.3   Case  Study:  A  Five  Year  Relationship  between  Teachers  and  AI                    
Tutors  

To  first  gain  a  better  sense  of  key  teacher  needs  that  modern  ITSs  may  meet  or  fail  to  meet,  I                     
conducted  semi-structured  interviews  with  two  mathematics  teachers  from  a  middle  school  in  the              
Pittsburgh  area  (school  E  in  Table  1-1)  who  had  previously  used  an  ITS  as  part  of  their  regular                   
classroom  instruction  for  a  period  of  about  five  years.  These  interviews  were  conducted  in  the                
summer  of  2016,  and  incorporated  a  version  of  the  Love  Letter  and  Breakup  Letter  design                
research  method,  which  uses  personification  as  a  tool  to  probe  participants’  original  reasons  for               
adopting  a  technology  (and  continuing  to  use  it  for  an  extended  period),  as  well  as  their  reasons                  
for  eventually  “breaking  up”  with  that  technology  (Hanington  &  Martin,  2012).  Findings  from              
these  interviews  are  briefly  summarized  below,  charting  these  teachers’  journey  from  adoption  of              
the   technology,   to   the   eventual   break-up,   and   then   to   the   time   of   the   interview.   

1  In   the   United   States,   the   percentage   of   students   eligible   for   free/reduced   price   lunch   is   often   used   as   a  
proxy   for   the   poverty   rate   within   a   school.  
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According  to  the  interviewed  teachers,  teachers  at  their  school  originally  pushed  to  adopt  the  ITS                
(and  its  associated  curriculum)  as  part  of  a  broader,  teacher-led  effort  to  move  away  from  their                 
existing  mathematics  curriculum.  These  teachers  felt  that  the  existing  curriculum  involved  too             
much  interleaving  of  topics,  in  which “you  never  really  get  fully  though  a  topic  the  first  time,  or                   
the  second  time,  or  the  third  time…” .  Instead,  they  wanted  to  move  to  a  curriculum  that                 
“[teaches]  a  topic  once,  [making  sure  that]  they  master  it”,  and  then  allows  students  and                
teachers  to  move  on”. They  found  this  mastery  learning  approach  to  mathematics  instruction              
particularly  appealing  because  they  felt  it  represented  a  kind  of  deeper,  more  focused  learning               
that  students  would  need  to  do  in  order  to  succeed  in  high  school  and  beyond.  As  such,  teachers                   
at  this  school  were  motivated  to  adopt  the  ITS  (which  implemented  a  mastery  learning  approach                
to  sequencing  problems)  in  part  because  they  felt  it  would  support  their  students’  transition  from                
shallower  and  less  independent  learning  (in  elementary  school)  to  deeper  and  more  self-regulated              
learning   (in   high   school).  

The  interviewed  teachers  noted  that  the  first  year  of  using  the  ITS  in  their  classrooms  was  a                  
challenging  adjustment  period.  Despite  the  support  materials  that  accompanied  the  ITS  at  that              
time––including  a  curriculum  with  associated  materials  such  as  textbooks,  professional           
development,  and  a  reporting  system  that  allowed  teachers  to  track  their  students’  progress              
regularly––these  teachers  initially  struggled  to  decide  how  best  to  monitor  and  help  their  students               
during   class   sessions   in   which   students   worked   with   the   ITS.   

In  particular,  teachers  had  trouble  determining  how  to  assess  students  fairly  and  accurately  given               
the  self-paced  nature  of  adaptive  learning  technologies.  A  major  constraint  teachers  face  (in  US               
public  schools,  at  least)  is  that  they  need  to  provide  students  with  letter  grades  and  to                 
communicate  their  reasons  for  assigning  a  particular  grade  to  both  students  and  their  parents.               
During  this  first  year,  these  teachers  often  found  that  it  was  difficult  to  justify  their  decisions  to                  
assign  students  grades  based  on  their  progress  within  the  ITS––particularly  when  communicating             
with  these  students’  parents.  Teachers’  grading  decisions  often  involved  a  considerable  amount             
of  subjectivity,  as  it  was  often  unclear  how  to  balance  between  grading  students  based  on  the                 
progress  they’ve  made  in  the  software  (i.e.  how  many  units  of  the  curriculum  a  student  has                 
covered),  how  well  students  have  performed  within  those  units  (as  shown  in  the  software  reports                
as  probabilities  that  a  student  has  mastered  each  of  a  number  of  fine-grained  skills),  and  how                 
much  growth  students  have  shown  individually  (i.e.,  change  in  students’  per-skill  probabilities  of              
mastery   over   time).  

After  the  first  year  using  ITSs  in  their  classrooms,  teachers  began  to  hold  meetings  to  share                 
reflections,  insights,  and  strategies  on  how  to  use  the  system  most  effectively.  Through  these               
meetings,  teachers  at  this  school  collectively  developed  common  work  practices  and  grading             
procedures  to  help  mitigate  some  of  the  major  challenges  they  had  encountered  over  the  previous                
year.  For  example,  these  teachers  developed  a  uniform  grading  scheme  by  setting  goals  for  where                
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students  should  be  (in  terms  of  the  number  of  units  covered)  at  regular  checkpoints  throughout                
each  semester.  The  teachers  decided  upon  these  goals  by  pooling  their  recollections  of  the  unit                
that  most  students  had  reached  in  the  previous  year  by  particular  checkpoints  (e.g.,  by  the                
beginning  of  each  month).  If  a  student  was  one  or  more  units  behind  the  goal  unit,  at  a  certain                    
checkpoint,  the  teacher  would  use  a  control  panel  in  the  software  to  manually  push  that  student                 
forward  to  the  goal  unit  (and  the  student  would  receive  no  credit  for  any  intervening  units)  (cf.                  
Ritter,  Yudelson,  Fancsali,  &  Berman,  2016a).  This  was  done  to  keep  the  whole  class  relatively                
synchronized  over  the  course  of  the  year,  and  to  manage  the  complexity  of  assigning  individual                
letter  grades  when  different  students  have  covered  different  amounts  of  material.  Over  time,              
teachers’  grading  schemes  became  more  nuanced,  as  teachers  would  annotate  printed  versions  of              
the  ITS-generated  reports  with  their  own  observations,  collected  each  day  while  monitoring  their              
classrooms.  They  would  sometimes  integrate  these  annotations  with  the  ITS-generated  metrics  to             
assign  grades  –  allowing  for  partial  credit  to  be  given  based  on  their  perception  of  the  student’s                  
effort   or   students’   growth   over   time,   rather   than   just   the   speed   at   which   they   reached   mastery.  

According  to  the  interviewed  teachers,  they  (and  other  teachers  at  the  school)  ultimately  agreed               
that   continued   use   of   the   ITS   was   not   worth   the   cost,   for   three   primary   reasons:   

1.   Challenges   of   curriculum   alignment.   
Late  in  the  five-year  use  period,  the  school  district  began  a  shift  to  a  new  mathematics                 
curriculum,  and  teachers  needed  to  drop  the  curriculum  that  came  with  the  ITS.  During  this  time,                 
teachers  increasingly  found  that  it  was  challenging  to  align  the  school’s  new  mathematics              
curriculum  with  the  content  and  instructional  design  of  the  ITS.  Yet  there  was  no  convenient  way                 
for  teachers  to  customize  the  ITS’s  content  to  meet  their  changing  needs.  One  teacher  suggested                
that  the  ability  to  make  small  customizations  to  the  ITS’s  problem  interfaces  (e.g.,  editing  the                
way  math  problems  were  represented,  and  altering  the  input  format  that  the  ITS  would  accept                
from  students)  would  have  helped,  but  only  if  such  customizations  could  be  made  with  very  little                 
investment   of   time   from   the   teacher.   

2.   Semi-manual   grading   and   monitoring   systems   were   difficult   to   maintain.   
Although  the  ITS  generated  detailed  reports  about  students’  progress  and  performance  within  the              
software  (e.g.  presenting  probabilities  that  a  student  had  mastered  fine-grained  skills  in  the              
curriculum,  and  reporting  on  the  number  of  hints  a  given  student  had  requested),  teachers  noted                
that  these  reports  did  not  provide  them  with  guidance  about  how  to  fairly  and  accurately  assign                 
students  letter  grades  based  on  the  data.  As  such,  the  teachers  felt  the  need  to  develop  their  own                   
grading  system,  which  necessarily  balanced  efforts  to  be  fair  and  accurate  against  teachers’  time               
constraints.  Another  key  limitation  these  teachers  highlighted  was  that  it  was  not  always  easy  to                
identify  students  who  were  falling  behind  until  it  was  already  “too  late”  for  the  student  to  catch                  
up  with  the  rest  of  the  class.  That  is,  the  most  salient  elements  of  the  reports  provided  by  the  ITS                     
tended  to  be  information  about  the  past  (e.g.  that  a  student  had  been  overusing  the  ITS’s  hints,  or                   
that  a  student  had  not  yet  mastered  finely-defined  skills  in  the  curriculum).  But  these  reports                
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typically  did  not  provide  predictive  analytics  that  could  help  teachers  anticipate  problems  and              
proactively  intervene.  One  teacher  noted  that  they  would  have  liked  to  be  able  to  see  the                 
likelihood  that  a  student  who  had  fallen  behind  the  class  would  actually  be  able  to  “catch  up”                  
with  the  other  students,  if  given  more  time.  Without  this  information,  pushing  a  student  forward                
almost   always   seemed   like   the   most   reasonable   decision.  

3.   Perceived   susceptibility   of   these   systems   to   student   misuse.   
Some  of  the  teachers  in  this  school  perceived  that  ITSs  are  particularly  susceptible  to  “gaming”                
or  “cheating”  (e.g.  abusing  the  hints  that  the  ITS  provides,  or  solving  a  math  problem  through                 
systematic  guessing).  These  teachers  worried  that,  since  they  had  often  been  unable  to  catch               
these  behaviors  in  a  timely  manner,  some  of  their  students  had  likely  wasted  a  large  amount  of                  
learning  time  during  ITS  class  sessions.  Prior  research  supports  these  teachers’  intuitions  to  a               
degree:  gaming  behaviors  in  ITSs  have  consistently  been  shown  to  have  a  negative  impact  on                
student  learning,  overall  (although  not  all  gaming  behaviors  are  necessarily  harmful)  (Baker  et              
al.,  2013).  These  teachers  were  also  skeptical  that  a  fully  automated  mechanism  could  prevent               
students  from  gaming.  One  of  the  teachers  I  interviewed  suggested  that  alerts  about  such               
misbehavior,  which  are  easily  hidden  in  large  classrooms  and  computer  labs,  should  be  sent  to                
the   teacher   right   away.  
 

Reasons  1  and  2  above  align  closely  with  two  critical  areas  that  Nye  highlighted  as                
under-considered  in  the  literatures  on  ITSs  and  AI  in  education  –  namely  the  design  of                
teacher-facing  customization  and  monitoring  capabilities  (Nye,  2014).  Each  of  these  cases  can  be              
viewed  as  an  instance  of  the  teacher  adapting  to  the  technology,  rather  than  the  other  way  around                  
(Dillenbourg  &  Jermann,  2010;  Xhakaj,  Aleven,  &  McLaren,  2016).  The  length  and  difficulty  of               
teachers’  adjustment  to  the  use  of  ITSs  in  their  instruction  may  also  highlight  a  need  for                 
enhanced  early  support,  in  the  form  of  improved  teacher  training  tools  and  peer  support  systems                
that  facilitate  faster  sharing  of  strategies  and  observations  between  teachers  (as  teachers             
eventually  felt  the  need  to  band  together,  but  did  so  only  after  significant  struggle).  Teachers’                
practice  of  “pushing  students  forward”  when  they  do  not  achieve  mastery  within  a  pre-specified               
time  interval  represents  an  interesting  case,  as  recent  research  suggests  that  such  teacher              
“overrides”  of  ITSs’  mastery  learning  algorithms  may  be  harmful  to  student  learning  over  the               
course  of  a  school  year  (Ritter  et  al.,  2016a).  This  simultaneously  points  to  a  need  for  caution  in                   
designing  such  customization  and  control  options  for  teachers,  and  a  need  to  better  understand               
the  constraints  and  beliefs  that  might  lead  teachers  to  make  such  decisions.  Although  teachers               
were  aware  that  the  practice  of  pushing  students  forward  before  they  had  mastered  the  skills  in  a                  
given  unit  was  counter  to  the  idea  behind  mastery  learning,  they  continued  to  do  so  in  order  to                   
keep   the   class   relatively   synchronized   and   manage   their   own   orchestration   load.  

The  interviewed  teachers  also  noted  that,  since  discontinuing  use  of  the  ITS,  they  had  not                
adopted  any  other  learning  technologies  for  regular  use  in  their  classrooms.  They  emphasized              

19  



 

that  they  had  used  the  system  for  many  years  because  they  believed  the  personalized,  detailed,                
and  immediate  feedback  it  provided  to  students  was  valuable  for  their  learning.  For  this  reason,                
they  strongly  preferred  using  ITSs  to  other  educational  technologies  they  had  tried  over  the               
years.  The  primary  obstacles  to  teachers’  continued  use  of  these  systems  did  not  lie  in  the                 
perceived  effectiveness  of  ITSs,  but  rather  in  the  difficulties  that  their  use  in  the  classroom                
presented   for   teachers.  
 

1.4   “Teacher  Superpowers”  as  a  Probe  to  Investigate  Perceived                
Challenges  

To  encourage  teachers  to  talk  freely  about  challenges  they  face  in  AI-enhanced  classrooms,              
without  feeling  constrained  to  those  for  which  they  believed  a  technical  solution  was  currently               
possible,  I  initially  avoided  asking  direct  questions  about  “analytics”  or  orchestration  tool             
functionality.  Instead,  I  developed  a  new  probe  for  teachers:  in  a  series  of  one-on-one  study                
sessions   with   five   teachers   (across   schools   C   and   D),   I   asked,   

“If  you  could  have  any  superpowers  you  wanted,  to  help  you  do  your  job,  what                
would   they   be?”   

I  first  posed  this  question  in  a  very  broad  sense,  but  then  asked  specifically  about  superpowers                 
that  teachers  would  find  useful  during  classes  in  which  their  students  work  with  an  ITS  or                 
another   adaptive   learning   technology.  

In  each  study  session,  I  asked  teachers  to  immediately  write  down  their  “superpower”  ideas  on                
index  cards  the  moment  they  thought  of  them—pausing  ongoing  conversation,  if  need  be—to              
reduce  the  chance  that  they  would  lose  track  of  an  idea.  In  addition  to  identifying  design                 
opportunities  within  the  cards  teachers  generated,  I  wanted  to  get  a  better  sense  of  teachers’                
relative  priorities  among  superpowers,  and  the  underlying  reasons  behind  these  priorities  (e.g.,             
the  relative  severity  of  the  daily  challenges  underlying  these  “superpower  requests”).  To  this  end,               
once  a  teacher  finished  generating  superpower  ideas,  they  were  asked  to  sort  them  by  subjective                
priority,  while  thinking  aloud  about  the  reasoning  behind  their  sorting  (cf.  Cairns  &  Cox,  2008;                
Hanington   &   Martin,   2012).  

Teachers  were  encouraged  to  generate  new  cards  while  sorting,  in  case  the  card  sorting  process                
inspired  new  ideas.  After  a  teacher  had  finished  sorting  their  cards,  they  were  presented  with                
cards  generated  by  all  teachers  who  had  participated  before  them,  and  were  given  the  option  to                 
include  any  of  these  cards  in  their  own  hierarchy.  If  a  teacher  found  an  idea  generated  by  a                   
previous  teacher  undesirable,  they  were  instructed  to  omit  that  card  from  their  hierarchy.  If  a                
teacher  felt  that  a  superpower  idea  generated  by  a  previous  teacher  was  synonymous  or               
redundant  with  one  of  their  own  ideas,  they  were  encouraged  to  align  these  cards  horizontally,  to                 
indicate  a  “tie.”  For  example,  Figure  1-1  shows  an  excerpt  from  one  hierarchy  that  emerged  from                 
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this  iterative  card  generation  and  sorting  process.  One  of  this  teacher’s  desired  superpowers  was               
“Omniscience,”  which  the  teacher  considered  synonymous  with “Being  able  to  see  students’             
thought   processes”    (a   card   that   a   previous   teacher   had   generated).  
 

 

Figure   1-1.    Excerpt   of   a   hierarchy   produced   by   one   teacher’s   card   sort.   Superpower   ideas   the   teacher  
considered   more   desirable   are   placed   higher   with   the   hierarchy   (from   Holstein   et   al.,   2017b).  

 

Figure  1-2  aggregates  teachers’  pairwise  preferences  between  superpowers.  Each  row  and            
column  of  this  pairwise  comparison  matrix  displays  a  superpower  that  appeared  in  at  least  two                
teachers’  hierarchies.  Cell  shade  indicates  the  number  of  teachers  who  ranked  the  row              
superpower  higher  than  the  column  superpower,  with  darker  shades  indicating  greater  agreement             
(cells  on  the  diagonal  represent  self-comparisons,  and  are  thus  blacked-out).  The  minimum             
observed  agreement  value  was  0,  and  the  maximum  was  4  out  of  5.  “Be  able  to  engage  students”                   
is  highlighted  in  grey  to  indicate  that  this  superpower  was  not  present  in  all  five  teachers’  card                  
stacks.  By  the  time  a  teacher  first  generated  this  card,  no  redundant  cards  were  available  among                 
those   generated   by   previous   teacher   participants.  

Overall,  teachers  tended  to  prefer “Seeing  students  thought  processes”  over  most  other             
superpowers,  including “Seeing  students’  misconceptions.”  Some  teachers  elaborated  that  if  they            
could  really  see  and  understand  students’  step-by-step  reasoning,  this  would  likely  reveal             
students’  misconceptions  and  much  more.  It  is  also  worth  noting  that,  although  estimates  of               
student  knowledge  (e.g.,  in  the  form  of  probabilities  that  a  student  has  mastered  particular  skills)                
are  one  of  the  most  central  analytics  presented  by  common  reporting  systems  for  ITSs  (e.g.,                
Heffernan  &  Heffernan,  2014;  Khachatryan  et  al.,  2014;  Ritter,  Carlson,  Sandbothe,  &  Fancsali,              
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2015),  the  superpower “Knowing  whether  students  really  know  something”  ranked  relatively  low             
compared   with   most   of   teachers’   other   common   superpower   ideas.  
 

 
Figure   1-2.    Teachers’   relative   preferences   among   “superpower”   ideas   they   had   generated   (from   Holstein  

et   al.,   2017b).  
 

Across  the  card  hierarchies  teachers  generated,  some  interesting  regularities  emerged.  All  five             
teachers   wanted   the   abilities   to:  

See   students’   thought   processes.   
Teachers  wanted  to  be  able  to  see  the  chains  of  reasoning  that  led  students  from  one                 
mathematical  expression  to  the  next,  without  always  having  to  ask  students  to  “show  their  work,”                
and  without  having  to  spend  much  time  deciphering  student  work.  Some  teachers  explicitly              
distinguished  “seeing  thought  processes”  from  simply  seeing  percentage  estimates  of  student’s            
mastery  over  certain  skills  (which  they  were  accustomed  to  seeing  in  reports  from  adaptive               
learning  software  they  had  used  previously),  noting  that  such  skill  mastery  estimates  were  less               
actionable  on  their  own.  That  is,  if  teachers  could  follow  students’  thought  processes  in               
real-time,  this  could  provide  opportunities  for  them  to “re-route”  students  at  the  moment              
students “take  a  wrong  turn”  during  a  problem  solving  activity,  rather  than  only  providing               
delayed   feedback   once   the   student   has   moved   past   the   relevant   problem.  

Know   which   students   are    truly    stuck.   
Teachers  noted  that  students  often  raise  their  hands  during  lab  sessions  when  they  don’t  actually                
need  help.  At  the  same  time,  teachers  believed  that  many  students  who  actually  need  help  the                 
most  were  the  least  likely  to  raise  their  hands.  Being  able  to  see  which  students  actually  need  the                   
teacher’s  help,  at  any  given  moment,  would  enable  the  teacher  to  better  prioritize  help  across                
students   and    “fight   the   biggest   fires   first. ”  
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Know   which   students   are   “almost   there”   and   just   need   a   nudge   to   reach   mastery.   
Teachers  noted  that  one  of  the  most  fulfilling  parts  of  their  jobs  is “seeing  students  to  the  finish                   
line” :  working  with  students  who  are  currently  on  the  verge  of  understanding  a  new  concept,  and                 
helping  them  reach  that  understanding  more  quickly.  One  teacher  was  initially  conflicted  over              
whether  to  include  this  superpower  in  his  hierarchy,  noting  that  students  in  this  situation  would                
likely  reach  mastery  even  without  their  help.  But  this  teacher  ultimately  decided  to  keep  this                
superpower  in  the  hierarchy,  acknowledging  that,  while  he  generally  tries  to  spend  most  of  his                
time  working  with  struggling  students,  he  would  find  it  demotivating  to  spend all  of  his  time                 
doing   so.   

In   addition,   four   out   of   five   interviewed   teachers   wanted   the   abilities   to:  

Temporarily   clone   myself   (create   “Multiple   Me’s”).   
Teachers  wanted  the  ability  to  provide  one-on-one  support  to  multiple  students  simultaneously,             
rather  than  leaving  real-time  personalization  entirely  to  the  software.  All  of  the  teachers  I               
interviewed  reported  that,  while  the  level  of  personalization  enabled  by  ITSs  is  one  of  its  main                 
attractions,  such  personalization  also  makes  it  more  challenging  for teachers to  monitor  their              
students’   current   activities   and   provide   them   with   timely   feedback.  

Have   “eyes   in   the   back   of   my   head.”   
Teachers  noted  that  some  students  take  advantage  of  the  challenges  such  software  poses  for               
classroom  monitoring.  They  shared  stories  of  catching  middle  school  students  switching  to             
non-academic  websites  when  they  thought  the  teacher  was  not  watching,  but  then  immediately              
switching  back  when  they  knew  they  were  in  visual  range.  Thus,  much  of  these  teachers’                
attention  and  energy  during  an  class  session  is  spent  “patrolling”  the  classroom  and  trying  to                
make   sure   that   everyone   is   on   task.  

Detect   students’   misconceptions.   
Similar  to  teachers’  desire  to  see  students’  thought  processes,  their  desire  to  see  student               
misconceptions  was  rooted  in  the  actionability  of  this  information.  While  teachers  viewed             
“seeing  students’  thought  processes” as  enabling  real-time  correction  of  particular  student            
errors,  to  help  shape  students’  knowledge  of  procedures,  they  viewed “detecting  students’             
misconceptions”  as  enabling  the  correction  of  persistent  false  beliefs  that  might  hinder  students’              
future   learning.  

Know   which   students   are   making   lots   of   careless   errors.   
Finally,  teachers  wanted  to  be  able  to  more  easily  detect,  in  real-time,  whether  students  are                
putting  in  the  effort  required  to  learn.  Based  on  this  information,  they  could  decide  on  a                 
case-by-case  basis  whether  it  would  be  most  productive  to  spend  their  time  providing  additional               
instruction ,   or   whether   they   should   instead   try   to    motivate    the   student   to   put   in   more   effort.   
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1.5   Directed   Storytelling  

To  more  directly  investigate  teachers’  needs  for  real-time  support,  I  next  conducted             
semi-structured  interviews  with  10  teachers  across  5  schools.  In  these  interviews,  I  asked              
teachers  to  walk  me  through  specific,  recent  experiences  using  adaptive  learning  technologies  in              
the  classroom.  When  teachers  brought  up  frustrations  and  challenges  in  the  course  of  their               
storytelling,  they  were  prompted  to  reflect  on  how  they  thought  such  systems  might  be  better                
designed.  Teachers  were  encouraged  to  imagine  that  there  were  no  technical  limitations,  and  in               
particular,   no   limits   on   what   the   system   could   measure   about   their   students.  

Two  researchers  then  worked  though  transcriptions  of  approximately  5  hours  of  video  and  audio               
recorded  interviews,  to  synthesize  design  findings  using  two  standard  techniques  from            
Contextual  Design:  interpretation  sessions  and  affinity  diagramming  (Beyer  &  Holtzblatt,  1997;            
Hanington  &  Martin,  2012).  Interpretation  sessions  are  aimed  at  helping  design  teams  develop  a               
shared  understanding  of  collected  interview  and  think-aloud  data,  by  collaboratively  extracting            
quotes  representing  key  issues.  Affinity  diagramming  is  a  widely  used,  bottom-up  synthesis             
method,  aimed  at  summarizing  qualitative  patterns  across  study  participants’  responses,  by            
iteratively  clustering  participant  quotes  into  successively  higher-level  themes  (Beyer  &           
Holtzblatt,  1997;  Hanington  &  Martin,  2012).  Following  several  interpretation  sessions,  the            
resulting  301  extracted  quotes  were  iteratively  synthesized  into  40  level-1  themes,  10  level-2              
themes,   and   4   level-3   themes   (see   Figure   1-3).  
 

 

Figure   1-3.    A   partial   view   of   the   affinity   diagram,   showing   teacher   quotes   within   level-1   categories.  
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The  top-level  (level-3)  themes  that  emerged  through  Affinity  Diagramming  reflected  strong            
desires  to  maintain  control  of  the  classroom,  even  when  students  are  working  with  adaptive               
learning  technologies,  and  to  remain  an  effective  force  in  the  classroom,  providing  value  over               
and  above  what  these  technologies  can  offer  students.  Quotes  under  these  high-level  themes  were               
often  accompanied  by  expressions  of  anxiety  that  educational  technologists  intend  to replace             
their  roles  as  teachers,  instead  of  working  to support  these  roles.  In  addition,  the  top-level  themes                 
reflected  teachers’  desires  for  analytics  that  could  truly  provide  information  they did  not  already               
know  and  teachers’  concerns  that  real-time  analytics  in  the  classroom,  if  not  designed  carefully,               
could   easily   do   more   harm   than   good.  

Within  these  top-level  themes,  teachers’  design  requirements  and  opportunities  broke  down  into             
the   following   10   mid-level   themes:  

Help   me   to   intervene    where,   when,    and    with   what    I   am   most   needed.   
Teachers  wanted  support  in  deciding  how  best  to  prioritize  their  time  across  multiple  students               
who  may  compete  for  their  attention  at  once,  when  to  help  (or  refrain  from  helping)  a  given                  
student,  and  how  best  to  help.  Given  teachers’  limited  time  during  lab  sessions,              
recommendations  about  how  best  to  help  students  might  come  in  the  form  of  in-the-moment,               
personalized  advice  about  effective  instructional  strategies  to  use,  to  address  students’  specific             
areas   of   struggle.  

Make   sure   the   technology   does   not   draw   my   attention   away   from   my   students!   
Teachers  worried  that  real-time  analytics  could  easily  draw  their  attention  away  from  their              
students,  thus  defeating  the  purpose  of  using  such  technologies  in  the  first  place.  Furthermore,               
teachers  noted  that  some  of  the  most  useful  real-time  information  comes  from  reading  students’               
body  language  and  other  cues  that  likely  would  not  be  captured  by  a  learning  analytics  dashboard                 
alone.  As  such,  they  emphasized  that  an  effective  classroom  analytics  tool  would  need  to  be                
designed   to   keep   teachers’   eyes   and   ears   on   the   classroom   to   the   greatest   extent   possible.  

How   can   I   know   whether   what   I’m   doing   is    actually   working ?   
Teachers  noted  that  opportunities  to  receive  immediate  feedback  on  their  own  teaching  are              
extremely  rare.  They  often  worry,  especially  after  seeing  students’  test  scores,  that  much  of  what                
they  have  taught  students  over  several  weeks  or  months  may  have  had  no  impact.  Observing  that                 
intelligent  tutoring  systems  can  already  track  aspects  of students’  learning  in  real-time,  teachers              
wanted  these  systems  to  also  provide them  with  timely  feedback  on  the  effectiveness  of  their                
own  help-giving  (e.g.,  one-on-one  interactions  with  individual  students  or  targeted  mini-lectures            
provided  to  the  whole  class).  Receiving  such  immediate  feedback  during  a  class  session  could               
allow   them   to   adjust   their   instructional   strategies   on   the   fly.  

Help   me   understand   the   “why,”   not   just   the   “what”.   
Given  how  busy  teachers  are  when  working  with  students  during  ITS  lab  sessions,  they  wanted                
ITSs  to  provide  them  with  summarized,  directly  actionable  information  whenever  possible.  A             
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real-time  support  tool  would  need  to  provide  concise  diagnoses  of  issues  the  teacher  could  act                
upon.  For  examples,  rather  than  simply  presenting  teachers  with  the  observation  that  a  particular               
student  is  making  frequent  errors  in  the  software,  it  would  be  valuable  to  also  assist  the  teacher  in                   
determining  whether  this  is  due  to  carelessness  or  genuine  difficulties  with  the  material  (and  if                
the   latter,   to   help   the   teacher   diagnose   specific   areas   of   difficulty).  

I’m   just   one   person:   help   ease   my   load.   
Teachers  emphasized  the  usefulness  of  group  work  and  peer  tutoring  activities  in  reducing  their               
orchestration  load  in  the  classroom.  Some  teachers  suggested  that  one  way  an  ITS  could  help                
them  during  a  lab  session  would  be  to  recommend  groups  of  students  who  are  likely  to  be  able  to                    
help  one  another  (perhaps  adaptively  matched  by  the  ITS  based  on  its  knowledge  of  their  current                 
mastery  of  specific  skills).  This  would  lift  some  of  the  responsibility  of  helping  students  from  the                 
teacher’s  shoulders,  and  also  enable  the  teacher  to  work  with  a  larger  number  of  students  who                 
may   be   struggling   with   similar   issues,   by   meeting   with   groups   rather   than   individuals.  

But   how   do   I   judge   whether   my   students   are    really    doing   well?   
Teachers  wanted  more  support  from  the  ITS  in  determining  what  constitutes  “good”  performance              
(e.g.,  is  a  70%  probability  of  mastery  below  or  above  “average”  for  a  particular  skill  and  amount                  
of   practice?).  

Help   me   monitor   and   manage   student   motivation.   
Teachers  noted  that  it  would  be  useful  to  have  real-time  analytics  about  their  students’               
motivation  and  affective  states  in  the  classroom,  not  just  analytics  about  student  learning  and               
performance.  Receiving  real-time  notifications  about  student  frustration,  for  example,  could           
allow   teachers   to   intervene   before   students   became   too   demotivated.  

What   can   you   tell   me   about   my   students   that   I   do   not   already   know?   
Teachers  complained  that  reporting  systems  they  had  used  in  the  past  tended  to  provide  them                
with  a  lot  of  unsurprising  information  about  their  students.  Teachers  wanted  ITSs  to  take  into                
account  what  they  already  knew  about  their  students  (e.g., “[this  student]  is  going  to  make                
slower  progress,  but  that’s  only  because  she’s  so  deliberate” ),  and  provide  them  with              
notifications   only   in   cases   that   conflict   with   their   expectations.  

Allow  me  to  customize  the  technology  to  meet  my  needs. Teachers  emphasized  that,  in  cases                
where  an  ITS’s  instructional  design  differs  in  some  way  from  their  own  pedagogy  (e.g.,  when  the                 
mathematical  notation  the  teacher  uses  in  their  lectures  differs  from  that  the  ITS  will  accept  from                 
students),   teachers   should   be   able   to   quickly   and   easy   adapt   the   software   to   meet   their   needs.  

Allow  me  to  override  the  technology. In  addition  to  customization,  teachers  also  wanted  the               
ability  to  take  control  of  the  ITS  on-demand.  For  some  teachers,  this  simply  meant  being  able  to                  
“freeze”  all  of  their  students’  screens  while  giving  an  impromptu  lecture  in  the  midst  of  a  lab                  
session,  to  ensure  they  had  students’  attention.  For  others,  this  meant  being  able  to  load  a  “quiz                  
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problem”  on  all  students’  screens,  to  quickly  assess  the  effects  of  a  whole-class  lecture  on                
students’   knowledge   of   particular   skills.  
 

1.6 Exploring   Possible   Classroom   Futures   Through   Speed   Dating  

To  further  understand  and  validate  needs  teachers  had  revealed  through  the  “superpowers”             
exercise  and  directed  storytelling  sessions  I  adopted  a  “speed  dating”  approach,  presenting             
teachers  with  hypothetical  classroom  scenarios  inspired  by  these  needs.  Speed  dating  is  an  HCI               
method  for  rapidly  exploring  a  wide  range  of  possible  futures  with  users,  intended  to  help                
researchers/designers  elicit  unmet  needs  and  probe  the  boundaries  of  what  particular  user             
populations  will  find  acceptable  (which  otherwise  often  remain  undiscovered  until  after  a             
technology  prototype  has  been  developed  and  deployed)  (Davidoff  et  al.,  2007;  Zimmerman             
&  Forlizzi,  2017).  In  speed  dating  sessions,  participants  are  presented  with  a  number  of               
hypothetical  scenarios  in  rapid  succession  (e.g.,  via  storyboards)  while  researchers  observe  and             
aim  to  understand  participants’  immediate  reactions.  In  addition  to  revealing  ways  technology             
concepts  may  cross  boundaries  of  acceptability,  this  method  can  lead  to  the  discovery  of               
unexpected  design  opportunities  when  anticipated  boundaries  are  found  not  to  exist  or  when              
unanticipated  needs  are  discovered.  Importantly,  speed  dating  can  often  reveal  needs  and             
opportunities  that  may  not  be  observed  through  field  observations  or  other  design  activities,  such               
as   those   described   in    Sections   1.3    through    1.5 .  

I  met  with  five  teachers  from  my  previous  interviews,  and  presented  them  with  futuristic               
classroom  scenarios  inspired  by  needs  they  had  previously  expressed.  Teachers  were  presented             
with  eleven  storyboards.  Each  storyboard  presented  a  scenario  intended  to  probe  the  boundaries              
of  acceptability,  generated  based  on  teachers’  most  commonly  requested  “superpowers,”  themes            
from  the  earlier  directed  storytelling  interviews  ( Section  1.5 ),  and  notes  from  field  observations              
in  teachers’  classrooms  (Holstein  et  al.,  2017a;  2017b).  Key  findings  from  these  speed  dating               
sessions   are   summarized   below.  

Despite  teachers’  expressed  desire  for  real-time  support  in  prioritizing  their  time  across  multiple              
students  during  a  class  session,  teachers  consistently  rejected  the  idea  of  “time  management”              
systems  that  explicitly  nudge  them  to  spend  less  of  their  time  with  certain  students  (e.g.,  those                 
who  seem  to  be  doing  well  without  the  teacher’s  help)  and  more  of  their  time  with  others  (who                   
may  benefit  from  more  assistance).  For  example,  one  teacher  reacted  strongly  to  this  concept,               
stating,   

“I  don’t  need  that…  to  remind  me  it’s  time  to  move  on.  I  know  that.  As  an  educator,                   
you   know   when   you’ve   got   other   kids   to   deal   with.”   
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Figure   1-4.    Examples   of   concepts   explored   with   teachers   and   selected   reactions.   Left:   examples   of   panels  
from   speed   dating   storyboards;   Right:   selected   excerpts   from   teacher   reactions   to   the   illustrated   scenarios.  

 

Although  recent  research  suggests  that  teachers’  intuitions  about  which  students  need  the  most              
help  during  personalized  lab  sessions  can  be  limited  (Holstein  et  al.,  2017a;  2018a;  2018b),  this                
teacher’s  comment  reflects  a  core  tension  in  the  design  of  real-time,  intelligent  teacher  supports.               
Teachers’  comments  in  response  to  this  storyboard  suggested  that  such  “time  management”             
systems  can  be  undesirable  if  they  threaten  teachers’  autonomy  in  the  classroom  and  come  off  as                 
“judging”  teachers  based  on  their  current  activities.  These  systems  can  also  be  undesirable  if  they                
remove  teachers’  ability  to  choose,  on  a  case-by-case  basis,  between  two  conflicting  desires              
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during  lab  sessions  (corresponding  to  two  of  the  superpower  ideas  teachers  generated):  helping              
students  who  are  “almost  there”  versus  helping  struggling  students  who  may  be  most  in  need  of                 
help.  

By  contrast,  teachers  were  highly  receptive  to  technology  designs  that  presented  information  to              
help  them  prioritize  their  time  among  students,  without  attempting  to  directly  prescribe  specific              
actions.  For  example,  the  bottom  panel  in  Figure  1-4  comes  from  one  of  the  most  positively                 
received  storyboards.  This  panel  shows  a  heads  up  display,  through  which  an  ITS  can  inform  the                 
teacher  that  a  given  student  may  need  their  assistance  (even  if  the  student  is  not  necessarily                 
aware  that  they  need  help),  without  explicitly  suggested  that  the  teacher  should  be  helping  a                
particular  student  at  a  particular  moment.  As  shown  to  the  right  of  this  panel  in  Figure  1-4,  some                   
teachers  noted  that  such  a  tool  would  be  particularly  helpful  because  students’  hand  raising               
behavior   can   be   an   unreliable   indicator   of   their   actual   need   for   help.  

A  key  reason  teachers  gravitated  towards  the  concept  of  a  heads  up  display  was  that,  by                 
displaying  analytics  directly  overtop  their  view  of  the  classroom,  this  technology  would  not  draw               
their  attention  away  from  the  classroom  itself.  Teachers’  reactions  to  this  and  other  storyboards,               
including  a  smartwatch-based  classroom  analytics  tool,  suggested  that  they  might  be  quite  open              
to  and  even prefer  wearable  interfaces  for  real-time  use  cases,  as  opposed  to  handheld  displays                
such  as  tablets  and  mobile  phones.  In  particular,  teachers  saw  heads-up  displays  as  an               
opportunity  to  have  their  own  “private”  smart  classroom  with  analytics  only  they  could  see,               
preserving   privacy   between   students.  
 

1.7 Conclusions  

In  this  chapter,  I  have  presented  the  first  broad  investigation  in  the  literature  of  teachers’                
challenges  and  needs  for  support  in  AI-supported  personalized  classrooms.  To  the  best  of  my               
knowledge,  no  prior  work  has  conducted  broad  needfinding  studies  –  untethered  from  specific,              
pre-existing  prototypes  –  to  understand  teachers’  needs  and  desires  for  real-time  analytics  and              
orchestration  support ( see  item  1  under  Summary  of  Contributions  –  “First  broad  design              
exploration  of  needs  for  real-time  teacher  analytics  and  orchestration  support”) .  Furthermore,            
work  on  real-time  analytics  tools  has  tended  to  focus  heavily  on  designing  tools  for  use  in                 
university  contexts,  rather  than  for  K-12  teachers  (Rodriguez-Triana  et  al.,  2017),  and  has  rarely               
focused  on  supporting  teachers  in  personalized,  non-synchronous  classroom  contexts  such  as  ITS             
classrooms   (Holstein,   Hong,   et   al.,   2018;   Olsen,   2017;   but   see   van   Alphen   &   Bakker,   2016).  

Working  with  10  middle  school  math  teachers,  across  five  schools  and  school  districts  in               
Pittsburgh  and  surrounding  areas,  I  have  explored  how  intelligent  tutoring  systems  (ITSs)  might              
be  better  designed  to  work  together  with  human  teachers  during  a  class  session.  This  work  has                 
identified  several  design  opportunities  for  real-time  teacher  support  in  AI-supported  K-12            
classrooms.   
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For  example,  through  semi-structured  interviews  with  middle  school  teachers  who  have  worked             
with  existing  AI  tutoring  systems  in  their  classrooms  (see Sections  1.3  and 1.5 ),  I  have  identified                 
opportunities  for  these  systems  to  better  support  them  in  fairly  and  accurately  assessing  their               
students’  performance  within  the  software.  These  interviews  also  suggested  opportunities  for            
predictive  analytics  to  aid  teachers  in  making  challenging  decisions,  such  as  whether  and  when               
to  override  ITSs’  built-in  mastery  learning  algorithms  in  order  to  keep  slower-moving  (perhaps              
struggling)  students  relatively  in  pace  with  the  rest  of  the  class  (a  challenge  revisited  in Chapter                 
9    of   this   dissertation).  

Through  card  sorting  and  directed  storytelling  exercises  (see Sections  1.4  and 1.5 ),  I  identified               
design  features  and  requirements  for  real-time  analytics  tools  that  may  help  address  some  of  the                
greatest  challenges  teachers  face  in  such  personalized  classrooms.  Importantly,  these  findings            
suggest  that  the  analytics  commonly  generated  by  existing  teacher  dashboards  and  reporting             
systems  for  ITSs  and  other  personalized  learning  technologies  rarely  align  with  those  that              
teachers  expect  to  be  most  useful  and  actionable on-the-spot ,  during  an  ongoing  class  session               
(Holstein,  et  al.,  2017b;  2019a).  For  example,  although  estimates  of  student  knowledge  (e.g.,  in               
the  form  of  probabilities  that  a  student  has  mastered  particular  skills)  are  one  of  the  most  central                  
analytics  presented  by  common  reporting  systems  for  ITSs  (e.g.,  Feng  &  Heffernan,  2007;              
Khachatryan  et  al.,  2014;  McGraw  Hill,  2019;  Ritter  et  al.,  2007)  this  was  not  strongly  favored                 
by  teachers  relative  to  other  real-time  “superpower”  ideas  such  as  seeing  student  misconceptions              
or  knowing  when  students  are  “really  stuck”  and  may  need  human  help  (cf.  Rosé,  McLaughlin,                
Liu,   &   Koedinger,   2019).  

By  presenting  teachers  with  a  range  of  possible  futures,  through  Speed  Dating  (see Section  1.6 ),  I                 
found  that  K-12  teachers  were  highly  receptive  to  the  concept  of  intelligent  classroom  tools  that                
support  them  in  deciding  how  best  to  allocate  their  time  and  attention  across  students  during  a                 
lab  session.  At  the  same  time,  however,  teachers  recoiled  at  the  idea  of  such  a  system  providing                  
explicit,  unsolicited  recommendations  for  how  they  could  better  allocate  their  time  – especially             
when  such  recommendations  were  perceived  as  negatively  “judging”  teachers’  current  choices.  I             
do  not  interpret  these  findings  to  mean  that  real-time  teacher  support  tools  should  avoid  making                
recommendations  for  action.  Indeed,  given  previous  findings  that  teachers  sometimes  make            
decisions  that  are  suboptimal  or  even  harmful  to  students’  learning  with  ITSs  (e.g.,  Ritter  et  al.,                 
2016a),  I  suspect  that  such  directness  may  sometimes  be  important  in  guiding  teachers  towards               
more  effective  interventions  –  perhaps  especially  in  real-time  usage  scenarios,  where  teachers             
may  have  scarce  time  or  motivation  to  pore  over  data  visualizations  and  draw  their  own                
inferences.  Rather,  I  believe  that  these  findings  highlight  a  delicate  tension  between  learning              
technology  designers’  desire  to  “nudge”  teachers  towards  instructionally  effective  patterns  of            
behavior,  on  the  one  hand,  and  the  need  to  privilege  teachers’  autonomy  and  rich  prior                
knowledge,  on  the  other  –  paralleling  findings  in  other  domains  where  intelligent  systems  are               
developed  to  support  human  experts’  decision-making,  such  as  healthcare  (e.g.,  Yang,            
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Zimmerman,  Steinfeld,  Carey,  &  Antaki,  2016;  Yang,  Steinfeld,  &  Zimmerman,  2019).  It  may              
be,  for  example,  that  teachers  would  be  more  receptive  to  more  explicit  and  direct  action                
recommendations  if  these  were  presented  only  upon  a  teacher’s  request,  rather  than  in  the  form                
of  automated  alerts  (see Chapters  9  and 10 ).  This  question,  and  the  broader  question  of  how                 
teacher  support  tools  can  achieve  an  effective  balance  between  augmenting  teachers’ awareness             
in  the  classroom  (Rodriguez  Triana  et  al.,  2017;  Sherin,  Jacobs,  &  Philipp,  2011)  and more                
directly  supporting  their  decision-making (Borko,  Roberts,  &  Shavelson,  2008;  Holstein,  2018;            
Schoenfeld  2008;  2010)  remain  interesting  open  questions  for  future  design  and  experimental             
research  (cf.  An,  Bakker,  Ordanovski,  Taconis,  Paffen,  &  Eggen,  2019;  Holstein,  2018;  Holstein              
et   al.,   2018a;   2019a;   2019b;   van   Leeuwen   et   al.,   2018;   Ritter   et   al.,   2016a).  

Taken  together,  these  findings  provide  novel  insights  into  teachers’  needs  for  real-time  support  in               
orchestrating  AI-supported,  personalized  K-12  classrooms,  which  may  inform  the  design  of            
future  classroom  technologies.  I  expect  that  many  of  the  findings  presented  in  the  chapter  may                
generalize  to  other  personalized  classroom  contexts,  including  contexts  in  which  students  do  not              
interact  with  AI  tutoring  software,  or  even  with  “computers”,  per  se  (cf.  Martinez-Maldonado,              
Echeverria,   Santos,   Santos,   &   Yacef,   2018).  

Parts  Two  through Four of  this  thesis  build  upon  findings  from  this  initial  needfinding  phase,                
along  with  outcomes  from  the  classroom  data  mining  and  technical  groundwork  presented  in  the               
remainder  of Part  One .  The  next  chapter, Chapter  2 ,  complements  the  investigations  in  the               
present  chapter  with  exploratory  data  analyses  –  using  classroom  log  data  and  field  observations               
from  live  K-12  classrooms  –  of  relationships  between  out-of-software,  teacher–student           
interactions   and   students’   learning   and   behavior   within   AI   tutoring   software.  
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Chapter   2  
Investigating   Relationships   Between   Teacher   Attention,  
Student   Behavior,   and   Learning   in   Personalized  
Classrooms  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   McLaren,   B.   M.,   &   Aleven,   V.   (2017a).   SPACLE:   Investigating   learning  
across   virtual   and   physical   spaces   using   spatial   replays.   In    Proceedings   of   the   Seventh  
International   Learning   Analytics   &   Knowledge   Conference   (LAK   2017) ,   (pp.   358-367).  
ACM  

 

2.1   Background   and   Motivation  
In  Chapter  1,  I  explored  teachers’  perceived  challenges  and  needs  for  real-time  support  in               
AI-supported  classrooms.  To  complement  these  investigations,  and  further  inform  the  design  of             
real-time  teacher  support  tools,  I  also  wanted  to  better  understand  the  nature  of  teacher–student               
interactions  within  these  AI-supported  classrooms.  In  particular,  I  sought  to  explore  how             
out-of-software,  teacher–student  interactions  might  relate  to  students’  learning  and  behavior           
within  AI  tutoring  software.  Although  student  behavior  in  AI-supported  classrooms  has  been             
extensively  studied  using  log  data  from  educational  software,  the  impacts  of  students’             
out-of-software  interactions  (such  as  face-to-face  teacher–student  or  peer  tutoring  interactions)           
are  rarely  studied.  Yet  such  out-of-software  interactions  may  play  a  critical  role  in  mediating               
these   technologies’   effectiveness   (Miller,   et   al.,   2015).   

In  this  chapter,  I  focus  on  classrooms  using  intelligent  tutoring  systems  (ITSs).  Although  ITSs               
are  often  designed  for  use  in  K-12  classroom  contexts, classroom  studies  that  evaluate  the               
effectiveness  of  these  systems  do  not  typically  examine  effects  of  out-of-software,            
human-to-human  interactions  (Liu,  Davenport,  &  Stamper,  2016).  For  example,  prior  field            
studies  suggest  that  a  large  proportion  of  K-12  students’  help-seeking  behavior  in  ITS              
classrooms  may  occur  entirely  outside  of  the  software.  Yet  the  existing  ITS  literature  has  focused                
on  the  effects  of  students’  within-software  help-related  behaviors  (e.g.,  hint  requests)  rather  than              
out-of-software  behaviors  (e.g.,  asking  a  teacher  for  help)  (Aleven,  Roll,  McLaren,  &  Koedinger,              
et  al.,  2016;  Ogan  et  al.,  2012;  2015).  “In-vivo”  classroom  studies  aim  to  study  the  effectiveness                 
of  ITSs  in  the  presence  of  contextual  variables  that  are  likely  to  be  present  in  real-world                 
classroom  contexts  (e.g.,  help  from  a  teacher  or  peer,  external  distractions  affecting  individuals              
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or  groups  of  students,  collaboration  between  students,  etc.).  Yet  they  do  not  typically  measure  the                
effects  of  the  contextual  variables  themselves,  instead  treating  these  as  background  noise  (e.g.,              
Aleven,  &  Koedinger,  2002;  Koedinger,  Aleven,  Roll,  &  Baker,  2009)  (but  see  Liu,  et  al  2016;                 
Baker,   Corbett,   Koedinger,   &   Wagner,   2004).   

There  is  reason  to  expect,  however,  that  some  of  these  contextual  variables  may  be  important                
mediators  of  student  learning  (Miller,  et  al.,  2015).  In  particular,  gaining  a  better  understanding               
of  the  effects  of  teacher–student  student  interactions  in  ITS  classrooms  may  be  critical  to               
understanding  these  systems’  effectiveness  in  real-world  contexts.  For  example,  a  large-scale,            
two-year  evaluation  study  of  Carnegie  Learning’s  Algebra  I  tutor  suggested  that  variability  in  the               
out-of-software  support  teachers  provided  to  students  may  have  been  at  least  partly  responsible              
for  inconsistent  results  across  evaluation  years  (Pane,  Griffin,  McCaffrey,  &  Karam,  2013).             
Similarly,  recent  work  has  found  that  the  extent  to  which  teachers  override  ITSs’  built-in,               
mastery  learning  based  problem  selection  may  negatively  impact  student  learning  (Ritter  et  al.,              
2016a).  

This  chapter  introduces  a  new  replay-based  visualization  method,  Spatial  Classroom  Log            
Exploration  (SPACLE),  which  aims  to  facilitate  the  discovery  of  relationships  between            
out-of-software,  human–human  classroom  interactions  and  student  learning  within  educational          
software  (see  item  4  under Summary  of  Contributions  – “Novel  design  and  prototyping              
methods” ).  Through  exploratory  data  analyses  using  these  spatial  replay  visualizations,           
combined  with  causal  data  mining,  I  find  suggestive  evidence  that  students’  mere  awareness  that               
they  are  being  monitored  by  a  teacher  may  contribute  to  greater  student  engagement  and  learning                
–  perhaps  in  part  by  reducing  “gaming  the  system”  behaviors  (an  interpretation  further  supported               
by   findings   from   an   in-vivo   classroom   experiment,   presented   in    Chapter   7 ).   

While  prior  work  (e.g.,  Stang  &  Roll,  2014)  has  investigated  associations  between  teachers’              
monitoring  behaviors  and  physical  movement  in  co-located  classrooms  (e.g.,  looking  over            
students’  shoulders  as  they  work)  and  students’  behaviors  and  learning  outcomes,  using             
observational  data,  the  work  presented  in  this  chapter  is  the  first  to  investigate  such  associations                
in  the  context  of  AI-supported  classrooms  (see  item  5  under Summary  of  Contributions  –  “First                
investigations  of  relationships  between  teacher  movement/monitoring  and  student  behavior  and           
learning   in   AI-supported   classrooms” ).   
 

2.2   Spatial   Classroom   Log   Exploration   (SPACLE)  
 

Even  when  an  “in-vivo”  classroom  study  is  primarily  designed  to  test  preconceived  hypotheses              
(e.g.  to  test  the  effectiveness  of  a  particular  technology  design),  researchers  sometimes  collect              
qualitative  classroom  observations  during  the  course  of  the  study.  These  observations  can  allow              
researchers  to  gain  a  richer  picture  of  what  went  on  during  a  given  class  session,  which  may  later                   
help  in  interpreting  and  explaining  study  results.  Such  classroom  observations  can  lead  to              
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unexpected  discoveries,  which  can  later  be  investigated  more  thoroughly  through  targeted            
follow-up  experiments  or  through  offline  data  analyses  (Liu,  Davenport,  &  Stamper,  2016;  Liu,              
Stamper,  &  Davenport,  2018).  For  example,  classroom  observations  of  the  ways  students  misuse              
ITSs  inspired  a  line  of  experimental  and  data  mining  work  dedicated  to  uncovering  the               
underlying  causes  behind  these  behaviors,  as  well  as  design  work  dedicated  to  intervening  on               
these  underlying  causes  (Baker,  2011).  Similarly,  my  thesis  direction  was  originally  inspired  by              
informal  classroom  observations  of  teachers’  on-the-spot  interactions  with  their  students,  in  the             
context  of  in-vivo  classroom  experiments  that  were  not  intended  to  study  (and  did  not  explicitly                
consider  the  effects  of)  teacher–student  interactions  (Doroudi,  Aleven,  &  Brunskill,  2017;            
Doroudi,   Holstein,   Aleven,   &   Brunskill,   2015;   2016;   Long,   2015).  

To  extend  this  observation  process,  I  developed  a  new  replay  visualization  method,  instantiated              
as  a  prototype  tool ,  called  Spatial  Classroom  Log  Exploration  (SPACLE).  SPACLE            2

visualizations  replay  moment-by-moment  analytics  about  student  and  teacher  behaviors  in  their            
original  spatial  context  (e.g.,  overlaid  upon  a  classroom  seating  chart,  as  in  Figure  2-1).  These                
visualizations  enable  researchers  to  interactively  re-examine  classroom  ITS-use  sessions  within  a            
virtual  map  of  the  classroom  layout  (cf.  Vatrapu,  Kocheria,  &  Pantazos,  2013),  while  visualizing               
moment-by-moment  analytics  about  individual  students.  SPACLE  replays  are  multimodal  in  the            
sense  that  they  combine  multiple  data  streams  –  visualizing  both  analytics  about  students’              
out-of-software  interactions  (e.g.,  whether  or  not  a  student  is  raising  her/his  hand,  talking  to  a                
peer,  or  talking  to  the  teacher),  and  analytics  generated  from  students’  interactions  within  the               
software,  such  as  whether  students  are  inactive,  abusing  the  tutor’s  help  functions  (Aleven,  Roll,               
McLaren,  &  Koedinger,  2016)  making  frequent  careless  errors  (San  Pedro,  Baker,  &  Rodrigo,              
2011),  “stuck”  on  a  current  activity  (Beck  &  Gong,  2013;  Käser,  Klinger,  &  Gross,  2016),                
confused,  frustrated,  or  engaged  in  their  current  task  (Baker  et  al.,  2012;  Liu,  Pataranutaporn,               
Ocumpaugh,   &   Baker,   2013).  

In  each  replay  session,  the  SPACLE  prototype  allows  researchers  to  specify  the  analytics  –  which                
can  be  implemented  as  custom  plugin  scripts  –  that  they  would  like  to  examine  about  the  teacher,                  
the  students,  and/or  any  summary  information  they  would  like  to  display  at  the  class  level  (e.g.                 
the  percentage  of  the  class  that  is  “stuck”  on  their  current  task  at  a  given  time).  Then,  given  a                    
map  of  the  classroom  layout  where  observations  took  place,  as  well  as  a  mapping  from  student                 
identifiers  to  their  seating  positions  within  the  classroom  (both  of  which  may  be  obtained,  in                
approximate  form,  by  asking  a  teacher  to  provide  a  printed  or  hand-drawn  copy  of  the  seating                 
chart),  SPACLE  can  generate  visual  replays  that  preserve  potentially  important  spatial            
information.  Specifically,  researchers  can  import  a  class  roster  and  an  image  (e.g.,  a  scanned               
drawing)  of  a  classroom  layout  into  SPACLE,  and  then  construct  a  virtual  map  of  the  classroom                 
within  the  interface,  by  dragging,  rotating,  and  resizing  graphical  representations  of  students             
(which  are  automatically  generated,  and  pre-labeled,  based  on  the  class  roster)  into  place,  using               

2    https://github.com/d19fe8/SPACLE   
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the  image  as  a  guide.  Each  student  is  represented  as  a  small  circle  with  a  rectangle  directly  above                   
it   (representing   the   student’s   computer   screen)   and   a   name   or   other   identifier   directly   below   it.   

 

 
Figure  2-1.  A  sequence  of  screenshots  from  a  replay  of  an  ITS  class  session  generated  using  SPACLE                  
(figure  from  Holstein  et  al.,  2017a).  In  the  displayed  classroom,  there  is  a  long  vertically-oriented  row  of                  
desks  in  the  center  of  the  room,  and  several  horizontal  rows  on  either  side  of  it.  Students’  idle  time  in  the                      
ITS  –  ranging  from  30  seconds  or  less  (black)  to  90  seconds  or  more  (bright  green),  is  visualized  on  their                     
“computer  screens”.  The  teacher’s  position  in  the  classroom  is  indicated  by  a  circle  that  takes  on  colors                  
representing  the  teacher’s  current  activities  (orange:  on-task  conversation  with  a  student,  blue:             
inactive/distracted  or  off-task  conversation).  In  the  final  panel,  as  the  teacher  spends  time  away  from                
students,  in  the  back  of  the  classroom,  several  students  in  the  class  stop  working  in  the  software  for                   
extended   periods   of   time.  
 

Researchers  can  then  choose  to  visualize  moment-by-moment  analytics  about  students  by            
assigning  certain  analytics  to  appear  either  in  students’  circles  (e.g.,  to  visualize  out-of-software              
behaviors  such  as  hand  raising),  or  on  their  “computer  screens”  (e.g.,  to  visualize  analytics  about                
students’  within-software  interactions).  In  addition,  if  analytics  about  teacher  behavior  are            
present  in  a  synchronized  dataset,  these  can  be  visualized  via  a  free-floating  circle,  which  can                
change  position  on  the  map  to  represent  the  teacher’s  location  in  the  classroom  at  a  given  time.                  
Aside  from  teacher  position,  all  other  analytics  in  the  SPACLE  prototype  are  visualized  through               
color.  For  continuous-valued  or  ordinal  analytics,  colors  can  be  assigned  to  two  arbitrary  end               
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points  within  the  range  of  values  a  given  metric  can  assume,  and  these  analytics  will  be                 
visualized  by  interpolating  between  the  two  colors.  For  categorical  analytics,  colors  can  be              
assigned  individually  to  different  categories.  Figure  2-1  shows  a  series  of  screenshots  from  a               
replay  session  (showing  time  slices  several  minutes  apart).  In  this  replay,  the  time  elapsed  since                
each  student’s  last  within-software  interaction  is  displayed  on  their  “computer  screens”,  with  end              
points  of  30  seconds  and  90  seconds.  If  a  student  has  spent  30  or  fewer  seconds  inactive,  that                   
student’s  screen  will  appear  black,  and  if  the  student  has  spent  90  seconds  or  more  inactive,  the                  
screen  will  appear  bright  green.  In  between  30  and  90  seconds  of  inactive  time,  a  student’s  screen                  
will  appear  to  gradually  transition  from  black  to  green.  The  teacher’s  position  and  current               
activities  are  also  visualized  in  this  replay,  with  “on-task  conversation”  indicated  by  an  orange               
circle,  and  “inactive/distracted  or  off-task  conversation”  indicated  by  a  blue  circle.  In  this              
example,  it  is  striking  to  see  the  amount  of  inactivity  in  the  third  frame,  during  a  period  when  the                    
teacher   is   inactive,   and   standing   in   the   back   of   the   classroom.  

By  examining  a  limited  set  of  variables  within  a  single  replay  session,  SPACLE  visualizations               
may  support  researchers  in  detecting  qualitative  patterns  across  multiple  students  more  rapidly             
than  would  be  possible  by  watching  video  recordings  or  conducting  live  classroom  observations              
(Baker,  Saxe,  &  Tenenbaum,  2005;  Borko,  Roberts,  &  Shavelson,  2008).  In  addition,  by              
visualizing  different  sets  of  analytics  across  multiple  replay  sessions,  researchers  can  iteratively             
explore  questions  about  potential  mediators  of  student  learning  and  behavior  within  the  software              
(cf.  Harpstead,  2017).  After  formulating  hypotheses  based  on  replay  analyses  of  a  small  number               
of  classrooms,  researchers  can  investigate  further  through  quantitative  modeling  on  larger            
samples.  

The  SPACLE  prototype  is  currently  designed  to  work  with  ITS  log  data  from  DataShop,  a                
widely-used  educational  data  repository  (Koedinger  et  al.,  2010).  Prior  to  generating  replays,  this              
prototype  first  synchronizes  records  of  out-of-software  events  in  the  classroom  (e.g.  student  and              
teacher  behaviors,  or  class-level  disruptions)  with  log  data  that  is  automatically  generated  from              
students’  interactions  within  the  software.  The  records  of  out-of-software  behaviors  may  be             
generated  by  hand  (i.e.,  field  observations  conducted  by  human  observers),  or,  in  the  future,  via                
automated  means  using  classroom  sensors  (e.g.  An,  Bakker,  Ordanovski,  Taconis,  &  Eggen,             
2018;  Martinez-Maldonado,  Echeverria,  Santos,  Santos,  &  Yacef,  2018;  Prieto,  Sharma,           
Dillenbourg,  &  Rodriguez-Triana,  2016;  Raca  &  Dillenbourg,  2013)  or  machine-learned           
detectors  that  attempt  to  infer  out-of-software  behaviors  from  ITS  log  data  (e.g.  Miller  et  al.,                
2015).  Indeed,  in Chapter  4 of  this  dissertation,  I  describe  a  “mixed  reality  sensor”  approach                
used  in  my  subsequent  work  to  collect  such  synchronized,  out-of-software  interaction  data             
automatically  (Holstein,  Hong  et  al.,  2018;  Holstein  et  al.,  2019a).  The  primary  requirements  the               
SPACLE  prototype  imposes  on  these  out-of-software  logs  are  that  they  either  include  continuous              
measurements  (e.g.  moment-by-moment  recordings  of  a  teacher’s  location  and  movements  in  the             
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classroom)  or  discrete  observations  marked  with  approximate  start  and  end  times  for  a  given               
behavior.  
 

