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ABSTRACT	
  
Speech user interfaces (SUIs) such as Apple’s Siri, Microsoft’s Cortana, and Google Now are 
becoming increasingly popular. However, despite years of research, such interfaces really only 
work for specific users, such as adult native speakers of English, when in fact, many other users 
such as non-native speakers or children stand to benefit at least as much, if not more. The 
problem in developing SUIs for such users or for other acoustic or language situations is the 
expertise, time, and cost in building an initial system that works reasonably well, and can be 
deployed to collect more data or also to establish a group of loyal users. In particular, application 
developers or researchers who are not speech experts find it excruciatingly difficult to build a 
testable speech interface on their own, and instead routinely resort to Wizard-of-Oz experiments. 

To address the above problem, we take the view that while it can take prohibitive amount 
of time and cost to train non-experts into the nuances of speech recognition and user-interface 
development, well-trained speech experts and user-interface specialists who routinely build 
working recognizers have accumulated years of experiential knowledge that we can study and 
formalize for the benefit of non-experts. As such, the core speech recognition technology has 
reached a point where given enough expertise and in-domain data, a working system can be 
developed for almost every user group, acoustic or language situation. To this end, we design, 
develop, and evaluate a speech toolkit called SToNE, which embeds expert knowledge and 
lowers the entry bar for non-experts into the design and development space of speech systems. 
Our goal is not to render the speech expert superfluous, but to make it easier for non-speech 
experts to figure out why a speech system is failing, and guide their efforts in the right direction. 

We investigate three research goals: (i) how can we elicit and formalize the tacit 
knowledge that speech experts employ in building an accurate recognizer, (ii) what are the 
different analysis supports – automatic or semi-automatic – that we can develop to enable speech 
recognizer development by non-experts, and (iii) to what extent do non-experts benefit from 
SToNE. Through experiments both in the lab with new datasets, and summative evaluations with 
non-experts, we show that with the support of SToNE, non-experts are able to build recognizers 
with accuracy similar to that of experts, as well as achieve significant gains from when SToNE 
support is unavailable to them. 

This work aims to support the “black art” in SUI development. It contributes to human-
computer interaction by developing tools that support non-speech experts in building usable 
SUIs. It also contributes to speech technologies by formalizing experts knowledge and offering a 
set of tools to analyze speech data systematically. 
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1.	
  	
  INTRODUCTION	
  
 
Speech-user interfaces (SUIs) are becoming increasingly popular, both in the developing and the 
developed world. For users in developing regions, where illiteracy often impedes usage of 
graphical interfaces, spoken dialog systems are being explored to provide access to relevant 
information, such as weather information to farmers [Plauchè et al., 2006], medical advise to 
women [Sherwani et al., 2009], and also in many applications of entertainment services [Raza et 
al., 2013]. Similarly, several applications of speech interfaces have gained momentum in the 
developed world. For instance, United Airlines’ customer care system, which receives an 
average of two million calls per month, indicated that their caller abandonment dropped by 50% 
after implementing a speech system to replace a touchtone system [Kotelly, 2003]. Such a 
solution introduced eyes-free, hands-free operation along with ease of data entry for non-
numeric text [Hura, 2008]. Recently introduced mobile assistants like Apple’s Siri [apple-siri], 
Microsoft’s Cortana [microsoft-cortana], and Google Now [google-now] have further boosted 
the popularity of speech applications. They assist in executing simple commands such as “Call 
John”, “Text my wife that I’ll be late today”, or “Set a wakeup alarm for tomorrow 6am!” to 
more complicated tasks such as dictation or transcribing a phone conversation. These examples 
underscore the reasons why many researchers and practitioners are becoming increasingly 
interested in incorporating speech as an input and interaction modality in their applications.  
 
Yet, it is telling that beyond a few examples, we haven’t seen a large number of functional and 
sufficiently accurate speech services. The reason is the difficulty in building a usable speech 
user interface (SUI) for a new user group or a challenging acoustic and language situation, 
without having a good, off-the-shelf speech recognizer available [Laput et al., 2013]: 
recognizers work reliably when it is known what people say, how they say it, what noises occur, 
etc. This is hard to achieve for many researchers, developers, and designers who are non-experts 
in speech recognition, such as application developers or HCI experts. As a result, many studies 
that HCI researchers have conducted are “Wizard-of-Oz” studies, i.e. using a simulated ASR 
[e.g., Stifelman et al., 2013; Tewari, 2013]. Unfortunately, while Wizard-of-Oz studies are good 
for iterating on the design of the application, they cannot uncover real recognition errors and test 
real system usage [Thomason et al., 2013]. These therefore become the leading source of 
usability issues in speech applications once the product is released [Lai et al., 2008].  
 



 2 

At the same time, research on automatic speech recognition (ASR) has seen great strides in 
recent times. It has reached a point where given enough speech expertise and in-domain data, a 
sufficiently accurate speech system can be developed for any scenario, including those of non-
native accents, background noise, children’s voice, or other similar challenges for speech 
recognition. However, if a speech recognition system doesn’t work as intended, it is generally 
impossible for a non-expert to tell, for example, if the ASR fails because users speak too slow 
(“speaking rate” is a frequent cause of mismatch), too “clearly” (i.e. they hyper-articulate), 
because the background noises are unexpected, or because of some other reason; while an expert 
can usually analyze the error pattern quickly. Adaptation or several optimizations of an existing 
recognizer can generally mitigate the problem, and will often result in a functional system 
[Abras et al., 2004; Preece et al., 2002], but recognizing what to do and how do it needs 
tremendous expertise and experience in developing speech recognition systems. These systems 
also have a large number of “knobs” and parameters, which need to be set correctly in order to 
achieve satisfactory performance. Application developers usually do not have such expertise or 
experience and find it difficult to locate people who do, which makes their task even more 
challenging. 
 
To address the above problem and opportunity, in this thesis, we study the knowledge that 
automatic speech recognition (ASR) experts use to optimize the accuracy of speech recognizers, 
and investigate the extent to which it can be made available to non-speech recognition 
researchers by embedding this knowledge in a toolkit that can generate recommendations for 
optimizing a speech recognizer. The intended user of our toolkit called Speech Toolkit for Non-
Speech Experts (SToNE) is a HCI researcher or a practitioner with a background in computer 
science (CS), or comparable. He or she is not likely to have the specialized knowledge of how to 
implement or optimize a speech recognition system, but will be comfortable with data-driven, 
analytical techniques. We refer to him or her as a non-speech expert or a developer-user in this 
thesis. 
 

1.1. Current	
  Approaches:	
  Toolkits	
  in	
  Speech	
  Recognition	
  
In the human-computer interaction and speech recognition literature, there are a several tools 
that have been developed to enable developers to build and test a speech-user interface easily. 
To enable the reader to quickly understand the nuances, we have summarized this work in 
Figure 1, and represented them on expertise required vs. functionality achievable axes. 
 
The first set of tools, e.g. SUEDE [Klemmer et al., 2001] and SPICE [Schultz et al., 2007] 
require low technical expertise, but are meant to support the design phase and not the 
development phase. For instance, SUEDE is a toolkit that allows any user-interface designer to 
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rapidly mock-up a prompt/response speech interface and test it in a Wizard-of-Oz study. It 
supports an early design phase through the construction and visualization of a dialogue flow, a 
process that designers earlier did by storyboarding or low-fidelity prototyping. It does not, 
however, support development of a working recognizer. Another toolkit, SPICE supports 
development of a baseline recognizer for new languages. It does so by allowing any researcher 
to input a set of audio files, corresponding phoneme set, and a dictionary to generate the 
baseline acoustic model. While this is a step towards developing a functional recognizer, it does 
not support discovery of acoustic or language-specific optimizations, which is key in building a 
usable recognizer [Van Doremalen et al., 2010; Woodland, 2001; The-imp-of-adaptation, 2014]. 
 
On the other end, open-source toolkits such as Kaldi [kaldi], Sphinx [sphinx], and HTK [htk] 
support development of both the baseline recognizer and an optimized version. These toolkits 
are at the forefront of speech recognition research, and are widely used across academia and 
industry by experts in building a speech recognizer. However, any developer who wants to work 
with these toolkits needs to attain both a formal training in speech recognition as well as 
tremendous support from experienced users on things they can do to build and iteratively 
improve the accuracy of their recognizer. As a result, non-expert researchers and developers 
find them substantially difficult to use. For instance, in 2013 alone, a discussion forum of a 
widely used recognizer, Sphinx saw over 10,000 posts with over 1000 unique topics from non-
experts asking help on various issues of speech recognition, e.g. adapting acoustic models, 
generating pronunciation variants, etc. 
 
Somewhere in the middle is a set of application programming interfaces (APIs) that are 
provided by industry groups at Google and Microsoft, among many others. These are relatively 
simple to use, and don’t require formal training in speech recognition. A simple understanding 

                         
 
Figure 1.1: A representation of existing speech tools describing the expertise required to use  
them vs. the functionality that one can achieve. 
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of API-based development is sufficient. This lends them well to be used by any application 
developer, e.g. a computer science minor. However, these APIs don’t offer much flexibility, and 
can only work with typical use cases, such as native adult English speakers. Moreover, 
developers don’t have access to the background acoustic and language models installed on the 
server to perform any adaptations that may be needed for the recognizer to work for their own 
application’s scenario. 
 
A recent publication by human-computer interaction researchers [Laput et al., 2013] illustrates 
the above issues. Their research group did not have enough expertise to improve the underlying 
models of existing recognizers, and neither of the existing API’s provided them with enough 
accuracy to start using off-the-shelf. Eventually, their application’s usability suffered due to 
poor speech recognition accuracy for non-native English speakers. 
 
Our toolkit, SToNE targets audience with similar background as users of these APIs, but 
enables greater functionality, i.e. the ability to develop functional recognizers for any user group 
who can use it in any acoustic condition. As future work, this can also be extended to any 
language, but that is out of scope for this thesis. An important note is that SToNE is not a layer 
on top of industry APIs (as can be misunderstood from Figure 1), but can be viewed as a 
wrapper on top of the state-of-the-art toolkits, such as Kaldi, Sphinx, or HTK. 
 

1.2. Proposed	
  Approach	
  
Well-trained speech experts have accumulated years of experiential knowledge that guides them 
“intuitively” in building a speech recognizer for new situations and new users. This knowledge 
is hard to directly transfer to non-experts or novices. However, we take the view that by 
observing these experts in-action, we can study and formalize their tacit knowledge. This 
formalized knowledge can then be used for the benefit of novices for automatic analysis and 
recommendation of appropriate optimization techniques. Therefore, this thesis aims to solve the 
above issues by: (i) formalizing expert speech knowledge in form of a rule-based knowledge 
structure, (ii) providing a set of tools to perform automatic analysis of the degrading context(s) 
for speech recognition, and explaining regions of high error in the recognizer output, and (iii) 
providing links to corresponding methods to adapt the recognizer, or even performing some of 
the adaptation or optimizations automatically. It is important to note that adaptation of speech 
recognizers does not only consist of picking m suitable adaptations from a set of n techniques (m 
<= n), in the correct order, but may also require changes to the user interface, transcription or 
additional data collection of a specific type, therefore requiring an understanding of why the 
recognizer is failing. 
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1.3. Research	
  Goals	
  
Our overarching research goal is to enable non-speech experts to rapidly develop usable speech 
applications. Since recognition accuracy is central to usability, and associated optimizations are 
one of the hardest tasks for non-experts, we focus on studying the knowledge that experts in 
speech recognition use to optimize the accuracy of speech recognizers, and showing that this 
knowledge can be made available to non-speech specialists. We identified this opportunity 
through two research studies in building speech applications, and refer to them as case study #1 
and case study #2 below. 
• Case Study #1: Developed and deployed two speech-recognition-enabled language learning 

games for rural children in India, and identified challenges associated in developing usable 
speech-interfaces and opportunities to support similar development by non-speech experts. 

• Case Study #2: Demonstrated that simple changes to user interaction technique that are 
made possible after achieving reasonable accuracy can further improve usability of the 
speech applications. For this, we designed, developed, and user tested a user interaction 
technique that can improve recognition accuracy for a dictation task over existing dictation 
styles, while keeping the underlying recognizer constant. 

• Research Goal 1 (RG1): Understand and formalize the tacit knowledge that speech experts 
use to optimize the accuracy of a speech recognizer for acoustic data from various usage 
contexts. The challenge in studying this knowledge is that it is largely tacit, i.e. experts have 
internalized it so well that they apply it unconsciously, and hence, find it difficult to 
articulate this knowledge unless they are actually using it when talking about it. While there 
are formalisms such as design patterns [Alexander, 1977] for representing expert 
knowledge, we believe that a toolkit that not only embodies this knowledge, but also helps 
its user to take advantage of this knowledge is the best way to make it accessible.  

• Research Goal 2 (RG2): Understand how, and the extent to which, this knowledge can be 
made accessible to non-speech experts, by designing a set of tools that incorporate this 
knowledge: the toolkit will automatically analyze the ASR context, and its user-interface 
will display visualizations for various system configurations and adaptations based on this 
analysis. It will allow the non-speech expert to compare his/ her intuition on who is using the 
system (somebody with an accent, children, etc.), how it is being used (command and 
control speech, conversational speech, etc.), and where it is being used (mismatch in 
acoustic/ channel conditions), and suggest appropriate adaptation steps, which the system 
will then evaluate, once the user has performed them. 

• Research Goal 3 (RG3): Understand the extent to which SToNE can assist non-speech 
experts in improving the accuracy of a speech system, which in turn improves the usability 
of the application. We will perform summative evaluations where non-experts are asked to 
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use the toolkit and build a speech recognizer for a challenging use case, i.e. children’s 
conversational speech. 

1.4. Thesis	
  Contributions	
  
This work makes contributions to both human-computer interaction and speech recognition 
technologies as follows:  
 
• Identification of the problem and the opportunity; demonstrate the challenges associated 

with building a speech recognizer for a non-expert (Case Study #1, Chapter 2): Through two 
rounds of fields studies, including development and deployment of a speech recognizer for 
children who were non-native speakers of English, we discuss the challenges involved in 
building an accurate SUI, and the lessons we can learn to facilitate the development process 
for other non-expert developers. 

• Formalize the tacit knowledge of speech recognition experts and make it accessible for 
the benefit of non-speech experts (RG1, Chapter 4): We conduct contextual interviews and 
cognitive task analysis with speech experts to understand the process, knowledge, and 
intuition that they use while building accurate speech recognizers. We formalize this 
knowledge in a rule-based knowledge base, and evaluate its predictive power with two 
English language datasets that have significant challenges for speech recognizer 
development such as children’s speech, background noise, or variable speaking rate. 
Through the formalization of this knowledge base, we provide a recommendation and 
analysis engine specific for speech recognizer development. 

• Develop a set of speech analysis and recommendation tools for non-speech experts 
(RG2, Chapter 5): We develop a set of tools that can assist non-speech experts by 
automatically and semi-automatically analyzing reasons of recognition failure, and then 
recommending optimization techniques for tackling those issues. These tools include a: (i) 
feature extraction module for pronunciation scoring, signal-to-noise ratio extraction, 
speaking rate, etc. that quantifies specific signals for understanding the acoustic context of a 
given dataset, (ii) an analysis module that identifies the significant degrading factors for the 
speech recognizer and generates appropriate visualizations for further analysis, and (iii) a 
recommender module that provides insight into “why the recognizer doesn’t work,” and then 
guides non-expert developers on specific steps that can be done to make it work. 

• Demonstrate that non-speech experts can develop accurate and usable speech 
recognizers with help of SToNE (RG3, Chapter 5): We conduct experimental studies that 
evaluate the extent to which non-speech experts can benefit from the proposed tools for the 
design and development of accurate and usable SUIs. We expect that the tools developed 
and proposed in this thesis will lower the entry bar for speech-user interface development 
considerably. 
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• Demonstrate how changes in interaction technique – after a sufficiently accurate recognizer 
is developed – can further improve usability (Case Study #2, Chapter 3): Once a recognizer 
has been developed with sufficient accuracy, we show that simple edits to the interaction 
style can lead to additional significant gains in recognition accuracy. To demonstrate this, 
we design and develop a novel interaction technique called “Voice Typing” that reduces the 
recognition error rate in modern day dictation interfaces simply by modifying the user’s 
interaction style. This case study demonstrates reasons why speech recognition and HCI 
communities should be tightly coupled for the development of a usable and useful SUI, and 
why tools that can make development of accurate speech recognizers simple can be of 
tremendous value for non-speech experts 

 

1.5. Thesis	
  Organization	
  
This thesis is organized in two parts. The first part (Chapters 2, 3, and 4) describes our 
background and motivation for this thesis. We discuss two case studies on developing speech 
recognition applications, and draw lessons for SUI development. In particular, Chapter 2 
describes project SMART: Speech-enabled Mobile Assisted Reading Technology, which aimed 
at developing speech-enabled English language learning games for rural children in India. The 
speech recognition component of the system here was very challenging (especially for non-
experts in speech recognition), and in developing the recognizer for these users we identified the 
thesis opportunity. Chapter 3 builds on the findings of Chapter 2, and steps further from 
technical changes to the recognizer to the interaction design changes. Here, we discuss the 
design and evaluation of a new interaction style “Voice Typing,” and show that once a 
sufficiently accurate recognizer has been developed, it paves way for interaction technique 
changes, which in turn, further improves overall usability of a speech application. Chapter 4 
brings the results from these two case studies together and discusses myths that designers and 
developers have about SUIs, and provide ground reality for them. This chapter also sets up the 
problem and solution space, which becomes the basis for thorough investigation in the next part 
of this thesis. 
 
The second part of this thesis comprises of Chapters 5, 6, and 7. This part describes our efforts 
in developing SToNE: A Speech Toolkit for Non-Speech Expert. In Chapter 5, we illustrate 
results from interviews with speech experts that led to the formalization of a speech recognition 
accuracy improvement process called ChAOTIC, and an associated rule-based knowledge base. 
We also discuss results from two lab studies that evaluate this process and the knowledge base 
on its ability to correctly identify and automatically predict the appropriate optimization 
techniques. In Chapter 6, we further this work by discussing the overall design and architecture 
of SToNE. Chapter 7 discussed an in-depth evaluation of SToNE with non-experts and semi-
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experts, and summarizes several lessons from the user study, which paves way for future 
research. Finally, Chapter 8 summarizes the contributions of this thesis, discusses current 
limitations, and sets forth an agenda for future speech-user interface researchers. 
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2.	
  	
  CASE	
  STUDY:	
  SPEECH	
  GAMES	
  

 

 
 
In this chapter, we discuss the design, development, and deployment of two English language-
learning games for rural children in India. The games use speech recognition on smartphones to 
recognize user’s speech, and give appropriate feedback. The speech recognition component for 
this application is highly challenging because of multiple reasons, such as non-native accent, 
children, noisy environment, variable speaking rate of the users, etc. Through the process of 
developing and deploying these games, we realized the tremendous expertise needed for 
building a working speech recognizer, and eventually, this case study helped us develop the 
central research question of this thesis: to enable non-speech experts, such as designers in 
human-computer interaction, to rapidly develop accurate speech recognizers. 

2.1. Need	
  for	
  Speech-­‐enabled	
  Second	
  Language	
  Learning	
  Games	
  
Poor literacy and low educational standards remains a barrier to economic empowerment in 
many areas of the developing world. Games that teach a standardized curriculum can make a 
profound impact on the learning needs of such, underserved communities. For instance, two 
non-government organizations, Pratham and the Azim Premji Foundation [azim-premji-
foundation] deployed computer games in the rural areas of India, and demonstrated significant 
gains on mathematics test scores [Banerjee et al., 2007]. Experiments by the MILLEE project 
[Kam et al., 2008; Kumar et al., 2010] with rural children in India have also shown promising 
outcomes with e-learning games for teaching English as a Second Language (ESL). Such games 
are a perfect instruction delivery source as they provide for an engaging experience while 
delivering education, therefore ensuring voluntary use by learners [Kumar et al., 2010]. 
 
At the same time, a large body of work investigates the utility of speech recognition for 
developing language learning software. For instance, MIT’s literacy tutor [McCandless, 1992] 

This chapter is based on the work presented in: 
 

Kumar, A., Reddy, P., Tewari, A., Agrawal, R., Kam, M. (2012). Improving literacy 
in developing countries using speech recognition-supported games on mobile devices. 
In Proc. Human Factors in Computing Systems (CHI), Austin, USA, ACM, pp. 1149-
1158. 
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targets pronunciation skills by providing interactive feedback for poorly articulated or 
mispronounced words. CMU’s project LISTEN [Mills-Tettey et al., 2009] is a reading tutor that 
listens to children reading, and provides feedback for poor reading. The University of 
Colorado’s Foundation to Literacy Program started a reading program that was designed for 
beginning and poor readers. It targets foundational reading skills such as letter knowledge, 
phonological awareness and decoding skills in order to improve listening and reading 
comprehension. UC Berkeley’s SPRING [Tewari et al., 2010] developed a pronunciation tutor 
on smartphones that helps Hispanic children in the USA to acquire correct English 
pronunciations. Rosetta Stone [rosetta-stone] and Carnegie Speech [carnegie-speech] use 
proprietary speech recognition technology to elicit oral responses from learners, and check 
whether the users have spoken the correct word, phrase, or sentence. 
 
Yet, much of the success of speech-based language learning software has been in the 
industrialized world. For projects in the developing world, the literacy competencies targeted 
are far restricted, and don’t deal with spoken language assessment. For instance, MILLEE [Kam 
et al., 2007; Kam, Kumar et al., 2009; Kam, Mathur et al., 2009], Multiple Mice [Pawar et al., 
2007], Kane [Dias et al., 2005], and Same Language Subtitling [Arora, 2006] have all 
demonstrated significant learning gains, but not for spoken language skills. In the developing 
world, while the focus remains on deploying technologies in real-world scenarios, such as usage 
in the field, or outside the classroom, the primary deterrent remains the challenge in building a 
working speech recognizer for acoustic and language conditions, e.g. challenges arising due to 
dialects, pronunciations, variable speaking rate, deployment in noisy environments, children’s 
voice, etc.  
 
In this chapter, we develop two language learning games with speech recognition support that 
were deployed in rural India with children from grades 4-5. For our games, we focused on a 
literacy skill called word reading, which is the ability of the learner to read and understand a 
written form of the word. We describe ‘word reading’ next, and illustrate why speech 
recognition is useful for developing this language learning skill. 

2.2. English	
  Language	
  Competency:	
  Word	
  Reading	
  
In our games, we focus on a specific language learning competency, called word reading. Word 
reading is the ability for the learner to read and comprehend written words, and is fundamental 
for literacy development. Yet it is one of the most challenging skills to acquire, especially in a 
second language, because it requires the integration of visual, sound, and meaning information 
[Perfetti et al., 2001]. In order to address this need, from a second language acquisition 
perspective, our learning games examine the possible benefits of practicing producing words 
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aloud, rather than simply reading them receptively in one’s mind, for rural Indian students in 
grades 4-5. 
 
Word reading is a multi-faceted construct that depends on the quality of representation of three 
linguistic and cognitive sub-systems: orthographic (visual script), phonologic (sound), and 
semantic (meaning), according to the Lexical Quality Hypothesis (LQH) [Perfetti, 2010]. When 
a written word is encountered, each orthographic unit must be connected to its appropriate 
phonological unit, allowing a learner to assign sound information to a word and thus decode it 
accurately. For instance, the letter “c” must be mapped with the sound /k/, “a” with /a/, and “t” 
with /t/ and so forth. A connection must also be made between this phonological representation 
(the sound /cat/) and its appropriate meaning (small, furry animal), and thus semantic extraction 
must also occur. If the quality of any of these sub-systems is compromised, then word reading 
will be hampered, and thus, reading comprehension will be impaired [Perfetti, 2007].    
 
At the same time, it has been argued that oral production is critical for new learners of a 
language as an oral output provides specific input back to the mind, which in turn assists a 
learner to transition from declarative knowledge (ability to declare that you know a word) to 
productive knowledge (ability to fluently use the word) [De Bot, 1996].  
 

