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Abstract 
Most learning environments in the STEM disciplines use multiple graphical representations 

along with textual descriptions and symbolic representations. Multiple graphical representations 

are powerful learning tools because they can emphasize complementary aspects of complex 

learning contents. However, to benefit from multiple graphical representations, students need to 

engage in a number of learning processes. Educational technologies offer novel opportunities to 

support these learning processes by making graphical representations interactive and by provid-

ing individualized instructional support for students’ interactions with them. Yet, these opportun-

ities are under-researched, as most prior research has taken a symbol-systems approach by focus-

ing only on multiple representations that use different symbol systems, such as text and one addi-

tional graphical representation. 

To address the open question of how to enhance students’ benefit from multiple graphical 

representations that use the same symbol system, I conducted a series of five classroom experi-

ments and lab studies with over 3,000 students in grades 4-6. Each experiment tested the effec-

tiveness of different types of instructional support for students’ learning with multiple graphical 

representations. Experiment 1 compares the effects of multiple over a single graphical represen-

tation and the effects of prompting students to self-explain the relation between graphical and 

symbolic representations. Results show that multiple graphical representations lead to better 

learning than a single graphical representation, provided that students receive self-explanation 

prompts. Experiment 2 contrasts sequences of task types and graphical representations. The re-

sults show that interleaving task types while blocking graphical representations promotes stu-

dents’ learning from multiple graphical representations more so than interleaving graphical re-

presentations while blocking task types. Building on Experiment 2, Experiment 3 investigates 

whether (in addition to moderately interleaving task types) graphical representations should also 

be presented in an interleaved, rather than in a blocked fashion. An analysis of learning outcomes 

and tutor log data demonstrates that interleaving graphical representations (while moderately in-

terleaving task types) enhances students’ benefits from multiple graphical representations. Fur-

thermore, Experiment 3 replicates the finding from Experiment 1 that multiple graphical repre-

sentations lead to better learning than a single one. Experiment 4 investigates the effects of dif-

ferent types of instructional support for connection making between multiple graphical represen-

tations. The results show that a combination of support designed to help students actively make 
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sense of the connections and of support designed to help students become fluent in making these 

connections is needed for students to benefit from multiple graphical representations, compared 

to a single graphical representation. Finally, Experiment 5 investigates different sequences of 

connectional sense-making support and connectional fluency-building support. The results lead 

to the conclusion that receiving support for making sense of connections first is a prerequisite to 

students’ benefit from subsequent connectional fluency-building support. 

A further contribution of my thesis work is the development of an intelligent tutoring system 

for fractions that leads to significant and robust gains in students’ conceptual and procedural 

knowledge of fractions. In addition to investigating how best to support students’ learning with 

multiple graphical representations, each experiment also served to iteratively improve the Frac-

tions Tutor while employing user-centered techniques. To develop the Fractions Tutor, I made 

use of a novel methodology to resolve stakeholder conflicts that inevitably arise in complex edu-

cational settings.  

I consolidate my empirical findings in a novel theoretical framework that describes the learn-

ing processes that students perform when learning with multiple graphical representations. This 

framework extends existing theoretical frameworks, which have solely focused on learning with 

representations that use different symbol systems (such as text accompanied with one additional 

graphical representation), rather than on learning with multiple representations using the same 

symbol system (such as multiple graphical representations). My theoretical framework proposes 

that in order to benefit from multiple graphical representations, students need to conceptually 

understand each individual graphical representation and to use each graphical representation 

fluently to solve domain-specific problems, students need to conceptually understand the connec-

tions between different graphical representations, and they need to become fluent in making 

these connections. 

In sum, my thesis work contributes (1) an empirically validated set of instructional design 

principles for the effective use of multiple graphical representations, (2) a theoretical framework 

for learning with multiple graphical representations that use the same symbol system, (3) an ef-

fective tutoring system for fractions learning, and (4) a new methodology for resolving design 

conflicts that often occur in real educational settings. 
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1 Introduction 
Instructional materials in science, technology, engineering, and math (STEM) domains univer-

sally employ a variety of representations as educational tools: flow diagrams in programming, 

schemas and tree diagrams in biology, charts and graphs in math – to mention just a few exam-

ples. Indeed, a vast amount of literature documents the potential benefit of multiple representa-

tions on students’ learning (Ainsworth, 1999, 2006; Ainsworth, Bibby, & Wood, 2002; Brenner 

et al., 1997; de Jong et al., 1998; Eilam & Poyas, 2008; Hwang, Su, Huang, & Dong, 2009; 

Kordaki, 2010; Solaz-Portolés & Lopez, 2007; van Someren, Boshuizen, & de Jong, 1998). 