 

Figure  2-2 .  A  visual  representation  of  an  exploratory  data  analysis  path,  using  a  combination  of                
spatial   replay   visualizations   and   other   data   analysis   methods.  
 

In  my  work  thus  far,  I  have  primarily  used  these  spatial  replay  visualizations  to  better  understand                 
and  interpret  the  effects  of  out-of-software  classroom  dynamics  on  student  learning  with  ITSs.              
Although  not  the  focus  of  this  chapter,  I  have  also  begun  to  explore  broader  uses  of  SPACLE                  
replays  as  a  design  probe  for  teachers  (see Chapter  5  for  related  explorations).  Figure  2-2                
illustrates  an  example  of  an  exploratory  data  analysis  path  using  SPACLE.  In  this  example,               
researchers  first  run  an  in-vivo  classroom  study  to  evaluate  the  effectiveness  of  an  educational               
technology.  While  running  this  study,  researchers  may  collect  qualitative  classroom  observations            
that  can  help  guide  and  constrain  future  exploratory  analyses.  After  the  study,  researchers              
statistically  compare  students’  pre-  and  posttest  scores,  finding  an  overall  effect  of  the              
technology  on  students’  learning  outcomes.  To  explore  whether  and  how  out-of-software            
interactions  may  have mediated  student  learning  within  the  software,  researchers  conduct            
in-depth  exploratory  analyses  with  spatial  replays,  using  data  from  a  small  sample  of  classrooms.               
Researchers  then  use  observations  from  replay  analyses  to  guide  the  development  of  (or  search               
for)  quantitative  models  that  relate  within-  and  out-of-software  classroom  phenomena  (cf.  Kery             
&  Myers,  2017;  Tukey,  1977).  The  fit  of  the  resulting  models  is  evaluated  on  a  larger,  held-out                  
dataset.  If  multiple  models  fit  the  data,  researchers  may  return  to  richer  qualitative  analyses  with                
spatial   replays,   to   support   evaluation   among   competing   hypotheses.  
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In  the  following  sections,  I  illustrate  how  I  have  used  SPACLE  visualizations  as  a  bridge                
between  qualitative  analysis  of  classroom  observation  data  and  larger-scale  data  mining,  in  my              
own   early   investigations   into   potential   effects   of   teacher   behavior   in   ITS   classrooms.   
 

2.3   Case   Study:   Data   Collection  
My  collaborators  and  I  collected  the  data  reported  in  this  case  study  during  a  classroom                
experiment  aimed  at  evaluating  how  analytics  generated  from  students’  interactions  with  an  ITS,              
presented  on  a  prototype  teacher  dashboard  after  class,  could  help  teachers  plan  more  effective               
lectures  for  subsequent  class  sessions  (Xhakaj,  Aleven,  &  McLaren,  2017).  However,  the  data              
analyzed  in  this  paper  are  from  a  class  period  during  which  students  worked  with  ITSs  and                 
teachers  did  not  yet  have  access  to  a  dashboard.  Thus,  these  teachers  often  relied  on  direct                 
observations  of  their  students’  computer  screens,  while  walking  around  the  classroom,  in  order  to               
monitor  their  students’  progress.  This  is  a  typical  situation  when  teachers  use  ITSs  in  their                
classes  (d’Anjou,  Bakker,  An,  &  Bekker,  2019;  Holstein  et  al.,  2017b;  2019a;  Schofield  et  al.,                
1994).   

In  this  study,  299  middle  school  students  used Lynnette ,  an  ITS  for  algebraic  equation  solving                
(Long  &  Aleven,  2013;  Long  &  Aleven,  2016;  Long,  Holstein,  &  Aleven,  2018),  for  60  minutes,                 
spread  across  up  to  two  class  sessions.  Students’  performance  in  equation  solving  was  measured               
before  and  after  using Lynnette  via  computer-based  pre-  and  post-tests,  which  were  focused  on               
measuring  procedural  skills.  We  used  two  test  forms,  which  differed  only  by  the  particular               
numbers  used  in  equations.  Test  forms  were  presented  in  counterbalanced  order  across  pre-  and               
post-test.  Test  items  were  graded  automatically,  based  on  the  correctness  of  students’  final              
responses   (i.e.   without   providing   partial   credit   for   intermediate   steps   in   equation   solving).  

I  collected  live  classroom  observations  from  a  sample  of  9  out  of  17  classrooms,  taught  by  4                  
teachers  with  a  total  of  151  students.  Students  who  were  absent  during  any  of  the  pretest,  ITS-use                  
sessions,  or  posttest  were  excluded  from  subsequent  analyses,  leaving  135  students  in  total.  In               
the  remainder  of  this  paper,  only  data  from  these  135  students  are  considered.  Due  to  privacy                 
concerns,  it  was  not  possible  to  collect  audio  or  video  data  during  class  sessions.  Instead,  during                 
each  class  session,  a  member  of  our  research  team  sat  in  the  back  of  the  classroom  (in  order  to                    
minimize  any  disturbance  caused  by  their  presence)  and  recorded  coarse-grained  field            
observations  of  teacher  and  student  behavior.  I  recorded  observations  using  LookWhosTalking ,            3

a  tool  for  coding  live  classroom  observations,  which  I  customized  with  a  coding  scheme               
developed  to  facilitate  both  coding  and  eventual  analyses.  This  coding  scheme  was  adapted  from               
the  Baker-Rodrigo  observation  method  protocol  (BROMP)  (Ocumpaugh,  2015),  and  the  TA            
observation  protocol  developed  by  Stang  &  Roll  (2014).  This  coding  scheme  extends  the  TA               

3   https://bitbucket.org/dadamson/lookwhostalking   
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observation  protocol  by  distinguishing  between  different  types  of  teacher  interactions  with            
students  –  namely,  distinguishing  whether  a  teacher  is  monitoring/observing  a  student  or  holding              
a  conversation  with  that  student,  and  further  distinguishing  between  on-task  and  off-task             
teacher-student   conversations   (cf.   Baker   et   al.,   2004;   Ocumpaugh,   2015).  

Following  BROMP,  I  asked  teachers  to  provide  up-to-date  seating  charts  prior  to  each  class               
session,  both  to  enable  coding  of  student–teacher  interactions  during  class,  and  for  use  as               
classroom  maps  during  replay  analysis  (Ocumpaugh,  2015).  Field  observers  recorded  instances            
in  which  students  raised  or  lowered  their  hands,  and  coded  teacher  behavior  with  reference  to  6                 
broad   categories:  

1.  On-task  conversation: The  teacher  is  engaged  in  a  discussion  with  a  student  about  the                
activity   they   are   currently   working   on   

2.   Off-task   conversation:    The   teacher   is   engaged   in   an   unrelated   discussion   with   the   student.   

3.  Talking  to  class:  The  teacher  is  addressing  the  entire  class  (e.g.,  giving  a  “mini-lecture”  based                 
on   observations   made   during   a   lab   session)   

4.  Monitoring: The  teacher  is  watching  the  class  from  a  fixed  location  (e.g.,  the  teacher’s  desk),                 
or  standing  behind  a  student  and  scanning  that  student’s  computer  screen  over  their  shoulder               
(disambiguated   by   the   teacher’s   current   location,   as   described   below)   

5.   Outside   the   room:    the   teacher   is   not   in   the   classroom   

6.  Inactive:  the  teacher  is  in  the  classroom,  but  engaged  in  an  activity  other  than  one  of  the                   
above   (e.g.,   grading   papers   or   checking   email)   

Within  each  of  the  broad  behavior  categories  above,  the  position  of  the  teacher  in  the  classroom                 
was  recorded  if  the  behavior  persisted  for  at  least  two  seconds.  The  teacher’s  position  was  coded                 
either  as  the  name  of  a  student  the  teacher  was  standing  behind  (e.g.,  if  the  teacher  was                  
monitoring  or  conversing  with  that  student),  or  a  description  of  another  location  in  the  classroom,                
such  as  the  teacher’s  desk.  These  field  observations  were  then  synchronized  offline,  using  the               
SPACLE  prototype,  with  the  DataShop  log  data  generated  from  students’  interactions  with             
Lynnette .  
 

2.4   Case   Study:   Analyses   and   Results  
 

Pre-post   analysis  

A  student’s  prior  knowledge  of  equation  solving  (as  measured  by  the  pretest)  was  a  strong                
predictor  of  their  posttest  score  (r  =  0.79,  p  <  .001).  Students  went  from  an  average  of  43%  on                    
the   pretest   to   52%   on   the   posttest   –   a   significant   improvement   (F(1,   133)   =   17.66,   p   <   .001).   
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Replay   Analysis  

On  average,  teachers  spent  roughly  47%  of  their  time  either  inactive  or  outside  of  the  room.  The                  
proportions  of  time  teachers  were  observed  engaging  in  each  of  the  other  coded  activities,  within                
the   remainder   of   the   time,   are   reported   in   Table   2-1.  

In  examining  replays  of  a  small  number  of  class  sessions,  I  observed  a  number  of  unexpected                 
patterns  –  often  re-running  the  replay  with  different  combinations  of  analytics  in  order  to  explore                
particular  questions  more  deeply.  Almost  immediately,  I  noticed  that  teachers  tended  to  actively              
monitor  their  students  in  concentrated  bursts,  interleaved  with  (often  lengthy)  idle  periods  in              
which  the  teacher  might  either  monitor  the  whole  class  from  a  fixed  position  in  the  room,  or                  
attend  to  an  unrelated  activity.  During  periods  in  which  teachers  were  walking  around  the               
classroom,  they  occasionally  provided  students  with  apparently  unsolicited  feedback  (i.e.           
feedback  that  was  not  preceded  by  the  student  raising  their  hand)  based  on  their  observations                
while   watching   a   student’s   computer   monitor   over   their   shoulder.  
 

Table  2-1. Frequency  of  coded  teacher  and  student  behaviors  during  teachers’  active  time.  Top               
row:  average  percentage  of  teachers’  active  time  that  was  spent  engaged  in  each  of  the  coded                 
behavior  categories.  Bottom  row:  average  percentage  of  students  for  which  a  category  was              
observed   at   least   once.  
 

 Teacher–student:  
On-task  

conversation  

Teacher–student:  
Off-task  

conversation  

Teacher:  
Talking   to  

class  

Teacher:  
Monitoring  

Student:  
Hand-  
raising  

Teacher  
time  

33%  19%  4%  44%  N/A  

%   of  
students  

28%  7%  N/A  34%  26%  

 

In  these  replays,  teachers  appeared  to  selectively  monitor  certain  students  while  consistently             
passing  others  by.  In  interviews  with  some  of  these  teachers,  they  noted  that  they  monitor  their                 
students  strategically  during  computer  lab  sessions,  relying  on  prior  knowledge  about  their             
students’  abilities  and  behavioral  tendencies.  In  particular,  two  of  the  teachers  I  interviewed              
emphasized  that  they  tend  to  focus  on  monitoring  students  who  they  expect  are  more  likely  to  be                  
off-task  (e.g.  browsing  external  websites  instead  of  working  with  the  software).  However,             
replays  displaying  the  amount  of  time  each  student  spent  inactive  in  the  software  suggested  that                
teachers  tended  to  neglect  certain  regions  of  the  classroom,  overlooking  students  who  may  truly               
tend  towards  greater  time  off-task  (Holstein  2017a).  This  may  be  viewed  as  early,  suggestive               
evidence  that  teachers’  intuitions  can  be  limited  when  it  comes  to  judging  which  students  are                
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more  likely  to  engage  in  off-task  behavior.  However,  it  is  also  possible  that  students  sitting  in                 
regions  of  the  room  where  a  teacher  is  more  active  are more  likely  to  remain  on-task.  Indeed,                  
replay  analyses  lent  some  support  to  this  interpretation,  as  students  frequently  appeared  to  go               
off-task  when  the  teacher  moved  to  another  region  of  the  classroom,  but  then  resumed  working                
with  the  software  once  the  teacher  started  moving  in  their  general  direction.  Similarly,  many               
students  appeared  to  go  off-task  during  periods  in  which  the  teacher  was  either  inactive  or                
outside   of   the   room   (see   Figure   2-1).  

A  major  takeaway  from  these  replay  analyses  was  that  prior  work  may  have  underestimated  the                
importance  of  spatial  factors  in  the  classroom  when  analyzing  ITS  log  data.  Although  my               
original  goal  in  collecting  classroom  observation  data  was  to  investigate  the  impacts  and              
predictors  of  teachers’  helping  behaviors  in  the  classroom,  replay  analyses  revealed  that             
teachers’  proximity  seemed  to  have  much  more  salient  effects  on  student  learning  and  behavior.               
A  teacher’s  location  in  the  classroom  appeared  to  be  related  to  whether  or  not  particular  students                 
were  on-task  at  any  given  moment,  and  the  activity  of  students  sitting  next  to  one  another  often                  
appeared  to  be  temporally  synchronized  (similar  to  the  “distraction  ripples”  observed  by  Raca  &               
Dillenbourg  (2013)).  Furthermore,  when  the  teacher  was  either  distracted  or  outside  of  the              
classroom,  many  students  appeared  to  stop  working  with  the  software  entirely,  and  students’              
willingness  to  raise  their  hands  (as  well  as  their  likelihood  of  receiving  help  from  the  teacher  as  a                   
result)   appeared   to   increase   during   time   intervals   in   which   the   teacher   was   nearby.  
 

Relationships   between   student-teacher   interactions   and   student   learning   outcomes  

After  using  replay  analysis  to  gain  a  richer  qualitative  picture  of  classroom  dynamics  in  a  small                 
set  of  class  sessions,  I  conducted  quantitative  analyses  on  the  synchronized  logs  generated  by  the                
SPACLE  prototype  in  order  to  investigate  the  robustness  of  some  of  the  patterns  I  had  observed.                 
Since  I  am  ultimately  interested  in  students’  learning  outcomes,  I  began  by  examining              
relationships  between  the  frequencies  of  various  student–teacher  interactions  (evaluated          
per-student)   and   students’   pre-post   learning   gains.   

As  shown  in  Table  2-2,  neither  a  student’s  frequency  of  on-task  conversations  with  the  teacher                
nor  their  frequency  of  requesting  help  (via  hand-raising)  were  significantly  correlated  with  their              
performance  on  the  posttest,  even  when  controlling  for  the  student’s  pretest  score.  Interestingly,              
the  frequency  with  which  a  teacher  directly  monitored  a  student  was  the  only  measured  aspect  of                 
students’  and  teachers’  interactions  in  the  classroom  that  correlated  significantly  with  posttest.             
The   relationship   with   direct   monitoring   remains   significant   even   when   controlling   for   pretest.  
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Table  2-2. Zero-order  and  partial  correlations  (controlling  for  pretest)  between  student–teacher            
interactions   and   posttest   scores.    p   <   0.05,   **   p   <   0.01,   ***   p   <   0.001   

 On-task  
conversation  

Off-task  
conversation  

Direct  
monitoring  

Hand   raising  

Zero-order  
correlation  

0.00  0.13  0.39***  -0.02  

Partial  
correlation  

-0.08  -0.14  0.20*  -0.08  

 

In  order  to  better  understand  the  mechanisms  by  which  this  apparent  link  might  arise,  I  adopted  a                  
causal  model  search  approach,  using  directed  acyclic  graphs  (DAGs)  to  represent  the  qualitative              
causal  structure  among  measured  variables.  I  used  the  PC  algorithm  in  the  Tetrad  V  program  to                 4

search  for  an  equivalence  class  of  graphs  that  are  consistent  with  a  set  of  conditional                
independence  constraints  (Spirtes,  Glymour,  &  Scheines,  2000)  I  included  background           
knowledge  about  the  experimental  design  as  a  search  constraint:  namely,  that  the  pretest  precedes               
all  process  variables,  which  in  turn  are  all  prior  to  the  posttest.  The  PC  algorithm  is                 
asymptotically  reliable,  and  its  primary  limitations  lie  in  its  assumptions  that  the  underlying              
causal  dependencies  between  variables  can  be  modeled  with  linear  functions,  and  that  there  are               
no  unmeasured  common  causes  among  variables.  To  relax  the  second  of  these  assumptions,  I               
also  used  the  FCI  algorithm  to  learn  an  equivalence  class  of  graphs,  represented  by  partial                
ancestral  graphs  (PAGs).  PAGs  are  representationally  richer  than  DAGs,  and  may  contain  edges              
representing  uncertainty  over  the  nature  of  pairwise  relationships  between  variables  (Spirtes  et             
al.,   2000):  

● X   →   Y:     X   causes   Y   in   every   member   of   the   equivalence   class   represented   by   this   PAG.   
● X  ↔  Y: X  and  Y  share  a  latent  common  cause  in  every  member  of  the  equivalence  class                   

represented   by   this   PAG.   
● X   o→   Y:    Either   X   causes   Y,   X   and   Y   share   a   common   cause,   or   both.   
● X  o—o  Y:  X  is  a  cause  of  Y  or  Y  is  a  cause  of  X.  Alternatively,  X  and  Y  may  share  a                        

latent  common  cause  (either  in  the  absence  of  a  direct  causal  link  between  the  two                
variables,   or   in   addition   to   one).  

4  Available   at:    http://www.phil.cmu.edu/projects/tetrad/   
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Figure  2-3. The  model  found  by  PC,  with  parameter  estimates  included.  This  model  fits  the  data                 
well:   χ 2    =   11.31,   df   =   12,   p   =   .50.  
 

Figure  2-3  shows  the  model  found  by  PC,  with  path  coefficient  estimates  included.  The  model                
fits  the  data  well  (χ 2  =  6.03,  df  =  10,  p  =  .81) ,  and  contains  a  number  of  properties  that  are                      5

consistent  with  findings  in  prior  literature  on  the  effects  of  student  help-seeking  behaviors  on               
learning  gains  with  ITSs.  For  example,  under  this  model,  increased  use  of  the  ITS’s  hint                
functionality  appears  to  inhibit  learning, in  general  (Aleven  et  al.,  2016).  Also,  compatible  with               
previous  findings  that  on-task  conversations  with  peers  and  teachers  during  ITS  use  may  be               
negatively  related  to  student  learning in  general ,  the  model  found  by  PC  suggests  that  on-task                
conversations  with  teachers  may  increase  students’  within-software  error  rates  (cf.  Baker  et  al.,              
2004).  However,  I  did  not  replicate  Baker  et  al.’s  finding  of  a  negative  relationship  between                
on-task  conversations  and  student learning  gains ,  instead  finding  no  significant  relationship            
(perhaps  owing,  in  part,  to  differences  in  the  quality  and  effects  of peer  help  versus teacher                 

5  Note   that   in   path   analysis,   the   null   hypothesis   is   that   the   estimated   model   is   the   true   model,   and   the  
p-value   represents   the   probability   that   a   difference   between   the   estimated   and   the   observed   covariance  
matrices   at   least   as   large   as   the   realized   difference   would   have   been   observed   under   the   null   hypothesis.  
As   such,   a   p-value   above   a   specified   threshold   (conventionally   alpha   =   .05)   implies   that   the   model   cannot  
be   rejected.  
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help ).  Note  that  the  observation  of  a  negative  relationship  between  on-task  conversations  and              
student  error  rates,  and  the  absence  of  an  observed  relationship  with  learning  gains  may  be,  at                 
least  in  part,  due  to  a  selection  effect.  Students  who  have  more  on-task  conversations  with  their                 
teacher  may  be  those  who  are  having  more  difficulties  in  the  software  (for  reasons  that  may  not                  
be  captured  by  their  performance  on  the  pretest  alone),  and  who  are  in  turn  likely  to  learn  less                   
(Aleven  et  al.,  2016;  Baker  et  al.,  2004).  In  addition,  it  is  possible  that  a  finer-grained  coding  of                   
the  nature  or  content  of  these  on-task  conversations  would  have  revealed  particular             
circumstances  under  which  such  conversations  produce  a  measurable  increase  or  decrease  in             
student   learning,   as   measured   by   the   posttest.   

The  observed  positive  relationship  between  the  frequency  of  direct  monitoring  by  the  teacher  and               
student  posttest  scores  appears  to  have  been  mediated,  in  part,  by  students’  hint-use  behavior.               
One  possibility  this  suggests  –  made  more  plausible  by  my  observations  during  spatial  replay               
analyses  –  is  that  students  who  are  more  aware  that  the  teacher  is  monitoring  them  are  less  likely                   
to  engage  in  maladaptive  learning  behaviors  such  as  abusing  software-provided  hints,  and  are              
therefore  more  likely  to  learn  the  material.  It  is  also  possible,  however,  that  the  apparent  link                 
between  teachers’  direct  monitoring  behaviors  and  student  learning  gains  reflects  a  selection             
effect.  For  example,  teachers  may  tend  to  more  frequently  monitor  students  who  show  signs  of                
making  progress  in  the  software  (or  who  the  teacher  believes  are  more  likely  to  make  progress).                 
Interestingly,  this  model  suggests  that  students  with  higher  prior  domain  knowledge  (as             
measured  by  pretest  scores)  may  have  been  somewhat more  likely  to  receive  additional              
monitoring  from  the  teacher.  In  a  follow-up  interview,  one  of  the  teachers  who  participated  in                
this  study  claimed  to  have  intentionally  placed  a  group  of  students  in  a  relatively  isolated  and                 
inaccessible  area  of  the  classroom,  as  these  students  were “a  pain  to  deal  with”  –  hinting  at                  
mechanisms   by   which   this   apparent   bias   could   have   arisen.  

Prior  work  from  Stang  and  Roll  (2014)  found  similar  results  at  the  university  level.  In  their  study                  
of  interactions  between  teaching  assistants  (TAs)  and  students  in  ‘hands-on’  laboratory  sections             
of  large  introductory  physics  courses,  Stang  and  Roll  found  that  the  frequency  of  TA–student               
interactions  was  a  strong  and  positive  predictor  of  student  engagement  (defined  as  on-task              
behavior),  which  was  in  turn  an  even  stronger  predictor  of  students’  learning  gains  than  their                
pretest  scores.  Compatible  with  my  findings,  the  authors  found  that  this  relationship  held  for               
interactions  that  were  initiated  by  TAs,  but  not  for  those  initiated  by  students.  In  addition,  very                 
brief  visits  by  the  TA  appeared  to  be  just  as  effective  as  lengthy  interactions.  The  authors  posited                  
that  this  might  be  due  either  to  a  “policing”  effect  (i.e.,  frequent  interactions  motivate  students  to                 
not  stray  off-task),  or  a  “ventilation”  effect  (i.e.,  TA-initiated  visits  open  the  door  for  productive                
conversations   with   students).   

To  gain  a  sense  of  the  relative  plausibility  of  these  two  explanations  in  my  own  dataset,  I  ran                   
follow-up  replay  analyses  with  SPACLE,  across  two  teachers  and  class  sessions  –  visualizing  the               
rate  of  student  hint  requests  on  each  student’s  “computer  screen”  by  displaying  a  pulse  of  color                 
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each  time  a  student  asked  for  a  hint.  These  replays  suggested  that  students  might  have  been  less                  
likely  to  request  hints  when  the  teacher  was  nearby.  In  addition,  students  who  were  frequently                
observed  asking  for  multiple  hints  in  rapid  succession  appeared  to  pause  this  behavior  when  the                
teacher  was  nearby  or  directly  monitoring  them  –  lending  some  support  to  Stang  and  Roll’s                
“policing”   hypothesis,   but   while   also   remaining   compatible   with   their   “ventilation”   hypothesis.  

 

Figure  2-4.  The  PAG  equivalence  class  found  by  FCI,  which  encodes  the  possibility  of  unmeasured                
common   causes.  
 

Given  the  potential  for  confounding  factors,  I  used  the  FCI  algorithm  to  learn  a  PAG  causal                 
model,  relaxing  the  assumption  of  no  unmeasured  common  causes  (see  Figure  2-4).  The  learned               
structure  is  largely  the  same,  except  that  this  model  encodes  the  possibility  that  students’  pretest                
scores  may  be  related  to  direct  monitoring,  off-task  conversation,  hint  use,  and/or  error  rate  by  a                 
common  unmeasured  cause ,  and  that  the  same  may  be  true  for  the  relationships  between  direct                
monitoring  and  hint  use,  as  well  as  on-task  conversation  and  its  children:  hand  raises  and  error                 
rate.  In  addition,  the  learned  structure  suggests  that  individual  students’  frequency  of             
hand-raising  shares  common  unmeasured  causes  with  their  frequency  of  off-task  conversation            
and  their  within-software  error  rates  (which  in  turn  may  share  a  common  cause  with  students’                
rate  of  hint-use)  –  perhaps  indicating  that  these  behaviors  are  symptoms  of  unmeasured              
cognitive,  motivational,  and  affective  states  such  as  confusion  and  frustration  (Baker,  2011).             
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However,  the  positive  link  between  direct  monitoring  and  student  learning  gains  remains  in              
every   member   of   the   equivalence   class   found   by   FCI.  
 

2.5   Conclusions  
Classroom  studies  that  evaluate  the  effectiveness  of  educational  technologies  do  not  typically             
examine  the  effects  of  interactions  occurring  outside  of  the  software,  such  as  face-to-face              
teacher-student  or  peer  interactions.  Yet  these  out-of-software  interactions  may  mediate  these            
technologies’  effectiveness  (Miller  et  al.,  2015).  To  facilitate  the  discovery  of  relationships             
between  out-of-software  interactions  and  student  learning  within  educational  software  in           
personalized  classrooms,  I  have  introduced  a  replay  visualization  method,  Spatial  Classroom  Log             
Exploration  (SPACLE),  which  replays  moment-by-moment  analytics  about  student  and  teacher           
behaviors   in   their   original   spatial   context   (e.g.,   overlaid   upon   a   classroom   seating   chart).  

Through  exploratory  data  analyses  using  these  spatial  replay  visualizations,  combined  with            
causal  data  mining,  I  found  suggestive  evidence  that  students’  mere  awareness  that  they  are               
being  monitored  by  a  teacher  may  contribute  to  greater  student  engagement  and  learning  –               
perhaps  in  part  by  reducing  “gaming  the  system”  behaviors  (Holstein  et  al.,  2017a).  Specifically,               
the  observational  findings  presented  in  this  chapter  suggest  that  students  who  receive  more              
frequent  monitoring  from  teachers  in  ITS  classrooms  may  learn  more,  and  that  this  effect  may  be                 
partially  mediated  by  students’  hint-use  behavior  within  the  software.  This  hints  at  the  usefulness               
of  a  broader  notion  of  “gaming  the  system”  than  has  been  used  previously  –  taking  into  account                  
student  behaviors  that  extend  outside  of  the  software  (Holstein  et  al.,  2017a;  2018b).  The  use  of                 
SPACLE  replays  on  a  small  subset  of  our  data  throughout  the  analysis  process  enabled  us  to                 
evaluate  the  relative  plausibility  of  various  hypotheses  that  were  compatible  with  these  causal              
models.   

These  findings  partially  replicate  Stang  &  Roll  (2014)  –  lending  support  to  the  authors’               
prediction  that  their  observed  relationship  between  teacher  visits  and  student  engagement  would             
generalize  beyond  their  study’s  specific  context  (inquiry-based  laboratory  sessions  in  an            
introductory,  university-level  physics  course).  In  addition,  these  findings  may  help  interpret            
Stang  &  Roll’s  observation  that  a  teachers’  frequency  of  interaction  with  a  student  predicts               
student  engagement,  independent  of  the  length  of  these  interactions.  Our  findings  suggest  that              
teachers’  interactions  may  not  need  to  have  a  verbal  component  in  order  to  be  effective  –  that  is,                   
K-12  students’  mere  awareness  of  being  monitored  may  have  a  positive  impact  on  their  learning                
in  personalized,  self-paced  classroom  settings  –  at  least  over  short  timescales.  Results  from  a               
subsequent  in-vivo  classroom  experiment  presented  in Chapter  7  appear  to  lend  some  additional              
support   to   this   observation,   although   without   providing   conclusive   evidence.  

In  addition,  although  teachers  self-reported  (in  post-interviews  following  ITS  class  sessions)  that             
they  tried  to  help  students  who  they  believed  were  struggling  the  most  with  the  material,  in                 
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practice  these  teachers  appeared  to  exhibit  biases  in  the  opposite  direction  –  for  example,  by                
spending  more  of  their  time  with  students  who  had  higher  prior  domain  knowledge,  as  measured                
by  a  pretest.  Preliminary  findings  from  subsequent  classroom  data  mining  investigations  (see             
Chapter  6 )  suggest  one  possible  mechanism  by  which  such  biases  may  have  arisen.  In               
classrooms  not  using  a  real-time  teacher  analytics  tool,  students  who  exhibit  patterns  of  “help               
avoidance”  (Aleven,  Roll,  McLaren,  &  Koedinger,  2016)  within  educational  software  may  tend             
to  receive  less  teacher  attention  (Holstein  et  al.,  2018a).  The  teachers  we  worked  with  anticipated                
this  pattern,  often  expressing  a  belief  that  the  students  who  need  help  the  most  tend  to  be  among                   
the   least   likely   to   request   it   (e.g.,   by   raising   their   hands)   (see    Chapters   1 ,    4 ,    5 ,   and    9 ).   

Teachers  who  were  shown  spatial  replays  of  their  own  class  sessions  (within  a  week  following                
those  sessions)  often  expressed  surprise  at  how  much  was  happening  in  the  classroom  outside  of                
their  awareness  (e.g.,  students  who  were  idle  for  extended  periods  of  time,  making  many  errors                
in  the  software,  or  gaming-the-system),  or  reflected  that  they  were  not  distributing  their  time               
across  students  in  the  way  they aspired  to  do  so  (Holstein  et  al.,  2017a;  2017b).  These  early                  
findings  suggested  that,  in  addition  to  being  useful  for  exploratory  data  analyses,  spatial              
classroom  replays  might  provide  an  effective  way  to  promote  teacher  reflection  on  their  own               
behavior,  following  a  class  session  (cf.  Gerritsen,  Zimmerman,  &  Ogan,  2018;            
Martinez-Maldonado,  2019;  Prieto,  Magnuson,  Dillenbourg,  &  Saar,  2017),  and  relatedly,  a            
means  of  quickly  prototyping  and  co-designing  new  forms  of  orchestration  support  for             
AI-supported   classrooms   (Holstein   et   al.,   2017a;   2019a).  

Before  concluding,  several  limitations  of  these  early  investigations  should  be  mentioned.  The             
causal  models  presented  in  this  chapter  should  not  be  viewed  as  the  “true”  models.  First,                
although  the  data  under  consideration  come  from  an  experimental  study,  the  subset  of  the  data                
analyzed  in  this  chapter  are  from  a  portion  of  the  study  in  which  researchers  did  not  intervene  on                   
any  of  the  measured  variables  between  the  pre-  and  post-test  (except  insofar  as  running  an                
in-vivo  classroom  study  can  be  considered  an  intervention  in  itself).  As  such,  the  data  presented                
in  this  chapter  should  be  considered  observational.  Future  experimental  investigation  is  required             
to  evaluate  the  causal  nature  of  each  link  identified  in  these  causal  models  (see Chapter  7 ).                 
Second,  the  causal  search  algorithms  used  in  the  present  work  assume  that  the  underlying               
relationships  between  the  modeled  variables  are  truly  linear,  which  may  not  hold  in  practice.               
Nonetheless,  this  model  assumption  is  not  unreasonable,  as  the  relationships  within  this  dataset              
do  appear  approximately  linear.  Third,  although  the  sample  of  students  used  to  construct  these               
causal  models  is  relatively  large  compared  to  many  ITS  studies,  the  reliability  of  model  search                
would  be  improved  with  access  to  larger  samples,  and  it  is  generally  impossible  to  compute                
confidence  bounds  when  dealing  with  finite  samples  (Robins,  Scheines,  Spirtes,  &  Wasserman,             
2003;   Spirtes,   Glymour,   &   Scheines,   2000).  

In  addition,  it  is  worth  noting  that  the  present  analyses  examined  student–teacher  interactions              
over  a  relatively  brief  period  (60  minutes).  A  promising  direction  for  future  research  is  to                
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observe  ITS  classrooms  over  longer  time  periods,  in  order  to  study  how  teacher  practices  (and                
their  effects  on  student  learning)  may  evolve  over  time  (see Chapter  10  and Conclusions,               
Contributions,  and  Future  Directions  for  a  discussion).  Finally,  in  the  current  study,  a  single               
human  observer  manually  collected  classroom  observations  of  teacher-student  interactions.  This           
necessitated  the  use  of  a  very  coarse-grained  coding  scheme,  and  also  limited  the  number  of                
classrooms  our  research  team  could  feasibly  observe.  An  important  direction  for  future  work  is               
to  automate  more  components  of  the  classroom  data  collection  process  (cf.  Prieto,  Sharma,              
Dillenbourg,  &  Jesús,  2016).  A  semi-automated  approach,  using  a  combination  of  low-cost             
sensors  and  manual  observations,  may  enable  more  detailed  coding  schemes  by  freeing  human              
observers  to  focus  on  recording  higher-level  features  (e.g.  semantic  features  of  on-task             
conversations  in  the  classroom). Chapters  4  through 7  present  some  progress  in  this  direction:  an                
automated,  “inside  out”  approach  to  tracking  teachers’  physical  movement  in  the  classroom  that              
does  not  require  instrumentation  of  the  classroom  space  (see  item  5  under Summary  of               
Contributions  –  “First  investigations  of  relationships  between  teacher  movement/monitoring  and           
student   behavior   and   learning   in   AI-supported   classrooms” ).  
 

Taken  together,  the  investigations  presented  in  this  chapter  provided  preliminary  evidence  that  –              
in  addition  to  serving  teacher  needs  and  desires  –  there  may  be  opportunities  for  real-time                
teacher  analytics  to  benefit  student  learning  in  ITS  classrooms,  by  redirecting  teachers’  attention              
towards  students  who  may  need  their  help  the  most,  and  providing  additional  signals  of               
help-need  beyond  students’  own  help-seeking  behavior  (Holstein  et  al.,  2017a;  2018a;  Holstein,             
Hong,  et  al.,  2018).  Through  both  replay  analyses  and  causal  modeling,  I  observed  rich               
relationships  between  students’  out-of-software  interactions  in  and  their  within-software  learning           
and  behavior.  Some  of  the  most  salient  observed  effects  appeared  not  to  necessarily  involve               
verbal  interactions  between  students  and  their  teachers,  but  rather  appeared  to  be  due  to  spatial                
factors  such  as  the  teacher’s  position  in  the  room,  relative  to  a  student.  I  view  these  observations                  
as  suggestive  that  the  influence  of  such  out-of-software  factors  on  student  learning  with  ITSs  and                
similar  educational  technologies  has  perhaps  been  under  studied  previously.  The  observed            
relationship  between  teachers’  monitoring  behaviors  and  students’  learning  gains  suggest  that            
one  potential  mechanism  by  which  real-time  teacher  analytics  tools  might  be  effective  in              
promoting  student  learning  is  by  simply  making  students  aware  that  they  are  being  monitored.               
These  hypothesized  causal  paths  from  teacher  behavior  to  students’  learning  outcomes  are             
further  investigated  in Chapters  6  and 7 ,  through  iterative  classroom  piloting  and  in-vivo              
classroom   experimentation.  
 

Although  student  behavior  in  AI-supported,  personalized  classrooms  has  been  extensively           
studied  using  log  data  from  educational  software,  the  impacts  of  students’  out-of-software             
interactions  are  rarely  studied  (Miller,  et  al.,  2015).  While  prior  work  (e.g.,  Stang  &  Roll,  2014)                 
has  investigated  associations  between  teachers’  physical  movement  and  monitoring  behaviors  in            
co-located  classrooms  (e.g.,  looking  over  students’  shoulders  as  they  work)  and  students’             
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behaviors  and  learning  outcomes,  using  observational  data,  the  present  work  is  the  first  to               
investigate  such  associations  in  the  context  of  classrooms  using  ITSs  (see  item  5  under Summary                
of  Contributions  –  “First  investigations  of  relationships  between  teacher  movement/monitoring           
and   student   behavior   and   learning   in   AI-supported   classrooms” ).   
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Chapter   3   
Opening   up   an   Intelligent   Tutoring   System   Development  
Environment   for   Extensible   Student   Modeling   and  
Learning   Analytics  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   Yu,   Z.   Popescu,   O.,   Sewall,   J.,   McLaren,   B.   M.,   &   Aleven,   V.    (2018).  
Opening   up   an   intelligent   tutoring   system   development   environment   for   extensible  
student   modeling.   In    Proceedings   of   the   19th   International   Conference   on   Artificial  
Intelligence   in   Education   (AIED   2018).  

 
3.1   Background   and   Motivation  

To  enable  the  next  phase  of  my  thesis  work  –  the  development  and  rapid  prototyping  of  actual                  
real-time  teacher  analytics  tools  for  use  with  ITSs  (discussed  in Part  Two  of  this  thesis)  – I                 
needed   authoring   tool   functionality   that   did   not   yet   exist.  

Taking  this  as  an  opportunity  to  support  the  broader  research  community,  my  collaborators  and  I                
substantially  extended CTAT/TutorShop (Aleven  et  al.,  2016),  a  widely-used  technical           
architecture  for  ITS  authoring  and  deployment.  The  extended  architecture,  CTAT/TutorShop           
Analytics  (CT+A)  (Holstein,  Yu,  et  al.,  2018),  is  designed  to  support extensible  student              6

modeling :  the  authoring,  sharing,  and  re-use  of  a  broad  and  open  range  of  student  modeling                
techniques,  for  use  in  running  ITSs  (i.e.,  to  drive  adaptive  tutoring  behavior)  and/or  external               
learning  analytics  tools  (see  Holstein,  Hong,  et  al.,  2018;  Holstein,  Yu,  et  al.,  2018;  Paquette,                
Baker,   &   Moskal,   2018).  

Over  the  last  few  decades,  authoring  tools  have  made  the  development  of  intelligent  tutoring               
systems  (ITSs)  substantially  more  cost  effective  (Aleven  et  al.,  2016;  Blessing,  Aleven,  Gilbert,              
Heffernan,  Matsuda,  &  Mitrovic,  2015;  MacLellan,  Koedinger,  &  Matsuda,  2014;  Razzaq  et  al.,              
2009).  Yet  these  tools  are  not  always  geared  towards  easily  and  flexibly  accommodating              
advances  in  student  modeling,  which  may  limit  the  degree  to  which  they  drive  innovation  in  ITS                 
research  and  the  degree  to  which  advances  in  student  modeling  spread  across  ITSs.  Student               
models  have  long  been  (and  remain)  a  key  element  of  ITSs.  They  track  many               

6  CTAT/TutorShop   Analytics   is   available   in   the   following   open   repository:  
https://github.com/d19fe8/CTAT-detector-plugins/wiki  
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pedagogically-relevant  features  of  student  learning  and  behavior,  including  the          
moment-by-moment  development  of  student  knowledge  (e.g.,  Corbett  &  Anderson,  1995;           
Desmarais  &  Baker,  2012;  Khajah,  Lindsey,  &  Mozer,  2015),  metacognitive  skills  (e.g.,  Aleven,              
Roll,  McLaren,  and  Koedinger,  2016),  affect  (e.g.,  D’Mello,  Lehman,  &  Graesser,  2011;             
Fancsali,  2014;  Liu  et  al.,  2013),  and  motivation  (e.g.,  Baker  et  al.,  2006).  They  are  a  foundation                  
for  adaptive  tutoring  behaviors  in  ITSs  (Desmarais  &  Baker,  2012),  which  in  turn  can  lead  to                 
more  effective  instruction  (Aleven,  Roll,  et  al.,  2016;  Baker  et  al.,  2006;  D’Mello  et  al.,  2011;                 
Holstein  et  al.,  2018b;  Long  &  Aleven,  2013).  Student  models,  and  learning  analytics  more               
broadly,  are  also  increasingly  being  used  in  tools  such  as  learning  analytics  dashboards,  open               
learner  models,  and  classroom  orchestration  tools,  where  they  can  augment  the  perceptions  of              
both  teachers  (e.g.,  Bull  &  Kay,  2016;  Feng  &  Heffernan,  2007;  Holstein  et  al.,  2016;  2017b;                 
2018b;  Xhakaj  et  al.,  2017;  Yacef,  2002)  and  learners  (e.g.,  Bull  &  Kay,  2016;  Clow,  2012;  Long                  
&   Aleven,   2013;   2017;   Ritter   et   al.,   2007).  

However,  various  factors  work  against  novel  student  modeling  methods  spreading  widely  in             
ITSs.  These  methods  (e.g.,  Desmarais  &  Baker,  2012;  Khajah  et  al.,  2015;  Paquette,  Baker,  &                
Moskal,  2018;  Yudelson,  Koedinger,  &  Gordon,  2013)  are  often  developed  and  tested  on              
historical  log  data  from  educational  software  (i.e.,  “offline”).  They  are  not  commonly             
implemented  or  evaluated  in  real-world  educational  technologies;  see,  for  example,  AFM  (Cen,             
Koedinger,  &  Junker,  2006),  PFA  (Pavlik,  Cen,  &  Koedinger,  2009),  and  various  innovations  on               
Bayesian  Knowledge  Tracing  (BKT)  such  as  Khajah  et  al.  (2015)  and  Yudelson  et  al.  (2013);  but                 
see  Corbett  &  Anderson  (1995).  Even  when  an  advance  in  student  modeling  has  been               
demonstrated  in  a  live  tutoring  system,  it  often  stays  confined  to  that  system,  without  being  taken                 
up  in  other  systems  (e.g.,  Aleven,  Roll,  et  al.,  2016;  Baker  et  al.,  2006;  D’Mello  et  al.,  2011;                   
Grawemeyer,  Holmes,  Gutiérrez-Santos,  Hansen,  Loibl,  &  Mavrikis,  2015).  ITS  authoring  tools,            
and  the  ITS  architectures  with  which  they  are  integrated,  could  help  address  these  challenges  if                
they  provided  support  for  easy  integration  of  a  wide  and  open  range  of  student  modeling                
methods  and  analytics.  Given  that  for  many  ITS  authoring  tools,  many  classroom-proven  tutors              
exist,  such  authoring  tool  functionality  could  facilitate  testing  the  generality  of  new  student              
modeling  methods  across  a  range  of  tutors.  Further,  easy  integration  could  facilitate  further              
experimentation  with  new  student  modeling  methods,  beyond  the  initial  offline  testing,  regarding             
how  best  to  use  these  methods  to  enhance  an  ITS’s  functionality  (e.g.,  with  new  adaptive  tutoring                 
behaviors  or  external  learning  analytics  tools).  Eventually,  researchers  may  conduct  more            
close-the-loop  studies,  in  which  the  effects  of  new  student  modeling  methods  and  analytics  are               
rigorously  tested  in  “live”  tutoring  systems  (e.g.,  Aleven,  Roll,  et  al.,  2016;  Baker  et  al.,  2006;                 
Clow,   2012).   

Results  from  such  studies  could  accelerate  a  cumulative  science  of  student  modeling,  as  well  as                
extend  student  modeling  advances  into  working  ITSs  and  educational  practice.  However,            
authoring  tools  for  ITSs  rarely  support  extensible  student  modeling.  For  example,  prior  to  the               
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work  reported  in  this  chapter,  CTAT/Tutorshop,  an  authoring  environment  for  cognitive  tutors             
and  example-tracing  tutors  that  has  been  used  to  build  many  dozens  of  ITSs  (Aleven,  McLaren,                
et  al.,  2016),  supported  only  student  models  comprising  a  set  of  BKT  mastery  probabilities  for                
knowledge  components  (KCs)  within  the  authored  tutors.  An  author  could  not  add  other  types  of                
variables  to  the  student  model  (e.g.,  to  track  the  student’s  affective  or  motivational  state,  or                
metacognition)  or  easily  experiment  with  different  methods  for  updating  or  using  the  student              
model.  Similarly,  ASSISTments  Builder  (Razzaq  et  al.,  2009)  and  ASPIRE  (Mitrovic,  2009),             
other  major  ITS  authoring  tools,  do  not  support  easy  extension  of  their  student  models  with  new                 
types  of  variables.  By  contrast,  GIFT  (Sottilare,  Baker,  Graesser,  &  Lester,  2017)  does  support  an                
extensible  student  model  based  on  multiple  data  sources  (e.g.,  sensor  data)  with  different  time               
scales  and  granularity.  Yet  GIFT  has  been  designed  with  a  different  focus  than  CTAT,  and  thus                 
has  other  limitations  (Fancsali,  Ritter,  Stamper,  &  Nixon,  2013).  For  example,  unlike  CTAT,              
GIFT  does  not  support  non-programmer  authoring  of  tutors  with  their  own  tutor  interface  and  an                
extended  step  loop.  We  see  these  related,  somewhat  divergent,  efforts  as  synergistic  and  a  useful                
point   of   reference.   

To  address  this  challenge,  we  have  extended  CTAT/Tutorshop  so  that  authors  can  easily  plug  in                
an  open-ended  range  of  student  modeling  techniques.  The  extensions  also  support  the  authoring              
of  an  open-ended  range  of  adaptive  tutoring  behaviors  and  facilitate  the  development  of  an               
open-ended  range  of  student-facing  and  teacher-facing  support  tools,  including  real-time  tools            
for  classroom  awareness  and  orchestration  (Clow,  2012;  Holstein,  Hong,  et  al.,  2018;  Rodriguez              
Triana  et  al.,  2017).  We  refer  to  the  new  architecture  as  CTAT/TutorShop  Analytics  (CT+A).  In                
creating  this  extended  architecture,  we  aim  to  lower  the  barriers  to  the  sharing,  re-use,  and                
re-mixing  of  advanced  student  modeling  methods  across  researchers  and  research  groups,  with             
the  goal  of  accelerating  progress  within  a  cumulative  science  of  student  modeling  (cf.  Desmarais               
&  Baker,  2012;  Paquette  et  al.,  2018;  Sottilare  et  al.,  2017)  (see  item  7  under Summary  of                  
Contributions  – “CTAT/TutorShop  Analytics,  an  extended  architecture  for  ITS  development  that            
supports   ‘extensible   student   modeling’   ” ).  
 

3.2   The   CTAT/Tutorshop   Analytics   (CT+A)   Architecture  
 

Overview  

CTAT  is  a  widely  used  ITS  authoring  tool  that  supports  both  a  non-programmer  approach               
(example-tracing  tutors)  and  an  AI-programming  approach  (Cognitive  Tutors,  a  form  of            
model-tracing  tutors)  to  tutor  authoring.  TutorShop  is  a  learning  management  system  (LMS)             
built  for  classroom  use  of  CTAT  tutors.  Use  of  CTAT  has  been  estimated  to  make  ITS                 
development  4-8  times  as  cost  effective,  compared  to  historic  estimates  of  development  time              
(Aleven,  McLaren,  et  al.,  2016).  As  evidence  that  CTAT  and  Tutorshop  are  robust  and  mature,                
CTAT  has  been  used  by  more  than  750  authors.  Dozens  of  tutors  built  with  CTAT  have  been  used                   
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in  real  educational  settings  (Aleven,  McLaren,  et  al.,  2016).  As  of  2015,  CTAT-built  tutors  had                
been  used  by  44,000  students,  with  roughly  48,000,000  student/tutor  transactions,  for  a  total  of               
62,000   hours   of   student   work.   Since   then,   there   has   been   substantial   additional   use.  

I  first  describe  key  elements  of  the  CT+A  architecture  that  existed  prior  to  adding  new  support                 
for  extensible  student  modeling  (shown  in  Figure  3-1,  top).  At  a  functional  level,  each  tutor                
created  in  this  architecture  comprises  a  “step  loop”  nested  within  a  “task  loop”  (VanLehn,  2006;                
2016).  The  step  loop  supports  within-problem  tutoring,  and  the  task  loop  supports  problem              
selection.  The  step  loop  has  two  key  components,  namely,  a  tutor  interface  and  a  tutor  engine,                 
both  running  on  the  client  (i.e.,  the  student’s  machine).  The  interface  is  where  student–tutor               
interactions  occur;  it  is  custom-designed  for  each  problem  type.  The  tutor  engine  interprets              
student  actions  and  decides  what  feedback  or  hints  to  give,  employing  either  the  model-tracing  or                
example-tracing  algorithm,  depending  on  the  tutor  type.  The  tutor’s  task  loop  is  implemented  in               
TutorShop  and  runs  on  the  server.  CT+A  offers  various  problem  selection  algorithms  that  can  be                
used  within  a  tutor,  including  individualized  mastery  learning  (Corbett  &  Anderson,  1995).  This              
method  relies  on  a  student  model  that,  as  mentioned,  contains  estimates  of  the  probability  that                
the  student  has  mastered  each  of  a  set  of  KCs  targeted  in  the  current  tutor  unit,  computed  (by  the                    
tutor  engine,  as  part  of  the  step  loop)  according  to  a  standard  BKT  model  (Corbett  &  Anderson,                  
1995).  TutorShop  takes  care  of  permanent  storage  of  the  student  model.  It  also  provides  learning                
management  functionality  for  teachers  (e.g.,  managing  student  accounts  and  assignments),  as            
well   as   content   management   (e.g.,   it   stores   tutor   curriculum   content).  

This  architecture  has  been  used  to  build  many  tutors,  but  it  cannot  easily  accommodate  new                
student  modeling  methods.  To  address  this  limitation,  my  collaborators  and  I  added  the  following               
key   extensions   (shown   in   Figure   3-1,   bottom):  

1.   An   extensible   student   model.   An   author   can   now   add   new   variables   to   the   student   model.  
2. An  API  and  template  for  automated  plug-in  detectors  for  any  new  student  modeling              

variables  (i.e.,  computational  processes  –  oftentimes  machine-learned  –  that  track           
psychological  and  behavioral  states  of  learners  based  on  the  transaction  stream  with  the              
ITS).  For  the  time  being,  the  architecture  focuses  on  sensor-free  detection  of  student              
modeling  variables.  We  have  started  to  create  a  library  of  compatible  detectors,  so  as  to                
facilitate   sharing,   re-use,   and   remixing   of   plug-in   detectors   among   authors;  

3. Multiple  mechanisms  by  which  authors  can  craft  tutor  behavior  that  adapts  to  student              
model   extensions,   in   the   tutor’s   step   loop   and   task   loop;   

4. A  forwarding  mechanism  within  TutorShop  that  allows  authors  to  pass  student  models  to              
web-connected  learning  analytics  displays  on  a  broad  range  of  platforms  (from            
browser-based   dashboards   to   wearable   devices);  

5. The  beginnings  of  a  library  of  “dashlets,”  to  facilitate  building  learning  analytics  tools.              
Dashlets  are  re-usable  interface  components  that  can  be  associated  with  sets  of  analytics              
and   configured   to   visualize   these   analytics.   
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Figure  3-1.  Comparison  before  and  after  architectural  extensions.  Top:  Overview  of  the CTAT/TutorShop              
architecture  prior  to  extensions.  Bottom:  Overview  of  the  modular CT+A architecture,  illustrating  the              
flow  of  information  between  architectural  components,  with  the  top  level  (ovals)  representing  users.  Items               
in  blue  represent  configurable  components.  Rounded  boxes  indicate  information  being  passed  between             
architectural   components.   Dotted   arrows   represent   pathways   that   are   not   presently   implemented.  
 

The   Extensible   Student   Model  

Whereas  previously  the  student  model  of  a  tutor  built  in  CTAT/Tutorshop  comprised  only  a  set  of                 
KC  probabilities,  the  student  model  is  now  extensible,  with  authors  having  full  control  over  the                
set  of  variables  it  contains.  An  author  can  add  any  number  of  variables  to  the  student  model  that                   
capture  student  behaviors  and  inferred  psychological  states  (e.g.,  knowledge,  metacognitive,           
affective,  or  motivational  states;  see  Desmarais  &  Baker  (2012)  for  a  review).  The  KC               
probabilities  remain  as  variables  in  the  student  model  if  the  author  so  wishes.  With  the  exception                 
of  these  KC  probabilities,  TutorShop  is  oblivious  to  the  semantics  of  the  analytics  in  the  student                 
model  (i.e.,  it  does  not  have  any  built-in  functionality  that  responds  to  the  student  model                
analytics;  all  such  functionality  must  be  provided  by  the  author).  A  key  advantage  of  this                
“semantic  ignorance”  is  flexibility  and  control  on  the  part  of  authors  defining  and  using  these                

54  



 

analytics.  Transparent  to  the  author,  the  CT+A  architecture  maintains,  in  real  time,  two              
up-to-the-second  copies  of  the  student  model,  one  within  the  tutor  engine,  one  within  TutorShop.               
Within  the  tutor  engine,  the  student  model  can  support  adaptive  tutoring  behaviors.  Within              
TutorShop,  it  can  support  external  learning  analytics  tools  an  author  may  wish  to  create  or  hook                 
in  (e.g.,  a  real-time  dashboard  or  orchestration  tool).  The  copy  of  the  student  model  stored  by                 
TutorShop  is  kept  in  between  problems  and  student  sessions  and  is  sent  back  to  the  tutor  engine                  
at   the   beginning   of   each   problem/session,   again   transparent   to   the   author.  
 

Plug-in   Detectors  

To  extend  the  student  model,  an  author  needs  to  provide  automated  detectors  for  all  new  student                 
model  variables,  that  is,  code  that  computes  these  variables.  Tutor  authors  can  write  plug-in               
detectors  in  Javascript,  working  from  either  previously-created  detectors  or  from  a  generic             
template,  available  in  a  central,  open  source  code  repository.  The  template  defines  a  small               
number  of  code  modules  that  each  detector  should  have,  namely,  student  model  variable              
computations,   internal   feature   computations,   and   trigger   conditions   for   each.  

To  support  a  “remix”  approach  to  student  modeling,  I  have  started  a  library  of  detectors  that                 
conform  to  this  template.  The  library  is  freely  available ,  and  it  is  my  hope  it  will  continue  to                   7

grow  through  community  authoring.  Many  of  the  detectors  currently  available  have  been  used  in               
running  ITSs  and  dashboards,  including:  multiple  variants  of  the  Help  Model  (Aleven,  Roll,  et               
al.,  2016),  BKT  (Corbett  &  Anderson,  1995),  various  moving  average  detectors  of  student              
knowledge  growth  (Pelánek  &  Řihák,  2017),  and  detectors  of  unproductive  persistence  (Beck  &              
Gong,  2013;  Kai  et  al.,  2018).  Paquette  et  al.  have  also  recently  developed  and  shared  a  detector                  
of  “gaming  the  system”  behavior  in  ITSs  (Baker  et  al.,  2006)  that  generalizes  well  across  a                 
diverse   range   of   systems   (Paquette   et   al.,   2018).  

Detectors  in  CT+A  are  plug-in  agents  that  rely  on  three  sources  of  input.  First,  they  listen  to  the                   
transaction  stream  coming  from  the  tutor  engine;  each  transaction  describes  a  student  action,              
such  as  an  attempt  at  solving  a  step  or  a  hint  request,  as  well  as  the  tutor’s  response,  such  as                     
whether  the  student  action  was  correct  and  what  KCs  were  involved.  Each  detector  also  listens                
for  updates  to  the  extensible  student  model  (i.e.,  updates  made  by  other  detectors),  and  has                
access  to  all  student  model  variables,  in  addition  to  any  intermediate  variables  that  the  detector                
itself  maintains  (see  below).  Based  on  these  inputs,  each  detector  responds  with  newly  computed               
values  for  its  targeted  student  model  variables.  As  a  result,  both  copies  of  the  student  model  (the                  
one  within  the  tutor  engine  and  the  one  within  TutorShop)  are  updated,  transparent  to  the  author.                 
Student  model  updates  are  sent  to  TutorShop  in  a  fine-grained,  transaction-based  message  format              
we  have  adopted,  a  subset  of  LearnSphere’s  Tutor  Message  format  (Fancsali  et  al.,  2013;  Ritter                
&   Koedinger,   1995).  

7   https://github.com/d19fe8/CTAT-detector-plugins/wiki/   
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Each  detector  can  maintain  an  internal  state  in  the  form  of  a  set  of  intermediate  variables                 
specified  to  conform  to  the  detector  template.  Intermediate  variables  are  not  considered  to  be  part                
of  the  student  model  and  are  therefore  not  accessible  to  other  architectural  components  such  as                
other  detectors  or  aggregators.  They  are,  however,  sent  to  TutorShop,  so  that  TutorShop  can  save                
a  (compact)  “history”  for  each  detector.  These  detector  histories  are  sent  back  to  the  tutor  engine                 
at  the  beginning  of  each  problem,  so  that  the  previous  state  of  each  associated  detector  can  be                  
restored.   

Although  CTAT  detectors  typically  run  in  live  tutoring  systems,  they  can  also  be  used,  without                
modifications,  for  offline  data  analyses  (e.g.,  Holstein  et  al.,  2018a;  2018b;  Paquette  et  al.,  2018).                
LearnSphere  (Stamper  et  al.,  2016),  a  large  online  data  repository  with  many  analysis  tools,               
provides  a  workflow  component  for  CTAT  detectors,  in  the  Tigris  visual  workflow  tool,  that               
enables   running   detectors   against   historical   log   data   (from   the   same   or   other   CTAT   tutors).  
 

Extended   Support   for   Authoring   Adaptive   Tutor   Behaviors  

To  enable  the  authoring  of  a  wide  and  open  range  of  adaptive  tutor  behaviors,  my  collaborators                 
and  I  added  two  mechanisms  to  CTAT  by  which  an  author  can  make  a  tutor’s  behavior  in  the  step                    
loop  (i.e.,  the  within-problem  tutoring  support  it  offers  (Aleven,  Mclaughlin,  Glenn,  &             
Koedinger,  2017;  VanLehn,  2016)  contingent  on  the  extensible  student  model.  We  also  made              
provisions   for   plugging   in   new   task   selection   algorithms   in   the   tutor’s   task   loop.  

As  a  first  mechanism  for  creating  step-loop  tutor  behaviors  that  are  responsive  to  the  extensible                
student  model,  authors  of  example-tracing  tutors  can  use  Excel-like  formulas  that  reference             
student  model  variables.  The  use  of  formulas,  attached  to  the  tutor’s  behavior  graph,  has  long                
been  part  of  CTAT  (Aleven,  McLaren,  et  al.,  2016);  what’s  new  is  that  formulas  can  reference                 
variables  in  the  extensible  student  model  (see  Figure  3-2  below).  Formulas  can  affect  many               
aspects  of  tutor  behavior,  including  how  the  tutor  interprets  a  student’s  problem-solving  behavior              
against  a  behavior  graph,  the  content  of  feedback  and  hints,  and  tutor-performed  actions.  Using               
these  building  blocks,  an  author  can  craft  a  wide  and  open-ended  range  of  adaptive  tutor                
behaviors,  for  example,  presenting  abstract  hints  to  advanced  students,  presenting  empathic  hints             
to  frustrated  students,  presenting  unmastered  steps  as  worked-out  steps  to  be  explained  by  the               
student,  and  having  the  tutor  perform  highly  mastered  steps  for  the  student  to  reduce  “busy                
work.”  Authors  of  rule-based  tutors  can  also  craft  rules  that  support  adaptive  behaviors,  taking  of                
advantage   of   the   extensible   student   model’s   availability   in   working   memory.  

A  second  mechanism  addresses  a  limitation  of  the  first,  namely,  that  it  cannot  be  used  to  craft                  
adaptive  tutor  behaviors  that  respond  to  the  very  last  (i.e.,  the  most  recent)  student  action  –  it  lags                   
by  one  student  action.  Sometimes,  tutor  behaviors  are  needed  that  are  contingent  upon  updates  of                
the  extensible  student  model  triggered  by  the  very  last  student  action.  Our  second  mechanism               
lets  author  craft  such  tutor  behavior,  although  to  do  so,  the  author  must  write  Javascript  code.                 
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Specifically,  all  tutors  have  a  dedicated  plug-in  agent  called  the  “Tutor’s  Ear”,  that  continuously               
listens  for  updates  to  the  student  model.  The  Tutor’s  Ear  has  unique  access  to  the  tutor  engine,                  
meaning  that  it  can  directly  trigger  tutor  responses.  Authors  can  customize  this  detector  by               
specifying  (in  Javascript  code)  conditions  involving  one  or  more  student  model  variables  under              
which  a  particular  tutor  response  should  be  triggered.  Authors  can  then  specify  desired  response               
actions  (e.g.,  “ShowMessage  (‘Try  explaining  to  yourself  what  needs  to  be  done  on  this  step’)”),                
via  a  simple  API.  Ideally,  CTAT  would  have  a  single  mechanism  for  step-loop  adaptivity  based                
on  student  model  variables,  but  a  substantial  re-architecting  would  be  necessary  to  merge  the  two                
mechanisms.  

In  addition  to  supporting  the  authoring  of  adaptive  behaviors  in  the  tutor’s  step  loop,  we  support                 
the  plugging-in  of  adaptive  task  selection  methods  (i.e.,  plug-in  task  loops),  by  making  the               
student   model   available   to   external   task   selection   processes.  
 