 
Integrating these strands of research, our conceptual framework is that there are three – 
orthographic, phonologic, and semantic – representations that are required for word reading, and 
the connections between them can be processed productively or receptively (see figure 2.1). 
Based on this framework, we expect that saying the name of a picture out loud (productive 

         
Figure 2.1: The three components of word reading: orthographic, phonologic, and semantic, and two sub-
skills comprising word reading: decoding and vocabulary knowledge. Our language learning games test the 
hypothesis that productive practice (i.e., oral production of vocabulary words while passing the phonologic 
stage) will lead to better learning gains than just receptive practice. From a technical perspective, 
supporting productive practice requires the use of speech recognition. 
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processing) will reinforce semantic extraction more strongly than if the link is receptively 
processed, i.e. matching a picture and its name [De Bot, 1996; Swain et al., 1995]. Thus, our 
experiment consisted of two conditions: (1) Receptive (Re), and (2) Productive (Pr). 
Specifically, we hypothesized that: Productive training will be more beneficial for word reading 
than Receptive training (H1). 

2.3. Game	
  Designs	
  
Building on the growing popularity of educational games [Gee, 2003] and successes with games 
to teach vocabulary in a second language in the developing world [Kam, Kumar et al., 2009; 
Pawar et al., 2007], we designed two educational games: Market Game and Farm Game. At the 
game design level, these games draw inspiration from traditional village games that rural 
children play on a daily basis and find enjoyable. This was similar to a previous study that had 
proposed drawing characteristics from local games (compared to those in the contemporary 
Western videogames), for developing educational games for rural users [Kam, Mathur et al., 
2009].  
 
Market and Farm games incorporate actions such as the ability to either catch or evade a player, 
both of which were two popular actions in local, physical games. Each learning game followed a 
teaching, game play, and practice sequence (with or without speech recognition support). This 
sequence was informed through earlier usability tests with rural children [Kam et al., 2008]. 

2.3.1. Market	
  Game	
  
In the Market Game, the teaching phase (as shown in Figure 2.2A) entailed introducing the 
vocabulary words to the user. As in popular commercial software [rosetta-stone], introduction of 

       
Figure 2.2: These screenshots describe the game sequence for the market game. (A) Teaching phase: 
Introduces the English word for the common nouns, which are the items to be bought in the market. (B) 
Game play: shows the boy attempting to move towards the shop, while the monkeys try to catch him. (C) 
Receptive practice condition: to purchase the item from the shop, the user has to map the word that the 
software plays aloud with its image from a list of four choices. (D) Productive practice condition: to 
purchase the correct item at the shop, the user has to say aloud the word that corresponds to the image. 
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a word meant mapping the image of the vocabulary word to its sound, as well as, its native 
language and English text. At a time, the software introduced five words (one after another), 
which was based on prior psychological studies that show that an average person can retain 7±2 
new items in their short-term working memory at any time [Miller, 1956]. Once the word has 
been introduced, the user could replay the audio playback for its pronunciation at the teaching 
phase for any number of times, before going to the next screen. 
 
Next, in the game play screen (Figure 2.2B) of the market game, the aim was to move the boy 
character from left (home) to right (shop in the market), while avoiding monkeys en-route. This 
activity was an adaptation of the daily routine of going to the market for children in rural India; 
and integrated actions from the popular physical games that they play, such as evading an 
opponent. Next, depending on the experimental condition that the player was assigned to, the 
player could purchase items from the shop by either selecting the correct item that corresponded 
to the said word (Figure 2.2C, Re condition), or by saying the word aloud that corresponded to 
the image displayed (Figure 2.2D, Pr condition). To recognize user’s speech in the conditions 
that required productive practice (with or without hints), we used pocketSphinx [Huggins-
Daines et al., 2006] – an open-source, small footprint, automatic speech recognizer (ASR) for 
mobile devices. Our choice of pocketSphinx was based on experimental evaluation of mobile 
speech recognizers [Kumar et al., 2011], where pocketSphinx outperformed other mobile ASRs 
such as TinySphinx on small vocabulary tasks.  
 
As an alternate, we could run a recognizer in a force-aligned mode to take away the need for 
implementing a working recognizer, i.e. since we already know what the correct answer is prior 
to the user speaking it, we could simply identify “how close the spoken answer is to what is 
expected.” The problem of force-alignment is simpler than speech recognition, primarily 
because you don’t have to search through a long list of possible responses to identify a close 
match. However, force-alignment was unsuitable for our purposes for two reasons: (i) our goal 
was not only to identify whether the users have spoken the correct word, but also to identify 
what they have spoken. The latter was needed to understand the types of “learning” errors that 
they were making, and (ii) in force-alignment, it is difficult to determine an appropriate 
threshold level that marks whether the answer is acceptable or not. Various distortions like 
noise, variable speaking rate, children’s voice, etc. make this determination even harder.  

2.3.2. Farm	
  Game	
  
The Farm Game (Figure 2.3) had the same pedagogical cycle of “teaching, gameplay, and 
practice”, but used a different game action than Market game. The objective of the farm game 
was to save the farm by “catching” all the thieves and retrieving the items that they had stolen. 
Again, this activity was based on the common rural India scenario where children helped their 
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parents keep vigil on the farm in the farming season, where a lot of animals or thieves tend to 
steal the crop. In order to recover an item from the thief, the user could do it in one of the two 
ways as described above for the Market Game in Figure 2.2C (receptive practice) or Figure 
2.2D (productive practice), depending on the condition that the participant was randomly 
assigned to. 

2.4. Usability	
  Testing	
  
We started off by testing the usability of our system, in terms of both the speech recognition 
accuracy, and the game designs. 10 children in grades 4-5 in Hyderabad play-tested successive 
versions of both games. For our initial prototype, we used the standard acoustic and language 
models provided with pocketSphinx [Huggins-Daines et al., 2006]. These models had been 
developed from hundreds of hours of audio data by multiple speech recognition experts, and had 
performed well for adult native English speakers. However, the speech recognition failed 
miserably in these usability sessions, with word error rates as high as 90% for some speakers. At 
this point, we decided to recruit a speech expert to guide our efforts in building a better 
recognizer for our users. This process is described in the next section. 
 
In terms of the speech-interface design for the game, we found that children were confused as to 
when they should speak. Typically, SUIs indicate this by displaying a microphone icon when it 
is time to speak. However, from these early usability tests, we realized that traditional icons for 
prompting the user to speak (A, B, C in Figure 2.4) were unintuitive to participants since most 
of them were never introduced to the notion of a microphone. Instead of showing the 

 
Figure 2.3: This screenshot shows the game play screen for the farm game, where the boy character 
attempts to catch the thief who is stealing the vegetable from the farm. 

 

 
Figure 2.4: Microphone icons tested in the usability tests; A, B, C represent icons that are currently used in 
existing speech user-interfaces; D represents the icon that was understood by participants of our study. 
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microphone on its own, they liked the idea of showing a boy holding a microphone, because 
they were better able to relate to instances of local elections or rallies where people would hold 
a microphone and speak into it. 

2.5. Role	
  of	
  Speech	
  Recognizer	
  Development	
  and	
  Improvements	
  
Due to the multiple challenges of speech recognition for challenging contexts such as ours, off-
the-shelf resources were not directly applicable. To account for numerous acoustic variabilities 
arising due to varying accents, background noise etc. we followed a three-step process to 
develop the recognizer. This process was guided by the efforts of our speech expert. First, we 
collected a speech corpus from representative speakers and trained our own baseline acoustic 
model. Second, we analyzed this corpus for factors that affected the speech recognition 
accuracy, and third, we adapted the baseline speech recognizer on these factors to improve its 
accuracy. Below we describe these three steps in more detail. 
 
Our speech corpus was made up of 6250 utterances (~4 hours of speech) from 50 rural Indian 
children, equally divided across gender and grades 4-5. For training our recognizer, we selected 
two sets: a set of 25 speakers and a set of 40 speakers. 10 speakers comprising of 5 male 
speakers was held-out as a testing set for both the above two sets. Each utterance in the dataset 
was labeled with the word that it represented at the time of recording, and these labeled inputs 
were used while training the speech recognizer. As in the original pocketSphinx paper 
[Huggins-Daines et al., 2006], our baseline acoustic model used Hidden Markov Models with a 
5-state Bakis topology. They were trained on the 6250 utterances, using 1000 tied Gaussian 
Mixture Models (senones) and 256 tied Gaussian densities. Since the application required the 
user to speak words in isolation, we used a unigram statistical language model with a 
vocabulary size of 25 words. 
 
To improve recognition accuracy beyond the baseline performance of the above acoustic and 
language models, we next sought to adapt our recognizer to account for the variabilities in 
users’ speech. Since adaptation can happen along several dimensions, we first quantitatively 
analyzed the speech utterances along seven voice metrics that collectively describe the 
characteristics of voice, namely articulation (a), speaking rate (r), sound quality (q), pitch (f0), 
and the first three formant frequencies (f1, f2, f3). Using univariate and multivariate analyses 
(the description of which is beyond the scope of this paper), the influence of each metric was 
calculated on the word error rate (WER), which appropriately measures the recognizer’s 
accuracy in isolated word speech recognition tasks, such as ours. Such an analysis was 
necessary to identify the most critical factors and save time on performing all possible 
adaptation techniques. 
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As shown in Figure 2.5, speaking rate and articulation were the most significant factors that 
impeded recognition performance in the context of our users. Based on this analysis, to account 
for variations in the speaking rate, we adapted the baseline speech recognizer using a widely 
used continuous frame rate adaptation technique [Chu et al., 2010]. Similarly, to account for 
non-native articulations, we added pronunciation variants to the dictionary that were a closer 
match to the accent of the users than the ones in the baseline dictionary. 

 
In addition to the above quantitative analysis, we also qualitatively explored the recognition 
results of the incorrectly recognized words from our usability tests. We observed that in some 
cases of misrecognized words, the results had extra words – for instance, “papaya” was decoded 
as “peas papaya cup”, perhaps, because background noise at the start and end of actual speech 
was also decoded. To overcome this, we considered the output of the ASR to be correct if the 
target vocabulary keyword was spotted anywhere in the decoded sentence. In addition to 
keyword spotting, we also used noise-canceling microphones to minimize the effect of external 
noise. 

2.6. User	
  Study	
  
Once we had achieved reasonable, we deployed the application to test both the speech 
recognition accuracy with real users and the learning gains that the application could achieve for 
word reading. Informed by our theoretical framework as in section 2.2, we had the following 
hypothesis for this study: 
 
H1: Productive training (Pr) is more beneficial for word reading than receptive training* (Re) 

2.6.1. Participants	
  
21 participants (11 boys and 10 girls) took part in our first study in June-July 2010 (5 weeks). 
They were 9 to 13 years old (mean=10.5 years) in 4th and 5th grades. We selected children in this 

 
Figure 2.5: Summary of progressive performance improvements when the amount of training data was 
increased, and with the type of adaptation technique used. 
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age and grade level because word reading skills are increasingly important for reading 
comprehension and academic success at this level [August et al., 2005]. All participants were 
attending a public school in a rural area near Hyderabad, India. Telugu and English were taught 
as their first and second language respectively at this school. Most of their families owned at 
least one mobile phone. 

2.6.2. Experiment	
  Setup	
  
The experiment involved a pre-post test block design. To ensure relevance of the curriculum in 
the games, each game targeted 10 unique words (all concrete nouns). The 20 words were chosen 
from government-issued English textbooks for 4th and 5th graders. To avoid introducing a 
confounding variable from our selection of these words, we consulted teachers at the school to 
verify that they do not plan to teach these words in their classes at the time that the experiment 
was planned. Each child played both games, but was randomly assigned to one of the two 
conditions: Re or Pr. With this assignment, when the 21 participants played the market game, 10 
were in the Pr condition and 11 were in Re; and when they played the farm game, 11 were in Pr 
and 10 were in Re. Each participant played the games in an hour-long, after-school session 
comprising a word reading pre-test, 15 minutes training session, 30 minutes of gameplay, and a 
similar word reading post-test immediately after gameplay. Specifically, in the pre- and post-
tests, the outcome variable (word reading score) was measured before and after each game using 
an adapted visual format from the Peabody Picture Vocabulary Test [Dunn et al., 1997], which 
is used for measuring vocabulary knowledge. In our word reading test, every word was 
displayed on the screen with four images, and participants were asked to match the word with 
the picture that best represented its semantics. A correct match adds one to the participant’s 
score, while an incorrect match or the lack of a response does not change the score. In a training 
session before the study, experimenters explained the games and allowed each participant to 
play the games with 5 practice words. We will explain how this training session was helpful for 
participants in the “results for speech recognition” sub-section. 

2.6.3. Results	
  for	
  Learning	
  Gains	
  
The means and standard deviations for pre- and post- word reading scores, and post-test gains, 
are shown in Table 2.1 for both the Re and Pr conditions. As a sanity check, the t-tests did not 
reveal any significant differences in post-test gains between the market and farm games, for 
both the Re (p=0.12) and Pr (p=0.48) conditions; we expected both games to exhibit 
comparable post-test gains since they adopted similar designs and instructional principles. 
Likewise, between both games, there was no statistically significant difference on pre-test 
scores (p=0.24) for both conditions, indicating that participants in both conditions started with 
the same baseline knowledge of word reading. This allowed us to focus on analyzing word 
reading gains without using pre-test scores as a covariate. 
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Given the above sanity checks and in order to perform a more robust statistical analysis, for 
each condition, we combined the scores across both games. On this combined dataset, post-hoc 
power analysis indicated a power of 0.62 (with cohen’s d as 0.9 and significance level as 0.05), 
which was deemed adequate for inferential analysis for our purposes. A one-way 2-factor 
ANOVA showed a significant difference between the two conditions on post-test gains (F 
(1,40) = 5.4, p=0.001). More specifically, after 30 minutes of game play, gains were observed 
under both conditions: 1.0 word under Re, against 2.7 words under Pr. These results suggest that 
with even as little as 30 minutes of game play practicing words – receptively or productively – 
word reading scores increase significantly. Even more critically, there is evidence that 
productive training is significantly more beneficial for word reading development than simply 
receptively practicing words. 
 

Variable Condition Market Game Farm Game 

Pre-Test 
Re 7.8 (3.5) 6.9 (2.5) 
Pr 8.4 (2.8) 8.9 (3.0) 

Post-Test 
Re 8.5 (3.7) 8.3 (2.2) 
Pr 10.6 (1.5) 12.1 (3.0) 

Gain 
Re .6 (1.1) 1.4 (2.3) 
Pr 2.3 (1.9) 3.2 (1.8) 

Table 2.1: Means and standard deviations (in parentheses) for pre-test score, post-test score, and post-test 
gains for both games, for each of the two conditions (i.e. Re and Pr). 

2.6.4. Results	
  for	
  Speech	
  Recognition	
  
After a series of context-based adaptations such as those arising due to non-native accent and 
noise (as in Figure 2.5), the speech recognizer’s accuracy was 17.1%, when the recognizer was 
trained on data from 40 speakers (Figure 2.5). In other words, approximately, 1 out of 6 times 
the speech recognizer misunderstood what the user spoke. In practice, we trained the recognizer 
on the entire dataset of 50 speakers, and noticed that misrecognitions occurred only 1 out of 10 
times during real usage. In cases when the user happened to speak the correct answer (but the 
recognizer misunderstood it to be incorrect), the participants learned to repeat the word from the 
short, 15-minute training sessions prior to actual gameplay. In general, these training sessions 
had a dual role: first, to acquaint the participants with the game dynamics using five curriculum 
words, and second, to help them realize that the system might make recognition mistakes. In 
order to proceed in the latter case, they could either change their response, or if they were 
confident, then repeat it. From our observations, most of the times when there was a false 
negative (i.e. user spoke correctly but speech recognizer misrecognized), learners repeated the 
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vocabulary word rather than switching their response, and thus system’s misrecognition is less 
likely to have impacted any learning gains. 

2.7. Discussion	
  
In this chapter, we have discussed our efforts in developing and deploying a language learning 
speech recognition application for a challenging user group – children in rural India. At the start 
of the project when we lacked core speech recognition expertise, we had used an “off-the-shelf” 
recognizer directly for our application. In this case, our usability tests showed that the 
application was unusable by the children, as the speech recognizer failed to recognize their 
speech almost every 9 of 10 times (90% error rate). Thereafter, with the help of analysis and 
speech optimizations guided by a speech expert, we were able to improve this error rate to 
17.1%. Moreover, we demonstrated learning gains for the users with as much as just 30 minutes 
of game play, which was the primary purpose of the application. The findings in this chapter 
suggest two learnings: (i) off-the-shelf recognizer may not work directly, and improvements to 
the underlying models are often needed that are dependent on the user group, and (ii) it is 
possible to improve speech recognition accuracy by several orders of magnitude, provided 
there’s an expert understanding of what to do, and a small collection of audio files from 
representative users. Our experiments have also demonstrated that with the help of regression 
analysis, we can identify specific issues that impact the speech recognition most, and then using 
expert help, we can perform specific optimizations to improve recognition accuracy. 
 
In the next chapter, we shift focus from optimizing recognizer models to interaction technique 
edits for the benefit of usability. We show that once we have developed a reasonable recognizer, 
interaction technique edits become possible, and those edits in turn lead to further improvements 
in the usability and recognition accuracy of the speech system. In Chapter 4, we bring the 
lessons of these two case studies together to identify and provide more understanding on SUI 
myths, as perceived by interaction and usability designers. 
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3.	
  	
  CASE	
  STUDY:	
  VOICE	
  TYPING	
  
 

 
 
This chapter shifts focus from developing recognizers (as in Chapter 2) to designing interaction 
techniques for achieving recognition accuracy gains. In this chapter, we show that once a 
reasonable accuracy has been attained through the necessary optimizations to the recognizer, 
changes to the interaction technique are made possible, and those edits lead to additional 
significant accuracy improvements. In other words, initial accuracy gains, achieved through 
optimizations, enable interaction technique edits that weren’t possible earlier. Conversely, 
interaction technique edits enables accuracy gains that aren’t possible through optimizations 
beyond an accuracy level. 
 
To demonstrate the above, we focus on improving the interaction style of current large 
vocabulary continuous speech recognition (LVCSR) dictation systems such as those from 
Nuance, IBM, AT&T, Apple, Vlingo, etc. The current interaction model for dictation tasks 
follows a voice recorder metaphor where users must first formulate what they want to say in 
utterances, and then produce them, as they would with a voice recorder. These utterances do not 
get transcribed until users have finished speaking (as indicated by a pause or via push-to-talk 
button), at which point the entire output appears at once after a few seconds of delay. This 
interaction model is adopted because at the surface, it provides technical benefits: the recognizer 
can have as much context as possible to improve decoding. In other words, real-time 
presentation of output is sacrificed for accuracy. Users must then break their train of thought, 
verify the output verbatim and correct errors. This process can be mentally disruptive, time-
consuming, and frustrating. Indeed, users typically spend only 25-30% of their time actually 
dictating. The rest of the time is spent on identifying and editing transcription errors [Karat et 
al., 1999; MacKenzie et al., 2002]. 
 

This chapter is based on the work presented in: 
 

Kumar, A., Paek, T., Lee, B. Voice Typing: A new speech interaction model for 
dictation on touchscreen devices. (2012). In Proc. Human Factors in Computing 
Systems (CHI), Austin, USA, ACM, pp. 2277-2286. 
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We introduce Voice Typing, a new speech interaction model where users’ utterances are 
transcribed as they produce them to enable real-time error identification. For fast correction, 
users leverage a gesture-based marking menu that provides multiple ways of editing text. Voice 
Typing allows users to influence the decoding by facilitating immediate correction of the real-
time output. The metaphor for Voice Typing is that of a secretary typing for you as you monitor 
and quickly edit the text using the touchscreen. The changes needed to enable the above 
interaction style are not complex, but have a high impact on the accuracy gains, as well as the 
usability. For example, as you will read below, the only parameter we changed in the state-of-
the-art dictation interfaces was the “detection of silence” from 1-2 seconds (default) to 0 
seconds. 

3.1. Related	
  Work:	
  	
  Real-­‐time	
  Speech	
  Decoding	
  &	
  Error	
  Correction	
  Techniques	
  
A wide variety of input methods have been developed to expedite text entry on touchscreen 
devices. Some of these methods are similar to speech recognition in that they utilize a noisy 
channel framework for decoding the original input signal. Besides the obvious example of 
handwriting recognition and prediction of complex script for languages such as Chinese, a soft 
keyboard can dynamically adjust the target regions of its keys based on decoding the intended 
touch point [Gunawardana et al., 2010]. The language model utilized by speech recognition to 
estimate the likelihood of a word given its previous words appears in almost all predictive text 
entry methods, from T9 [Grover et al., 1998] to shape writing techniques [Zhai et al., 2003] 
such as SWYPE [swype]. 
 
Beyond touchscreen input methods that are similar to speech recognition, a few researchers 
have explored how to obtain more accurate recognition hypotheses from the word lattice so that 
they can be presented in real-time. Fink et al. (1998) found that providing more right context 
(i.e., more acoustic information) could improve accuracy. Likewise, Baumann et al. (2009) 
showed that increasing the language model weight of words in the lattice could improve 
accuracy. Selfridge et al. (2011) took both of these ideas further and proposed an algorithm that 
looked for paths in the lattice that either terminated in an end-of-sentence (as deemed by the 
language model), or converged to a single node. This improved the stability of hypotheses by 
33% and increased accuracy by 21%. Note that we have not yet tried to incorporate any of these 
findings, but consider this part of our future work.  
 
With respect to the user experience of obtaining real-time recognition results, Aist et al. (2007) 
presented users with pre-recorded messages and recognition results that appeared either all at 
once or in an incremental fashion. Users overwhelmingly preferred the latter. Skantze et al. 
(2009) conducted a similar study where users recited a list of numbers. Again, users preferred to 
review the numbers in an incremental fashion. All of this prior research justifies the Voice 
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Typing speech interaction model. To our knowledge, the user study we describe in the Section 
3.3 represents the first attempt to compare incremental, real-time transcription with traditional 
dictation on a spontaneous language generation task using LVCSR decoding. 
 
The Voice Typing gesture-based marking menu is related to research in multimodal correction 
of speech recognition errors. In Martin et al. (1980), preliminary recognition results were stored 
temporarily in a buffer, which users could interactively edit, by spoken dialogue or by mouse. 
Users could delete single words or the whole buffer, re-speak the utterance, or select words from 
an n-best list. Suhm et al. (2001) proposed switching to pen-based interaction for certain types 
of corrections. Besides advocating spelling in lieu of re-speaking, they created a set of pen 
gestures such as crossing-out words to delete them. Finally, commercially available dictation 
products for touchscreen devices, such as the iPhone Dragon Dictation application, also support 
simple touch-based editing. To date, none of these products utilize a marking menu. 

3.2. Voice	
  Typing	
   	
  
The speech interaction model of Voice Typing follows the metaphor of a secretary typing for 
you while you monitor and correct the text. Real-time monitoring is important because it 
modulates the speed at which users produce utterances. Just in the way that you would not 
continue speaking if the secretary were lagging behind on your utterances, users of Voice 
Typing naturally adjust their speaking rate to reflect the speed and accuracy of the recognizer. 
Indeed, in an exploratory design study we conducted where participants dictated through a 
“noisy microphone” to a confederate (i.e., an experimenter), we found that as the confederate 
reduced typing speed (to intentionally imply uncertainty about what was heard), participants 
also slowed their speaking rate. For the prototype we developed, the transcription speed was 
such that users produced utterances in chunks of 2-4 words (see the Prototype section for more 
details). In other words, for real-time feedback, in Voice Typing, users are not restricted to 
speaking one word-at-a-time with a brief pause in between, as in discrete recognition [Rosen, 
1997], nor required to wait for long after speaking full utterances, like in traditional dictation. 
Instead, users can speak in small chunks that match their thought process. Ideally, if the 
recognizer could transcribe as quickly as users could produce speech with perfect accuracy, the 
Voice Typing experience would be more like dictating to a professional stenographer. However, 
with current state-of-the-art recognition where corrections are required due to misrecognitions, 
Voice Typing is more akin to dictating to a secretary or a fast-typing friend. 
 