Multiple representations are considered to enhance learning in part because different representa-

tions emphasize complementary conceptual aspects of the learning material and have differential 

effects on mental processing (Cox, 1999; Cromley, Snyder-Hogan, & Luciw-Dubas, 2010; 

Gagatsis & Elia, 2004; Gegenfurtner, Lehtinen, & Säljö, 2011; Goldman, 2003; Hinze et al., 

2013; Kozma, Chin, Russell, & Marx, 2000; Larkin & Simon, 1987; Reed & Ettinger, 1987; 

Schnotz & Bannert, 2003; Schwartz & Black, 1996; Tabachneck, Leonardo, & Simon, 1997; 

Zhang, 1997; Zhang & Norman, 1994). Across domains, researchers and instructors recognize 

the importance of using more than one representation, as “the adherence to […] one visualization 

– as the ultimate kind of organization for the phenomenon at hand – impedes students’ develop-

ment of […] cognitive flexibility” (Eilam, 2013, p. 69; also see Spiro, Feltovich, Jacobson, & 

Coulson, 1991). 

However, most prior research has taken a symbol-systems approach by focusing on learning 

with text and one additional graphical representation (Ainsworth & Loizou, 2003; Baetge & 

Seufert, 2010; Bodemer, Plötzner, Bruchmüller, & Häcker, 2005; Butcher & Aleven, 2007; 

Kuehl, Scheiter, & Gerjets, 2010; Magner, Schwonke, Renkl, Aleven, & Popescu, 2010; Rasch 

& Schnotz, 2009; Suthers, Vatrapu, Medina, Joseph, & Dwyer, 2008). This focus on learning 

with text and graphical representations reflects the belief that multiple representations are benefi-

cial because they are presented in different symbol systems. Symbol systems are defined by the 

mental construction processes through with a learner constructs an internal representation of the 

content that is being depicted (Schnotz & Bannert, 2003, see section 2.1). Textual descriptions 

are encoded based on their semantic organization, whereas graphical representations are encoded 

based on their perceptual meaning. The integration of information presented across different 
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symbol systems requires deeper processing of the learning content than when the same content is 

presented in only one symbol system (e.g., text alone) and thus accounts for the positive effect of 

multiple representations (Schnotz & Bannert, 2003). By contrast, learning materials across all 

STEM domains usually include multiple representations of the same symbol system: textual de-

scriptions and symbolic notations are typically accompanied by multiple graphical representa-

tions (Arcavi, 2003; Cook, Wiebe, & Carter, 2007; Kordaki, 2010; Kozma et al., 2000; Urban-

Woldron, 2009; Walkington, Nathan, Wolfgram, Alibali, & Srisurichan, 2011). Unfortunately, 

given the pervasiveness of the symbol-systems approach in the educational psychology literature, 

prior research fails to address this common scenario found in many educational materials. In the 

light of prior research, it remains unclear whether multiple graphical representations even benefit 

students’ learning. Requiring students to integrate multiple representations that employ the same 

symbol system (such as multiple graphical representations) might harm students’ learning be-

cause they lead to cognitive overload in the pictorial part of working memory (Clark & Mayer, 

2003; Leikin, Leikin, Waisman, & Shaul, 2013; Mayer, 2003; Mayer, 2005), which might im-

pede learning (Chandler & Sweller, 1991).  

It is widely recognized that simply providing learners with multiple representations will not 

necessarily enhance learning. Research on multiple representations shows that they only enhance 

learning when accompanied with appropriate instructional support (Baetge & Seufert, 2010; 

Berthold, Eysink, & Renkl, 2008; Berthold, Faulhaber, Guevara, & Renkl, 2010; Bodemer & 

Faust, 2006; Bodemer et al., 2005; Butcher, 2006; Gobert et al., 2011; Mayer & Gallini, 1990; 

Ozcelik, Karakus, Kursun, & Cagiltay, 2009; Plötzner, Bodemer, & Neudert, 2008; Rathmell & 

Leutzinger, 1991; Schwonke, Berthold, & Renkl, 2009; Schwonke, Ertelt, & Renkl, 2008; 

Seufert, 2003; Uttal, 2003; van der Meij, 2007; van der Meij & de Jong, 2006). Yet again, given 

that this research has largely taken a symbol-systems approach, it is an open question how best to 

best design instructional materials with multiple graphical representations, and how to best to 

provide instructional support for students’ robust learning with multiple graphical representa-

tions.  