Support   for   Using   Learning   Analytics   in   External   Support   Tools  

Finally,  authors  may  use  Tutorshop  to  forward  student  models  to  web-connected  learning             
analytics  displays  on  a  range  of  platforms,  from  browser-based  dashboards  to  wearable  devices              
(Holstein,  Hong  et  al.,  2018).  While  detectors  in  CT+A  operate  client-side,  within  individual              
students’  tutors,  and  thus  can  only  compute  analytics  for  individual  students,  it  is  often  useful  for                 
learning  analytics  applications  (e.g.,  teacher  dashboards  and  classroom  orchestration  tools)  to            
compute  analytics  at  higher  units  of  analysis,  such  as  groups  of  students  or  whole  classes.  For                 
example,  in  classrooms  in  which  students  work  with  CTAT  tutors  collaboratively  (cf.  Olsen  et               
al.,  2014),  information  about  the  relative  performance  and  contributions  of  the  students  in  a               
group  might  be  useful  to  display  to  teachers.  To  address  this  need,  the  extended  architecture                
provides  an  “aggregator”  API  to  enable  authors  to  compute  custom  group-  or  class-level              
analytics   from   student   model   variables   across   multiple   students.  

Authors  of  learning  analytics  tools  can  write  custom  “aggregators”  in  JavaScript  to  calculate  new               
values  from  detector  analytics  across  specified  sets  of  students.  Aggregator  calculations  can  be              
triggered  by  incoming  student  model  updates.  We  created  the  Aggregator  House  (AggHouse),  a              
JavaScript/Node.js  library  that  can  invoke  aggregators  either  on  the  Tutorshop  server,  or  directly              8

on  a  dashboard  client.  Results  from  aggregators  can,  in  turn,  be  used  to  update  real-time                
dashboard   displays.  

To  facilitate  building  analytics  tools  that  can  be  used  in  conjunction  with  CTAT-built  tutors  (e.g.,                
dashboards  and  orchestration  tools),  we  developed  an  API  called  the  CT+A  Live  Dashboard,              
which  includes  the  beginnings  of  a  library  of  “dashlets,”  interface  components  for  analytics              
tools.  Authors  may  use  the  built-in  dashlet  components  or  create  new  dashlets  (using  Javascript).               
In  addition  to  supporting  the  building  and  deployment  of  web  browser-based  dashboards,             

8    https://nodejs.org/en/   
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Tutorshop  can  also  forward  analytics  to  tools  running  on  external  hosts,  via  a  real-time  event                
stream   in   JSON   format,   to   support   analytics   tools   across   a   range   of   hardware   interfaces.  
 

Lessons   Learned:   Guiding   Principles   for   Extensible   Student   Modeling  

In  designing  CT+A  so  it  can  support  an  open  range  of  student  modeling  applications,  with                
provisions  for  real-time  support  tools,  a  set  of  guiding  architectural  principles  has  emerged.              
These   principles   capture   the   key   architectural   elements   added   to   CT+A.  

Maximize   tutor-side   computations.   
We  have  structured  detectors  to  promote  incremental  (e.g.,  per  transaction)  computation  of             
analytics.  This  supports  offloading  of  student  model  computations  to  the  tutor  clients,  rather  than               
the   LMS,   since   incremental   computations   spread   processing   load   over   time.  

Keep   data   streams   “lean”.   
In  designing  key  data  streams  (i.e.,  the  transaction  stream  into  the  detectors,  and  the  student                
model  update  stream  from  tutor  to  LMS),  we  settled  on  a  small  subset  of  the  information  CTAT                  
tutors  currently  send  to  LearnSphere  (Stamper  et  al.,  2016).  We  originally  attempted  to  anticipate               
many  possible  author  needs  and  build  these  into  the  transaction  messages  (Ritter  &  Koedinger,               
1995)  that  serve  as  primitive  inputs  to  plug-in  detectors,  but  decided  against  this  approach.               
Keeping  this  set  small  can  reduce  unnecessary  message  traffic  and  redundancy  by             
acknowledging  the  wide  range  of  analytics  authors  may  wish  to  compute  and  enabling  them  to                
compute   only   those   needed.  

Maintain   the   student   model   both   locally   and   centrally.   
Prior  to  these  architectural  extensions,  an  up-to-the-second  copy  of  the  student  model  was              
maintained  on  the  tutor  side,  but  the  LMS-side  copy  was  updated  only  as  needed  to  preserve  the                  
student  model  in-between  problems.  We  have  found  it  valuable  to  instead  maintain  both  a  local                
(tutor-side)  and  central  (LMS-side)  up-to-the-second  copy  of  the  student  model,  with  each  copy              
supporting  different  use  cases,  namely,  tutor  adaptivity  versus  analytics  tools;  the  latter  typically              
require  both  class-level  analytics  and  real-time  updating,  which  is  why  central  copies  of  the               
student   models   are   useful.  

Support   easy   re-mixing   of   existing   components.   
In  addition  to  supporting  plug-and-play  of  architectural  components,  we  have  found  it  valuable              
to  make  individual  components  easily-customizable.  For  example,  each  detector  contains  a            
module  that  exposes  configurable  parameters.  This  feature  is  intended  to  facilitate  the  creation  of               
variants  of  student  modeling  techniques,  including  those  created  and  shared  by  others,  to  support               
authors  not  only  in  comparing  against  each  other’s’  models,  but  also  in  building  upon  and                
contributing  to  each  other’s  modeling  work  (cf.  Kery  &  Myers,  2018;  Sottilare  et  al.,  2017;                
Stamper   et   al.,   2016).  
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3.3   Case   Studies  
In  this  section,  we  present  case  studies  of  prototype  systems  that  use  the  CT+A  architecture  to                 
enhance   tutoring   systems’   adaptive   capabilities   and/or   to   support   teachers.  
 

A   Prototype   Tutor   that   Provides   Metacognitive   Scaffolding  

The  experience  of  some  of  the  participants  during  our  institution’s  yearly  LearnLab  summer              
school  illustrates  how  a  detector  library  can  be  helpful  in  quickly  prototyping  adaptive  tutor               9

behaviors.  During  this  summer  school,  designers,  teachers,  and  researchers  build  their  own             
systems  using  CT+A.  In  the  summer  of  2017,  participants  were  able  to  author  detector-enhanced               
ITSs,  by  re-using  pre-existing  detectors  available  in  the  detector  library.  They  embedded             
pre-existing  detectors  into  their  tutors  and  authored  custom  adaptive  tutor  behavior  based  on              
detectors’   outputs.  

A  team  of  two  students,  Dennis  Bouvier  and  Ray  Martinez,  used  the  CT+A  architecture  to                
implement  an  ITS  prototype  that  provided  metacognitive  feedback  in  addition  to  feedback  at  the               
domain  level,  which  is  standard  in  CTAT  tutors.  This  tutor,  the  Binary  Search  Tutor,  was                
intended  to  help  undergraduate  Computer  Science  students  learn  binary  search  algorithms.  It             
allows  students  to  practice  applying  a  binary  search  algorithm  to  an  array  of  numbers.  The                
Binary  Search  Tutor  uses  a  plug-in  implementation  of  the  Help  Model,  which  can  identify               
patterns  in  student-tutor  interactions  that  indicate  abuse  (e.g.,  rapidly  clicking  through  hints             
without  reading)  or  avoidance  (e.g.,  not  using  hints  in  situations  where  they  are  likely  to  be                 
needed)  of  the  tutoring  software’s  built-in  hints  (Aleven,  Roll,  et  al.,  2016).  Using  custom               
response  actions  authored  in  the  Tutor’s  Ear,  the  Binary  Search  Tutor  responds  to  both  types  of                 
student  behavior.  In  the  case  of  hint  avoidance,  the  tutor  prompts  the  student  to  ask  for  a  hint.  In                    
the  case  of  hint  abuse,  the  tutor  encourages  the  student  to  try  attempting  more  steps  without                 
hints.  

A   Prototype   Fraction   Addition   Tutor   with   Hybrid   Adaptivity  

Using  CT+A,  we  have  also  created  a  tutor  prototype  that  implements  a  form  of  “hybrid                
adaptivity”  (Aleven  et  al.,  2017),  meaning  that  it  adapts  to  combinations  of  student  states.  This                
tutor,  an  example-tracing  tutor  for  4th  and  5th  grade  fraction  addition  problems,  adjusts  the  level                
of  scaffolding  provided  based  jointly  on  the  values  of  cognitive  variables  (skill  mastery)  and               
metacognitive   variables   (hint   use,   unproductive   persistence).   

9   https://learnlab.org/index.php/simon-initiative-summer-school/  
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Figure  3-2.  Left:  The  Fraction  Addition  Tutor  uses  multiple  plug-in  detectors  to  decide  whether               
to   provide   more   scaffolding.   Right:   Authoring   the   Fraction   Addition   Tutor   in   CTAT.  
 

For  example:  if  a  student  is  detected  as  having  low  knowledge  on  KCs  involved  in  the  current                  
step  (by  a  plug-in  of  BKT  (Corbett  &  Anderson,  1995))  and  the  student  is  detected  as  “using  all                   
available  hints  yet  remaining  stuck”  (by  the  Help  Model;  Aleven,  Roll,  et  al.,  2016)  but  the                 
student  is  not  currently  detected  as  necessarily  “unproductively  persisting”  (by  a  detector  of              
wheel-spinning;  Beck  &  Gong,  2013;  Kai  et  al.,  2018),  then  the  Fraction  Addition  Tutor  will                
dynamically  convert  the  student’s  current  problem  into  a  completion  problem,  by  filling  out  all               
steps  except  one,  and  prompt  the  student  to  study  the  worked-out  steps  and  fill  in  the  remaining                  
step  (Figure  3-2,  left).  This  capability  was  authored  using  a  formula  (expressed  in  CTAT’s               
formula  language)  that  references  student  model  variables  (i.e.,  the  first  of  the  two  mechanisms               
described  above  for  authoring  adaptive  tutor  behavior).  This  formula  was  attached  to  a  new  path                
in  the  behavior  graph  (the  main  representation  of  domain  knowledge  in  an  exampletracing  tutor),               
added  by  the  author  (Figure  3-2,  right).  The  path  specified  the  tutor-performed  actions  needed  to                
fill   in   the   worked-out   steps.  
 

Teacher   Smart   Glasses   that   Support   Orchestration   of   Personalized   Classrooms  

The  CT+A  architecture  has  been  used  to  develop Lumilo ,  a  mixed  reality  smart  glasses               
application,  co-designed  with  K-12  math  teachers,  and  developed  for  the  Microsoft  HoloLens  1              
( Lumilo  is  presented  in Part  Two  of  this  dissertation) . Lumilo  is  designed  to  aid  teachers  in                 10

orchestrating  personalized  class  sessions,  in  which  students  work  with  ITSs  at  their  own  pace.               
When  a  teacher  puts  these  glasses  on,  they  can  see  visual  indicators  floating  directly  over                
students’  heads,  based  on  changes  in  a  student’s  extensible  student  model.  The  teacher  can  also                
view  more  detailed  student-level  analytics,  as  well  as  class-level  summaries  (see Chapter  4 ;              

10   https://www.microsoft.com/en-us/hololens   
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Holstein,  Hong,  et  al.,  2018;  Holstein  et  al.,  2018a;  2018b;  2019a).  All  student  model  updates  are                 
computed  within  students’  tutor  clients  (using  several  plug-in  detectors)  and  forwarded  to             
TutorShop,  which  forwards  them  to Lumilo .  Although Lumilo  is  not  browser-based  (and  was  thus               
authored  outside  of  Live  Dashboard,  described  above),  TutorShop  provides  hooks  for Lumilo  to              
connect  to  each  classrooms’  analytics  streams. Lumilo ’s  dashlets  are  then  updated  by  aggregators              
on   the    Lumilo    client.  
 

A   Prototype   Dashboard   that   Supports   Data-informed   Lesson   Planning   

The  CT+A  architecture  was  used  to  develop Luna,  a  front-end  prototype  of  a  browser-based               
dashboard  for  K-12  teachers.  Unlike Lumilo ,  which  is  designed  to  support  real-time  monitoring,              
Luna  is  intended  to  support  teachers  in  lesson  planning,  using  analytics  generated  by Lynnette,  an                
ITS   for   equation   solving   (Holstein   et   al.,   2016;   Xhakaj   et   al.,   2017).   
 

 

Figure  3-3. An  early  prototype  of  the Luna  dashboard  for  lesson-planning  (developed  using  Tableau )               11

showing   the   class-level   view   (Holstein   et   al.,   2016;   Xhakaj   et   al.,   2017).  
 

Luna  allows  teachers  to  review  students’  knowledge  and  amount  of  practice  on  each  of  a  number                 
of  fine-grained  skills  and  error  categories,  either  at  the  level  of  a  class  summary,  or  at  the                  
individual  student  level.  In  addition,  teachers  can  use Luna  to  review  individual  students’              

11   https://www.tableau.com/  
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progress  through  the  software,  relative  to  the  time  they  have  spent  working  (Figure  3-3).  As  with                 
Lumilo ,  the  primitive  level  of  data  upon  which Luna  relies  are  student  model  updates,  computed                
by   plug-in   detectors   which   are   distributed   across   students’   client   machines.  
 

A   Fractions   Tutor   with   a   Custom   Adaptive   Task   Selection   Policy  

Finally,  the  CT+A  architecture  was  used  to  develop  an  adaptive  fractions  tutor  (Doroudi,  Aleven,               
&  Brunskill;  2017;  Doroudi,  Holstein,  Aleven,  &  Brunskill,  2015;  2016)  which  can  use  a  variety                
of  custom  instructional  policies  to  drive  adaptive  task  selection  (e.g.,  adaptive  policies  learned              
via  reinforcement  learning).  The  Fractions  Adaptive  tutor  makes  its  student  model  available  to              
external,  custom  task  selection  processes  (Python  web  applications)  via  the  TutorShop  LMS.             
TutorShop,  in  turn,  selects  a  next  task  for  each  student  based  on  the  output  of  this  plug-in  task                   
loop.  
 

3.4   Conclusions  

If  advances  in  student  modeling  made  by  the  AI  in  Education  (AIED),  Educational  Data  Mining                
(EDM),  Learning  Analytics  (LAK),  and  User  Modeling  (UM)  communities  are  to  have  a              
measurable  impact  on  the  design  and  effectiveness  of  real-world  systems,  and  contribute  to  a               
cumulative  science  of  student  modeling,  it  is  critical  to  develop  authoring  tools  that  can  support                
these  goals.  Toward  this  end,  this  chapter  has  introduced  CT+A,  an  open  architecture  to  support                
extensible  student  modeling  (see  item  7  under Summary  of  Contributions  – “CTAT/TutorShop             
Analytics,  an  extended  architecture  for  ITS  development  that  supports  ‘extensible  student            
modeling’  ” ).  This  architecture  supports  the  plugging  in,  sharing,  re-mixing,  and  use  of  advanced               
student  modeling  techniques  in  ITSs  and  associated  teacher-  and  student-facing  analytics  tools.             
The  work  is  unique  in  that  it  supports  extensible  student  models  in  the  context  of                
non-programmer  ITS  authoring  tools  that  support  building  tutors  with  a  dedicated            
problem-solving  interface  and  elaborate  step  loop.  In  addition  to  the  architecture  itself,  this              
chapter  presents  a  small  set  of  “lessons  learned,”  in  the  form  of  principles  summarizing  the  main                 
architectural  elements,  which  may  inform  future  projects  focused  on  extensible  student            
modeling.   

The  case  studies  presented  in  this  chapter  illustrate  some  of  the  range  and  flexibility  of  CT+A                 
and   demonstrate   progress   towards   four   key   goals   for   an   analytics-integrated   ITS   architecture:   

● Authors  can  add  new  variables  to  the  student  model  by  embedding  detectors  in  running               
tutoring  systems.  This  chapter  has  presented  an  API  and  template  for  creating  these              
plug-in   detectors,   requiring   only   that   authors   are   familiar   with   basic   JavaScript.  

● Existing   detectors   can   be   re-used   and/or   re-mixed.   
● Authoring   new   adaptive   tutoring   behavior   is   feasible   without   programming.   
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● The  CT+A  architecture  can  support  the  development  of  a  variety  of  external  analytics              
tools,  including  both  real-time  and  lesson-planning  dashboards,  and  both  web-based  and            
wearable   tools.   

Limitations  of  the  work  are,  at  least  for  the  time  being,  that  CT+A  focuses  on  transaction-based                 
(in  other  words,  sensor-free)  student  modeling  (Desmarais  &  Baker,  2012).  Although            
transaction-based  student  modeling  can  be  a  practical  and  widely  useful  approach  (e.g.,  Baker  et               
al.,  2006;  Desmarais  &  Baker,  2012;  Fancsali  et  al.,  2013;  Stamper  et  al.,  2016),  questions                
surrounding  how  a  student  model  can  be  updated  with  multiple  data  streams  of  different               
granularity  (transactions  and  sensor  output)  are  left  for  future  work.  As  mentioned,  such  issues               
are  being  explored  in  the  GIFT  architecture  (Sottilare  et  al.,  2017).  An  additional  limitation  of                
the  current  architecture  is  that,  in  authoring  tutoring  behaviors  responsive  to  the  extensible              
student  model,  immediate  tutor  responses  involve  a  different  mechanism  than  tutor  responses  in              
subsequent  tutor  cycles.  A  more  flexible  and  general  solution  might  be  give  detectors  and  the                
tutor  engine  equal  status,  with  a  coordinating  agent  that  has  the  final  word  regarding  the  tutor                 
response  (Ritter  &  Koedinger,  1995).  Finally,  adding student  model  extensions  requires  some             
programming  (namely,  to  create  detectors  in  Javascript)  and  thus  falls  outside  CTAT’s             
non-programmer  paradigm.  The  amount  of  programming  required  can  be  greatly  reduced,            
however,  by  re-using  existing  detectors,  shared  among  authors  in  the  CT+A  detector  library.  In               
the  future,  new  practices  developed  and  tested  within  architecture  might  inform  the  design  of               
extensions   that   can   support   their   use   without   programming.   

Beyond  this  dissertation,  it  is  our  hope  that  CT+A  will  help  to  lower  the  barriers  to  sharing                  
advanced  student  modeling  methods  between  researchers,  which  in  turn  may  accelerate  progress             
within  a  cumulative  science  of  student  modeling  (cf.  Desmarais  &  Baker,  2012;  Paquette  et  al.,                
2018;  Sottilare  et  al.,  2017).  Support  for  plugging  in  and  sharing  student  modeling  methods  can                
help  tutor  authors  and  researchers  not  only  in  comparing  against  each  other’s’  models  (e.g.,  by                
evaluating  systems  that  use  these  models  in  classroom  experiments),  but  even  in building  upon               
and contributing  to  others’  student  modeling  work  (cf.  Kery  &  Myers,  2018;  Sottilare  et  al.,                
2017;  Stamper  et  al.,  2016).  Such  support  might  even  help  increase  the  number  of  close-the-loop                
studies  that  researchers  undertake.  We  also  hope  that  architectures  like  CT+A  will  result  in               
broader  representation  of  advanced  student  modeling  methods  in  both  research  systems  and  in              
real-world   educational   software.  

In Parts  Two  and Three  of  this  dissertation,  I  use  the  newly-developed  CT+A  architecture  to                
enable  and  support  the  next  steps  of  my  research:  the  iterative  co-prototyping  of  real-time  teacher                
support  tools  (see Part  Two ),  and  the  classroom  evaluation  of  a  specific  prototype  ( Lumilo )  that                
emerged   from   this   iterative   prototyping   process   (see    Part   Three ).  
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Part   Two  
Co-prototyping   Real-time,  
Wearable   Teacher   Augmentation   
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Part  Two  of  this  dissertation  focuses  on  the  iterative  prototyping  of  a  new  form  of  real-time                 
teacher   augmentation,   building   upon   findings   from   my   prior   design   research.   

Findings  from  my  initial  design  research  ( Chapter  1 )  laid  the  foundation  for  a  broad  research                
program  around  real-time  teacher  augmentation.  These  design  studies  revealed  strong  needs  for             
classroom  AI  systems  that  can  effectively  support  teachers  in  addition  to  their  students,  enabling               
human  teachers  to  remain  in  control  of  their  classrooms,  while  freeing  them  up  to  do  what  they                  
are  uniquely  good  at  (see Conclusions,  Contributions, and Future  Directions for  further             
discussion).  

Building  on  these  findings,  in Part  Two  I  decided  to  narrow  my  scope,  at  least  for  an  initial                   
prototype,  to  the  design  of  tools  that  specifically  support  real-time  teacher awareness  and              
decision-making    in   AI-enhanced   classrooms,   as   opposed   to   system    customization   and   control .  

I  next  wanted  to  gain  a  more  concrete  sense  of  which  real-time  analytics  would  be  most  helpful                  
to  K-12  teachers  during  ITS  class  sessions,  and  how  teachers  would  envision  actually  using  such                
analytics   during   a   class   session,   to   inform   their   in-the-moment   decision-making.   

In  addition,  I  decided  to  further  explore  the  idea  of  using  heads  up  displays  such  as  smart  glasses,                   
given  teachers’  desire  to  keep  their  heads  up  and  their  attention  focused  on  the  classroom  (see                 
Section  1.5 ),  and  given  the  enthusiasm  around  this  concept  that  I  had  observed  during  speed                
dating  (see Section  1.6 ).  The  decision  to  consider  such  interfaces  at  all  in Part  Two –  rather  than                   
restricting  these  narrower  explorations  to  hardware  interfaces  that  were  already  lower  cost,  more              
widely  adopted,  and  more  familiar  in  K-12  classroom  settings  –  represented  a  conscious  choice               
to  innovate  on  a  longer  timescale  (see  Harrison,  2018).  This  issue  discussed  further  in Part  Four ,                 
which  begins  to  explore  how  such  technologies  might  be  prepared  for  wider  use,  beyond  a                
research   context.  

To  these  ends,  I  conducted  a  series  of  iterative,  participatory  design  studies  with  a  total  of  16                  
middle  school  math  teachers  across  nine  schools  and  six  school  districts  who  currently  use               
adaptive   learning   technologies   in   their   classrooms   (see    Section   4.2 ).  
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Chapter   4  
Lumilo:  Real-time,  Wearable  Cognitive  Augmentation  that            
Facilitates  Teacher–AI  Co-orchestration  of  Personalized          
Classrooms  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   Hong,   G.,   Tegene,   M.,   McLaren,   B.   M.,   &   Aleven,   V.    (2018).    The  
classroom   as   a   dashboard:   Co-designing   wearable   cognitive   augmentation   for   K-12  
teachers.   In    Proceedings   of   the   Eighth   International   Learning   Analytics   &   Knowledge  
Conference   (LAK   2018),   (pp.   79-88) .   ACM.  

● Holstein,   K.,   McLaren,   B.   M.   &   Aleven,   V.    (2019).   Co-designing   a   real-time   classroom  
orchestration   tool   to   support   teacher–AI   complementarity.    Journal   of   Learning   Analytics  
(JLA).  

 

4.1   Background   and   Motivation  
Building  on  findings  from  my  initial  design  research  with  K-12  teachers  ( Chapter  1 ),  I  next                
conducted  a  series  of  iterative,  participatory  design  studies  with  middle  school  math  teachers              
who  currently  use  adaptive  learning  technologies  in  their  classrooms.  I  began  with  lo-fi              
experience  prototyping  and  participatory  comicboarding  sessions  (Hiniker,  Sobel,  &  Lee,  2017;            
Moraveji,  Liu,  Ding,  O’Kelley,  &  Woolf,  2007),  to  validate  teachers’  desires  for  real-time              
analytics,  further  probe  underlying  needs,  and  explore  how  teachers  envisioned actually  using             
this  information  during  a  class  session.  I  also  further  explored  the  idea  of  “teacher  smart                
glasses”,  to  understand  their  unique  affordances  for  orchestrating  personalized  class  sessions.            
Then,  following  a  mid-fidelity  experience  prototyping  phase  using  the  Microsoft  HoloLens  1,  I              
developed  a  fully-functional  prototype  of  a  mixed  reality  smart  glasses  based  real-time  analytics              
tool   called    Lumilo .  

Many  existing  real-time  orchestration  tools  have  been  designed  with  the  assumption  that  a  class               
of  students  progresses  through  instructional  activities  in  a  relatively  synchronized  manner  (cf.             
van  Leeuwen,  2015;  but  see  Olsen,  2017).  Understanding  how  best  to  support  teachers  in               
orchestrating  highly-differentiated,  non-synchronous  classrooms,  such  as  those  using  AI  tutoring           
systems,  remains  an  important  and  challenging  research  problem.  Orchestration  support  for  such             
classrooms  must  alleviate  the  implementation  challenges  that  these  classrooms  raise  for  the             
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teacher  (e.g.,  see Chapter  1 ,  Alphen  &  Bakker,  2016;  Bingham,  Pane,  Steiner,  &  Hamilton,               
2018;   Holstein   et   al.,   2017b;   Holstein,   Hong,   et   al.,   2018).  

Prior  work  has  begun  to  investigate  the  potential  of  emerging  wearable  technologies  for  real-time               
teacher  support  (e.g.  Quintana,  Quintana,  Madeira,  &  Slotta,  2016;  Zarraonandia,  Aedo,  Díaz,  &              
Montero,  2013).  Such  technologies  hold  great  promise  to  enhance  teacher  awareness,  while             
allowing  teachers  to  keep  their  heads  up  and  eyes  focused  on  their  classroom  –  acknowledging                
the  highly  active  role  teachers  play  in  personalized  classrooms  (Holstein  et  al.,  2017a;  2017b;               
Quintana,  et  al.,  2016,  Schofield  et  al.,  1994).  While  prior  research  suggests  that  teachers  may                
prefer  wearables  over  handheld  devices  for  use  in  personalized  classrooms  (e.g.,  Quintana,  et  al.,               
2016),  this  work  has  not  involved  the  human-centered  design  and  evaluation  of  an  actual               
wearable  orchestration  tool.  Furthermore,  while  prior  work  has  tested  the  use  of  smart  glasses  to                
help  students  provide  live  feedback  to  their  instructors  in  university  lecture  contexts             
(Zarraonandia,  et  al.,  2013),  the  present  work  represents  the  first  exploration  in  the  literature  of                
the  affordances  of  smart  glasses  to  support  teachers  in  orchestrating  personalized  classroom             
sessions.  

Together  with  the  design  explorations  presented  in  Chapter  1 and 9,  and  the  field  studies                
presented  in Chapters  6  through 8  the  present  work  represents  the  first  broad  exploration  in  the                 
literature  of  teachers’  needs  for  real-time  analytics  and  orchestration  support  in  personalized             
classrooms,  as  well  as the  first  exploration  in  the  literature  of  the  use  of  wearable,  heads-up                 
displays  to  support  teachers  in  orchestrating  personalized  classrooms  (see  items  1  and  2  under               
Summary  of  Contributions  – “First  design  exploration  of  needs  for  real-time  teacher  analytics              
and  orchestration  support”  and  “First  design  exploration  and  prototypes  of  wearable,  heads-up             
displays   to   support   orchestration   of   personalized   classrooms” ).  

 

4.2   Overview   of   Methods  
I  conducted  a  series  of  iterative,  participatory  design  studies  with  a  total  of  16  middle  school                 
math  teachers  across  nine  schools  and  six  school  districts.  All  participating  teachers  had              
previously  used  adaptive  learning  technologies  in  their  classrooms,  and  12  out  of  16  had  used  an                 
ITS  as  a  regular  component  of  their  teaching  (see Table  4-1).  As  detailed  in  the  following                 
sections,  these  studies  included  activities  such  as  experience  prototyping  (Buchenau  &  Suri,             
2000),  role-playing  and  bodystorming  exercises  (Oulasvirta,  Kurvinen,  &  Kankainen,  2003),           
participatory  sketching  and  comicboarding  (Kusunoki,  Sarcevic,  Zhang,  &  Yala,  2015;  Moraveji,            
Li,  Ding,  O’Kelley,  &  Woolf,  2007;  Tohidi,  Buxton,  Baecker,  &  Sellen,  2006),  and  behavioral               
mapping  (Hanington  &  Martin,  2012;  Veitch,  Salmon,  &  Ball,  2007).  In  Chapter  5,  I  present                
Replay  Enactments,  a  novel  prototyping  method  for  dynamic,  data-driven  algorithmic           
experiences,  which  I  developed  to  conduct  higher-fidelity  prototyping  sessions  with  teachers,            
prior  to  piloting  in  actual  classroom  settings  (Holstein  et  al.,  2019a;  Holstein,  Hong,  et  al.,  2018).                 
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As  discussed  in  the  following  sections,  choices  of  design  research  methods  were  made  iteratively               
and   adaptively,   based   on   our   team’s   areas   of   greatest   uncertainty   at   a   given   stage   of   the   process.  
 

Table   4-1.    Demographic   information   for   schools   participating   in   prototyping   studies  

School  Region  Free/Reduced  
Price   Lunch  

#   of   teachers  #   of   teachers   with    <    2   years’  
experience  

C  Suburban  23%  1  0  

E  Rural  34%  4  0  

F  Suburban  78%  1  1  

G  Urban  36%  4  1  

H  Urban  67%  1  0  

I  Urban  63%  2  0  

J  Suburban  99%  1  0  

K  Suburban  71%  1  1  

L  Urban  87%  1  1  

 

4.3   Iterative   Low-Fidelity   Prototyping  
To  further  understand  teachers’  needs  and  desires  for  real-time  awareness  support,  before             
developing  specific  prototypes,  I  conducted  a  sequence  of  three  lo-fi  experience  prototyping             
(Buchenau  and  Suri,  2000)  and  participatory  comicboarding  (Moraveji  et  al.,  2007)  sessions  with              
middle  school  math  teachers.  For  all  studies,  researchers  traveled  to  schools  to  work  with               
teachers   in   their   own   classrooms.  

In  each  study  session,  a  teacher  viewed  a  computer  screen  showing  a  full-screen  image  of  a                 
classroom  full  of  students  working  with  adaptive  learning  software.  A  researcher  asked  the              
teacher  to  put  on  a  pair  of  plastic  eyeglass  frames,  which  the  teacher  was  asked  to  pretend  were                   
“smart  glasses.”  As  soon  as  the  teacher  put  on  these  glasses,  a  researcher  pressed  a  button  on  the                   
computer,  triggering  additional  layers  of  information  to  appear  in  front  of  the  image  (simulating               
the  experience  of  using  actual  smart  glasses).  Floating  text  labels  appeared  over  individual              
students’  heads,  alerting  teachers  to  students’  current  detected  knowledge  or  behavioral  states,  in              
accordance  with  common  teacher  “superpower”  ideas  from  my  earlier  design  studies  (discussed             
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in Chapter  1 ).  For  example,  by  looking  around  the  classroom,  teachers  could  instantly  see  that                
certain  students  were  currently  struggling  in  the  software,  might  be  off-task,  or  were  frequently               
making  careless  errors.  In  addition,  two  class-level  dashboards  appeared  against  the  front  wall  of               
the  classroom,  visible  only  through  the  “smart  glasses,”  based  on  teachers’  expressed  desires  for               
real-time  information  at  the  class-level.  One  of  these  dashboards  showed  a  list  of  skills  that  had                 
been  practiced  by  multiple  students  in  the  class,  but  mastered  by  very  few  students,  and  the  other                  
dashboard  showed  a  sorted  list  of  common  errors  that  multiple  students  in  the  class  had  recently                 
exhibited.   

The  image  showed  a  single  instant  during  a  class  session,  frozen  in  time,  and  the  teacher  was                  
asked  to  think  aloud  while  imagining  how  they  might,  or  might  not,  act  on  the  information  they                  
were  seeing  through  their  glasses  if  this  were  an  actual  class  session.  Teachers  were  encouraged                
to  remark  on  any  information  that  was  displayed  to  them,  but  which  they  did  not  find  useful,  as                   
well  as  information  that  was  not  visible  but  which  might  inform  their  decision-making.  For               
example,  although  one  of  teachers’  “superpower”  ideas  was  to  be  able  to  see  when  students  are                 
frequently  making  “careless  errors,”  all  teachers  participating  in  this  prototyping  study  expressed             
discomfort  with  the  idea  of  a  computer  making  judgments  about  students’  motivation  (e.g.,              
“carelessness”),  viewing  this  as  a  judgement  that  a  human  teacher  may  much  be  better  equipped                
to   perform   than   a   computer   system.  
 

 

Figure   4-1.    Working   with   a   K-12   teacher   to   generate   concepts   and   potential   use   scenarios   during   a  
low-fidelity   prototyping   session.  

 

To  facilitate  brainstorming,  teachers  were  also  provided  with  a  large,  printed  copy  of  the  same                
classroom  image  shown  on-screen,  but  with  blank  rectangles  in  place  of  the  individual  student               
labels  and  classroom  analytics  displays  (see  Figure  4-1).  Throughout  each  session,  teachers  could              
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use  these  blank  spaces  to  sketch  out  new  ideas  for  real-time  information  that  might  be  displayed                 
through  the  glasses.  Each  time  a  teacher  generated  an  idea  for  new  information,  a  researcher                
would  press  the  teacher  to  describe  how  they  envisioned  using  that  information  during  a  real                
class  session.  I  found  that  the  process  of  generating  hypothetical  use  cases  for  particular  analytics                
often  led  teachers  to  refine  their  ideas,  as  they  realized  that  more,  or  different  kinds  of                 
information  might  be  needed  to  support  particular  decisions.  As  in  the  “superpowers”  study,  the               
ideas  that  a  teacher  generated  during  one  study  were  ultimately  incorporated  into  the  version  of                
the   prototype   (i.e.,   the   image   and   overlaid   analytics)   shown   to   the   next   teacher.  

At  opportune  moments  throughout  each  study,  researchers  also  probed  teacher  reactions  to             
specific  classroom  scenarios  involving  the  use  of  smart  glasses,  using  storyboards  that  were              
prepared  before  the  study.  I  took  a  participatory  comicboarding  approach  (Moraveji  et  al.,  2007),               
typically  leaving  the  final  panel  or  two  of  a  comicboard  blank.  This  allowed  teacher  to  fill  in  the                   
details  of  how they  would  imagine  a  classroom  scenario  progressing,  or  what  decisions  and               
actions  they  might  take  in  that  scenario,  rather  than  relying  entirely  on  a  researcher-generated               
sequence   of   events.  

During  the  first  lo-fi  prototyping  session,  I  found  that  it  was  challenging  for  the  teacher  to                 
imagine  the  actual  experience  of  using  mixed-reality  smart  glasses  in  the  classroom.  So,  for  the                
second  and  third  sessions,  I  added  an  experience  prototyping  phase  at  the  beginning  of  the  study,                 
using  actual  mixed-reality  smart  glasses  (although  with  Wizard  of  Oz’d  analytics,  presented  at  a               
single  instant  in  time).  I  used  the  Microsoft  HoloLens  1 ,  which  made  it  possible  to  place  readily                  12

available,  default  HoloLens  assets  at  fixed  spatial  positions  throughout  a  teacher’s  classroom.             
Although  the  form  factor  of  the  HoloLens  1  was  not  ideal  for  regular  use  in  classrooms,  I  used                   
this  device  for  prototyping  purposes  given  that  it  was  the  lightest-weight  option  available  at  the                
time  with  sufficient  spatial  mapping  capabilities  to  reliably  embed  mixed  reality  displays             
throughout  a  classroom  space  (Holstein,  Hong,  et  al.,  2018).  When  teachers  began  the  lo-fi               
prototyping  and  sketching  exercises,  they  were  then  able  to  refer  back  to  the  experience  of  using                 
this   device.  
 

4.4   Iterative   Mid-Fidelity   Prototyping  
I  next  moved  on  to  higher-fidelity  prototyping  sessions,  given  that  I  had  observed  strongly               
positive  reactions  to  the  concept  of  teacher  smart  glasses  in  early  prototyping  sessions  and  had                
also  begun  to  gain  a  more  detailed  understanding  of  teachers’  real-time  information  needs.  I               
conducted  an  iterative  sequence  of  prototyping  sessions  with  5  middle  school  math  teachers.  As               
in  earlier  prototyping  studies,  researchers  traveled  to  middle  school  sites  and  worked  with              
teachers   in   their   own   classrooms.  

12   https://www.microsoft.com/en-us/hololens/hardware   
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Each  study  session  lasted  for  90  minutes.  The  teacher  wore  the  HoloLens  for  the  first  hour  and                  
participated  in  experience  prototyping  activities  (Buchenau  and  Suri,  2000),  experimenting  with            
different  combinations  and  spatial  configurations  of  analytics  displays  while  generating  ideas  for             
potential  use  cases.  Following  this  experience  prototyping  phase,  teachers  participated  in  a             
30-minute  semi-structured  post-interview  in  which  they  had  the  opportunity  to  reflect  on  their              
experiences  and  provide  more  detailed  design  feedback.  For  these  and  subsequent  prototyping             
studies,  I  narrowed  my  focus  specifically  to  the  context  of  middle  school  math  classrooms  using                
ITSs   for   equation   solving.  

In  order  to  present  teachers  with  a  range  of  design  alternatives,  I  used  a  modified  version  of                  
HoloSketch ,  a  HoloLens  application  for  rapid  prototyping  of  mixed-reality  experiences.  Using            13

HoloSketch,  I  was  able  to  position  two-dimensional  assets,  including  mock-ups  of  student-  and              
class-level  analytics  displays  created  in  Photoshop,  throughout  a  teacher’s  physical  classroom            
space.  For  example,  when  a  teacher  put  the  HoloLens  on,  they  could  see  indicator  symbols                
floating  over  empty  student  seats,  and  class-level  analytics  displays  appearing  as  “wall             
decorations”  that  the  teacher  was  able  to  reposition  as  they  saw  fit  (see  Figure  4-2,  left).                 
Throughout  each  prototyping  session,  the  teacher  had  the  opportunity  to  move  about  their              
classroom.  Teachers  were  asked  to  think-aloud  during  these  sessions,  imagining  what  actions             
they  might  take  in  response  to  the  displayed  analytics  if  this  were  a  real  class  session,  and  what                   
other   information   might   support   them   in   making   such   decisions.   
 

Figure   4-2.    Screenshots   from   the   teacher’s   point-of-view   during   a   mid-fidelity   prototyping   session.   Left:  
the   teacher   thinks-aloud   while   positioning   combinations   of   analytics   displays   throughout   the   classroom.  

Right:   the   teacher   discusses   design   alternatives   in   a   “gallery”   at   the   back   of   the   classroom   (from   Holstein  
et   al.,   2019a).   Note:   student   names   shown   in   this   figure   are   fabricated.  

In  the  first  mid-fi  experience  prototyping  session,  I  included  all  of  the  indicator  symbols  and                
analytics  displays  that  teachers  had  consistently  requested  up  until  this  point  (in  lo-fi  prototyping               
studies).  Then,  in-between  sessions,  my  collaborators  and  I  rapidly  iterated  on  the  design  of               

13   https://github.com/Microsoft/MRDesignLabs/tree/master/ReleasedApps/HoloSketch   
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individual  student-  and  class-level  displays,  incorporating  new  ideas  that  teachers  had  generated             
during  the  previous  session.  Since  the  design  mock-ups  were  synchronized  with  the  HoloLens              
app  as  2D  assets,  we  were  also  able  to  make  modifications  during  a  session  based  on  teachers’                  
live  design  feedback,  by  editing  these  assets  on  a  laptop  as  a  teacher  viewed  them  (in  an                  
appropriate   spatial   context)   through   the   HoloLens.  

Between  prototyping  sessions,  we  also  reflected  on  our  areas  of  greatest  uncertainty.  For  each               
open  question,  we  mocked  up  several  design  alternatives.  Towards  the  end  of  each  session,  I                
brought  the  teacher  to  the  back  of  their  classroom,  where  (in  mixed-reality)  we  had  arranged  an                 
immersive  “gallery”  of  these  new  design  alternatives  (see  Figure  4-2,  right).  Teachers  could              
reposition  these  information  displays  and  experiment  by  decorating  their  classrooms  with            
different  combinations  and  arrangements  of  displays,  all  while  thinking  aloud  and  providing             
design  feedback.  Based  on  this  feedback,  we  iterated  on  these  designs  prior  to  the  next                
prototyping  session,  providing  opportunities  to  validate  previous  teachers  designs  (and  the  needs             
underlying   these   designs)   with   new   teachers   in   subsequent   sessions.  

 

4.5   Design   Findings   from   Low-   to   Mid-Fidelity   Prototyping  
Our  research  team  worked  through  transcriptions  of  approximately  12  hours  of            
audio/video-recorded  prototyping  sessions,  across  8  teachers,  to  synthesize  design  findings           
through  Interpretation  Sessions  and  Affinity  Diagramming  (Beyer  &  Holtzblatt,  1997;  Hanington            
&  Martin,  2012).  Following  a  series  of  Interpretation  Sessions,  the  resulting  655  quotes  were               
iteratively  synthesized  into  77  level-1  themes,  23  level-2  themes,  10  level-3  themes,  and  7               
level-4   themes.   Key   high-level   findings   (level-4   themes)   are   summarized   below:  

Student-level  indicators. Five  major  categories  of  student  learning  and  behavioral  states            
emerged  from  these  co-design  sessions,  shown  in  Figure  4-3.  Teachers  strongly  preferred  to  keep               
these  indicators  visually  simple,  displaying  a  single  graphical  symbol  above  each  student’s  head              
(as  in  Figure  4-4)  to  avoid  information  overload  during  a  class  session.  However,  it  was  also                 
important  to  teachers  that  they  could  access  brief  elaborations  on-demand  (e.g.,  by  having  such               
elaborations  appear  when  looking  directly  at  an  indicator,  as  shown  in  Figure  4-4),  which  could                
help  teachers  better  understand  why  an  indicator  was  appearing  for  a  student  at  a  particular  time.                 
In  line  with  my  prior  findings,  all  teachers  expressed  a  desire  to  see  positive  information  about                 
individual  students,  not  just  negative  information.  In  particular,  teachers  wanted  to  be  able  to  see                
when  students  have  been  performing  particularly  well  recently.  Teachers  found  this  valuable  for              
several  reasons,  including:  motivating  themselves  (since  seeing  only  negative  alerts  might  be             
discouraging),  motivating  students  (by  identifying  and  praising  students  who  have  been  doing             
well   lately),   and   identifying   students   who   may   be   under-challenged   by   the   software.  
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Figure   4-3.    Consistently   requested   categories   of   real-time   indicators   in   low-   to   mid-fidelity   prototyping  

sessions   (from   Holstein,   Hong,   et   al.,   2018).  

 

Sequences  of  student  states  can  be  information-rich.  In  addition  to  seeing  indicators  that              
reflect  students’  current  “states,”  teachers  noted  that  it  would  be  useful  to  see  sequences  of                
detected  states  that  preceded  a  student’s  current  state.  For  instance,  if  a  student  is  currently  “idle”                 
or  “misusing  the  software”  in  some  way,  it  would  be  useful  to  know  whether  that  student  was                  
also  recently  struggling.  Teachers  would  then  interpret  the  prior  struggle  as  a  possible  cause  of                
the   student’s   current   behavior,   and   respond   accordingly.  

The  classroom  as  a  dashboard.  During  experience  prototyping  sessions,  teachers  remarked  that             
it  felt  natural  to  reference  information  displays  that  were  distributed  throughout  their  physical              
classroom  spaces.  In  the  absence  of  a  real-time  awareness  tool,  teacher  were  used  to  monitoring                
their  students  by  scanning  the  physical  classroom  (e.g.,  reading  students’  faces  and  body              
language),  and  “patrolling”  rows  of  student  seats  to  catch  quick  glances  of  individual  students’               
screens.   One   teacher   remarked,   

“I  would  also  use  their  body  language  to  judge  the  situation,  but  the  initial  [alert]                
would   help,   so   I   know   to   go   over   there.”   

Teachers  also  revealed  that  they already  used  their  classrooms  as  distributed  information             
displays.  For  example,  during  a  typical  class  session,  teachers  would  often  leave  notes  and               
images   for   themselves   on   boards   or   projected   displays,   to   reference   throughout   the   session.  
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Figure   4-4.    Design   mock-ups   based   on   findings   from   low-   to   mid-fidelity   prototyping   sessions   (from  
Holstein,   Hong,   et   al.,   2018).   Top:   Teacher’s   default   view   of   the   class.   Each   student   has   an   indicator  

display   floating   above   their   head,   and   class-level   analytics   displays   are   positioned   at   the   front   of   the   class.  
Bottom:   “Deep-dive”   screens   shown   if   a   teacher   ‘clicks’   on   an   indicator.   Note:   student   names   shown   in  

this   figure   are   fabricated.  
 

Needs  for  selective shared  awareness.  All  participating  teachers  noted  that  the  analytics  they              
found  most  useful  in  informing  their  real-time  decision-making  tended  to  be  ones  they  would  not                
be  comfortable  sharing  with  students.  Teachers  expected  that  these  analytics  could  do  more  harm               
than  good,  by  promoting  unproductive  social  comparison  and  competition  among  their  students             
(cf.   Aguilar,   2018).   As   one   teacher   put   it,   

“In  middle  school,  kids  don’t  know  what  they  don’t  know,  [but]  kids  care  so  much                
about   how   they’re   seen   by   others   […   they]   don’t   want   to   look   stupid   or   feel   stupid.”   
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However,  teachers  also  noted  that  they  would  want  a  mechanism  to  selectively  share  particular               
analytics  during  the  course  of  a  class  session.  Five  out  of  eight  teachers  suggested  it  would  be                  
useful  to  customize  the  shared  visibility  of  particular  analytics  on  a  class-by-class  basis.  All  of                
these  teachers  predicted  an  interaction  effect  in  which  real-time  analytics  might motivate             
higher-achieving  classes  by  promoting  healthy  competition  among  students,  while demotivating           
lower-achieving   classes.  

Support  anonymous  teacher-student  communication  (“Invisible  hand  raises”). Although         
most  of  teachers’  design  feedback  focused  on  ways  real-time  analytics  could  help them  regulate               
students’  learning,  some  teachers  emphasized  the  importance  of  also  creating  opportunities  to             
develop  students’  help-seeking  skills  (Aleven,  Roll,  McLaren,  &  Koedinger,  2016).  Several            
teachers  proposed  the  idea  of  giving  students  an  “Ask  the  teacher”  button  within  the  tutoring                
software,  which  would  trigger  a  “raised  hand”  symbol  within  the  glasses.  Teachers  expected  that,               
by  providing  students  with  a  mechanism  to  request  help  that  was  not  easily  visible  to  other                 
students,  more  students  would  feel  comfortable  requesting  help  (cf.  Schofield  et  al.,  1994).              
Otherwise,  as  one  teacher  put  it, “for  a  number  of  students  in  my  class,  unless  I  [walk  over],  they                    
are   never   going   to   say   anything”    (cf.    Chapter   2    and   Holstein   et   al.,   2017a)  
 

4.6   Development   of   a   Higher-fidelity   Prototype:    Lumilo  
Up  until  this  point,  all  prototyping  sessions  had  relied  upon  Wizard  of  Oz’ing  analytics,               
presented  “frozen  in  time”  at  a  single  instant  of  a  class  session.  However,  the  behavior  of  a                  
real-time  analytics  tool  can  be  heavily  dependent  on  the  dynamics  of  specific  data-generating              
contexts  in  combination  with  specific  analytic  methods/algorithms.  I  next  wanted  to  begin             
prototyping  the  experience  of  using  smart  glasses  to  monitor  a  class  session  unfolding  over  time,                
using   real   student   data   and   analytics.   

Based  on  findings  from  low-  to  mid-fidelity  prototyping,  I  developed  a  fully-functional  prototype              
of  a  mixed  reality  smart  glasses  based  real-time  analytics  tool  called Lumilo (see  Figure  4-5),                
using  the  Microsoft  HoloLens  1,  Unity3D ,  the  HoloToolkit ,  and  the  extended  CT+A             14 15

architecture   for   ITS   authoring   and   deployment   (see    Chapter   3    and   Holstein,   Yu,   et   al.,   2018).  

Lumilo  tunes  teachers  in  to  the  rich  analytics  that  ITSs  generate:  It  presents  real-time  indicators                
of  students’  current  learning,  metacognitive,  and  behavioral  “states”,  projected  in  the  teacher’s             
view  of  the  classroom.  The  specific  indicators  displayed  by Lumilo  (see  Figure  4-3)  are  ideas                
generated  and  refined  by  teachers  throughout  the  design  and  prototyping  process  (as  described  in               
Sections 4.3 through  4.5, and  in Chapter  5 )  and  implemented  using  established  student  modeling               
methods  (Desmarais  &  Baker,  2012),  using  the CT+A  architecture  (introduced  in Chapter  3 ).  By               

14   https://unity3d.com   
15   https://github.com/Microsoft/HoloToolkit-Unity   
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directing  teachers’  attention,  in  real-time,  to  situations  the  ITS  may  be  ill-suited  to  handle  –  and                 
by  aiding  teachers  in  determining  how  to  address  these  situations  – Lumilo  is  designed  to                
facilitate  productive  mutual  support  or co-orchestration  (Prieto,  2012)  between  the  teacher  and             
the  ITS,  by  leveraging  complementary  strengths  of  each  (cf.  Alkhatib  &  Bernstein,  2019;              
Davidoff  et  al.,  2007;  Holstein  et  al.,  2014;  2017b;  2019a;  2019b;  Kamar,  2016;  Lake  et  al.,                 
2017;   Lubars   &   Tan,   2019).  
 

 
Figure   4-5.    Point-of-view   screenshots   from   teachers   using    Lumilo    (from   Holstein,   Hong,   et   al.,   2018).  
Left:   A   teacher’s   view   of   student   indicators,   immediately   following   a   pilot   study   in   a   live   classroom.  

Right:   A   teacher’s   view   of   a   classroom   while   wearing    Lumilo    (photo   taken   with   no   students   present   in   the  
room,   to   preserve   student   privacy).   Note:   student   names   shown   in   this   figure   are   fabricated.  

The  use  of  transparent  smart  glasses  allows  teachers  to  keep  their  heads  up  and  focused  on  the                  
classroom,  enabling  them  to  continue  monitoring  important  signals  that  may  not  be  captured  by               
the  tool  alone  (e.g.,  student  body  language  and  looks  of  frustration  (Holstein,  Hong,  et  al.,  2018;                 
Holstein  et  al.,  2017b)).  The  smart  glasses  provide  teachers  with  a  private  view  of  actionable,                
real-time  information  about  their  students,  embedded  throughout  the  classroom  environment,           
thus  providing  many  of  the  advantages  of  ambient  and  distributed  classroom  awareness  tools              
(e.g.,  Alavi  &  Dillenbourg,  2012;  van  Alphen  &  Bakker,  2016),  without  revealing  sensitive              
student   data   to   the   entire   class   (van   Alphen   &   Bakker,   2016;   Holstein,   Hong,   et   al.,   2018).  

Over  the  course  of  the  design  and  prototyping  process, Lumilo ’s  information  displays  shifted              
towards  strongly  minimalistic  designs  (with  progressive  disclosure  of  additional  analytics  only            
upon  a  teacher’s  request),  in  accordance  with  the  level  of  information  teachers  desired  and  could                
handle  in  fast-paced  classroom  environments. Lumilo  presents  mixed-reality  displays  of  three            
main  types,  visible  through  the  teacher’s  glasses:  student-level  indicators,  student-level           
“deep-dive”  screens,  and  class-level  summaries  (as  shown  in  Figure  4-4).  Student-level            
indicators   and   class-level   summaries   are   always   visible   to   the   teacher   by   default,   at   a   glance.   

Student-level  indicators  display  above  corresponding  students’  heads  (based  on          
teacher-configurable  seating  charts),  and  class-level  summaries  can  display  at          
teacher-configurable  locations  throughout  the  classroom  (Holstein,  Hong,  et  al.,  2018).  As  shown             
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in  Figure  4-5  (left),  if  a  teacher  glances  at  a  student’s  indicator, Lumilo automatically  displays  a                 
brief  elaboration  about  the  currently  displayed  indicator  symbol  (i.e.,  how  long  the  alert  has  been                
active  and/or  a  brief  explanation  of  why  the  alert  is  showing).  If  no  indicators  are  currently  active                  
for  a  student, Lumilo  displays  a  faint  circular  outline  above  that  student  (see  Figure  4-4).  In                 
addition,  to  give  teachers  “eyes  in  the  back  of  their  heads”  –  a  commonly  requested  ability  in  the                   
early  “teacher  superpowers”  exercise)  (see Chapter  1 )  – Lumilo provides  ambient,  spatial  sound              
notifications  to  enhance  teachers’  awareness  of  events  lying  outside  of  their  field  of  vision.  For                
example,  while  a  teacher  is  working  one-on-one  with  a  student  at  one  end  of  the  room,  the                  
teacher  may  hear  a  gentle  ping  that  seems  (from  the  teacher’s  perspective)  to  be  emanating  from                 
the  location  of  a  given  student  behind  the  teacher  –  indicating  that  the  far-away  student  has                 
consistently,  repeatedly  been  gaming-the-system  or  abusing  hints  in  the  software  (Holstein,            
Hong,  et  al.,  2018;  Holstein  et  al.,  2019a).  This  is  one  of  several  features  of Lumilo that  emerged                   
by  iteratively  prototyping Lumilo  using  Replay  Enactments  (a  new  prototyping  method  described             
in    Chapter   5 .  

If  a  teacher  clicks  on  a  student’s  indicator  (using  either  a  handheld  clicker  or  by  making  a  ‘tap’                   
gesture  in  mid-air), Lumilo  displays  “deep-dive”  screens  for  that  student.  As  shown  in  Figure  4-4                
(top)  and  Figure  4-5  (right),  these  screens  include  a  “Current  Problem”  display,  which  supports               
remote  monitoring,  showing  a  live  feed  of  a  student’s  work  on  their  current  problem.  Each                
problem  step  in  this  feed  is  annotated  with  the  number  of  hint  requests  and  errors  the  student  has                   
made  on  that  step.  In  classroom  observations  (see Part  Three ),  I  have  found  that  because  Lumilo                 
enables  monitoring  of  student  activities  from  a  distance  (i.e.,  across  the  room),  teachers  using               
Lumilo  often  interleave  help  across  students:  During  a  pause  while  helping  one  student  at  that                
student’s  seat,  the  teacher  might  quickly  peek  at  another  struggling  student’s  recent  activities              
from  across  the  room,  and  then  call  over  to  that  student  to  provide  quick  guidance  and  try  to  get                    
the   student   “unstuck”   (Holstein   et   al.,   2018b;   2019a).  
 

The  deep-dive  screens  also  include  an  “Areas  of  Struggle”  screen,  which  displays  the  three  skills                
for  which  a  student  has  the  lowest  probability  of  mastery.  For  each  skill  shown  in  “Areas  of                  
Struggle”,  the  student’s  estimated  probability  of  mastery  is  displayed,  together  with  a  concrete              
example  of  an  error  the  student  has  made  on  a  recent  practice  opportunity  for  the  skill.                 
Think-alouds  during  Replay  Enactments  sessions  (see Chapter  5 )  suggested  that  providing  these             
brief,  concrete  examples  of  student  errors  (cf.  Bull  and  Kay,  2016;  Kay,  2000)  was  useful  not                 
only  for  aiding  teachers  in  interpret  where  exactly  students  were  struggling,  but  also  in  enabling                
teachers  to  perform  further  diagnosis  of  the  nature  of  student  difficulties  and/or  second  guess  the                
ITS’s  skill  labeling.  In  classroom  observations,  I  have  found  that  teachers  often  focus  their               
conversations  with  individual  students  around  a  concrete  example  of  an  error  the  student  has               
recently  made  –  for  example,  initiating  a  conversation  with  a  student  by  asking  them  to  explain                 
how   they   would   solve   a   similar   problem   to   one   on   which   they   had   erred   (Holstein   et   al.,   2019a).  
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In  addition,  in  the  current  version  of Lumilo ,  a  class-level  summary  display  is  available  to  the                 
teacher:  the  “Low  Mastery,  High  Practice”  display  (illustrated  in  Figure  4-4,  left).  This  display               
shows  the  three  skills  that  the  fewest  students  in  the  class  have  mastered  (according  to  Bayesian                 
Knowledge  Tracing  (Corbett  and  Anderson,  1995)),  at  a  given  point  in  the  class  session,  out  of                 
those  skills  that  many  students  in  the  class  have  already  had  opportunities  to  practice  within  the                 
software  (Holstein,  Hong,  et  al.,  2018).  In  classroom  observations,  I  have  found  that  this  display                
is  somewhat  rarely  used  by  teachers  to  inform  instructional  interventions,  given  that  different              
students  tend  to  be  working  on  different  material  in  the  software  at  any  one  moment.  However,                 
teachers  occasionally  use  this  feature  to  pause  the  class  and  provide  a  brief  mini-lecture  on  a                 
topic  with  which  many  students  appear  to  be  experiencing  difficulties.  Based  on  teacher              
feedback  from  prototyping  sessions  and  classroom  studies,  a  future  version  of Lumilo  may              
provide  teachers  with  recommendations  of small  groups  of  students  who  are  struggling  with              
similar  material  at  a  given  point  during  a  class  session,  in  addition  to  providing  class-  and                 
individual-level   analytics   (see    Chapters   8    and    10 ).  

To  support  subsequent  design  explorations  using  the Lumilo  prototype  (discussed  in Chapters  5              
and  6 ),  my  collaborators  and  I  architected  the  initial  prototype  of  Lumilo  in  a  highly  modular                 
fashion,  to  enable  rapid  design  iteration  in-between  future  prototyping  sessions,  and  even  to              
make  small  adjustments  within  a  single  prototyping  session,  based  on  live  teacher  feedback.  For               
example,  alternative  student  modeling  (detector)  algorithms  intended  to  measure  the  same            
teacher-identified  construct  (such  as  “unproductive  persistence”)  could  be  interchanged  for           
comparison  during  a  prototyping  session.  All  detectors  included  in  the  next  round  of  prototyping               
sessions  were  drawn  from  the  Learning  Analytics,  Educational  Data  Mining,  AI  in  Education,              
and  User  Modeling  literatures—where  many  automated  detectors  of  student  learning  and            
behavior  have  been  introduced  and  validated,  based  upon  students’  interactions  within  the             
software  (e.g.,  Aleven  et  al.,  2016;  Beck  &  Gong,  2013;  Desmarais  &  Baker,  2012;  Käser  et  al.,                  
2016).  For  example,  in  order  to  drive  a  real-time  indicator  of  “unproductive  persistence”  (here               
defined  as  a  phenomenon  in  which  an  AI  tutor  is failing  to  help  the  student  learn ,  on  one  or  more                     
skills;  see  Holstein,  2018)  I  explored  the  use  of  simpler  methods  such  as  Beck  and  Gong’s                 
detector  of  “wheel-spinning”  (Beck  &  Gong,  2013),  in  addition  to  more  sophisticated  methods              
such  as  Käser  et  al’s  “predictive  stability”  (Käser  et  al.,  2016).  Each  detector  was  implemented  in                 
a  parameterized  fashion,  so  that  aspects  of  a  detector’s  behavior  (e.g.,  tunable  alert  thresholds)               
could   be   adjusted   during   and   in-between   prototyping   sessions,   based   on   teachers’   feedback.  

I  also  developed  a  new  logging  library  for Lumilo ,  which  appropriates  the  HoloLens  1’s  spatial                
mapping  capabilities  as  a  means  of  automatically  logging  teachers’  actions  in  a  physical              
classroom  space  over  the  course  of  a  class  session  (i.e.,  to  automate  much  of  the  manual  coding                  
process  described  in Chapter  2 ).  For  example,  using  these  “mixed  reality  sensors,” Lumilo  can               
record  time-stamped  logs  of  a  teacher’s  physical  proximity  to  a  given  student  in  the  class                
moment-by-moment,  as  well  as  the  teacher’s  absolute  location  in  the  classroom,  their  proximity              
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to  pre-specified  landmarks  (such  as  the  teacher’s  desk  or  whiteboard),  the  target  of  a  teacher’s                
gaze,  and  all  teacher  interactions  within  the  tool  interface.  These  logs  are  recorded  to  DataShop,                
a  major  educational  data  repository  (Koedinger  et  al.,  2010).  Unlike  most  prior  work  on  physical                
teaching  analytics  (e.g.,  An  et  al.,  2019;  Echeverria  et  al.,  2018;  Martinez-Maldonado,  2019;              
Martinez-Maldonado  et  al.,  2018;  but  see  Prieto,  Dillenbourg,  Sharma,  &  Jesús,  2016),  this              
mixed  reality  sensor  approach  uses  an  “inside  out”  approach  to  teacher  tracking,  and  thus  does                
not  require  instrumenting  the  classroom  space  with  external  sensors  or  “beacons”.  Rather,  this              
approach  relies  entirely  on  the  HoloLens  1’s  built  in  sensors  and  spatial  mapping  algorithms  for                
tracking  of  teachers’  behavior  (see  item  5  under Summary  of  Contributions  –  “First              
investigations  of  relationships  between  teacher  movement/monitoring  and  student  behavior  and           
learning   in   AI-supported   classrooms” ).  
 