We now elucidate the motivation for Voice Typing and the technical challenges required to 
realize its full potential. We also describe the prototype we implemented for touchscreen 
devices. 
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3.1.1. Technical	
  and	
  Cognitive	
  Motivations	
  
Voice Typing is motivated by both cognitive and technical considerations. From a cognitive 
standpoint, human-computer interaction researchers have long known that providing real-time 
feedback for user actions not only facilitates learning of the user interface but also leads to 
greater satisfaction [Payne, 2009]. With respect to natural language, psycholinguists have noted 
that as speakers in a conversation communicate, listeners frequently provide real-time feedback 
of understanding in the form of back-channels, such as head nods and “uh-huh” [Clarke et al., 
1991]. Indeed, research suggests that language processing is incremental i.e. it usually proceeds 
one word at a time, and not one utterance or sentence at a time [Altmann et al., 1999; Tanenhaus 
et al., 1995; Traxler et al., 1997], as evidenced by eye movements during comprehension. Real-
time feedback for text generation is also consistent with the way most users type on a keyboard. 
Once users become accustomed with the keyboard layout, they typically monitor their words 
and correct mistakes in real-time. In this way, the interaction model for Voice Typing is already 
quite familiar to users. 
 
From a technical standpoint, Voice Typing is motivated by the observation that dictation errors 
frequently stem from incorrect segmentations (though to date we are unaware of any published 
breakdown of errors). Consider the classic example of speech recognition failure: “It’s hard to 
wreck a nice beach” for the utterance “It’s hard to recognize speech.” In this example, the 
recognizer has incorrectly segmented “recognize” for “wreck a nice” due to attaching the 
phoneme /s/ to “nice” instead of “speech.” Because having to monitor and correct text while 
speaking generally induces people to speak in small chunks of words, users are more likely to 
pause where segmentations should occur. In other words, in the example above, users are more 
likely to utter “It’s hard <pause> to recognize <pause> speech,” which provides the recognizer 
with useful segmentation information. In the Experiment section, we assess whether Voice 
Typing actually results in fewer corrections.  
 
Voice Typing has yet another potential technical advantage. Since there is an assumption that 
users are monitoring and correcting mistakes as they go along, it is possible to treat previously 
reviewed text as both language model context for subsequent recognitions and supervised 
training data for acoustic [Gales, 1998] and language model adaptation [Bellegarda, 2004]. With 
respect to the former, real-time correction prevents errors from propagating to subsequent 
recognitions. With respect to the latter, Voice Typing enables online adaptation with acoustic 
and language data that has been manually labeled by the user. There is no better training data for 
personalization than that supervised by the end user. 
 



 24 

3.1.2. Prototype	
  
While the technical advantages of Voice Typing are appealing, implementing a large vocabulary 
continuous speech recognition (LVCSR) system that is designed from scratch for Voice Typing 
is no small feat and will likely take years to fully realize (see the Related Work section). At a 
high level, decoding for LVCSR systems typically proceeds as follows (see [Rabiner et al., 
1993] for a review). As soon as the recognizer detects human speech it processes the incoming 
audio into acoustic signal features, which are then mapped to likely sound units, e.g. phonemes. 
These sound units are further mapped to likely words and the recognizer connects these words 
together into a large lattice or graph. Finally, when the recognizer detects that the utterance has 
ended, it finds the optimal path through the lattice using a dynamic programming algorithm or 
Viterbi [Rabiner, 1989]. The optimal path yields the most likely sequence of words (i.e., the 
recognition result). In short, current LVCSR systems do not return a recognition result until the 
utterance has finished. If users are encouraged to produce utterances that constitute full 
sentences, they will have to wait until the recognizer has detected the end of an utterance before 
receiving the transcribed text all at once. This is of course the speech interaction model for 
traditional dictation. 
 
In order to support the speech interaction model of Voice Typing, the recognizer would have to 
return the optimal path through the lattice created thus so far. This can be done through 
recognition hypotheses, which most speech APIs expose. Unfortunately, for reasons that go 
beyond the scope of this paper, recognition hypotheses tend to be of poor quality. Indeed, in 
building a prototype, we explored leveraging recognition hypotheses but abandoned the idea due 
to low accuracy. Instead, we decided to use LVCSR decoding as is, but with one modification. 
Part of the way in which the recognizer detects the end of an utterance is by looking for silence 
of a particular length. Typically, this is defaulted to 1-2 seconds. We changed this parameter to 
0 milliseconds. The effect was that whenever users paused for just a second, the recognizer 
would immediately return a recognition result. Note that the second of delay is due to other 
processing the recognizer performs.  
 
To further facilitate the experience of real-time transcription, we coupled this modification with 
two interaction design choices. First, instead of displaying the recognition result all at once, we 
decided to display each word one by one, left to right, as if a secretary had just typed the text. 
Second, knowing the speed at which the recognizer could return results and keep up with user 
utterances, we trained users to speak in chunks of 2-4 words. 
 
Providing real-time transcriptions so that users can monitor and identify errors is only the first 
aspect of Voice Typing. The second is correcting the errors in a fast and efficient manner on 
touchscreen devices. To achieve this goal, we leveraged a marking menu that provides multiple 



 25 

ways of editing text. Marking menus allow users to specify a menu choice in two ways, either 
by invoking a radial menu, or by making a straight mark in the direction of the desired menu 
item [Kurtenbach et al., 1994]. In Voice Typing, users invoke the marking menu by touching 
the word they desire to edit. Once they learn what choices are available on the marking menu, 
users can simply gesture in the direction of the desired choice. In this way, marking menus 
enables both the selection and editing of the desired word, and provides a path for novice users 
to become expert users. Figure 3.1(a) displays the marking menu we developed for Voice 
Typing. If users pick the bottom option, as shown in Figure 3.1(b) they receive a list of alternate 
word candidates for the selected word, which is often called an n-best list in the speech 
community. The list also contains an option for the selected word with the first letter capitalized. 
If they pick the left option, they can delete the word. If they pick the top option, as shown in 
Figure 3.1(c) they can re-speak the word or spell it letter by letter. Note that with this option 
they can also speak multiple words. Finally, if they pick the right option, as shown in Figure 
3.1(d) they can add punctuation to the selected word. We decided to include this option because 
many users find it cumbersome and unnatural to speak punctuation words like “comma” and 
“period.” Having a separate punctuation option frees users from having to think about 
formatting while they are gathering their thoughts into utterances. 
 
It is important to note that Voice Typing could easily leverage the mouse or keyboard for 
correction, not just gestures on a touchscreen. For this chapter, however, we decided to focus on 
marking menus for touchscreen devices for two reasons. First, a growing number of applications 
on touchscreen devices now offer dictation (e.g. Apple’s Siri which uses Nuance Dragon 
[nuance], Android Speech-to-Text [Steele et al., 2010], Windows Phone SMS dictation 
[windows-7-speech-recognition], Vlingo Virtual Assistant [vlingo], etc.). Second, touchscreen 
devices provide a unique opportunity to utilize touch-based gestures for immediate user 
feedback, which is critical for the speech interaction model of Voice Typing. In the user study 
below, our comparison of marking menus to regular menus reflects the correction method 
employed by almost all of these new dictation applications. 
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3.3. User	
  Study	
  
In order to assess the correction efficacy and usability of Voice Typing in comparison to 
traditional dictation, we conducted a controlled experiment in which participants engaged in an 
email composition task. For the email content, participants were provided with a structure they 
could fill out themselves. For example, “Write an email to your friend Michelle recommending 
a restaurant you like. Suggest a plate she should order and why she will like it.” Because 
dictation entails spontaneous language generation, we chose this task to reflect how end users 
might actually use Voice Typing. 

3.3.1. Experimental	
  Design	
  
We conducted a 2x2 within-subjects factorial design experiment with two independent 
variables: Speech Interaction Model (Dictation vs. Voice Typing) and Error Correction Method 
(Marking Menu vs. Regular). In Regular Error Correction, all of the Marking Menu options 
were made available to participants as follows. If users tapped a word, the interface would 

 
 
Figure 3.1: Screenshots of (a) the Voice Typing marking menu, (b) list of alternate 
candidates for a selected word, including the word with capitalized first letter, (c) re-speak 
mode with volume indicator, and (d) list of punctuation choices 
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display an n-best list of word alternates. If they performed press-and-hold on the word, that 
invoked the re-speak or spelling option. For deleting words, we provided “Backspace” and 
“Delete” buttons at the bottom of the text area. Placing the cursor between words, users could 
delete the word to the left using “Backspace” and the word to the right using “Delete.” Users 
could also insert text anywhere the cursor was located by performing press-and-hold on an 
empty area. 
 
The order of presentation of Speech Interaction Model and Error Correction Method was 
counter-balanced. We collected both quantitative and qualitative measures. With respect to 
quantitative measures, we measured rate of correction and the types of corrections made. With 
respect to the qualitative measures, we utilized the NASA task load index (NASA-TLX) [Hart, 
2006] because it is widely used to estimate perceived workload assessment. It is divided into six 
different questions: mental demand, physical demand, temporal demand, performance, effort, 
and frustration. For our experiment, we used the software version of NASA-TLX, which 
contains 20 divisions, each division corresponding to 5 task load points. Responses were 
measured on a continuous 100-point scale. We also collected qualitative judgments via a post-
experiment questionnaire that asked participants to rank order each of the four experimental 
conditions (Dictation Marking Menu, Voice Typing Marking Menu, Dictation Regular and 
Voice Typing Regular) in terms of preference. The rank order questions were similar to NASA-
TLX so that we could accurately capture all the dimensions of the workload assessment. Finally, 
we collected open-ended comments to better understand participants’ preference judgments.  

3.3.2. Software	
  and	
  Hardware	
  
We developed the Voice Typing and Dictation Speech Interaction Models using the Windows 7 
LVCSR dictation engine. As mentioned before, for Voice Typing, we modified the silence 
parameter for end segmentation via the Microsoft System.Speech managed API. In order to 
control speech accuracy across the four experimental conditions, we turned off the (default) 
MLLR acoustic adaptation. Both types of Error Correction Methods were implemented using 
the Windows 7 Touch API and Windows Presentation Foundation (WPF). We conducted the 
experiment on a HP EliteBook 2740p Multi-Touch Tablet with dual core 2.67 GHz i7 processor 
and 4 GB of RAM. 

3.3.3. Participants	
  
We recruited 24 participants (12 males and 12 females), all of whom were native English 
speakers. Participants came from a wide variety of occupational backgrounds (e.g. finance, car 
mechanics, student, housewife, etc.). None of the participants used dictation via speech 
recognition on a regular basis. The age of the participants ranged from 20 to 50 years old (M = 
35.13) with roughly equal numbers of participants in each decade.  



 28 

3.3.4. Procedure	
  
In total, each experimental session lasted 2 hours, which included training the LVCSR 
recognizer, composing two practice and three experimental emails per experimental condition, 
and filling out NASA-TLX and post-experiment questionnaires. To train the LVCSR 
recognizer, at the start of the each session, participants enrolled in the Windows 7 Speech 
Recognition Training Wizard, which performs MLLR acoustic adaptation [Gales, 1998] on 20 
sentences, about 10 minutes of speaking time. We did this because in our early usability tests, 
we found that without training, recognition results were so inaccurate that users became 
frustrated regardless Speech Interaction Model and Error Correction Method. 
 
During the training phase for each of the four experimental conditions, the experimenter walked 
through the interaction and error correction style using two practice emails. In the first practice 
email, the experimenter demonstrated how the different Speech Interaction Models worked, and 
then performed the various editing options available for the appropriate Error Correction 
Method (i.e., re-speak, spelling, alternates, delete, insert, etc.). Using these options, if the 
participant was unable to correct an error even after three retries, they were asked to mark it as 
incorrect. Once participants felt comfortable with the user interface, they practiced composing a 
second email on their own with the experimenter’s supervision. Thereafter, the training phase 
was over and users composed 3 more emails. At the end of each experimental condition, 
participants filled out the NASA-TLX questionnaire. At the end of the experiment, they filled 
out the rank order questionnaire and wrote open-ended comments. 

3.4. Results	
  

3.4.1. Quantitative	
  
In order to compare the accuracy of Voice Typing to Dictation, we computed a metric called 
User Correction Error Rate (UCER), modeled after Word Error Rate (WER), a widely used 
metric in the speech research community. In WER, the recognized word sequence is compared 
to the actual spoken word sequence using Levenshtein’s distance [Levenshtein, 1966], which 
computes the minimal number of string edit operations–substitution (S), insertion (I), and 
deletion (D)–necessary to convert one string to another. Thereafter, WER is computed as: WER 
= (S + I + D) / N, where N is the total number of words in the true, spoken word sequence. For a 
more thorough discussion on the WER, please refer to Section 5.3. 
 
In our case, measuring WER was not possible for two reasons. First, we did not have the true 
transcript of the word sequence – that is, we did not know what the user had actually intended to 
compose. Second, users often improvised after seeing the output and adjusted their utterance 
formulation, presumably because the recognized text still captured their intent. Moreover, we 
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believe that although WER accurately captures the percentage of mistakes that the recognizer 
has made, it does not tell us much about the amount of effort that users expended to correct the 
recognition output, at least to a point where the text was acceptable. The latter, we believe, is an 
important metric for acceptance of any dictation user interface. Thus, we computed UCER as:  
 

𝑈𝐶𝐸𝑅 =   
𝑆𝑢𝑏 + 𝐼𝑛𝑠 + 𝐷𝑒𝑙 + 𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚  

 
where Sub is the number of substitutions the user made using the 'Respeak' mode (both spelling 
and re-speaking the entire word) or via using the alternates, Ins is the number of word 
insertions, Del is the number of word deletions, Uncorrected is the number of words that user 
identified as incorrect but did not correct due to difficulties in error correction (see the 
Procedure Section), and Num is the number of words in the final text that was submitted by the 
user. 
 
While the UCER metric captures the amount of effort users expended to correct mistakes, it 
does not include the errors that were left “unidentified and uncorrected” by the user. For 
example, there were occasions when words were recognized as plural, instead of singular, but 
were left unchanged. This may be because they were unidentified or because the user did not 
feel that the grammatically incorrect text affected the intended meaning. In any case, these cases 
were rare and more importantly, they were equally distributed across the experimental 
conditions. 
 
In terms of UCER, a repeated measures ANOVA yielded a significant main effect for the 
Speech Interaction Model (F(1,46) = 4.15, p < 0.05), where Voice Typing (M = 0.10, SD = 
0.01) was significantly lower than Dictation (M = 0.14, SD = 0.01). Looking at Figure 3.2, it 
may seem as if Marking Menu had slightly higher UCER than Regular, but we did not find any 
main effect for Error Correction Method, nor did we find an interaction effect. 

                    
Figure 3.2. User correction error rate for all four conditions. Blue data 
points are for traditional Dictation, red data points for Voice Typing. 
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In terms of types of corrections, as described previously, UCER consists of four different types 
of corrections. We wanted to further tease apart the types of corrections that were significantly 
different across experimental conditions to understand what led to lower UCER in Voice Typing 
than Dictation. Figure 3.3 plots average errors per-email for all four conditions. For 
substitutions, We obtained a significant main effect for Error Correction Method (F(1,46) = 5.9, 
p < 0.05), where Marking Menu had significantly higher substitutions (M = 7.24, SD = 0.5) than 
Regular (M = 5.50, SD = 0.5). For insertions, deletions, and identified but uncorrected errors, 
we did not find any significant effects.  
 
To contrast the amount of time users had to wait to see the recognition result, although this was 
not a dependent variable, we measured the delay from the time the recognizer detected speech 
(Time (speech)) to when the actual transcription (Time (text)) was shown in the user interface: 
 

𝐷𝑒𝑙𝑎𝑦 =   
𝑇𝑖𝑚𝑒   𝑡𝑒𝑥𝑡 −   𝑇𝑖𝑚𝑒  (𝑠𝑝𝑒𝑒𝑐ℎ)  !""  !"#$%&

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐸𝑚𝑎𝑖𝑙𝑠  

 
As shown in Figure 3.4, the average waiting time for Voice Typing was 1.27 seconds, which of 
course was significantly lower than that of Dictation, 12.41 seconds. Although the delay in 
dictation seems ten times large, we should note that this includes the time that the user took to 
speak the entire utterance, as well as the delay time. 

  

Figure 3.3. Average number of substitutions, insertions, deletions made by the user in order to correct an email 
for each of the four experimental conditions, and the number of words left uncorrected. 
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For Voice Typing, we were interested to see if the average delay varied across emails either due 
to the users’ speaking style or other acoustic differences that might have led to a difference in 
user experience. Surprisingly, all the delays were within two standard deviations from the 
average, with 37 (out of 48 emails for Voice Typing) having delays within one standard 
deviation from the average i.e., between 1.27 ± 0.3 seconds, as shown in Figure 3.4. 

3.4.2. Qualitative	
  

3.4.2.1. Voice	
  Typing	
  vs.	
  Dictation	
  
A repeated measure ANOVA on the NASA TLX data for mental demand yielded a significant 
main effect for Speech Interaction Model (F(1, 46) = 4.47, p = 0.03), where Voice Typing (M = 
30.90, SD = 19.16) had lower mental demand than Dictation (M = 39.48, SD = 20.85). 
Furthermore, we found a significant main effect Speech Interaction Model on effort and 
frustration (F(1,46) = 4.03, p = 0.04 and F(1,46) = 4.02, p = .05, respectively). In both cases, 
Voice Typing displayed significantly lower effort and frustration than Dictation. 
 
On the rank order questionnaire, overall 18 out of 24 participants indicated a preference for 
Voice Typing over Dictation (χ2 (1) = 7.42, p < 0.01). Furthermore, 18 participants ranked 
Voice Typing as having less effort than Dictation (χ2 (1) = 3.99, p < 0.05), and 17 ranked Voice 
Typing as having less frustration (χ2 (1) = 9.53, p < 0.05). As indicated, all of the above rankings 
were statistically significant by Wilcoxon tests. 
 
Open-ended comments highlighted the motivation for the speech interaction model of Voice 
Typing. As one participant put it, “It [Voice Typing] was better because you did not have to 
worry about finding mistakes later on. You could see the interaction [output] as you say; 

       

Figure 3.4. Frequency distribution of the system response times across emails in Voice Typing condition. For 
most emails the delays were within one standard deviation (0.3 seconds) of the average (1.27 seconds), and all 
the emails were with two standard deviations from the average. 
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thereby reassuring you that it was working fine.” On the other hand, not all participants agreed. 
One participant explained: “I preferred Dictation, because in Voice Typing, if one word was off 
as I was speaking, it would distract me.” 

3.4.2.2. Marking	
  Menu	
  vs.	
  Regular	
  Menu	
  
On the NASA-TLX data, we found a significant main effect for Error Correction Method on 
physical demand (F(1,46) = 4.43, p = 0.03), where Marking Menu (M = 19.50, SD = 20.56) had 
significant lower physical demand than Regular Menu (M = 28.13, SD = 19.44).  
 
On the rank order questionnaires, 21 out of 24 participants overall preferred Marking Menu to 
Regular Menu (χ2 (1) = 25.86, p < 0.01). Furthermore, 21 participants ranked Marking Menu as 
having less mental demand than Regular Menu (χ2 (1) = 22.3, p < 0.01) and 21 ranked Marking 
Menu as having less physical demand (χ2 (1) = 22.3, p < 0.01). As indicated, all of the above 
rankings were statistically significant by Wilcoxon tests. 
 
With respect to open-ended comments, participants seemed to appreciate the menu discovery 
aspect of marking menus. As one participant put it, “It [Marking Menu] was great for a 
beginner. It was easier mentally to see the circle with choices and not have to concern myself 
with where to select my [error correction] choices from.” Another participant highlighted how 
Marking Menu allowed both selection and correction at the same time: “It [Marking Menu] 
seemed to involve less action.” Again, not everyone agreed with 3 participants claiming that 
they found Marking Menu to be challenging to learn. In order to understand why these 3 
participants felt that way, we went through their video recordings. It turned out that these 
participants had larger fingers than most, and had difficulties selecting and swiping (up, down, 
or left) words, particularly single letter words like “a.” 

3.5. Discussion	
  
In this chapter, we introduced Voice Typing, a new speech interaction model where users’ 
utterances are transcribed as they produce them to enable real-time error identification. Our 
experimental results indicated that Voice Typing had significantly fewer corrections than 
Dictation even though the acoustic and language models for the recognizer were the same for 
both Speech Interaction Models. A plausible explanation is that when users correct 
transcriptions in real-time, this prevents errors from propagating. Users also felt that Voice 
Typing exhibited less mental demand, perceived effort, and frustration than Dictation. 
 
With respect to Error Correction Methods, while there was no significant difference in the 
overall user correction error rate between the two methods, we found that users used 
substitutions (re-speak, spell, or alternates) significantly more in Marking Menu than Regular, 
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the current style of error correction in the dictation interfaces today. One plausible explanation 
for this is that since users found gestures to be less mentally and physically demanding, they 
preferred to substitute the word rather than leave it uncorrected. This is evidenced by the trend 
that people left more words uncorrected in the Regular Menu method than Marking Menu. 
Another plausible explanation is that the current interfaces required edit operations at a word 
level even if successive words were incorrectly recognized. This could have potentially led to 
more substitutions than needed. We plan to explore phrase-level edit operations as future work. 
 
Despite the above positive findings for Voice Typing, we do not believe that the Dictation 
interaction model should be completely dismissed. There is merit in using a voice recorder style 
of interaction when the context demands a “hands-free, eyes-free” interaction, such as driving. 
Surely, in these cases, Voice Typing would not be a feasible approach. Also, in other cases such 
as highly populated public spots, we imagine that typing on a soft keyboard might still be 
preferred for privacy. 

3.6. Conclusion	
  
In this Chapter, we discussed a novel interaction technique called “Voice Typing,” that displays 
real-time results of user’s conversation speech. This real-time display of recognizer’s results 
enabled real-time error correction, which stopped further error propagation. On the high level, 
we showed that once a reasonable accuracy has been attained through the necessary 
optimizations to the recognizer, changes to the interaction technique are made possible, and 
those edits lead to additional significant accuracy improvements. In other words, initial accuracy 
gains, achieved through optimizations, enable interaction technique edits that weren’t possible 
earlier. Conversely, interaction technique edits enables accuracy gains that aren’t possible 
through optimizations beyond an accuracy level. In the next Chapter, we bring together the 
results from Chapters 2 and 3 to discuss and debunk myths that SUI developers, designers, and 
researchers have about speech application development. In doing so, we set a research agenda, 
which paves way for the next part of this thesis. 
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4.	
  	
  SUIs:	
  MYTHS	
  vs.	
  REALITY	
  
In this chapter, we synthesize our experience from the previous two Chapters. We identify four 
myths that, according to our own experiences, anecdotal evidences from a panel on Speech and 
HCI at ACM CHI 2013 [Munteanu et al., 2013], and a workshop at ACM CHI [Munteanu et al., 
2014] SUI developers, designers, and researchers have about SUIs and their development. We 
then provide ground reality in terms of an “inside the black box” explanation or debunk the 
myth using results from the above two case studies. 

Myth	
  #1:	
  No	
  data	
  like	
  more	
  data	
  
US government-sponsored projects such as GALE [Olive et al., 2010] are strong promoters of 
the philosophy that the best way to improve speech recognition accuracy is by collecting large 
amounts of data. Google and Apple also follow the same philosophy. While it is true that 
collection of more training data will improve recognition accuracy, it is highly expensive, and 
sets an extremely high bar for new research groups and under-represented parts of the 
population to participate and contribute in the speech recognition development process. 
 
Fortunately, collection of additional training data is not the sole way of improving recognition 
accuracy. In fact, recent research efforts such as IARPA’s Babel [babel] programs attempt to 
shift the focus towards developing a functional recognizer with the minimum amount of 
resources required. In case study #1, we have shown that carefully selected optimizations to the 
underlying acoustic and language models, with the help of experts, can lead to large gains in 
accuracy. At the same time, while the optimizations to the recognizer models may be required, 
they alone can be insufficient. In case study #2, we show that once a reasonable accuracy has 
been attained through the necessary optimizations, changes in the interaction technique are 
possible, and those changes can lead to additional significant accuracy improvements. This is 
important because initial accuracy gains, achieved through optimizations, enable interaction 
technique changes that weren’t possible earlier. Conversely, interaction technique change 
enables accuracy gains that aren’t possible through optimizations beyond an accuracy level. 
 
Collecting additional training data, however, is still useful. Our recommendation is that an 
initial usable application must be developed (through the necessary optimizations and 
interaction technique edits), and over-time, data can be collected as users use the speech-user 
interface. In certain systems, this data collection can also be governed by the “human in the 
loop” philosophy, i.e. enabling the users to correct the system if the recognition results are 
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incorrect. This gives user-transcribed data for retraining the system. In case study #2, we 
implemented a marking menu to enable rapid, real-time error correction for dictation tasks, 
which not only stopped error propagation in speech decoding, but also gave us user-labeled 
training data for improving our speech recognizer further. 
 