Indeed, in reviewing science and math curricula (Bennett, 2004; Corwin, Russell, & Tierney, 

1990; Cramer, Behr, Post, & Lesh, 1997a, 1997b; Hake, 2004; Kilpatrick, Swafford, & Findell, 

2001; Lappan, Fey, & Fitzgerald, 1998), I found that while they all include a variety of graphical 
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representations, each uses them in different ways. Although many educational standards emphas-

ize the importance of integrating a variety of graphical representations (Halpern et al., 2007; 

NCTM, 1989, 2000; NETP, 2010; NMAP, 2008; Pashler et al., 2007; Siegler et al., 2010), they 

do not provide specific guidance as to how to implement them. Therefore, the goal of my disser-

tation work is to investigate how to use multiple graphical representations in a way that most 

benefits students’ learning of robust domain knowledge: knowledge that transfers to novel tasks 

and lasts over time (Koedinger, Corbett, & Perfetti, 2012).  

I investigate this question in the context of an educational technology. Educational technolo-

gies offer novel opportunities in supporting students’ learning from graphical representations, for 

instance by making representations interactive (Crawford & Brown, 2003; Durmus & Karakirik, 

2006; Gire et al., 2010; Lewalter, 2003; Moyer, Bolyard, & Spikell, 2002; Proctor, Baturo, & 

Cooper, 2002; Rasch & Schnotz, 2009; Reimer & Moyer, 2005; Suh, Moyer, & Heo, 2005), and 

by providing individualized support with respect to students’ interactions with the representa-

tions (Durmus & Karakirik, 2006; Kordaki, 2010; Suh & Moyer, 2007). At the same time, educa-

tional technologies increasingly impact education in real classrooms across the United States as 

internet-based courses are fast expanding (Kim, Kim, & Whang, 2013), as schools are getting 

more and more access to computers (DeBell et al., 2003) and to the internet (Wells & Lewis, 

2006), and as virtual schools become more and more prevalent (Oliver, Osborne, & Brady, 

2009). My dissertation research therefore integrates the learning sciences question of how best to 

support students’ robust learning with multiple graphical representations and the educational 

technology question of how best to capitalize on the novel opportunities that technologies offer 

to provide instructional support for students’ interactions with multiple graphical representations.  

Taken together, the contributions of my work fall into four categories. First, my research 

provides a set of instructional design principles on how to support students’ robust learning 

through principled use of multiple graphical representations (see section 5.1). These instructional 

design principles are the outcome of a sequence of controlled experiments (see section 4). They 

address the gap between the common symbol-systems approach in prior educational psychology 

research and the lack of guidance in common educational materials that include multiple graphi-

cal representations that use the same symbol system. As such, the instructional design principles 

provide guidance for the development of multi-representational educational technologies. 
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Second, I discuss these principles in the light of a new theoretical framework for learning 

with multiple graphical representations (see section 2.2 and section 5.1.3). In providing a new 

theoretical framework, I extend prior frameworks on multiple representations (see sections 2.2 

and 5.1). My goal is to explicitly describe the learning processes that facilitate students’ learning 

with multiple representations that use the same symbol system. The theoretical framework builds 

on existing theoretical frameworks for learning with multiple representations from different 

symbol systems and is the result of a series of experiments (see section 4) that I have conducted 

on learning with multiple representations of the same symbol system. Furthermore, the theoreti-

cal framework makes testable predictions some of which I have investigated in my empirical 

work. Furthermore, the theoretical framework has the potential to stimulate research on learning 

with multiple graphical representations in a variety of domains. 

Third, I developed a successful piece of educational software: an intelligent tutoring system 

for fractions (see section 5.2). The Fractions Tutor (see section 3) uses multiple graphical repre-

sentations in a principled way (see section 3.2), leads to robust conceptual learning (see section 

3.5), and is usable within the context of real classroom settings (see section 3.3).  

Finally, I describe a user-centered design methodology that integrates methods from learning 

sciences, intelligent tutoring systems, and human-computer interaction (see section 3.3). This 

methodology served as a basis for the development of the Fractions Tutor. It incorporates the in-

structional design principles that follow from a sequence of controlled classroom experiments 

and has been iteratively improved throughout these experiments (see section 4). 