4.7   Conclusions  
Together  with  the  design  explorations  presented  in  Chapter  1 and 9,  and  the  field  studies                
presented  in Chapters  6  through 8  the  present  work  represents  the  first  broad  exploration  in  the                 
literature  of  teachers’  needs  for  real-time  analytics  and  orchestration  support  in  personalized             
classrooms  (see  item  1  under Summary  of  Contributions  – “First  design  exploration  of  needs  for                
real-time  teacher  analytics  and  orchestration  support” ),  as  well  as the  first  exploration  in  the               
literature  of  the  use  of  wearable,  heads-up  displays  to  support  teachers  in  orchestrating              
personalized  classrooms  (see  item  2  under Summary  of  Contributions  – “First  design  exploration              
and  prototypes  of  wearable,  heads-up  displays  to  support  orchestration  of  personalized            
classrooms” ).  

Many  existing  real-time  orchestration  tools  have  been  designed  with  the  assumption  that  a  class               
of  students  progresses  through  instructional  activities  in  a  relatively  synchronized  manner  (cf.             
van  Leeuwen,  2015;  but  see  Olsen,  2017).  Understanding  how  best  to  support  teachers  in               
orchestrating  highly-differentiated,  non-synchronous  classrooms,  such  as  those  using  AI  tutoring           
systems,  remains  an  important  and  challenging  research  problem  (e.g.,  see Chapter  1 ,  Alphen  &               
Bakker,  2016;  Bingham,  Pane,  Steiner,  &  Hamilton,  2018;  Holstein  et  al.,  2017b;  2019a;  2019b;               
Holstein,   Hong,   et   al.,   2018).  

Emerging  wearable  technologies  technologies  hold  great  promise  for  real-time  teacher  support  in             
personalized  classrooms  –  acknowledging  the  highly  active  role  teachers  play  in  such  classrooms              
(Holstein  et  al.,  2017a;  2017b;  Schofield  et  al.,  1994)  by  allowing  them  to  keep  their  heads  up                  
and  their  eyes  focused  on  their  students  rather  than  a  screen  (Holstein  et  al.,  2017b;  Quintana,  et                  
al.,  2016).  While  prior  research  suggests  that  teachers  may  prefer  wearables  over  handheld              
devices  for  use  in  personalized  classrooms  (e.g.,  Quintana,  et  al.,  2016),  this  work  has  not                
involved  the  human-centered  design  and  evaluation  of  an  actual  wearable  orchestration  tool.             
Furthermore,  while  prior  work  has  tested  the  use  of  smart  glasses  to  help  students  provide  live                 
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feedback  to  their  instructors  in  university  lecture  contexts  (Zarraonandia,  et  al.,  2013),  the              
present  work  represents  the  first  exploration  in  the  literature  of  the  affordances  of  smart  glasses                
to   support   teachers   in   orchestrating   personalized   classroom   sessions.  

In  the  next  chapter, Chapter  5 ,  I  introduce  a  novel  prototyping  method,  Replay  Enactments,  to                
involve  teachers  in  prototyping  and  iteratively  shaping  the  experience  of  using Lumilo  in  a               
classroom  –  including algorithmic  elements  of Lumilo ’s  design,  which  could  not  be  easily              
prototyped   using   the   lower-fidelity   methods   presented   in   this   chapter.  
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Chapter   5  
Replay   Enactments:   A   Prototyping   Method   for  
Data-driven   Algorithmic   Experiences  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   Hong,   G.,   Tegene,   M.,   McLaren,   B.   M.,   &   Aleven,   V.    (2018).    The  
classroom   as   a   dashboard:   Co-designing   wearable   cognitive   augmentation   for   K-12  
teachers.   In    Proceedings   of   the   Eighth   International   Learning   Analytics   &   Knowledge  
Conference   (LAK   2018),   (pp.   79-88) .   ACM.  

● Holstein,   K.,   McLaren,   B.   M.,   &   Aleven,   V.    (2018a).   Informing   the   design   of   teacher  
awareness   tools   through   Causal   Alignment   Analysis.   In    Proceedings   of   the   13th  
International   Conference   of   the   Learning   Sciences   (ICLS   2018)     (pp.   104-111) .  

● Holstein,   K.,   McLaren,   B.   M.   &   Aleven,   V.    (2019a).   Co-designing   a   real-time   classroom  
orchestration   tool   to   support   teacher–AI   complementarity.    Journal   of   Learning   Analytics  
(JLA).  

 

5.1   Background   and   Motivation  
To  rapidly  prototype  the  experience  of  using Lumilo  in  a  classroom, prior to  running  studies  with                 
the  system  in  live  classrooms  with  actual  students  (which  can  be  costly  in  K-12  settings,  and  may                  
even  be  harmful  to  students  if  the  prototype’s  effects  are  poorly  understood),  I  created  a  new                 
prototyping  method  for  dynamic,  data-driven  algorithmic  systems:  Replay  Enactments  (Holstein,           
Hong,   et   al.,   2018;   Holstein,   et   al.,   2018a;   2019a).   

Replay  Enactments  uses  authentic  data  and  (imperfect)  algorithms  to  reveal  important  nuances             
that  other  methods  –  such  as  Wizard  of  Oz  studies  (Lovejoy,  2018;  Odom,  Zimmerman,  Forlizzi,                
Dey,  &  Lee,  2012)  –  may  be  ill-suited  to  surface  (e.g.,  UX  impacts  of  a  prototype’s  false                  
positives  and  negatives  or  issues  that  arise  only  in  particular  data-generating  contexts;  see  Dove               
et  al.,  2017;  Holstein,  Wortman  Vaughan,  et  al.,  2019;  and  a  brief  discussion  of  “Global  Design”                 
challenges  in  Zimmerman  &  Forlizzi,  2019).  As  such,  Replay  Enactments  represents  one             
response  to  recent  calls  within  the  HCI,  HAI,  and  LA  communities  (e.g.,  Dennerlein  et  al.,  2018;                 
Doshi-Velez  &  Kim,  2017;  Dove  et  al.,  2017)  for  “new  kinds”  of  prototyping  methods  that  can                 
address  challenges  of  prototyping  data-driven  algorithmic  systems  (see  item  4  under Summary  of              
Expected  Contributions  –  Novel  design  and  prototyping  methods) .  The  behavior  of  such  systems              
can  be  highly  dependent  on  interactions  between  particular  data-generating  contexts  (e.g.,            
specific  socio-cultural  and  classroom  contexts  from  which  educational  data  was  collected)  and             
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particular  algorithms  (e.g.,  specific  machine  learning  models  trained  on  specific  datasets  with             
specific  biases),  which  cannot  easily  be  imagined  ahead  of  time  by  system  designers  (Holstein,               
Wortman  Vaughan,  Daumé  III,  Dudík,  &  Wallach,  2019;  Ocumpaugh,  Baker,  Gowda,  Heffernan,             
&  Heffernan,  2014;  Ogan  et  al.,  2012;  Yang,  Sciuto,  Zimmerman,  Forlizzi,  &  Steinfeld,  2018).               
Developing  methods  to  engage  non-technical  stakeholders  in  shaping algorithmic  elements  of            
complex,  data-driven  AI  systems  remains  a  central  open  challenge  for  the  UX  design  of               
data-driven  AI  systems  (e.g.,  Baumer,  2017;  Chen  &  Zhu,  2019;  Dennerlein  et  al.,  2018;  Kyung                
Lee   et   al.,   2018;   Prieto-Alvarez,   et   al.,   2018;   Zhu   &   Terveen,   2018).  

 

5.2   Replay   Enactments  

 
Figure  5-1. A  high-level  diagram  illustrating  modular,  nested  components  of  a  RE  prototyping  study.               
Components  at  each  level  can  be  swapped  to  compare  across  multiple  options,  while  components  at  other                 
levels   are   held   constant   (figure   from   Holstein   et   al.,   2019a).  

 
Figure  5-1  shows  a  general,  high-level  description  of  a  Replay  Enactments  (RE)  prototyping              
study.  REs  involve  the  simulation  of  a  relevant,  dynamic  data-generating  context  (such  as  a               
classroom  of  students  working  with  adaptive  learning  technologies).  To  generate  this  simulated             
context,  authentic  (rather  than  Wizard-of-Oz’d  or  otherwise  fabricated)  data  streams  are  replayed             
at  the  same  speed  at  which  the  data  were  originally  generated.  Within  this  simulated  context,  the                 
user(s)  participating  in  an  RE  study  are  equipped  to  receive  two  key  streams  of  sensory  input:                 
first,  a  simulated  approximation  of  what  the  user  would  typically  experience  in  the  target               
environment  (e.g.,  in  an  actual  classroom);  and  second,  a  particular  form  of  cognitive              
augmentation  (i.e.,  a  specific  tool  design,  including  particular  choices  of  analytics  and             
visualizations).  Given  a  simulated  context  and  a  particular  from  of  cognitive  augmentation,  the              
user  is  asked  to  complete  (an  approximation  of)  an  authentic,  complex  task.  Figure  5-1  shows  the                 
components  of  an  RE  session  as  nested  boxes,  to  indicate  that  each  can  be  swapped  out  for                  
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comparison  purposes.  For  example,  the  same  classroom  analytics  system  design  might  be  tested              
across   replays   of   datasets   generated   from   multiple,   diverse   classroom   contexts   (see   Figure   5-2).  
 

 
Figure  5-2. Still  image  from  a  video  showing  a  teacher’s  point  of  view  during  an  RE  session,  while                   16

iteratively  prototyping Lumilo .  The  teacher  is  in  a  computer  lab  on  our  university’s  campus,  with  no                 
students  present.  An  ITS  interface  is  displayed  on  each  computer  screen,  and  previously  collected  student                
interaction  data  from  a  full  class  of  students  is  replayed,  at  original  speed,  through  these  interfaces  (i.e.,                  
with  different  replayed  students  assigned  to  different  computers).  The  teacher  wears  a  particular  form  of                
augmentation  (a  particular  version  of Lumilo ,  with  particular  choices  of  algorithms/analytics),  and  is              
asked  to  think  aloud  while  walking  throughout  the  classroom  and  helping  “students”  based  on  the                
analytics  they  see.  Teacher  dialogue  is  displayed  at  the  bottom  of  the  frame;  this  teacher  notices  he  has                   
begun   talking   to   students   as   if   they   were   actually   present.  
 
In  addition  to  generating  qualitative  insights  (e.g.,  through  user  think-alouds  during  experience             
prototyping),  REs  can  be  used  to  provide  early  insight  into  the  impacts  different  tool  designs                
(e.g.,  particular  choices  of  algorithms/analytics)  might  have  on  user  decision-making  and            
behavior.  Since  the  use  of  data  replays  removes  the  possibility  that  user  behavior  will  influence                
the  data  streams  being  replayed  (and  thus  removes  the  possibility  of  feedback  loops),  REs  can                
also  support  early  quantitative  evaluations  of  how  effectively  a  predictive  analytics  system  (e.g.,              
an  early  warning  system)  might  steer  user’s  attention  (see  Holstein,  Hong,  et  al.,  2018;  Holstein                
et   al.,   2018a).   

Much  like  other  recently  proposed  prototyping  methods  in  the  learning  analytics  (LA)  literature,              
such  as  the  simulation  methods  presented  in  Martinez-Maldonado  et  al.  (2012)  and  Mavrikis  et               
al.  (2016),  Replay  Enactments  involve  replaying  log  data  from  students’  interactions  with             
educational  technologies  in  order  to  prototype  real-time  analytics  and  visualizations  with            
end-users  (such  as  teachers  or  students).  However,  in  the  spirit  of  recent  HCI  methods  for                

16  Video   clips   are   available   at:    https://youtu.be/ELY9p_HijEw  
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prototyping  radically  new  experiences,  such  as  User  Enactments  (Odom,  Zimmerman,  Davidoff,            
Forlizzi,  Dey,  &  Lee,  2012),  Replay  Enactments  builds  on  prior  LA  approaches  by  emphasizing               
embodied  role-playing  in  physical  classroom  environments  (Holstein,  Hong,  et  al.,  2018;            
Holstein  et  al.,  2019a).  In  my  initial  work  piloting  this  prototyping  method  with  teachers,  I  found                 
that  pushing  teachers  to  role-play  while  actually  navigating  throughout  a  physical  classroom             
space  seemed  to  contribute  to  an  illusion  of  “actually  being  there”  (see  Figure  5-2).  In  addition,                 
having  the  teacher  move  throughout  the  classroom  provided  early  insight  into  potential  effects  of               
a  classroom’s  layout  and  students’  seating  arrangement  relative  to  this  layout  (cf. Chapter  2  and                
Holstein,   et   al.,   2017a).   

Whereas  methods  like  User  Enactments  typically  involve  Wizard-of-Oz’d  scenarios,  Replay           
Enactments  prototype  an  experience  using  authentic  data  and  algorithms,  evolving  over  time.             
Although  this  requires  earlier  investment  in  technical  development,  doing  so  can  enable  earlier,              
detailed  observations  of  the  interplay  between  human  and  machine  judgments,  and  the  ways  in               
which  a  system's  false  positives  and  false  negatives  may  impact  the  experience  of  using  a                
data-driven  algorithmic  system  (cf.  Dove,  Halskov,  Forlizzi,  &  Zimmerman,  2017;  Holstein  et             
al.,   2019a).   

As  such,  Replay  Enactments  represents  one  response  to  recent  calls  within  the  HCI,  HAI,  and                
LA  communities  (e.g.,  Dennerlein  et  al.,  2018;  Doshi-Velez  &  Kim,  2017;  Dove  et  al.,  2017)  for                 
“new  kinds”  of  prototyping  methods  that  can  address  challenges  of  prototyping  data-driven             
algorithmic  systems  (see  item  4  under Summary  of  Expected  Contributions  –  “Novel  design  and               
prototyping  methods” ).  The  behavior  of  such  systems  can  be  highly  dependent  on  interactions              
between  particular  data-generating  contexts  (e.g.,  specific  socio-cultural  and  classroom  contexts           
from  which  educational  data  was  collected)  and  particular  algorithms  (e.g.,  specific  machine             
learning  models  trained  on  specific  datasets  with  specific  biases),  which  cannot  easily  be              
imagined  ahead  of  time  by  system  designers  (Holstein,  Wortman  Vaughan,  Daumé  III,  Dudík,  &               
Wallach,  2019;  Ocumpaugh,  Baker,  Gowda,  Heffernan,  &  Heffernan,  2014;  Ogan  et  al.,  2012;              
Yang,  Sciuto,  Zimmerman,  Forlizzi,  &  Steinfeld,  2018).  For  example,  a  recent  study  of  industry               
product  teams’  challenges  around  algorithmic  bias  at  major  companies,  including  several            
companies  working  on  learning  analytics  applications,  found  that  a  lack  of  suitable             
pre-deployment  prototyping  methods  was  a  central  pain  point  (Holstein,  Wortman  Vaughan,  et             
al.,   2019).  

The  following  subsections  present  a  concrete  case  study  of  the  use  of  Replay  Enactments  to                
iteratively   prototype    Lumilo .  
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5.3     Iteratively   Experience   Prototyping    Lumilo    through   Replay   Enactments  

Using  the  initial  functional  prototype  of Lumilo ,  I  next  conducted  an  iterative  sequence  of               
higher-fidelity  experience  prototyping  sessions,  with  a  total  of  10  math  teachers  across  5  schools.               
All  participating  teachers  had  previously  used  an  adaptive  learning  technology  in  their             
classrooms,  and  seven  out  of  10  teachers  had  used  an  ITS  as  a  regular  component  of  their                  
classroom   instruction.  

In  each  of  an  initial  round  of  five  Replay  Enactments  study  sessions,  each  held  with  a  single                  
teacher  at  a  time,  I  brought  teachers  into  a  computer  lab  on  our  university’s  campus.  At  each                  
empty  seat  in  the  lab,  I  had  placed  a  nametag  with  a  fabricated  student  name  before  the  study                   
session  began.  On  the  corresponding  computer  screen,  I  had  logged  into  the  tutoring  software,               
under  that  student’s  name.  In  addition,  using Lumilo ,  I  had  positioned  mixed-reality  holograms              
throughout  the  computer  lab  so  that  indicators,  associated  with  corresponding  student  accounts  in              
the  software,  would  appear  over  “student”  heads.  Class-level  analytics  displays  were  also             
positioned   along   the   walls   of   the   computer   lab.   

Using  a  newly  developed  log  replay  system,  I  was  able  to  replay  log  data  from  an  entire  class  of                    
students,  using  datasets  previously  collected  from  a  multi-classroom  study  in  which  middle             
school  students  used Lynnette ,  an  ITS  for  linear  equation  solving  (Long  &  Aleven,  2013;  Long,                
Holstein,  &  Aleven,  2018;  Waalkens,  Aleven,  &  Taatgen,  2013).  When  a  researcher  pressed  a               
button  in  a  web-based  “controller”  interface,  the  entire  class  sprung  to  life,  replaying  a  40-minute                
class  session  from  beginning  to  end,  at  actual  speed.  The  teacher  wore Lumilo  during  this                
simulation  phase  and  was  asked  to  pretend  that  this  was  an  actual  class  session,  thinking  aloud  as                  
they  moved  throughout  the  classroom  space.  If  the  teacher  thought  they  might  focus  attention  on                
a  particular  student  at  a  particular  time,  based  on  the  information  they  were  seeing,  they  were                 
asked  to  verbalize  what  they  might  say  to  that  student  in-the-moment  if  the  student  were  actually                 
there.  Teachers  often  became  quite  immersed  in  this  task.  For  example,  one  teacher  remarked,               
about   halfway   through   the   a   REs   session,   

“You  know  what?  I’m  acting  like  [the  students  are]  really  here  now  […]  I’m  thinking                
that   I’m   gonna   tell   them   something   and   [the   indicator]   is   gonna   change.”  

I  ran  separate  Replay  Enactments  sessions  with  a  total  of  five  teachers.  Each  of  these  sessions                 
began  with  a  35-minute  training  and  familiarization  phase,  during  which  the  teacher  could              
acclimate  to  using  the  system.  This  was  then  followed  by  a  40-minute  simulation  phase,  during                
which  the  teacher  was  asked  to  think-aloud,  and  a  15-minute  post-interview  to  elicit  additional               
design  feedback.  To  prototype  the  experience  of  using Lumilo  under  a  diverse  range  of  classroom                
dynamics,  I  selected  one  dataset  from  a  “remedial”  middle  school  math  class,  one  dataset  from                
an  “advanced”  class,  and  one  dataset  from  an  “average”  class,  where  class  tiers  were  based  on                 
those  assigned  by  the  schools  from  which  these  datasets  were  drawn.  I  then  randomly  assigned                
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datasets  to  Replay  Enactments  study  sessions,  so  that  the  remedial  and  average  classes  were               
replayed  for  two  teachers  each,  and  the  advanced  class  was  replayed  for  the  remaining  teacher.                
To  account  for  potential  influences  of  a  classroom’s  spatial  layout,  I  used  different  computer               
labs,   with   a   range   of   spatial   layouts,   across   study   sessions.  

During  Replay  Enactments,  my  goal  was  to  elicit  teacher  feedback  not  only  on Lumilo ’s  interface                
design  and  the  visual  presentation  of  analytics,  but  also  on  the  specific  choices  of  learning                
analytics  that  were  used  to  drive Lumilo ’s  real-time  indicators  and  class-level  dashboards.  During              
each  session’s  training  and  familiarization  phase,  teachers  were  provided  with  definitions  for             
each  indicator  symbol.  These  included  brief  summaries  of  a  detector’s  structure,  the  main              
features  it  relies  upon,  and  the  default  settings  of  any  free  parameters  (e.g.,  alert  thresholds)  used                 
by   an   indicator   or   its   corresponding   detector.   
 

Within  the  simulation  phase  of  each  session,  teachers  frequently  monitored  students’  “raw”             
activity  within  the  software  (either  by  approaching  a  student’s  computer  terminal  and  observing              
their  screen,  or  by  opening  the  student’s  deep-dive  window  through  the  glasses  interface).  In               
doing  so,  they  often  observed  ways  in  which  particular  detectors  might  have  been  over-  or                
under-sensitive,  or  may  have  been  overlooking  key  features  of  student  thinking  and  behavior              
entirely.   

Such  feedback  provided  opportunities  to  iterate  on  the  selection  and  design  of  detectors  and  alert                
policies  that  drove Lumilo ’s  real-time  indicators  in-between  REs  sessions  (and  sometimes  even             
within  a  single  REs  session).  For  example,  over  several  iterations,  the  definition  of  the               
“struggling”  indicator  evolved  to  not  only  indicate  when  a  student  had  surpassed  a  certain  recent                
error  rate,  but  also  to  provide:  (1)  a  visual  indication  of  whether  a  student  has  been  avoiding                  
using  the  software’s  built-in  help  functions  (i.e.,  hints)  (Aleven  et  al.,  2016);  (2)  a  visual                
indication  of  whether  a  student  has  remained  stuck despite  having  made  good  use  of  the                
software’s  hints;  and  (3)  a  visual  indication  of how  long  a  student  has  been  struggling  (with  the                  
corresponding  “question  mark”  symbol  glowing  gradually  brighter,  the  longer  the  student            
remained  stuck).  By  the  final  two  REs  sessions,  teacher  observations  of  under-  or              
over-sensitivity,  or  mismatches  between  the  analytics  and  a  teacher’s  own  judgments  of  a              
student’s   knowledge   or   behavior,   had   become   relatively   rare.  

Examples  of  other  design  features  that  entered  the  prototype  during  this  iterative  refinement              
process  included  the  ability  to  set  visual  “reminders”  on  an  individual  student  by              
clicking-and-holding  on  the  student’s  indicator.  Teachers  found  this  useful  as  a  reminder  to  check               
back  with  a  student,  for  example  if  that  student  appears  to  be  struggling  currently,  but  it  is                  
unclear  to  the  teacher  whether  the  student  might  overcome  this  struggle  on  her/his  own  within                
the   next   few   minutes.   As   one   teacher   put   it,   
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“You  want  to  stay  with  a  kid  until  they  have  it  mastered  but...  there’s  that  advantage                 
to  saying  ‘Okay,  try  a  few  of  these,  I'll  come  back  to  you.’  I've  never  found  a  good                   
answer   to   that   one.”  

In  addition,  I  found  that  teachers  saw  great  value  in  the  ability  to  monitor  individual  students’                 
activities  from  a  distance,  while  walking  around  the  classroom  or  while  working  face-to-face              
with  a  student  seated  across  the  room.  As  such,  I  enhanced Lumilo  so  that  a  teacher  could  have                   
the  deep-dive  screen  “tag  along”  with  them  as  they  walked  (as  opposed  to  hanging  in  space  near                  
the  corresponding  student,  visible  only  when  the  teacher  was  looking  in  that  student’s  direction).               
Finally,  to  give  teachers  “eyes  in  the  back  of  their  heads,”  a  common  need  revealed  by  the  early                   
“superpowers”  design  study  ( Chapter  1 ),  I  added  ambient,  spatial  sound  notifications.  For             
example,  if  a  student  was  misusing  the  software,  a  teacher  could  privately  perceive  a  soft                
auditory   notification,   as   if   it   were   emanating   from   that   student’s   location   in   the   classroom.  
 

5.4   Design   Findings   from   Replay   Enactments   with    Lumilo  
As  before,  our  research  team  conducted  Interpretation  Sessions  and  Affinity  Diagramming  to             
synthesize  design  findings  from  transcriptions  of  approximately  18.5  hours  of  audio/video            
recorded  think-aloud  data  and  design  feedback.  The  resulting  486  quotes  were  iteratively             
synthesized  into  43  level-1  themes,  26  level-2  themes,  13  level-3  themes,  and  5  level-4  themes.                
Key   high-level   findings   from   this   synthesis   (level-4   categories)   are   highlighted   below.   

I  see  these  design  findings  as  fruitful  directions  for  future  work  (indeed,  several  of  these  findings                 
have   subsequently   re-emerged   in   in-vivo   classroom   studies;   see    Chapters   8    and    10 ).  
 

Value   of   continuous,   real-time   feedback   on   instruction.   
Although Lumilo  did  not  provide  direct  feedback  to  teachers  about  their  own  instruction,  teachers               
frequently  inferred  potential  effects  of  their  instructional  interventions  (e.g.,  helping  an            
individual  student  or  providing  a  brief  whole-class  lecture)  by  monitoring  changes  in  student  and               
class  state  following  an  intervention.  In  fact,  teachers  were  often  tempted  to  infer  causality  even                
during  Replay  Enactments  sessions,  in  which  no  students  were  actually  present.  In  line  with               
findings  from  my  earlier  directed  storytelling  and  speed  dating  studies  (see Chapter  1 ),  teachers               
emphasized  that  receiving  more  direct,  in-the-moment  feedback  about  the  effects  of  their  own              
teaching  on  students’  learning  could  help  them  adjust  their  instruction  on-the-spot,  and  perhaps              
even  improve  their  teaching  over  time  (especially  if  this  in-the-moment  feedback  were             
constructive).  

When  many  students  need  help  on  different  topics  at  the  same  time,  choice  can  be                
anxiety-inducing.   
During  Replay  Enactments,  teachers  realized  that  when  they  were  made  more  aware  of  student               
struggle  during  a  class  session,  they  also  became  more  aware  of  their  limited  ability  to  actually                 
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help  all  of  their  students.  The  main  way  teachers  proposed  addressing  this  was  through               
dynamically  adjustable  alert  thresholds,  which  could  help  them  better  focus  their  attention  during              
times  when  they  would  otherwise  be  overloaded  (e.g.,  when  many  students  need  their  help               
simultaneously,  or  in  more  chaotic  classes  that  require  teachers  to  devote  more  attention  to  basic                
classroom   management).   As   one   teacher   put   it,   

“I’m  going  to  be  able  to  handle  different  [numbers  of  alerts]  in  different  classes  […]                
I’d   want   to   be   able   to   control   that.”  

Action   recommendations    in   addition   to    awareness   support.   
As  I  progressed  to  higher-fidelity  prototyping,  teachers  consistently  noted  that  it  would  be              
helpful  to  have  more  explicit  action  recommendations  from  the  system,  to  help  them  prioritize               
their  attention  across  students  and/or  to  decide  how  best  to  help  particular  students.  For  example,                
one  teacher  suggested  that  it  would  sometimes  be  helpful  to  receive  recommendation  for              
“conversation  starters,”  such  as  self-explanation  prompts  they  could  give  a  student,  targeted  to              
that  student’s  current  areas  of  struggle,  to  avoid  providing  “too  much”  scaffolding.  At  the  same                
time,  it  is  clear  from  my  early  design  explorations  (see Chapter  1 )  that  such  as  system  would                  
need  to  be  designed  with  great  care,  to  respect  teachers’  autonomy,  and  ensure  that  system                
recommendations  are  aligned  with  teachers’  goals  and  not  perceived  as  passing  inappropriate             
judgment.  

Automated   support   for   dynamic,   adaptive   peer   matching.   
In  line  with  findings  from  my  early  directed  storytelling  sessions  ( Chapter  1 ),  teachers  noted  it                
would  be  useful  to  receive  support  in  adaptively  and  dynamically  assigning  students  to  serve  as                
peer   tutors   throughout   a   class   session   (cf.   Diana   et   al.,   2017;   Olsen,   2017).   

Trade-offs   between   accuracy   and   interpretability.    
Although  teachers  had  expressed  a  preference  for  simpler,  more  interpretable  analytics  in             
lower-fidelity  prototyping  sessions,  it  became  apparent  during  higher-fidelity  prototyping          
sessions  that  the  strength  of  this  preference  may  depend  heavily  on:  (1)  the  underlying  construct                
that  a  real-time  indicator  was  purporting  to  measure;  and  (2)  the  kinds  of  teacher  actions  that  this                  
information  might  inform  (cf.  Lipton,  2016).  For  example,  when  it  came  to  detection  of  “system                
misuse,”  it  was  important  to  teachers  that  they  could  easily  understand  (and  thus  justify  to                
students)  precisely  the  patterns  of  student  actions  that  had  led  to  this  classification.  By  contrast,                
teachers  appeared  to  be  more  open  to  the  use  of  “black  box”  algorithms  for  detecting                
“unproductive  persistence”  if  this  meant  alerting  them  to  these  students  earlier  (given  that  after               
this  initial  alert,  teachers  could  apply  their  own  discretion,  using  other  information  available  to               
them).  
 

 

88  



 

5.5   In-lab  evaluation  of Lumilo ’s  Impacts  on  Teacher  Behavior  using                  
Replay   Enactments  
Prior  to  piloting Lumilo  in  live  K-12  classrooms,  I  wanted  to  better  understand  its  effects  on                 
teachers’  behavior.  I  ran  an  in-lab  evaluation  study,  consisting  of  an  additional  six  Replay               
Enactments  sessions.  Across  these  six  sessions, Lumilo ’s  design  was  held  constant  to  support              
investigation  of  whether  and  how  the  then-current  version  of Lumilo  might  influence  teachers’              
time  allocation  (cf.  Martinez-Maldonado,  Clayphan,  Yacef,  &  Kay,  2015)  across  students  of             
varying  prior  domain  knowledge  and  learning  rates  compared  with  business-as-usual  (i.e.,            
without   an   orchestration   tool).   

Each  session  replayed  data  from  a  40-minute  class  session,  randomly  selected  from  a  pool  of  five                 
“average”  and  “remedial”  classes.  An  “average”  class  was  replayed  in  four  Replay  Enactments              
sessions,  and  a  “remedial”  class  was  replayed  in  the  remaining  two  sessions.  Advanced  classes               
were  omitted  from  the  selection  pool  for  this  study,  given  that  there  was  relatively  little                
between-student  variation  in  test  scores  in  these  classes.  To  minimize  potential  effects  of  student               
names  or  seating  positions  on  teachers’  behavior,  replayed  students  were  randomly  assigned  to              
names   and   seats   in   each   session.  

As  discussed  in Chapter  4 ( Section  4.6 ),  in  order  to  track  how  teachers  allocated  their  time  across                  
students,  I  architected Lumilo  so  that  the  indicators  positioned  above  students’  heads  doubled  as               
mixed  reality  proximity  sensors  within  a  physical  classroom  space.  Each  teacher’s  allocation  of              
time  to  a  given  student  was  measured  as  the  cumulative  time  (in  seconds)  that  they  spent  within  a                   
4-foot  radius  of  that  student’s  indicator.  If  a  teacher  was  within  range  of  multiple  students,  time                 
was  accumulated  only  for  the  nearest  of  these  students.  I  used  hierarchical  linear  modeling               
(HLM)  to  predict  teachers’  time  allocation  across  replayed  “students”  as  a  function  of  either               
students’  prior  domain  knowledge  (measured  by  a  pretest  in  the  original  class  session  that  was                
being  replayed)  or  students’  learning  (measured  by  a  posttest,  controlling  for  the  student’s  pretest               
score).  As  is  the  case  in  a  typical  classroom  study,  teachers  participating  in  these  sessions  did  not                  
have  access  to  pre-  or  post-test  data  (e.g.,  since  a  pre-test  may  not  necessarily  be  administered                 
when  a  tutoring  system  is  used  outside  of  a  research  study,  and  since  in  this  context,  post-test                  
data  comes  from  the  “future”).  Accordingly, Lumilo  did  not  use  any  pre-  or  post-test  data  to                 
generate  the  real-time  analytics  it  presented  to  teachers.  Using  2-level  models  with  students              
nested   within   classrooms   provided   a   better   fit   than   1-level   or   more   complex   models.   

Standardized  coefficients  for  student-level  variables  are  shown  in  row  2  of  Table  5-1.  As  shown,                
teachers  using Lumilo  in  Replay  Enactments  sessions  spent  significantly  more  of  their  time              
attending  to  replay  “students”  who  had  relatively  lower  pretest  scores,  or  lower  posttest  scores               
(controlling  for  pretest).  By  contrast,  row  1  of  Table  5-1  shows  results  from  a  prior  in-vivo                 
classroom  study  with  four  teachers  (across  seven  live  middle  school  classrooms),  in  which              
students  worked  with Lynnette while  their  teacher  monitored  and  helped  students  (without  access              
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to  an  orchestration  tool).  Performing  the  same  analysis  as  above,  this  time  with  data  from  the                 
classroom  study  (with  time  allocation  recorded  via  manual  classroom  coding),  I  again  found  that               
2-level  models  provided  the  best  fit.  Coefficients  for  these  models  are  provided  in  Table  5-1  (row                 
1).  Although  all  participating  teachers  reported  attempting  to  devote  most  of  their  time  to               
students  whom  they  expected  would  struggle  with  the  material,  I  found  no  significant              
relationships  between  students’  pre-  or  post-test  scores  and  teachers’  time  allocation  across             
students.   

 
 

Table  5-1. Relationships  between  teachers  time  allocation  across  replayed  students  (in  seconds)  and              
students’   prior   knowledge   (pretest   score)   and   learning   (posttest   score   controlling   for   pretest).  
*   p   <   0.05,   **   p<   0.01,   ***   p   <   0.001  

Class  
Type  

Number  
of  

Teachers  

Number   of  
Classrooms  

Average  
class   size  

Using  
Lumilo ?  

Pretest  
Posttest   |  
Pretest  

Live  4  7  16  
No  

(business-as- 
usual)  

6.29  -5.49  

Replay  
Enact- 
ment  

6  3  15  Yes  -4.66*  -21.19**  

  

I  took  this  contrast  as  preliminary  evidence  that Lumilo  may  aid  teachers  in  focusing  on  and                 
helping  those  students  with  lower  prior  knowledge.  More  importantly,  I  interpreted  these  results              
as  suggestive  that Lumilo  may  successfully  aid  teachers  in  identifying  students  who  would  have               
gone  on  to  exhibit  the  lowest learning  in  an  actual  classroom  session,  at  least  without  the                 
teacher’s   help.   

Since  the  use  of  replay  removes  the  possibility  of  a  causal  arrow  from  teacher  behavior  to                 
students’  learning  within  the  software,  Replay  Enactments  allow  investigation  into           
counterfactuals  such  as  the  above,  for  different  forms  of  teacher  augmentation  (e.g.,  different              
algorithms  and  visualizations).  On  the  other  hand,  classroom  studies  –  although  much  costlier  to               
run  –  enable  investigation  into  the  effects  of  a  tool  in  the social  context  where  it  is  ultimately                   
intended  to  be  used,  in  the  presence  of  many  competing  influences  on  a  teacher’s  attention  and                 
judgment.  
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5.6   Conclusions  
Developing  methods  to  engage  non-technical  stakeholders  in  shaping algorithmic  elements  of            
complex,  data-driven  AI  systems  remains  a  central  open  challenge  for  the  UX  design  of               
data-driven  AI  systems  (e.g.,  Baumer,  2017;  Chen  &  Zhu,  2019;  Dennerlein  et  al.,  2018;               
Holstein  et  al.,  2019a;  Kyung  Lee  et  al.,  2018;  Prieto-Alvarez,  et  al.,  2018;  Zhu  &  Terveen,                 
2018).  This  chapter  has  introduced  Replay  Enactments,  a  replay-based  prototyping  method  that             
uses  authentic  data  and  (imperfect)  algorithms  to  reveal  important  nuances  that  other  methods  –               
such  as  Wizard  of  Oz  studies  (Lovejoy,  2018;  Odom,  Zimmerman,  Forlizzi,  Dey,  &  Lee,  2012)  –                 
may  be  ill-suited  to  surface  (see  item  4  under Summary  of  Expected  Contributions  –  Novel                
design   and   prototyping   methods) .  

Much  like  other  recently  proposed  prototyping  methods  in  the  learning  analytics  (LA)  literature,              
such  as  the  simulation  methods  presented  in  Martinez-Maldonado  et  al.  (2012)  and  Mavrikis  et               
al.  (2016),  Replay  Enactments  involve  replaying  log  data  from  students’  interactions  with             
educational  technologies  in  order  to  prototype  real-time  analytics  and  visualizations  with            
end-users  (such  as  teachers  or  students).  However,  in  the  spirit  of  recent  HCI  methods  for                
prototyping  radically  new  experiences,  such  as  User  Enactments  (Odom,  Zimmerman,  Davidoff,            
Forlizzi,  Dey,  &  Lee,  2012),  Replay  Enactments  builds  on  prior  LA  approaches  by  emphasizing               
embodied  role-playing  and  task  performance  (Holstein,  Hong,  et  al.,  2018;  Holstein  et  al.,              
2019a).  Whereas  methods  like  User  Enactments  typically  involve  Wizard-of-Oz’d  scenarios,           
Replay  Enactments  prototype  an  experience  using  authentic  data  and  algorithms,  evolving  over             
time.  Although  this  requires  earlier  investment  in  technical  development,  doing  so  can  enable              
earlier,  detailed  observations  of  the  interplay  between  human  and  machine  judgments,  and  the              
ways  in  which  a  system's  false  positives  and  false  negatives  may  impact  the  experience  of  using                 
a  data-driven  algorithmic  system  (cf.  Dove,  Halskov,  Forlizzi,  &  Zimmerman,  2017;  Holstein  et              
al.,   2019a).  

I  view  Replay  Enactments  as  one  step  towards  developing  and  formalizing  a  broader  class  of                
prototyping  methods  that  can  address  the  unique  challenges  of  designing  and  prototyping             
data-driven  algorithmic  systems.  Moving  forward,  I  expect  that  methods  for  prototyping  with             
authentic  (imperfect)  algorithms  and  data  collected  from  diverse  data-generating  contexts,  will            
be  invaluable  in  designing  AI  systems  that  are  usable,  useful,  fair,  and  trustworthy.  A  promising                
direction  for  future  work  is  to  explore  how  replay-based  prototyping  methods  like  Replay              
Enactments  might  be  refined  to  further  structure  participants’  feedback.  While  the  current             
version  of  Replay  Enactments  has  participants  engage  in  a  relatively  unstructured  think-aloud             
while  performing  a  task,  future  refinements  might  focus  users’  attention  on  specific  aspects  of  a                
system’s  design—for  example,  to  test  the  usefulness  of  particular  forms  of  AI  “explanations”  in               
the  context  of  specific  user  tasks  and  data-generating  contexts  (cf.  Doshi-Velez  &  Kim,  2017;               
Poursabzi-Sangdeh,  Goldstein,  Hofman,  Vaughan,  &  Wallach,  2018)  or  to  support  the  discovery             
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of  spurious  and  undesirable  biases  in  a  systems’  behavior  (cf.  Holstein,  Wortman  Vaughan,  et  al.,                
2019).  Similarly,  instead  of  replaying  a  full  class  session,  future  work  on  replay-based              
prototyping  methods  like  REs  might  explore  methods  to  curate specific  scenarios  (i.e.,  data  clips)               
that  have  properties  desirable  for  answering  particular  kinds  of  questions  a  research/design  team              
may  have.  At  the  same  time,  a  potential  tradeoff  in  developing  more  structured  methods  such  as                 
these  is  that  this  upfront  structuring  and  curation  may  reduce  opportunities  for  unexpected  design               
findings  to  emerge  (Odom  et  al.,  2012).  As  such,  conducting  combinations  of  less-  and               
more-heavily   structured   studies   may   be   desirable.  

In  order  to  test  the  interacting  dynamics  of  specific  data-generating  contexts,  algorithms,             
visualizations,  and  human  judgments  and  decisions  in  a  simulated  task  context,  Replay             
Enactments  differs  from  related  prototyping  methods  like  experience  prototyping  and  User            
Enactments  by  requiring  fairly  heavy  upfront  investment  in  technical  development.  To  a  certain              
extent,  a  greater  degree  of  upfront  technical  investment  may  be  unavoidable  when  prototyping              
complex,  data-driven  algorithmic  systems  (Dove  et  al.,  2017).  However,  a  promising  direction             
for  future  work  may  be  to  explore  the  design  of lighter-weight  prototyping  methods  that  can  reap                 
some   of   the   relative   benefits   of   Replay   Enactments   earlier   on   in   the   design   process.   

Similarly,  a  fruitful  direction  for  future  work  may  be  to  explore  new  methods  that  can  provide                 
earlier  insight  into social  nuances  before  deploying  a  system  in  the  real  world—an  aspect  that                
was  not  deeply  explored  in  the  Replay  Enactments  studies  presented  in  this  chapter—while  still               
keeping  development  and  recruitment  costs  low.  This  may  involve,  for  example,  including             
multiple  human  participants  in  role-playing  exercises,  a  mix  of  multiple  live  and  replayed              
participants,  or  a  mix  of  multiple  live  and  simulated,  interactive  participants  (cf.  Harpstead,              
2017;   Maclellan,   Harpstead,   Patel,   &   Koedinger,   2016).  

In  the  next  chapter  of  this  dissertation, Chapter  6 ,  I  build  off  of  the  analysis  approach  presented                  
in Section  5.5  to  explore  how  Replay  Enactments  can  support  the  iterative  alignment  of  a                
real-time   analytics   tools   with    educational   goals .  
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Part  Three of  this  dissertation  focuses  on  the  evaluation  of  real-time  teacher  augmentation  in  live                
classroom  settings.  In Part  Three ,  I  run  iterative  classroom  pilots  and  an  in-vivo  classroom               
experiment  with Lumilo  with  a  total  of  14  teachers,  across  30  middle  school  math  classrooms                
(see   Table   3   for   an   overview).   

In Chapter  6 ,  I  present  Causal  Alignment  Analysis  (CAA):  a  design  framework  for  the  iterative,                
data-informed  design  and  evaluation  of  real-time  teacher  augmentation.  I  demonstrate  CAA            
through  a  case  study  describing  the  iterative  piloting  and  design  refinement  of Lumilo              
(introduced  in Chapter  4 ).  Whereas Chapter  5  focused  primarily  on  iterative  experience             
prototyping,  through  Replay  Enactments,  to  better  understand  teachers’ perceived needs, Chapter            
6 focuses  on  further  shaping Lumilo ’s  design  in  ways  that  are  likely  to  benefit  students’  learning                 
(building   upon   the   evaluation   approach   presented   in    Section   5.5 ).   

In Chapter  7 ,  I  then  conduct  an  in-vivo  classroom  experiment  with  the  resulting  version  of                
Lumilo ,  to  evaluate  the  impacts  of  real-time  teacher  analytics  and  teacher–AI  co-orchestration  on              
classroom   dynamics   and   student   learning.  

Finally,  whereas Chapters  6  and 7  focus  primarily  on  quantitative  research  findings  from              
classroom  pilots  and  in-vivo  classroom  experiments,  in Chapter  8 ,  I  share  observations  from              
piloting Lumilo  “in  the  wild,”  with  a  focus  on  needs  and  nuances  that  were  not  captured  in  my                   
earlier   design   research   with   teachers   ( Parts   One    and    Two ).  

 

Table   3.    Demographics   for   schools   participating   in   live   classroom   pilots   and   in-vivo   experiments.  

School  Region  
Free/Reduced  
Price   Lunch  

#   of  
teachers  

#   of   teachers   with    <  
2   years’   experience  

#   of  
classrooms  

C  Suburban  23%  4  1  8  

E  Rural  34%  3  0  7  

I  Urban  63%  2  0  5  

M  Urban  60%  4  0  8  

N  Suburban  11%  1  0  2  
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Chapter   6  
Causal   Alignment   Analysis:   A   Framework   for   the  
Outcome-driven,   Data-informed   Design   of   Teacher  
Analytics   Tools  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   McLaren,   B.   M.,   &   Aleven,   V.    (2018a).   Informing   the   design   of   teacher  
awareness   tools   through   Causal   Alignment   Analysis.   In    Proceedings   of   the   13th  
International   Conference   of   the   Learning   Sciences   (ICLS   2018)     (pp.   104-111).  

 

6.1   Background   and   Motivation  
The  design  and  development  of  real-time  teacher  analytics  tools  is  often  motivated  by  the               
assumption  that  enhanced  teacher  awareness  will  lead  to  improved  teaching,  and  ultimately,  to              
improved  student  outcomes.  Yet  there  is  a  paucity  of  evidence  to  support  these  claims,  and                
scientific  knowledge  about  the  effects  that  such  tools  may  have  on  teaching  and  learning  in  real                 
educational  settings  is  scarce  (Molenaar  &  Knoop-van  Campen,  2017;  Rodríguez-Triana  et  al.,             
2017).  As  such,  it  is  a  challenging  problem  to  design  effective  teacher  analytics  tools.  Designers                
must  not  only  anticipate  the  effects  analytics  may  have  on  teacher  awareness,  but  also  how  this                 
enhanced  awareness  might  affect  teacher  decision-making  and  behavior,  and  how  these  changes             
in  behavior  will  ultimately  influence  student  learning.  Compounding  these  challenges,  while            
existing  design  workflows  such  as  LATUX  (Martinez-Maldonado  et  al.,  2016)  support  the             
user-centered  design  of  real-time  analytics  tools  based  on  teacher  feedback,  there  is  a  lack  of                
standard  methodology  for  the  outcome-driven  improvement  of  such  tools,  to  achieve  targeted             
educational  goals.  Furthermore,  justifications  for  design  decisions  (e.g.,  what  information  to            
present   in   a   dashboard)   are   rarely   reported   in   the   literature   (Rodríguez-Triana   et   al.,   2017).   
 

Researchers  in  other  areas  of  educational  technology  research  have  adopted  data-informed,            
outcome-driven  approaches  to  iteratively  guide  the  design  of  technologies  towards  educational            
goals  (e.g.,  Koedinger,  Stamper,  McLaughlin,  &  Nixon,  2013).  For  example,  the  design  of  ITSs               
often  includes  an  iterative  refinement  process,  in  which  historical  student  data  is  leveraged  to               
increase  alignment  between  the  software’s  instructional  design  and  the  way  students  actually             
learn  the  material,  as  inferred  from  data  (Aleven,  McLaughlin,  Glenn,  &  Koedinger,  2016;  Liu  &                
Koedinger,  2017).  By  contrast,  teacher  analytics  tools  are  not  typically  optimized  to  guide              
teacher  behavior  in  ways  that  are  productive  for  learning.  Given  the  complexity  of  designing               
teacher  analytics  tools,  and  the  substantial  causal  distance  between  enhancing  teacher  awareness             
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and  enhancing  student  learning  (Xhakaj,  et  al.,  2017),  bringing  such  outcome-driven  approaches             
to   the   design   of   teacher   analytics   tools   may   be   key   to   ensuring   their   effectiveness.  
 

In  this  chapter,  I  introduce  Causal  Alignment  Analysis  (CAA),  a  framework  for  the              
data-informed,  outcome-driven  design  of  teacher  analytics  tools  which  links  the  design  of  such              
technologies  to  educational  goals  (see  item  6  under Summary  of  Contributions  – “Causal              
Alignment  Analysis,  a  framework  for  the  data-informed,  iterative  design  of  teacher            
augmentation” ).  I  illustrate  CAA  via  a  case  study,  demonstrating  the  iterative  design  refinement              
of Lumilo  over  a  sequence  of  pilot  studies.  Finally,  I  discuss  conclusions  and  highlight  directions                
for   future   work.  
 

6.2   Causal   Alignment   Analysis  
Beginning  from  a  specification  of  educational  goals  (e.g.,  improving  student  learning  and/or             
engagement),  CAA  involves  gradually  aligning  the  design  of  a  teacher  analytics  tool  with  these               
goals,  by  repeatedly  evaluating  the  tool’s  effects  along  hypothesized  causal  paths  from  teacher              
tool  use  to  targeted  student-level  outcomes.  Specifically,  CAA  begins  by  generating  answers  to              
the  questions  below,  which  may  represent  open  hypotheses  where  theory  is  absent  or              
underspecified:   
 

Q1. What   student   outcomes   do   we   wish   the   tool   to   support?  
Q2. What   student-level   processes   promote   or   hinder   progress   toward   the   goals   specified   

        in   an   answer   to   question    (Q1) ?   
Q3. What   teacher-level   processes   promote   or   hinder   the   student-level   processes   identified   

        in   an   answer   to   question    (Q2) ?   
Q4. How   can   the   tool   be   better   designed   with   respect   to   the   processes   identified   in   

        answers   to   questions    (Q2)    and    (Q3) ?   
 

Taken  together,  answers  to  these  questions  specify  hypothesized  causal  paths  from  a  teacher’s              
use  of  a  particular  tool  to  enhanced  student  outcomes  (as  illustrated  in  Figure  6-1).  Making  the                 
goals  and  hypothesized  mechanisms  of  action  of  an  analytics  tool  explicit  early  on  may  usefully                
constrain  the  design  of  an  initial  prototype.  Once  an  initial  prototype  has  been  developed,  CAA                
then  involves  prototyping  the  tool  with  teachers  and  students.  Using  data  from  these  prototyping               
sessions,  designers  evaluate  the  alignment  (or  lack  thereof)  between  the  prototype’s  observed             
effects  on  teacher  behavior,  and  one  or  more  hypothesized  causal  paths  to  improved  student               
outcomes.  Based  on  this  analysis,  designers  can  refine  the  prototype  with  the  goal  of  increasing                
alignment,  increasing  the  chances  that  the  tool  will  have  a  positive  impact  in  the  classroom.                
Finally,   the   prototyping   cycle   repeats,   to   evaluate   the   effectiveness   of   this   realignment.  
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Figure  6-1. Examples  of  hypothesized  causal  paths,  based  on  prior  literature  on  real-time  teacher               
analytics  tools,  leading  from  teacher  use  of  an  analytics  tool  to  improved  student  learning  outcomes.                
Causal   tiers   are   labeled   with   questions   from   CAA   (figure   adapted   from   Holstein   et   al.,   2018a).  
 

Figure  6-1  shows  examples  of  potential  causal  paths  from  a  teacher’s  use  of  an  analytics  tool  to                  
teacher-  and  student-level  outcomes.  For  these  examples,  I  consider  the  context  of  self-paced              
classrooms  in  which  students  work  with  educational  software,  while  a  teacher  uses  a  real-time               
analytics  tool  to  decide  when,  with  which  students,  and  how  to  provide  additional  assistance.               
From  left  to  right,  the  diagram  shows  potential  influences  of  a  teacher  analytics  tool  ( Q4 )  on  the                  
behavior  of  the  teacher  using  it  ( Q3 ),  potential  impacts  of  resulting  shifts  in  teacher  behavior  on                 
students  ( Q2 ),  and  finally,  potential  impacts  of  these  student-level  effects  on  student  learning              
outcomes   ( Q1 ).   

Given  that  a  teacher  has  limited  time  to  provide  one-on-one  assistance,  the  top  path  in  Figure  6-1                  
posits  that  if  teachers  were  alerted  to  critical  situations  (e.g.,  a  student  exhibiting  a  common                
misconception),  they  would  be  able  to  more  effectively  allocate  time  to  students  who  need  their                
attention  the  most,  at  the  right  moments  (e.g.,  see  Holstein,  Hong,  et  al.,  2018;  Holstein  et  al.,                  
2017b;  2019a;  Martinez-Maldonado  et  al.,  2015;  Tissenbaum  et  al.,  2016).  Thus,  a  teacher              
analytics  tool  should  be  designed  to  alert  teachers  of  such  critical  situations.  In  contrast  to  the  top                  
path  –  which  represents  a  hypothesis  that  students  using  educational  software  would  learn  more               
from  additional  teacher  assistance  in  certain  situations  –  the  second  path,  represents  the              
hypothesis  that  students  would  benefit  from  more  teacher  attention in  general .  Under  this              
hypothesis,  an  analytics  tool  should  be  designed  to  encourage  teachers  to  spend  more  time               
working  with  students,  overall  –  perhaps  by  making  teachers  feel  more  informed,  and  thus               
increasing  their  overall  “confidence  to  act”  (van  Leeuwen,  Janssen,  Erkens,  &  Brekelmans,             
2015).  The  third  causal  path  represents  the  hypothesis  that,  if  the  quality  of  a  teacher’s                
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one-one-one  interactions  with  students  were  improved  (e.g.,  more  tailored  to  a  student’s  specific              
weaknesses),  this  would  enhance  student  learning  with  the  software  (see  van  de  Pol  &  Elbers,                
2013).  Furthermore,  this  path  posits  that  if  teachers  were  made  more  aware  of  student               
difficulties,  this  would  lead  teachers  to  tailor  their  one-on-one  interactions  more  closely  to              
individual  students’  needs.  The  fourth  causal  path  posits  a  direct  link  from  a  teacher’s  use  of  an                  
awareness  tool  and  a  student-level  effect.  Under  this  hypothesis,  students’  mere  awareness  that  a               
teacher  is  monitoring  their  activities  in  the  software  contributes  to  their  learning,  perhaps  by               
increasing  engagement  (see Chapter  2  and  Stang  &  Roll,  2014).  Finally,  the  bottom  path               
represents  a  hypothesis  that  teachers’  use  of  a  particular  analytics  tool  positively  impacts  their               
classroom  experience  (Rodriguez-Triana  et  al.,  2017),  but  has  no  notable  effects  on  student              
outcomes.   

Despite  showing  a  relatively  small  set  of  hypothesized  paths  –  each  specified  at  a  high  level  of                  
abstraction  –  Figure  6-1  illustrates  the  enormous  breadth  of  the  design  space  for  teacher  analytics                
tools.  Focusing  on  different  combinations  of  these  paths  may  yield  radically  different  tool              
designs.   

In  addition  to  helping  guide  and  scope  the initial  design  of  a  teacher  analytics  tool,  CAA  can  be                   
used  to  inform  the  refinement  of  an  existing  tool.  A  designer  applying  CAA  to  the  refinement  of                  
an  existing  teacher  analytics  tool  would  begin  by  considering  the  tool’s  educational  goals,  and               
would  then  work  backwards  from  these  goals  (cf.  Wiggins  et  al.,  2001)  to  construct  one  or  more                  
hypothesized  causal  paths  leading  from  a  teacher’s  use  of  the  tool  to  the  achievement  of  these                 
goals  (guided  by  existing  data  and  theory  where  possible).  By  iteratively  prototyping  the  teacher               
analytics  tool  and  collecting  data  on  relevant  outcomes,  the  designer  would  evaluate  whether  the               
tool  is  likely  to  have  desirable  effects  along  each  node  in  the  path,  adjusting  the  design  as                  
needed.  To  illustrate  the  use  of  CAA  in  practice,  I  next  demonstrate  the  iterative  design                
refinement   of    Lumilo    (introduced   in    Chapter   4 ).  
 

6.3   Case  Study:  Iterative  design  refinement  of Lumilo ,  using  Causal                  
Alignment   Analysis  
In  developing  the  initial  versions  of Lumilo  (see Chapters  4 and 5 ),  I  decided  to  target  its  design                   
largely  towards  the  problem  of  supporting  teachers  in  allocating  their  scarce  time  and  attention  to                
those  students  who  need  it  the  most  (the  top  path  in  Figure  6-1),  during  class  sessions  in  which                   
students  work  individually  with  ITSs.  This  focus  was  motivated,  in  part,  by  design  research  with                
teachers,  which  highlighted  these  decisions  as  a  major  challenge  in  orchestrating  personalized             
learning  (e.g.,  see  Martinez-Maldonado,  et  al.,  2015,  and Chapters  1 , 2 ,  and 4  of  this                
dissertation).  In  addition,  this  choice  of  focus  was  motivated  by  prior  empirical  results,              
suggesting  that  teachers’  decisions  about  whom  to  help,  and  when,  may  be  impactful  (e.g.,  see                
Martinez-Maldonado  et  al.,  2015  and Chapter  2  of  this  dissertation).  As  I  narrowed  my  focus                
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towards  the  development  of  a  concrete  prototype  ( Chapters  4 and 5 ),  I  increasingly  focused  on                
designing  for  classrooms  that  use Lynnette ,  a  specific  ITS  that  provides  tutored  problem  solving               
practice   in   equation   solving   (Long   &   Aleven,   2013;   2017;   Long,   Holstein,   &   Aleven,   2018).  

Taken  together,  the  indicators  presented  by Lumilo  can  be  taken  to  represent,  at  least  in  part,  the                  
phenomena  that  teachers  expect  require  their  attention  and/or  intervention.  For  example,  four  of              
the  teachers  I  worked  with  while  designing  and  prototyping Lumilo  ( Chapters  1 , 4 ,  and 5 )  argued                 
that  alerts  about  high  local  error  (one  of  three  states  of Lumilo ’s  “Struggling”  indicator)  would                
require  immediate  intervention.  Without  rapid  intervention,  these  teachers  worried  that  repeated            
error-making  in  an  ITS  might  “entrench”  the  errors,  despite  negative  feedback  from  the  software               
(see  Metcalfe,  2017  for  a  discussion  of  this  common  teacher  belief).  At  the  same  time,  it  is                  
important  to  note  that  teachers  also  found  some  indicators  valuable  for  reasons  that  did  not                
directly  relate  to  helping  their  students.  For  example,  I  found  that  positive  indicators  about               
student  performance  were  valuable  to  teachers,  in  part,  because  they  found  them  personally              
motivating   (Holstein,   Hong,   et   al.,   2018;   Holstein   et   al.,   2019a).   
 

 
Figure   6-2.    Left:   Full   set   of   student-level   indicator   states   displayed   by   an   early   version   of    Lumilo .   Top-  
right:   Teacher   using    Lumilo .   Bottom-right:   Point-of-view   screenshot   (taken   moments   after   the   end   of   a  

class   session,   to   preserve   student   privacy).  
 

In  addition  to  serving  teachers’  expressed  needs  and  desires,  however,  I  wanted  to  design  a                
teacher  analytics  tool  that  could measurably  benefit  students .  Teachers’  intuitions  about  the  most              
important  opportunities  for  intervention  may  not  always  be  correct  (e.g.,  Baker,  Walonoski,             
Heffernan,  Roll,  Corbett,  &  Koedinger,  2008;  Metcalfe,  2017).  Therefore,  in  the  next  phase  of               
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design,  I  used  Causal  Alignment  Analysis  to  iteratively  refine Lumilo ’s  design,  to  increase  its               
chances  of  having  a  positive  impact  in  the  classroom.  With  respect  to  the  first  of  CAA’s  four                  
guiding  questions,  I  had  defined  the  primary  learning  objectives  as  the  set  of  equation-solving               
skills  that  a  given  version  of Lynnette  tutors  (see  Long,  Holstein,  &  Aleven,  2018).  In  answer  to                  
CAA’s  second  and  third  questions,  I  adopted  a  causal  model  search  approach  to  understand  the                
relationships  between Lumilo’s  indicators  and  student  learning  outcomes  on  a  pre-  and  post-test.  I               
hypothesized  that  a  teacher’s  attention  during  class  should  be  directed  towards  student  processes              
that  have  a  negative  influence  on  learning.  Finally,  in  response  to  CAA’s  fourth  question,  I                
iteratively  refined Lumilo  to  direct  teachers’  time  and  attention  towards  these  processes,  over  a               
sequence   of   in-lab   and   classroom   pilot   studies.   Each   of   these   steps   is   discussed   in   turn   below.  
 

To  answer  CAA’s  second  question  ( “What  student  processes  promote  or  hinder  ...” ),  I  sought  to                
better  understand  the  relationships  between  student  processes  detected  by  the  current  prototype             
of Lumilo  (the  student-level  indicators  shown  in  Figure  6-2,  emerging  from  the  design  process               
described  in Chapters  1 , 4 ,  and 5 )  and  student  learning  within Lynnette .  To  this  end,  I  adopted  a                   
causal  model  search  approach,  using  directed  acyclic  graphs  (DAGs)  to  represent  the  causal              
structure  among  variables  measured  by Lumilo ,  and  student  assessment  scores.  I  collected  data              
from  115  middle  school  math  students  (across  7  classrooms  and  4  teachers),  each  of  whom                
worked  with Lynnette for  60  minutes.  In  these  classrooms,  the  teacher  did  not  use  a  real-time                 
analytics  tool  (Table  6-1,  Study  1).  In  all  studies,  students’  equation-solving  skills  were  assessed               
via  a  pre-  and  post-test,  administered  before  and  after  using Lynnette .  I  used  two  forms  that  were                  
identical  except  for  the  specific  numbers  used  in  equations,  and  presented  the  forms  in               
counterbalanced   order   across   pre-   and   posttest.   

I  then  used  the  PC  algorithm  in  the  Tetrad  V  program  to  search  for  an  equivalence  class  of                   
DAGs,  consistent  with  a  set  of  conditional  independence  constraints  (Spirtes  et  al.,  2000).  The               
PC  algorithm  is  asymptotically  reliable;  its  primary  limitations  are  its  assumptions  that  no              
unmeasured  confounders  are  present,  and  that  any  underlying  causal  relationships  between            
variables  can  be  modeled  by  linear  functions.  To  relax  the  former  of  these  assumptions,  I  also                 
used  the  FCI  algorithm,  which  allows  for  the  possibility  of  unmeasured  confounders.  The  FCI               
algorithm  learns  an  equivalence  class,  represented  by  partial  ancestral  graphs  (PAGs),  encoding             
uncertainty  over  the  nature  of  pairwise  relationships  between  variables  (Spirtes  et  al.,  2000).  To               
inform  both  searches,  I  provided  background  knowledge  about  the  study  design  as  a  search               
constraint:  I  specified  that  the  pretest  was  prior  to  any  process  variables,  and  that  all  process                 
variables   preceded   the   posttest.  
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Figure  6-3. Top:  model  found  by  PC,  with  normalized  coefficient  estimates  included.  Bottom:              
PAG   equivalence   class   found   by   FCI,   encoding   the   possibility   of   unmeasured   common   causes.  