Yet, optimizations to the underlying recognizer, identifying possible interaction edits, and 
retraining the system can be challenging, especially for developers who have no speech 
recognition expertise. A toolkit that facilitates and guides non-expert developers, designers, or 
researchers in this task can certainly be beneficial. 

Myth	
   #2:	
   SUIs	
   are	
   unusable	
   by	
   non-­‐native	
   speakers,	
   children,	
   or	
   in	
   noisy	
  
environments	
  
Recent papers in human-computer interaction have pointed that SUIs become unusable for users 
such as non-native speakers of English [Laput et al., ’13] primarily because the users “expect” 
for the recognizer to fail. In fact, the paper reported that:  
 

“Non-native English participants often had a preconceived belief that their accent would 
impede their performance with the speech interface. Thus, they tended to use the speech 
interface less frequently [than native English speakers]. Moreover, they also reported 
being more self-conscious about their pronunciations, and the presence of a native 
English speaker (the user-study facilitator in this case) could have limited their 
inclination to use the speech interface.” [Laput et al., ’13] 

 
Often, such preconceived notions deter interaction designers from integrating speech modality 
in their applications. The reality is that there’s nothing intrinsically unrecognizable about any 
user’s speech or any environment. What matters most is the mismatch between the training data 
and the actual testing conditions. Off-the-shelf models bundled with popular open-source 
recognizers such as Sphinx [sphinx] or Kaldi [kaldi] are often only trained on native, adult 
English accent in quiet environments, and are as such unusable by any other type of user or in 
any other environment. Similarly, APIs offered by Google [google-speech-api] or Microsoft  
[ms-sapi] are not directly usable for non-native English speakers or in noisy environments. 
 
Yet, we can achieve reasonable accuracy for most users, languages, or environments, at least to 
a point where misrecognitions don’t deter application use. In case study #1, we have shown that 
by collecting an initial audio dataset from representative users, and by performing necessary 
optimizations to the recognizer, it is possible to achieve reasonable accuracy, at least to a point 
where recognizer’s ability to misrecognize words does not affect application’s usability. In case 
study #2, we have shown that interaction edits can help restructure the type of input that the 
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recognizer receives, which in turn, can further boost the recognition accuracy and usability. 
 
However, a speech expert is often needed to understand the reasons of failure, and make the 
required optimizations. Such optimizations are dependent on the peculiar characteristics of the 
users who use the system or the environment in which it is used. In case study #1, we have 
shown that with the help of existing machine learning techniques, we can quantify and identify 
major reasons of error. We focus our next efforts on developing tools that can incorporate such 
techniques, and enable non-speech experts to rapidly develop accurate speech recognizers for 
any user or environment. 

Myth	
  #3:	
  SUIs	
  need	
  to	
  achieve	
  very	
  high	
  accuracy	
  before	
  they	
  are	
  usable	
  
Although somewhat related to myth #2, this myth focuses more generally on the question “what 
is the acceptable accuracy for a SUI to be usable?” Seen in the light of traditional GUIs and the 
“what-you-see-is-what-you-get” paradigm that are hardly error-prone, the expectations for SUIs 
are very high. A recent publication at CHI, however, pointed out that: 
  

“…achieving perfectly accurate speech processing is a lofty goal that is often nothing 
short of a fairy tale” [Munteanu et al., 2013] 
 
“…there is now sufficient evidence that many real-life applications using speech 
technologies do not require 100% accuracy to be useful… Engaging the CHI 
community now is timely – many recent commercial applications, especially in the 
mobile space, are already tapping the increased interest in and need for natural user 
interfaces (NUIs) by enabling speech interaction in their products.” [Munteanu et al., 
2014]. 

 
In fact, there’s prior research evidence pointing to the fact that proper interaction design can 
complement speech processing in ways that compensate for its less-than-perfect accuracy 
[Oviatt, 2003; Munteanu et al., 2006], or that in many tasks where users interact with spoken 
information, where word-to-word transcription of speech is not required [Penn et al., 2008].  
 
In our case studies, we have reaffirmed the above findings. In case study #1, the system 
misrecognized every 1 word (out of 10 words), yet it did not seem to deter learning gains from 
the application. In cases of false negatives, i.e. when the learner-user spoke the correct answer 
but the recognizer misunderstood it to be incorrect, the participants had two options: they could 
either change their response, or if they were confident, then repeat it. From our observations, 
most of the times when there was a false negative, the participants repeated the vocabulary word 
rather than switching their response. The participants seemed to have identified this issue in the 
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initial training sessions, and thus system’s misrecognition did not seem to have an impact on the 
usefulness of the system, although the usability can be improved further by improving 
recognition accuracy. In case study #2, we have shown that we can use interaction techniques 
edits as a tool to improve recognition accuracy even further, and subsequently improve 
usability. 
 
The fundamental question still remains, i.e. “how good is good enough for speech recognition?” 
The answer, in our opinion, is that it depends on the application task and user group. For 
instance, a study conducted by Munteanu et al. (2006) showed that transcripts with up to 25% 
word error rate are acceptable as useful for end-users in a transcription task for lectures. Of 
course, here “usefulness” is compared in comparison to alternatives such as manual 
transcription (which can be expensive), or no transcription (which can mean loss of notes). In 
other tasks where there are other sources of information, often an even higher WER is 
acceptable. For instance, in a spoken dialog system, a 52% WER system was usable as other 
sources of information such as dialog structure was used to achieve good task success rates 
[Lopes et al., 2013]. Often a moderately high WER system (~25-40% WER) is used to field a 
“semi-working” system to collect more and better data, which in turn, can be used to further 
improve accuracy. 

Moreover, human-human speech conversations are error prone as well. Eventually, what matters 
most is setting the correct user expectation. If the users expect “what-you-say-is-what-you-get” 
paradigm, then SUIs have the potential to fail miserably. However, as we showed in case study 
#1, initial training can help set correct expectations. Often just repeating the words, or switching 
to another modality, i.e. spelling mode, or keyboard can help reduce user frustration, and 
eventually improve usability of the system. 

Myth	
  #4:	
  Audio	
  Data	
  Collection	
  for	
  SUIs	
  is	
  prohibitively	
  expensive1	
  
In order to develop accurate SUIs, audio data collection from representative users is 
unavoidable.  This is especially true for user groups for whom the research community does not 
already have established datasets. However, at the surface, this task can be prohibitively 
expensive as proper audio data collection is a research challenge in and of itself. This task, in 
turn, consists of two (somewhat independent) steps: (i) speech acquisition, i.e. recording audio 
files from representative speakers, and (ii) transcription, i.e. obtaining text that corresponds to 
the speech in the audio files. The challenge in the first step is to setup up a correct recording 
environment, e.g. correct bit-rate, file format, etc., and the challenge in the second step is to 
transcribe all voices, including non-speech sounds (hmm…, umm…, <breath>), and half-words 

                                                
1Expense can be either in terms of a direct monetary expense or in terms of time value for the project personnel.  
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that were not either completed by the user, or were merely truncated because of a recording 
error. Often, one or more of these challenges make the larger task of audio data collection 
expensive for researchers. 
 
To address this, speech researchers have recently experimented with utilizing the “wisdom of 
crowds” (or crowdsourcing) on online platforms such as Amazon Mechanical Turk (AMT) as a 
cheap way to collect and transcribe audio files [Callison-Burch et al., 2010; Freitas et al., 2010; 
Paek et al., 2007; Parent et al., 2011]. The advantages are many. First, researchers can reach 
participants that are not co-located with them, e.g. a researcher in US can setup a task for a 
participant in India. Second, the recording environments are not controlled for the type of 
microphone or the distance of the microphone from the mouth, which represents the real 
conditions of speech recognition use. And more importantly, such platforms only require 
micropayments, e.g. $0.005 per-audio file, as the task is perceived to be a compensation for 
participants’ spare time and not working hours. This, in fact, is vastly cheaper than traditional 
lab-based recording environments where participants often receive payments in excess of 
$100/hr. 
 
However, the there are two primary challenges with crowdsourcing-based audio data collection: 
cognitive load in task construction, and quality control of the responses received.  For task 
construction, researchers need to be careful in setting cognitively feasible tasks. A task may be 
simple, such as writing down the word that was heard or repeating what was heard. Or it may be 
more complex such as writing down the sentence that was pronounced with non-linguistic 
sounds such as coughing being annotated at the same time as the linguistic content. When 
creating a task, it is recommended that researchers should analyze whether it involves some 
complex set of decisions that can be divided into separate simpler tasks [Parent et al., 2011]. For 
instance, in the above example, there should be two passes to annotate the sentence with one 
pass for the linguistic content and another for the non-linguistic sounds. 
 
The issue of quality control is of equal importance. Quality check can be done at many stages, 
such as before the task (via a pre-test), during the task (via setting up gold standards for a few 
responses and checking the participant’s response against this standard), or after the task (via 
another crowd-sourced validation task). While either of these would seem an obvious choice, 
surprisingly, a survey of 29 publications in 2011 [Parent et al., 2011] revealed that 38% of the 
researchers did not perform any type of quality control, which led to construction of a poor 
quality (and somewhat unusable) corpus for them. Conversely, the authors who followed one of 
the above quality control measures demonstrated that the quality of their audio corpus and 
transcription was almost as good as that collected by experts [Parent et al., 2011]. 
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Yet, not all user groups and conditions can be covered by crowdsourcing platforms. For 
instance, in the example of users in case study #1, rural children will not be available to on 
online crowdsourcing platforms such as AMT or any other, which renders data collection for 
such user groups to be even more challenging. In our efforts in case study #1, we hired an expert 
to make regular field trips to the record audio files from representative speakers. While this 
method can still be expensive, it is more monetarily feasible than scheduling participants to 
come to a lab for recording sessions. Moreover, once a working prototype has been setup, 
additional data collection can occur during its deployment and usage by real users. 
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5.	
  	
  FORMALIZING	
  EXPERT	
  KNOWLEDGE	
  

 

 
 
The focus of this chapter is to understand and formalize the tacit knowledge that speech experts 
use to optimize the accuracy of a speech recognizer (corresponds to Research Goal 1). Once 
formalized, we evaluate the knowledge base on its ability to predict correct optimization steps 
for both seen and unseen datasets. Accordingly, we present two sub-contributions in this 
chapter: first, we detail the process and results from interviews with professional speech 
developers that led to formalizing expert intuition and know-how in a rule-based knowledge 
base. Second, using two datasets, we outline empirical results that demonstrate the ability of the 
knowledge base in predicting successful optimization steps to a non-expert. Finally, we discuss 
how this knowledge base connects with the set of tools (Research Goal 2) that we develop next. 

5.1. Methodology:	
  Contextual	
  Interviews	
  with	
  Speech	
  Experts	
  
As is common in knowledge engineering literature [Schreiber et al., 2000] for eliciting 
knowledge from experts, we conducted semi-structured interviews with five experts, all senior 
PhD students at CMU. Later in this chapter, we call them “old” experts. The interview 
methodology draws on ideas from distributed cognition, which posits that knowledge lies not 
only with the individual, but is also distributed over the tools in the individual’s social and 
physical environment. Thus, our interviews covered questions on experts’ interaction with: (i) 
other individuals, e.g. data collectors, application designers, or other experts, and (ii) with the 
machines, tools, data sources, etc., e.g. listening to audio files using an audio processing tool. 
We divided the interviews in two phases: first, we asked the participants to describe a general 
adaptation process, the common challenges they faced, the people they consulted, and the tools 
they used. For the second phase, we observed them in-action for a speech recognition 
optimization task. We gave each expert a dataset that contained utterances from Indian children, 
recorded in a noisy background on a mobile phone. In section 5.4, we refer to this dataset as 
Dataset A. Since this dataset contained several potential degrading factors, e.g. noise, children’s 

This chapter is an extension of the work presented in: 
 

Kumar, A., Metze, F., Wang, W., Kam, M. (2013). Formalizing expert knowledge for 
developing accurate speech recognizers. In Proc. InterSpeech, Lyon, France, ISCA, pp. 
1121-1125. 
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speech, accent, etc., we felt it was a good choice to understand an expert’s thought process 
while developing recognizers for challenging contexts. We asked each expert to explain the 
steps (similar to retrospective think aloud) that they would take to build the best recognizer on 
this dataset. 
 
Post interviews, the transcripts of the above interviews became the basis for line-by-line open 
coding process to identify relevant concepts and themes that enhanced our understanding of the 
optimization process and the associated intuition [Strauss et al., 2008]. Specific instructions or 
intuitions by the experts were formulated as rules. Once formulated, the same experts vetted 
these rules for consistency and accuracy of formulation. 

5.2. Related	
  Work:	
  Expert	
  Systems	
  and	
  Rule-­‐based	
  Knowledge	
  
Representation	
  

A wide variety of expert systems that model experts’ knowledge for a specific domain have 
been successfully developed in the past, e.g. see review by [Liao, 2005] and by [Compton, 
2013]. Depending on how the knowledge is represented in such system, they are classified in 
one of the following four categories: decision trees, rules, semantic nets, or schemata. Of these, 
decision trees and rule-based systems are typically preferred when the entire knowledge space is 
difficult to exhaustively define at the start, and there’s a requirement to add additional rules or 
criterion as and when new knowledge becomes available. On the contrary, semantic nets and 
schemata systems perform well if the entire knowledge structure is well defined at the 
beginning, and there’s a need to capture semantics, e.g. capturing inheritance relationships 
between entities.  
 
From our interviews with speech experts, we realized that our knowledge representation should 
meet the following requirements: 

• Support iterative, incremental development because new techniques might get developed 
after the knowledge base is formed, 

• Should be functional with incomplete knowledge at the beginning, at least for the 
acoustic and language situations it has seen before, 

• Support conflicting recommendations from the experts, 
• Be able to learn from its mistakes, and 
• Reflect the structure of knowledge that’s tacitly followed by human experts. 

 
Given the above requirements, our knowledge representation follows a rule-based structure, 
primarily for three reasons: (1) Ease of representation: we recognized that experts had 
developed many “unspoken rules” that followed an “IF … THEN … ELSE …” structure, (2) 
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Scalability: previous research in rule-based systems has shown that it is relatively simple for 
knowledge engineers (or domain experts) to add new techniques in a rule system [Richards, 
2009]. This would be of importance, given the ever-expanding needs of speech recognition, and 
(3) Rule based systems are easier to maintain and modify than decision trees for complex 
knowledge domains, such as the one we are pursuing. 
 
At the same time, rule-based expert systems have been tremendously popular in many important 
domains. For instance, in the medical domain, MYCIN [Shortliffe, 1976] was one of the first 
expert systems that recommended antibiotics for bacterial infection. MYCIN took a set of 
symptoms as input, found the best rule that matched the criteria, and then, recommended the 
corresponding antibiotic. In a study conducted, MYCIN out-performed the recommendations 
made by several doctors [Shortliffe, 1976]. Since then, we have seen a surge in rule-based 
expert systems. Morgan Stanley announced an increase of $1 million in profit after the 
installation a rule-based expert system to assist in security trading and portfolio analysis. Many 
others were developed for recommending mortgages [Steinmann et al., 1990], planning personal 
finance [Dirks et al., 1995], forecasting climate [Rodionov et al., 1999], plant process control 
[Acosta et al., 2001], tax consultation [Shpilberg et al., 2012], legal consultation [Clancy et al., 
1989], etc. In the computational domains, expert systems have been developed for 
recommending correct cleansing technique in big data [Dani et al., 2010], for finding issues in 
code that limit interoperability of web interfaces [O’Connor et al., 2005], to assist in chip design 
[Bourbakis et al., 2002], to guide development of planar robots [Sen et al., 2004], and in 
tutoring systems [Hatzilygeroudis et al., 2004]. To our knowledge, no expert system to date has 
been developed for guiding the development of an accurate speech recognition system. 

5.3. Primer	
  to	
  Speech	
  Recognition	
  
ASR is generally thought of as a problem of pattern classification. Namely, we are attempting to 
classify an observation (or utterance) O as belonging to a class W, where W is a set of words 
best representing the observation [Rabiner et al., 1993]. The words in W are drawn from a finite 
vocabulary, but the number of combinations possible is tremendously large. In other words, we 
want to find the word sequence W that has the maximum probability given the observation O, 
i.e. we want to maximize P (W|O). This task is often referred to as large-vocabulary, continuous 
speech recognition (LVCSR). By using Bayes rule, this search space can be restated as: 

𝑊! = arg𝑚𝑎𝑥! 𝑃 𝑊 𝑂 = arg𝑚𝑎𝑥!
𝑃 𝑂 𝑊)𝑃(𝑊)

𝑃(𝑂)  

 
Since 𝑃(𝑂) is constant and given, the above equation simplifies to finding the best  

hypothesis  𝑊! such that: 
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𝑊! = arg𝑚𝑎𝑥! 𝑃 𝑂 𝑊)𝑃(𝑊) 
 
By restating the fundamental problem of speech recognition in this way, we have restated the 
problem into components that is easier to model. 𝑃 𝑂 𝑊) is referred to as the acoustic model, 
and 𝑃(𝑊) is the language model. These two models form the fundamental components of a 
speech recognizer. In addition, a pronunciation dictionary forms a third important component 
that maps each word in the vocabulary to a phoneme sequence, i.e. pronunciation of the word, 
and is used in the development of the acoustic model. The quality of these two models along 
with that of the pronunciation dictionary determines the overall quality of the speech recognizer. 
 
The acoustic model is created by taking a set of audio files with corresponding transcripts as 
input, and using speech recognition toolkits such as Kaldi [kaldi] or Sphinx [sphinx] to create a 
statistical representation of the sounds that make each word. Sometimes these representations 
are at the word level, which means that the smallest unit is a word in the acoustic model; 
however such models become rare for any recognizer having a vocabulary size of greater than 
100 words or so. Typically the representations are at the phoneme level, which means that each 
word has to also have a word-to-phoneme mapping – this is the pronunciation dictionary. In this 
way, scaling up to thousands of words is possible, as the phoneme set is usually small in a 
language, e.g. English has a phoneme set of 42 phones. 
 
The language model is created by taking in a corpus of text comprising of naturally occurring 
sentence structures, e.g. transcription of broadcast news, etc. It is developed using software such 
as SRILM [Stolcke, 2002] or LMSharp [lmsharp] It assigns a probability to a sequence of m 
words by means of probability distribution. For instance,  
 

𝑃 𝑊 =   𝑃 𝑤1  𝑤2  𝑤3…𝑤𝑚  
 
There are many types of language models: in general, a n-gram model accounts for n-1 words 
history. For instance, a unigram model will compute: 
 

𝑃(𝑊) =   𝑃 𝑤1)  𝑃(𝑤2)  𝑃(𝑤3)…𝑃(𝑤𝑚  
 
Similarly, a bigram model will compute: 
 

𝑃(𝑊) =   𝑃 𝑤1)  𝑃 𝑤2   𝑤1)  𝑃(𝑤3|𝑤2)…𝑃(𝑤𝑚|𝑤𝑚 − 1  
 
Although a high value n in n-gram is preferred as it accurately captures how the language is 
structured, it also requires more text to achieve reliable probability distributions. Typically 
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LVCSR systems use trigram models, and apply a number of optimization techniques to further 
improve reliability. 
 
Many aspects make developing accurate LVCSR difficult. Some reasons are: 

• There are no clear boundaries between words in the input set of observations O. 
• The pronunciation of words can vary considerably due to the context, user, or both. This 

affects the quality of the pronunciation dictionary and the acoustic models. 
• Since the search space of W is extremely large in LVCSR, it is not possible to search the 

entire space for near real-time recognition, and heuristics are used to determine a 
smaller search space. It’s possible that the correct hypothesis lies outside this reduced 
search space. 

• Factors such as noise, speaking rate, hyper articulation, accented speech, children’s 
voice, etc. can tremendously impact speech recognition as the signal is often distorted or 
mixed with other sources of information, e.g. noise. 

 
A mismatch between training and test set is often one of the leading causes of a poor speech 
recognizer. The purpose of this thesis is to automatically identify reasons of error occurring in 
speech recognition results (which could be from either acoustic modeling issues, language 
modeling issues, pronunciation dictionary issues, or all), and use those to assist non-speech 
experts in developing accurate speech recognizers. 
 

5.3.1. Word	
  Error	
  Rate	
  
How do you assess quality of a speech recognizer? In the speech recognition community, there 
is a widely used metric known as Word Error Rate, which measures how error prone the system 
is. To calculate WER, the recognized word sequence is compared to the actual spoken word 
sequence using Levenshtein’s distance [Levenshtein, 1966], which computes the minimal 
number of string edit operations–substitution (S), insertion (I), and deletion (D) necessary to 
convert one string to another. Thereafter, WER is computed as: WER = (S + I + D) / N, where 
N is the total number of words in the true, spoken word sequence. 
 
In terms of the typical values for WER, it really depends on the task. If the task is that of 
continuous speech recognition with a very large vocabulary (>100,000 words), then 10% WER 
is excellent, although systems exhibiting WERs upto 30% are also usable [Munteanu et al., 
2006]. If on the other hand, it is an isolated word recognition task for a tiny vocabulary size 
(<100 words), even a 10% WER system is considered not so good. Additionally, for some 
systems, the WER may exceed 100% where the total number of errors exceeds the total number 
of words actually spoken. Such systems are rare. 
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5.4. Knowledge	
  Formalization	
  
Problems in speech recognizer development are varied and numerous, including collecting 
appropriate data, performing several sanity checks and cleaning operations on the training and 
test data, properly understanding the usage situation, i.e. the users and the usage environment, 
and then iteratively performing correct optimizations. Fortunately, there are many “signals” that 
expert researchers look at when picking the correct technique from the gamut of methods 
available, which we detail below. Moreover, from the analysis and coding of important themes 
from the interviews, we realized that most techniques that expert researchers followed could be 
classified into specific categories, and each category of techniques was followed in a specific 
process. We captured and formalized this information in a “process framework” that we call 
ChAOTIC, short for Check data, Adapt, Optimize, Tune, and Integrity check. To sum, the 
analysis and amalgamation of the above interviews led to two important results: (A) a step-by-
step process framework that experts follow while optimizing for accuracy, and (B) a set of rules 
that guide their choices at each step in this process. Below we detail each of them. 

5.4.1. ChAOTIC	
  Process	
  Framework	
  and	
  Rules	
  
A typical accuracy optimization process starts with experts receiving a small set of audio data 
files (and associated transcripts) recorded in the representative setting of the application use. In 
the absence of a “universal recognizer”, these files are necessary for two main reasons: first, 
speech experts are typically not data collectors or field researchers i.e. they don’t interact 
directly with end-users of speech applications and may not necessarily have access to the users 
that they develop recognizers for. Sometimes, the users may be thousands of miles away, e.g. a 
researcher based in USA developing a recognizer for rural users in India. Second, and more 
important, these audio files are necessary to train and adapt existing high-quality recognizers (or 
in some cases, train a completely new recognizer), which is specific for the application’s usage 
situation. The expert’s task, then, is to understand and analyze the application situation, and 
develop a recognizer with the best possible accuracy using the data available. Of course, more 
data can be collected, which might improve accuracy further, but in most circumstances, a 
working recognizer is needed to facilitate further data collection by deploying a working 
prototype. 
 
Here, we describe the Checkdata-Adapt-Optimize-Tune-Integritycheck components that 
comprise the ChAOTIC process framework. This sequence also reflects the same steps that a 
speech recognition expert (or a team) usually takes when building an accurate recognizer for 
new set of users and acoustic or language situations. Note that while each expert might have 
their own methodology, the below method reflects a typical process, as amalgamated from the 
interviews with speech experts, and also our own experiences as described in Chapters 2 and 3. 
Because of the high interdependency between each step, this process is also iterative, i.e. for 



 46 

instance, experts can return back to step 2 “Adapt”, after they have finished running a specific 
step in step 3 “Optimize”. 

Step	
  0:	
  Baseline	
  
This step involves selecting an appropriate starting point for the development process. It could 
be an off-the-shelf recognizer that matches the characteristics of the required recognizer, or a 
baseline recognizer developed from the training dataset. This step is critical because properly 
selecting a baseline can become vital to the type of performance that the recognizer finally 
achieves. 
 