These contributions of my research are not to be considered separate; rather, they iteratively 

build on one another. An overarching theme across these threads of my work is the integration of 

multiple research perspectives into a coherent program of research. In integrating multiple pers-

pectives, I employ a multi-methods approach that combines quantitative measures of learning 

outcomes, qualitative assessments of student and teacher satisfaction, a variety of quantitative 

and qualitative measures of learning processes, such as tutor log data, think-aloud protocols, and 

interview data, and uses a variety of research methods, including classroom experimentation and 

data mining. By bringing multiple perspectives together, my work illustrates how the combina-

tion of learning sciences and educational technology research yields insights that exceed what 

can be gained by adhering to either research perspective alone.  
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The remainder of this thesis is structured as follows. I first introduce the two perspectives on 

my work, the learning science perspective (see section 1.1), and the educational technology pers-

pective (see section 1.2). Next, I present a new theoretical framework for learning with multiple 

graphical representations (see section 2), by extending existing frameworks for learning with text 

and graphical representations. Then, I describe the Fractions Tutor (see section 3): an intelligent 

tutoring system that is both the platform and the outcome of my empirical research. I then de-

scribe a series of classroom experiments that I conducted with the Fractions Tutor to investigate 

learning with multiple graphical representations (see section 4). I focus in detail on a final lab-

based experiment in this series, which investigated how sense-making processes and fluency-

building processes in connection making between multiple graphical representations interact (see 

section 4.5). Finally, I draw conclusions from these experimental studies in relation to the learn-

ing sciences perspective (see section 5.1) and the educational technology perspective of my work 

(see section 5.2). After discussing the limitations of my research and perspectives for future work 

(see section 5.3), I end by discussing the merit of integrating complementary perspectives by us-

ing a multi-methods approach to empirical research (see section 5.4). 
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1.1 Learning sciences perspective 

External representations are considered to be useful instructional tools because they can clarify 

crucial aspects of the learning content, often through the use of perceptually intuitive characteris-

tics (Ainsworth, 2006). Since different representations often emphasize complementary aspects 

of the learning content (Ainsworth, 2006; Hinze et al., 2013; Kozma et al., 2000; Löhner, van 

Joolingen, & Savelsbergh, 2003; Rasch & Schnotz, 2009; Schnotz & Bannert, 2003) and en-

hance different kinds of cognitive processes and strategies (Ainsworth, 2006; Cromley et al., 

2010; Gagatsis & Elia, 2004; Larkin & Simon, 1987; Lewalter, 2003; Nistal, Van Dooren, 

Clarebout, Elen, & Verschaffel, 2010; Reed & Ettinger, 1987; Schnotz & Bannert, 2003; 

Schwartz & Black, 1996; Zhang, 1997; Zhang & Norman, 1994), instructional materials tend to 

use not just a single representation, but multiple. Indeed, in the educational psychology literature, 

there is extensive experimental evidence that multiple representations can lead to better learning 

outcomes than a single representation (Ainsworth et al., 2002; Brenner et al., 1997; Eilam & 

Poyas, 2008; Schnotz & Bannert, 2003).  

By and large, the educational psychology literature on learning with multiple representations 

has taken a symbol-systems approach: research has mostly focused on learning with textual de-

scriptions and one additional graphical representation (Ainsworth & Loizou, 2003; Baetge & 

Seufert, 2010; Bodemer et al., 2005; Butcher & Aleven, 2008; Butcher, 2006; Eilam & Poyas, 

2008; Eitel, Scheiter, & Schüler, 2013; Kuehl et al., 2010; Magner et al., 2010; Mason, Pluchino, 

& Tornatora, 2013; Rasch & Schnotz, 2009; Suthers et al., 2008). Textual descriptions and 

graphical representations differ in the symbol system they use (Schnotz & Bannert, 2003). Text 

is organized verbally and is interpreted via semantic processing of the text-based structure, lead-

ing to a propositional internal representation of the content. Graphical representations are orga-

nized according to visual structures and are interpreted via analog perception and thematic selec-

tion, leading to an analog internal representation. Under the symbol-systems approach, the ad-

vantage of multiple representations has been attributed to the fact that they stimulate deeper 

processing by requiring learners to integrate information across these different symbol systems 

(i.e., by integrating propositional representations and analog internal representations). However, 

instructional materials found in real educational settings are typically more complex. Learning 
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materials across a wide range of domains contain multiple graphical representations in addition 

to text and symbolic representations (van Someren et al., 1998), for instance in math (Arcavi, 