 

Figure  6-3  (left)  shows  the  DAG  learned  with  the  PC  algorithm,  including  normalized  coefficient               
estimates,  to  enable  comparison  of  magnitudes.  This  model  suggests  that,  of  the  indicators              
included  in  the  initial  prototype  of Lumilo ,  three  are  potential  direct  causes  of  reduced  student                
learning  within  the  software:  help  abuse  (measured  by  the  Help  Model  introduced  in  Aleven  et                
al.,  2006;  2016)  or  gaming-the-system  (measured  by  the  gaming  detector  introduced  in  Baker  et               
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al.,  2008),  high  local  error  (defined  by  teachers  during  Replay  Enactments  prototyping  ( Chapter              
5 )  as  an  error  rate  greater  than  80%,  within  the  last  8  student  actions  on  the  current  activity),  and                    
unproductive  persistence  (measured  by  “wheel-spinning,”  as  described  in  Beck  &  Gong,  2013;             
Kai  et  al.,  2018;  and  Zhang  et  al.,  2019).  This  model  fits  the  data  well  (χ 2  =  18.33,  df  =  19,  p  =                        17

.50)  (1).  Figure  6-3  (right)  shows  the  PAG  learned  with  the  FCI  algorithm.  In  this  figure,                 
bidirectional  links  indicate  the  presence  (and  circle-origin  links  indicate  the  possibility)  of             
unmeasured  confounders.  Otherwise,  links  indicate  causal  relationships.  Wide  links  indicate  no            
unmeasured  confounders,  and  dark,  wide  links  further  indicate  direct  relationships.  The  PAG             
equivalence  class  found  by  FCI  suggests  that  unmeasured  confounders  could  potentially  explain             
several  of  the  links  between Lumilo ’s  indicators.  Finally,  in  both  causal  models,             
gaming/help-abuse,  unproductive  persistence,  and  help  avoidance  (as  measured  by  the  Help            
Model,  Aleven  et  al.,  2006;  2016)  are  negatively  linked  to  student  learning.  The  model  found  by                 
FCI  suggests  that  out  of  7  negative  teacher-generated  indicator  ideas  implemented  in Lumilo ,              
only  one  is  directly  linked  to  student  learning:  unproductive  persistence.  Influences  of  help              
avoidance  and  gaming/help-abuse  on  learning  may  in  turn  be  mediated  through  unproductive             
persistence.   

To  determine  how  the  design  of Lumilo  might  be  improved  (the  fourth  question  in  CAA),  I  first                  
wanted  to  better  understand  how  the  then-current  prototype  of Lumilo  influenced  teacher             18

behavior,  prior  to  deploying  it  in  real  classrooms.  To  this  end,  I  conducted  finer-grained  analyses                
of   data   from   the   Replay   Enactments   (REs)   sessions   reported   in    Chapter   5 .  

First,  I  investigated  how  teachers’  time  allocation  across  students  during  REs  may  have  been               
influenced  by  each  of Lumilo ’s  student-level  indicators.  Teacher  time  allocation  was  measured             
per  student  by  the  cumulative  time  (in  seconds)  spent  within  a  4-ft.  radius  of  that  student                 
(resolving  ties  among  students  by  proximity,  as  described  in Chapter  5 ),  as  well  as  time  spent                 
monitoring  the  student’s  activities  via Lumilo ’s  deep-dive  screens  (see Chapter  4 ).  Table  6-1              
(Study  2)  shows  group-normalized  correlations  between  detected  student  processes  and  teachers’            
time  allocation  during  six  REs.  Real-time  indicators  that  were  not  significant  predictors  of              
teacher  time  allocation  are  omitted.  As  shown,  occurrences  of  four  of Lumilo ’s  indicator  alerts               
were   significantly   positively   correlated   with   teachers’   time   allocation.   

Second,  to  understand  the  degree  to  which Lumilo  might  have  directed  teachers  towards  students               
most  in  need  of  help,  as  per  the  top  path  in  Figure  6-1,  correlations  between  student  assessment                  
scores  and  teacher  time  allocation  are  also  shown  in  Table  6-1.  Given  that  teachers  did  not  have                  

17  In   path   analysis,   the   null   hypothesis   is   that   the   estimated   model   is   the   true   model.   The   p-value  
represents   the   probability,   under   the   null,   of   observing   a   difference   between   the   estimated   and   observed  
covariance   matrices   at   least   as   large   as   the   realized   difference;   a   p-value   above   a   given   threshold  
(conventionally   alpha   =   .05)   implies   a   model   cannot   be   rejected.  
18  For   simplicity,   although   the   prototype   of    Lumilo    underwent   many   tens   of   design   iterations    prior   to    the  
activities   discussed   in   this   chapter   (see    Chapters   4    and    5 ),   versions   of    Lumilo    discussed   in   this   chapter  
will   henceforth   be   referred   to   as   version   1,   version   2,   and   so   on.  
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access  to  assessment  scores  during  REs,  and  that  it  is  not  possible  to  influence  learning  during  a                  
replayed  class,  I  take  the  correlation  between  teacher  time  allocation  during  REs  and  student               
post-test  scores  (controlling  for  pretest)  as  evidence  that Lumilo  can  direct  teachers’  time  to               
students  who  would  otherwise  exhibit  lower  learning.  However,  this  correlation  was  relatively             
small,   suggesting   room   for   improvement.  

 

Figure  6-4. Hypothesized  causal  path  from  a  teacher’s  use  of Lumilo  to  improved  student               
learning   outcomes.  

 

Table  6-1. Correlations  between  teacher  time  allocation,  and  detected  student  processes  and  test              
scores,  *  p  <  0.05,  **  p  <  0.01,  ***  p  <0.001.  Rows  show  a  series  of  studies,  using  successive                     
versions   of   the    Lumilo    prototype.  

 

Taken  together,  these  analyses  suggested  various  ways  the  design  of Lumilo  could  be  improved               
( Q4 ),  to  increase  its  alignment  with  the  hypothesized  causal  path  shown  in  Figure  6-4.               
Unproductive  persistence  was  the  weakest  driver  of  teacher  attention  during  REs,  out  of  the               
indicators  correlated  with  teacher  time  allocation  (as  shown  in  Study  2  of  Table  6-1),  despite                
being  the  one  variable  directly  (and  negatively)  related  to  student  learning  in  the  causal  model                
found  by  FCI.  To  better  align Lumilo ’s  design  with  the  findings  of  these  analyses,  the  design                 
should  focus  more  explicitly  on  alerting  teachers  to  cases  of  unproductive  persistence,  by              
increasing  the  salience  of  this  alert  and  others  that  may  serve  as  reliable  early  predictors.  For                 
instance,  although  help  avoidance  is  a  potential  cause  of  unproductive  persistence  in  the  PAG               
found  by  FCI  (and  thus  potentially  valuable  as  an  early  predictor),  it  was  not  a  significant  driver                  
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of  teacher  attention.  Similarly,  this  model  suggests  that  less  emphasis  should  be  placed  on               
alerting  teachers  to  high  local  error  or  rapid  attempts in  general ,  and  more  should  be  placed  on                  
alerting  teachers  to  cases  that  specifically  constitute  maladaptive  help-use  and/or  gaming.  As             
such,  I  next  refined  the  prototype  of Lumilo  to  place  greater  emphasis  on  alerts  about                
unproductive  persistence  and  persistent  help  avoidance.  This  included  not  only  making  the             
corresponding  indicator  symbols  more  visually  salient  than  others  (larger  and  brighter),  but  also              
drawing  teachers’  attention  to  these  alerts  through  ambient  sound  notifications  (see Chapters  4              
and  5 ).  Meanwhile,  I  de-emphasized  other  alerts,  including  high  local  error  and  rapid  attempts,               
by  making  these  indicators  relatively  dimmer  and  smaller.  Furthermore,  if  a  student  was  detected               
as  unproductively  persisting  on  one  or  more  skills,  avoiding  help,  or  gaming/abusing-help,  any              
other  alerts  for  that  student  would  be  hidden  at  a  glance  (although  still  accessible  upon  a                 
teacher’s   request).   

I  next  ran  two  more  pilot  studies,  in  live  classrooms.  The  first  of  these  studies  was  run  with  one                    
teacher  in  a  single,  80-minute  class  session.  In  this  study,  students  worked  with Lynnette  for  40                 
minutes,  while  the  teacher  used Lumilo  (version  2)  to  monitor  and  help  students.  Students’               
domain  knowledge  in  equation  solving  was  measured  before  and  after  using  the  software,  via               
computer-based  pre-  and  post-tests,  as  in  prior  studies.  As  shown  in  Study  3  of  Table  6-1,                 
students  who  were  more  frequently  detected  as  unproductively  persisting  or  avoiding  help             
received  significantly  more  teacher  time  during  this  single-classroom  pilot,  compared  with            
students  exhibiting  other  behaviors  tracked  by Lumilo ,  suggesting  that  the  design  refinements             
may  have  had  the  intended  effect.  Furthermore,  the  teacher’s  attention  during  this             
single-classroom  pilot  was  strongly  and  significantly  focused  towards  students  with  lower  prior             
domain  knowledge  (as  measured  by  the  pretest),  and  the  correlation  between  teacher  time              
allocation  and  student  posttest  score  (controlling  for  pretest)  was  positive,  despite  a  likely              
selection   effect,   although   not   statistically   significant.  

Following  this  pilot,  I  made  minimal  design  refinements  to  Lumilo,  in  an  effort  to  ensure  that                 
alerts  of  unproductive  persistence  were  emphasized  (as  potentially  more  critical)  over  alerts  of              
help  avoidance  and  gaming/help-abuse.  In  version  3  of Lumilo ,  if  a  student  was  detected  as                
unproductively  persisting  in  the  software  on  one  or  more  skills,  any  other  alerts  for  that  student                 
would   be   hidden.   

I  ran  additional  classroom  pilots  using Lumilo  (version  3)  in  4  classrooms.  Students  in  each                
classroom  worked  with Lynnette  for  a  total  of  60  minutes  while  the  teacher  used Lumilo  to                 
monitor  and  help  their  students.  As  before,  student  domain  knowledge  was  measured  via              
20-minute,  computer-based  pre-  and  post-tests.  As  shown  in  Study  4  of  Table  6-1,  unproductive               
persistence  was  the  strongest  predictor  of  teacher  time  allocation,  followed  by  help  avoidance              
and  gaming/help-abuse.  Classroom  observations  indicate  that  teachers  continued  to  make  use  of             
all  indicators  presented  by Lumilo  (e.g.,  praising  recent  high  performers  or  nudging  inactive              
students),  but  tended  to  reserve  in-depth  help  sessions  for  those  students  detected  as              
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unproductively  persisting.  Retrospective  post-interviews  corroborated  this  observation.  However,         
teachers  also  reported  frequently  attending  to “quick  fix”  alerts  for  students  who  were  physically               
“en-route” to  a  particular  student  the  teacher  was  targeting  for  remediation  (for  further              
discussion   of   qualitative   findings   from   classroom   studies   with    Lumilo ,   see    Chapter   8 ).  

In  summary,  in  the  first  phases  of  the  design  and  prototyping  process  ( Chapters 4  and 5 ),  I                  
decided  to  focus  on  the  problem  of  supporting  teachers  in  allocating  scarce  time  and  attention  to                 
those  students  who  may  need  it  most.  I  adopted  a  participatory  design  approach,  eliciting  ideas                
for  real-time  analytics  that  teachers  considered  actionable,  relevant  to  learning,  or  otherwise             
valuable  to  monitor.  I  leveraged  pre-existing  student  modeling  techniques  to  provide  teachers             
with  these  analytics,  while  iteratively  prototyping  and  refining  them  with  teachers  to  ensure  their               
usefulness  and  usability.  In  the  next  phase  of  design,  I  used  CAA  to  iteratively  align Lumilo ’s                 
design  with  a  hypothesized  causal  path  (based  on  findings  from  causal  modeling  on  student               
process  data)  from  teacher  tool  use  to  improved  student  learning  outcomes  (a  finer-grained              
instantiation  of  the  top  path  in  Figure  6-1,  as  shown  in  Figure  6-4).  With  respect  to  the  first  of                    
CAA’s  four  guiding  questions  ( Q1 ),  I  defined  students’  learning  objectives  as  the  skills  that               
Lynnette  is  intended  to  tutor,  and  assessed  student  learning  with  respect  to  these  skills.  In  answer                 
to  CAA’s  second  and  third  questions  ( Q2  and Q3 ),  I  adopted  a  causal  model  search  approach  to                  
discover  a  critical  subset  of Lumilo ’s  indicators,  representing  student  processes  that  appear  to              
most  strongly  influence  learning  outcomes  with Lynnette .  In  turn,  I  hypothesized  that  students              
exhibiting  these  processes  may  benefit  most  from  out-of-software,  teacher  interventions.  Finally,            
with  respect  to  CAA’s  fourth  question,  I  iteratively  refined Lumilo ’s  design  –  over  a  sequence  of                 
four  pilot  studies  conducted  in  both  simulated  and  live  classrooms  –  to  draw  teachers’  time  and                 
attention   towards   these   students.   
 

6.4   Conclusions  
In  this  chapter,  I  have  introduced  Causal  Alignment  Analysis  (CAA):  a  design  framework  for  the                
data-informed,  outcome-driven  design  and  iterative  improvement  of  teacher  analytics  tools,           
linking  the  design  of  these  tools  to  educational  goals  (see  item  6  under Summary  of  Expected                 
Contributions –  “Causal  Alignment  Analysis,  a  framework  for  the  data-informed,  iterative            
design  of  teacher  augmentation” ).  I  have  illustrated  the  application  and  usefulness  of  CAA              
through  a  case  study,  demonstrating  the  iterative  design  alignment  of  a  real-time  teacher              
analytics  tool  ( Lumilo)  with  a  hypothesized  causal  path  from  teacher  tool  use  to  student  learning                
(Figure  6-4).  The  resulting  prototype  augments  teachers’  awareness  of  student  learning,            
metacognition,  and  behavior,  while  also  measurably  directing  their  time  towards  a  subset  of              
student   processes   that   appear   to   have   a   negative   influence   on   student   learning   outcomes.   

While  this  case  study  may  represent  a  step  towards  the  design  of  teacher  awareness  tools  that  can                  
measurably  enhance  student  learning,  it  does  not  fully  “close  the  loop”  (Koedinger  et  al.,  2013).                
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To  support  iterative  design,  a  CAA  approach  favors  running  larger  numbers  of  small  to  mid-scale                
studies  over  running  a  single  high-powered  study.  As  such,  it  may  not  support  strong  causal                
inference.  To  better  understand  whether  and  how  a  teacher’s  use  of Lumilo  influences  student               
learning,  I  have  also  conducted  a  larger-scale  in-vivo  classroom  experiment  (presented  in             
Chapter  7) .  Analysis  of  data  from  this  experiment  will  enable  the  investigation  of  multiple               
possible  paths  from  teacher  tool  use  to  student  learning  (Figure  6-1),  and  will  make  it  possible  to                  
begin  teasing  apart  the  distinct  causal  explanations  that  these  paths  represent.  For  example,              
although  the  analyses  presented  in  this  chapter  led  to  the  improvement  of Lumilo with  respect  to                 
the  hypothesized  causal  path  pictured  in  Figure  6-4,  the  results  presented  in  this  chapter  leave                
open   whether   the   final   link   in   this   path   (improved   student   learning)   will   hold   in   practice.   

While  the  case  study  presented  in  this  paper  focused  on  data-informed  design  optimization  with               
respect  to  teacher  attention  allocation  across  students  (the  top  path  in  Figure  6-1),  there  are  many                 
other  causal  paths  along  which  an  analytics  tool  might  be  optimized.  For  instance,  even  if                
teachers  are  made  more  aware  of  critical  moments,  it  may  not  always  be  clear  how  to  effectively                  
respond.  My  prior  design  work  with  teachers  suggests  that  they  often  desire  more  direct  support                
(e.g.,  action  recommendations)  for  planning  and  enacting  effective  interventions  –  especially  in             
personalized  learning  contexts,  where  planning  time  can  be  very  scarce  (see Chapters  1,  4,  and                
5 ).  A  promising  direction  for  future  work  may  be  to  use  CAA  to  explore  whether  and  how  a                   
teacher  analytics  tool  could  be  designed  to  measurably  enhance  the  effectiveness  of             
teacher-student  coaching  interactions  (e.g.,  through  targeted  teacher  recommendations  for how  to            
help    a   particular   student   or   students   at   a   given   moment).   

In  summary,  as  the  fast-growing  research  area  of  teacher  analytics  tools  matures,  I  hope  to  see                 
the  design  of  these  tools  (within  and  beyond  the  academic  Learning  Sciences  and  Learning               
Analytics  communities)  increasingly  guided  by  educational  data  and  theory,  in  addition  to  user              
feedback.  Causal  Alignment  Analysis  provides  a  framework  for  making  the  goals  and  implicit              
assumptions  behind  the  design  of  awareness  tools  explicit  –  in  turn  representing  these              
assumptions  as  hypotheses  to  be  continuously  tested  throughout  a  design  process.  Given  the              
complexity  of  designing  teacher  analytics  tools,  I  expect  that  such  data-informed  design             
approaches  will  be  key  to  ensuring  that  they  are  not  only  useful  and  usable,  but  also  beneficial                  
for   learning.   
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Chapter   7  
A   Classroom   Experiment   to   Investigate   Student  
Learning   Benefits   of   Teacher–AI   Co-orchestration  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   McLaren,   B.   M.,   &   Aleven,   V.    (2018).   Student   learning   benefits   of   a  
mixed-reality   teacher   awareness   tool   in   AI-enhanced   classrooms.   In    Proceedings   of   the  
19th   International   Conference   on   Artificial   Intelligence   in   Education   (AIED   2018).    LNAI  
10947   (pp.   154-168).   Springer:   Berlin.  

 

7.1   Background   and   Motivation  
As  discussed  in Chapter  6 ,  the  design  and  development  of  real-time  teacher  analytics  tools  is                
often  motivated  by  the  assumption  that  enhanced  teacher  awareness  will  lead  to  improved              
teaching,  and  ultimately,  to  improved  student  outcomes.  Yet  there  is  a  paucity  of  evidence  to                
support  these  claims,  and  scientific  knowledge  about  the  effects  that  such  tools  may  have  on                
teaching  and  learning  in  real  educational  settings  is  scarce  (Molenaar  &  Knoop-van  Campen,              
2017;   Rodríguez-Triana   et   al.,   2017).   

To  investigate  the  hypothesis  that  real-time  teacher–AI  co-orchestration,  supported  by  analytics            
from  an  ITS  would  enhance  student  learning,  I  ran  an  in-vivo  classroom  experiment  with  343                
middle  school  students  (286  included  in  analyses,  as  discussed  in  the  following  sections),  across               
18  classrooms  and  8  teachers.  Among  several  other  interesting  findings,  the  results  indicated  that               
a  teacher’s  use  of Lumilo  had  a  positive  impact  on  student  learning  with  an  ITS,  compared  with                  
both  business-as-usual  (where  the  teacher  did  not  have  any  real-time  support)  and  a  second,               
stronger  control  condition  in  which  the  teacher  had  access  to  a  simpler  form  of  classroom                
monitoring  support  via  mixed-reality  glasses  (i.e.,  support  for  peeking  at  a  student’s  screen              
remotely),   but   without   any   advanced   analytics.  

Although  much  prior  work  has  focused  on  the  design,  development,  and  evaluation  of  teacher               
analytics  tools,  very  few  studies  have  evaluated  effects  on  student  learning  (Kelly  et  al.,  2013;                
Molenaar  &  Knoop-van  Campen,  2017;  Rodríguez-Triana,  et  al.,  2017;  Xhakaj  et  al.,  2017).              
Prior  work  has  found  that  providing  teachers  with  real-time  notifications  about  student             
performance  can  direct  their  attention  to  low-performing  students,  resulting  in  local  performance             
improvements  (e.g.,  Martinez-Maldonado  et  al.,  2015).  Other  recent  work  has  begun            
systematically  investigating  how  teachers  use  real-time  progress  and  performance  analytics  in            
blended  classrooms  (e.g.,  Molenaar  &  Knoop-van  Campen,  2017).  However,  the  present  work  is              
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the  first  experimental  study  showing  that  real-time  teacher  analytics  or  teacher–AI            
co-orchestration  can  enhance  students’  learning  outcomes  (within  or  outside  the  context  of             
AI-supported  classrooms;  see  items  1  and  3  under Summary  of  Contributions  –  “First  broad               
design  exploration  of  needs  for  real-time  teacher  analytics  and  orchestration  support”  and             
“First  experimental  study  to  demonstrate  student  learning  benefits  of  real-time  teacher            
analytics” ).  

Interestingly,  part  of Lumilo ’s  overall  effect  on  student  learning  appeared  to  be  attributable  to               
monitoring  support  alone.  These  findings  suggest  that,  when  evaluating  the  impacts  of             
teacher-facing  learning  analytics  tools,  future  research  should  take  care  to  tease  apart  potential              
effects  of  a  teacher’s  use  of  a  monitoring  tool  (such  as  novelty  effects  or  students’  awareness  of                  
being  monitored  by  their  teacher),  versus  teachers’  use  of  the  kinds  of  advanced  analytics  and                
student  modeling  methods  that  are  often  the  focus  of  research  in  learning  analytics  (LA),  AI  in                 
education  (AIED),  user  modeling  (UM),  and  educational  data  mining  (EDM)  (see  item  5  under               
Summary  of  Contributions –  “First  investigations  of  relationships  between  teacher           
movement/monitoring   and   student   behavior   and   learning   in   AI-supported   classrooms” ).  
 

7.2   Methods  
In  this  study,  I  investigated  the  hypothesis  that  real-time  teacher/AI  co-orchestration,  supported             
by  real-time  analytics  from  an  ITS,  would  enhance  student  learning  compared  with  both  (a)               
business-as-usual  for  an  ITS  classroom,  and  (b)  classroom  monitoring  support  without  advanced             
analytics   (a   stronger   control   than   (a),   as   described   below).  

To  test  these  hypotheses,  I  conducted  a  3-condition  experiment  with  343  middle  school  students,               
across  18  classrooms,  8  teachers,  and  4  public  schools  (each  from  a  different  school  district)  in  a                  
large  U.S.  city  and  surrounding  areas.  All  participating  teachers  had  at  least  5  years  of  experience                 
teaching  middle  school  mathematics  and  had  previously  used  an  ITS  in  their  classroom.  The               
study  was  conducted  during  the  first  half  of  the  students’  school  year,  and  none  of  the  classes                  
participating  in  this  study  had  previously  covered  equation-solving  topics  beyond  simple            
one-step   linear   equations   (e.g.,   x   –   2   =1).  

Classrooms  were  randomly  assigned  to  one  of  three  conditions,  stratified  by  teacher.  In  the               
Glasses+Analytics  condition,  teachers  used  the  full  version  of Lumilo ,  including  all  displays             
described  above.  In  the  business-as-usual  (noGlasses)  condition,  teachers  did  not  wear Lumilo             
during  class,  and  thus  did  not  have  access  to  real-time  analytics.  I  also  included  a  third  condition                  
(Glasses)  in  which  teachers  used  a  reduced  version  of Lumilo  with  only  its  monitoring               
functionality  (i.e.,  without  any  of  its  advanced  analytics).  This  condition  was  included  because              
prior  empirical  findings  suggest  that  students’  mere  awareness  that  a  teacher  is  monitoring  their               
activities  within  an  ITS  may  have  a  significant  effect  on  student  learning  (e.g.,  by  discouraging,                
and  thus  decreasing  the  frequency  of  maladaptive  learning  behaviors  such  as  gaming-the-system)             
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(see Chapter  2 ;  Holstein  et  al.,  2017a;  Stang  &  Roll,  2014). I n  the  Glasses  condition,  teachers                 
only  retained  the  ability  to  “peek”  at  students’  screens  from  any  location  in  the  classroom,  using                 
the  glasses  (although  without  the  line-by-line  annotations  present  in Lumilo ’s  “Current  Problem”             
screen).  All  of Lumilo ’s  student  indicators  were  replaced  by  a  single,  static  symbol  (a  faint                
circular  outline)  that  did  not  convey  any  information  about  the  student’s  state.  Further,  the               
“Areas  of  Struggle”  deep  dive  screens  and  the  class-level  displays  were  hidden.  The  goal  of                
providing  this  stripped-down  version  of Lumilo  (as  opposed  to  a  completely  non-functional  pair              
of  glasses)  was  to  encourage  teachers  to  interact  with  the  glasses,  thereby  minimizing  differences               
in  students’  perceptions  between  the  Glasses+Analytics  and  Glasses  conditions.  The  Glasses            
condition  bears  some  similarity  to  standard  classroom  monitoring  tools ,  which  enable  teachers             19

to   peek   at   student   screens   on   their   own   desktop   or   tablet   display.  

All  teachers  participated  in  a  brief  training  session  before  the  start  of  the  study.  Teachers  were                 
first  familiarized  with Lynnette ,  the  tutoring  software  that  students  would  use  during  the  study.  In                
the  Glasses+Analytics  and  Glasses  conditions,  each  teacher  also  participated  in  a  brief             
(30-minute)  training  with Lumilo  before  the  start  of  the  study.  In  this  training,  teachers  practiced                
interacting  with  two  versions  of  the  glasses  (Glasses  and  Glasses+Analytics)  in  a  simulated              
classroom  context.  At  the  end  of  this  training,  teachers  were  informed  that,  for  each  of  their                 
classes,   they   would   be   assigned   to   use   one   or   the   other   of   these   two   designs.  

Classrooms  in  each  of  the  three  conditions  followed  the  same  procedure.  In  each  class,  students                
first  received  a  brief  introduction  to Lynnette  from  their  teacher.  Students  then  worked  on  a                
computer-based  pre-test  for  approximately  20  minutes,  during  which  time  the  teacher  provided             
no  assistance.  Following  the  pretest,  students  worked  with  the  tutor  for  a  total  of  60  minutes,                 
spread  across  two  class  sessions.  In  all  conditions,  teachers  were  encouraged  to  help  their               
students  as  needed,  while  they  worked  with  the  tutor.  Finally,  students  took  a  20-minute               
computer-based  post-test,  again  without  any  assistance  from  the  teacher.  The  pre-  and  posttests              
focused  on  procedural  knowledge  of  equation  solving.  Two  isomorphic  test  forms  were  used  for               
the  pre-  and  post-test,  which  differed  only  by  the  specific  numbers  used  in  equations.  The  tests                 
forms  were  assigned  in  counterbalanced  order  across  pre-  and  post-test,  and  were  graded              
automatically,  with  partial  credit  assigned  for  intermediate  steps  in  a  student’s  solution,             
according   to    Lynnette ’s   cognitive   model.  

In  the  Glasses  and  Glasses+Analytics  conditions,  I  used  Lumilo  to  automatically  track  a              
teacher’s  physical  position  within  the  classroom  relative  to  each  student,  moment-by-moment            
(leveraging  Lumilo’s  indicators  as  mixed-reality  proximity  sensors  as  discussed  in Chapters  4,  5,              
and  6 ).  Given  my  prior  observations,  in  Replay  Enactments  ( Chapter  5 )  and  classroom  pioting               
( Chapter  6 )  that  teachers  in  both  of  these  conditions  frequently  provided  assistance  remotely              

19  For   example:   Chromebook   Management   Software   for   Schools,    https://www.goguardian.com/ ;   Hapara,  
https://hapara.com/ ;   and   LanSchool   Classroom   Management   Software,  
https://www.lenovosoftware.com/lanschool   
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(i.e.,  conversing  with  a  student  from  across  the  room,  while  monitoring  her/his  activity  using  the                
glasses),  teacher  time  was  also  accumulated  for  the  duration  a  teacher  spent  peeking  at  a                
student’s  screen  via  the  glasses.  In  the  noGlasses  condition,  since  teachers  did  not  wear Lumilo ,                
time  allocation  was  recorded  via  live  classroom  coding  (using  the  LookWhosTalking  tool )  of              20

the  target  (student)  and  duration  (in  seconds)  of  each  teacher  visit.  In  addition  to  test  scores  and                  
data  on  teacher  time  allocation,  I  analyzed  tutor  log  data  to  investigate  potential  effects  of                
condition   on   students’   within-software   behaviors.  
 

7.3   Results  
Fifty-seven  students  were  absent  for  one  or  more  days  of  the  study  and  were  excluded  from                 
further  analyses.  I  analyzed  the  data  for  the  remaining  286  students.  Given  that  the  sample  was                 
nested  in  18  classes,  8  teachers,  and  4  schools,  and  that  the  experimental  intervention  was                
applied  at  the  class  level,  I  used  hierarchical  linear  modeling  (HLM)  to  analyze  student  learning                
outcomes.  3-level  models  had  the  best  fit,  with  students  (level  1)  nested  in  classes  (level  2),  and                  
classes  nested  in  teachers  (level  3).  I  used  class  track  (low,  average,  or  high)  as  a  level-2                  
covariate.  Both  2-level  models,  (with  students  nested  in  classes)  and  4-level  models  (with              
teachers  nested  in  schools)  had  worse  fits  according  to  both  AIC  and  BIC,  and  4-level  models                 
indicated  little  variance  on  the  school  level.  In  the  following  subsections,  I  report  r  for  effect  size.                  
An  effect  size  r  above  0.10  is  conventionally  considered  small,  0.3  medium,  and  0.5  large                
(Cohen,   1992).  
 

Effects   on   Student   Learning.   

To  compare  student  learning  outcomes  across  experimental  conditions,  I  used  HLMs  with  test              
score  as  the  dependent  variable,  and  both  test  type  (pretest/posttest,  with  pretest  as  the  baseline                
value)  and  experimental  condition  as  independent  variables  (fixed  effects).  For  each  fixed  effect,              
I  included  a  term  for  each  comparison  between  the  baseline  and  other  levels  of  the  variable.  For                  
comparisons  between  the  Glasses+Analytics  and  noGlasses  conditions,  noGlasses  was  used  as            
the   condition   baseline.   Otherwise,   Glasses   was   used   as   the   baseline.  

Across  conditions,  there  was  a  significant  gain  between  student  pre-  and  post-test  scores  (t(283)               
=  7.673,  p  =  2.74*10 -13  ,  r  =  0.26,  95%  CI  [0.19,  0.34]),  consistent  with  results  from  prior                   
classroom  studies  using Lynnette  ( Long  &  Aleven,  2013;  Long,  Holstein,  &  Aleven,  2018;              
Waalkens  et  al.,  2013 ),  which  showed  learning  gain  effect  size  estimates  ranging  from  r  =  0.25  to                  
r  =  0.64.  Figure  7-1  shows  pre-post  learning  gains  for  each  condition.  There  was  a  significant                 
positive  interaction  between  student  pre/posttest  and  the  noGlasses/Glasses+Analytics  conditions          
(t(283)  =  5.897,  p  =  1.05*10 -8  ,  r  =  0.21,  95%  CI  [0.13,  0.28]),  supporting  the  hypothesis  that                   

20   https://bitbucket.org/dadamson/lookwhostalking/   
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real-time  teacher/AI  co-orchestration,  supported  by  analytics  from  an  ITS,  would  enhance            
student   learning   compared   with   business-as-usual   for   ITS   classrooms.  

Decomposing  this  effect,  there  was  a  significant  positive  interaction  between  student  pre/posttest             
and  the  noGlasses/Glasses  conditions  (t(283)  =  3.386,  p  =  8.08*10 -4  ,  r  =  0.13,  95%  CI  [0.02,                  
0.23]),  with  a  higher  learning  gain  slope  in  the  Glasses  condition,  indicating  that  relatively               
minimal  classroom  monitoring  support,  even  without  advanced  analytics,  can  positively  impact            
learning.  In  addition,  there  was  a  significant  positive  interaction  between  student  pre/posttest  and              
the  Glasses/Glasses+Analytics  conditions  (t(283)  =  2.229,  p  =  0.027,  r  =  0.11,  95%  CI  [0.02,                
0.20]),  with  a  higher  slope  in  the  Glasses+Analytics  condition  than  in  the  Glasses  condition,               
supporting  the  hypothesis  that  real-time  teacher  analytics  would  enhance  student  learning,  above             
and   beyond   any   effects   of   monitoring   support   alone   (i.e.,   without   advanced   analytics).  
 

 
Figure  7-1. Student  pre/post  learning  gains,  by  experimental  conditions  ("Glasses  +  Analytics":  Teacher              
uses Lumilo ;  "Glasses":  Teacher  wears  reduced  version  of Lumilo ,  without  analytics;  "noGlasses":             
Teacher  does  not  wear  glasses  at  all).  Error  bars  indicate  standard  error  (figure  from  Holstein  et  al.,                  
2018b).  
 

Aptitude-Treatment   Interactions   on   Student   Learning.  

I  next  investigated  how  the  effects  of  each  condition  might  vary  based  on  students’  prior  domain                 
knowledge.  As  discussed  in Chapters 4 , 5 ,  and 6 , Lumilo  was  designed  to  help  teachers  quickly                 
identify  students  who  are  currently  struggling  (unproductively)  with  the  ITS,  so  that  they  could               
provide  these  students  with  additional,  on-the-spot  support.  If Lumilo  was  successful  in  this              
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regard,  we  would  expect  to  see  an  aptitude-treatment  interaction,  such  that  students  coming  in               
with  lower  prior  domain  knowledge  (who  are  more  likely  to  struggle)  would  learn  more  when                
teachers  had  access  to Lumilo ’s  real-time  analytics  (see Chapter  5 and 6 ;  Holstein,  Hong,  et  al.,                 
2018;   Holstein   et   al.,   2018a).   
 

 
Figure  7-2. Student  posttest  scores  plotted  by  pretest  scores,  for  each  experimental  condition.  Lines               
indicate  condition  means;  shaded  regions  indicate  standard  error;  overlapping  shaded  regions  indicate             
overlapping   standard   errors   (figure   from   Holstein   et   al.,   2018b).  
 

I  constructed  an  HLM  with  posttest  as  the  dependent  variable  and  pretest  and  experimental               
condition  as  level-1  covariates,  modeling  interactions  between  pretest  and  condition.  Figure  7-2             
shows  student  posttest  scores  plotted  by  pretest  scores  (in  standard  deviation  units)  for  each  of                
the  three  conditions.  As  shown,  students  in  the  Glasses  condition  learned  more  overall,  compared               
with  the  noGlasses  condition,  but  the  disparity  in  learning  outcomes  across  students  with  varying               
prior  domain  knowledge  remained  the  same.  For  students  in  the  Glasses+Analytics  condition,  the              
posttest  by  pretest  curve  was  flatter,  with  lower  pretest  students  learning  considerably  more  than               
in  the  other  two  conditions.  There  was  no  significant  interaction  between  noGlasses/Glasses  and              
student  pretest.  However,  there  were  significant  negative  interactions  between  student  pretest            
scores  and  noGlasses/Glasses+Analytics  (t(46)  =  -  2.456,  p  =  0.018,  r  =  -0.15,  95%  CI  [-0.26,                 
-0.03])  and  Glasses/Glasses+Analytics  (t(164)  =  -2.279,  p  =  0.024,  r  =  -0.16,  95%  CI  [-0.27,                
-0.05]),  suggesting  that  a  teacher’s  use  of  real-time  analytics  may  serve  as  an  equalizing  force  in                 
the   classroom.  
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Effects   on   Teacher   Time   Allocation.   

As  an  additional  way  of  testing  whether  the  real-time  analytics  provided  by Lumilo  had  their                
intended  effect,  I  fit  an  HLM  with  teacher  time  allocation,  per  student,  as  the  dependent  variable                 
(i.e.,  to  test Q2  and Q3  of  Causal  Alignment  Analysis,  as  described  in Chapter  6 ),  and  student                  
pretest  score,  experimental  condition,  and  their  interactions  as  fixed  effects.  Figure  7-3  shows              
teacher  time,  plotted  by  student  pretest,  for  each  condition.  As  shown,  in  the  Glasses+Analytics               
condition,  teachers  tended  to  allocate  considerably  more  of  their  time  to  students  with  lower               
prior  domain  knowledge,  compared  to  the  other  conditions.  There  was  no  significant  main  effect               
of  noGlasses/Glasses  on  teacher  time  allocation  (t(211)  =  0.482,  p  =  0.63,  r  =  0.03,  95%  CI  [0,                   
0.14]),  nor  a  significant  interaction  with  pretest.  However,  there  were  significant  main  effects  of               
noGlasses/Glasses+Analytics  (t(279)  =  2.88,  p  =  4.26*10 -3  ,  r  =  0.17,  95%  CI  [0.06,  0.28])  and                 
Glasses/Glasses+Analytics  (t(278)  =  2.02,  p  =  0.044,  r  =  0.12,  95%  CI  [0.01,  0.23])  on  teacher                 
time  allocation.  In  addition,  there  were  significant  negative  interactions  between  student  pretest             
and  noGlasses/Glasses+Analytics  (t(279)  =  -2.88,  p  =  4.28*10 -3 ,  r  =  -0.17,  95%  CI  [-0.28,  -0.05])                
and  Glasses/Glasses+Analytics  (t(275)  =  -  3.546,  p  =  4.62*10 -4  ,  r  =  -0.23,  95%  CI  [-0.33,                 
-0.11]).  
 

 
Figure  7-3.  Teacher  attention  allocation  (in  seconds),  plotted  by  pretest  scores,  for  each  experimental               
condition.  Lines  indicate  condition  means;  shaded  regions  indicate  standard  error;  overlapping  shaded             
regions   indicate   overlapping   standard   errors   (figure   from   Holstein   et   al.,   2018b).  
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I  also  investigated  how  teachers’  relative  time  allocation  across  students  may  have  been  driven               
by  the  real-time  analytics  presented  in  the  Glasses+Analytics  condition.  Specifically,  I  examined             
whether  and  how  teacher  time  allocation  varied  across  conditions,  based  on  the  frequency  with               
which  a  student  exhibited  each  of  the  within-tutor  behaviors/states  detected  by Lumilo  (i.e.,              
Lumilo ’s  student  indicators,  described  in Chapters  4  and  6 ).  I  constructed  HLMs  with  teacher               
time  allocation  as  the  dependent  variable,  and  the  frequency  of  student  within-tutor             
behaviors/states,  experimental  condition,  and  their  interactions  as  fixed  effects.  Row  3  of  Table              
7-1  shows  relationships  between  student  within-tutor  behaviors/states  and  teacher  time  allocation            
across  students,  for  the  Glasses+Analytics  vs.  noGlasses  (GA  v.  nG)  comparison.  As  shown,              
teachers’  time  allocation  across  students  appears  to  have  been  influenced  by Lumilo ’s  real-time              
indicators.  Compared  with  business-as-usual  (Row  3,  Table  7-1),  teachers  in  the            
Glasses+Analytics  condition  spent  significantly  less  time  attending  to  students  who  frequently            
exhibited  low  local  error,  and  significantly  more  time  attending  to  students  who  frequently              
exhibited   undesirable   behaviors/states   detected   by    Lumilo ,   such   as   unproductive   persistence.  
 

Table  7-1. Estimated  effects  of  condition  (rows)  on  teachers’  allocation  of  time  to  students  exhibiting                
each   within-tutor   behavior/state   (columns).   Cells   report   estimated   effect   sizes:   
***   p<0.001,   **   p<0.01,   *   p<0.05,   ~   0.05<   p<0.07  

 
 

Rows  1  and  2  of  Table  7-1  show  estimates  for  Glasses  vs.  noGlasses  (G  v.  nG)  and                  
Glasses+Analytics  vs.  Glasses  (GA  v.  G),  respectively.  As  shown,  there  were  no  significant              
differences  in  teacher  time  allocation  due  to  the  introduction  of  the  glasses  themselves,              
suggesting Lumilo ’s  overall  effects  on  teacher  time  allocation  may  result  primarily  from             
teachers’   use   of   the   advanced   analytics   presented   in   the   GA   condition.   
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Effects  of  Classroom  Monitoring  Support  and  Real-time  Teacher  Analytics  on           
Student-level   Processes.  

To  investigate  potential  effects  of  experimental  condition  on  the  frequency  of  student             
within-tutor  behaviors  and  learning  states  detected  by Lumilo ,  I  constructed  HLMs  with  students’              
within-tutor  behaviors/states  as  the  dependent  variable,  and  pretest  score  and  experimental            
condition  as  fixed  effects.  Row  3  of  Table  7-2  shows  estimated  effects  of  classroom  condition  on                 
the  frequency  of  student  within-tutor  behaviors/states,  for  Glasses+Analytics  vs.  noGlasses  (GA            
v.   nG).  
 

Table  7-2. Estimated  effects  of  condition  (rows)  on  the  frequency  of  student  within-tutor  behaviors/states               
(columns):   
***   p<0.001,   **   p<0.01,   *   p<0.05,   ~   0.05<   p<0.07  

 
 

Compared  with  business-as-usual,  students  in  the  Glasses+Analytics  condition  exhibited  less  hint            
avoidance  or  gaming  /  hint  abuse,  were  less  frequently  detected  as  unproductively  persisting  or               
making  rapid  consecutive  attempts  in  the  tutoring  software  and  exhibited  less  frequent  high  local               
error.  In  addition,  students  in  the  Glasses+Analytics  condition  were  more  frequently  idle  in  the               
software,  and  more  frequently  exhibited  low  local  error.  Row  1  of  Table  7-2  suggests  that  the                 
introduction  of  the  glasses,  even  without  real-time  teacher  analytics,  may  have  had  a              
considerable  influence  on  students’  behavior  within  the  software.  By  contrast,  there  were  no              
significant  differences  between  the  Glasses+Analytics  and  Glasses  conditions.  These  results           
suggest  that,  despite  the  ostensible  positive  effects  of  real-time  teacher  analytics  on  student              
learning  outcomes,  some  of  the  largest  effects  of Lumilo  on  students’  within-tutor  behavior  may               
result  primarily  from  teachers’  use  of  the  monitoring  support  provided  in  the  Glasses  condition,               
rather   than   from   a   teachers’   use   of   advanced   analytics.  
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7.4   Conclusions  
I  conducted  a  three-condition  classroom  experiment  to  investigate  the  effects  of  real-time             
teacher/AI  co-orchestration  on  student  learning  in  ITS  classrooms.  The  results  indicated  that  a              
teacher’s  use  of Lumilo  had  a  positive  impact  on  student  learning  with  an  ITS,  compared  with                 
both  business-as-usual  (where  the  teacher  did  not  have  any  real-time  support)  and  a  second,               
stronger  control  condition  in  which  the  teacher  had  access  to  a  simpler  form  of  classroom                
monitoring  support  via  mixed-reality  glasses  (i.e.,  support  for  peeking  at  a  student’s  screen              
remotely),   but   without   any   advanced   analytics.   

In  particular,  presenting  teachers  with  real-time  analytics  about  student  learning,  metacognition,            
and  behavior  at  a  glance  had  a  positive  impact  on  student  learning  with  the  ITS,  above  and                  
beyond  the  effects  of  monitoring  support  alone  (without  any  advanced  analytics).  The  real-time              
analytics  provided  by Lumilo appear  to  have  served  as  an  equalizing  force  in  the  classroom.  That                 
is,  whereas  the  use  of  AI  in  K-12  education  has  sometimes  been  shown,  in  prior  studies,  to  have                   
a  “rich  get  richer”  effect, increasing  within-classroom  achievement  gaps  (Holstein  et  al.,  2018b;              
Holstein  &  Doroudi,  2018;  Rau,  2015;  Reich  &  Ito,  2017),  teachers’  use  of Lumilo  in  the                 
classroom  had  the  effect  of narrowing the  gap  in  learning  outcomes  across  students  of  varying                
prior  ability,  as  measured  by  the  pre-test,  by  benefiting  students  of  lower  prior  ability,  but                
without  measurably  affecting  students  of  higher  prior  ability.  This  effect  appears  to  have  been               
mediated,  in  part,  by  an  increase  in  teachers’  time  allocation  towards  students  of  lower  prior                
ability  over  the  course  of  a  class  session  in  the  Glasses+Analytics  condition,  compared  with  the                
other   two   conditions.   

Finer-grained  analyses  of  teachers’  moment-by-moment  movement  throughout  their  classrooms          
revealed  that  teachers  in  the  “Glasses+Analytics”  condition  spent  significantly  more  of  their             
time,  compared  with  the  “noGlasses”  condition,  working  with  students  who  frequently  exhibited             
unproductive  persistence  (here  measured  by  “wheel  spinning,”  as  in  Beck  &  Gong,  2013;  Kai  et                
al.,  2017),  hint  avoidance  (see  Aleven,  Roll,  et  al.,  2016),  or  idle  periods  in  the  software  greater                  
than  80  seconds  (see  Baker,  2007);  and  significantly  less  of  their  time  working  with  students  who                 
frequently  exhibited  a  low  recent  error  rate  in  the  software  (see  Pelánek  &  Řihák,  2017).  Teasing                 
apart  potential  effects  of  a  teacher’s  use  of  real-time  analytics  versus  the  simpler  form  of                
monitoring  support  provided  in  the  “Glasses  condition,  I  found  that  a  teacher’s  use  of  analytics                
explained   these   associations   with   teachers’   time   allocation.  

Although  much  prior  work  has  focused  on  the  design,  development,  and  evaluation  of  teacher               
analytics  tools,  very  few  studies  have  evaluated  effects  on  student  learning  (Kelly  et  al.,  2013;                
Molenaar  &  Knoop-van  Campen,  2017;  Rodríguez-Triana,  et  al.,  2017;  Xhakaj  et  al.,  2017).              
Prior  work  has  found  that  providing  teachers  with  real-time  notifications  about  student             
performance  can  direct  their  attention  to  low-performing  students,  resulting  in  local  performance             
improvements  (e.g.,  Martinez-Maldonado  et  al.,  2015).  Other  recent  work  has  begun            
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systematically  investigating  how  teachers  use  real-time  progress  and  performance  analytics  in            
blended  classrooms  (e.g.,  Molenaar  &  Knoop-van  Campen,  2017).  However,  the  present  work  is              
the  first  experimental  study  showing  that  real-time  teacher  analytics  can  enhance  students’             
learning  outcomes  (within  or  outside  the  context  of  AI-supported  classrooms;  see  items  1  and  3                
under Summary  of  Contributions –  “First  broad  design  exploration  of  needs  for  real-time              
teacher  analytics  and  orchestration  support”  and “First  experimental  study  to  demonstrate            
learning   benefits   of   real-time   teacher   analytics” ).  

Interestingly,  part  of Lumilo ’s  overall  effect  on  student  learning  appeared  to  be  attributable  to               
monitoring  support  alone.  Follow-up  correlational  analyses  suggested  that  a  teacher’s  use  of  the              
glasses,  with  a  simpler  form  of  monitoring  support,  but  without  advanced  analytics,  may  have               
reduced  students’  frequency  of  maladaptive  learning  behaviors  (such  as  gaming/hint-abuse)           
without  significantly  influencing  teachers’  time  allocation  across  students.  These  results  suggest            
that  the  observed  learning  benefits  of  monitoring  support  may  be  due  to  a  motivational  effect,                
resulting  from  students’  awareness  that  a  teacher  is  monitoring  their  activities  in  the  software  (cf.                
Holstein  et  al.,  2017a;  Stang  &  Roll,  2014),  and/or  due  to  a  novelty  effect.  It  may  also  be  that  the                     
monitoring  support  provided  in  the  Glasses  condition  had  a  positive  effect  on  teacher  behavior               
that  is  not  reflected  in  the  way  they  distributed  their  time  across  students  (e.g.,  perhaps  there                 
were  beneficial  changes  in  the  kinds  of  help  teachers  gave,  or  in  their  non-verbal  behaviors).                
However,   future   research   is   needed   to   tease   apart   these   alternative   explanations.  

Importantly,  these  findings  suggest  that,  when  evaluating  the  impacts  of  teacher-facing  learning             
analytics  tools,  future  research  should  take  care  to  tease  apart  potential  effects  of  a  teacher’s  use                 
of  a  monitoring  tool  (such  as  novelty  effects  or  students’  awareness  of  being  monitored  by  their                 
teacher),  versus  teachers’  use  of  the  kinds  of  advanced  analytics  and  student  modeling  methods               
that  are  often  the  focus  of  research  in  learning  analytics  (LA),  AI  in  education  (AIED),  user                 
modeling  (UM),  and  educational  data  mining  (EDM)  (see  item  5  under Summary  of  Expected               
Contributions  – “First  investigations  of  relationships  between  teacher  movement/monitoring  and           
student   behavior   and   learning   in   AI-supported   classrooms” ).  

I  see  several  exciting  directions  for  future  work.  The  current  study  involved  teachers  with  at  least                 
five  years  of  mathematics  teaching  experience.  However,  my  prior  design  work  with  teachers              
indicated  that  less-experienced  teachers  may  often  struggle  to  generate  effective  on-the-spot            
help,  in  response  to  real-time  analytics  from  an  ITS  (see Chapter  4  and Chapter  5 ).  Thus,  a                  
promising  direction  for  future  design  research  is  to  investigate  differences  in  needs  for  real-time               
support  across  teachers  with  varying  levels  of  experience.  In  addition,  while  the  current  study               
was  conducted  over  a  single  week  of  class  time,  future  longitudinal  studies  may  shed  light  on                 
whether  and  how  the  effects  of  real-time  teacher  analytics  and  monitoring  support  may  evolve               
over  longer-term  use  (cf.  Molenaar  &  Knoop-van  Campen,  2017).  More  broadly,  an  exciting              
direction  for  future  work  is  to  better  understand  and  characterize  the  complementary  strengths  of               
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human  and  automated  instruction,  in  order  to  explore  how  they  can  most  effectively  be  combined                
(cf.   Holstein   et   al.,   2017b;   2019a;   Ritter   et   al.,   2016b).  

In  sum,  the  findings  presented  in  this  chapter  illustrate  the  potential  of  AIED  systems  that                
integrate  human  and  machine  intelligence  to  support  student  learning.  In  addition,  this  work              
illustrates  that  the  kinds  of  analytics already  generated  by  ITSs,  using  student  modeling              
techniques  originally  developed  to  support  adaptive  tutoring  behavior,  appear  to  provide  a             
promising   foundation   for   real-time   teacher   support   tools.   
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Chapter   8  
Lumilo   Goes   to   School   in   the   Big   City:   
Classroom   Observations   and   Feedback   Sessions  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   McLaren,   B.   M.   &   Aleven,   V.    (2019a).   Co-designing   a   real-time  
classroom   orchestration   tool   to   support   teacher–AI   complementarity.    Journal   of  
Learning   Analytics   (JLA).  

 

8.1   Motivation  
Chapters  6  and 7  focused  primarily  on  quantitative  research  findings  from  classroom  pilots  and               
in-vivo  classroom  experiments.  However,  deploying  in  30  live  K-12  classrooms  also  provided  an              
opportunity  to  hear  student  and  teacher  perspectives  on  the  experience  of  using  the  Lumilo               
prototype   in   the   classroom.   

In  this  chapter,  I  share  observations  from  piloting Lumilo  “in  the  wild,”  with  a  focus  on  needs                  
and  nuances  that  were  not  captured  in  my  earlier  design  research  with  teachers  (see  items  1  and  2                   
under Summary  of  Contributions  – “First  broad  design  exploration  of  needs  for  real-time              
teacher  analytics  and  orchestration  support”  and  “First  design  exploration  and  prototypes  of             
wearable,   heads-up   displays   to   support   orchestration   of   personalized   classrooms” ).  

These  field  observations  in  turn  serve  as  the  foundation  for  more  targeted,  detailed  investigations               
in Part  Four  of  this  thesis. Chapter  9  further  explores  needs  observed  during  these  classroom                
pilots,  through  concept  generation  and  validation  exercises  with  both  teachers  and  students.             
Chapter  10  then  compares  findings  from  the  current  studies  with  findings  from Lumilo  pilots  in                
classrooms   that   use   a   different   ITS   (Carnegie   Learning’s    MATHia    software).  
 

8.2   Methods  
Each  class  session  began  with  the  teacher  introducing  the  glasses  to  the  class,  which  was  often                 
accompanied  by  an  invitation  to  laugh  at  the  teacher’s  appearance  while  wearing  the  prototype               
(see  Figure  8-1,  left).  For  example,  near  the  beginning  of  class,  one  teacher  told  students,                
“Alright  everyone  get  the  giggles  out  now.  You  can  laugh  at  me  for  the  next  five  minutes.  But                   
after  that  it’s  time  to  work.”  For  these  feedback  sessions,  audio  recording  was  prohibited  by  our                 
study’s  IRB  and  some  schools,  to  avoid  the  possibility  of  collecting  potentially  identifiable  data               
on  young  students.  Throughout  each  classroom  pilot  session,  a  researcher  took  live  notes  on               

119  



 

classroom  observations.  Throughout  each  classroom  experiment  session,  a  researcher  manually           
transcribed  teacher  (but  not  student)  dialogue  live,  using  the  LookWhosTalking  tool .  Teacher             21

utterances  captured  with  this  tool  were  automatically  time-stamped,  to  facilitate  later            
triangulation  between  time-stamped  teacher  dialogue,  and  the  real-time  analytics  a  teacher  was             
seeing  at  a  given  moment  through  the Lumilo  prototype  (as  logged  to  DataShop).  In  ten  (out  of                  
thirty-six)  class  sessions  that  were  so  noisy  as  to  make  manual,  live  dialogue  transcription               
impractical  (e.g.,  due  to  many  students  talking  at  once),  the  researcher  took  notes  on  classroom                
observations   instead   of   conducting   live   transcriptions   of   teacher   utterances.  

 

 
Figure  8-1.  Left:  A  teacher  using Lumilo  in  a  live  middle  school  math  classroom  while  her  students  work                   
with Lynnette ,  an  ITS  for  linear  equation  solving  (from  Holstein  et  al.,  2018b).  Right:  An  illustrative                 
point-of-view   screenshot   through    Lumilo ,   captured   during   earlier   prototyping   sessions   at   our   institution.  
 

For  20  to  30  minutes  at  the  end  of  each  study,  the  teacher  would  invite  the  whole  class  to  reflect                     
on  the  experience,  and  provide  design  feedback  from  the  student  perspective.  Given  that  audio               
recording  was  not  permitted  for  these  feedback  sessions,  a  researcher  took  detailed  notes  on               
student  feedback  throughout  each  session,  with  the  teacher  serving  as  the  primary  session              
facilitator.  At  the  end  of  the  school  day,  teachers  then  participated  in  a  loosely  structured                
post-interview,  lasting  approximately  30  minutes,  to  share  their  own  reflections  on  the             
experience.  These  teacher-only  sessions  were  audio  recorded  and  later  transcribed.  To  analyze             
data  from  classroom  observations  and  feedback  sessions,  we  worked  through  classroom  notes             
and  approximately  14  hours  of  transcribed  audio  to  synthesize  findings  using  a  thematic  analysis               
approach  (Hanington  &  Martin,  2012).  Key  findings  and  reflections  are  briefly  summarized  in              
the   following   subsection.  

 
 

21   https://bitbucket.org/dadamson/lookwhostalking/  
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8.3   Findings  
From  the  first  classroom  pilot  onward,  teacher  and  student  responses  to  Lumilo  were  much  more                
positive  than  I  would  have  expected  for  an  initial  venture  outside  of  the  lab.  By  the  time  I  entered                    
the  classroom,  I  had  already  encountered  many  “surprises”  in  Replay  Enactments  sessions  by              
testing  with  datasets  from  a  (relatively)  diverse  range  of  classroom  contexts,  and  had  iterated  on                
Lumilo’s  design  accordingly.  In  some  cases,  teachers  found  that  particular  design  features  that              
had  emerged  through  iterative  prototyping  were  even  more  useful  in  live  classrooms  than  they               
had  anticipated  during  REs.  For  example,  one  teacher  –  who  had  first  participated  in  an  REs                 
session  and  then  piloted Lumilo  in  his  own  classes  –  was  frequently  observed  “multitasking”               
during  a  class  session:  using  the  glasses  to  peek  at  analytics  for  students  across  the  room,  and                  
interleaving  quick  feedback  between  multiple  students,  even  in  the  middle  of  working             
face-to-face  with  a  particular  student.  This  teacher  reflected  that  he  did  not  feel  as  strong  a  need                  
to  multitask  in  the  REs  study,  but  in  a  live  classroom  where  multiple  students  were  constantly                 
vying   for   the   teacher’s   attention,   

“[The   ability   to]   take   a   student’s   screen   with   me,   even   if   I’m   over   here   working   with  
another   student   is   amazingly   useful…   that   was   well   thought   through.”  

Teachers  reported  making  frequent  use  of  Lumilo’s  analytics  to  identify  students  who  might  need               
their  help  —  in  some  cases,  directly  referencing  these  analytics  in  one-on-one  conversations  with               
a   student:   

“You  have  a  smiley  face  [right  now],  but  you’re  still  having  trouble  with  adding  and                
subtracting  variables  from  both  sides  ...  That’s  what  you  need  to  watch,  when  you               
have   variables   on   both   sides,   you   need   to   subtract   on   both   sides   [not   just   one].”   

In  other  cases,  teachers  used  Lumilo’s  alerts  in  ways  they  had  not  anticipated  during  REs                
think-aloud  sessions.  For  example,  in  one  class,  a  teacher  noticed  a  “system  misuse”  alert  over                
one  student’s  head,  with  elaboration  text  indicating  that  this  student  seemed  to  be  “Abusing               
hints?”  However,  the  teacher  believed  that  hint  abuse  was  out  of  character,  given  what  they  knew                 
about  this  particular  student.  When  the  teacher  approached  to  find  out  how  the  student  was                
doing,  they  learned  that  this  student  was  actually  colourblind  and  thus  could  not  perceive  the                
correctness  feedback  provided  by  the  tutoring  system  (which  was  coded  green  for  “correct”  and               
red  for  “incorrect”).  This  had  led  the  student  to  grow  frustrated,  and  ostensibly,  to  rely  on  the                  
tutoring  software’s  “hint”  function  more.  In  a  similar  case,  a  teacher  noticed  that  an  otherwise                
diligent  student  had  been  idle  in  the  software  for  over  five  minutes.  The  teacher  approached  this                 
student  and  noticed  that  this  student  was  playing  online  video  games  instead  of  doing  the                
assigned  work.  The  teacher  asked  how  the  student  was  feeling  that  day,  which  led  the  student  to                  
disclose  that  they  had  broken  up  with  a  significant  other  over  the  preceding  weekend.  In                
response,   the   teacher   gave   the   student   permission   to   take   the   day   off   from   math,   if   needed.  
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Overall,  students  also  reacted  very  positively  to  teachers’  use  of  Lumilo  during  ITS  lab  sessions.                
At   the   beginning   of   one   class   session,   a   student   said,   

“I’m   a   little   afraid.   [The   researcher’s]   gonna   let   [the   teacher]   spy   on   us…”   

During  class,  however,  the  student  appeared  to  warm  up  to  the  idea  of  their  teacher  using  the                  
prototype.  On  multiple  occasions,  the  teacher  approached  the  student  to  provide  unsolicited  help,              
based  on  what  the  teacher  was  seeing  through  the  glasses.  At  the  end  of  one  of  these                  
student–teacher  exchanges,  after  the  student  completed  the  majority  of  a  problem  without  the              
teacher’s  assistance,  the  student  and  teacher  high-fived.  During  the  end-of-class  feedback            
session,   the   same   student   said,   

“It   was   awesome   how   [the   teacher]   just   knew   when   I   needed   help.”   

In   another   classroom,   a   student   –   excited   by   the   concept   of   becoming   a    “cyborg   teacher”    –  
exclaimed,    “I   want   to   be   a   teacher   when   I   grow   up!”   

Piloting  Lumilo  in  30  live  middle-school  classrooms  also  revealed  several  critical  needs  that              
Lumilo’s  design  did  not  address.  For  example,  both  students  and  teachers  across  multiple              
classrooms  emphasized  needs  for  additional  features  to  support  “anonymous”          
non-face-threatening  communication  between  students  and  teachers  during  a  class  session,           
extending  beyond  “invisible  hand  raises”  (a  potential  feature  that  was  discussed  in Chapter  4 ,  but                
which  was  not  activated  in  the  version  of Lumilo  that  was  used  in  classrooms  due  to  initial                  
teacher  concerns  about  student  misuse  or  overuse  of  such  functionality).  In  the  absence  of  such                
features,  students  sometimes  took  matters  into  their  own  hands.  For  example,  in  one  class               
session,  a  student  appropriated  the  equation-entry  box  in Lynnette ’s  interface  to  write  “secret”              
messages   to   their   teacher,   viewable   through   the   teacher’s   glasses.   

In  addition,  while  teachers  reported  that  it  rarely  made  sense  to  give  a  whole-class  lecture  given                 
the  non-synchronized  nature  of  ITS  class  sessions,  they  realized  that  it  would  be  useful  to  have                 
more  support  in  dynamically  deciding  between  small  group  (“pull  out”)  interventions  versus             
interventions  with  individual  students.  While  the  Lumilo’s  design  included  analytics  at  the             
individual  and  whole-class  levels,  the  design  did  not  facilitate  rapid  filtering  of  students  to               
identify   relevant   student   subgroups.   One   teacher   suggested   it   might   have   been   helpful   

“[if]  the  class  [dashboard  would  let]  you  zoom  in  and  see  which  students  are               
struggling   with   a   particular   skill.”   

Finally,  after  using  Lumilo  in  the  classroom,  multiple  teachers  raised  needs  for  greater              
transparency  and  control.  For  example,  one  teacher  noted  that  although  the  analytics  presented              
by Lumilo  provide  some  insight  into  why  the  ITS  might  be  making  certain  decisions  (e.g.,                
relating   to   adaptive   problem   selection),   
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“When  a  student  asks  me  why  they  have  to  do  twenty  problems  in  level  three  [of  the                  
ITS],  before  [moving  on],  but  another  student  only  has  to  do  two  problems…  I               
should   be   able   to   answer   that.”   