The expert’s decision is usually dependent on what the application’s intended purpose of use is 
(command-and-control vs. dialogue system), how many speakers it is built for (speaker-
dependent vs. speaker independent), how much data is available (1hr, 5hrs, 10hrs, or 50hrs), and 
what the vocabulary list size is (tiny: 60 words, or small: 500 words). For each such decision 
point, we documented how the experts handled the specific situation, e.g. in the above case for 
using an existing recognizer vs. training a new acoustic model, the rule documented was:  
 

“IF no matching ‘off-the-shelf’ baseline model found, AND 
(app. = command-and-control for single speaker, AND tune data > 1 hour of recording, 
AND vocabulary size < 60 words), OR 
(app. = command-and-control system for many speakers, AND tune data > 5 hours of 
recording, AND vocabulary size < 60 words), OR 
(app. = dialogue system for single speaker, AND tune data > 10 hours of recording, AND 
vocabulary size < 500 words), OR 
(app. = dialogue system for many speakers, AND tune data > 50 hours of recording, AND 
vocabulary size < 500 words) 
 
THEN train your own acoustic model, 
ELSE use an existing ‘off-the-shelf’ acoustic model” 

Step	
  1:	
  Check	
  and	
  clean	
  data	
  
Data obtained from field researchers is usually the following: a set of audio files, corresponding 
transcripts, a list of words that they want recognized in the final application (called a vocabulary 
list), and a file containing metadata of the users, e.g. demographics, device information where 
each recording was made, etc. From the perspective of the speech recognition expert, this data, 
in its raw form, can have many problems. For instance, transcripts can have spelling errors or 
fragmented words, such as “alphabe..” or “alphab..” for the word “alphabet”. For fragmented 
words, it’s difficult to ascertain whether these are merely spelling errors, or whether they 
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represent an actual half-word in the corresponding audio. In the former case, the transcript needs 
to be edited, and in the latter case, the fragmented word needs to be added to the list of 
vocabulary words. Another pre-processing step that needs to be done is to check if all the audio 
files are recorded using the same frequency and same bit-rate. Depending on what the final goal 
is for the application, the necessary audio files would have to be down-sampled (more common) 
or up-sampled (rare). 
 
Other rules take into consideration other characteristics of the decision making process, and an 
entire list of the characteristics that the knowledge base covers is given below in 
“Characteristics of Knowledge Base”. 

Step	
  2:	
  Adaptation	
  or	
  Training	
  
Once the initial data and corresponding files have been checked and cleaned for any potential 
errors, the experts usually proceed with one of two steps: 
• Training a new acoustic and language model: for the acoustic model, this involves 

appropriately splitting the data into a train and a validation set, and applying standard 
“pipeline” of techniques, such as: feature extraction, context-independent and dependent 
models, speaker adaptive training, discriminative training, etc. While these standard 
pipelines may differ from tool to tool, but one exists for nearly every toolkit, which is 
constantly updated to incorporate the latest techniques. Language modeling training is far 
more standardized. All the experts we interviewed followed the more-or-less the same 
process of collecting all the training transcripts in one single file, and using a widely 
accepted standardized tool, SRI Language Modeling Toolkit [Stolcke, 2002] to obtain an 
initial language model.    

• Adapting an existing “off-the-shelf” acoustic and language model: the advantage of starting 
with an existing high-quality “off-the-shelf” recognizer is that experts already have a 
functional recognizer as a baseline, and this model needs to be adapted to better understand 
the peculiar characteristics of the users or the environment represented in the data from the 
field researchers. The critical point to note here is that the techniques involved in adaptation 
perform “general” linear transformations of the underlying model parameters (e.g. mean and 
variance of HMMs in the existing model) closer to the characteristics of the data from the 
field researchers. They do not, however, apply specific optimization techniques necessary to 
deal with specific issues, such as accent or noise, which is dealt in step 3. Several rules were 
documented for this step. E.g.: 
 
“IF Adaptation Data Size < 20 sec per-speaker THEN perform Global mean-only MLLR” 
“IF Adaptation Data Size > 100 utterances per-speaker, THEN first perform MLLR using 
first 100 files, and next switch to MAP.” 
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In addition, to picking the correct transformation technique, this step also accounts for 
anomalies or missing data files from field researchers. For instance, if the transcripts were 
missing for the audio files provided (in this case, the adaptation data), this rule would fire: 
 

“IF Transcripts = none, THEN perform two-pass adaptation” 
 

Two-pass adaptation works like this: it performs two runs. In the first run, the existing 
recognizer is used to decode the adaptation audio files and arrive at a hypothesis transcript for 
each audio file. In addition to the hypothesis, the recognizer outputs a confidence score in its 
result. These results (hypothesis and confidence numbers) are used in a second pass to adapt and 
transform the parameters of the original model closer to the adaptation dataset. 

Step	
  3:	
  Optimize,	
  dependent	
  on	
  the	
  usage	
  context	
  and	
  the	
  user	
  	
  
Adaptations (as in step 2) are necessary but insufficient. Moreover, the general transformations 
above apply only to the acoustic and language model, and leave the pronunciations dictionary 
unaltered, when in fact, all are equally important. In contrast to “general” transformations in 
step 2, this step concerns applying optimization and normalization techniques that relate to 
specific reasons of failure or degrading factors, e.g. accent, noise, speaking rate, etc. In doing so, 
the objective is to first identify reasons of where the recognizer is failing, and then apply 
techniques most suitable to tackling them. Unfortunately, experts we interviewed did not have a 
quantitative way of identifying such degrading factors, and applied guesstimates by manually 
listening to a few audio files that were incorrectly recognized and mentally comparing them to 
those used in the baseline model to understand the point(s) of differences. This trend was also 
found in a number of recent papers we reviewed [Van Doremalen et al., 2011; Tewari, 2013; 
etc.]. 
 
In our experiments (as we will discuss in the next section), we automate the above qualitative 
process. The goal is to see whether an automated method could identify similar issues as the 
manual inspection by experts. To do so, we extract quantitative values for several degrading 
factors for each audio file in the test set, and its recognition result from the recognizer after step 
2. Next, we perform univariate and multivariate regression to identify the impact of each factor 
on recognition accuracy [Haberman, 1979]. Based on the statistical significance (p<0.05), we 
identify the significant factors, and based on the coefficient of correlation, we rank them from 
most to least impact. Next, we perform corresponding adaptations for the significant degrading 
factors, as enlisted in the rules from the expert interviews. E.g.  

“If degrading factor = SNR, perform Cepstral Variance Normalization”  
“If degrading factor = F0, perform Vocal Tract Length Normalization”, etc. 
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Step	
  4:	
  Tune	
  recognizer	
  parameters	
  	
  
This step includes tweaking recognizer parameters such as insertion penalty, silence penalty, or 
changing the language model weight based on inspecting the type of errors in the recognition 
output from step 3. It also includes analyzing confusion pairs, and possibly recommending 
alternative phrases to change the interface dialogue for reducing common errors. 

Step	
  5:	
  Integrity	
  Check	
  	
  
This step includes checking if the models have been trained on sufficient data, e.g. each 
Gaussian in the speech recognizer acoustic model should be trained or tuned on a minimum 
amount of data. 

 
Finally, a further advantage of splitting the above process into multiple components (check, 
adapt, optimize, tune, integrity check) is that most experts have specialized domains of 
expertise, even within speech recognition. These domains align well with the above 

 
Figure 5.1: Flowchart to depict a typical adaptation process for a speech recognizer, as amalgamated 
from the interviews of speech experts. Possible interactions of the expert developer (or ultimately, the 
toolkit) with the non-expert SUI interface designer are denoted with a user icon. 
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components, e.g. a data analyzer or a staff member usually focuses on data cleansing activities, 
an adaptation expert focused on the acoustic model transformations discussed above, an 
optimization expert or an speech recognition analyst focuses on identifying the degrading issues 
and performing the corresponding normalizations or optimizations, etc. Therefore, when it 
comes to verification and expansion of the current knowledge base, each expert can focus on 
their domain of expertise and ensure that the knowledge base corresponding to independent 
components above are updated and consistent with the state-of-the-art methods. 

5.4.2. Characteristics	
  of	
  Knowledge	
  Base	
  
In addition to the interviews, we also reviewed over 15 publications on speech adaptations and 
error analysis, e.g. see [Bali et al., 2013; Goronzy et al., 1999; Lee et al., 1992; Luce et al., 
1998; Shinoda, 2011; Woodland, 2001; Yee et al., 2012] to further understand techniques that 
experts use. Based on these, our current knowledge base covers the following variations 
spanning over 80 rules: 

1. Application: isolated words, dialogue system, or dictation. 
2. Recording Device: external headset, telephony, etc. 
3. Speakers: single, multiple, speaker-independent or not. 
4. Vocabulary Size: tiny (<100 words), small (>100 words), medium (>1000 words), large 

(>10000 words). 
5. Vocabulary Type: expressions, technical, conversation, etc. 
6. Adaptation Data Size: small (1hr), medium (5hrs), large (10hrs), very large (>50hrs). 
7. Availability of Transcripts: exists for the entire set, partial set, or none. 
8. Noise Conditions: quiet room, street, competing talkers, etc. 
9. Speaker Factors: age, gender, emotion, dialect, etc. 

Note the definitions of tiny, small, medium, large, and very large for some of the above 
characteristics have been noted after consulting the experts we interviewed. It is possible that 
experts in other groups or professions might have a different definition, however, the rules 
instituted in the current knowledge base follow the terminology listed above.  

5.4.3. Expert	
  System	
  and	
  Forward	
  Chaining	
  Inference	
  Engine	
  
An expert system typically consists of three components as follows: 

1. Knowledge Base: contains specific facts about the expert area and rules that the expert 
system will use to make decisions based on those facts. 

2. Inference Engine: an engine that process existing facts using the rules instituted in the 
knowledge base. 

3. Observation Set: a set of current facts or conditions. 
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For a rule-based knowledge base, the inference engine can either be implemented with forward 
chaining or backward chaining. In forward chaining, the processing starts from given 
observations, and rules are fired based on whatever observation are true. Firing these rules may 
result in finding more observations (which are then added to the observation set), or finding 
directions for the system to execute. This process continues until all rules have been processed, 
i.e. have either fired or rejected. As an example, consider the following situation: 
 
Observation set =   {O1, O2, O3, O5} 
Knowledge Base = {rule #1: If O1 and O2, then O4; 

         rule #2: If O4 and O5, then D1; 
         rule #3: If O5 and O6, then D2} 

 
In the first round, rule #1 is fired as O1 and O2 exist in the observation set, and O4 is added to 
the observation set. In the second round, rule 2 is fired, because the revised observation set now 
contains both O4 and O5, and direction 1 is executed. 
 
In backward chaining, the processing starts from selecting a rule and regarding it as a problem 
to be solved. Such procedures are often called goal driven inferential processes. For example, 
the inference engine might be given the goal to "find the all observations that need a specific 
technique to be used" and would work back from there, asking questions as necessary to 
confirm. For instance, in the above example, a question could be asked, “do we have all the 
necessary conditions to perform direction D2”. The inference engine would select rule #3, and 
check if D5 and D6 exist in the observation set, or if any other rules could be selected that have 
D5 and D6 as its result. In our case, the inference engine is as such forward reasoning, as the 
requirement is to identify appropriate techniques (directions) given an observation set. 

5.4.4. Conflict	
  Resolution	
  
On various occasions, we received conflicting recommendations from the experts. For instance, 
such conflicts arose for the initial setup condition, e.g. when to start with an existing baseline or 
train a new acoustic model. In the knowledge engineering literature [Negnevitsky, 2005], three 
approaches have been suggested to deal with conflicts while formalizing expert knowledge: 

• Fire the rule with the highest priority. The priority can either be assigned as a number or 
a just the order of rules in the knowledge base can denote priority. 

• Fire the rule that’s most specific. For instance, if three rules exist in the knowledge base, 
“IF A and B, then X”, “IF A, then Y”, and “IF B, then Z”, and observations A and B both 
exist, then fire the first rule as it is more specific. This idea is based on the assumption 
that a specific rule possesses more information than a general rule. It also takes into 
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account that somehow the recommendations will change when the combination of 
observations are present together, instead of independently. 

• Fire the rule that uses the most recent observation. This method assumes that the 
observations are time dependent and that they have time stamps. 

 
In the context of the knowledge base for speech recognition, we instituted conflicting options as 
alternates, and ranked them based on the number of experts that recommended the option. In 
other words, we assigned priority rankings based on the “the number of experts that 
recommended each option”, and fired the rule that had the highest priority. As such, the other 
two approaches of firing the rule that’s more specific, and firing the rule with most recent 
observation did not apply for our knowledge base as the observations were neither dependent on 
each other, nor had time dependence. Furthermore, to be able to learn from its mistakes, we 
allowed the inference engine to update the priority rankings in the knowledge base of competing 
options based on results of actual test runs. Here’s how the system would work: in the event a 
rule with multiple options gets triggered, the knowledge base would first recommend the top 
most option; and if the non-expert developers were unsatisfied with accuracy, they could query 
the knowledge base again for an alternative, if any existed. Based on the results of what actually 
worked, the developer could provide feedback to the knowledge base that would update the 
ranking of the alternatives. 

5.5. Datasets	
  
We used the following two datasets for our evaluation: 

5.5.1. “Seen”	
  Dataset	
  A:	
  Indian	
  Children’s	
  Speech	
  
Dataset A – also used during the knowledge elicitation process – comes from case study #1 
[Kumar et al., 2012].  In total, it comprises of 6250 single-word English utterances from 50 rural 
Indian children (~2 hours of speech). The speakers are equally split across gender and grades 4-
5. Each child spoke 125 words selected from a set of 325 words, ensuring equal coverage for all 
words. The audio recordings were made on Nokia N810 using a close-talk microphone in out-
of-classroom, noisy backgrounds. In our experiments, we set aside data from 10 speakers (5 
males) as test set, and the remaining available as tune set (corresponding to the data that experts 
will receive from the field researchers). 

5.5.2. “Unseen”	
  Dataset	
  B:	
  CMU	
  Kids	
  Corpus	
  
Dataset B, popularly known as “CMU Kids Corpus” [Eskenazi et al., 1997], comprises of 
English sentences read aloud by 76 children (24 males). In total, the dataset has 5180 recordings 
where each recording represents one sentence. The recordings were made in a classroom during 
school hours, and there are some files with background noise such as students fiddling with the 
equipment. There are two types of speakers: “good” readers (44) and “poor” readers (32). For 
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the latter, the speech has some typical reading errors that children make when not confident 
about a text. In our experiments, we set aside data from 16 “poor” speakers (8 males) as test set, 
and remaining available as tune set (corresponding to the data that experts will receive from the 
field researchers). 

5.6. Data	
  Annotation	
  
Labeling each audio file on its acoustic and behavioral properties is critical to understand the 
reasons of poor (or conversely, good) speech recognition performance. We annotated our data 
on the following features that correlate with popular reasons of recognizer failure. 
1. Pronunciation score measures the quality of user’s pronunciation on a scale of 1-10, in 

comparison to a native English pronunciation. To calculate the score, we followed the 
pronunciation scoring strategy as in [Ronanki et al., 2012]. In this strategy, we first force-
align the audio file with its transcript to obtain a phone-segmented file. Next, we calculate 
several aggregated statistics of each phone from these files and compare them to exemplar 
statistics of native English pronunciations from TIMIT data [Garofolo et al., 1993] to get a 
pronunciation score. 

2. Signal-to-noise ratio (SNR) measures the strength of the signal with respect to the 
background noise. In other words, it measures the quality of the audio file, independent of 
the word uttered. This account for variability in the microphone’s position while recording, 
or background noises. We employed the “direct space search” algorithm implement by the 
widely recognized NIST Speech Quality Assurance Package [nist-spqa]. 

3. Fundamental frequency (F0) of voice is the lowest frequency at which human vocal cord 
vibrates. Formant frequencies (F1-F3) are its spectral peaks. These were calculated using 
Praat [praat], and measured in Hz. 

4. Speaking Rate (SPR) is the speed at which the user talks, typically measured in phonemes 
or syllables per second. It is calculated as the average time for the user to say one phoneme  

𝑆𝑃𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝ℎ𝑜𝑛𝑒𝑚𝑒𝑠

𝑠𝑡𝑎𝑟𝑡_𝑠𝑝𝑒𝑒𝑐ℎ_𝑠𝑖𝑔𝑛𝑎𝑙  (𝑚𝑠)   − 𝑒𝑛𝑑_𝑠𝑝𝑒𝑒𝑐ℎ_𝑠𝑖𝑔𝑛𝑎𝑙  (𝑚𝑠) 

5. Intensity is the sound power per-unit area and is a measure of how loud the sound is. It was 
also calculated using Praat [praat]. 

5.7. Evaluation	
  Experiments	
  
After annotating our datasets, the first question we sought to answer was whether the 
Knowledge Base (KB) correctly modeled experts’ knowledge and whether we could 
quantitatively identify the degrading factors that the experts recognized through manual 
inspection (in step 3 of the ChAOTIC process) for the same dataset as used during contextual 
interviews, i.e. Dataset A. Figure 5.2 summarizes the sub-steps involved in identifying the 
degrading factors in the speech recognition results. 
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5.7.1. Experiment	
  1:	
  Dataset	
  A	
  –	
  Old	
  Experts	
  vs.	
  Knowledge	
  Base	
  
To do so, we compared the recommendations made by the KB with those made by the “old” 
five experts (referred later as E1 through E5), and how those translated into accuracy gains. In 
other words, we wanted to assess its internal validity.  The objective was to build a speaker-
independent isolated word recognizer for 325 words in dataset A. 
 

 Univariate Multivariate 
 β p-value β p-value 
Pron. Scr. 0.07 0.05* 0.19 0.03* 
SNR 0.24 0.01* 0.02 0.74 
SPR 0.05 0.04* -0.44 0.01* 
F0 0.62 0.01* 0.19 0.14 
F1 0.34 0.09 0.00 0.98 
F2 -0.05 0.50 0.01 0.85 
F3 -0.05 0.53 0.02 0.79 
Intensity 0.70 0.06 0.69 0.02* 

Table 5.1: Results from linear regression. β indicates the coefficient of regression and p-value indicates its 
statistical significance. (*) means p<0.05. 

Table 5.1 highlights the results from the univariate and multivariate linear regression of the 
several degrading factors that we investigated. Non-native English accent (pronunciation score) 
and speaking rate turned out to be significantly correlated with accuracy for Dataset A in both 
univariate and multivariate regression, implying that they significantly impacted accuracy and 
their impact did not suffer from interaction effects with other factors respectively. At the same 
time, E3 and E4 recognized accent as an issue as well from their manual inspection, and 
recommended “Dictionary Adaptation” i.e. adding pronunciation variants to the dictionary as a 
potential solution (as in Table 5.2). E1 also acknowledged accent as an issue, but mentioned that 
adding pronunciation variants may not result in much accuracy gains, as general adaptation 
techniques like MLLR and MAP (in step 2 of the ChAOTIC process) had already been done. 
Instead, he was working on a new accent modeling technique, but since it was not published yet, 

 
Figure 5.2: A visualized representation of the sub-steps used in identifying the significant degrading factors 
in speech recognition results, as in Step 3 of the ChAOTIC process framework. 
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we did not include it in our analysis. None of the experts identified speaking rate (SPR) as an 
issue. None-the-less, we considered both accent and SPR for our next step. 
 
Table 5.2 summarizes the recommendations from the experts and the KB, and the corresponding 
accuracy gains (or conversely, reductions in error rates). Overall, the KB outperformed all 
experts on test set for Dataset A. One point of difference came from starting with an existing 
acoustic model  (AM) such as WSJ and then adapting it for the tune set using general adaptation 
rules such as MLLR and MAP (E1-3), or training one from scratch (E4-5 & KB) using the tune 
set. This decision was part of step 1 in the ChAOTIC process. E1-3 had reasoned that the 
amount of tune data available for training a new AM is very small, and so starting with an 
existing AM is best; whereas E4-5 had reasoned that the characteristics of the data were 
different from any available AM, and given that it’s a small vocabulary recognition task, it 
would be best to train a new AM. While designing the KB, we had instituted both the options as 
alternatives for small vocabulary, low-resource situations. Given that 3 experts had 
recommended to adapt an existing model, the KB first recommended that option, but once the 
low accuracy was noticed, it switched to the next best alternate i.e. train a new acoustic model. 
In addition, after “seeing” the results, it updated the ranking of the two alternatives. 
 

Optimization Techniques Experts KB 
E1 E2 E3 E4 E5 

1 - Baseline: existing AM 94.7 94.7 94.7   94.7 
1 - Baseline: train AM    25.4 25.4 25.4 
2 - MLLR 77.3 77.3 77.3    
2 - MAP 78.3 78.3     
3 - VTLN  76.9 76.9  24.9  
3 - Dictionary   71.7 22.2  22.2 
3 - Frame-rate      20.8 
Final 78.3 76.9 71.7 22.2 24.9 20.8 

Table 5.2: Word error rates (in %) for test set in Dataset A. The numbers in the first column are the step nos. 
from ChAOTIC process framework. 

5.7.2. Experiment	
  2:	
  Dataset	
  B	
  –	
  New	
  Experts	
  vs.	
  Knowledge	
  Base	
  
Our second evaluation focused on assessing the generalizability of the KB for an unseen dataset 
B, and comparing its recommendations against new experts (E6 & E7). In other words, we 
wanted to assess its external validity. We asked E6 & E7 to develop a speaker-independent 
speech recognizer for “poor” speakers, as in Dataset B. Table 5.3 summarizes their 
recommendations and the error rates comparison with those from KB. The KB correctly 
identified data cleaning issues such as half words (E6-7) and spelling errors (E7), and 
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recommended that we train our own acoustic model (E7). E6, however, felt that since we had 
access to data from “good” readers, we should first train a “high-quality” model on good 
speakers, and then use it to find the alignments on the data from poor readers. This technique, 
known as model bootstrapping, is useful in low-resource situations, especially when you have 
access to a high-quality recognizer. Since we did not have a high-quality recognizer when the 
KB was developed, this technique was not covered by it. None-the-less, it is simple to add 
because we have a clear definition of its use, i.e. “presence of high-quality recognizer”, and 
“low-resource situation”. For the next optimizations, the regression correctly pointed SNR (E6) 
and SPR (E7) as the degrading factors. 
 

Techniques E6 E7 KB 
1 - Add half words to dictionary ✔ ✔ ✔ 
1 - Correct spelling errors  ✔ ✔ 
1 - Baseline: train AM   56.1 56.1 
1 - Baseline: train AM + model bootstrapping 42.2   
3 - CVN (SNR) 40.9  54.3 
3 - Frame-rate (SPR)  45.2 52.2 
Final 40.9 54.8 52.2 

Figure 5.3: Word error rates (in %) for test set in Dataset B. The numbers in the first column are the step 
nos. from ChAOTIC process framework 

5.8. Discussion	
  and	
  Next	
  Steps	
  
From the above results, we can make the following observations: 
• With respect to step 1 and 2 of the ChAOTIC process, for both datasets, the Knowledge 

Base, in most cases, recommended the better of the techniques recommended by all the 
experts. When there was a conflict between experts during knowledge elicitation, the 
knowledge base picked the technique with the highest ranking, i.e. the technique that was 
most recommended during knowledge elicitation. However, in case, the chosen technique 
had poor results, the developer-users could query for the next best alternative, and also 
provide feedback if the alternative worked better in the context of their dataset. 
Unfortunately, there’s no exact definition of “poor,” as the threshold of acceptable baseline 
recognition is dependent on the type of task (dictation vs. conversation vs. isolated words), 
size of the vocabulary, and many other factors. However, the feedback provided by the 
developer-user helps the knowledge base adjust its ranking of different alternatives and 
over-time provide higher quality recommendations first. 

• With respect to step 3 of the ChAOTIC process, for dataset A, the Knowledge Base 
identified additional degrading factors that the experts missed out (i.e. SPR), in addition to 
those that the experts identified from their manual inspection (i.e. accent). Corresponding 
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adaptations for both the degrading factors led to improvements in the accuracy indicating 
that the knowledge base can not only mimic expert’s intuition, but also, in some cases, 
surpass it by a more systematic error analysis. For dataset B, E6 and E7 identified two 
different degrading factors. The KB, through its regression analysis, identified both of them, 
which both led to accuracy gains. In future, a more comprehensive evaluation with other 
datasets would of course be needed to establish these claims further. 