2003; Cheng, 1999; Noss, Healy, & Hoyles, 1997; Pape & Tchoshanov, 2001; Rathmell & 

Leutzinger, 1991), chemistry (Kozma et al., 2000; Kozma & Russell, 2005; Stieff, Hegarty, & 

Deslongchamps, 2011; Zhang & Linn, 2011), biology (Cook et al., 2007; Simons & Keil, 1995), 

physics (Larkin & Simon, 1987; Lewalter, 2003; Urban-Woldron, 2009; van der Meij & de Jong, 

2006), engineering (Nathan, Walkington, Srisurichan, & Alibali, 2011; Walkington et al., 2011), 

and programming (Baetge & Seufert, 2010; Kordaki, 2010). Thus, all of these domains typically 

incorporate multiple representations that use the same symbol system. Whether prior research on 

learning with multiple representations from different symbol systems generalizes to learning with 

multiple representations from the same symbol system remains an open question. 

In spite of the well-documented promise of learning with multiple representations, research 

has not always succeeded in demonstrating their advantage on students’ learning (Baetge & 

Seufert, 2010; Kuehl et al., 2010; Mayer & Gallini, 1990; Schnotz & Bannert, 2003; Schoor & 

Bannert, 2010). Students’ benefits from multiple representations rely on their ability to under-

stand each individual representation (Ainsworth, 2006; Eilam, 2013), and their ability to make 

connections between them (Ainsworth, 2006; de Jong et al., 1998; Gobert et al., 2011; Gutwill, 

Frederiksen, & White, 1999; Özgün-Koca, 2008; Rathmell & Leutzinger, 1991; Superfine, 

Canty, & Marshall, 2009; Uttal, 2003; van der Meij, 2007). Unfortunately, we do not yet fully 

understand whether students need to engage in the same learning processes when learning with 

multiple representations using different symbol systems as when learning with multiple represen-

tations using the same symbol system. Consequently, we do not know how best to support stu-

dents in learning with multiple graphical representations, although it seems reasonable to believe 

that such support is integral to their benefit from them. Therefore, research is needed that focuses 

on the common case of learning with multiple graphical representations in order to develop ap-

propriate instructional design principles for the development of effective instructional materials 

that promote robust learning of a domain: learning of flexible knowledge that students can trans-

fer to novel tasks and that lasts over time (Koedinger et al., 2012). 

Fractions instruction is one of the many domains in which multiple graphical representations, 

such as circles, rectangles, and number lines are used extensively (NMAP, 2008; Siegler et al., 



1 Introduction 
 

15 
 
 

2010). Different graphical representations emphasize different conceptual aspects of fractions 

(Charalambous & Pitta-Pantazi, 2007). For instance, area models (i.e., circles and rectangles) 

depict fractions as equally sized parts of a whole, where the whole is usually inherent to the 

shape (e.g., the whole circle in a circle representation; Cramer, 2001; Cramer & Henry, 2002; 

Cramer & Wyberg, 2009; Cramer, Wyberg, & Leavitt, 2008; Cramer, Post, & delMas, 2002; 

Lamon, 1999; Reimer & Moyer, 2005). Students interpret area models by relating the number of 

colored sections to the number of total sections in the unit. They can compare the relative size of 

fractions represented in area models by comparing the relative colored area to the whole area of 

the shape. Area models are often used in the context of sharing activities, thus building on stu-

dents’ intuitive knowledge about fractions (Cramer & Wyberg, 2009; Cramer et al., 2002; 

Lamon, 1999). Linear models (e.g., number lines) depict fractions in the context of measurement 

and demonstrate that fractions can lie between any two whole numbers (Lamon, 1999; Siegler, 

Thompson, & Schneider, 2011). By contrast, linear models do not have an inherent unit. Rather, 

the unit is defined by convention: the length between 0 and 1 is the unit, as opposed to the length 

of the entire number line (e.g., in a number line from 0 to 3). To compare the relative size of 

fractions using linear models, students have to judge the length of a linear segment relative to the 

defined unit of the representation. The goal in using multiple graphical representations is to help 

students understand the complex topic of fractions by highlighting these complementary concep-

tual aspects (NMAP, 2008; Pashler et al., 2007; Siegler et al., 2010). This practice makes frac-

tions a suitable domain for research on learning with multiple graphical representations: as in 

many other STEM domains, various graphical representations, each with a different conceptual 

focus, are used in conjunction with textual descriptions and symbolic representations to enhance 

learning of rather abstract concepts.  