In  addition,  some  teachers  noted  that  the  level  of  transparency  currently  provided  by  Lumilo               
helped  make  them  more  aware  of  some  of  the  limitations  of  the  intelligent  tutoring  system  their                 
class  was  using  (and  associated  student  modelling  techniques).  Given  this  enhanced  awareness,             
teachers  reported  frustration  over  their  relative  lack  of  control  (cf.  Lee  &  Baykal,  2017).  One                
teacher  noted  that  it  would  be  helpful  if  they  could  provide  feedback  when  Lumilo’s  alerts  miss                 
the   mark,   to   customize   the   alerts   to   their   needs.   

Similarly,  this  teacher  and  their  students  agreed  that  it  would  be  nice  if students  had  the  option  to                   
see  their  own  student  model  (including  skill  mastery  estimates,  metacognitive  variables,  and             
other  information  that  the  teacher  can  see  through Lumilo )  and  contest  what  it  says  about  their                 
knowledge  or  behaviour  (cf.  Bull  &  Kay,  2016),  perhaps  allowing  the  teacher  to  review  and                
approve   these   cases   individually   during   class.   

Another  teacher  mentioned  that  when  using Lumilo ,  they  were  seeing  students  struggle  with  the               
same  issues  over  and  over  again,  and  the  software’s  built-in  hints  did  not  seem  to  be  helping  in                   
these  cases.  This  teacher  suggested  that  instead  of  “filling  in”  for  the  ITS  by  repeatedly  giving                 
different   students   the   same   feedback,   

“It  would  be  nice  if  [the  ITS]  could  listen  to  what  I  tell  [the  student,  and]  just  say                   
that   the   next   time   a   student   gets   stuck   [with   the   same   issue].”  

 

8.4   Conclusions  
Building  upon  early  design  and  data  mining  investigations  presented  in Chapters  1,  2,  and  4 ,  the                 
prototyping  studies  and  classroom  experiments  presented  in Chapters 5  through 7  demonstrate             
promise  for  “hybrid”  approaches  to  AI-supported  education,  which  integrate  teacher  and            
machine  intelligence  to  support  students’  learning.  However,  studies  in  live  K-12  classrooms             
also  revealed  broader  needs  for  orchestration  support  in  these  settings  –  among  both  teachers  and                
students   –   extending   beyond   those   addressed   by    Lumilo ’s   current   design.   

For  example,  both  teachers  and  students  expressed  needs  for  better  mechanisms  to  support              
“private”  teacher–student  communication  during  a  class  session  (e.g.,  to  enable  students  to  signal              
help-need  during  class  without  losing  face  to  peers).  In  addition,  after  using Lumilo  in  live  K-12                 
classrooms,  teachers  began  to  reveal  more  nuanced  preferences  for  which  classroom  tasks  should              
be  handled  by  the  AI,  which  should  be  handled  by  the  teacher,  and  which  should  be  handled  by                   
students  (and  under  which  circumstances).  Similarly,  students  began  to  reveal  needs  for  greater              
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agency  over  how  their  personal  analytics  are  used  and  interpreted  than Lumilo  (and  associated               
ITSs)   currently   provides.  

Building  upon  these  and  other  findings,  in Part  Four  of  this  dissertation,  I  involve  students,  as                 
well  as  teachers,  in  the  next  phase  of  design.  Through  iterative  concept  generation  and  validation                
exercises,  I  work  with  students  and  teachers  to  better  understand  their  respective  needs  and               
boundaries  ( Chapter  9 ).  In  a  subsequent  classroom  study,  conducted  in  classrooms  using             
Carnegie  Learning’s  widely-used MATHia tutoring  software  ( Chapter  10 ),  I  then  follow  up  on              
findings  from Chapter  9 ,  to  further  validate  these  findings  with  participants  who  have  had  recent                
experiences  using  a  form  of  real-time  wearable  teacher  augmentation  (a  modified  version  of              
Lumilo )    to   support   their   classroom   activities.  
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Part   Four  
Preparing   for   Broader   Use:   
Implications   for   Cyborg   Teachers  
in   the   Wild   

125  



 

In  the  final  chapters  of  my  thesis  on  real-time,  wearable  teacher  augmentation  (RWTA),  I  begin                
to  explore  challenges  in  preparing  this  concept  for  wider-spread  use.  Over  the  past  two  years,                
there  has  been  considerable  excitement,  from  teachers,  students,  school  administrators,  and            
educational  technology  companies,  in  turning Lumilo  into  a  widely-available  classroom  tool.  My             
colleagues  and  I  have  recently  formed  an  academic–industry  partnership  with  Carnegie  Learning,             
a  major  educational  technology  company  that  is  interested  in  bringing  this  concept  to  a  larger                
audience.  Carnegie  Learning’s  AI  tutoring  software MATHia  is  used  by  over  2,000  schools  and               
500,000   students   each   year.   

It  is  worth  noting  that  the  Research  through  Design  (RtD)  work  I  have  conducted  up  to  this  point                   
has  not  been  motivated  by  the  possibilities  of  near-term  productization  or  scaling.  Had  these  been                
major,  near-term  objectives  early  on,  I  most  likely  would  have  taken  a  much  more               
technologically  conservative  route  after  the  explorations  presented  in Part  One  of  this             
dissertation.  For  example,  I  may  have  restricted  my  subsequent  design  explorations  in Part  Two               
to  technologies  that  were  already  relatively  low  cost,  widely  adopted,  and  familiar  in  K-12               
classroom  settings  (none  of  which  were  properties  of  mixed  reality  heads  up  displays  at  the  time;                 
see   Harrison,   2018).   

My  primary  goals  in Parts  One through Three  of  this  dissertation  have  been  to  explore  and                 
understand  possible  futures  for  AI  in  education  (AIED),  in  which  AIED  systems  are  designed  to                
augment  and  amplify  teachers’  complementary  abilities,  instead  of  necessarily  trying  to  automate             
these  away  (Baker,  2016;  Holstein  et  al.,  2017b;  Ritter  et  al.,  2016).  However,  this  research  has                 
since  expanded  beyond  its  initial  scope  and  goals,  and  it  now  appears  that  RWTA  may  be  headed                  
for   wider   use   (i.e.,   beyond   short-term   research   studies   in   local   K-12   classrooms).  

Scaling  up  RWTA  not  only  introduces  new  technical  and  interface  design  challenges,  it requires               
a  shift  to  a  broader  framing  of  the  design  problem .  My  prior  work  has  focused  on  an                  
important  gap  in  the  AIED  research  literature:  working  with  K-12  teachers,  I  have  explored  how                
we  might  design  to  empower  teachers  to  help  their  students  during  AI-supported  class  sessions.               
However,  a  system  intended  for  broader  use,  beyond  the  context  of  short-term  research  studies,               
should  be  designed  to  serve  the  needs  (and  respect  the  boundaries)  of  all  stakeholders  within  the                 
classroom.  In  keeping  with  the  ethos  of  empowerment  central  to  this  thesis  (Kulkarni,  2019;               
Toyama,  2018),  it  is  necessary  to  involve  not  just  teachers  but  also  students  in  the  design  process                  
(cf.   Prieto-Alvarez,   Martinez-Maldonado,   &   Anderson,   2018).   

While  prior  chapters  have  focused  on  the  design  of  more  effective  teacher–AI  partnerships  in               
K-12  classrooms,  the  final  chapters  of  this  thesis  begin  to  explore  how  we  might  design  for                 
mutually  desirable student–teacher–AI  partnerships .  Specifically,  I  conceptualize  RWTA  as  just           
one  teacher-facing  component  of  an  integrated  human–AI  co-orchestration  system  that  helps  to             
“choreograph”  interactions  between  teachers,  students,  and  AI  agents  in  the  classroom  (see             
Conclusions,   Contributions,   and   Future   Directions    for   a   discussion).  
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As  a  design-oriented  HCI  researcher,  I  believe  it  is  important  to  collaborate  with  companies  to                
help  shape  the  ways  academic  research  is  used  –  as  opposed  to  simply  handing  off  our  research                  
and  having  industry  “take  it  from  there”  (Blikstein,  2018;  Holstein  &  Doroudi,  2019)  or               
passively  critiquing  product  design  decisions  “from  the  sidelines”  (Buckingham  Shum,  2018;            
Holstein,  Wortman  Vaughan,  et  al.,  2018;  2019;  Veale  et  al.,  2018).  As  an  initial  step  towards                 
designing  a  system  that  is  “ready”  to  be  scaled  up  (in  collaboration  with  Carnegie  Learning),  in                 
Chapter  9  I  investigate  how  human–AI  co-orchestration  systems  can  be  better  designed  to  serve               
the  needs  (and  respect  the  boundaries  of both teachers  and  students,  building  upon  observations               
and   feedback   from   classroom   pilots   and   experiments   with    Lumilo    (see    Chapter   8 ) .  

In  addition,  as  a  step  towards  demonstrating  the  feasibility  of  generalizing  RWTA  beyond  use               
with  a  single  tutoring  system,  in Chapter  10  I  explore  what  new  design  challenges  arise  when                 
generalizing  RWTA  for  use  with  a  new  tutoring  system  (Carnegie  Learning’s MATHia )  that  is               
used  over  significantly  longer  timescales,  covers  a  much  broader  range  of  curricular  content,  and               
is   used   in   a   broader   range   of   classroom   contexts .  

Beyond  the  scope  of  this  thesis,  the  work  presented  in Part  Four  will  help  prepare  for  the  next                   
phase  of  this  research:  a  large-scale  classroom  experiment  (using  an  updated  and  miniaturized              
version  of Lumilo )  with  over  60  middle  school  classrooms  that  use MATHia ,  to  better  understand                
the   effects   of   human–AI   co-orchestration   on   student   learning   and   other   outcomes   of   interest.   
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Chapter   9  
My   Teacher   is   a   Cyborg:   Designing   for   More   Desirable  
Student–Teacher–AI   Interactions   in   AI-supported  
Classrooms  
 
This   chapter   is   based   in   part   on   the   following   publications:  
 

● Holstein,   K.,   McLaren,   B.   M.,   &   Aleven,   V.   (2019b).   Designing   for   Complementarity:  
Teacher   and   Student   Needs   for   Orchestration   Support   in   AI-Enhanced   Classrooms.   In  
Proceedings   of   the   International   Conference   on   Artificial   Intelligence   in   Education  
(AIED   2019)    (pp.   157-171).   Springer,   Cham.  

 

9.1    Background   and   Motivation  

If  real-time,  wearable  teacher  augmentation  (RWTA)  is  to  be  used  in  actual  classrooms,  beyond               
the  context  of  short-term  research  studies,  it  is  critical  that  these  systems  be  carefully  designed  to                 
respect  the  needs  and  boundaries  of  both  teachers  and  students  (Dillenbourg  &  Jermann,  2010;               
Rummel,  Walker,  &  Aleven,  2016;  Schofield,  1997;  Zimmerman  &  Forlizzi,  2017).  Among             
other  considerations,  this  requires  a  detailed  understanding  of  teacher  and  student  preferences             
regarding  which  classroom  roles  (and  under  which  circumstances)  to  augment  with  AI,  which              
roles  to  automate,  and  which  to  leave  fully  to  human  teachers  or  peers  (du  Boulay,  Luckin,  &  del                   
Soldato,  1999;  Davidoff  et  al.,  2007;  Holstein  et  al.,  2017b;  2019a;  Lubars  &  Tan,  2019).  Close                 
involvement  of  both  teachers  and  students  throughout  the  design  and  prototyping  process  can              
help  in  understanding  where  particular  forms  of  AI  automation  or  augmentation  may  help  more               
than   hurt   (Holstein   et   al.,   2017b;   2019a;   2019b;   Lubars   &   Tan,   2019).   

For  example,  prior  design  research  with  K-12  teachers  has  found  that  there  is  a  delicate  balance                 
between  automation  and  respecting  teachers’  autonomy  (see Chapters  1 , 4 ,  and 5, and  Heer,               
2019;  Holstein  et  al.,  2017b;  Olsen,  2017;  Olsen,  Rummel,  &  Aleven,  2018;  van  Leeuwen  et  al.,                 
2018;  Lubars  &  Tan,  2019).  Over-automation  risks  taking  over  classroom  roles  that  teachers              
would  prefer  to  perform  (e.g.,  providing  socio-emotional  support)  and  threaten  their  flexibility  to              
set  their  own  instructional  goals.  On  the  other  hand,  under-automation  risks  burdening  teachers              
with  tasks  they  would  rather  not  perform  (e.g.,  routine  grading),  and  may  limit  the  degree  of                 
personalization  they  can  feasibly  achieve  in  the  classroom  (Holstein  et  al.,  2017b;  Holstein,              
Hong,  et  al.,  2018;  Olsen,  2017).  Similarly,  from  students’  perspectives,  AI  systems  that  attempt               
to  over-automate  “caring”  tasks  such  as  providing  motivational  or  emotional  support  may  fail  to               
serve  their  needs  (Bartneck  &  Forlizzi,  2004;  Ritter  et  al.,  2016b;  Schofield,  1994;  Watters,               
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2014)  or  may  be  perceived  as  patronizing  (Holstein  et  al.,  2019b).  On  the  other  hand,  forms  of                  
teacher  augmentation  like Lumilo may  risk  revealing  sensitive  information  that  students  would             
be  more  comfortable  with  an  AI  system  knowing  than  their  teacher  (cf.  Lucas,  Gratch,  King,  &                 
Morency,  2014),  and  thus  be  perceived  as  invasive,  creepy,  or  threatening  to  their  autonomy  as                
learners  (Holstein  et  al.,  2019a;  2019b;  Manolev,  Sullivan,  &  Slee,  2018;  Molenaar,  Horvers,  &               
Baker,  2019;  Williamson,  2016;  2017).  Yet  prior  work  on  human–AI  co-orchestration  has             
generally  focused  on  the  needs  of  K-12  teachers,  but  not  students’  perspectives,  in  AI-supported               
classrooms  (Holstein  et  al.,  2017b;  Olsen,  2017;  Olsen  et  al.,  2018;  van  Leeuwen  et  al.,  2018;                 
Wetzel   et   al.,   2018).  

This  chapter  builds  on  prior  findings  to  contribute:  (1)  an  analysis  of  teacher  and  student                
feedback  regarding  24  design  concepts  for  human–AI  co-orchestration  systems,  to  understand            
key  needs  and  social  boundaries  that  such  systems  should  be  designed  to  address  (Dillahunt,               
Lam,  Lu,  &  Wheeler,  2018;  Friedman  et  al.,  2008;  Zhu  et  al.,  2018;  Zimmerman  &  Forlizzi,                 
2017)  (see  item  1  under Summary  of  Contributions  –  “First  broad  design  exploration  of  needs                
for  real-time  teacher  analytics  and  orchestration  support” ),  and  (2)  “Participatory  Speed            
Dating”:  a  new  variant  of  the  speed  dating  design  method  (Davidoff  et  al.,  2007;  Zimmerman  &                 
Forlizzi,  2017)  that  involves  multiple  stakeholders  in  the  generation  and  evaluation  of  novel              
technology  concepts  (see  item  4  under Summary  of  Contributions  –  “Novel  design  and              
prototyping   methods” ).  
 

9.2    Methods  

To  better  understand  and  validate  needs  uncovered  in  prior  ethnographic  and  design  research              
with  K-12  students  and  teachers  (e.g.,  Feng  &  Heffernan,  2006;  Holstein  et  al.,  2017b;  2018a;                
2019a;  Holstein,  Hong,  et  al.,  2018;  Olsen  et  al.,  2017;  Schofield,  1997;  Schofield  et  al.,  1994),  I                  
adopted  a  Participatory  Speed  Dating  approach.  Speed  Dating  is  an  HCI  method  for              
rapidly  exploring  a  wide  range  of  possible  futures  with  users,  intended  to  help              
researchers/designers  elicit  unmet  needs  and  probe  the  boundaries  of  what  particular  user             
populations  will  find  acceptable  (which  otherwise  often  remain  undiscovered  until  after  a             
technology  prototype  has  been  developed  and  deployed)  (Davidoff  et  al.,  2007;  Odom  et  al.,               
2012;  Zimmerman  &  Forlizzi,  2017).  In  Speed  Dating  sessions,  participants  are  presented  with  a               
number  of  hypothetical  scenarios  in  rapid  succession  (e.g.,  via  storyboards)  while  researchers             
observe   and   aim   to   understand   participants’   immediate   reactions.  

Speed  dating  can  lead  to  the  discovery  of  unexpected  design  opportunities,  when  unanticipated              
needs  are  uncovered  or  when  anticipated  boundaries  are  discovered  not  to  exist.  Importantly,              
speed  dating  can  often  reveal  needs  and  opportunities  that  may  not  be  observed  through  field                
observations  or  other  design  activities  (Davidoff  et  al.,  2007;  Dillahunt  et  al.,  2018;  Odom  et  al.,                 
2012;  Zimmerman  &  Forlizzi,  2017).  For  example,  Davidoff  et  al.  found  that,  whereas  field               
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observations  and  interview  studies  with  parents  had  suggested  they  might  appreciate  smart  home              
technologies  that  automate  daily  household  tasks,  a  speed  dating  study  revealed  that  parents              
strongly  rejected  the  idea  of  automating  certain  tasks,  such  as  waking  or  dressing  their  children                
in  the  morning.  These  findings  led  the  researchers  to  reframe  their  project—away  from  creating               
smart  homes  that  “do  people’s  chores,”  towards  homes  that  facilitate  moments  of  bonding  and               
connection   between   busy   family   members   (Zimmerman   &   Forlizzi,   2017).  

In  this  study,  I  adapted  the  Speed  Dating  method  to  enable  participants  from  multiple  stakeholder                
groups  (K-12  teachers  and  students)  to  reflect  on  other  stakeholders’  needs  and  boundaries,  and               
contribute  ideas  for  new  scenarios  and  technology  concepts.  I  refer  to  this  adaptation  as               
multi–stakeholder  “Participatory  Speed  Dating”  (PSD).  Like  other  Speed  Dating  approaches,           
PSD  can  help  to  bridge  between  broad,  exploratory  design  phases  and  more  focused  prototyping               
phases  (where  associated  costs  may  discourage  testing  a  wide  range  of  ideas)  (Davidoff  et  al.,                
2007;  Dow  et  al.,  2010;  Zimmerman  &  Forlizzi,  2017).  However,  drawing  from  approaches  such               
as  Value  Sensitive  and  Service  Design  (Forlizzi  &  Zimmerman,  2013;  Payne  et  al.,  2008;  Zhu  et                 
al.,  2018),  PSD  emphasizes  a  systematic  approach  to  balancing  multiple  stakeholder  needs  and              
values  (Miller  et  al.,  2007;  Zhu  et  al.,  2018).  Drawing  from  Participatory  Design  (Luckin  &                
Clark,  2011;  Trischler,  Pervan,  Kelly,  &  Scott,  2018;  Walsh,  Foss,  Yip,  &  Druin,  2013),  in                
addition  to  having  stakeholders  evaluate  what  is  undesirable  about  a  proposed  concept             
(potentially  representing  design  elements  that  address other  stakeholders’  needs),  PSD  also            
involves   them   in   generating   alternative   designs,   to   address   conflicts   among   stakeholder   groups.  

I  conducted  PSD  sessions  one-on-one  with  24  middle  school  teachers  and  students.  To  recruit               
participants,  I  emailed  contacts  at  eight  middle  schools  and  advertised  the  study  on  Nextdoor,               
Craigslist,  and  through  physical  fliers.  A  total  of  10  teachers  and  14  students,  from  two  large  US                  
cities,  participated  in  the  study.  Sixteen  sessions  were  conducted  face-to-face  at  our  institution,              
and  eight  were  conducted  via  video  conferencing.  All  participants  had  experience  using  some              
form  of  adaptive  learning  software  in  their  classrooms,  and  21  participants  had  used  AI  tutoring                
software  such  as  McGraw  Hill  Education’s ALEKS  (Hagerty  &  Smith,  2005)  or  Carnegie              
Learning’s Cognitive  Tutor  or MATHia  (Ritter  et  al.,  2007;  Ritter,  Carlson,  Sandbothe,  &              
Fancsali,   2005).  

We  first  conducted  a  series  of  four  30-minute  study  sessions  focused  on  concept  generation,  with                
two  teachers  and  two  students.  In  each  session,  participants  were  first  introduced  to  the  context                
for  which  they  would  be  designing:  classes  in  which  students  work  with  AI  tutoring  software                
while  their  teacher  uses  a  real-time  co-orchestration  tool  that  helps  them  help  their  students               
(specifically,  a  set  of  teacher  smart  glasses,  following  my  earlier  design  explorations;  see              
Chapters  4 through 8 ).  Participants  were  then  shown  an  initial  set  of  11  storyboards,  each  created                 
to  illustrate  specific  classroom  challenges  uncovered  in  prior  research  (e.g.,  Feng  &  Heffernan,              
2006;  Holstein  et  al.,  2017b;  Ritter  et  al.,  2016a;  Schofield  et  al.,  1994;  Schofield,  1997),  with                 
multiple  challenges  hybridized  (Davidoff  et  al.,  2007)  into  a  single  storyboard  in  some  cases.  For                
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example,  prior  work  suggests  that  teachers  often  struggle  to  balance  their  desire  to  implement               
personalized,  mastery-based  curricula  with  their  need  to  keep  the  class  relatively  synchronized             
and  “on  schedule”  (Holstein  et  al.,  2017b).  Given  this  conflict,  teachers  often  opt  to  manually                
push  students  forward  in  the  curriculum  if  they  have  failed  to  master  current  skills  in  the  ITS  by                   
a  certain  date,  despite  awareness  that  this  practice  may  be  harmful  to  students’  learning  (Holstein                
et  al.,  2017b;  Ritter  et  al.,  2016a).  As  such,  one  storyboard  (Figure  9-1)  presented  a  system  that                  
helps  teachers  make  more  informed  decisions  about  when  to  move  students  ahead  (based  on  the                
predicted  learning  benefits  of  waiting  a  few  more  class  periods),  but  without  strongly  suggesting               
a   particular   course   of   action   (Holstein   et   al.,   2017b).  

 

Figure   9-1.    Example   of   a   storyboard   addressing   challenges   raised   in   prior   research.  
 

Each  participant  in  these  initial  studies  was  then  encouraged  to  generate  at  least  one  new  idea  for                  
a  storyboard,  addressing  challenges  they  personally  face  in  AI-enhanced  classrooms  as  opposed             
to  imagined  challenges  of  others  (cf.  Dillahunt  et  al.,  2018).  To  inform  ideation,  participants  also                
reviewed  storyboards  generated  by  other  teachers  and  students  in  prior  study  sessions.             
Participants  were  provided  with  editable  storyboard  templates,  in  Google  Slides ,  and  were             22

given  the  options  to  generate  entirely  new  concepts  for  orchestration  tool  functionality  (starting              
from  a  blank  template)  or  to  generate  a  variation  on  an  existing  concept  (starting  from  a  copy  of                   
an  existing  storyboard).  In  either  case,  participants  generated  captions  for  storyboard  panels             
during  the  study  session,  using  existing  storyboards  for  reference.  Immediately  following  each             

22   http://slides.google.com  
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session,  a  researcher  then  created  simple  illustrations  to  accompany  each  caption  (cf.  Hiniker  et               
al.,   2017).  23

Following  this  concept  generation  phase,  I  conducted  a  series  of  PSD  studies  with  an  additional                
twelve  students  and  eight  teachers.  Study  sessions  lasted  approximately  60  minutes.  In  each              
session,  storyboards  were  presented  in  randomized  order.  Participants  were  asked  to  read  each              
storyboard  and  to  describe  their  initial  reactions  immediately  after  reading  each  one.  An              
interviewer  asked  follow-up  and  clarification  questions  as  needed.  Participants  were  then  asked             
to  provide  an  overall  summary  rating  of  the  depicted  technology  concept  as  “mostly  positive  (I                
would  probably  want  this  feature  in  my  classroom)”,  “mostly  negative  (I  would  probably  not               
want  this  ...)”,  or  “neutral”  (cf.  Dillahunt  et  al.,  2018).  After  participants  rated  each  concept,  they                 
were  asked  to  elaborate  on  their  reasons  for  this  rating.  Before  moving  on  to  the  next  concept,                  
participants  were  shown  notes  on  reactions  to  a  given  concept,  thus  far,  from  other  stakeholders.                
Participants   were   prompted   to   share   their   thoughts   on   perspectives   in   conflict   with   their   own.  

 

Figure  9-2.  Matrix  showing  overall  ratings  for  all  24  concepts.  Columns  show  participants  (in  order  of                 
participation,  from  left  to  right),  and  rows  show  design  concepts.  Concepts  generated  by  participants  are                
highlighted  in  blue.  Cell  colors  indicate  ratings  as  follows:  Red:  negative;  Green:  positive;  Yellow:               
neutral;  Grey:  concept  did  not  yet  exist.  Average  ratings  among  teachers  and  students  are  provided  in  the                  
rightmost   columns.  
 

In  addition,  participants  were  encouraged  to  pause  the  speed  dating  process  at  any  point,  if  they                 
felt  inspired  to  write  down  an  idea  for  a  new  storyboard.  Each  time  a  participant  generated  a  new                   
idea  for  a  storyboard,  this  storyboard  was  included  in  the  set  shown  to  the  next  participant.                 

23  Please   refer   to    https://tinyurl.com/Complementarity-Supplement    for   the   full   set   of  
storyboards   and   more   detailed   participant   demographics.  
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However,  if  a  participant  saw  an  existing  storyboard  that  they  felt  captured  the  same  concept  as                 
one  they  had  generated,  the  new,  “duplicate”  storyboard  was  not  shown  to  subsequent              
participants  (similar  to  the  notion  of  “synonymous”  superpowers  used  in  the  “teacher             
superpowers”  exercise  in Chapter  1 ).  In  cases  of  disagreement  between  stakeholder  groups,             
generating  new  storyboard  ideas  provided  an  opportunity  for  students  and  teachers  to  try  to               
resolve  these  disagreements.  For  example,  as  shown  in  Figure  9-2,  the  generation  of  concepts  E.3                
through  E.6  over  time  represents  a  kind  of  “negotiation”  between  teachers  and  students,  around               
issues  of  student  privacy,  transparency,  and  control.  This  phase  of  the  study  yielded  a  total  of                 
seven   new   storyboards.  
 

9.3    Results  

In  the  following  subsections,  we  discuss  teachers’  and  students’  top  five  most  and  least  preferred                
design  concepts,  according  to  the  average  overall  ratings  among  those  who  saw  a  given  concept                
(Dillahunt  et  al.,  2018).  To  analyze  participant  feedback  regarding  each  concept,  we  worked              
through  transcriptions  of  approximately  19  hours  of  audio  to  synthesize  findings  through             
interpretation  sessions  and  affinity  diagramming  (Beyer  &  Holtzblatt,  1997;  Hanington  &            
Martin,  2012).  High-level  themes  that  emerged  are  briefly  summarized  below,  organized  by             
design   concept.   

The  concepts  that  were most  preferred ,  on  average,  within  each  stakeholder  group  are  presented               
in Section  9.3.1 ,  and  the least  preferred  are  in Section  9.3.2 .  Within  each  subsection,  preferences                
among  teachers  are  presented  first,  followed  by  student  preferences  and  those  shared  between              
teachers  and  students.  As  in  Dillahunt  et  al.  (2018),  the  goal  of  this  presentation  format  is  not  to                   
contribute  a  set  of  “winning”  and  “losing”  design  concepts,  but  instead  to  discuss  the underlying                
reasons    behind   some   of   teachers’   and   students’   strongest   positive   and   negative   reactions.  
 

9.3.1  Most   preferred   design   concepts  
 

Most   preferred   among   teachers.  

[I.2]      Real-time   Feedback   on   Teacher   Explanations.   
Consistent  with  findings  from  my  prior  design  research  (see Chapters  1  and 5 ),  the  most  popular                 
concept  among  teachers  was  a  system  that  would  provide  them  with  constructive  feedback,  after               
helping  a  student,  on  the  effectiveness  of  their  own  explanations.  As  one  teacher  (Teacher  7)                
explained,   

“Usually  our  only  chance  to  get  [fast]  feedback  is,  you  ask  [...]  the  kids  [and]  they                 
just   say,   ‘Oh,   yeah,   I   get   it,’   when   they   don’t   really   get   it.”   

[A.1]      Ranking   Students   by   their   Need   for   Teacher   Help.   
Another  popular  concept  among  teachers  was  a  system  that  would  allow  them  to  see,  at  a  glance,                  
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a  visual  ranking  of  which  students  most  need  the  teacher’s  help  at  a  given  moment  (see Chapters                  
1,   4,    and    5 ).   Teacher   5   commented,   

“Yeah.  Welcome  to  teaching  every  day  [...]  trying  to  go  to  those  kids  that  are                
[struggling]   most.”   

However,  several  other  teachers  emphasized  that  such  a  ranking  would  be  much  more  useful  if  it                 
took  into  account  the kind  and  extent  of  teacher  help  that  would  likely  be  needed  to  address  a                   
particular  student  issue,  along  with  a  teacher's  individual  preferences  for  sequencing  and             
prioritizing   help   among   students.   For   example,   Teacher   1   noted,   

“If  I  could  see  how  much  time  it  would  take  [to  help]  I  would  start  with  the  kids  who                    
I  could  get  [moving  again  quickly]  and  then  I’d  spend  more  time  with  the  other  kids.                 
[But]  if  it’s  a  kid  that  I  know  is  gonna  get  completely  frustrated  [...then  I]  wanna  [go                  
to]   that   kid   first   no   matter   what.   So   there   are   other   factors   involved.”  

  This   concept   was   also   generally   well   received   by   students.   As   Student   7   put   it,   

“sometimes  you  just  can’t  ask  [for  help]  because  you  don’t  even  know  what  [you’re               
struggling   with],   and   so   it   would   just   [be]   hard   to   explain   it   to   the   teacher.”  

At  the  same  time,  as  discussed  below,  multiple  students  expressed  preferences  for  systems  that               
can  support  students  in  recognizing  when  (and  with  what)  they  need  to  ask  the  teacher  for  help,                  
rather   than   always   having   the   system   alert   the   teacher   on   their   behalf   (cf.   Roll   et   al.,   2011).  

[E.1]     Alerting   Teachers   to   Student   Frustration,   Misbehavior,   or   “Streaks”.   
Consistent  with  my  prior  design  findings  (see Chapters  1, 4, and 5 )  teachers  were  enthusiastic                
about  a  concept  that  would  allow  them  to  see  real-time  analytics  about  student  frustration,               
misbehavior  (e.g,.  off-task  behavior  or  gaming  the  system;  see  Baker  et  al.,  2008),  or  high  recent                 
performance  in  the  software  (Pelánek,  R.,  &  Řihák,  2017).  They  felt  that  having  access  to  this                 
information  could  help  them  make  more  informed  decisions  about  whom  to  help  first  and  how                
best  to  help  particular  students  (e.g.,  comforting  a  student  or  offering  praise).  Yet  students               
reported  finding  aspects  of  this  concept  upsetting.  While  students  generally  liked  the  idea  that  the                
system  would  inform  the  teacher  when  they  needed  help,  students  often  perceived  real-time              
teacher  alerts  about  emotions  like  frustration  as “really  creepy”  (Student  9)  and  teacher  alerts               
about   misbehavior   as    “basically   the   AI   ratting   out   the   child”    (Student   3).  

[L]     Teacher-controlled   Shared   Displays   to   Foster   Competition.   
Finally,  a  popular  concept  among  teachers  was  a  system  that  would  allow  them  to  transition  the                 
classroom  between  different  “modes,”  to  help  regulate  students’  motivation  (cf.  Alavi,  2011;             
Alavi  &  Dillenbourg,  2012;  Olsen,  2017).  This  system  would  allow  teachers  to  switch  the  class                
into  a  “competitive  mode,”  in  which  students  would  be  shown  a  leaderboard  of  comparable               
classrooms  in  their  school  district  and  challenged  to  move  their  class  to  the  top.  Teachers                
expected  that  such  a  feature  could  work  extremely  well  with  some  groups  of  students,  while                
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backfiring  and  potentially  serving  to  demotivate  others.  As  such,  teachers  emphasized  the             
importance   of   teacher   control   and   discretion.  
 

Most   preferred   among   students.  

[E.6]     Asking   Students’   Permission   before   Revealing   (Some)   Analytics   to   Teachers.   
In  response  to  one  of  teachers’  most  preferred  design  concepts,  [E.1],  students  generated  multiple               
new  storyboards  that  preserved  the  idea  of  real-time  teacher  alerts,  but  provided  students  with               
greater  control  over  alert  policies.  One  of  these  ideas  emerged  as  the  most  popular  design                
concept  among  students:  a  system  that  asks  students’  permission,  on  a  case-by-case  basis,  before               
presenting  certain  kinds  of  information  to  the  teacher  on  a  student’s  behalf.  Students  and  teachers                
were  generally  in  agreement  that  an  AI  system  should  ask  students’  permission  before  alerting               
teachers  about  affective  states,  such  as  frustration.  In  this  scenario,  if  a  student  opted  not  to  share                  
affective  analytics  with  their  teacher,  the  system  might  privately  suggest  other  ways  for  students               
to  regulate  their  own  emotions.  Interestingly,  one  student  (Student  12)  suggested  that  if  a  student                
opted   to   share   their   affect   with   the   teacher,   the   system   should   also   ask   the   student   to   specify:   

“How  do  you  want  the  teacher  to  react?  [...]  Help  you  [in  person]?  Help  you  on  the                  
computer?”  

This  student  noted  that  sometimes,  they  just  want  their  teacher  to “know  how  I’m  feeling,”  but                 
do   not   actually   want   them   to   take   action.   

[H.3]     Student–System   Joint   Control   Over   Selection   of   Peer   Tutors.   
Whereas  teachers  often  expressed  that  they  know  which  groups  of  their  students  will  not  work                
well  together,  this  did  not  align  with  students’  perceptions  of  their  own  teachers.  In  contrast  to                 
teacher-generated  concepts  where  teachers  and  AI  worked  together  to  match  peer  tutors  and              
tutees  (cf.  Olsen,  2017),  the  second  most  popular  concept  among  students  was  a              
student-generated  storyboard  that  gave  students  the  final  say  over  peer  matching  decisions.  In              
this  storyboard,  the  system  sends  struggling  students  a  list  of  suggested  peer  tutors,  based  on                
these  students’  estimated  tutoring  abilities  (cf.  Walker,  Rummel,  &  Koedinger,  2014)  and             
knowledge  of  relevant  skills.  Students  could  then  send  help  requests  to  a  subset  of  peers  from                 
this  list  who  they  would  feel  comfortable  working  with.  Those  invited  would  then  have  the                
option  to  reject  a  certain  number  of  requests.  Some  students  suggested  that  it  would  also  be                 
useful  to  have  the  option  to  accept  but  delay  another  student’s  invitation  if  they  want  to  help  but                   
do   not   want   to   disrupt   their   current   flow.   

[H.1]      Enabling   Students   to   Request   Not   to   be   Helped.   
Another  of  the  most  popular  concepts  among  students  was  a  system  that,  upon  detecting  that  a                 
student  seems  to  be  unproductively  persisting  in  the  software  (Beck  &  Gong,  2013;  Kai  et  al.,                 
2018),  would  notify  the  student  to  suggest  that  they  try  asking  their  teacher  or  classmates  for                 
help.  The  system  would  then  only  notify  the  teacher  that  the  student  is  struggling  if  the  student                  
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both  ignored  this  suggestion  and  remained  stuck  after  a  few  minutes.  By  contrast,  some  teachers                
expressed  that  they  would  want  the  system  to  inform  them  immediately  in  such  cases.  For                
example,   Teacher   5   commented:  

“They  shouldn’t  just  get  the  option  to  keep  working  on  their  own,  because  honestly  it                
hasn’t   been   working .”  

Some  students  and  teachers  suggested  a  compromise.  For  example,  Teacher  7  suggested  the              
teachers  should  at  least  be  notified  that  such  a  request  has  been  made,  so  that  they  can  use  their                    
own   discretion   on   a   case-by-case   basis:  

“The  AI  should  inform  the  teacher  right  away  [...]  that  it  suggested  [asking  for  help]                
but   the   kid   did   something   else.”   

[J]     Notifying   Teachers   of   Students   they   Have   Not   Visited   Recently.   
Finally,  a  popular  concept  among  students  was  a  system  that  would  track  a  teachers’  movement                
during  class  and  occasionally  highlight  students  they  may  be  neglecting  (cf.  An  et  al.,  2018;                
Holstein  et  al.,  2017a;  Echeverria  et  al.,  2018).  Several  students  noted  that  even  when  they  are                 
doing  well  on  their  own,  they  feel  motivated  when  their  teacher  remembers  to  check  in  with                 
them.   Most   teachers   responded   positively   to   this   concept.   For   example,   Teacher   6   noted:  

“Sometimes  you  forget  about  the  kids  that  work  well  on  their  own,  but  sometimes               
those   kids   actually   need   help   and   don’t   raise   their   hands.”   

However,  a  few  teachers  perceived  this  system  as  overstepping  bounds  and  inappropriately             
judging   them.   For   example,   Teacher   4   responded:  

“It’s   just   too   much   in   my   business   now.   You   better   be   quiet   and   give   me   a   break.”  
 

Most   preferred   among   both   teachers   and   students.  

[F.1]     “Invisible   Hand   Raises”   and   Teacher   Reminders.   
A  concept  popular  with  both  teachers  and  students  was  a  system  that  would  allow  students  to                 
privately  request  help  from  their  teacher  by  triggering  an  “invisible  hand  raise”  that  only  the                
teacher  could  see.  To  preserve  privacy,  this  system  would  also  allow  teachers  to  silently               
acknowledge  receipt  of  a  help  request.  After  a  few  minutes,  the  teacher  would  receive  a  light                 
reminder  if  they  had  not  yet  helped  a  student  in  their  queue,  since  as  most  students  and  teachers                   
agreed    “usually   teachers   just   forget”    (Student   1).   Student   7   noted:   

“I  don’t  actually  like  asking  questions  since  I’m  supposed  to  be,  like,  ‘the  smart  one’                
...which  I’m  not.  So  I  like  the  idea  of  being  able  to  ask  a  question  without  [letting]                  
others   know.”   

Similarly,  teachers  suspected  that  students  would  request  help  more  often  if  they  had  access  to                
such   a   feature   (Holstein,   Hong,   et   al.,   2018;   Schofield   et   al.,   1994).  
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9.3.2 Least   preferred   design   concepts   
 

Least   Preferred   among   Teachers  

[C]     Helping   Teachers   Mediate   between   Students   and   their   Student   Models.   
To  my  surprise,  although  prior  field  research  (see Chapter  8 )  had  suggested  that  teachers  might                
find  it  desirable  to  serve  as  “final  judges”  in  cases  where  students  wished  to  contest  their  student                  
models  (e.g.,  skill  mastery  estimates)  (Bull  &  Kay,  2016),  this  was  one  of  the  least  popular                 
design  concepts  among  teachers.  Students  generally  viewed  teacher-in-the-loop  mediation          
desirable,   since   as   Student   9   put   it,   

“I   feel   like   the   teacher   knows   the   student   better,   not   the   software.”  

However,  teachers  generally  did  not  view  this  as  an  efficient  use  of  their  time  –  viewing  the                  
tracking  of  student  knowledge  growth  during  a  class  session  as  a  relative  strength  of  AI  tutors,                 
compared   with   their   own   abilities.   As   Teacher   3   noted:   

“I   would   just   trust   the   tutor   on   this   one.   Having   worked   with   Cognitive   Tutor   and   other   systems,  
I've   learned   to   trust   that   it's   pretty   good   at   saying,   ‘Yeah,   you   haven't   mastered   it.’   ”  

Furthermore,  some  teachers  expressed  concerns  that  from  a  student’s  perspective  this  concept             
may   create   undesirable   conflict   in   the   classroom   by,   as   Teacher   1   put   it:  

“pitting   one   teacher   against   the   other,   if   you   consider   the   AI   as   a   kind   of   teacher”  

Several  teachers  instead  suggested  having  the  system  assign  a  targeted  quiz  if  a  student  wants  to                 
demonstrate  knowledge  of  particular  skills,  rather  than  necessarily  involving  the  teacher  in             
resolving   such   “disputes”   (cf.   Bull   &   Kay,   2016).  
 

Least   Preferred   among   Students  

[E.4]     Notifying   Students   When   the   System   has   Automatically   Alerted   their   Teacher.   
A  teacher-generated  concept  intended  to  provide  students  with  greater  transparency  into  the             
analytics  being  shared  about  them  was  among  those  least  popular  with  students  overall.              
Interestingly,  while  students  valued  having  more  control  over  the  information  visible  to  their              
teachers,  they  generally  did  not  want  greater  transparency  into  aspects  of  the  system  that  were                
outside   of   their   control   (cf.   Lee   &   Baykal,   2017).   As   Student   10   put   it,  

“That  would  make  me  really  anxious  [...]  If  it’s  not  asking  students’  [permission],  I               
don’t   think   they   should   know   about   it.”  
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Least   Preferred   among   both   Teachers   and   Students  

[E.3]     Allowing   Students   to   Hide   (All)   of   their   Analytics   from   Teachers.   
The  least  popular  concept  among  teachers,  and  the  third  least  popular  among  students,  was  a                
privacy  feature  that  would  enable  individual  students  to  prevent  their  AI  tutor  from  sharing               
real-time  analytics  with  their  teacher.  This  was  a  student-generated  concept  intended  to  mitigate              
the  “creepiness”  of  having  their  teacher  “surveil”  students’  activities  in  real-time.  Yet  as              
discussed  in Section  9.3.1 ,  overall  students  felt  that  it  should  only  be  possible  for  students  to  hide                  
certain   kinds   of   analytics   (e.g.,   inferred   emotional   states).   As   Student   4   put   it,  

“if  the  AI  sees  a  student  is  really,  really  struggling  [...]  I  don’t  think  there  should  be                  
that   blanket   option.”  

[H.4]     Showing   Students   Potential   Peer   Tutors’   Skill   Mastery.   
Consistent  with  prior  research  (e.g.,  Holstein,  et  al.,  2019a),  teachers  and  students  responded              
negatively  to  a  student-generated  concept  that  made  individual  students’  skill  mastery  visible  to              
peers.  While  this  concept  was  intended  to  help  students  make  informed  choices  about  whom  to                
request  as  a  peer  tutor,  most  teachers  and  students  perceived  that  the  risk  of  teasing  among                 
students  outweighed  the  potential  benefits.  Rather  than  sharing  student  skill  mastery  information,             
students  and  teachers  suggested  that  the  system  should  do  the  work  of  curating  only  viable  peer                 
matches,   while   still   supporting   student   choice   within   these   curated   sets.  

[M]     Allowing   Parents   to   Monitor   their   Child’s   Behavior   During   Class.   
Somewhat  surprisingly,  Teacher  3  generated  the  concept  of  a  remote  monitoring  system  that              
would  allow  parents  (cf.  Broderick,  O’Connor,  Mulcahy,  Heffernan,  &  Heffernan,  2011;            
Williamson,   2017)   to   

“see  exactly  what  [their  child  is]  doing  at  any  moment  in  time  [so  that]  if  a  kid’s                  
misbehaving,   their   parent   can   see   the   teacher’s   trying   [their]   best.”   

While  this  concept  resonated  with  one  other  teacher,  student  and  teacher  feedback  on  this               
concept  generally  revealed  an  attitude  that  to  create  a  safe  classroom  environment,  as  Student  11                
put   it,   

“we   have   to   [be   able   to]   trust   that   data   from   the   classroom   stays   in   the   classroom.”   

Teachers  shared  concerns  that  data  from  their  classrooms  might  be  interpreted  out  of  context  by                
administrators.   As   Teacher   5   shared:   

“I  don’t  ever  want  to  be  judged  as  a  teacher  [because]  I  couldn’t  make  it  to  every                  
student,  if  every  kid’s  stuck  that  day.  [But]  using  that  data  [as  a  teacher]  is  very                 
useful.”   

Students  shared  fears  that,  depending  on  the  data  shared,  parents  or  even  future  employers  might                
use   classroom   data   against   them.   
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[E.2]     Providing   Automated   Motivational   Prompts   to   Frustrated   Students.   
Finally,  among  the  concepts  least  popular  with  both  teachers  and  students  was  a  system  that                
automatically  provides  students  with  motivational  prompts  when  it  detects  they  are  getting             
frustrated  (see  Baker  et  al.,  2012;  D’Mello,  Picard,  &  Graesser,  2007;  Woolf,  Burleson,  Arroyo,               
Dragon,  Cooper,  &  Picard,  2009).  Although  teachers  generally  liked  the  idea  of  incorporating              
gamification  elements  to  motivate  students  (cf.  Long,  Aman,  &  Aleven,  2015;  Williamson,             
2017),  providing  motivational  messages  in  response  to  automatically  detected  affective  states            
was  perceived  as,  in  Teacher  1’s  words, “trying  to  [do]  the  teacher’s  job." Teacher  5  emphasized                 
that   

“[this  kind  of]  message  being  able  to  come  from  the  teacher  [usually]  means  a  lot                
more   than   [coming   from]   computer   programs   for   students”   

Similarly,  several  students  indicated  strongly  that  they  would  prefer  these  kinds  of  messages  to               
come  from  an  actual  person,  if  at  all  (cf.  Bartneck  &  Forlizzi,  2004;  Huber,  Lammer,  Weiss,  &                  
Vincze,   2014).   Student   8   said,   

“I   would   just   get   more   annoyed   if   the   AI   tried   something   like   that.”  

Similarly,   Student   11   suggested:  

“No  emotional  responses,  please.  That  feels  just  [...]  not  genuine.  If  it’s  from  the  AI  it                 
should   be   more   analytical,   like   just   [stick   to]   facts.”  

 

9.4    Conclusions  

If  new  AI  systems  are  to  be  well-received  in  K-12  classrooms,  it  is  critical  that  they  support  the                   
needs  and  respect  the  boundaries  of  both  teachers  and  students.  In  this  chapter,  I  have  introduced                 
“participatory  speed  dating”  (PSD):  a  variant  of  the  speed  dating  design  method  that  involves               
multiple  stakeholders  in  the  iterative  generation  and  evaluation  of  new  technology  concepts  (see              
item  4  under Summary  of  Contributions  –  “Novel  design  and  prototyping  methods” ).  Using  PSD,               
I  sampled  student  and  teacher  feedback  on  24  design  concepts  for  systems  that  integrate  human                
and  AI  instruction—an  important  but  underexplored  area  of  AIED  research  (see  item  1  under               
Summary  of  Contributions  –  “First  broad  design  exploration  of  needs  for  real-time  teacher              
analytics   and   orchestration   support” ).   

Overall,  I  found  that  teachers  and  students  aligned  on  needs  for  “hidden”  student–teacher              
communication  channels  during  class,  which  enable  students  to  signal  help-need  or  other             
sensitive  information  without  losing  face  to  their  peers.  More  broadly,  both  teachers  and  students               
expressed  nuanced  needs  for  student  privacy  in  the  classroom,  where  it  is  possible  to  have  “too                 
little,”  “too  much,”  or  the  wrong  forms  of  within-classroom  privacy  (cf.  Mulligan  &  King,  2011;                
Wong  &  Mulligan,  2019).  However,  students  and  teachers  did  not  always  perceive  the  same               
needs.  As  discussed  in Section  9.3.1 ,  some  of  students’  highest  rated  concepts  related  to  privacy                
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and  control  were  unpopular  among  teachers.  Additional  disagreements  arose  when  teachers  and             
students  had  different  expectations  of  the  roles  of  teachers  versus  AI  agents  and  peer  tutors  in  the                  
classroom.   

Interestingly,  while  students’  expressed  desires  for  transparency,  privacy,  and  control  over            
classroom  AI  systems  extend  beyond  what  is  provided  by  existing  systems  (Broderick  et  al.,               
2011;  Bull  &  Kay,  2016;  Holstein  et  al.,  2018b;  Wetzel  et  al.,  2018),  these  desires  are also  more                   
nuanced  than  is  commonly  captured  in  theoretical  work  on  risks  and  challenges  in  the  design  of                 
classroom  AI  systems  (e.g.,  Bulger,  2016;  Watters,  2014;  Williamson,  2016;  2017).  For  example,              
I  found  that  while  students  were  uncomfortable  with  AI  systems  sharing  certain  kinds  of  personal                
analytics  with  their  teacher  without  permission  (e.g.,  real-time  alerts  of  student  frustration),  they              
rejected  design  concepts  that  grant  students full  control  over  these  systems’  sharing  policies.              
These  findings  suggest  an  important  role  for  empirical,  design  research  approaches  to             
complement  critical  and  policy-oriented  research  on  AI  in  education  (cf.  Lee  &  Baykal,  2017;               
Mulligan  &  King,  2011;  Wong  &  Mulligan,  2019)  (see  item  1  under Summary  of  Contributions  –                 
“First  broad  design  exploration  of  needs  for  real-time  teacher  analytics  and  orchestration             
support” ).   

In  sum,  the  present  work  provides  tools  and  and  early  insights  to  guide  the  design  of  more                  
effective  and  desirable  human–AI  partnerships  for  K-12  education.  Findings  from  the  current             
study  are  further  explored  in  the  context  of  classrooms  using  Carnegie  Learning’s MATHia              
software  in Chapter  10 .  Future  research  should  further  investigate  student  and  teacher  needs              
uncovered  in  the  present  work  via  rapid  prototyping  in  live  K-12  classrooms.  While  design               
research  methods  such  as  Participatory  Speed  Dating  are  critical  in  guiding  the  initial              
development  of  novel  prototypes,  many  important  insights  surface  only  through  deployment  of             
functional  systems  in  actual,  social  classroom  contexts  (Holstein  et  al.,  2019a;  Odom  et  al.,  2012;                
Schofield  et  al.,  1994).  An  exciting  challenge  for  future  research  is  to  develop  methods  that                
extend  the  advantages  of  participatory  design  approaches  (e.g.,  Mitchell,  Ross,  May,  Sims,  &              
Parker,  2016;  Trischler  et  al.,  2018;  Walsh  et  al.,  2013;  Zhu  et  al.,  2018)  to  later  stages  of  the                    
AIED  and  Learning  Analytics  design  cycle  (see Chapter  5 for  a  discussion).  Given  the               
complexity  of  data-driven  AI  systems  (Dove  et  al.,  2017;  Holstein  et  al.,  2019a;  Holstein,               
Wortman,  Vaughan,  et  al.,  2019;  Zhu  et  al.,  2018),  fundamentally  new  kinds  of  design  and                
prototyping  methods  may  be  needed  to  enable  non-technical  stakeholders  to  remain            
meaningfully   involved   in   shaping   such   systems,   even   as   prototypes   achieve   higher   fidelity.  
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Chapter   10  
Towards   Generalizing   across   Tutoring   Systems:   
Piloting   Lumilo   in   Carnegie   Learning   Classrooms  
 

10.1    Background   and   Motivation  
Although  the  concept  of  real-time,  wearable  teacher  augmentation  is  intended  as  a  general              
approach, Lumilo has  thus  far  been  used  with  a  single  tutoring  system, Lynnette  (see  Figure  10-1;                 
Holstein  et  al.,  2018a;  2018b;  2019a;  Long,  Holstein,  &  Aleven,  2018;  Waalkens,  Aleven,  &               
Taatgen,  2013),  running  within  a  particular  infrastructure  for  ITS  authoring  and  deployment             
(CT+A,  an  extension  of  the  CTAT/TutorShop  architecture  (Holstein,  Yu,  et  al.,  2018)).  In  this               
chapter,  I  begin  to  explore  how  RWTA  might  be  generalized  for  use  with  a  broader  range  of                  
tutoring  systems  and  classroom  contexts.  Specifically,  I  explore  what  challenges  arise  in  adapting              
the  design  of Lumilo  to  work  with  an  ITS  for  which  it  was  not  originally  designed:  Carnegie                  
Learning’s    MATHia    system   (see   Figure   10-2).   

Despite  growing  awareness  in  the  learning  analytics,  AI  in  education,  and  educational  data              
mining  communities  of  the  difficulty  of  transferring  student  modeling  methods  and  learning             
analytics  tools  across  different  educational  software  systems,  it  remains  rare  to  see             
demonstrations  of  generalization  across  systems,  or  explorations  of  challenges  that  arise  when             
trying  to  generalize  across  systems  (Baker,  2019;  Holstein,  Yu,  et  al.,  2018;  but  see:  Paquette,                
Baker,  de  Carvalho,  &  Ocumpaugh,  2015;  Paquette  et  al.,  2018).  Student  modeling  and  learning               
analytics  methods  –  and  tools  that  utilize  these  methods  –  are  often  designed  and  developed  for                 
use  with specific educational  software  systems.  However,  these  methods  and  tools  do  not  always               
generalize  for  use  with  other  software  systems  or  classroom  contexts  (Karumbaiah,  Ocumpaugh,             
&   Baker,   2019;   Ocumpaugh,   et   al.,   2014;   Paquette   et   al.,   2015;   2018).   

Generalization  challenges  may  arise  not  only  when  transferring  designs  between  different  classes             
of  educational  software,  but  even  when  transferring  designs  across  relatively  similar  systems.  For              
example,  when  transferring  a  machine-learned  detector  of  a  particular  student  behavior,  such  as              
gaming-the-system,  from  one  ITS  (the  system  for  which  it  was  originally  designed)  for  use  with                
a  different  ITS,  the  detector  may  be  significantly  less  accurate  in  the  new  system.  Detectors  may                 
fail  to  generalize  even  when  transferring  between  systems  teaching  similar  content,  such  as  two               
different  tutors  for  equation  solving  in  middle  school  algebra  (Paquette  et  al.,  2015;  2018).               
Furthermore,  even  if  a  set  of  detectors  or  analytics  generalizes  well  across  ITSs,  the  design  of  an                  
associated  teacher-facing  tool  that  relies  upon  these  detectors/analytics  may  fail  to  generalize             
(e.g.,  since  the  nuances  of  different  ITSs’  designs  may  raise  different  orchestration  challenges  for               
the   teacher).   
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Figure   10-1.    Screenshot   of   a   problem   in    Lynnette .  

 

 
Figure   10-2.    Screenshot   of   a   problem   in    MATHia .  

 

In  the  case  of  teacher-facing  analytics  tools,  interface  design  and  algorithmic  design             
considerations  intersect  (Baumer,  2017;  Dennerlein,  et  al.,  2018;  Holstein,  Hong,  et  al.,  2018;              
Holstein  et  al.,  2019a;  Zhu,  et  al.,  2018).  For  example,  a  given  interface  design  may  only  behave                  
in  a  reasonable  way  under  certain  assumptions  about  algorithmic  behavior,  which  may  break              
down  when  switching  contexts  –  the  true  positive  rate  for  a  given  detector  may  vary  across                 
different  ITSs,  causing  a  teacher  tool  to  provide  a  manageable  number  of  notifications  in               
classrooms  that  use  one  ITS,  but  an  overwhelming  number  of  notifications  in  classrooms  that  use                
a   different   ITS   (Holstein,   Hong,   et   al.,   2018;   Holstein   et   al.,   2019a).   

MATHia  raises  a  number  of  potential  design  challenges  for  teacher  support  tools  that  are  not                
encountered  with Lynnette (see  Table  10-1).  For  example,  whereas Lynnette  covers  curricular             
content  on  the  scale  of  days  or  weeks, MATHia  covers  content  on  the  scale  of  months  or  years.                   
This  may  mean  that MATHia classrooms  have  the  potential  to  be  significantly  less  synchronized               
than Lynnette classrooms  (i.e.,  students  may  be  more  “spread  out”  across  the  curriculum  at  any                
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given  moment;  see  Ritter  et  al.,  2016a  for  a  discussion).  Thus,  forms  of  co-orchestration  support                
that  work  well  in Lynnette  classrooms  (e.g.,  system  support  for  class-level  or  group-level  teacher               
interventions  that  assume  a  certain  degree  of  classroom  synchrony)  may  be  less  useful  in               
MATHia classrooms.  As  discussed  in Chapters  1 and 9 ,  prior  work  suggests  that  teachers  often                
manually  “override”  mastery  learning  in  ITS  classrooms  in  order  to  increase  synchrony  and  keep               
classes  “on  schedule”,  and  there  is  reason  to  believe  that  such  manual  overrides  may  be  harmful                 
to  students’  learning  (Ritter  et  al.,  2016a).  The  teachers  I  have  worked  with  tend  to  be  aware  that                   
this  behavior  may  be  harmful  to  students,  yet  they  persist  in  this  behavior  both  due  to  external,                  
systemic  pressures  to  keep  classes  on  schedule,  and  because  less  synchronized  classrooms  pose              
many  orchestration  challenges  for  teachers  (see Chapters  1  and 9 ,  and  Holstein  et  al.,  2017b;                
2019a;   2019b).  

More  broadly,  while  the  specific  choices  of  real-time  analytics  (e.g.,  particular  detectors  of  help               
avoidance,  gaming-the-system,  and  unproductive  persistence)  and  parameter  settings  (e.g.,  alert           
thresholds)  in Lumilo  have  been  iteratively  shaped  with  teachers,  much  of  this  shaping  occurred               
in  the  context  of  prototyping  studies  using Lynnette .  It  remains  to  be  seen  how  well  these                 
analytics  generalize  for  use  in MATHia classrooms  (cf.  Ocumpaugh,  et  al.,  2014;  Paquette,  et  al.,                
2015;   2018).  
 

Table   10-1.    Anticipated   challenges   in   adapting   the   design   of    Lumilo    to   work   with    MATHia .  
 

Lynnette  MATHia  

Covers   on   the   order   of    days   -   weeks    of   curricular  
content,   and   is   used   over   relatively   short   timespans.  

Covers   on   the   order   of    months   -   years    of   curricular  
content,   and   is   often   used   continuously   throughout   the  

school   year.  
 

Includes   a    smaller   range   of   problem   types   
(all   tutor   problems   follow   a   similar   format:  

line-by-line   equation   solving).  

Includes   a    broader   range   of   problem   types   
(tutor   problems   span   a   wide   range   of   formats   and  

topics).  
 

Problems   include    less   context    that   the   teacher   needs   to  
catch   up   on,   in   the   moment   (students   are   presented   with  

an   algebraic   equation   and   asked   to   solve   it).  

Some   problem   types   involve    substantial   context   
(e.g.,   a   given   problem   may   present   students   with  

detailed,   multi-step   word   problems   and   interactive  
graphical   representations).  

 

Lumilo ’s   real-time   analytics   and   parameter   settings  
have   been    tuned    for    Lynnette    classrooms   (see    Chapters  

4   through   6 ).  

Lumilo ’s   real-time   analytics   and   parameter   settings  
have    not   been   tuned    for    MATHia    classrooms.  

 
 

 

Unlike Lynnette ,  where  all  tutor  problems  follow  a  similar  format  (line-by-line  equation  solving,              
as  shown  in  Figure  10-1), MATHia  includes  a  much  broader  range  of  problem  types,  such  as                 
detailed  word  problems  and  interactive  graphing  problems.  This  broader  range  may  necessitate             
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the  design  of  new  ways  for Lumilo  to  efficiently  debrief  teachers  on  students’  current  activities                
and  areas  of  struggle,  while  also  providing  necessary  context  for  interpretation.  This  may  be               
especially  important  given  that  students  in MATHia classrooms  may  be  working  on  a  very  wide                
range  of  topics  and  problem  types  at  any  given  time  –  requiring  the  teacher  to  frequently                 
context-switch   when   moving   from   student   to   student   (as   discussed   in    Chapter   4 ).  

While  Table  10-1  presents  my initial,  broad  hypotheses about  factors  that  may  require Lumilo ’s               
design  to  be  adapted  for  a MATHia context,  it  was  not  clear  a  priori  whether  all  of  these  would                    
present  equal  challenges,  nor  what  exactly  may  be  needed  to  overcome  the  generalization              
challenges   that   do   arise.   

Thus,  in  this  chapter,  I  present  a  classroom  pilot  and  technology  probe  study  (Hutchinson  et  al.,                 
2003)  conducted  in  collaboration  with  Carnegie  Learning  –  using  an  initial,  functional  prototype              
of  a Lumilo–MATHia integration  –  that  aims  at  understanding  the  extent  to  which  the  current                
design  of Lumilo  may  generalize  (or  fail  to  generalize)  to  classrooms  that  use MATHia .  I  identify                 
areas  of  alignment  and  disconnect  with  my  prior  design  research  findings,  highlighting  (1)              
findings  that  confirm  needs  from  my  prior  research,  and  which  were  represented  in  the  design  of                 
Lumilo  previously  used  with Lynnette ;  (2)  findings  that  confirm  needs  from  my  prior  research,               
yet  were not  represented  in  the  version  of Lumilo  previously  used  with Lynnette ;  and  (3)  findings                 
that  point  to  different  design  requirements  for  real-time  teacher  augmentation  in MATHia  versus              
Lynnette  classrooms.  Based  on  findings  from  this  study,  in Section  10.4 ,  I  present  an  updated                
version   of   Table   10-1,   pointing   to   specific   directions   for   future   design.   