• For dataset B, E6 recommended a technique that was not initially covered by the knowledge 
base, but was significantly better than the alternatives that the KB had. With researchers 
pushing the boundaries of speech recognition, such situations are likely to arise in the future 
as well as new techniques become available, or old techniques become completely obsolete. 
Fortunately, by its rule-based design, the knowledge base can be easily updated to include 
newer techniques by “expert researchers,” who would be maintainers of this knowledge 
base. This aspect of updating rule-based knowledge base has also been demonstrated in the 
knowledge engineering literature [Richards, 2009].  

 
In this chapter, our aim was to understand the tacit process that experts use to optimize a speech 
recognizer, and formalize it in a rule-based knowledge base. Through interviews we experts, we 
formalize the tacit process and presented its key six steps (also abbreviated as ChAOTIC). We 
also presented the design and characteristics of a rule-based knowledge base that models 
experts’ understanding of speech recognition issues. Further, we assessed if with the help of this 
knowledge base (KB), we can automatically recommend appropriate optimization steps. Our 
results show that the KB can successfully predict optimization techniques for previously seen 
acoustic situations during the interviews or the papers reviewed, both in seen and unseen 
datasets. Moreover, by the nature of its rule design, it can be expanded to incorporate additional 
insights on specific acoustic and language contexts by other experts [Richards, 2009]. 
 
In the next chapter, we present the design and development of SToNE: Speech Toolkit for Non-
Speech Experts, which integrates this knowledge base in a infrastructure over the web and in a 
Virtual Machine, so that the KB can improve from the experiences of test runs of many potential 
users. We also discuss the design and development of several error analysis tools that form a 
key part of SToNE. In Chapter 7, we evaluate SToNE with semi-experts and non-experts on the 
task of building a children’s LVCSR. 
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6.	
  	
  SToNE:	
  SPEECH	
  TOOLKIT	
  FOR	
  
	
  	
  NON-­‐EXPERTS	
  
 
SToNE: Speech Toolkit for Non-Experts is a toolkit that enables non-speech experts to easily 
develop accurate speech recognizers for any user or acoustic situation, with minimal 
requirements for expertise in speech recognition. This chapter relates to Research Goal 2, which 
concerns the design and development of SToNE. In particular, the sub-goals in RG2 are: 

o Sub-goal 1: Enable a fine-grained understanding for non-expert developers of why a 
speech recognizer is not working, 

o Sub-goal 2: Provide guidance to the non-experts on what they can do to make it work. 
This includes both optimizations to the underlying recognizer and the user interaction 
style. In some cases, it will also automatically perform the recommended optimizations. 

o Sub-goal 3: Enable performance visualization of competing setups to understand the 
tradeoff’s involved in each setup. 

These sub-goals and their actual realizations in the toolkit are further discussed in Section 6.2. 
 

6.1. Related	
  Work:	
  Toolkits	
  and	
  Error	
  Analysis	
  

6.1.1. Toolkits	
  in	
  Machine	
  Learning	
  
Machine Learning deals with a general class of problems such as speech recognition or image 
classification. Given the success of machine learning (ML), in general, for effectively solving 
hard problems, researchers have built numerous toolkits to support the development of ML 
systems. It is therefore important to understand and relate to this prior work.  
 
We classify the current approaches into three broad categories: general-purpose algorithms 
toolkits, domain-specific toolkits, and interactive visualizations toolkits. Algorithms toolkits are 
general-purpose tools that provide APIs for using popular machine learning algorithms. These 
APIs can be used for any domain and do not enforce any domain-specific knowledge. On the 
hand, domain-specific toolkits focus on a single application domain, e.g. computer vision or 
image recognition, and encode knowledge about that domain to help build systems specifically 
it. Interactive visualizations toolkits focus on analysis and refinement by enabling exploration of 
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data or results to improve a system further. Most of the interactive visualizations toolkits are 
general-purpose tools that do not encode any domain-specific methods of analysis. We discuss 
each of these below in more detail below. 

6.1.1.1. General-­‐Purpose	
  Algorithms	
  Toolkits	
  
Implementing a bug-free ML algorithm from scratch is hard, and this implementation usually 
forms an important barrier to using machine learning. Many APIs provide easy to use interface 
for ML algorithms [Demšar et al., 2004; Witten et al., 2005], and a number of toolkits have 
been developed that provide a library of such APIs, e.g. Weka [Hall et al., 2009], or scikit 
[scikit]. At the same time, algorithms are only one of the many different factors that determine 
the behavior of a ML system. Effectively training a ML model also requires effectively working 
with data. Often the data is error-prone, inconsistent, skewed, or even redundant. Identifying 
and removing these irregularities is also an integral part of the development process. Moreover, 
developers need to understand the relationship between data and the trained ML model, for 
example, in a speech recognition system, if the training data is skewed and has most audio files 
for a specific type of noisy environment, then the trained model is bound to fare poorly in a 
clean environment or even other types of noises. Gestalt [Patel et al., 2010] tries to address this 
issue by providing support for both APIs and support to collect and analyze data. 
 
Other disadvantages of general-purpose algorithms toolkits is that although they reduce the 
threshold of usage of ML algorithms from an “ML expert” to a “developer,” it still requires a 
working understanding of the algorithm to be able to properly fine-tune and optimize the 
algorithm for any given dataset. There is no guidance to simplify this step. Additionally, these 
tools often require programmers to convert their data into a common format. Programmers have 
to write the data-processing code somewhere else, but it is hard to connect the raw data back to 
the model after converting it into a common format. General-purpose tools need to support the 
inspection of raw data in order to help programmers detect errors in their data and come up with 
new features. 

6.1.1.2. Domain-­‐Specific	
  Toolkits	
  
Domain-specific tools provide greater functionality for a specific domain, but do not generalize 
well to other domains. In other words, they trade flexibility for many algorithms in favor of 
enhanced functionality for a specific domain. Because they focus on a specific domain, they are 
also able to limit the types of input that the toolkit might expect, and hence may remove 
problem of inconsistencies in input data format across domains. This becomes better suited for 
“non-experts” or developers with little knowledge of the data normalization or conversion 
techniques. 
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Crayons is one such domain-specific tool that supports image segmentation [Fails et al., 2003]. 
A developer captures an image and colors the regions that correspond to different segments. The 
system learns a model from these labeled pixels, and the developer analyzes the model’s 
performance by applying it to new images and overlaying the results on those images. The 
designer iterates by correcting model mistakes, thus providing new data for the classification 
pipeline. Crayons achieves this ease of use by limiting flexibility. Input is limited to providing 
more training examples, and analysis is limited to looking at classification results overlaid on 
images. Developers cannot access other information that might help them iterate (e.g., attribute 
values). Domain-specific tools have been created for a variety of problems, including computer 
vision systems [Maynes-Aminzade et al., 2007], simple sensor-based recognizers [Hartmaan et 
al., 2007], and interactive concept learning in image search [Fogarty et al., 2008]. 
 
Both general-purpose tools and domain-specific tools are complimentary. It is almost certain 
that a highly specialized tool will be more effective for its particular problem. However, general 
tools can support problems for which domain-specific tools have not yet been developed. 
Further, distilling general mechanisms can inform the design of domain tools by allowing a 
focus on domain-specific extensions instead of reinventing general mechanisms. 
 
A few toolkits are somewhere in between a domain-specific and a general-purpose toolkit. For 
instance, Hidden Markov Model Toolkit (HTK) is a domain-specific toolkit for speech 
recognition, but is used for a larger class of pattern recognition problems, such as character 
recognition, DNA sequencing, or speech synthesis. 

6.1.1.3. Interactive	
  Visualization	
  Toolkits	
  
There is another class of toolkits that shifts focus from implementation of algorithms or 
development of domain-specific ML models to further refinement. For instance, there are 
toolkits that enable indirection between results and actions, i.e. the ability to directly interact 
with the output of the model in order to specify preferences for the type of results desired. As an 
example, a programmer training a digit recognition system may observe that the system is 
unable to distinguish between fours and nines. They may prefer to make errors on other digits 
higher in order to improve the performance of fours versus nines. Traditionally, there hasn’t 
been a way for programmers to directly specify these preferences. 
 
There is recent work that enables the developers to directly interact with the output of the model 
in order to improve performance. For instance, EnsembleMatrix [Talbot et al., 2009] is one such 
tool. An ensemble is a meta-classifier that combines results from many different models. 
EnsembleMatrix trains an ensemble for large multi-class problems. It then provides an 
interactive confusion matrix view that can be used to steer the accuracy of the classifier. The 
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programmer steers the classifier by grouping regions of the confusion matrix. ManiMatrix 
[Kapoor et al., 2010] builds on this idea by having programmers interact directly with confusion 
matrix visualization to help guide the model. Developers can indicate preferences by clicking on 
cells in the matrix. These preferences are translated into a cost matrix. The underlying machine 
learning algorithm then optimizes this cost matrix in order to automatically guide the 
development of the model. 

6.1.2. Error	
  Analysis	
  in	
  Speech	
  Recognition	
  
In speech recognition research there are typically two approaches for identifying error sources 
[Van Ess-Dykema et al., 1998]. At one end, we have the “automatic” approach that is typically 
adopted by the engineering community. In this approach, the focus is on a single metric, 
optimally on a single number such as word accuracy or perplexity, which can be calculated 
automatically. Usually, this number is calculated for the entire test dataset, and the focus is on 
optimizing the single metric for whole dataset. On the other end of the spectrum, linguistic 
experts adopt the “manual” approach. Here, the focus is on comparing decoded results of the 
recognizer with human transcripts to determine specific properties or patterns of the errors 
produced. This approach is tedious as experts comb through every audio file, one by one.  
 
Neither approach is ideal. The engineering experts’ approach is hard for generating detailed 
insights into why the recognizer is failing as they focus is on single metric for the entire dataset. 

            
Figure 6.1: Error analysis in speech recognition as a continuum. Both automatic and manual analysis are 
suited for experts, albeit different types of experts. Semi-automatic analysis lends itself better for non-
experts because it allows for creation and comparison of smaller, meaningful subsets of larger datasets, 
thereby assisting in discovering what parts of systems are underperforming, and why they are not 
performing as well as other subsets of data.    
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The linguistic experts’ approach can take a significantly long time and reading the transcripts 
and assigning error sources can be tedious and confusing. Additionally, the evidence generated 
is often small and may be irrelevant. 

 

In thinking about the design for SToNE, we argue that there’s a sweet spot that exists between 
these two approaches (as shown in Figure 6.1), which enables semi-automatic error analysis. In 
this approach, developers are able to easily create meaningful subsets of the dataset, visualize 
distributions of specific parameters for those subsets to uncover regions of error, and compare 
two or more subsets to generate insights, e.g. by comparing a subset of files with accuracy 
greater than 70%, and other less than 30%, the developers can understand what’s different 
between the two sets and discover reasons (SNR, SPR, accent, gender etc.) of why certain files 
are not well recognized. In the literature, some work has already been done on identifying 
typical types of errors in speech recognition system, and potential reasons. However, 
independent analysis must be done for each speech system that’s built, as reasons of error may 
vary tremendously from one system to another. In our work, we aim to leverage previous 
findings in speech recognition error analyses by enabling developers to perform semi-automatic 
analysis on various types of errors and their reasons. 

6.1.2.1. Types	
  of	
  Errors	
  
State-of-the-art speech recognition still produces a substantial number of errors. Knowledge of 
the types of errors can help direct efforts towards removing the sources of errors. However, 
uncovering such errors, even despite the availability of the recognition results is a challenge in 
and of itself [Goldwater et al., 2010]. At a coarse level, error rate in speech recognition is often 
divided into three subparts: insertions (I), deletions (D), and substitutions (S). These are 
obtained by aligning the transcript of the audio file with that of the hypothesis from the speech 
decoder. For instance, consider the phrase “It’s very hard to recognize speech,” and its popular 
output, “It’s hard to wreck a nice beach.” 
 
String alignment algorithms, e.g. Levenshtein’s distance [Levenshtein, 1966] aligns the strings 
as: 
Transcript:  It’s fun to recognize             speech 
Recognizer output: It’s fun to wreck      a  nice  beach 
Type of error:                   S              I   I        S 
 
As the reader would notice, insertion errors are those when an additional word is added to the 
recognizer output (a and nice in the above example). Substitutions errors are those when a word 
in the transcript is replaced by another word in the output (wreck and beach in the above 
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example), and deletion errors are those when a word is omitted from the output (none in the 
above example). The overall word error rate is a sum of all three types of errors.  
 
Name of Error Example Explanation 
Pronunciation Four egos (before he 

goes) 
Caused by mismatch between the user’s accent 
and the accent that the recognizer is trained on. 

Homonyms/ 
Phonetic 
confusion 

She has a bone spur at 
the see three (C3) 
vertebral level 

Caused by similar sounding words getting 
higher precedence in the decoding process, i.e. 
recognition is worse for words that are 
phonetically similar to many other words than 
for highly distinctive words (Luce et al., 1998) 

Suffix He has eat (eaten) his 
meal 

These errors usually occur when part of a word 
is silent in the audio file, and the language 
model does not prioritize the correct form of the 
word over the acoustic model’s output. 

Dictionary He wanted to visit be 
as her (Bilaspur) 

Some words, e.g. names are absent from the 
vocabulary. These are referred to as “out-of-
vocabulary”, and are a common source of 
substitution errors, especially in free-form 
conversation speech. 

Spelling He did not want to 
take a favour (favor)  

American English vs. British English. 
Sometimes the vocabulary list and the 
dictionary itself would have spelling errors.  
 

Word boundary It’s hard to wreck a 
nice beach (recognize 
speech). 

Incorrect word boundaries can often lead to 
incorrect recognition, and error propagation. For 
instance, here, /s/ from “speech” got attached 
“nice” instead of “speech”. 

Table 6.1: Types of substitution errors along with their examples and explanations. In the examples, the 
words in the brackets indicate correct transcripts. 

A simple understanding of the proportion of these errors often leads to tuning recognizer 
parameters. For instance, if there are too many insertion errors, the speech recognizer developer 
can increase the insertion penalty, and reduce the number of words being outputted in the 
decoded output. This, however, comes at a cost of increasing deletion errors. Therefore, the 
developer must find the right balance between number of insertions and deletions for their 
recognizer, which usually corresponds to about the same number of insertions and deletions. 
However, there’s no predetermined rule for arriving at an optimal insertion and deletion penalty. 
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In terms of substitutions, there are many types of confusions that can be generated. Some 
examples are presented in the table below 

6.1.2.2. Reasons	
  of	
  Error	
  
Previous research [Goldwater et al., 2010] has shown that prosodic and lexical variations across 
speakers or their utterances, or other external factors such as noise are the dominant reasons of 
speech recognition error. Yet expert researchers find it extremely difficult to incorporate this 
deeper analysis in their everyday analysis techniques because of challenges involved in 
extracting feature values for each of the prosodic and lexical variations. Even when they do, 
their analysis is either limited to a subset of the parameters (which they guess to be most 
relevant), or is done for the entire dataset as a whole. In the case of the latter, it might be 
difficult to identify the exact reason of error, as the impact of a specific variable might be 
withered out when averaged across all test speakers, especially in cases when it affects only a 
subset of the data. We argue that in the proposed semi-automatic approach, both experts and 
non-experts will be able to identify smaller subsets that correspond to one of the following 
reasons of error. 

Speaking	
  Rate	
  
We speak in different modes of speed, at different times. If we are stressed, we tend to speak 
faster, and if we are tired, the speed tends to decrease. We also speak in different speeds if we 
talk about something known or something unknown, and hyper-articulate when someone does 
not recognize us in the first attempt, also known as the Lombard effect [Junqua, 1993]. In 
general, the speaking rate tends to have an impact on the accuracy, especially in free-form 
dictation or conversational recognizers. Fast speech is associated with higher error rates [Siegler 
et al., 1995; Fosler-Lussier et al., 1999; Shinozaki et al., 2001]. At the same time, very slow 
speech has also been found to correlate with higher error rates [Siegler et al., 1995; Shinozaki et 
al., 2001]. However, in some other studies, results for speech rate were ambiguous: faster 
utterances had higher error rates in one corpus, but lower error rates in the other [Hirschberg et 
al., 2004]. The exact correlation needs to be examined for each dataset individually, and not just 
that, it needs to be examined for subsets of the data individually, as different portions of the test 
data can have different speaking rates. 

External	
  Noise	
  
When speech recognition systems are used in noisy environments, there performance tends to 
drop drastically in comparison to quiet, lab environment. For example, an isolated word 
recognizer trained on real speech gives 100% accuracy with clean speech, and this dropped to 
30% when used in a car travelling at 90kmh [Lockwood et al., 1992]. Other types of noise, e.g. 
white noise, cross talk, etc. also have severe degrading effect on the recognition accuracy. 
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Speaker	
  Gender	
  &	
  Age	
  
Adda-Decker et al. (2005) demonstrated that both French and English ASR systems had more 
trouble with male speakers than female speakers, and suggested several possible explanations, 
including higher rates of disfluencies. Somewhat contradicting, females had a higher error rate 
than males in a study conducted by Vergin et al. (1996) who concluded that higher fundamental 
frequency of females voice leads to more errors. Moreover, error rates are even higher for 
children (in comparison to adults) due to variabilities in vocal tract length, formant frequency, 
pronunciation, and variable speech [Hagen et al., 2007; Eskenazi, 2009]. 

Regional	
  and	
  Social	
  Dialects	
  
Dialects are group related variations within a language, such as specific pronunciation styles, or 
specific vocabulary and grammar based on the geographical area the speaker comes from 
[Holmes, 1992]. In many cases, these dialects are considered as “another language” in ASR, due 
to the large differences between two dialects, and completely new pronunciation dictionaries 
and acoustic models are trained for speakers from different dialects. 

Word	
  Length	
  (in	
  phones)	
  
In Shinozaki et al.’s (2001) analysis of a Japanese ASR system, word length (in phones) was 
found to be a useful predictor of error rates, with more errors on shorter words. 

Misrecognized	
  Turns	
  
In Hirschberg et al.’s (2004) analysis of human–computer dialogue systems, misrecognized 
turns between speakers were found to have (on average) higher maximum pitch and energy than 
correctly recognized turns, and misrecognizing the first word at the turn led to error propagation 
resulting in higher word error rate. 
 

6.2. SToNE	
  Design	
  and	
  Implementation	
  
In thinking about the design of SToNE, our focus was on supporting an entire pipeline for 
developing a custom speech recognizer, i.e. setting up a baseline, implementing relevant 
optimization techniques, and analyzing errors along the way. While there are several parallels of 
building a speech recognizer to development of any other machine learning system, SToNE’s 
design stands out from simple extensions of other ML toolkits in many ways: 
 
1. First, we focus on providing guidance. While other machine learning toolkits simplify the 

machine learning pipeline by providing easy access to APIs and an environment to test 
various configurations, none provides guidance on what to do and why. Specifically: (i) we 
enable an understanding of why a recognizer is failing. This is done through error analysis 
and visualizations tools, which are not only specific to speech recognition, but also support 
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methods that experts’ often use – either tacitly or explicitly – in understanding reasons of 
failure. (ii) We also provide knowledge of what to do for a specific problem. This is the 
work supported by the rule-based knowledge base developed in Chapter 5. In other words, 
we view SToNE as providing extensive functionality as in a domain-specific toolkit with the 
flexibility to pick and select appropriate algorithms pertaining to speech recognition – 
similar to as in an algorithms toolkit. It is also designed with the principles from an expert 
system to provide guidance to a “non-expert” to be able to pick the best optimization 
techniques or select optimum parameter values, something that neither of the ML toolkits 
have previously done. 
 

2. Second, we do not leave user interface design entirely to the developer. Existing toolkits 
only focus on the development of the underlying recognizer, which is often the key, and 
leave the design of the user interface entirely to the human designer. SToNE encourages 
users to make appropriate changes to the design of the user interface by providing relevant 
guidance. 

 
3. As a consequence of providing guidance and building a scalable knowledge base, SToNE 

employs a server-client architecture. The server contains modules that are applicable to all 
recognizers irrespective of what recognizer is developed, e.g. knowledge base or the feature 
extraction modules. The client – in this case a Virtual Machine – contains the actual 
installation of the speech recognizer (Kaldi), and SToNE’s front-end interface to guide the 
developer in building a recognizer. Working in a virtual machine setup has several 
advantages, which we outline later in this section. 

 
On the whole, SToNE’s design is organized around three modules that are central to a speech 
recognizer’s development: Baseline Developer, Error Analyzer, and Optimization Advisor. A 
typical use flow for SToNE is depicted in Figure 6.2. The three modules map to the six-step 
process described in Section 5.4.1. The baseline developer module contains rules from the “Data 
Setup” step, and enables development of a basic functional recognizer. The error analysis 
module contains methods and visualizations that experts use in understanding why a recognizer 
might be failing. The optimization advisor module guides the developer specific techniques that 
can help in improving the accuracy of the recognizer. The knowledge base module is a part of 
the optimization advisor module, and houses all the rules, except the ones concerning baseline 
recognizer development. Below we describe each of the sub-modules in more detail. 

 
As mentioned previously, the implementation of SToNE follows a server client architecture. 
The server is responsible for hosting the knowledge base and feature extraction modules that are 
independent of the type of recognizer that needs to be developed. The client runs a virtual 
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machine, which is an independent environment running Ubuntu 12.04 LTS with access to 8 
cores for performing speech recognizer’s training and decoding. The advantages of running a 
Virtual Machine (VM) are several: (i) since many state-of-the-art speech recognizers (Kaldi, 
Sphinx, etc.) are currently actively developed for Linux based operating systems, Virtual 
Machines enable cross-platform operability. That is, a user with a Windows machine can also 
successfully run the latest version of the speech recognizer without partitioning the hard disk, as 
Virtual Machines are capable of virtually running any OS independent of the host OS. (ii) VMs 
enable easy sharing of progress and configuration setups to support easy debugging between 
experts and non-experts. Although, in this thesis, we don’t specifically focus on evaluating the 
utility of VMs over other possible alternatives, we leverage this concept from other ongoing 
efforts, e.g. Speech Kitchen for distribution of speech recognition software [Metze et al., 2013]. 

 

      

 
Figure 6.2: A process flow diagram of the developer’s interaction with the modules of the toolkit. The 
numbers indicate the sequence of steps that the developer has to take, and the arrows indicate the 
direction of information flow. The developer uses a pre-configured virtual machine to conduct all 
experiments and interact with the website to avoid any hassles of recognizer installation, etc. 
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6.2.1. Step	
  1:	
  Baseline	
  Developer	
  
The first step in building any speech recognition system is to develop a baseline recognition 
model. The baseline could either be an existing off-the-shelf recognizer that the developer might 
optimize for their use case, or start from scratch. In case of the latter, the developer should have 
access to a reasonable sized training dataset – for instance, for an LVCSR system, it should be 
about 75 hours of speech or more. The developer also needs to adapt an existing script from 
another example dataset to suite the training settings of their training dataset, e.g. if the audio 
files in their training dataset are long (>45 seconds), then they need to increase a parameter 
called “beam size” so that the recognizer can find proper time-alignments of the audio file with 
the corresponding transcripts. Experts usually use their intuition to set correct parameter values, 
and then iteratively modify those based on whether or not they were able to successfully 
develop a baseline. If, however, they are unsuccessful, they need to go through a large set of log 
files to understand why the baseline configuration failed, and then fix the appropriate 
parameters for the next try. 
 
To solve this, SToNE provides a “baseline developer” module, which automatically adapts an 
existing script for the training dataset provided by the developer, and exposes all the necessary 
parameters in a graphical user interface to them. It also provides reasonable estimates of the 
initial parameters to the developer based on rules developed from expert interviews and 
knowledge base discussed in Chapter 5. In case baseline training is unsuccessful, it also parses 
the log files automatically, and guides the developer in changing the parameter values. In doing 
so, the level of guidance is restricted to suggestions of “appropriate ballparks” or the “direction 
of change”, e.g. increase (or decrease) the current value, but supplying an exact value for the 
training is left to the developer. This is because finding an exact value that will work for sure is 
a research problem in and of itself, and experts have often relied on some intuitive guestimates, 
rather than a formal method of parameter estimation till date. We envision that providing 
guidance on what to change, which direction to change it, and a reasonable estimate are all 
valuable insights for a non-expert developer. 