My research addresses these open questions about how best to support students’ robust learn-

ing with multiple graphical representations. Thereby, my research extends prior research on 

learning with multiple representations using different symbol systems to learning with multiple 

graphical representations using the same symbol system, which is – as just argued – a common 

scenario in real-world instructional materials. Given that processes involved in learning with re-

presentations from different symbol systems (i.e., when integrating propositional representations 

and analog internal representations in the case of textual descriptions and graphical representa-
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tions) may differ from the processes involved in learning with multiple graphical representations 

(i.e., when integrating multiple analog internal representations), my research provides fundamen-

tally novel insights that may have an impact on educational materials across a large range of do-

mains.  

To achieve these goals, I conducted a sequence of experiments on learning with multiple 

graphical representations of fractions (Rau, Aleven, & Rummel, 2009, 2010; Rau, Aleven, & 

Rummel, 2013b; Rau, Aleven, Rummel, & Rohrbach, 2012, 2013; Rau & Pardos, 2012; Rau, 

Rummel, Aleven, Pacilio, & Tunc-Pekkan, 2012; see section 4). The goal of each experiment is 

(1) to investigate how best to implement multiple graphical representations and instructional 

support for learning with them so as to enhance students’ learning of robust domain knowledge, 

and (2) to develop and iteratively revise the Fractions Tutor, a piece of educational software for 

fractions learning, which incorporates these instructional design principles. The experiments 

served as a basis for both the development and the refinement of a theoretical framework for 

learning with multiple graphical representations that extends existing theoretical frameworks on 

learning with multiple representations that have taken a symbol-systems approach (see section 

2). Both the theoretical framework and the experimental studies provide the foundation for the 

design of educational software for fractions learning (see section 3).  
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1.2 Educational technology perspective 

Educational technologies provide novel opportunities to support students’ learning with multiple 

graphical representations. A variety of studies document the potential advantages of allowing 

students to work with dynamic, interactive representations in mechanics (Bodemer, Plötzner, 

Feuerlein, & Spada, 2004; Plötzner et al., 2008), chemistry (Chiu & Linn, 2012; Zhang & Linn, 

2011), physics (Gire et al., 2010; Hwang et al., 2009; Lewalter, 2003; van der Meij, 2007), alge-

bra (Suh & Moyer, 2007), and statistics (Plötzner et al., 2008). In math education, virtual mani-

pulatives have recently gained attention (Crawford & Brown, 2003; Durmus & Karakirik, 2006; 

Moyer et al., 2002): virtual manipulatives are dynamic, interactive graphical representations em-

bedded in educational technologies that students can manipulate in various ways. Several studies 

in the domain of fractions argue that virtual manipulatives can enhance students’ learning 

(Lamberty & Kolodner, 2002; Proctor et al., 2002; Reimer & Moyer, 2005; Suh et al., 2005), and 

that they are at least as effective as physical manipulatives traditionally used for fractions in-

struction in classrooms (Roussou, Oliver, & Slater, 2006).  

Interactive graphical representations can provide individualized support for students’ interac-

tions with graphical representations designed to help them acquire cognitive competencies that 

are prerequisite for their benefit from multiple graphical representations. Yet, these opportunities 

are under-researched, leaving developers of educational technologies with little guidance on how 

best to implement instructional support for learning with multiple graphical representations. By 

investigating learning with multiple graphical representations in the context of educational tech-

nologies, my research addresses these shortcomings. 

For this purpose, I developed software that uses multiple, interactive graphical representa-

tions of fractions. In doing so, I made use of a particularly successful educational technology: a 

type of Cognitive Tutor (Koedinger & Corbett, 2006; Ritter, Anderson, Koedinger, & Corbett, 

2007). Cognitive Tutors are grounded in cognitive theory and artificial intelligence. They pose 

rich problem-solving tasks to students and provide individualized support at any point during the 

problem-solving process. At the heart of Cognitive Tutors lies a cognitive model of students’ 

problem-solving steps. The model serves as a basis for individualized support given to students 

throughout the learning process (Corbett & Anderson, 2001; Corbett & Trask, 2000; Koedinger 

& Corbett, 2006). Cognitive Tutors have been shown to lead to significant learning gains in a 
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variety of studies (Corbett & Anderson, 2001; Corbett & Trask, 2000; Corbett, Koedinger, & 

Hadley, 2001; Koedinger & Corbett, 2006; VanLehn, 2011), and are currently being used in 

close to 3,000 U.S. schools. The Fractions Tutor is a specific type of Cognitive Tutor: an exam-

ple-tracing tutor (Aleven, McLaren, Sewall, & Koedinger, 2009a) that provides step-by-step 

guidance in the form of feedback and on-demand hints in the same way as other Cognitive Tu-

tors do, but instead of relying on a rule-based cognitive model, it does so based on generalized 

examples of correct and incorrect solution paths rather than on a rule-based cognitive model of 

student behavior. 