This  work  represents  a  rare  exploration  of  challenges  that  arise  in  adapting  the  interface  and                
algorithm  design  of  a  learning  analytics  tool  to  work  with  an  educational  software  system  for                
which  it  was  not  originally  designed  (see  item  2  under Summary  of  Contributions  – First  design                 
exploration  and  prototypes  of  wearable,  heads-up  displays  to  support  orchestration  of            
personalized   classrooms ).  
 

10.2    Methods  

As  a  first  step  towards  generalizing  real-time,  wearable  teacher  augmentation,  I  developed  a  new,               
minimal  version  of Lumilo  that  would  work  with  Carnegie  Learning’s MATHia  software.  Our              
newly  expanded  research  team  –  consisting  of  researchers  at  both  Carnegie  Learning  and              
Carnegie  Mellon  University  –  first  worked  to  develop  the  technical  infrastructure  required  to              
integrate Lumilo  and MATHia .  In  many  ways,  the  extended  infrastructure  that  emerged  from              
these  efforts  resembled  the  extended  CTAT/TutorShop  Analytics  (CT+A)  architecture  presented           
in Chapter  3  (Holstein,  Yu,  et  al.,  2018).  However,  building  atop  Carnegie  Learning’s  existing,               
company-scale  technical  infrastructure  raised  many  new  challenges  that  required  the  Carnegie            
Learning   team   to   diverge   from   CT+A’s   architectural   design.  
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To  study  issues  around  the  transferability  of  our  existing  designs  and  design  knowledge  to               
classroom  contexts  that  use MATHia ,  my  collaborators  and  I  conducted  a  technology  probe  study               
in  live  middle  school  classrooms.  Hutchinson  et  al.  conceptualize  a  technology  probe  as  an               
instrument  used  to  “combine  the  social  science  goal  of  collecting  information  about  the  use  and                
the  users  of  the  technology  in  a  real-world  setting,  the  engineering  goal  of  field-testing  the                
technology,  and  the  design  goal  of  inspiring  users  and  designers  to  think  of  new  kinds  of                 
technology  to  support  their  needs”  (Hutchinson  et  al.,  2003;  Quintana  et  al.,  2016).  Accordingly,               
this  classroom  study  served  as  an  opportunity  to  (1)  conduct technical  field  tests  of  an  early                 
Lumilo–MATHia  integration  (a  particularly  important  goal  for  the  Carnegie  Learning  team),  (2)             
conduct classroom  observations  of  a  teacher’s  use  of Lumilo  in MATHia classrooms  (a  key  goal                
for  both  teams),  and  (3)  to  provide  teachers  with  the  necessary  context  to  provide  rich,                
experientially-grounded design  feedback  and  ideas  for  future  versions  of Lumilo–MATHia  (the            
primary   focus   of   the   present   chapter).  

To  balance  these  three  goals,  without  devoting  too  much  time  upfront  to  implementing  features               
that  may  not  generalize  to  a MATHia  context,  I  worked  with  the  Carnegie  Learning  team  to                 
develop  a  reduced-functionality  version  of Lumilo  for  use  with MATHia. The  three  main              
differences  between  the  version  of Lumilo  used  in  prior  classroom  studies  (with Lynnette )  and               
the  initial  prototype  of  the Lumilo–MATHia integration  are  illustrated  in  Figures  10-3  and  10-4.               
First,  the  concreteness  and  specificity  of  information  presented  in  the  “deep  dive”  screens  was               
heavily  reduced;  second,  only  a  subset  of Lumilo’s original  real-time  indicators  were             
re-implemented;  and  third,  the  granularity/specificity  of  information  presented  with  the  included            
indicators   was   reduced.   

Features  of  the  original Lumilo  prototype  were  prioritized  for  re-implementation  based,  first  and              
foremost,  on  the  implementation  time  and  effort  that  would  be  required  prior  to  running  the                
(pre-scheduled)  classroom  study.  Within  these  practical  constraints,  features  were  then  prioritized            
based  on  a  combination  of  1)  the  degree  to  which  teachers  reported  favoring  particular  features                
or  combinations  of  features  in  prior  classroom  studies,  and  2)  the  frequency  with  which  teachers                
were   observed   making   use   of   particular   features   in   prior   classroom   studies.  

We  conducted  study  sessions  with  four  teachers  and  138  students,  across  five  6th-grade  math               
classrooms.  These  teachers  and  students  had  already  been  using MATHia in  the  classroom  for  a                
full  year  by  the  time  we  introduced Lumilo .  School-  and  teacher-level  demographic  information              
is   provided   in   Table   10-2.   

Each  class  worked  with MATHia  for  two  class  periods,  for  a  total  of  160  minutes  (including                 
student  login  time,  announcements  at  the  beginning  of  a  class  session,  etc).  Students  in  each  class                 
worked  on  two MATHia  sections  (or  “workspaces”):  one  for  circle  geometry  and  one  for               
working  with  ratios.  Notably,  neither  of  these  topics  are  covered  by  Lynnette ,  which  is  focused                
on  algebraic  equation  solving.  As  in  prior  classroom  studies  with Lumilo  and Lynnette ,  teachers               
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participated  in  a  brief  (approximately  30  minute)  training  before  using Lumilo–MATHia  in  their              
classrooms.  However,  unlike  prior  studies,  this  training  was  conducted  without  the  use  of  Replay               
Enactments  (given  technical  challenges  in  implementing  screen-based  replay  functionality  for           
MATHia ).  This  was  replaced  with  a  brief  familiarization  phase  for  each  teacher,  conducted  in               
their   first   few   minutes   wearing   the   glasses   in   a   live   classroom.   

 
Lumilo–Lynnette    prototype   Lumilo–MATHia    prototype  

 

 

 
 

Figure  10-3. Illustration  of  key  differences  (regarding  information  visible  at  a  glance )  between  the               
version  of Lumilo  previously  deployed  in  in-vivo  classroom  experiments  with Lynnette  (left),  and  the               
newly-created,  minimal  version  used  with MATHia  in  the  current  study  (right).  The Lumilo–MATHia              
prototype   has   fewer   indicators,   and   provides   less   granular   information   for   each   indicator.  

  

146  



 

 

 
Figure  10-4. Illustration  of  key  differences  in  the  design  of  the  “deep  dive”  screens  between  the  previous                  
version  of Lumilo  (top),  and  the  minimal Lumilo–MATHia  prototype  used  in  the  current  study  (bottom).                
The Lumilo–MATHia prototype  displays  only  the  current  broad  topic  (i.e.,  the  name  of  a  section,  or                 
collection  of  problems)  that  a  student  is  working  on  (e.g.,  “Two-step  equations”),  rather  than  showing  an                 
annotated  live  view  of  the  student’s  activities  on  their  current  problem.  In  addition,  this  prototype                
provides  high-level  analytics  about  a  student’s  lowest  skills  (their  skill  mastery  percentage  and  number  of                
attempts),  but  does  not  provide  concrete  examples  of  recent  errors  that  student  has  made  on  a  skill.  Note                   
that  due  to  privacy  concerns  in  the  school  where  we  piloted,  student  names  were  not  made  visible  to  this                    
version  of Lumilo–MATHia .  Thus,  the  label  “Student  View”  was  displayed  in  place  of  student  names                
within   the   deep   dive   screens.   Note:   student   names   shown   in   this   figure   are   fabricated.  

 
Table   10-2.    Demographic   information   for   participating   schools.  

School  Region  
Free/reduced   price  

lunch  
#   of   participating  

teachers  
#   of   participating   teachers  
with    <    2   years’   experience  

O  Rural  51%  4  0  
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Given  the  primary  goals  of  this  study,  we  did  not  administer  pre-  and  post-assessments  for                
students.  Rather,  students  began  working  with MATHia  from  the  start  of  a  class  session.  During                
class,  members  of  our  research  team  conducted  informal  classroom  observations.  Teachers  were             
asked  to  help  their  students  during  each  class  session,  but  were  also  invited  to  visit  researchers  in                  
the  back  of  the  classroom  at  any  time  during  the  study,  to  ask  questions  or  provide  feedback  on                   
the   experience   of   using   the    Lumilo–MATHia    prototype.   

Immediately  following  the  final  class  session,  researchers  conducted  a  75-minute  post-interview            
and  workshop  session  with  all  four  teachers.  Teachers  were  first  reminded  that  the  version  of                
Lumilo–MATHia  that  they  used  in  their  classrooms  is  a  rough  prototype  of  a  future  technology,                
and  that  the  design  remains  extremely  malleable.  They  were  then  asked  to  share  general               
reflections  on  the  experience  with  the  group,  as  well  as  initial  thoughts  on  ways  future  versions                 
could  be  improved.  Teachers  were  then  asked  a  sequence  of  increasingly  targeted  questions.              
Teachers  were  asked  whether  they  found  the  real-time  indicators  presented  by Lumilo–MATHia             
helpful.  If  so,  a  researcher  further  probed  to  understand  how  teachers  had  used  particular               
indicators  during  a  class  session.  Teachers  were  then  asked  to  generate  ideas  for  other  kinds  of                 
information  that  may  have  been  helpful  to  have  in  real-time,  but  which  were  not  represented  in                 
the  current  prototype.  After  teachers  provided  their  initial  responses,  they  were  shown  ideas  that               
had  emerged  in  our  prior  design  research  with  teachers  and  students  (including,  but  not  limited                
to,  indicators  presented  by  earlier  versions  of Lumilo ;  see Chapters  1 ,  4 , 5 , 8 ,  and 9 ).  This                  
process  was  then  repeated  for  classroom  orchestration  functionality  more  broadly,  moving            
beyond  the  framing  of  real-time  information  that  is  presented  to  the  teacher.  Finally,  teachers               
were  presented  with  storyboards  from  the  participatory  speed  dating  study  reported  in Chapter  9 ,               
as  an  additional  means  of  identifying  any  key  needs  uncovered  in  our  prior  research  that  may  not                  
generalize   to    MATHia    classrooms.  
 

10.3    Findings  
 

To  analyze  data  from  classroom  observations  and  feedback  sessions,  I  worked  through  classroom              
observation  notes  and  75  minutes  of  audio  to  identify  areas  of  alignment  or  disconnect  with  my                 
prior  design  research  findings.  Key  findings  and  reflections  are  briefly  summarized  below,  with              
an  emphasis  on  1)  findings  that  confirm  needs  from  my  prior  research,  and  were  represented  in                 
the  design  of Lumilo  previously  used  with Lynnette ;  2)  findings  that  confirm  needs  from  my  prior                 
research,  yet  were not  represented  in  the  version  of Lumilo  previously  used  with Lynnette ;  and  3)                 
findings  that  point  to  different  design  requirements  for  real-time  teacher  augmentation  in             
MATHia    versus    Lynnette    classrooms.   

Notes  on  generalization  challenges  our  team  observed  even  before  entering  classrooms  (i.e.,             
during  development  and  log-replay-based  testing  in  the  lab)  are  discussed  first,  followed  by              
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insights  from  classroom  observations  and  the  after  class  interview/workshop  session  with            
teachers.  
 

Observations   before   entering   classrooms  

[B1]  Poor  transferability  of  Lumilo’s  “unproductive  persistence”  detector  for  real-time  teacher             
support  

During  development  and  internal,  iterative  testing  –  using  replayed  classroom  log  data  collected              
from  a  range  of  classrooms  that  use MATHia  –  we  observed  that Lumilo  tended  to  detect                 
unproductive  persistence  much  later  in MATHia  classrooms  than  in Lynnette  classrooms.  In  a              
Lynnette  classroom, Lumilo would  typically  alert  a  teacher  about  unproductive  persistence  on  a              
particular  skill  within  around  10  minutes  of  the  student’s  first  practice  opportunity  on  that  skill.                
However,  in  a MATHia  classroom,  a  teacher  might  not  be  alerted  for  closer  to  40  minutes,  or  the                   
teacher   might   not   be   alerted   at   all,   depending   on   the   skill   in   question.   

This  is  due  to  the  implementation  of Lumilo’s  original  detector  of  unproductive  persistence              
(defined  as  a  phenomenon  in  which  an  AI  tutor  is failing  to  help  the  student  learn ,  on  one  or                    
more  skills;  see  Holstein,  2018),  which  relies  on  the  operationalization  proposed  by  Beck  &               
Gong  (Beck  &  Gong,  2013;  Kai  et  al.,  2018;  Zhang  et  al.,  2019).  Under  this  operationalization,  a                  
student  is  considered  to  be  unproductively  persisting  on  a  skill  if  they  fail  to  reach  a  mastery                  
criterion  (e.g,  getting  M  steps  correct  in  a  row  on  steps  tagged  with  that  skill,  or  achieving  a                   
certain  probability  of  mastery  on  that  skill  under  a  probabilistic  student  model  such  as  Bayesian                
Knowledge  Tracing)  within  the  first  N  attempts  (where  the  parameter  N  is  conventionally  set  to                
10;  see  Beck  &  Gong,  2013;  Kai  et  al.,  2018;  Zhang  et  al.,  2019).  For  example,  compared  with                   
the MATHia  units  used  in  the  current  study ,  Lynnette provides  many  more  practice  opportunities               
for  a  given  skill  within  a  relatively  short  time  frame.  Thus,  unproductive  persistence  on  a  given                 
skill  can  potentially  be  detected  earlier  in Lynnette  than  in MATHia ,  under Lumilo ’s  original               
detector  algorithm,  since  students  tend  to  reach  N=10  practice  opportunities  sooner.  Furthermore,             
MATHia ’s  existing  problem  selection  policy  is  designed  such  that  the  software  may  in  certain               
cases  “give  up”  on  tutoring  a  particular  skill  before  a  student  has  mastered  the  skill and  before  a                   
student  has  reached  N=10  practice  opportunities  (Zhang  et  al.,  2019),  in  favor  of  moving  the                
student   on   to   other   material.   

This  policy  of  “giving  up”  on  tutoring  a  given  skill  and  instead  moving  on  to  others  can  be                   
viewed  as  the  tutoring  system  recognizing  that  it  may  have  reached  its  own  pedagogical               
limitations  for  the  given  skill  and  student  –  sparing  the  student  from  prolonged,  unproductive               
practice  with  this  skill  (Beck  &  Gong,  2013;  Holstein,  2018;  Holstein,  Hong,  et  al.,  2018;  Kai  et                  
al.,  2018;  Käser  et  al.,  2016;  Zhang  et  al.,  2019).  However,  when  a  teacher,  peers,  or  other                  
educational  resources  are  available  –  as  is  often  the  case  when  ITSs  are  used  in  classrooms  –  it                   
may  be  desirable  for  the  tutoring  system  and/or  the  student  to  instead  draw  upon  these  external                 
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resources  for  help  in  such  scenarios  (Beck  &  Gong,  2013;  Holstein,  2018;  Holstein  et  al.,  2017b;                 
2019a;   2019b;   Holstein,   Hong   et   al.,   2018;   Kai   et   al.,   2018;   Zhang   et   al.,   2019).  

A  consequence  of  these  differences  between Lynnette and MATHia  is  that  in MATHia              
classrooms,  teachers  may  tend  to  be  alerted  to  students  who  need  their  help  later  than  would  be                  
ideal  for  a  timely  intervention.  Indeed,  even  in Lynnette  classrooms,  teachers  expressed  desires              
for  earlier  detection  of  unproductive  persistence  (see Chapters 5  and 8 ,  and  Holstein,  Hong  et  al.,                 
2018;  Holstein  et  al.,  2019a;  Zhang  et  al.,  2019).  As  a  temporary  solution  (given  limited  time  in                  
preparing  for  the  current  study)  we  adjusted  the  value  of  the  parameter  N  from  10  to  6  –                   
effectively  increasing  the  potential  for  early  detection,  while  simultaneously  increasing  the            
potential  for  false  positives.  However,  longer  term,  it  may  be  best  to  move  away  from  the  use  of                   
a  Beck  &  Gong  family  detector  of  unproductive  persistence  (Kai  et  al.,  2018;  Zhang  et  al.,  2019)                  
to  a  detector  that  is  more  tightly  coupled  with  and  tailored  to MATHia ’s  problem  selection  policy                 
and  curriculum  design.  This  could,  for  example,  ensure  that  it  is  impossible,  or  at  least  unlikely,                 
for  the  tutoring  system  to  “give  up”  on  tutoring  a  given  skill  without  first  requesting  the  teacher’s                  
assistance.  Our  collaborators  at  Carnegie  Learning  are  currently  exploring  this  route  as  part  of               
our   ongoing   research.  

[B2]     Transferability   of   Lumilo’s   “hint   abuse”   detector  

While  developing  the  initial  prototype  of Lumilo–MATHia ,  it  became  clear  that  directly             
transferring  the  detector  of  “hint  abuse”  from Lumilo–Lynnette ,  without  modification,  may  not  be              
a  viable  option.  Unlike Lynnette , MATHia  includes  built-in,  student-facing  functionality  designed            
to  discourage  hint  abuse:  a  delay  is  enforced  in  between  hint  requests  to  discourage  students                
from  rapidly  clicking  through  hints.  However,  the  behavior  of  rapidly  clicking  through  hints              
(e.g.,  milliseconds  elapsed  between  consecutive  hint  requests)  is  a  feature  that Lumilo ’s  detector              
of  hint  abuse  relies  upon  (Aleven  et  al.,  2016).  Thus, MATHia ’s  hint  request  “speed  bump”                
feature,  designed  to  discourage  hint  abuse,  may  also  serve  to  hinder  detection  of  students  who                
persist  in  abusing  hints  (by  simply  waiting  out  the  enforced  delays,  and  immediately  skipping               
ahead  to  the  next  hint)  –  at  least  if  the  existing  detector  is  used  without  modification.  As                  
discussed  below,  real-time  detection  of  hint  abuse  remains  a  key  teacher  need  in MATHia               
classrooms,  so  the  question  of  whether  and  how  the  Help  Model  (Aleven  et  al.,  2016)  may  need                  
to   be   adapted   for   use   with    MATHia    is   an   important   challenge   for   future   work   on   this   project.  
 

Observations  in  the  classroom  study  and  post-workshop  session  that  align  with  prior             
research   and   were   addressed   in   previously   deployed   versions   of    Lumilo  

Many  of  our  findings  from  prior  design  research  were  validated  in  the  current  study,  in  the                 
context  of MATHia classrooms.  Given  that  these  and  similar  findings  have  been  discussed  in               
previous  chapters,  this  and  the  following  subsection  presents  key  needs  that  re-emerged  during              
the   current   study   very   briefly.  
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[A1]     Preference   for   heads-up,   private,   spatially   distributed   displays  
Consistent  with  prior  findings  from  our  group  and  others  (e.g.,  An  et  al.,  2019;  d’Anjou  et  al.,                  
2019;  Holstein  et  al.,  2017b;  2019a;  Holstein,  Hong,  et  al.,  2018),  teachers  expressed  a  strong                
preference  for  heads-up,  private,  spatially  distributed  displays,  compared  with  handheld           
interfaces  or  other  wearables  such  as  smart  watches.  However,  as  before,  teachers  emphasized              
that  a  version  of  the  tool  intended  for  regular  use  would  need  to  be  lighter-weight  and  less  bulky                   
than  the  existing  HoloLens  1  based  prototype  (Holstein  et  al.,  2019;  Holstein,  Hong,  et  al.,  2018).                 
The  following  snippet  of  teachers’  conversation  during  the  post-workshop  presents  a  sample  of              
teachers’   reflections   on   the   experience:  

Teacher  1: “...I  was  impressed  with  how  easy  it  was  to  just  kinda  scan  and  see,  like,                  
‘Okay,  these  people  are  smiley  faces,  these  people  are  question  marks.’  I  mean,  if               
they  were  lightweight  glasses...  it  was  really  nice  to  have  the  whole  class  directly  in                
front   of   your...   instead   of   having   to   be   carrying   around   a   screen...”  

Teacher  2:  “Because  it's  right  above  your  head.  Like,  even  if  it  was  a  list  of  kids                  
[...]  you'd  still  have  to  go  and  kind  of  search  for  that  kid,  where  here,  it's  right  in                   
front   of   you   like,   ‘Oh,   this   kid   has   the   red   question   mark.’   ”  

Teacher  1: “Yeah.  I  like  that  just  being  able  to  stand  there  and  still  see  everything,                 
like,  not  have  to  look  down  at  something  and  then  look  back  up.  I  was  just  still                  
seeing  their  faces,  I  was  still  seeing  their  computers,  I  was  still  seeing  if  somebody                
walked   into   the   room,   but   I   could   still   help   them   at   the   same   time.”  

Teacher  4:  “ Yeah,  and  then  you  accidentally  set  it  down  somewhere  and  then  you               
walked  away  and  then  you  were  like,  ‘Where  was  that,’  right?  [With  this]  it's               
always   with   you.”  

Teacher  1:  “ Yeah,  it's  just  there.  You  just  scan  and...  If  somebody  calls  and  you  set                 
down  your  iPad,  then  you  forget  that  you  were  looking  at  it  and  you  go  back  to                  
something.  If  the  glasses  are  on,  you're  automatically  like,  ‘Hey.  Oh,  that's  right,              
you   have   a   red   question   mark.   I   need   to   go   over   there.’   "  

[A2]     Very   useful   to   have   positive,   not   just   negative,   information   in   real-time  
Consistent  with  prior  findings  from  our  group  and  others  (e.g.,  Holstein  et  al.,  2019a;  Holstein,                
Hong,  et  al.,  2018;  Martinez-Maldonado  et  al.,  2014),  teachers  noted  that  they  appreciated  being               
able  to  see  positive  information  about  their  students  –  such  as  the  smiley  faces  that  appear  when                  
a  student  has  recently  been  on  a  “streak”  –  rather  than  only  seeing  negative  information.  These                 
teachers  shared  that  mobile-  and  tablet-based  real-time  analytics  tools  they  had  used  previously              
tended  to  present  only  negative  information  (e.g.,  about  students  who  seemed  to  be  inactive  or                
making   a   lot   of   errors).   As   Teacher   1   noted:  
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“...it  was  nice  for  that  positive  feedback,  too,  for  those  kids  to,  like,  get  some  sort  of                  
comment  to  say,  ‘You're  doing  a  good  job  right  now.’  Because  we  would  typically  not                
give  that  comment  out  because  we  would  just  be  going  to  all  the  kids  that  were                 
having   issues.”  

[A3]     Desires   for   real-time   detection   of   system   misuse   and   off-task   behavior  
In  line  with  our  prior  findings  (e.g.,  Holstein  et  al.,  2019a;  2019b;  Holstein,  Hong,  et  al.,  2018),                  
teachers  expressed  desires  for  real-time  indicators  about  student  misuse  of  the  software  (e.g.,  hint               
abuse  or  gaming  the  system)  and  off-task  behavior.  These  are  features  that  were  removed  from                
the    prototype   of    Lumilo–MATHia    that   these   teachers   had   used   in   the   classroom.  

 

 

Figure  10-5.  Early  illustration  of just  one  possible  re-design  for  the  deep-dive  screens  in  a  future  version                  
of Lumilo–MATHia (a  thorough  exploration  of  how  such  features  can  best  be  designed  is  left  for  future                  
work).  The  teacher  can  peek  at  an  individual  student’s  current  activities  via  a  live  feed  of  their  tutor                   
interface  in  the  “Current  problem”  screen,  and  can  view  areas  where  a  given  student  is  struggling  in  the                   
“Areas  of  struggle”  screen.  This  screen  provides  specific  action  recommendations  or  “suggestions”  for              
how  to  help  the  student  in  cases  where  these  are  available.  Note:  student  names  shown  in  this  figure  are                    
fabricated.  
 

[A4]     Desire   for   ability   to   remotely   “peek”   at   student   screens   in   real-time  
Consistent  with  prior  findings  from  our  group  and  others  (e.g.,  Holstein  et  al.,  2019a;  2019b;                
Holstein,  Hong,  et  al.,  2018;  VanLehn  et  al.,  2019;  Wetzel  et  al.,  2018),  all  teachers  in  the                  
post-workshop  expressed  a  strong  desire  in  the  ability  to  remotely  “peek”  at  a  live  feed  of                 
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students’  screens  from  any  location  in  the  classroom  (as  illustrated  in  Figure  10-5)  –  a  feature                 
that  was  removed  from  the  prototype  version  of Lumilo–MATHia that  they  had  used  in  the                
classroom.  

[A5]     Desire   for   specific,   concrete,   and   rapidly   actionable   information   about   student   difficulties  
Consistent  with  previous  findings  from  our  group  and  others  (e.g.,  Bull  &  Kay,  2016;  Holstein  et                 
al.,  2019a;  Holstein,  Hong,  et  al.,  2018),  teachers  expressed  a  desire  to  see  specific,  concrete,  and                 
rapidly  actionable  information  of  student  difficulties  during  a  class  session  (e.g.,  raw  examples  of               
student  errors).  However,  teachers  were  concerned  that  for  certain  problem  types  in MATHia ,  it               
may  be  challenging  to  design  brief,  readily  actionable  representations  of  student  errors.  During              
the  post-workshop,  teachers  discussed  the  possibility  of  presenting  real-time  action           
recommendations  in  these  cases  (as  illustrated  in  Figure  10-5).  Such  action  recommendations             
would  essentially  acknowledge  that  even  experienced  teachers  can  be  situationally  impaired  due             
to  factors  such  as  heavy  time  pressure  (Sears,  Lin,  Jacko,  &  Xiao,  2003;  Wobbrock,  Kane,  Gajos,                 
Harada,  &  Froehlich,  2011).  These  action  recommendations  would  offload  the  tasks  of             
interpreting  student  errors  and  deciding  upon  appropriate  responses  (e.g.,  by  teacher-sourcing            
context-dependent  action  recommendations  from  experienced  teachers  who  are  not  under  such            
time   pressure;   cf.   Heffernan   et   al.,   2016;   Wang,   Talluri,   Rosé,   &   Koedinger,   2019).  

[A6]     Desires   for   greater   support   in   prioritization   (while   still   enabling   teacher   discretion)  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2017b;  2019a;  2019b;  Holstein,                 
Hong,  et  al.,  2018),  teachers  expressed  various  needs  for  greater  support  in  prioritizing  help               
among  students  –  especially  in  cases  where  many  students  may  need  their  help  at  the  same  time.                  
Given  that  the  detector  of  unproductive  persistence  used  in  this  study  achieved  earlier  detection               
at  the  cost  of  presenting  teachers  with  more  false  positives,  teachers  reported  feeling              
overwhelmed  at  times  by  the  number  of  students  who  appeared  to  need  their  immediate  attention                
(cf.   Holstein   et   al.,   2019b;   Holstein,   Hong,   et   al.,   2018).   

During  the  post-workshop,  teachers  suggested  that  to  help  with  prioritization,  it  would  have              
helped  to  be  able  to  see,  at  a  glance,  how  long  an  indicator  had  been  active  for  a  given  student                     
(cf.  Alavi  &  Dillenbourg,  2012;  Holstein  et  al.,  2019a;  2019b;  Holstein,  Hong,  et  al.,  2018).  This                 
is  a  feature  that  existed  in  prior  versions  of Lumilo  used  in Lynnette  classrooms,  but  was  removed                  
from  the  rough  prototype  version  of Lumilo–MATHia  that  these  teachers  had  used  in  these               
MATHia    classrooms.   As   teacher   4   noted:  

“I  guess  I'd  kinda  like  to  see  like  a  timer  or  something,  though,  not  just  the  red                  
[question  mark],  but  [to  see  that  the  student  has]  been  here  for  four  minutes  or  for                 
eight   minutes...”  

In  line  with  findings  from  Holstein  et  al.  (2019a;  2019b),  these  teachers  also  suggested  that  the                 
task  of  prioritizing  help  among  students  would  be  made  easier  if  the  tool  were  able  to  indicate,  at                   
a  glance,  what  kind  of  help  each  student  needed  from  the  teacher  (rather  than  only  indicating                 
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what  a  student  may  be  struggling  with).  This  notion  of  organizing  information  based  on  what  a                 
teacher  should  do  to  help,  rather  than  based  on  specific  difficulties  students  are  facing,  connects                
with   teachers’   expressed   needs   for   real-time    action   recommendations    (discussed   further   in   [D3]).  
 

Observations  in  the  classroom  study  and  post-workshop  session  that  align  with  prior             
research,   but   were    not    addressed   in   previously   deployed   versions   of    Lumilo  

We  also  observed  teacher  needs,  in  both  the  classroom  study  and  the  post-workshop  session,  that                
re-emerged  from  our  prior  research,  yet  which  are  not  addressed  (at  least,  not  directly)  in                
previously   deployed   versions   of    Lumilo .  

[P1]     Desire   for   private   teacher–student   communication   channels  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2019a;  2019b;  Holstein,  Hong,                 
et  al.,  2018),  teachers  expressed  strong  interest  in  having  private  teacher–student  communication             
channels  during  a  class  session  such  as  “invisible  hand  raises,”  and  the  ability  for  teachers  to                 
privately  acknowledge  these  invisible  hand  raises  (as  illustrated  in  Figure  10-6,  and  discussed  in               
Holstein   et   al.,   2019a;   2019b;   Holstein,   Hong,   et   al.,   2018).  

[P2]     Desire   for   real-time   feedback   on   teacher   explanations  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2017b;  2018b;  2019a;  2019b;                 
Holstein,  Hong,  et  al.,  2018),  teachers  expressed  interest  in  receiving  near  real-time  feedback  on               
the   effectiveness   of   their   own   explanations   during   a   class   session.  

[P3]     Desires   for   additional   support   in   monitoring   and   regulating   student   motivation  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2017a;  2017b;  2018a;  2018b;                 
2019a;  2019b;  Holstein,  Hong,  et  al.,  2018),  teachers  expressed  interest  in  receiving  more              
real-time  support  in  monitoring  and  regulating student  motivation  than  is  offered  by  existing              
versions  of  either Lumilo–Lynnette or Lumilo–MATHia. For  example,  as  in  Holstein  et  al.              
(2017b;  2019a)  and  Holstein,  Hong,  et  al.,  2018,  to  help  inform  an  appropriate  intervention,               
teachers  were  interested  in  the  ability  to  distinguish  whether  a  given  student  has  been  making                
consistent  errors  while  putting  in  reasonable  effort,  or  whether  these  errors  may  simply  result               
from  carelessness.  In  addition,  as  in  Holstein  et  al.  (2019b),  teachers  were  interested  in               
mechanisms  that  would  allow  them  to  dynamically  switch  the  class  between  different  social              
“modes”  (e.g.,  between  individual  work,  whole-class  competitions,  team-based  competitions,  or           
whole-class   collaborative   work),   in   order   to   enhance   student   engagement.  
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Figure  10-6.  Early  illustration  of just  one  possible  re-design  for Lumilo–MATHia ’s  student-level             
indicators  (a  thorough  exploration  of  how  such  features  can  best  be  designed  is  left  for  future  work).  In                   
this  image,  a  student  has  pressed  an  “Ask  teacher  for  help”  button  in  the  tutoring  software,  triggering  an                   
“invisible  hand  raise”  that  only  the  teacher  is  able  to  see.  When  the  teacher  gazes  at  the  student’s  main                    
indicator  (which  is  in  the  default  state)  or  the  student’s  invisible  raised  hand  icon,  a  menu  of  additional                   
options  appears.  By  clicking  directly  on  the  indicator,  rather  than  on  a  particular  menu  option,  the  teacher                  
can  still  pull  up  the  deep  dive  screen.  However,  the  teacher  also  has  the  option  to  1)  privately                   
acknowledge  the  hand  raise  and  signal  to  the  student  that  the  teacher  will  be  with  them  soon  (by  clicking                    
the  ‘thumbs  up’  icon  at  the  bottom,  which  is  visible  to  the  teacher  only  when  a  student  is  in  ‘hand  raise’                      
status);  2)  ask  for  a  recommendation  for  how  to  help  the  student  (by  clicking  on  the  light  bulb  icon)  –                     
potentially  a  screen  displaying  a  combination  of  what  the  AI  believes  the  student  needs,  and  what  the                  
student  has  self-reported  needing  help  with  (via  a  prompt  in  the  tutor  interface);  or  3)  send  the  student  a                    
quick   message,   selected   from   a   set   of   very   brief   automated   suggestions.  

 

[P4]     Mixed   feelings   about   monitoring   student   affect  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2017b;  2019a;  2019b),  teachers                 
were  interested  in  the  prospect  of  automated  support  in  monitoring  their  student’s  emotional              
states  during  a  class  session.  Yet  at  the  same  time,  teachers  emphasized  that  they  did  not  view                  
this   as   a   high   priority   feature.   As   Teacher   1   put   it:   

"If  you're  designing  it,  I  don't  know  if  that  would  be,  like,  one  of  your  top  priorities,                  
I  guess.  I  would  think  that  that  would  be  like,  "Cool,  if  we  have  extra  time,  we'll                  
just  add  that  one  in  there,"  but  there's  probably  fifteen  other  things  that  I  would  put                 
on   before   that."  

When  teachers  were  told  that  students  participating  in  a  prior  speed  dating  study  (Holstein  et  al.,                 
2019b)  wanted  the  option  to  hide  real-time  analytics  about  affect  from  their  teacher,  teachers               
were  sensitive  to  the  notion  of  affect  analytics  being  particularly  sensitive.  For  example,  Teacher               
2   said:  
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“I  could  agree  with  the  emotion  one  but  not  to  hide  anything  else  [...]  because  some                 
[students],   probably,   just   don't   want   you   to   know,   which   is   fine.”  

[P5]     Desires   for   selective   shared   awareness  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2019a;  2019b;  Holstein,  Hong,                 
et  al.,  2018),  teachers  expressed  interest  in  allowing  students  to  see  a  selected  subset  of  their                 
personal  analytics  (cf.  Bull  &  Kay,  2016).  However,  teachers  emphasized  that  they  would  want               
the  ability  to  control  this  feature,  turning  it  on  or  off  on  certain  days,  at  certain  times  during  a                    
class  session,  or  even  for  some  students  in  a  class  but  not  others  (Holstein  et  al.,  2019a;  2019b;                   
Holstein,  Hong,  et  al.,  2018).  The  following  snippet  of  teachers’  conversation  reveals  some  of               
the   factors   they   envision   using   to   make   such   decisions:  

Teacher   1:    “Yeah.   If   I   feel   like   some   of   them,   if   they   were   able   to   
see   [their   own   real-time   analytics],   it   would   tick   them   off   to   no   end.”  
Teacher   3:    “ I   don't   know   if   you   could...”  
Teacher   1:    “ Turn   it   on   and   off?”  
Teacher   3:    “Yeah,   select   it   and...  
Teacher   2:    “Or   for   certain   students...”  
Teacher   3:    “Yeah.”  
Teacher   1:    “Because   there   are   probably   classes   that   are   not   as...”  
Teacher   3:     “High-strung.”  
Teacher   4:    “Yeah,   and   crazy.”  
Teacher   3:    “ And   students   that   aren't   as   high-strung,   you   know,   just...   yeah.   
For   some,   it   might   be   motivation,   for   others,   it   could   be   nothing.”  

[P6]     Desires   for   real-time   teacher   customization   and   control   options  
In  line  with  findings  from  our  prior  research  (e.g.,  Holstein  et  al.,  2017b;  2018b;  2019a;  2019b;                 
Holstein,  Hong,  et  al.,  2018),  teachers  expressed  desires  for  greater  customizability  and  control  –               
beyond  awareness  and  decision  support  –  in  AI-enhanced  classrooms.  For  example,  as  in              
Holstein  et  al.  (2017b;  2019a)  and  Holstein,  Hong,  et  al.  (2018),  teachers  proposed  the  ability  to                 
remotely  control  students’  current  activities  in  the  software,  such  as  by  “freezing”  all  students’               
screens,   as   Teacher   4   put   it:  

“What  about,  like,  if  you  could  just  click  the...  like,  it  freezes  everybody  out  for  a                 
moment?  [...]  Because  sometimes  when  you're  talking,  they're  so  engaged  [in  the             
software]   that   they're   not   listening   to   a   thing   that   you're   saying.”  

In  addition,  as  in  Holstein  et  al.  (2017b;  2019b),  teachers  shared  experiences  where  the  design  of                 
the  software  students  used  on  ITS  lab  days  did  not  align  well  with  the  textbooks  students  used  on                   
other  days  –  creating  unnecessary  confusion.  Teacher  1  noted  that  it  would  be  helpful  to  be  able                  
to   customize   the   terminology   used   in   an   ITS’s   hints   and   instructions:  
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“There  were  a  couple  of  things  we  talked  about  this  year  that  terminology  was               
different  [in  MATHia].  When  we’d  go  over  [it],  we’d  say,  ‘Oh,  well,  this  means               
proportion.’  And  then  if  the  software  could  [also]  hear  that  and  then  change  it  to  our                 
common  terminology  or  even  just,  like,  what  our  book  uses,  you  know?  [For  example               
with]  least  value  and  greatest  value,  minimum  and  maximum  [...]  between  even  what              
the  PSSAs  use  versus  what  the  software  uses  versus  what  our  book  uses,  there's  like                
three  sets  of  terms  for  the  same  thing,  and  if  we  haven't  exposed  them  to  it  [...]  that's                   
what's   confusing   them.”  

Similarly,  Teacher  2  noted  a  disconnect  between  the  input  format  students  were  taught  in  their                
textbooks,   versus   those   they   were   asked   to   use   in   certain   modules   of   the   software:  

“Our  [students]  were  always  hung  up  on  the  fractions,  the  way  the  fractions  were  set                
up,   like   finding   a   common   denominator.   They   couldn't   follow   that   format.”  

 

Major   differences   observed   between    MATHia    and    Lynnette    contexts  

In  addition  the  areas  of  alignment  detailed  above,  we  observed  some  key  differences  between               
MATHia    and    Lynnette    contexts,   pointing   to   different   design   requirements.  
 

[D1]     Greater   needs   for   support   in   handling   classroom   non-synchrony  
Lumilo  was  originally  designed  to  support  teachers  in  more  effectively  co-orchestrating            
non-synchronous  classrooms.  However,  the  current  study  revealed  that  further  support  is  needed             
to  support  teachers  in  handling  the  greater  degree  of  class  asynchrony  typical  of MATHia               
classrooms   (cf.   Ritter   et   al.,   2016a).   

As  discussed  in  section  10.1, MATHia  contains  a  much  broader  range  of  content  than Lynnette .                
In MATHia ,  tutored  problems  are  divided  into  “workspaces.”  Each  workspace  may  contain  a              
diverse  range  of  problems,  united  by  a  common  broad  topic.  By  analogy,  the  breadth  of  content                 
covered  by Lynnette  is  roughly  equivalent  to  a  single  workspace  in MATHia  (focusing  on               
equation  solving).  Furthermore,  workspaces  in MATHia  are  structured  such  that  there  is  typically              
little,   if   any,   overlap   in   skills   across   workspaces.   

In  the  present  study,  to  simulate  students  being  spread  across  multiple  workspaces  –  albeit  to  a                 
lesser  degree  than  may  be  typical  of MATHia  classrooms  late  in  the  school  year  (Ritter  et  al.,                  
2016a)  –  students  were  given  access  to  two  workspaces:  one  that  focuses  on  circle  geometry  and                 
one  that  focuses  on  working  with  ratios.  On  the  first  day  of  the  study,  the  majority  of  students                   
worked  on  the  circle  geometry  workspace.  However,  on  the  second  day  of  the  study,  classes                
worked  on  a  mixture  of  the  circle  geometry  workspace  and  the  ratio  workspace.  Some  teachers                
asked  their  classes  to  begin  with  the  ratio  workspace  on  the  second  day  rather  than  the  circle                  
geometry   workspace,   given   that   the   latter   appeared   to   be   overly   challenging   for   many   students.   
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Even  when  a  majority  of  students  were  working  on  this  second  workspace, Lumilo–MATHia              
persisted  in  showing  teachers  contextually-irrelevant  information  about  the  first  workspace,           
given  that  students  tended  to  struggle  most  with  skills  within  this  workspace.  This  had  not                
presented  as  an  issue  in Lynnette  classrooms  given  that  different  sections  of Lynnette  tended  to                
build  upon  one  another,  with  considerable  overlap  in  the  skills  being  tutored  across  sections.  In                
addition,  during  periods  of  a  class  session  in  which  students  were  heavily  spread  across  the  two                 
workspaces,  teachers  often  wanted  to  check  on  students’  aggregate  performance within  each             
workspace that  the  class  was  currently  working  on.  However, Lumilo–MATHia ’s  class-level            
display  combined  skills  across  all  workspaces  the  class  had  been  working  on,  meaning  that  skills                
from  some  workspaces  (on  which  students  tended  to  struggle  more)  drowned  out  skills  from               
other   workspaces.   

To  address  these  issues,  teachers  noted  that  it  would  be  useful  to  have  the  ability  to  display                  
summaries  at  the workspace-level  (as  illustrated  in  Figure  10-7)  rather  than  at  the class-level               
(which  they  had  rarely  found  useful,  as  in Lynnette  classrooms;  see Chapter  8 ).  As  Teacher  3                 
said:  

“ It'd  be  nice  if  there  was  [a  label]  for  [each  workspace].  I  knew  I  was  having  trouble                  
when  I  would  turn  around  to  look  at  the  back  screen,  like,  all  the  information  that  it                  
gave  was  on  a  module  that  only  two  students  were  on.  So  out  of  a  class,  it  was  like,                    
‘Okay,   who's   working   on   [what]?’    ”  

Teachers  also  noted  that  it  would  be  very  important  to  be  able  to  customize  and/or  automatically                 
adapt  which  workspace-level  summaries  were  visible  or  hidden  from  them  at  any  given  time,  to                
avoid  seeing  a  large  amount  of  information  that  is  irrelevant  to  their  current  tasks  and  goals.  As                  
Teacher   1   noted:  

“...we  have  so  many  kids  that  will  [all  be]  in  a  different  area  [...]  You  probably  have                  
20   different   [workspaces]   that   they   are   working   on   around   [the   same]   time.”  
 

[D2]     More   pronounced   desires   for   support   in   orchestrating   group-level   help   sessions  
Perhaps  due  to  lower  levels  of  synchrony  in MATHia  versus Lynnette classrooms,  we  observed               
strong  desires  for  support  in  orchestrating  group-level  interventions  (cf.  Holstein  et  al.,  2019a).              
Teachers  noticed  during  class  that,  even  if  a majority  of  the  class  was  not  struggling  with  similar                  
issues,   they   were   often   providing   the   same   help   to   multiple   students   throughout   a   class   session.   

As   Teacher   3   noted:  

“I  had  noticed...  as  I  was  going  today,  I  had  answered  the  same  problem  a  hundred                 
times  and  I  could  say  it  out  loud  [to  the  whole  class],  and  then  some  still  did  answer,                   
‘I  don't  know  what  to  do  here,’  and  it  might  help  saying,  ‘[You  four,]  hey,  you  guys                  
are   gonna   need   to   know   this   now.’   ”  
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Figure  10-7.  Early  illustration  of  just  one  possible  re-design  for  the  class-level  summary  displays  in                
Lumilo–MATHia (a  thorough  exploration  of  how  such  features  can  best  be  designed  is  left  for  future                 
work).  Multiple  summary  screens  are  shown  at  the  front  of  the  classroom,  divided  by  workspace  in                 
MATHia .  Given  the  potential  for  students  to  be  spread  across  a  large  number  of  workspaces  in MATHia ,                  
details  are  made  visible  for  only  a  subset  of  currently-active  workspaces  by  default,  based  on  (the                 
system’s  knowledge  of)  a  teacher’s  goals  for  the  day.  A  teacher  can  further  customize  and  control  which                  
summary  screens  are  visible  throughout  the  course  of  a  class  session.  The  name  of  the  relevant  workspace                  
is  shown  at  the  top  of  each  summary  screen,  together  with  the  number  of  students  who  are  currently                   
active  in  that  workspace.  Only  low-mastery,  widely-practiced  skills  that  are relevant  to  a  particular               
workspace  are  shown  in  the  corresponding  summary  screen.  Within  each  screen,  teachers  can  click  on  an                 
encircled  question  mark  to  the  right  of  each  skill  name  (e.g.,  “Compute  circle  area  (forward)”)  to  receive                  
more  detailed  information  about  the  meaning  of  that  skill,  potentially  accompanied  by  concrete  examples               
of   errors   students   have   been   making.  
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Figure  10-8.  Early  illustration  of  just  one  possible  design  for  a  commonly  requested  interaction  with  the                 
class-level  summary  displays  in Lumilo (a  thorough  exploration  of  how  such  features  can  best  be                
designed  is  left  for  future  work).  If  a  teacher  either  clicks  or  sustains  gaze  on  the  grey  portion  of  a                     
class-level  skill  bar  in  a  particular  workspace’s  summary  display  (representing  the  proportion  of  currently               
active  students  who  have  practiced  but  not  mastered  a  skill),  the  students  who  comprise  this  grey  bar  are                   
revealed  (both  in  the  form  of  a  list  and  by  spatially  highlighting  students).  In  addition,  other  actionable                  
information  may  be  presented,  such  as  suggestions  for  how  to  help  these  students.  In  the  example  shown,                  
the  tool  suggests  reviewing  the  circle  area  formula  and/or  reviewing  what  a  radius  is.  Teachers  can  click                  
on  an  encircled  question  mark  to  the  right  of  each  suggestion  to  receive  more  detailed  information  about                  
1)  why  they  are  seeing  this  suggestion,  and  2)  how  to  implement  this  suggestion.  Note:  any  student  names                   
shown   in   this   figure   are   fabricated.  
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Teachers  noted  that  it  would  be  helpful  if  the  design  of Lumilo–MATHia  were  to  explicitly  draw                 
their  attention  to  opportunities  for  group-level  interventions  –  for  example,  by  identifying             
specific  students  who  are  struggling  within  a  given  skill  in  a  particular  workspace,  or  by                
providing  direct  recommendations  for  ways  they  might  help  specific  groups  of  students  (as              
illustrated   in   Figure   10-8).   For   example,   Teacher   1   suggested:  

“Doing  kind  of,  like,  a  really  quick  mini-lesson,  I  mean,  I  think  that  would  be                
helpful.  [...]  You  could  just  pull  [up]  those  [recommendations],  ‘Hey,  here’s  the  five              
kids   that   aren’t   getting   this   right   now.   This   is   what   you   need   to   [do].’   ”  

In  addition  to  providing  group-level  information  and  recommendations  in  real-time,  teachers            
generated  other  ways  a  tool  could  help  them  orchestrate  these  group-level  interactions.  For              
example,  Teachers  1  and  3  envisioned  the  ability  to  instantly  share  an  example  of  an  error  that                  
one  student  had  made  during  class  (in  de-identified  form)  with  other  students  who  had  recently                
been   exhibiting   similar   errors   (cf.   Holstein   et   al.,   2019a;   Holstein,   Hong,   et   al.,   2018):  

Teacher   1:    "   ’Look   at   this   right   now.   This   is   you.’   "  

Teacher   3:   “ Kinda   pull   their   attention   to   it   rather   than   [just]   finding   out   [later]...”  
 

[D3]     More   pronounced   desires   for   real-time   recommendations   (for   use   at   a   teacher’s   discretion)  
Finally,  in  response  to  a  mockup  of Lumilo–Lynnette’s  deep-dive  screens,  teachers  noted  that              
MATHia  problems  can  involve  much  more  context  for  the  teacher  to  catch  up  on  when                
approaching  a  student,  compared  with Lynnette .  Given  this  difference,  teachers  suspected  that             
having  the  option  to  access  explicit  action  recommendations  in  real-time,  in  addition  to  other               
displays,  could  be  particularly  helpful  in MATHia classrooms.  Teacher  1’s  suggestion  in  [D2]  is               
one  example  of  a  group-level  recommendation  the  system  might  provide,  to  tell  the  teacher               
specifically  what  they  “need  to  [do],”  and  with  which  group  of  students  (as  illustrated  in  Figure                 
10-8   and   Figure   10-9).   

Teachers  expected  that  such  action  recommendations  would  be  particularly  helpful  for  those             
newer  to  using MATHia  in  the  classroom  (as  they  themselves  had  been  one  year  before,  when                 
their  school  began  using MATHia  in  classrooms).  However,  these  teachers  expected  that  even  for               
teachers  with  more  experience,  receiving  direct  action  recommendations  could  occasionally  be            
more  useful  than  only  seeing  raw  examples  of  student  work.  For  example,  Teachers  3  and  4                 
discussed   moments   where   using   AI   tutors   in   the   classroom   made   them   feel   like   “idiot[s]:”  

Teacher  3: “ Well,  and  I  know  sometimes  with  MATHia,  too,  when  I  walked  up  on                
them,  I  need  a  minute  to  kinda  see  what  they're  doing.  I  guess  maybe  if  I  had  it  as,                    
like,  ‘This  is  where  they're  at,  this  is  kind  of  the  direction  that  they're  headed  in,’  sort                  
of   the   preface   while   you're...   Like,   because   there's   been   times   on   MATHia   I'm   like...”  

Teacher   4:    “ And   then   you   feel   like   an   idiot   because...”  
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Teacher   3:    “ ...I   don't   know   exactly   what   [the   software]   want[s]...”  

However,  these  teachers  also  stressed  that  they  would  likely  find  it  bothersome  to  have  proactive                
recommendations  popping  up  regularly,  suggesting  instead  that  such  a  feature  should  instead  be              
available   upon   a   teacher’s   request.  
 

    

Figure  10-9. Early  illustration  of just  one  possible  design  for  a  new  potential  feature  for Lumilo–MATHia :                 
a  general  “Suggestions”  screen  that  provides  on-demand  suggestions  for  teacher  actions  at  any  point               
during  a  class  session  (a  thorough  exploration  of  how  such  features  can  best  be  designed  is  left  for  future                    
work).  In  this  example,  when  the  teacher  glances  at  the  “Suggestions”  screen,  it  expands  in  response  to                  
the  teacher’s  gaze  to  show  two  brief  suggestions  for  good  uses  of  the  teacher’s  time.  The  first  suggestion                   
is  to  pull  aside  three  specific  students  and  to  go  over  a  worked  example  for  “combining  variable  terms.”                   
The  second  suggestion  is  to  give  a  quick  whole-class  lecture  on  the  meaning  of  a  negative  ‘x.’  Teachers                   
can  click  on  an  encircled  question  mark  to  the  right  of  each  suggestion  to  receive  more  detailed                  
information  about  1)  why  they  are  seeing  this  suggestion,  and  2)  how  to  implement  this  suggestion.  Note:                  
student   names   shown   in   this   figure   are   fabricated.  

 

10.4   Conclusions   and   Next   Steps  
 

In  sum,  piloting  in MATHia  classrooms  revealed  many  alignments  with  prior  findings,  but  also               
pointed  to  important  challenges  ahead  in  adapting  the  design  of Lumilo  to  work  with MATHia .                
Table  10-3  presents  an  updated  version  of  Table  10-1,  illustrating  key  differences  observed              
between Lynnette  and MATHia contexts.  More  broadly,  the  rows  of  Table  10-3  represent  some  of                
the  challenges  involved  in  scaling  up  real-time,  wearable  teacher  augmentation  to  a  broader              
range   of   curricular   content   and   classroom   contexts,   as   well   as   longer   periods   of   use.   
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Table   10-3.    Anticipated   challenges   in   adapting   the   design   of    Lumilo    to   work   with    MATHia ; an   updated  
version   of   Table   10-1,   following   observations   from   the   Spring   2019   classroom   pilots   and   design  
workshop.  
 

Lynnette  MATHia  Relevant   observations   during   Spring  
2019   classroom   study?  

Covers   on   the   order   of  
days   -   weeks    of   curricular  
content,   and   is   used   over  

relatively   short   timespans.  

Covers   on   the   order   of  
months   -   years    of  

curricular   content,   and   is  
often   used   continuously  

throughout   the   school   year.  
 

No.    This   study   was   too   brief   to   observe   unique  
challenges   that   arise   over   months   to   years   of   use.  

However,   the   following   two   rows   relate   to   this   issue.  
 

Includes   a    smaller   range  
of   problem   types    (all   tutor  
problems   follow   a   similar  

format:    line-by-line  
equation   solving).  

Includes   a    broader   range  
of   problem   types    (tutor  

problems   span   a   wide   range  
of   formats   and   topics).  

Yes.    Given    MATHia ’s   broader   range,   some   problem  
types   and   formats   presented   by    MATHia    were  
unfamiliar   to   teachers.   In   these   areas,   teachers  

lacked   relevant   pedagogical   content   knowledge  
needed   to   quickly   help   their   students.   Relatedly,   the  

presence   of   a   broader   range   of   problem   types  
seemed   to   contribute   to   the   amount   of   context   a  

teacher   needed   to   catch   up   on,   when   approaching   a  
given   student   (see   row   4).   

 

Considerable   overlap   in  
skill   content    throughout   a  
student’s   trajectory   in   the  

software   (i.e.,   when  
moving   between    distinct  

“problem   sets”).  

Students   may   move   between  
contexts   (“workspaces”)  

with    little   if   any   overlap   in  
skill   content .  

Yes.    This   impacted   the   usefulness   of   the   class-level  
display   in    Lumilo–MATHia.    Findings   pointed   to  

needs   for   greater   context-awareness,   organization   of  
information   by   workspace,   and   greater   support   in  

orchestrating   group-level   interventions   during   class.  

Problems   include    less  
context    that   the   teacher  

needs   to   catch   up   on,   in   the  
moment   (students   are  

presented   with   an   algebraic  
equation   and   asked   to  

solve   it).  

Some   problem   types   involve  
substantial   context    that   a  
teacher   needs   to   catch   up  
on,   in   the   moment     (e.g.,   a  

given   problem   may   present  
students   with   detailed,  

multi-step   word   problems  
and   interactive   graphical  

representations).  

Yes.    in   the   post-workshop,   teachers   anticipated   that  
providing   raw   error   examples   may   be   less   useful  
than   providing   direct   action   recommendations   in  

these   cases.  

Lumilo ’s   real-time  
analytics   and   parameter  

settings   have   been    tuned  
for    Lynnette    classrooms  

(see    Chapters   4   through   6 ).  

Lumilo ’s   real-time   analytics  
and   parameter   settings   have  
not   been   tuned    for    MATHia  

classrooms.  

Yes.    For   example,    MATHia ’s   design   (e.g.,   its  
problem   selection   policy,   and   the   distribution   of  
skills   across   steps,   problems,   and   workspaces)  

appears   to   have   rendered    Lumilo ’s   existing   detector  
of   unproductive   persistence   less   useful.  
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The  work  presented  in  this  chapter  represents  a  rare  exploration  of  challenges  that  arise  in                
adapting  the  interface  and  algorithm  design  of  a  learning  analytics  tool  to  work  with  an                
educational  software  system  for  which  it  was  not  originally  designed  (see  item  2  under Summary                
of  Contributions  – First  design  exploration  and  prototypes  of  wearable,  heads-up  displays  to              
support  orchestration  of  personalized  classrooms ).  Despite  growing  awareness  in  the  learning            
analytics,  AI  in  education,  and  educational  data  mining  communities  of  the  difficulty  of              
transferring  student  modeling  methods  and  learning  analytics  tools  across  different  educational            
software  systems,  it  remains  rare  to  see  demonstrations  of  generalization  across  systems,  or              
explorations  of  challenges  that  arise  when  trying  to  generalize  across  systems  (see Chapter  3 ;               
Holstein,   Yu,   et   al.,   2018;   Paquette   et   al.,   2015;   2018).  

Below,  I  provide  a  high-level  summary  of  next  steps  for  this  research  –  based  on  needs,                 
challenges,  and  tensions  identified  in  both Chapters  9  and 10  –  to  prepare  real-time,  wearable                
teacher  augmentation  for  larger-scale,  longer-term  use  (a  key  goal  of  our  ongoing  collaboration              
with   Carnegie   Learning).  

This  summary  is  not  intended  to  be  exhaustive.  Indeed,  as  discussed  in  the Conclusions,               
Contributions,  and  Future  Directions  section,  I  believe  there  are  multiple  lifetimes  worth  of              
research  to  be  done  in  this  space.  Rather,  this  summary  represents  just  a  small  sampling  of  next                  
steps  that  I  believe  to  be  particularly  high  priority  in  the  (relatively)  near-term,  especially  within                
the  context  of  our  ongoing  academic–industry  partnership.  Broader  conclusions  and  directions            
for   future   work   are   presented   in    Conclusions,   Contributions,   and   Future   Directions.  
 

High-level   summary   of   next   steps  
 

Designing   to   support   more   impactful   teacher   interventions  

● Further  explore  (1)  how  real-time  action  recommendations  or  “Suggestions”  can  best  be             
presented  to  teachers  (see Chapters  1,  5, 9 ,  and 10 );  and  (2)  how  to  generate  such                 
recommendations  (e.g.,  through  the  design  of  teacher-sourcing  mechanisms  (cf.          
Heffernan   et   al.,   2016;   Wang   et   al.,   2019).  

● Explore  how  best  to  support  teachers  in  opportunistically  and  adaptively  orchestrating            
group-level  interventions  during  a  class  session  (e.g.,  helping  teachers  identify  small            
groups  of  students  who  are  experiencing  similar  difficulties  for  a  targeted  mini  lesson)              
(see    Chapters   1 ,    5 ,    8 ,    9 ,   and    10 ).  

● Explore  how  to  better  support  teachers  in  monitoring  and  regulating  student  motivation             
during  AI-supported  class  sessions  (e.g.,  by  allowing  teachers  to  dynamically  switch            
classes  between  various  individual,  competitive,  and  collaborative  “modes”;  see Chapters           
1,   4,   9 ,   and    10 )).  
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● Explore  how  teachers  might  be  better  supported  in  inferring  potential  causal  impacts  of              
their  own  actions  during  AI-supported  class  sessions  (e.g.,  learning  from  feedback  on  the              
effectiveness   of   their   own   on-the-spot   explanations;   see    Chapters   1 ,    4 ,    5 ,    9 ,   and    10 ).  

Designing   for   effective   balances   of   teacher,   student,   and   AI   control   and   regulation  

● Further  explore  whether  and  how  best  to  design  private  teacher–student  communication            
channels  (see Chapters 1 , 4,  5, 9, and  10 ),  and  investigate  how  the  presence  of  particular                 
forms  of  private  teacher–student  signaling  (e.g.,  “invisible  hand  raises”,  private  teacher            
acknowledgements,  the  ability  for  students  to  request  not  to  be  helped)  impacts  classroom              
dynamics   (e.g.,   student   help-seeking   behaviors)   (cf.   Schofield   et   al.,   1994).  

● Further  explore  1)  which  information  should  be  shown  to  which  stakeholders  in  the              
classroom,  and  under  which  circumstances;  and  2)  the  design  of  mechanisms  to  support              
teacher  and  student  control  over  real-time  information  sharing  in  the  classroom  (see             
Chapters   4 ,    9 ,   and    10 ).  

Moving   beyond   a   research   prototype  

● Move  to  lighter-weight  hardware,  as  this  becomes  increasingly  technically  and           
economically  feasible  (Bohn,  2019;  Harrison,  2018;  Robertson,  2019;  see Chapters  4 and             
10 ).  

Designing   orchestration   support   for   less-synchronized   classroom   contexts  

● Explore  how  best  to  present  class-level  or  group-level  information  in  situations  where             
students  are  spread  across  a  large  number  of  divergent  activities  (e.g.,  20  or  more               
workspaces  in MATHia ),  without  overwhelming  teachers  or  counteracting  the  usefulness           
of   these   displays   ( Chapter   10 ).  

Adapting   to   diverse   classroom   contexts   and   pedagogical   goals  

● Further  explore  how  best  to  design  detector  algorithms  that  work  well  in MATHia              
contexts .  In  addition  to  addressing  the  challenges  described  in  this  chapter,  this  step  may               
involve  running  analyses  to  better  understand  how  these  detector  algorithms  behave            
across  the  broad  range  of  classroom,  cultural,  and  socio-economic  contexts  in  which             
MATHia  is  used,  and  designing  mechanisms  for  contextual  adaptivity  and  adaptability            
where  helpful  (see Chapters  5  and 10 ;  Baker,  2019;  Holstein  &  Doroudi,  2019;  Holstein,               
Wortman  Vaughan  et  al.,  2019;  Karumbaiah  et  al.,  2019;  Ocumpaugh  et  al.,  2014;  Ogan               
et   al.,   2015).  

● Explore  how  best  to  make Lumilo–MATHia ’s  design  more  adaptable  and/or  adaptive  (see             
Chapters  5 , 8 ,  and 10 )  –  for  example,  by  enabling  teachers  to  see  class-level  information                
relevant  to  their  specific  instructional  goals for  a  given  day ,  and  ensuring  that  teachers               
only   see   information   relevant   to   workspaces   students   are   actively   working   on.  
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● Explore  ways  to  provide  teachers  with  greater  ability  to  customize  and  control  the              
behavior  of  AI  tutoring  software  for  use  in  their  classrooms  (cf.  Holstein  et  al.,  2019a;                
2019b),  while  also  ensuring  that  the  instructional  effectiveness  of  the  software  is             
maintained   (see    Chapters   1 ,    9 ,   and    10 ;   Ritter   et   al.,   2016a).   
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Conclusions  
In  this  dissertation,  I  have  begun  to  explore  how  AI  and  human  teachers  might  best  support  one                  
another,  leveraging  one  another’s  complementary  strengths  to  achieve  outcomes  greater  than            
either   could   achieve   alone.   
 