6.2.2. Step	
  2:	
  Error	
  Analyzer	
  
The next step in the development process is to understand why the baseline recognizer may not 
be working well for the provided test set. Experts use their intuition and knowledge by looking 
at many sources of error to either find a mismatch between training and test set 2, e.g. presence 
of out-of-vocabulary words, accent, speaking rate, noise, etc., or by looking at the output and 
making inferences from it, e.g. high insertion rate, too many substitutions for a specific 

                                                
2 Since development of a speech recognizer is iterative in nature, it is possible that the developers overfit their training models to the type of test 
data they use. To avoid this problem, usually experts have a “development set”, which they use as the test set during the development phase. A 
true test set is not seen until the end of the development cycle, and is used only to report the final performance of the speech recognizer. 
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phoneme, etc. SToNE partly automates this process, and partly provides analysis tools to help 
the developer in finding reasons of error. Below we detail each of them. 

6.2.2.1. Automatic	
  Regression	
  Analysis	
  
There can be many reasons why a recognizer fails, and several of them pertain to the acoustics 
of the testing set, e.g. pronunciation, speaking rate, noise, etc. To automatically identify the 
most significant distorting features, we run a linear regression analysis in the following way: 
first, we extract seven acoustic features for each audio file from the test set that are known to be 
major reasons of error in speech recognition literature [Goldwater et al., 2010], namely 
pronunciation (p), speaking rate (r), sound quality (q), pitch (f0), and the first three formant 
frequencies (f1, f2, f3). Second, using accuracy for each audio file from the baseline recognizer 
as a dependent variable, we run a univariate and multivariate regression analyses to identify the 
most significant features impacting accuracy. These features are presented to the developer as 
system-generated reasons of error. 
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Figure 6.3: SToNE guides the developer in building a baseline and then in optimizing it. Development begins 
with (A) Baseline Developer module that helps the developer in properly setting up the data and build an initial 
recognizer. From here, the user could go to (B) Error Analyzer module, which helps in generating insights for 
reasons of recognition failure on a version of a recognizer, or directly to Figure 6.3(C) shown below to select 
optimizations techniques to problems that might be harming the recognition. 

A 

B 
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Figure 6.3: In (C) Optimization Advisor module, the developers can either manually locate problems and 
corresponding solutions, or let the module automatically identify problems and solutions that might be 
harming the recognition. Once a solution is appropriately selected, they can also get relevant 
implementation advice from (D) Perform optimizations module, which helps the developer in properly 
applying the selected solution, and retraining the recognition system. 

C 

D 

Find problems 
automatically 
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6.2.2.2. Visualization	
  and	
  Comparison	
  Tool	
  
While the automatic analysis points to reasons of error based on regression analysis, there might 
be other issues that an “automatic” system might have missed. The visualizations tool helps the 
user analyze the test data on multiple factors to understand recognition error patterns, and 
generate insights into why the recognition might be failing. To have a finer understanding of 
why the recognition might be failing, it enables the user in doing four tasks:  

(i) Understand the data distribution across the above variables – demographics (gender, 
speaker, age), prosodic (speaking rate, articulation, frequency, etc.), lexical (word 
length, etc.), environmental (signal-to-noise ratio), etc. This can be seen in Figure 6.4A.   

(ii) Create meaningful subsets and only analyze that part of the data (Figure 6.4B). While 
the above automatic regression analysis provided an understanding on the entire test set, 
there could be a few more reasons of recognition failure. For instance, there might be a 
distorting factor on only a small subset of the data, which did not surface in the 
regression analysis because it was considering the entire dataset all together, e.g. a 
subset of audio files representing all females under age 10 might be having poorer 
recognition accuracy than the entire set, and could be a point to explore further. 

(iii) See correlation trends of accuracy vs. specific metrics to identify reasons of failure. For 
instance, in Figure 6.5, the developer-user can make the following inferences:  

a. Different speakers have drastically different accuracy, 
b. Audio files that have low speaking rate (SPR) have poorer accuracy, 
c. Audio files with higher fundamental frequency (F0) have lower accuracy. 

After making these inferences, the developer can either drill down further at a speaker 
level to see what's wrong by selecting that part of data, or tackle issues with respect to 
SPR and F0 by applying specific optimization techniques. The exact technique to apply 
to counter each degrading variable is guided by our next module “Optimization 
Advisor.” 

(iv) Compare two (or more) subsets to understand what’s different across those subsets. 
This would be particularly useful when comparing a subset giving high accuracy (>0.6), 
and a subset giving low accuracy (<0.6) to understand where exactly the two subsets 
differ. The comparison is based on the same seven acoustic features along with a few 
other meta-variables, e.g. speaker’s age, gender, etc. Such a comparative analysis can 
lead to “developer-generated” hypothesis on why a recognizer may be failing. 
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Figure 6.4: (A) Shows the original dataset, and its distributions on various parameters. (B) Shows a smaller 
subset where the audio files have poor pronunciation score (<7) and high SNR (>15). 

A 
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This module was developed using several JavaScript API’s that can rapidly process large 
datasets at client end, and display interactive graphs. In particular, we used angular.js 
[angularJS] for client-side routing and dividing content in different partial views. For generating 
bar graphs and line-graphs from CSV data, we used dc.js library [dc.js], which in turn relies on 
d3.js [d3.js] for rendering graphics in browser window. We also used crossfilter.js [crossfilter] 
to do fast map-reduce functions on data. The error analysis module also gives the ability to 
listen to the audio files right from the browser, and we use mediaelement.js to ensure that audio 
files run across different browsers and operating systems. 

6.2.2.3. Out-­‐of-­‐Vocabulary	
  and	
  Substitution	
  Analysis	
  Tool	
  
Another type of error analysis is to look at the recognizer’s output and compare it with ideal 
output to understand patterns. For instance, the developer can compare the training vocabulary 
(set of words that the recognizer is capable of recognizing) with the words present in the testing 
transcript to identify the words that are not in the vocabulary – also known as out-of-vocabulary 
words. These words present a huge problem for speech recognition, and there’s an entire thread 

   
Figure 6.5: This figure shows correlations of accuracy (1 – word error rate) against several metrics, e.g. 
signal to noise ratio (SNR), speaking rate (SPR), etc. 
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of research on it in the speech recognition community [Qin, 2013]. Another example is to look 
at the substituted words, and identify common patterns such as highly confused phonemes, or 
highly confused pronunciation. SToNE provides support for analyzing such errors. 

6.2.3. Step	
  3:	
  Optimization	
  Advisor	
  
The final but a key step in the speech recognizer development process is optimization. Once the 
developer has identified why the recognizer may not be working, they need to apply appropriate 
strategies to fix it. The role of the optimization advisor, as shown in Figure 6.4, is to advise the 
developer on what techniques to apply and how to fix the error. This module is based on the 
knowledge base developed in Chapter 5; however, it provides several supports to extend and 
improve the knowledge base. 
 
Overall, the goal of the optimization advisor is to query the knowledge base and recommend 
appropriate techniques to the developer-users for their dataset. In doing so, it follows the 
ChAOTIC process, i.e. first it recommends techniques pertaining to “checking and cleaning” the 
dataset, then adaptation, then optimizations based on the most degrading factors, and so on. The 
developer-user can also query for another alternate techniques, and provide feedback to the 
optimization advisor, as to which of two worked better. Once the strategy has been 
recommended, the developer-user can refer to the step-by-step tutorial and the script for that 
specific technique in the virtual machine to obtain guidance on actually performing the 
optimization. 

6.2.3.1. Refinement:	
  Vote	
  Up	
  
For several problems, there are multiple solutions. This is because the knowledge base was a 
result of interviews with experts, and different experts offered a different solution for the same 
problem. To address this, we introduced a ranking system, where each solution had a rank, 
which was initially equal to the number of experts who had recommended a particular solution. 
We also provided a way to improve this rank based on actual results of what the developer-users 
found more useful in test runs through a “vote up” feature. 

6.2.3.2. Extensibility:	
  Experts	
  Suggest	
  a	
  Solution	
  
Since the field of speech recognition is still a hot area of research, the knowledge base needed to 
be updated every now and then. We provided a natural way of doing so, by enabling expert 
developers, e.g. researchers who have developed a new technique to insert corresponding 
solutions directly online. Once vetted by the central team for spam rules, this solution is added 
to the central database and available to the public. Initially, this solution starts with the lowest 
ranking, but over time, if it is a good solution, it gets voted up to become a higher ranked 
solution. 
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6.2.3.3. User	
  Interface	
  Recommendations	
  
Once a recognizer has been developed with satisfactory performance, SToNE turns its focus on 
user interface (UI) changes. As demonstrated in Chapter 3 on “Voice Typing,” these 
improvements are critical for two reasons: (i) UI changes can further lead to recognition 
accuracy improvements, which in turn, can improve usability. (ii) Human designers often may 
not be aware of the interplays between UI changes and the inner functioning of the recognizer, 
thereby making correct recommendations even more relevant. In its current implementation, 
SToNE supports implementation of the following two techniques, but given the rule-based 
design of the knowledge base, we envision that additional techniques can be easily supported 
without making any changes to the underlying framework. 
 
Voice Typing: This technique was proposed and evaluated in Chapter 3. In this technique, users 
provide utterances in small phrases of 2-4 words, representing a thought-chunk, and then 
monitor (as well as, possibly correct) the output of the recognizer. We anticipate this technique 
to work for most cases when utterances comprise of full sentences or paragraphs (as in 
transcription of emails and text messages). It can also be useful in command-and-control 
interfaces where the command is spoken in a highly complex acoustic or language environment, 
and segmented audio can help improve recognition accuracy.  

 
The advantages of this technique are to provide segmented audio to the recognizer, and stop any 
error propagation through real-time error correction, if possible. However, as discussed in 
Chapter 3, this technique cannot be universally used, e.g. for conversations where providing 
Voice Typing style segmented audio hampers the primary style of conversation, or in situations 
such as driving where a real “hands-free, eyes-free” interaction is needed and real-time error 
correction is not possible. 

 
Recommending Semantically Similar Words: One of the common sources of error, as 
discussed in Section 6.1.1, is the substitution error. In command-and-control interfaces, words 
that sound alike are often confused for one another, primarily because there’s no (or hardly any) 
context to disambiguate these words based on the language model. Even in large-vocabulary, 
continuous speech recognizers, many other common substitution errors occur. The goal of the 
optimization advisor is two-fold: (i) to identify such common confusions of error, and (ii) 
recommend alternates to the developer-user. For instance, in an isolated word, command-and-
control interface, where the user has to say “Systems all ready” to achieve a specific task, and 
the common confusion is “System already”, the optimization advisor could recommend a 
semantic equivalent to solve this problem, e.g. “System all set”, if one is available after looking 
up for the synonyms on the web. Alternatively, the above information about the confusion 



 77 

would enable the developer-user of the toolkit to think of other suitable alternatives, e.g. “All 
systems go”, “All systems set”, “All systems ready”, etc. 
 

6.2.4. Relationship	
  of	
  SToNE	
  with	
  Deep	
  Neural	
  Network	
  Systems	
  
While deep neural network (DNN) systems have shown tremendous benefits in building speech 
recognition systems [Dahl et al., 2012], SToNE is currently specifically geared towards aspects 
that DNNs cannot fix: out-of-vocabulary words, accent, speaking rate, etc. DNN training needs 
a properly setup and tuned GMM/HMM system, so one has to pick the correct optimization 
techniques and fine-tune a number of parameters, but an understanding of what and why to do is 
limited to experts. It is here that SToNE is particularly useful in. More so, DNNs work best with 
large amounts of data; however, developers & researchers are increasingly targeting newer user 
groups, languages or acoustic settings that lack existing data. SToNE specifically assists in such 
low-resource cases, and can enable better and more targeted data collection to iteratively 
improve the system even further. However, we envision that in future, researchers will extend 
SToNE to incorporate DNN techniques and can do so without fundamental changes to the 
overall architecture of current SToNE implementation. 
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7.	
  EVALUATION	
  OF	
  STONE	
  
Our earlier studies have shown great promise for the knowledge base, i.e. the ability to capture 
and formalize a speech expert’s knowledge, and use it to analyze and predict optimization 
techniques for the benefit of novices in speech recognition. In this chapter, we focus on the 
summative evaluation of SToNE towards achieving research goal 3 (RG3). In particular, we 
describe results from a user study where non-experts are asked to use the toolkit and build a 
speech recognizer for a challenging use case, i.e. children’s conversational speech. We 
benchmark their results against our attempt, i.e. an expert team’s attempt at building a speech 
recognizer for the same use case. 
 
We have situated our evaluation in the context of building a large vocabulary continuous speech 
recognizer (LVCSR) for children. This is for several reasons. First, building a recognizer for 
children is a challenging task in and of itself because their voice, as such, presents many 
challenges not present in adult’s speech, e.g. hesitations, repetitions, variable vocal tract length, 
etc. Second, there are no off-the-shelf recognizers for children readily available, from which a 
new one can be bootstrapped for development easily, and hence, researchers and developers 
have to build the recognizer ground up. Finally, it was important to pick a task that was not 
widely published so as to evaluate the toolkit with a non-trivial task, and also control for any 
knowledge that developer-users could gain from simply searching the web. 
 

7.1. Building	
  an	
  LVCSR	
  for	
  Children:	
  Benchmarking	
  by	
  Experts	
  
First, we describe our own efforts at building an LVCSR for children in grades 4-8 using the 
conventional approach. This phase was important for two reasons: (A) as a feasibility check to 
validate that the task was achievable by a team of experts at the least, and (B) to serve as a 
benchmark when comparing the improvements achieved by using SToNE later in this paper. For 
this section, our contribution is not in terms of proposing a new technique, but in reporting the 
results for a previously unreported task, i.e. an LVCSR for children. 
 
The experts who were involved in this task were all senior PhD or Masters students at Language 
Technologies Institute of Carnegie Mellon University. They had at least 2 years of prior 
experience building speech recognizers, and had specific expertise in at least one of the speech 
recognition areas: acoustic modeling, language modeling, or dictionary development. However, 
none of them had previously worked with children’s dataset, which made the choice of 
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children’s LVCSR a perfect choice as it avoided any confounding variable of a previous 
experience in the benchmark. 

7.1.1. Related	
  Work:	
  Speech	
  Recognition	
  for	
  Children	
  
While children’s speech recognition has been studied a lot, no recognizer for children’s 
conversational speech has been built. For instance [Steidl et al., 2003] focus on using an adult 
recognizer and adapting it for children, whereas [Giuliani et al., 2003] train a children’s 
recognizer using structured, read speech from children. Other work has focused on more 
specific use cases: for instance, games developed at UC Berkeley [Tewari et al., 2010] focus on 
improving pronunciation skills for children by providing interactive feedback for poorly 
articulated or mispronounced words. CMU’s reading tutor LISTEN [Mills-Tettey et al., 2009] 
helps children read pre-determined sentences, and learn new words in the process. It presents a 
sentence at a time from a storybook, asks the child to read it aloud, and provides feedback when 
the reader is stuck. Similarly, another research group at CMU built language learning mobile 
games for children [Kumar Reddy et al., 2012] that encourages them to say vocabulary words 
aloud, and in the process helps them learn new words. A primary difference between our work 
and previous work by others is that while others have used speech recognition to solve specific 
issues for children, e.g. improving pronunciation, detecting misreading, teaching new words 
etc., we focus on a much more challenging problem, i.e. the task of recognizing open-ended 
speech. Although researchers have collected datasets to address this problem [Shobaki et al., 
2007], to our knowledge, there’s no published work that reports on the attempts of building an 
LVCSR for children. 

7.1.2. Dataset	
  C:	
  CSLU	
  Kids	
  Corpus	
  
We used a published dataset from Linguistic Data Consortium on children’s speech [Shobaki et 
al., 2007], which comprises of audio files from 1101 children between kindergarten and grade 
10, equally split across gender and grades. The audio files, in total, contain about 40 hours of 
speech. There are two parts to the above dataset. The first part has isolated words read by 
children – each child read 60 items from a total list of 319 phonetically balanced words or 
sentences. The second part contained utterances of spontaneous speech from each child. These 
utterances begin with a recitation of the alphabet and then contain a monologue of about one 
minute in duration. The monologue was in response to data collector’s questions such as “tell 
me about your favorite movie.” Corresponding word-level transcriptions are also included in 
this dataset. As we are focusing on spontaneous speech, we ignored the first part, which was as 
such, very small in terms of total speech. This dataset is one of the very few published datasets 
that contain substantial amount of children’s speech, and hence was a natural choice for us. For 
the purposes of the development, we split this dataset into data from 999 speakers as the train 
set, and 102 speakers for the test set. The test set, however, only contains data from grades 4-8, 
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which was our target group. Although this dataset has been around since 2000, there is no 
substantive work done on it because of its challenging nature. The only published work citing 
this dataset is that of [Shobaki et al., 2000], but even here, they have only focused on isolated 
speech subset of the data. 
 

7.1.3. Methodology	
  and	
  Results	
  
We followed the six-step methodology as describe above to iteratively build and improve the 
speech recognizer. To build the recognizer, we used the open-source Kaldi speech recognition 
toolkit [kaldi], primarily because it has support for many of the state-of-the-art optimization 
techniques, such as discriminative training and neural networks. The primary evaluation metric 
was word error rate, and our results are summarized in Figure 7.1. 
 
We started by checking if an existing LVCSR recognizer can be bootstrapped for our task. To 
check its feasibility, we evaluated our test set with multiple available LVCSRs, built on adult 
conversational speech using the Switchboard dataset [Graff et al., 2004], or Wall Street Journal 
dataset [Paul et al., 1992]. The word error rates in these cases were terribly poor, i.e. well above 
90%, and suggested that we should build the baseline ground up from the provided training set.  
 
While building the baseline ground up also requires successfully completing a number of tasks, 
existing toolkits such as Kaldi provide sample scripts that can simplify the early setup. It still, 
however, leaves a number of parameters to be edited by the developer based on their dataset. 
Setting these parameter values properly requires experience in using Kaldi. For instance, for a 
speech recognizer to be built, the first step is alignments where the recognizer attempts to align 
a given audio file with its corresponding transcript. This alignment process can be very time 
intensive, and researchers typically optimize it by pruning a large search space into a smaller 

                                    
Figure 7.1: Word Error Rate improvements over successive development of children’s LVCSR by a team 
of experts. The current implementation of SToNE supports development of all techniques listed above, 
except the ones marked with a (*). 
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search space. Two parameters help in this pruning “beam size” and “retry beam size.” A larger 
value for these parameters implies longer time to find time alignments, but also implies that 
longer audio files (>60 seconds) can now be properly aligned. Conversely, attempting to align a 
long audio file with the default values of these parameters in the sample scripts leads to 
misalignments. In other words, there is a tradeoff between alignment accuracy vs. computation 
time, and the exact value should be dependent on the average length of the audio files. Our 
audio files were about 90 seconds long. We set “beam size” value to 100, and “retry beam size” 
to 300. Our baseline acoustic model had 1800 states and 9000 Gaussians, and the language 
model weight was 12. The WER for this baseline system was 44.57%. 
 
Once the baseline was properly configured, we next identified out-of-vocabulary (OOV) words. 
These words were inherently impossible to be recognized as they were not present in the 
dictionary, and so the recognizer was attempting to find the next best match for them. 24.36% of 
words in the training dataset, and 11.24% in the testing set were out-of-vocabulary. We 
generated pronunciations for the OOVs in the training dataset using the sequitur g2p tool 
[Bisani et al., 2008], and added those to our dictionary. We also retrained the language model to 
include the unigram probabilities for the OOVs. The test set OOV after this setup was 3.67%. 
The WER of our system after the data setup step was 37%. 
 
In the general adaptations category, we optimized our language model using Kneser-Ney 
smoothing [Knesner et al., 1995], and our acoustic model using feature-space maximum 
likelihood linear regression (fmllr). These are widely used optimization techniques, but need to 
be selected from a host of similar options depending on the context of use and the requirements 
of the recognizer. As mentioned before in Chapter 5 that if selected correctly, general 
adaptations almost always tend to improve the recognition accuracy. In other words, it requires 
an understanding of goals (speaker-dependent vs. speaker-independent), and knowledge of the 
techniques (Kneser-Ney, fmllr, mllr, map, etc.) to be able to select the correct technique and 
improve the recognizer’s performance. The WER of our system after this step was 33%. 
 
In the context- and user-specific adaptations category, we first identified two major causes of 
error: children’s pronunciation and noise. Accordingly, we updated the dictionary with alternate 
pronunciations and applied a normalization technique called Cepstral Mean and Variance 
Normalization (CMVN) [Chen et al., 2002] to account for noise and channel variations in the 
training dataset. Although some experts prefer to apply normalization techniques early on, i.e. 
before the general adaptation techniques, from an iterative development perspective, it does not 
matter when you apply it as long as you identify it as an issue at some point in the development 
process and correct for it. The WER of our system after this step was 31.1%. 
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Thereafter, we also tuned a few parameters, e.g. language model weight, and adjusted for 
overtraining by changing the number of Gaussians. The language model weight was determined 
based on several decoding runs with language model weight ranging between 10 and 20. We 
picked 14 as it gave us best results on the development set. Our acoustic model after this step 
had 5000 states and 60000 gaussians. We had arrived at this number after a few attempts as 
well, with a guiding principle that each gaussian should roughly account for 50-100 
milliseconds of audio in the training dataset. Such parameter optimizations are often difficult to 
identify without having some previous experience. Experts who have worked on building 
recognizer for years have usually developed a few heuristics to arrive at a reasonable range of 
values, and then try out a number of combinations within this reduced range. The WER after 
these steps was 28.65%. 
 
After this point, we developed a deep neural network (DNN) model, which are built on top of 
GMM/HMM models developed above. We used the Kaldi + PDNN toolkit [Miao, 2014] for 
this, which is a wrapper built on top of Kaldi [kaldi] to easily build DNN systems. The rough 
idea behind this wrapper tool is to build the initial GMM models with Kaldi, train DNNs with 
PDNN [Miao, 2014] and finally load the DNN models back to Kaldi for further decoding or 
system building. DNN systems are the state-of-the-art speech recognition models [Dahl et al., 
2012], and experts have very recently begun to adopt DNN training in their development 
routines. The WER after this step was 24.47%. 
 
It is important to note that DNNs – the state-of-the-art speech recognition technology – still 
relies on properly fine-tuned and optimized GMM/HMM model. For instance, we experimented 
with simply using DNN techniques after building a baseline model (WER of 44.57%). The 
resulting recognizer only demonstrated marginal improvements at a WER of 41.27%, i.e. an 
absolute improvement of 3.3%, and a relative improvement of 7.4%. On the contrary, the DNNs 
that were developed over an optimized and fine-tuned GMM/HMM model had an absolute 
improvement of 4.18%, and a relative improvement of 14.6% - almost twice as much. These 
results have two implications: (i) DNNs, in general, are useful to improve WER, and (ii) when 
applied over a properly optimized and fine-tuned GMM/HMM system, they demonstrate far 
better gains than over simple baselines. 

7.2. Evaluation	
  of	
  Toolkit	
  with	
  Non-­‐Speech	
  Experts	
  
In order to explore the efficacy of SToNE in comparison to traditional methods of building a 
speech recognizer, we ran a controlled experiment. In this experiment, participants engaged in a 
speech recognizer development task. We also wanted to assess the level of utility of SToNE for 
developers with varying levels of skill in speech: (1) Non-experts: no practical experience and 
no theoretical background in speech recognition, vs. (2) Semi-experts: no practical experience in 
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building a recognizer, but had attended a speech course, which made them familiar with the 
speech terminology and the basics of speech recognition. Because practical experience is vastly 
different from theoretical knowledge, we expect that our toolkit will also be useful for semi-
experts as well. Additionally, we restricted the development timeline to 10 days as the purpose 
of SToNE is to make iterative testing of speech prototypes possible by rapid development of 
accurate, working recognizers, and hence evaluation under limited time is of value. 

7.2.1. Participants	
  
We recruited 12 paid participants via mailing lists and a research participation pool. Subjects 
were graduate and undergraduate students from a computer science background, i.e. they were 
familiar with basic computer science and programming fundamentals, e.g. how to run a script, 
or basics of Linux. All participants were between the ages of 20 and 26. Of these 12, six 
participants had taken a graduate level course on speech recognition and were therefore familiar 
with the basic concepts of a speech recognizer. As part of the class, they had also worked on 
small assignments related to speech recognizer development, but never developed an end-to-end 
working speech recognition system. We call these six participants semi-experts. The remaining 
six participants had no prior understanding of speech recognition, and are referred to as non-
experts below. The participants were drawn from the same pool of students as the experts in 
Section 7.1, but the experts had far more practical experience in building systems than both the 
non-experts and the semi-experts. 