In developing the Fractions Tutor, my goal was to develop software that is usable within the 

constraints of real educational contexts and that addresses the goals and needs of multiple stake-

holders in these contexts (e.g., students, teachers, superintendents). Different stakeholders often 

have different goals. Furthermore, there are typically significant resource limitations, so that de-

sign goals (even if they were agreed upon by all stakeholders) need to be traded off against each 

other. Unfortunately, existing design methodologies for educational technologies (Bereiter & 

Scardamalia, 2003; Design-based Research Collective, 2003; Jackson, Krajcik, & Soloway, 

1998; Koedinger, 2002; Soloway et al., 1996; van Merriënboer, Clark, & de Croock, 2002) do 

not provide guidance on how to resolve such design conflicts. This problem may in part be attri-

buted to the fact that many different perspectives are relevant to the development of educational 

technologies. While each methodology mainly focuses on one of these perspectives, they rarely 

integrate these different perspectives. In particular, some methodologies focus on user-centered 

design (Design-based Research Collective, 2003; Jackson et al., 1998; Soloway et al., 1996), 

others incorporate learning sciences (Bereiter & Scardamalia, 2003) and cognitive psychology 

and cognitive science research (Koedinger, 2002; Mayer, 2003; van Merriënboer et al., 2002). 

Since these different types of methodologies rarely reference one another, developers often have 

to rely on ad-hoc methods to resolve conflicts that inevitably arise in the interdisciplinary field of 

educational technology. For instance, a math teacher who wants to help students learn deeply 

may provide complex real-world problems (Bereiter & Scardamalia, 2003). Yet, van Mer-

riënboer and colleagues (2002) suggest practicing part-tasks: discrete tasks that are necessary for 

the completion of complex problems (e.g., practicing math facts). At the same time, students find 
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complex problems interesting, but the teacher might worry that their learning is jeopardized be-

cause the problems do not provide just-in-time feedback (van Merriënboer et al., 2002).  

Paying attention to such conflicting goals is a crucial prerequisite to developing effective 

educational software. If we fail to address stakeholders’ competing goals, students may dislike 

the software because it is either boring or too challenging, or teachers – who might well believe 

it will help their students learn deeply – fail to use the software within the constraints of their 

day-to-day job, which requires them to prepare students for standardized tests and manage a 

classroom. However, if we succeed in integrating stakeholders’ needs within the constraints of 

their contexts into the design of educational software, dissemination and long-term success of the 

software, and by consequence, students’ learning outcomes, will hugely benefit. What is needed 

is a principled methodology that developers can apply to resolve such conflicts.  

Cognitive Tutors are particularly suitable for developing a methodology to resolving design 

conflicts as their development follows a well-described design process that integrates design rec-

ommendations originating from a number of fields, including human-computer interaction, learn-

ing science, and education research (Corbett, Koedinger, & Anderson, 1997). I extend this 

process by providing a new approach for resolving conflicting design recommendations and con-

straints. In particular, my methodology combines focus groups and affinity diagramming to de-

velop a goal hierarchy, parametric experiments, and cross-iteration studies. The novelty of this 

methodology lies in a principled combination of methods that originate in a variety of discip-

lines, including from human-computer interaction, learning sciences, and intelligent tutoring sys-

tems research.  

Taken together, the success of the Fractions Tutor, like that of other Cognitive Tutors 

(Corbett, Kauffman, Maclaren, Wagner, & Jones, 2010; Ogan, Aleven, & Jones, 2008; Ritter et 

al., 2007), has been shaped by incorporating stakeholder goals into the design process. In doing 

so, I employed a principle-based methodology, which combines learning sciences and intelligent 

tutoring systems research with a user-based design perspective. I believe that this methodology is 

not unique to the domain of fractions or Cognitive Tutors in particular, but that can inform the 

development of a wide range of educational software. 