I  have  approached  this  work  from  both  an empowerment  and  an efficiency perspective  (see               
Kulkarni  et  al.,  2019).  From  an empowerment  perspective,  I  have  begun  to  explore  how               
educational  AI  systems  might  be  better  designed  to  support  and  extend  teachers’  abilities  to               
personalize  instruction,  and  help  them  fulfill  the  roles  they  aspire  to  play  during  AI-supported               
class  sessions  (e.g.,  see Chapters  1,  4,  5,  8,  and  9 ;  Aiken  &  Epstein,  2000;  Feng  &  Heffernan,                   
2007;  Holstein  et  al.,  2017b;  2019a;  2019b;  Holstein,  Hong  et  al.,  2018;  Mavrikis  et  al.,  2016;                 
Yacef,  2002).  From  an efficiency  perspective,  I  have  begun  to  explore  how  human/AI  systems               
can  be  designed  to  measurably  benefit  students’  learning,  by  making  more  effective  use  of               
existing  classroom  resources  (compared  with  human  teachers  or  AI  tutors  working  in  a              
less-integrated  fashion)  (e.g.,  see Chapter  2 , 5,  6,  7 ,  and 9; Baker  et  al.,  2016;  Fancsali  et  al.,                   
2018;   Holstein   et   al.,   2017a;   2018a;   2018b;   Holstein,   2018;   Kamar,   2016;   Ritter   et   al.   2016b).  
 

In Part  One, I  presented  findings  from  initial  needfinding  studies  with  K-12  teachers  who  have                
used  AI  systems  as  part  of  their  regular  instruction  ( Chapter  1 ).  In  addition,  I  presented                
exploratory  data  analyses  of  teacher–student  interactions  in  AI-supported  classrooms  and  their            
relationships  with  students’  learning  ( Chapter  2 ),  and  introduced CTAT/TutorShop  Analytics           
(CT+A)  an  extended  technical  architecture  for  intelligent  tutoring  system  (ITS)  development  and             
deployment  that  can  support  the  prototyping  of  real-time  analytics  tools  for  use  with  ITSs               
( Chapter   3 ).  

In Part  Two ,  I  presented  an  iterative  prototyping  process  with  K-12  teachers,  yielding  new               
prototyping  methods  and  the  development  of  a  new  form  of  real-time  teacher  augmentation:  a               
prototype   of   mixed   reality   smart   glasses   for   teachers   called    Lumilo    ( Chapters   4    and    5 ).  

Part  Three  focused  on  the  evaluation  of  real-time  teacher  augmentation  in  live  classroom              
settings.  I  presented  and  demonstrated  a  design  framework  for  the  iterative,  data-informed  design              
and  evaluation  of  real-time  teacher  augmentation  ( Chapter  6 ),  culminating  in  an  in-vivo             
classroom  experiment  that  evaluated Lumilo ’s  impacts  on  teacher  and  student  behavior  and             
students’   learning   ( Chapters   7    and    8 ).   

Finally,  in Part  Four  I  began  to  explore  how  the  concepts  embodied  by Lumilo  might  be                 
prepared  for  wider  use,  through  design  studies  ( Chapters 9  and 10 )  and  classroom  piloting  with                
teachers  and  students  ( Chapter  10 ).  Beyond  the  scope  of  this  dissertation,  the  explorations              
presented  in Part  Four  will  help  prepare  for  the  next  phase  of  this  research:  a  large-scale                 
classroom  experiment  (using  an  updated  and  miniaturized  version  of Lumilo )  with  over  60              
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middle  school  classrooms  that  use  commercial  AI  tutoring  software  (Carnegie  Learning’s            
MATHia  ITS),  to  better  understand  the  effects  of  teacher–AI  co-orchestration  on  student  learning              
and   other   classroom   outcomes.  
 

To  conclude,  I  will  first  present  high-level methodological  reflections  and  recommendations            
based  on  my  experiences  designing  real-time  teacher  augmentation  with  and  for  K-12  teachers.  It               
is  my  hope  that  these  reflections  will  be  helpful  to  others  who  wish  to  involve  non-technical                 
stakeholders  in  the  design  of  learning  analytics  (LA),  educational  AI  (AIED),  and  related              
systems  (see  Holstein  et  al.,  2019a  for  a  discussion).  Finally,  in  the  next  sections,  I  will  present  a                   
detailed  overview  of  this  dissertation’s  seven  main  contributions,  followed  by  a  brief  discussion              
of   some   broad   directions   for   future   work.  
 
 

 

Methodological   reflections   and   recommendations  
 

Although  recent  work  in  the  field  of  Learning  Analytics  (LA)  encourages  stakeholder             
involvement  at  every  stage  of  design  and  development  —  from  early,  generative  design              
phases  through  piloting  and  evaluation  in  real-world  educational  contexts  —  demonstrations            
of  end-to-end  co-design  processes  for  LA  and  educational  AI  (AIED)  systems  remain  very              
rare  in  the  literature  (Holstein  et  al.,  2019a).  Furthermore,  existing  user-centred  design             
workflows  and  frameworks  (e.g.,  Dollinger  &  Lodge,  2018;  Martinez-Maldonado  et  al.,  2016)             
provide  limited  methodological  guidance  regarding how  to  effectively  involve  non-technical           
stakeholders   at   each   phase   of   an   LA/AIED   design   process   (Holstein   et   al.,   2019a).  
 

Below,  I  present  some  general  reflections  and  recommendations  for  future  LA/AIED  co-design             
efforts,  reflecting  on  “lessons  learned”  and  practices  I  have  found  valuable  in  my  dissertation               
work.  In  particular,  I  focus  on  specific  practices  that  go  beyond  those  explicitly  highlighted               
in  prior  work  on  the  user-centered  design  of  LA/AIED  systems.  I  expect  that  several  of  these                 
recommendations  will  generalize  to  the  design  of  other  data-driven  algorithmic  systems,  beyond             
the  context  of  educational  technologies.  For  example,  the  approach  taken  in  Holstein,  Wortman              
Vaughan,  et  al.  (2019)  followed  several  of  these  recommendations,  towards  designing  more             
effective  tools  to  help  machine  learning  practitioners  assess/address  algorithmic  bias  and            
unfairness   in   widely-used   systems.  
 

1. Begin   with   stakeholder   needs,   not   analytics   or   visualizations.   
In  designing  any  tool,  it  is  useful  to  begin  with  an  understanding  of  the  stakeholder  needs                 
a  tool  might  address,  and  the  tasks  and  experiences  it  might  support.  Yet  design               
processes  for  LA  tools  often  appear  to  begin  by  identifying  technical  solutions             
(e.g.,  particular  data  sources,  analytic  methods,  and  visualizations),  and  then           
searching  for  opportunities  to  apply  these  solutions  (Rodriguez-Triana  et  al.,  2017).  In  the              
early  phases  of  my  design  research  (see Chapter  1 ),  I  explicitly  avoided  discussing              
particular  solutions  with  teachers,  to  avoid  limiting  these  conversations  by  teachers’            
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conceptions  of  what  is  technologically  possible.  Instead,  I  found  it  much  more  generative              
to  explore  teachers’  current challenges and aspirations  through  probes  like  the            
“superpowers”  exercise  and  through  directed  storytelling  around  teachers’  lived          
experiences  (Beyer  &  Holtzblatt,  1997;  Evenson,  2006).  Findings  from  such  design            
exercises  subsequently  enabled  “matchmaking”  between  specific  teacher  information         
needs  (e.g.,  desires  to  receive  real-time  updates  about  specific  student  constructs)  and             
current  technical  possibilities  (e.g.,  existing  analytic  and  student  modelling  methods           
intended   to   measure   these   constructs).  
  

In  some  cases,  beginning  from  stakeholder  needs  led  me  away  from  the  use  of  more                
abstract  data  visualizations  that  are  common  in  existing  “learning  analytics  dashboards”            
(and  which  might  otherwise  have  been  a  default,  assumed  solution)  —  such  as  plots,               
graphs,  and  charts  —  towards  the  use  of  concrete,  grounded  representations  of  student              
data   such   as   raw   examples   of   student   errors   (cf.   Bull   &   Kay,   2016)  
 

2. Regularly   link   analytics   to   action   throughout   the   design   process.   
Although  many  learning  analytics  tools  are  designed  to  support  awareness  or  reflection             
(An  et  al.,  2019;  Rodriguez-Triana  et  al.,  2017),  the  end  goal  of  this  enhanced  awareness                
or  support  for  reflection  is  commonly  to  support  more  informed  decision-making  and             
action  (Holstein  et  al.,  2018a;  Schoenfeld,  2010).  Throughout  my  design  process,  I  found              
that  it  was  critical  to  regularly  link  particular  analytics  to  the decisions  and  actions  they                
might  inform.  For  example,  in  early  prototyping  studies,  I  found  that  prompting  teachers              
to  reflect  on  what  real-time  decisions  a  particular  information  display  might  inform  often              
led  them  to  notice  ways  in  which  the  display  could  be  made  more  useful,  usable,  and/or                 
trustworthy  (Holstein,  2018;  Holstein  et  al.,  2019;  Holstein,  Hong,  et  al.,  2018).  In  many               
cases,  teachers  would  initially  find  particular  visualizations  interesting  and  appealing,           
yet  would  change  their  minds  about  the  desirability  of  these  visualizations  when             
prompted  to  reflect  upon how  they  might  actually  use  these  visualizations  to  inform  their               
classroom   practice.  
 

3. Prototype   specific    user   tasks    and    usage   scenarios    early   and   often.  
In  line  with  the  previous  recommendation,  I  have  found  it  very  useful  to  simulate  specific                
user  tasks  and  usage  scenarios  for  an  LA/AIED  tool  (e.g.,  by  having  stakeholders              
participate  in  role-playing  and  bodystorming  exercises)  as  early  and  often  as  possible             
throughout  the  design  and  prototyping  process  (cf.  Odom  et  al.,  2012;  Zimmerman  &              
Forlizzi,  2017).  Such  simulation  exercises  (combined  with  methods  like  think-alouds  and            
cognitive  task  analyses)  can  help  to  surface  information  needs  crucial  for  particular  tasks              
or  usage  scenarios,  but  which  users  may  not  otherwise  perceive  or  report  “out  of  context”                
(cf.  Beyer  &  Holtzblatt,  1997;  Crandall  et  al.,  2006).  For  example,  since  different  usage               
scenarios  for  a  teacher  analytics  tool  can  involve  very  different  types  of  tasks  and               
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decisions  (e.g.,  planning  a  lesson  versus  identifying  students  who  need  help  right  now),              
different  constraints  (e.g.,  more  or  less  time  pressure),  and  different  affordances  for             
action,  simulating  specific  usage  scenarios  can  sometimes  reveal  that  radically  different            
designs   are   needed   to   support   different   scenarios.  
 

4. Prototype   the   behavior   of   LA/AIED   tools   using   diverse   real-world   datasets.   
Finally,  since  the  behavior  of  LA/AIED  systems  can  depend  heavily  on  nuances  of              
particular  data-generating  contexts,  in  combination  with  particular  analytic  methods  or           
algorithms,  I  have  found  that  it  can  be  very  informative  to  run  prototyping  sessions  using                
datasets  from  a  range  of  contexts.  For  example,  by  replaying  data  collected  from  real               
classrooms  across  multiple  school  contexts  and  performance  levels  in  Replay  Enactments            
sessions,  I  was  able  to  anticipate  various  context-specific  design  challenges  before            
entering  live  classrooms  (see Chapter  5 ;  Dove  et  al.,  2017;  Holstein  et  al.,  2019a;               
Holstein,  Wortman  Vaughan,  et  al.,  2019;  and  a  brief  discussion  of  challenges  in  “Global               
Design”   in   Zimmerman   &   Forlizzi,   2019).   
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Summary   of   Contributions  
This  thesis  makes  a  total  of  7  main  contributions  to  the  areas  of  human–computer  and  human–AI                 
interaction  ( HCI/HAI ),  design  ( DES ),  and  learning  sciences  and  technologies  ( LS&T ).  The            
broad  category  “LS&T”  encompasses  such  subareas  as  AI  in  education,  learning  analytics,  the              
learning   sciences.  
 

Contributions  are  organized  below  by  groupings  of  relevant  fields.  For  each  listed  contribution,              
relevant  thesis  chapters  and  my  related  prior  publications  are  provided,  together  with  a  brief               
summary   of   the   significance   of   the   contribution   with   respect   to   prior   literature.  
 

Following  Wobbrock  and  Kientz’s  high-level  taxonomy  of  research  contribution  types  in  HCI             
(Wobbrock  &  Kientz,  2016),  contributions  are  categorized  by  each  contribution’s  primary  type             
(out  of  “Empirical”,  “Artifact”,  “Methodological”,  “Theoretical”,  “Dataset”,  “Survey”,  and          
“Opinion”).  Secondary  contribution  types  are  also  listed  where  applicable.  I  have  further  divided              
the  “Empirical”  category  into  two  subcategories  (although  note  that  these  are  not  mutually              
exclusive):   “Design   research”   and   “Classroom   experiments   and   data   mining”.  

 
Contributions  to  the  areas  of Human–Computer  /  Human–AI  Interaction          
(HCI/HAI),    Design    (DES),   and    Learning   Sciences   &   Technologies    (LS&T):  
 

1. First  broad  design  exploration  of  needs  for  real-time  teacher  analytics  and            
orchestration   support:  
This  dissertation  presents  the  first  broad  exploration  in  the  literature  of  teachers’  needs              
for  real-time  analytics  and  orchestration  support  in  AI-supported,  personalized          
classrooms.  As  AI  increasingly  enters  K-12  classrooms,  it  is  important  to  understand  the              
evolving  roles  and  aspirations  of  K-12  teachers,  and  how  AI  systems  can  best  be               
designed  to  support  these  roles.  Through  these  explorations,  the  present  work  is  also              
among  the  first  to  explore  the  notion  of  human–AI  co-orchestration,  in  which  a  human               
teacher  and  students  work  together  with  AI  agents  to  make  complex,  yet  powerful              
classroom   learning   scenarios   feasible.   
More  broadly,  the  design  explorations  presented  in  this  dissertation  represent  a  case  study              
of  the  design  of  real-time  AI  augmentation  for  workers  in  a  “caring  profession”  (K-12               
teaching)   which   may   defy   full   automation.  

■ Main   contribution   type(s):    Design   Research   &   Theoretical  
■ Most   relevant   chapters:    Chapters   1,   4,    and    9  
■ Related  publications: Holstein  et  al.,  2017b;  2019a;  2019b;  Holstein,  Hong,  et            

al.,   2018.  
■ Significance:   
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○ In  recent  years,  many  real-time  analytics  tools  have  been  designed  and            
developed  to  aid  teachers  in  orchestrating  complex  technology-enhanced         
learning  scenarios  (e.g.,  van  Alphen  &  Bakker,  2016;  Martinez-Maldonado,          
Clayphan,  Yacef,  &  Kay,  2016;  Matuk,  Gerard,  Lim-Breitbart,  &  Linn,           
2016;  Mavrikis,  Gutierrez-Santos,  &  Poulovassilis,  2016).  However,  design         
decisions  about  which  analytics  to  present  to  teachers  often  appear  to  be             
driven  more  by  the  availability  of  data  or  pre-existing  analytics  measures            
than  by  considerations  of  teachers’  real-time  information  needs         
(Rodriguez-Triana  et  al.,  2017).  To  the  best  of  my  knowledge, no  prior             
literature  has  conducted  broad  needfinding  studies  –  untethered  from          
specific,  pre-existing  prototypes  –  to  understand  teachers’  needs  and          
desires  for  real-time  analytics (Holstein  et  al.,  2017b;  2019a;  2019b;           
Holstein,   Hong,   et   al.,   2018).  

○ Many  existing  real-time  orchestration  tools  have  been  designed  with  the           
assumption  that  a  class  of  students  progresses  through  instructional          
activities  in  a  relatively  synchronized  manner (cf.  van  Leeuwen,  2015;           
but  see  Olsen,  2017).  Understanding  how  best  to  support  teachers  in            
orchestrating  highly-  differentiated,  non-synchronous  classrooms,  such  as        
those  using  AI  tutoring  systems,  remains  an  important  and  challenging           
research  problem.  Orchestration  support  for  such  classrooms  must  alleviate          
the  implementation  challenges  that  these  classrooms  raise  for  the  teacher           
(e.g.,  Alphen  &  Bakker,  2016;  Bingham,  Pane,  Steiner,  &  Hamilton,  2018;            
Holstein   et   al.,   2017b;   Holstein,   Hong,   et   al.,   2018).  

○ Most  existing  real-time  orchestration  tools  have  been  developed  to          
support  instructors  in  university  contexts  (e.g.,  Alavi,  Dillenbourg,  &          
Kaplan,  2009;  Martinez-Maldonado  et  al.,  2015;  Rodriguez-Triana  et  al.,          
2017).  Teachers  working  with  younger  students  (e.g.,  in  middle  school           
classrooms)  may  face  unique  challenges.  For  example,  when  working  with           
younger  students,  it  may  be  important  for  teachers  and  peers  to  play  a  more               
proactive  role  in  helping  to  regulate  students’  learning,  help-seeking,  and           
motivation  (Aleven,  Roll,  McLaren,  &  Koedinger,  2016;  Holstein  et  al.,           
2017a;  2019a;  2019b;  Molenaar,  Horvers,  &  Baker,  2019;  Nelson-Le  Gall,           
1981;   Zimmerman,   2008).  

○ Most  prior  work  on  real-time  orchestration  tools  has  focused  on  teacher            
support,  taking  a  teacher-centered  view  of  classroom  orchestration  (e.g.,          
Alphen  &  Bakker,  2016;  Martinez-Maldonado  et  al.,  2015;  Rodriguez-          
Triana  et  al.,  2017).  While  some  prior  work  has  introduced  the  notion  of              
“co-orchestration”  (e.g.,  Muñoz-Cristóbal  et  al.,  2013;  Prieto,  2012;         
Sharples,  2013),  this  work  has  tended  to  focus  on  the  sharing  of             
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responsibility  for  orchestration  across  multiple  human  agents  in  the          
classroom  (such  as  when  a  teacher  “offloads”  help-giving  by  initiating  a            
peer-tutoring  interaction).  This  dissertation  is among  the  first  to  explore           
the  notion  of human–AI  co-orchestration (Holstein  et  al.,  2017b;  2018b;           
2019a;  2019b;  Holstein,  2018),  in  which  a  human  teacher  and  students  work             
together  with  AI  agents  to  make  complex,  yet  powerful  classroom  learning            
scenarios  feasible  (cf.  Forlizzi  &  Zimmerman,  2013;  McLaren  et  al.,  2010;            
Olsen,   2017;   Olsen   et   al.,   2018;   Prieto,   2012;   Wetzel   et   al.,   2018).  

○ As  AI  increasingly  enters  K-12  classrooms,  it  is  important  to           
understand  the  evolving  roles  and  aspirations  of  K-12  teachers,  and           
how  AI  systems  can  best  be  designed  to  support  these  roles  (Holstein  et              
al.,  2017b;  2019a;  2019b;  Huber  et  al.,  2014;  van  Leeuwen  et  al.,  2018;              
Olsen,  2017;  Olsen  et  al.,  2018;  Toyama,  2017).  When  designing  human–AI            
co-orchestration  systems,  it  is  critical  to  understand  which  teacher  and           
student  needs  these  systems  might  serve,  and  what  social  boundaries  these            
systems  should  avoid  crossing  (cf.  Davidoff  et  al.,  2007;  Forlizzi  &            
Zimmerman,  2013;  Zimmerman  &  Forlizzi,  2017). Chapter  9 presents  an           
initial  exploration  of  teacher  and  student  beliefs  about  desirable  human/AI           
role  divisions  in  AI-supported  classrooms:  which  aspects  should  be  handled           
by   AI   agents   versus   teachers   or   peers,   and   under   which   circumstances.  

○ More  broadly ,  the  design  explorations  presented  in  this  dissertation          
represent  a case  study  of  the  design  of  real-time  AI  augmentation  for             
workers  in  a  “caring  profession”  (K-12  teaching)  which  may  defy  full            
automation.  This  is  a  critical  yet  relatively  underexplored  area  in  the  HCI             
and  HAI  literatures,  and  relates  to  the  topics  of  several  recent  workshops  at              
HCI  conferences  such  as  CHI,  DIS,  and  CSCW:  “Designing  for  Everyday            
Care  in  Communities”  (Toombs,  Dow,  et  al.,  2018),  “Sociotechnical          
Systems  of  Care”  (Toombs,  Devendorf,  et  al.,  2018),  and  “Where  is  the             
Human?  Bridging  the  Gap  Between  AI  and  HCI”  (Inkpen,  De  Choudhury,            
Chancellor,  Veale,  &  Baumer,  2019).  The  present  work  presents  a  relevant            
case  study  in  the  context  of  co-located  K-12  teaching,  a  profession  where             
full  automation  may  remain  infeasible  and/or  undesirable  (Baker,  2016;          
Duckworth,  Graham,  &  Osborne,  2019;  Frey  &  Osborne,  2013;  Holstein  et            
al.,   2017b;   2019a;   2019b;   Lubars   &   Tan,   2019).  

 
 

2. First  design  exploration  and  prototypes  of  wearable,  heads-up  displays  to  support            
orchestration   of   personalized   classrooms:   
The  first  design  exploration  in  the  literature  of  the  use  of  wearable,  heads-up  displays  to                
support  teachers  in  orchestrating  personalized  classrooms,  yielding Lumilo ,  a          
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classroom-tested   prototype   of   mixed   reality   smart   glasses   for   teachers.   
More  broadly,  the  design  explorations  presented  in  this  dissertation  represent  a  case  study              
of   the   use   of   head-mounted   displays   in   a   real-world   social   space   (K-12   classrooms).  

■ Main   contribution   type(s):    Design   Research   &   Artifact  
■ Most   relevant   chapters:    Chapters   4,   5,   7,   8,    and    10  
■ Related  publications:  Holstein  et  al.,  2017b;  2018b;  2019a;  Holstein,  Hong,  et            

al.,   2018.  
■ Significance:   

○ Recent  work  has  begun  to  investigate  the  potential  of  emerging  wearable            
technologies  for  real-time  teacher  support  (e.g.  Quintana,  Quintana,         
Madeira,  &  Slotta,  2016;  Zarraonandia,  Aedo,  Díaz,  &  Montero,  2013).  Such            
technologies  hold  great  promise  to  enhance  teacher  awareness,  while          
allowing  teachers  to  keep  their  heads  up  and  eyes  focused  on  their  classroom              
–  acknowledging  the  highly  active  role  teachers  play  in  personalized           
classrooms  (see Chapter  1 ;  Holstein  et  al.,  2017a;  2017b;  Quintana,  et  al.,             
2016,   Schofield   et   al.,   1994).   

○ Prior  work  suggests  that  teachers  may  prefer  wearables  over  handheld           
devices  for  use  in  personalized  classrooms  (e.g.,  Quintana,  et  al.,  2016).            
However,  this  work  has  not  involved  the  human-centered  design  and           
evaluation  of  an  actual  wearable  orchestration  tool.  Furthermore,  while          
prior  work  has  tested  the  use  of  smart  glasses  to  help  students  provide  live               
feedback  to  their  instructors  in  university  lecture  contexts  (Zarraonandia,  et           
al.,  2013),  the  present  work  represents  the  first  exploration  of  the  affordances             
of  smart  glasses  to  support  teachers  in  orchestrating  personalized  classroom           
sessions,  yielding Lumilo ,  a  classroom-tested  prototype  of  mixed  reality          
smart   glasses   for   teachers   (see    Chapter   4 ).  

○ More  broadly ,  the  design  explorations  presented  in  this  dissertation          
represent a  case  study  of  the  use  of  head-mounted  displays  in  a  real-world              
social  space (K-12  classrooms).  The  design  of  wearable,  heads-up  displays           
for  use  in  actual  social  spaces  remains  relatively  underexplored  in  the  HCI             
literature.  This  relates  to  the  topic  of  recent  workshops  at  HCI  conferences,             
such  as  “Challenges  Using  Head-Mounted  Displays  in  Shared  and  Social           
Spaces”  (Gugenheimer,  Mai,  McGill,  Williamson,  Steinicke,  Perlin,  2019).         
The  present  work  presents  a  relevant  case  study  in  the  context  of  co-located              
K-12  teaching,  where  the  wearer  of  a  head-mounted  display  is  nearly            
constantly   involved   in   brief   social   engagements   (with   students).  

○ The  research  presented  in Chapter  10 expands  upon  this  work,  presenting  a             
rare  exploration  of  challenges  that  arise  in  adapting  and  generalizing  the            
interface  and  algorithm  design  of  a  learning  analytics  tool  ( Lumilo )  to  work             
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with  an  educational  software  system  for  which  it  was  not  originally  designed.             
Despite  growing  awareness  in  the  learning  analytics,  AI  in  education,  and            
educational  data  mining  communities  of  the  difficulty  of  transferring  student           
modeling  methods  and  learning  analytics  tools  across  different  educational          
software  systems,  it  remains  rare  to  see  demonstrations  of  generalization           
across  systems,  or  explorations  of  challenges  that  arise  when  trying  to            
generalize  across  systems  (see Chapter  3 ;  Baker,  2019;  Holstein,  Yu,  et  al.,             
2018;   Paquette   et   al.,   2015;   2018).  

 
3. First  experimental  study  to  demonstrate  student  learning  benefits  of  real-time           

teacher   analytics:  
The  first  experimental  study  to  demonstrate  student  learning  benefits  (on  a  pre-  and              
post-test)     of   real-time   teacher   analytics   or   teacher–AI   co-orchestration.  

■ Main   contribution   type(s):    Classroom   experiments   and   data   mining  
■ Most   relevant   chapter:    Chapter   7  
■ Related   publications:    Holstein   et   al.,   2018b.  
■ Significance:     

○ Although  much  prior  work  has  focused  on  the  design,  development,  and            
evaluation  of  teacher  analytics  tools,  very  few  studies  have  evaluated  effects            
on  student  learning  (Kelly  et  al.,  2013;  Molenaar  &  Knoop-van  Campen,            
2017;  Rodríguez-Triana,  et  al.,  2017;  Xhakaj,  et  al.,  2017).  This  dissertation            
presents the  first  experimental  study  to  demonstrate  that  real-time          
teacher  analytics  can  enhance  students’  learning  outcomes  (within  or          
outside  the  areas  of  AI-supported  education  and  intelligent  tutoring          
systems).  

○ These  experimental  findings  demonstrate  potential  for  AIED  systems  that          
integrate  human  and  machine  intelligence  to  support  students’  learning  (cf.           
Baker,   2016;   Kamar,   2016;   Ritter   et   al.,   2016;   Yacef,   2002).  

 
 

4. Novel   design   and   prototyping   methods:  
Novel  design  and  prototyping  methods  to  support  the  co-design,  experience  prototyping,            
and  evaluation  of  data-driven  AI  systems,  and  case  studies  exploring  how  these  methods              
can  be  applied  to  involve  non-technical  stakeholders  in  the  design  of  such  systems.  These               
methods  include  Replay  Enactments,  Participatory  Speed  Dating,  and  the  use  of  spatial             
classroom   replay   visualizations   to   inform   design.  

■ Main   contribution   type(s):    Methodological  
■ Most   relevant   chapters:    Chapters   2 ,    5 ,    6 ,   and    9  
■ Related  publications: Holstein  et  al.,  2017a;  2017b;  2018a;  2019a;  2019b;           

Holstein,   Hong,   et   al.,   2018  
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■ Significance:   
○ Recent  work  in  HCI/HAI  has  highlighted needs  for  new  kinds  of            

prototyping  methods  to  address  unique  challenges  that  arise  in          
prototyping  data-driven  AI  systems  (e.g.,  Dennerlein  et  al.,  2018;  Dove  et            
al.,  2017;  Doshi-Velez  &  Kim,  2017;  Helms,  et  al.,  2018;  Holstein,  Wortman             
Vaughan,   et   al.,   2018;   Yang,   Sciuto,   et   al.,   2018).   

○ This  dissertation introduces  and  demonstrates  replay-based  prototyping        
methods  that  use  authentic  data  and  (imperfect)  algorithms  to  reveal           
important  nuances  that  other  methods –  such  as  Wizard  of  Oz  studies             
(Lovejoy,  2018;  Odom  et  al.,  2012)  –  may  be  ill-suited  to  surface,  (e.g.,  UX               
impacts  of  a  prototype’s  false  positives  and  negatives  (Dove  et  al.,  2017)  or              
issues   that   arise   only   in   particular   data-generating   contexts).  

○ In  addition,  recent  work  in  HCI/HAI  and  Learning  Analytics  has  begun            
exploring how  non-technical  stakeholders  can  be  meaningfully  involved         
in  shaping  the  behavior  complex,  data-driven  AI  systems  –  a  central            
open  challenge  for  the  UX  design  of  data-driven  AI  systems  (e.g.,  Baumer,             
2017;  Chen  &  Zhu,  2019;  Dennerlein  et  al.,  2018;  Kyung  Lee  et  al.,  2018;               
Holstein,  Hong,  et  al.,  2018;  Prieto-Alvarez,  et  al.,  2018;  Zhu  &  Terveen,             
2018).  This  dissertation  explores  this  question  in  the  context  of           
AI-supported  K-12  classrooms,  introducing  methods  and  strategies  for         
effectively  involving  K-12  teachers  and  students  in  the  design  of  data-driven            
AI   systems   (Holstein,   Hong,   et   al.,   2018;   Holstein   et   al.,   2019a;   2019b).  

 
Contributions   to   the   area   of    Learning   Sciences   and   Technologies    (LS&T):  

 

5. First  investigations  of  relationships  between  teacher  movement/monitoring  and         
student   behavior   and   learning   in   AI-supported   classrooms:  
This  dissertation  presents  the  first  investigations  in  the  literature  of  relationships  between             
teachers’  physical  movement  and  classroom  monitoring  behaviors,  and  students’          
behaviors  and  learning  outcomes,  in  AI-supported,  personalized  classrooms.  Findings          
from  this  research  indicate  that,  when  evaluating  the  impacts  of  teacher-facing  learning             
analytics  tools,  future  research  should  take  care  to  tease  apart  potential  effects  of  a               
teacher’s   use   of   a   monitoring   tool   versus   teachers’   use   of   learning   analytics.   

■ Main   contribution   type(s):    Classroom   experiments   and   data   mining  
■ Most   relevant   chapters:    Chapters   2,   4 ,    6,    and    7  
■ Related  publications:  Holstein  et  al.,  2017a;  2018a;  2018b;  2019a;  Holstein,           

Hong   et   al.,   2018.  
■ Significance:  
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○ While  prior  work  has  investigated  associations  between  teachers’  physical          
movement  and  monitoring  behaviors  in  co-located  classrooms  (e.g.,  looking          
over  students’  shoulders  as  they  work)  and  students’  behaviors  and  learning            
outcomes,  using  observational  data  (e.g.,  Stang  &  Roll,  2014),  the  present            
work  is  the  first  to  investigate  such  associations  in  the  context  of             
AI-supported,  personalized  classrooms  – a  context  where  student  behavior          
has  been  extensively  studied  using  software  log  data  alone,  without  data            
on  out-of-software  interactions  such  as  those  that  occur  between          
students   and   teachers    (see   also:   Miller,   et   al.,   2015).  

○ Findings  from  an  in-vivo  classroom  study  (Holstein  et  al.,  2018b)  suggest            
that, when  evaluating  the  impacts  of  teacher-facing  learning  analytics          
tools,  future  research  should  take  care  to  tease  apart  potential  effects  of             
a  teacher’s  use  of  a  monitoring  tool  (such  as  novelty  effects  or  students’              
awareness  of  being  monitored  by  their  teacher), versus  teachers’  use  of  the             
kinds  of  advanced  analytics  and  student  modeling  methods  that  are           
often  the  focus  of  research  in  learning  analytics  (LA),  AI  in  education             
(AIED),   user   modeling   (UM),   and   educational   data   mining   (EDM).  

○ I  developed  and  utilized  a  new  logging  library  for  use  with Lumilo ,  which              
appropriates  the  HoloLens  1’s  spatial  mapping  capabilities  as  a  means  of            
automatically  logging  teachers’  actions  in  a  physical  classroom  space          
over  the  course  of  a  class  session (i.e.,  to  automate  much  of  the  manual               
coding  process  described  in Chapter  2 ).  For  example,  using  a  “mixed  reality             
sensor”  approach  (see Chapter  4 ), Lumilo  can  record  time-stamped  logs  of  a             
teacher’s  physical  proximity  to  a  given  student  in  the  class           
moment-by-moment,  as  well  as  the  teacher’s  absolute  location  in  the           
classroom,  their  proximity  to  pre-specified  landmarks  (such  as  the  teacher’s           
desk  or  whiteboard),  the  target  of  a  teacher’s  gaze,  and  all  teacher             
interactions   within   the   tool   interface.   

○ Unlike  most  prior  work  on  physical  teaching  analytics  (e.g.,  An  et  al.,             
2019;  Echeverria  et  al.,  2018;  Martinez-Maldonado,  2019;        
Martinez-Maldonado  et  al.,  2018;  but  see  Prieto  et  al.,  2016), Lumilo’s            
mixed  reality  sensor  approach  uses  an  “inside  out”  approach  to  teacher            
tracking,  and  thus  does  not  require  instrumenting  the  classroom  space           
with  external  sensors  or  “beacons”. Rather,  this  approach  relies  entirely           
on  the  HoloLens  1’s  built  in  sensors  and  spatial  mapping  algorithms  for             
tracking   of   teachers’   behavior.  
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6. Causal  Alignment  Analysis  (CAA),  a  framework  for  the  data-informed,  iterative           
design   of   teacher   augmentation:  
This  dissertation  presents  Causal  Alignment  Analysis  (CAA),  a  framework  for  the            
data-informed,  iterative  design  of  teacher  augmentation  (e.g.,  real-time  awareness  and           
orchestration  tools),  which  links  the  design  of  such  technologies  to  educational  goals;  and              
a   case   study   illustrating   CAA’s   application   and   utility.  

■ Main   contribution   type(s):    Methodological   &   Theoretical  
■ Most   relevant   chapters:    Chapter   6  
■ Related   publications:    Holstein   et   al.,   2018a.  
■ Significance:    

○ While  existing  design  workflows  such  as  LATUX  (Martinez-Maldonado,         
Pardo,  et  al.,  2016)  support  the  user-centered  design  of  teacher  analytics            
tools  based  on  teacher  feedback, there  is  a  lack  of  standard            
methodology  for  the  outcome-driven  improvement  of  such  tools,  to          
achieve  targeted  educational  goals  (cf.  Molenaar  &  Campen,  2017;          
Xhakaj  et  al.,  2017).  Furthermore, justifications  for  design  decision s          
(e.g.,  what  information  to  present  in  a  teacher  dashboard) are  rarely            
reported  in  the  literature  (Rodríguez-Triana  et  al.,  2017).  CAA  is  a            
framework  to  guide  the  outcome-driven  design  of  teacher  analytics  tools,           
and   to   help   structure   reporting   of   justifications   for   design   decisions.  

 
7. CTAT/TutorShop  Analytics  (CT+A),  an  extended  technical  architecture  for  ITS          

development   that   supports   “extensible   student   modeling”:  
CTAT/TutorShop  Analytics  (CT+A),  an  extended  technical  architecture  for  ITS          
development  that  supports  “extensible  student  modeling”:  the  sharing,  re-mixing,  use,           
and   prototyping   of   advanced   student   modeling   techniques.  

■ Main   contribution   type(s):    Artifact  
■ Most   relevant   chapters:    Chapter   3  
■ Related   publications:    Holstein,   Yu,   et   al.,   2018.  
■ Significance:   

○ Authoring  tools  for  intelligent  tutoring  systems  (ITSs)  rarely  support          
extensible  student  modeling. For  example,  prior  to  the  present  work,           
CTAT/Tutorshop,  an  authoring  environment  for  cognitive  tutors  and         
example-tracing  tutors  that  has  been  used  to  build  many  dozens  of  ITSs             
(Aleven  et  al.,  2016),  supported  only  student  models  comprising  a  set  of             
BKT  mastery  probabilities  for  knowledge  components  (KCs)  within  the          
authored  tutors.  An  author  could  not  add  other  types  of  variables  to  the              
student  model  (e.g.,  to  track  the  student’s  affective  or  motivational  state,  or             
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metacognition)  or  easily  experiment  with  different  methods  for  updating  or           
using   the   student   model.  

○ The  present  work aims  to  lower  the  barriers  to  the  sharing,  re-use,  and              
re-mixing  of  advanced  student  modeling  methods  across  researchers         
and  research  groups,  with  the  goal  of  accelerating  progress  within  a            
cumulative  science  of  student  modeling  (cf.  Desmarais  &  Baker,  2012;           
Sotillare  et  al.,  2018). CT+A  is  already  being  used  to  share  student  modeling              
techniques  across  research  groups,  for  use  in  live  ITSs  or  for  offline             
analyses   (e.g.,   Holstein,   Yu,   et   al.,   2018;   Paquette   et   al.,   2018).  
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Future   Directions  
Perhaps  the  most  important  “meta-contributions”  of  this  dissertation  are: (1)  This  work  has              
helped  to  lay  a  foundation  for  a  broad  research  program  around  the  design  of  “hybrid”  systems                 
that  combine  complementary  strengths  of  human  and  AI  instruction  in-the-moment  (Baker,            
2016;  Fancsali  et  al.,  2018;  Holstein  et  al.,  2017b;  2018a;  2018b;  2019a;  2019b;  Holstein,  2018;                
Molenaar  et  al.,  2019;  Ritter  et  al.,  2016b;  Wetzel  et  al.,  2018;  Yacef,  2002);  and (2)  This  work                   
has  helped  to  advance  conversations  around  the  nature  and  roles  of  design  research  and               
co-design  in  the  areas  of  AI-supported  Education  (AIED)  and  Learning  Analytics  (LA)  (e.g.,              
Buckingham  Shum,  Ferguson,  Martinez-Maldonado,  2019;  Holstein  et  al.,  2017b;  2019a;  2019b;            
Prieto-Alvarez  et  al.,  2018).  My  hope  for  these  fields  is  that  we  will  continue  to  expand  beyond                  
designing  “AI  systems”  or  “learning  analytics  systems”,  towards  designing  effective  human/AI            
partnerships  and service  systems  (Morelli,  2003;  Vargo,  Maglio,  &  Akaka,  2008).  This  means              
understanding  and  designing  for  the  broader  contexts  in  which  these  AIED/LA  systems  are              
embedded  –  viewing  the  value  of  these  systems  as co-created  in  action  (Payne  et  al.,  2008;                 
Prahalad  and  Ramaswamy,  2004;  Vargo  et  al.,  2008)  amongst  various  human  and  AI              
stakeholders .  24

I  believe  there  are  multiple  lifetimes  worth  of  important  research  yet  to  be  done  within  these                 
areas,  and  it  is  my  hope  that  findings  presented  throughout  this  dissertation  will  help  to  inform                 
future  work.  The  directions  explored  in  this  dissertation  have  already  proven  to  be  highly               
generative.  For  example,  the  design  research  presented  in  this  dissertation  has  inspired  at  least               
six  major,  awarded  research  grants  so  far  (some  of  which  I  have  worked  on,  and  some  of  which                   
were  written  by  colleagues)  which  will  explore  the  design  and  evaluation  of  new  forms of                
real-time  teacher  augmentation,  for  use  in  a  broader  range  of  classroom  contexts  than  explored  in                
the   present   work.  

As  mentioned  in Part  Four  of  this  dissertation,  one  of  my  own  next  steps  will  be  to  gain  a  deeper                     
understanding  of  the  impacts  of  teacher–AI  co-orchestration  via  a  larger-scale,  longer-term            
classroom  experiment  (using  an  updated  and  miniaturized  version  of Lumilo ).  Specific  directions             
for  future  research  that  tie-in  to  this  project  are  presented  at  the  end  of Chapter  10 ,  in Section                   
10.4 .   

In  the  remainder  of  this  section,  I  will  share  just  a  few  promising  broad  directions  for  future                  
design  research  on  real-time  teacher  augmentation.  Given  the  breadth  of  design  explorations  and              
findings  presented  in  this  dissertation,  this  section  will  necessarily  be  high-level  and             
non-exhaustive.  

24  Where   an   AI’s   “stakes”   in   these   human/AI   systems   may   be   taken   to   represent   those   of   the   learning  
scientists,   instructional   designers,   and/or   educational   technologists   involved   in   its   design   and  
development   (cf.   Buckingham   Shum,   2018;   Harpstead,   2017).  
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Over  the  course  of  my  PhD  research,  I  gradually  narrowed  my  focus  from  an  exploration  of                 
teachers’  broader  challenges  and  needs  in  AI-supported  classrooms (Chapters  1  and 4)  to  the               
development  of  a  specific  tool, Lumilo ( Chapters  4 through  6 ).  In  the  process  of  narrowing,                
many  promising  design  directions  for  real-time  teacher  augmentation  were,  at  least  temporarily,             
left  behind  (see Chapters  1  and 9 ).  For  example,  from Chapter  4  onward,  I  largely  narrowed  the                  
scope  of  my  investigations  to  the  design  of  real-time  support  for  teacher awareness  and               
decision-making    in   AI-supported   classrooms,   as   opposed   to    system   customization   and   control .   

Longer  term,  I  envision  exploring  a  much  broader  design  space  for  real-time  teacher              
augmentation  (e.g.,  see  Tables  4  through  6).  Among  other  directions,  this  may  involve  designing               
forms  of  real-time  teacher  augmentation  for  use  in  a  broader  range  of  personalized  learning               
environments,  including  heavily-collaborative  learning  settings  and  open-ended,  project-based         
learning  contexts.  Advances  in  multimodal  learning  analytics  may  reduce  the  dependence  of             
tools  like Lumilo  on  data  streams  from  educational  software  (Echeverria  et  al.,  2018;              
Martinez-Maldonado,  Echeverria,  et  al.,  2018),  enabling  rich  real-time  analytics  in  contexts            
where   students   are   highly   physically   mobile   and/or   are   “untethered”   from   computer   screens.  

Relatively  early  in  my  design  research  with  teachers,  teacher  autonomy  emerged  as  a  central               
issue  in  AI-supported  classrooms.  On  the  one  hand,  teachers  expressed  desires  for  more  direct               
forms  of  decision  support  than  are  offered  by  existing  teacher  analytics  tools  (e.g.,  real-time               
action  recommendations  or  greater  assistance  in  extracting  meaning  from  presented  analytics)  –             
especially  in  usage  scenarios  where  they  are  under  heavy  time-pressure.  At  the  same  time,               
teachers  also  often  expressed  strong  discomfort  with  AI  systems  that  they  perceived  to  be               
“telling  them  what  to  do”  or  inappropriately  “judging”  their  behavior.  While  I  began  to  explore                
these  issues  in  the  design  of Lumilo ,  it  remains  an  open  question  how  real-time  teacher                
augmentation  can  best  be  designed  to  balance  teacher  autonomy  with  this  desire  for  real-time               
decision  support.  As  future  work  delves  further  into  the  space  of  real-time  teacher              
decision-support  (e.g.,  Holstein  et  al.,  2019b;  VanLehn  et  al.,  2019),  I  anticipate  that  this  tension                
will  be  brought  to  the  fore.  A  central  challenge  in  navigating  this  balance  is  determining  when                 
and  how  an  AI  system  should  respectfully  “push  back”  on  a  teacher—for  example,  in  cases                
where  the  system  is  confident  that  certain  of  a  teacher’s  instructional  goals  or  strategies  are  likely                 
to   be   detrimental   to   students’   learning   (Holstein   et   al.,   2019b;   Ritter   et   al.,   2016a).  

A  promising  and  important  direction  for  future  research  is  to  explore  what  effective bidirectional               
communication  between  a  human  teacher  and  an  AI  system  might  look  like,  with  respect  to                
outcomes  such  as  teacher  trust,  teachers’  sense  of  autonomy,  and  the  instructional  effectiveness              
of  a  combined  teacher-AI  system  (cf.  Holstein,  2018;  Holstein  et  al.,  2019b).  My  design  research                
and  classroom  studies  suggest  that  teachers’  ability  to  interpret  inferences  and  recommendations             
made  by  AI  systems  can  be  key  not  only  in  facilitating  teacher  trust  in  the  system,  but  also  in                    
empowering  teachers  to  second-guess  the  AI  if  deemed  necessary.  In  general,  however,  relatively              
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little  is  known  about  the  effects  of  different  forms  of  AI  interpretability  and  control  options  on                 
users’  trust,  sense  of  autonomy,  and  decision-making  (e.g.,  their  ability  to productively             
second-guess  an  AI  system)  (Doshi-Velez  &  Kim,  2017;  Lipton,  2016;  Poursabzi-Sangdeh,            
Goldstein,  Hofman,  Vaughan,  &  Wallach,  2018;  Wang,  Yang,  Abdul,  &  Lim,  2019).  Recent              
experimental  work  has  shown  that  decision-makers’  ability  to  understand  AI  systems’            
decision-making,  combined  with  their  abilities  to  customize  and  control/override  systems  based            
on  this  understanding  may  influence  trust  in  complex  ways—with  heightened  interpretability            
potentially  having  negative  effects  on  trust,  when  provided  in  isolation,  but  a  positive  effect               
when  coupled  with  increased  user  control  over  system  behavior  (e.g.,  Lee  &  Baykal,  2017).  I                
expect  that  investigating  a  broader  design  space  of  mechanisms  for  teachers  and  AI  to               
communicate  with  one  another,  through  design  studies  and  behavioral  experiments,  will            
ultimately  help  pave  the  way  for  more  effective  and  desirable  partnerships  between  human              
teachers   and   AI   systems   in   the   classroom.  

As  discussed  in Part  Four  of  this  dissertation,  many  of  the  design  questions  discussed  above  –                 
surrounding  autonomy,  interpretability,  trust,  and  system  control  and  customization  –  extend  to             
students  in  addition  to  teachers.  An  important  direction  for  future  work  is  to  explore  the  broader                 
design  space  of teacher–student–AI co-orchestration  –  building  upon  findings  from  the  present             
work  on  supports  for teacher–AI  co-orchestration,  as  well  as  prior  findings  from  work  on               
supports  for student–AI  joint  control  and  regulation  of  learning  (e.g.,  Bull  &  Kay,  2016;  Long  &                 
Aleven,  2013;  2014;  Roll  et  al.,  2011).  Many  open  questions  remain  regarding  how  best  to                
balance  between  teacher,  student,  and  AI  regulation  of  learning  during  a  class  session.  If  not                
carefully  designed,  real-time  teacher  augmentation  may  risk  threatening  students’  autonomy  in            
AI-supported  classrooms  and/or  hampering  students’  development  into  effective  self-regulated          
learners   (see    Chapter   9 ).   

Further  questions  arise  when  considering  how  to  design  for  effective  sharing  of  regulation over               
successive  class  sessions ,  or  even over  successive  school  years ,  as  students’  abilities  to  regulate               
their  own  learning  develop  and  relationships  between  teachers,  students,  and  AI  agents  evolve              
over  time.  This  longitudinal  frame  points  to  an  additional  set  of  challenges  for  future  work  on                 
real-time  teacher  augmentation  and  human/AI  co-orchestration  systems.  As  discussed  in Chapter            
10 ,  whereas  the  bulk  of  my  dissertation  work  has  studied  and  supported  teacher–student–AI              
interactions  over  relatively  short  timescales  (i.e.,  one  day  to  one  week,  as  in Chapter  2  and                 
Chapters  4 through 9 ),  future  work  should  delve  into  complexities  that  may  arise  only  over  much                 
longer   timescales.  

Finally,  to  help  guide  future  research  on  systems  that  support  human/AI  co-orchestration,  I              
present  notes  on  a  few  broad  ways  (certainly  not  an  exhaustive  list)  in  which  future  systems                 
might  be  designed  to  leverage  complementary  abilities  of  teachers,  students,  and  AI  systems  to               
improve  classroom  instruction.  These  are  divided  into  three  tables  (Tables  4  through  6):              
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“Perception”  (i.e.,  abilities  to  make  certain  inferences), “Perception  →  Action”  (i.e.,  mappings             
from   perception   to   action),   and    “Action”    (i.e.,   the   set   of   actions   that   each   agent   can   perform).   

An  exciting  and  important  direction  for  future  design,  learning  sciences,  and            
human–computer/AI  interaction  research  is  to  better  understand  and  characterize  the           
complementary  strengths  of  human  and  automated  instruction,  in  order  to  explore  how  they  can               
most  effectively  be  combined  (cf.  Fancsali,  et  al.,  2018;  Holstein  et  al.,  2017a;  2017b;  2018b;                
2019a;   2019b;   Ritter   et   al.,   2016b).  
 

 
Table   4.    Opportunities   to   design   for   human/AI   complementarity   in    perception  
 

 Augmenting    teachers  Augmenting    AI   systems  Augmenting    students  

Extending    sensing  
capabilities  

Help   teacher   sense  
actionable   pedagogically-  
relevant,   information   to  
which   the   AI   system   and   or  
students   have   unique  
access  
(e.g.,   real-time   information  
presented   by    Lumilo    –   see  
Chapter   1     and    Chapters   4  
through    7 )  
 
Design   to    preserve   teacher  
ability   to   sense    actionable,  
pedagogically-relevant  
information   to   which   they  
already   have   unique   access  
(e.g.,   through   the   use   of  
heads   up   displays,   or   other  
peripheral   interfaces   –   see  
Chapters   1,   4,   8,    and    10;  
Alavi   &   Dillenbourg,   2012;  
An   et   al.,   2019;   Bakker   et  
al.,   2016;   d’Anjou   et   al.,  
2019)  

Help   AI   sense    actionable,  
pedagogically-relevant  
information   to   which   the   teacher  
and/or   students   have   unique  
access   (e.g.,   via   real-time   polling  
of   the   teacher   or   students)   
(future   direction   –   see    Chapters   8  
and   9 )  

Help   students   sense  
actionable   information   (for  
self-regulated   learning   and  
peer   tutoring)   to   which   the  
AI   system   and/or   the   teacher  
has   unique   access  
(e.g.,   see   Long   &   Aleven,  
2013;   Roll,   Aleven,   McLaren,  
&   Koedinger,   2011;   Walker,  
Rummel,   &   Koedinger,   2014)  
 
Design   to    preserve   student  
ability   to   sense    actionable,  
pedagogically-relevant  
information   to   which   they  
already   have   unique   access  
(future   direction)  

Addressing   biases  
and   limitations   in  

diagnostic  
attention  

Design   to    guide   teachers’  
attention     towards  
situations   that   most    require  
their   further   assessment  
from   the   teacher  
(e.g.,   real-time   information  
presented   by    Lumilo    –   see  
Chapter   1    and    Chapters   4  
through   8 )  
 
Design   to   support     teacher  
reflection     on   their   own  
diagnostic   monitoring  
behavior  
(future   direction   –   see  
Chapter   2    and    9 )  
 
 
 

Design   to    help   teachers   and  
students   identify   and   suggest  
learning-   and   teaching-related  
constructs    that   the   AI   system  
should   monitor   (or    features    to  
which   it   should   attend)   but   does  
not   currently  
(future   direction)  

Design   to    guide   students’  
attention     towards   features  
of   their   own   or   peers’  
learning   behaviors   that   most  
require   their   attention  
(e.g.,   Walker,   Rummel,   &  
Koedinger,   2014)  
 
Design   to   support     student  
reflection     on   their   own  
diagnostic   monitoring  
behavior  
(future   direction)  
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Addressing   biases  
and   limitations   in  

perception  

Design   for    teacher  
“surprise”    –   prioritize  
presenting   information   that  
conflicts   with   existing  
teacher   biases    (e.g.,  
incorrect   preconceptions  
about   particular   students)  
(future   direction   –   see  
Chapter   1 )  
 
Design   to    scaffold   teachers  
in   productively   interpreting  
and    reflecting   upon    the  
information   available   to  
them,   in-the-moment  
(cf.    Chapters   1,   4,   and   5;  
Echeverria   et   al.,   2018;  
Gerritsen,   Zimmerman,   &  
Ogan,   2018)  
 
Present   AI   and/or   students  
with   enough   (and   the   right  
kinds   of   information)   to  
enable    productive   second  
guessing   of   teacher  
inferences  
(future   direction   –   see  
Chapters   1    and    9 )  

Design   to    help   teachers   notice  
cases   where   system   design  
biases   may   be   negatively  
impacting   certain   groups   of  
students  
(e.g.,   via   detection   of  
unproductive   persistence,   as   in  
Lumilo )  
 
Present   teachers   and   students  
with   enough   (and   the   right   kinds  
of   information)   to   enable  
productive   second   guessing   of   AI  
inferences  
(e.g.,    Lumilo’s    presentation   of  
concrete   examples   of   errors  
students   have   made,    in   addition  
to    more   heavily   interpreted  
information   such   as   inferred  
student   states   and   skill  
categories;   see   also:   Bull   &   Kay,  
2016)  
 
Design   to    help   teachers   and  
students   correct   or   mitigate  
undesirable   perceptual   biases    in  
AI   systems   (e.g.,   through   tuning  
and   customization   of   student  
modeling   algorithms   /   analytics)  
(future   direction   –   see    Chapters   1,  
5,   and   8;    Rodríguez-Triana,   Prieto,  
Martínez-Monés,   Asensio-Pérez,  
&   Dimitriadis,   2018)  
 

Design   for    student  
“surprise”    –   prioritize  
presenting   information   that  
conflicts   with   existing  
student   biases    (e.g.,  
incorrect   preconceptions  
about   particular   students)  
(future   direction)  
 
Design   to    scaffold   students  
in   productively   reflecting  
upon   and    interpreting    the  
information   available   to  
them,   in-the-moment  
(future   direction)  
 
Present   AI   and/or   teacher  
with   enough   (and   the   right  
kinds   of)   information)   to  
enable    productive   second  
guessing   of   student  
inferences  
(e.g.,   see   Bull   &   Kay,   2016)  

 
 
 
Table  5.  Opportunities  to  design  for  human/AI  complementarity  in linking  between                      
perception   and   action   
 

 Augmenting    teachers  Augmenting    AI   systems  Augmenting    students  

Enhancing   ability  
to    adapt  

instruction   based  
on   relevant  

features  

Design   to    help   teacher  
sense    actionable  
pedagogically-   relevant,  
information   to   which   the   AI  
has   unique   access  
(e.g.,   real-time   information  
presented   by    Lumilo    –   see  
Chapter   1     and    Chapters   4  
through    7 )  
 
Automatically    suggest  
effective   ways    for   a   teacher  
to    adapt   instruction    based  
on   relevant   features  
(future   direction   –   see  
Chapters   1 ,    5 ,   and    8  
through    10 )  
 
Design   to    preserve   teacher  
ability   to   sense    actionable,  

Design   to    help   teachers   and  
students   identify   and   suggest  
learning-   and   teaching-related  
constructs    that   the   AI   system  
should   monitor   (or    features    to  
which   it   should   attend)   but   does  
not   currently  
(future   direction)  
 
Design   to    help   teachers   and  
students      suggest   effective   ways  
of   adapting   instruction    based   on  
these   features  
(future   direction   – see    Chapters  
8   and   9 )  

Design   to    help   students  
sense    actionable  
information   (for  
self-regulated   learning   and  
peer   tutoring)   to   which   the  
AI   system   and/or   the   teacher  
has   unique   access  
(e.g.,   see   Long   &   Aleven,  
2013;   Roll,   Aleven,   McLaren,  
&   Koedinger,   2011;   Walker,  
Rummel,   &   Koedinger,   2014)  
 
Automatically    suggest  
effective   ways    for   a   student  
to    adapt   instruction    based  
on   relevant   features  
(e.g.,   see   Walker,   Rummel,   &  
Koedinger,   2014)  
 
Preserve   student   ability   to  
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pedagogically-relevant  
information   to   which   they  
already   have   unique   access  
(e.g.,   through   the   use   of  
heads   up   displays,   or   other  
peripheral   interfaces   –   see  
Chapters   1,   4,   8,    and    10;  
Alavi   &   Dillenbourg,   2012;  
An   et   al.,   2019;   Bakker   et  
al.,   2016;   d’Anjou   et   al.,  
2019)  
 

sense    actionable,  
pedagogically-relevant  
information   to   which   they  
already   have   unique   access  
(future   direction)  

Addressing   biases  
and   limitations   in  
decision-making  

Design   to    guide   teachers’  
attention    towards  
situations   that    most   require  
further   intervention    from  
the   teacher  
(e.g.,   real-time   information  
presented   by    Lumilo    –   see  
Chapter   1     and    Chapters   4  
through    7 )  
 
Automatically    suggest  
effective   ways   for   a   teacher  
to   respond    to   particular  
situations  
(future   direction   –   see  
Chapters   1,   5,    and    8  
through    10 )  
 
Nudge   teachers   away    from  
potentially    harmful  
practices  
(future   direction   –   see  
Chapters   1,   9,    and    10 )  
 
Present   AI   and/or   students  
with   enough   (and   the   right  
kinds   of   information)   to  
enable   productive   second  
guessing   of   teacher  
decisions  
(future   direction   –   see  
Chapters   1    and    9 )  

Design   to    help   teachers   notice  
cases   where   system   design  
biases   may   be   negatively  
impacting   certain   groups   of  
students  
(e.g.,   via   detection   of  
unproductive   persistence,   as   in  
Lumilo )  
 
Present   teachers   and   students  
with   enough   (and   the   right   kinds  
of   information)   to    enable  
productive   second   guessing   of  
AI   decisions  
(future   direction   –   see   Bull   &  
Kay,   2016)  
 
Design   to   help   teachers   and/or  
students    correct    or    mitigate   the  
impacts     of   undesirable  
pedagogical   biases    (or  
undesirable   impacts   of  
perceptual   biases)   in   AI   systems  
(e.g.,   through   customization   and  
control   over   AI   tutors’  
pedagogical   policies)  
(future   direction   –   see    Chapters  
1,   5,   8,   9,    and    10 )  

Design   to    guide   students’  
attention    towards   situations  
that    most   require   further  
intervention    from   them  
(e.g.,   see    Long   &   Aleven,  
2013;   Roll,   Aleven,   McLaren,  
&   Koedinger,   2011;   Walker,  
Rummel,   &   Koedinger,   2014)  
 
Design   to    nudge   students  
away    from   potentially  
harmful   practices  
(e.g.,   see   Roll,   Aleven,  
McLaren,   &   Koedinger,   2011;  
Walker,   Rummel,   &  
Koedinger,   2014)  
 
Automatically    suggest  
effective   ways    for   a   student  
to    respond   (e.g.,   in   a   peer  
tutoring   scenario)    to  
particular   situations  
(e.g.,   see   Walker,   Rummel,   &  
Koedinger,   2014)  
 
Present   AI   and/or   teacher  
with   enough   (and   the   right  
kinds   of)   information)   to  
enable   productive   second  
guessing   of   student  
decisions  
(e.g.,   Bull   &   Kay,   2016)  

 
 
 

Table   6.    Designing   for   human/AI   complementarity   in    action  
 

 Augmenting    teachers  Augmenting    AI   systems  Augmenting    students  

Aptitude    and  
availability   of  

actions  

Design   to   support   teachers  
in    providing   more   effective  
help  
(future   direction   –   see  
Chapters   9   and   10 )  
 
Adaptively,   dynamically  
delegate   tasks   and   roles   to  
the   AI   and   students ,   where  
possible,   in   cases   where  
the   AI   or   students   are  

Design   to   support   teachers   in  
customizing   or   creating   new  
actions   for   the   AI   tutor    (e.g.,  
enable   AI   systems   to   adaptively  
deliver   teacher-written   hints  
and   feedback)  
(future   direction   –   see    Chapters  
1,   8,    and    9 )  
 
Adaptively,   dynamically  
delegate   tasks   and   roles   to   the  

Design   to   support   students  
in    effectively   regulating   their  
own   learning  
(e.g.,   see   Long   &   Aleven,  
2013;   Roll   et   al.,   2011)  
 
Design   to   support   students  
in    providing   more   effective  
peer   tutoring   support  
(e.g.,   see   Walker   et   al.,   2014)  
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expected   to   be   more  
effective  
(future   direction   –   see  
Chapters   1,   8,    and    9 )  

teachers   and   students ,   in   cases  
where   the   AI   tutor   may   have  
reached   its   own    pedagogical  
limitations ,   or   cases   where  
teachers   or   students   are  
expected   to   be   more   effective  
(future   direction   –   see    Chapters  
1,   4,    and    9 ;   Ritter   et   al.,   2016b;  
Fancsali,   et   al.,   2018)  
 

Scalability    and  
capacity  

Design   to    support   teachers  
in   scaling   their   efforts  
(e.g.,   by   enabling   AI  
systems   to   adaptively  
deliver   teacher-written  
hints   and   feedback)  
(future   direction   –   see  
Chapters   1,   8,    and    9;    and  
Wang   et   al.,   2019)  
 
Adaptively,   dynamically  
delegate   tasks   and   roles   to  
the   AI   and   students ,   where  
possible,   to   free   up   time  
for   tasks   the   teacher   is  
uniquely   capable   of  
performing  
(future   direction   –   see  
Chapters   1,   8,    and    9 ;     Ritter  
et   al.,   2016b;   Fancsali,   et  
al.,   2018)  

 
 

Design   to    support   students  
in   scaling   their   peer   tutoring  
efforts    (e.g.,   by   enabling   AI  
systems   to   adaptively   deliver  
student-   written   hints   and  
feedback)  
(cf.   Williams   et   al.,   2016)  
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