7.2.2. Experimental	
  Task	
  and	
  Setup	
  
Every participant was asked to develop a large vocabulary continuous speech recognizer 
(acoustic model, language model, dictionary) for children in grades 4-8. As mentioned earlier, 
the choice of task reflected the challenges that a developer may encounter while building a 
recognizer for any other user group, acoustic or language situation. 
 
For this task, we gave each participant a training set of audio files (with associated transcripts) 
from 999 speakers representing users in kindergarten to grade 10, and a test set of 102 speakers 
from grades 4-8. In other words, the initial setup was same to what we had used in building the 
recognizer on our own. 

7.2.3. Experimental	
  Design	
  and	
  Data	
  Collection	
  
We conducted a 2 x 2 between-subjects experiment with two independent variables: speech 
toolkit (SToNE-built-on-top-of-Kaldi vs. Kaldi alone) and level of expertise (non-experts vs. 
semi-experts). Below we refer to the “experiment” condition as the users who used SToNE-
built-on-top-of-Kaldi, and “control” condition as the users who only used Kaldi. In total, 6 
participants (3 non-experts, 3 semi-experts) were assigned to the experiment condition, and 6 (3 
non-expert, 3 semi-experts) were in the control condition. For the experiment condition, we 



 84 

provided the users access to our full toolkit as described in Chapter 6 and also in Section 7.2.2, 
whereas in the control condition, we only gave users access to the virtual machines without any 
of the sub-modules from SToNE, but with pre-installed and ready-to-go environment for Kaldi 
and other (default) example scripts. Our hypotheses were: 
 

H1: SToNE will assist both semi-expert and non-expert developers achieve better 
accuracy with higher task success rates. 
 

H2: With the help of SToNE, non-expert and semi-expert developers will be able to 
achieve accuracy rates similar to that of experts. 

 
In terms of data collection, we collected the following: before the experiment, we collected 
basic information about each participant, e.g. age, years of experience with building computer 
science applications or programming, years of experience (if any) with speech systems, speech 
courses taken, etc. During the experiment, we collected logs of all the actions of the developer-
user, to measure the word error rates achieved, and task success rates. The study with each 
participant took place over 10 days, and they could complete the task over multiple sittings, at 
home as per their convenience. We also met with each participant for 15 minutes during the 
study to check their progress and resolve any issues. At the end of the experiment, we conducted 
a post-hoc interview with the participants to understand areas where the toolkit violated novice-
developer expectations, and how it could be further improved to incorporate the variable skills 
sets of the novice speech application developers. 
 
For our analysis for both hypotheses, we controlled for prior experience (number of years 
working with speech recognition), time spent on the error analysis, and time spent on actual 
optimizations (in virtual machine). Time information was obtained from the logs. To completely 
evaluate both the hypotheses on a held-out test dataset, we required a working recognizer from 
the participants; however, in cases, when none was obtained due to incomplete task completion, 
we looked at the logs in the virtual machines to obtain an understanding for where the 
participant stopped and why the participant was unable to complete the task.  

7.2.4. Results	
  

7.2.4.1. Word	
  Error	
  Rates	
  
In order to compare the accuracy achieved by each participant, we calculated Word Error Rate 
(WER), as discussed in Section 5.3. The word error rate that each participant achieved is shown 
in Figure 7.2. We omitted the graph for the non-experts (who did not use SToNE), as they did 
not proceed beyond selecting an off-the-shelf recognizer, and evaluating it with the given test 
set. The WER was well above 90%, identical to the first attempt made by experts. The three 
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semi-experts who did not use SToNE were able to correctly setup a baseline model using the 
given training dataset, and then apply a few optimization techniques. The final WER they 
reported were 40.5%, 40.7%, and 41.2% respectively. 
 
For the participants who used SToNE, all non-expert and semi-expert users were able to build a 
baseline model, and then apply a number of optimization techniques. The three non-experts 
reported a final WER of 29.4%, 29.8%, and 30.8%, while the three semi-experts reported a final 
WER of 29.4%, 29.8%, and 30.1. On average, this is a 27.3% relative improvement in WER 
over the semi-experts who did not use SToNE. The improvements achieved by SToNE users 
over users who did not use SToNE were statistically significant, p=0.02. More so, the 
improvements achieved by non-expert SToNE users (the lowest skilled SToNE users) alone 
over semi-expert users who did not use SToNE (the highest skilled non-SToNE users) was also 
statistically significant, p<0.01. 

7.2.4.2. Task	
  Success	
  Rate	
  
To contrast the number of attempts that participants made, and understand their success rate, we 
measured the number of times that people attempted a new configuration setup, i.e. a new 
optimization or a new parameter setting, and were successful or unsuccessful. As shown in 
Figure 7.3, in the control condition, both the non-experts and semi-experts tried a number of 

Figure 7.2: The experiment condition referred here are the participants who used SToNE, and the control 
condition here are those that did not use SToNE. The word error rate improvements by semi-experts in 
the control condition, and non-experts and semi-experts in the experimental condition. Note we did not 
plot the word error rate improvements for non-experts in the control condition as they did not get beyond 
a baseline in the development process. 
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configurations, but their success rate was lower at 25% for non-experts, and 40% for semi-
experts. In the experiment condition, however, the success rates for both non-experts (71.4%) 
and semi-experts (83.3%) were higher. Moreover, the average number of attempts in the 
experimental condition was also higher – 6.5 total attempts vs. 4.5 total attempts. The two-factor 
analysis of variance showed no significant main effect for the expertise factor, F(1,8) = 0, p > 
0.10; a significant main effect for the speech toolkit factor, F(1,8) = 16, p < 0.01, and no 
interaction between expertise and speech toolkit factors, F(1,8) = 4, p = 0.08. 

7.2.4.3. Time	
  Spent	
  on	
  Task	
  
In order to further understand whether the differences in “success rates” were because of added 
time spent with the interface, or a factor of guidance from the toolkit that enabled the 
developers, we measured the time that they spent working on the interface. Since the toolkit’s 
front-end interface was hosted on the web (in the experiment condition), and on the virtual 
machine (in the control condition), we measured the time spent through logs, which were 
continuously recorded for every action in the background.  
 
In fact, we recorded the following actions: every time a user opened the interface, every time 
they made an action (selection, starting a training, stopping a training, parameter change, etc.) 
Similarly, in the virtual machine, we noted the time the participants logged in and logged out, 
and also the time they spent making changes to files or directories. To avoid counting dormant 
times, we threshold a session at 15 minutes, implying that if the user was inactive for more than 
15 minutes, we did not count that duration in the time spent on working on the interface. 
 
Figure 7.4 shows the average time spent by both non-expert and semi-experts in each condition. 
The two-factor analysis of variance showed no significant main effect for the expertise factor, 
F(1,8) = .70, p = 0.42; no significant main effect for the speech toolkit factor, F(1,8) = 3.44, p = 

                                      
Figure 7.3: The average number of techniques attempted by participants. “Successful” implies techniques 
that helped in reducing the word error rate. “Unsuccessful” techniques did not make a difference or 
increased the WER. 
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0.10, and also no interaction between expertise and speech toolkit factors, F(1,8) = 2.95, p = 

0.12. This implies that the time spent on the interface is more or less same for all conditions. 
This serves as a sanity check for our results that the gains achieved are not a function of the total 
time spent with the interface, but more so of the time spent correctly, which was enabled by the 
guidance of SToNE in the experimental condition. 
 

7.2.4.4. Open-­‐Ended	
  Comments	
  
With respect to open-ended comments, participants seemed to appreciate the optimization 
advisor aspect of the toolkit. As one non-expert participant put it: 

“The toolkit was very helpful because it gave me a simple and abstracted way of 
developing an ASR system. It also informed about various factors that can bring down 
the WER and corresponding solutions.” 

 
The process of building the recognizer was also informative and educative for a few 
participants. A non-expert participant highlighted that: 

“I learnt that building an ASR system is an iterative process. Many parameters and 
solutions are dataset specific. A parameter value, which worked for children's speech 
data may not work for any other training corpus.” 

 
Another participant highlighted the iterative nature of the development process: 

“I have learned that it is a long process to develop a good recognizer. It's good to make 
changes/improvements in small increments and see how tweaking single options affect 
your system instead of using a shotgun approach and changing many things at once.” 

 

                                     
Figure 7.4: The average time spent by participants working on the children’s LVCSR task. 
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This was a tremendous gain in understanding given that the non-experts had no prior knowledge 
of how speech recognizers worked internally, but left with an open understanding that there are 
many parameters that need to be optimized, and the exact optimization is dependent on the 
dataset or the use-case. There is no one-size-fits-all solution. In other words, it may help thwart 
concerns of non-expert developers as in [Laput et al., 2013] that if an off-the-shelf recognizer is 
not working, they have no control over what to do or how to improve it. 
 
At the same time, participants expressed difficulty in identifying correct parameter values: 

“Once I knew that a parameter value could be improved, it was difficult to zero in on a 
value. Even after several tries I was not sure whether I have reached the best possible 
value; although that might be impossible to find, but some understanding on how close 
we are to the optimum value might be helpful.” 
 

This was true. While we provided guidance on what parameter to change, and which direction to 
change it, there was no guidance on how much to change it by. As each training run took almost 
a day, participants tried a few combinations of values only before moving on to other types of 
optimizations. 
 

7.3. Discussion	
  and	
  Future	
  Work	
  
Our studies demonstrate that SToNE can help non-experts and semi-experts alike in building 
and improving the accuracy of a speech recognizer. We offer a number of concrete takeaways 
from our results: 
 
As expected, in the control condition, semi-experts performed much better than non-experts: 
semi-experts were able to create systems with ~40% WER, while non-experts failed entirely. 
This result was expected. Semi-experts – developers who have attended a theoretical speech 
course – have some understanding of why recognizers may work or fail. This understanding was 
useful in setting up a proper baseline. However, due to their lack of experience in building 
working recognizers (or working with any toolkit), they were unable to find optimization 
techniques that could improve the recognition accuracy any further. 
 
With the help of SToNE, all semi-experts and non-experts performed almost as good as experts, 
creating systems with ~30% WER. This result suggests that semi-experts and non-experts 
benefitted similarly from the guidance provided by SToNE. Although an application with a 
WER of ~30% does not seem to be directly usable by end users, we believe that this is a strong 
result because of two reasons: (i) participants were able to achieve WER similar to experts, 
implying that they would likely succeed in building usable recognizers when experts are also 
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able to. (ii) Having a reasonable system, i.e. with WER ~30% enables the developer-users to 
deploy a working system to collect more data from end users (as opposed to conducting Wizard-
of-Oz studies), and improve the system over time. 
 
Even though the final 30% WER achieved by non-experts may seem high on children’s LVCSR 
task, they are now able to create useful speech systems. The reasons are many: (i) as mentioned 
above, a 30% (vs. 90%) WER system can be used to field a “semi-working” system to collect 
more and better data, which can in turn further improve WER. (ii) Moreover, there is no clear-
cut answer to the question “how good is good enough for speech recognition?” For instance, 
25% has been shown to be adequate for transcription tasks [Munteanu et al., 2006]. Similarly, 
despite high WER in about 50% range, spoken dialog systems have triangulated other sources of 
information to achieve good task success rates [Lopes et al., 2013]. In other words, overall 
success depends on more than just the speech recognition accuracy alone. (iii) Finally, and more 
importantly, the WER reductions achieved by non-experts were similar to that of experts on 
building a children’s LVCSR. For other, simpler tasks where experts may achieve lower WER, 
we imagine non-experts – with the help of SToNE – will also achieve lower WER that result in 
a deployable system directly. 
 
Non-experts (in the experiment condition) achieved better performance than semi-experts (in the 
control condition). This result shows that SToNE can benefit any developer-user who does not 
have a practical experience in building speech systems, to an extent even greater than what 
semi-experts can achieve without SToNE. 
 
Participants using SToNE generally had a higher task success rate than those not using it. This 
result showed that developer-users using SToNE were able to try many different configurations, 
and guided by the toolkit, a larger proportion of their attempts improved performance. 
 
Participants in the experiment condition used different combination of techniques to achieve 
near similar performance. This result suggests that although SToNE enables the developers in 
understanding what the potential problems may be, and guides them how to solve those, it does 
not mandate any specific action. This was by design. While the machine can always try a brute-
force strategy to find the best combination of techniques, this was not done for two reasons: 
first, this will require massive computing power. For instance, with just 10 techniques, the total 
number of combinations possible is 210 = 1024. With each combination requiring almost an 
entire day to run on 8 cores, this simple setup can take almost three years to complete. Worse, 
the time will increase exponentially with the total number of techniques and the training data 
size. Second, often achieving optimum performance may require some changes to the user 
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interface or the interaction style, which are impossible to be validated without a human 
developer in the loop. 
 
Participants spent multiple attempts tuning parameter values. As mentioned earlier, in a speech 
system, there are multiple knobs (parameters) to optimize. In our current implementation of 
SToNE, we were able to guide the developers with respect to the direction in which to move 
their parameter values to further improve the WER. However, this strategy still required the 
developers to manually try out a few values before reaching an optimum. Since each try can 
take significant time to complete, such a discovery method can be nonetheless slow.  
 
In future, we intend to focus on automatically determining the optimum exact values for such 
parameters. In fact, researchers have already begun to explore such a research direction, and 
more formally, it’s known as black-box optimization [Watanabe et al., 2014]. Using this 
method, we can identify exact value from a million combinations automatically without 
performing a brute-force search. 
 
Even though we have situated this task in the context of building a large-vocabulary continuous 
speech recognizer, we believe SToNE could eventually be generalized to help in the 
development of other types of speech interfaces, e.g. with different sizes of vocabulary (tiny, 
small, medium, large), different types of conversation (isolated, command-and-control, 
continuous), and different amounts of training data (low, medium resource, or large). Although 
our prototype does not support all the state-of-the-art techniques – a “moving target” as such, 
we believe that its current implementation as a rule-based knowledge base can be easily 
extended to support other adaptation techniques without requiring fundamental changes to the 
overall infrastructure. 
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8.	
  DISCUSSION	
  &	
  CONCLUSIONS	
  
 
This thesis has investigated how to support development of speech user interfaces by those who 
don’t have speech recognition expertise, but are interested in using functional speech 
recognizers in their research or application development. As we conclude, we summarize the 
contributions in this thesis, and discuss avenues for future research. 
 
8.1. Summary of Contributions 
We summarize our contributions in terms of three high-level stages: (i) identification of the 
speech user interface development problem, (ii) design and development of tools to lower the 
bar of speech user interface development, and (iii) evaluation of the above tools with non-expert 
and semi-expert users. 
 
8.1.1. Identification of Speech User Interface Development Problem 
In Chapter 2, we discuss the development of a speech recognizer for children in rural India. 
This was a significant speech recognition problem as the users were non-native speakers of 
English, had significant variations in voice as is expected of children in grades 4-5, and the 
deployment of the application was in a noisy background. Through successful development and 
deployment, we discuss the challenges involved in building an accurate SUI, and the lessons we 
can learn to facilitate the development process for other non-expert developers. 
 
In Chapter 3, we discuss how once a reasonable speech recognizer has been developed, we can 
leverage that to make changes in the interaction style of the speech application. We showed that 
these changes can in turn improve recognition accuracy, and further the usability of a speech 
application. In other words, we demonstrated that once a recognizer has been developed with 
sufficient accuracy, changes to the interaction style are enabled and those could lead to further 
gains in recognition accuracy. To demonstrate this, we design and develop a novel interaction 
technique called “Voice Typing” that reduces the recognition error rate in modern day dictation 
interfaces by a relative factor of 27%.  
 
In Chapter 4, we bring together the lessons from both the above case studies to discuss four 
design myths. We further debunk those myths with empirical evidence, and argue why reasons 
for why speech recognition and HCI communities should be tightly coupled for the development 
of a usable and useful speech user interface. 
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8.1.2. Design and Development of Tools to support SUI Development 
In Chapter 5, we discuss the design and evaluation of an expert knowledge base to facilitate 
development of speech recognizers. To do so, we conduct contextual interviews with speech 
experts to understand the process, knowledge, and intuition that they use while building speech 
systems. We then formalize this knowledge in a rule-based knowledge base, and evaluate its 
predictive power with two English language datasets that have significant challenges for speech 
recognizer development such as children’s speech, background noise, or variable speaking rate. 
Through the formalization of this knowledge base, we provide a recommendation and analysis 
engine specific for speech recognizer development. 
 
In Chapter 6, we further develop a set of speech analysis and recommendation tools for non-
speech experts that can assist non-speech experts by automatically and semi-automatically 
analyzing reasons of recognition failure, and then recommending optimization techniques for 
tackling those issues. These tools include a: (i) feature extraction module for pronunciation 
scoring, signal-to-noise ratio extraction, speaking rate, etc. that quantifies specific signals for 
understanding the acoustic context of a given dataset, (ii) an analysis module that identifies the 
significant degrading factors for the speech recognizer and generates appropriate visualizations 
for further analysis, (iii) a visualizations and comparison module that helps analyze reasons of 
failure in subsets of data, and (iv) a recommender module that guides non-expert developers on 
specific steps to make the recognizer work better. 
 
8.1.3. Evaluation of SToNE 
In Chapter 7, we evaluate SToNE with both non-experts and semi-experts. We report on a 
couple of key findings: (i) in the absence of SToNE, semi-experts outperform non-experts, (ii) 
with the guidance of SToNE, both non-experts and semi-experts report significant accuracy 
improvements on their speech recognition task (about 30% relative reduction), and their 
accuracy was close to that achieved by experts on the same task, and (iii) with the help of 
SToNE, the final accuracy achieved by non-experts and semi-experts is not significantly 
different. In other words, non-experts and semi-experts were able to build useful systems with 
the help of SToNE, which can then be fielded to collect more and better data, to iteratively 
improve the system further. 

 
8.2. Limitations 
A key component for an ASR system is a pronunciation dictionary, which maps each word to its 
phoneme sequence. Each language has its own phoneme set, and even within each language, 
different dialects may have different phoneme sequences for the same word. More so, every 
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user group may have a different way of articulating a word aloud. These differences lead to 
difficulties in standardizing pronunciation dictionaries, and one must be developed for every 
new ASR. Although there are g2p tools [Bisani et al., 2008] to automatically generate 
pronunciations, these require a training dataset to learn letter-to-sound rules, and then apply 
them on unseen words. However, for resource-scarce languages or dialects where ASR 
development is fairly new, pronunciation dictionary development is still more suited for 
linguistic experts than a machine [Davel et al., 2009]. This is because properly generating 
(alternate) pronunciations of a word is accurately possible only with years of linguistic 
knowledge. Linguistics use their own error analysis methods to ensure consistency [Martirosian 
et al., 2007], which can certainly be incorporated in SToNE in the future. In its current 
implementation, SToNE has a g2p tool to automatically add pronunciations for unseen words, 
but it does not have supports for building a pronunciation dictionary ground up. 
 
Similarly, text normalization is another area where experts do a much better job than any 
automated script. While developers can write general-purpose scripts to normalize transcripts 
during the data setup phase, i.e. ensure that everything is consistent (no punctuations, lowercase 
vs. uppercase, spelling errors, etc.), each transcript follows its own set of conventions, which are 
hard to incorporate in a general-purpose script. SToNE so far only support the general-purpose 
normalization tasks, and understanding specific transcript conventions is still left to the 
developer. Sometimes, this task is best suited for data experts who have years of experiential 
knowledge at cleansing and filtering large volumes of data. 
 
Another limitation of SToNE, in its current design, is the lack of support for deep neural 
network training. Deep neural nets are at the forefront of speech recognition research, and have 
demonstrated to outperform typical GMM/HMM models, both in our task on children’s LVCSR 
in section 7.1.3 and for other tasks [Dahl et al., 2012]. However, they require heavy 
computational power, and typically run on graphical processing units (GPUs), as opposed to 
standard central processing units (CPUs). Our current implementation setup of SToNE hasn’t 
incorporated GPU-based training, but its design can support extension to such a task in future. 
 
8.3. Opportunities for Future Research 
Through this dissertation work, we have begun to formalize speech recognition experts’ 
knowledge, and developed a number of tools to support the development of speech recognizers 
by non-expert developers. Now towards the end, we enumerate a number of research and 
development opportunities, which will benefit from a more thorough investigation in future. 
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8.3.1. Black Box Optimization for Speech Recognition 
As mentioned in Chapter 1 and Chapter 7, at a high level, there are two primary aspects while 
developing an accurate speech recognizer: identifying correct optimization techniques, and 
finding optimum parameter values. SToNE was good in recommending appropriate 
optimization techniques and also was able to guide the developers the direction in which to 
change the value of parameters. However, the exact value of the parameter was still left to the 
developer, and while the toolkit currently provided some guidance to the developers on 
appropriate ballpark values for the parameters, finding optimum values still required a few 
attempts. Because each attempt in speech recognition can take hours (if not days) to complete, 
this method can be both time intensive and frustrating. This was also indicated in the qualitative 
feedback from a few participants. We propose that future researchers attempt to develop 
techniques to find optimum values for these parameters automatically, similar to black box 
optimization [Watanabe et al., 2014]. A few research questions to consider: 

• To what extent can we automatically determine the optimum values of parameters in a 
speech recognizer? Which parameters are best suited for black box optimization 
discovery, and which are not? What additional information may be needed for such 
parameters? 

• Once we have the optimum parameters for a few settings, how can we integrate the meta 
knowledge from these settings to discover optimum parameters for other settings more 
easily? 

 
8.3.2. Neural Network Training 
In Chapter 7, we showed that experts benefited from applying advanced techniques such as 
neural network training to achieve significant gains towards the end. The improvement achieved 
in word error rate was from 28.65% to 24.57%, a 14% relative improvement. While this 
technique can be highly rewarding and has proven to be beneficial in many development 
situations recently [Dahl et al., 2012], it is also highly challenging. First, it introduces another 
set of parameters, such as number of layers, learning rate, number of nodes per layer, etc. that 
need to be appropriately adjusted depending on the task. Second, to train a neural network 
system, one needs highly powerful computers. Even then, it takes three to four times longer to 
complete the training. In the future, researchers can explore how to speed up this process, and 
integrate with SToNE’s existing infrastructure. Possible directions could be Amazon’s Elastic 
Compute Cloud (EC2) service, which provides a scalable way of hosting computing on central 
servers at Amazon for a small fee. 
 
8.3.3. Supporting Discovery of Development Requirements (for Designers) 
Another informal feedback that we heard at ACM CHI’s workshop on Designing Speech and 
Language Technology [Munteanu et al., 2014] where we present the toolkit was that designers 
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of speech user interfaces are often perplexed as to “what information they need to collect before 
passing it on the developer?” While this problem is one of requirements gathering (an 
assumption we made while thinking about the toolkit), we can imagine a framework for 
designers in the form a set of questions or probes that they can use to think about a speech 
technology design and development. Future researchers in speech user interface technology 
design can hopefully work towards such a universal framework for designers.  
 
8.3.4. Active Learning for Selective Data Transcription (for Developers) 
In this thesis, we have focused on developing a functional speech system, often with low 
resources. Once a “working” or “semi-working” system has been developed, we have also 
discussed that such a system be used for additional data collection to iteratively improve the 
WER. While additional data collection is useful, the associated transcription can be costly. At 
this point, developers need to get selective and identify parts of data that will benefit the system 
most from transcription. How do you automatically identify such subsets is a research question 
that might benefit from future investigation? 
 
There are already some threads of research focusing on this aspect, and termed under “active 
learning for speech recognition.” [Riccardi et al., 2005] We propose that such research can also 
benefit from integration with our automatic or semi-automatic analysis module that identifies 
the most significant degrading factors and then intelligently selecting subsets based on this 
information. 
  
8.3.5. Applicability to Other Languages 
Another thread of interesting research is the extension of our work in developing expert 
knowledge base for other languages. To our understanding, the rules and techniques in our 
knowledge base are primarily generic, but a few language specific issues might have to be 
incorporated to make it work for other languages. What techniques are transferable and 
universal across all languages? Are there techniques that work similarly for a subset of 
languages, and if so, how do we cluster different languages? How do we incorporate techniques 
for languages that may not have much in common with other languages? Such and other 
questions can benefit from further investigation by future researchers. 
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