1 Introduction 
 

20 
 
 

1.3 Summary 

In summary, my research integrates multiple perspectives that complement each other. First, my 

research provides a set of instructional design principles on how to employ multiple graphical 

representations most effectively so that they enhance students’ robust learning of domain know-

ledge. To this end, I conducted several classroom experiments and lab studies with over 3,000 

students. Each served to investigate theoretically motivated questions about how best to support 

students’ learning through the use of multiple graphical representations. From this perspective, 

my goal in developing the Fractions Tutor was to use it as a research platform to study learning 

sciences questions about learning with multiple graphical representations. Second, I developed a 

novel theoretical framework for learning with multiple graphical representations in conjunction 

with the experimental studies. The theoretical framework extends prior theoretical perspectives 

on learning with multiple representations that use different symbol systems to learning with mul-

tiple graphical representations that use the same symbol system. I discuss the findings from my 

experimental studies from the perspective of the theoretical framework while highlighting new 

research questions for future research that the theoretical framework raises. Third, my goal was 

to develop a successful intelligent tutoring system that addresses an educational problem and that 

is usable within real educational contexts in which conflicts between stakeholder goals inevitably 

arise. From this perspective, the Fractions Tutor can be viewed as the outcome of my research. 

Each experimental study also served to iteratively improve the Fractions Tutor. Finally, the in 

developing the Fractions Tutor, I developed a methodology to address conflicts between compet-

ing stakeholder goals that may arise in complex educational settings. My work illustrates how 

the use of a multi-methods approach that combines learning outcome measures with process-

level measures, can use one perspective to enhance the benefit of the other perspective: the dif-

ferent perspectives of my research do not stand side by side but complement each other.  

Altogether, in combining learning sciences, intelligent tutoring systems, and user-centered 

design perspectives, my research results in (1) a set of instructional design principles to guide the 

development of a range of multi-representational educational technologies, (2) an empirically 

motivated theoretical framework for learning with multiple graphical representations that use the 

same symbol system, (3) an effective tutoring system for fractions learning, and (4) a new me-

thodology for resolving design conflicts that often occur in real educational settings.  
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2 Theoretical Framework 
To develop educational software that supports learning through adequate use of multiple graphi-

cal representations, it is crucial to first reflect on the cognitive processes involved in learning 

with multiple graphical representations. Simply integrating multiple graphical representations 

into educational software is unlikely to lead to optimal learning gains (Ainsworth, 2006; de Jong 

et al., 1998; Kim et al., 2013). Rather, their success in supporting robust learning stands and falls 

with appropriate instructional support to help students understand individual representations 

(Ainsworth, 2006; Eilam, 2013), and the connections between them (Ainsworth, 2006; de Jong et 

al., 1998; Gobert et al., 2011; Gutwill et al., 1999; Özgün-Koca, 2008; Rathmell & Leutzinger, 

1991; Superfine et al., 2009; Uttal, 2003; van der Meij, 2007).  

There are a number of theoretical frameworks that describe the cognitive processes involved 

in learning with multiple representations, and that provide guidance for the design of multi-

representational learning materials. Yet, these frameworks take a symbol-systems approach: they 

are based on research on learning with multiple representations using different symbol systems, 

such as text and one additional graphical representation. None of them specifically focuses on 

learning with multiple graphical representations using the same symbol system. In this section, I 

first describe a number of existing frameworks for learning with multiple representations, while 

explicitly pointing out their shortcomings and why their predictions may not explain the hy-

pothesized advantage of multiple graphical representations over a single graphical representa-

tion. I then provide a new theoretical framework for learning with multiple graphical representa-

tions that addresses these shortcomings and provides guidance on how to design instructional 

support for students’ learning with multiple graphical representations. I developed and further 

refined this theoretical framework along with empirical work. Even though here, I present the 

theoretical framework before describing my experimental studies, the framework is to be consi-

dered an outcome of my empirical work, as well as the motivation for some of my experimental 

studies described in section 4.  
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2.1 Existing theoretical frameworks for learning with multiple representations 

When discussing theoretical frameworks for learning with multiple representations, one needs to 

distinguish internal and external representations. External representations are “the knowledge 

and structure in the environment, as physical symbols, objects, or dimensions […] embedded in 

physical configurations” (Gilbert, 2008; Zhang, 1997, p. 180). Internal representations, on the 

other hand, are knowledge structures in memory, such as schemas or production rules (Gilbert, 

2008; Zhang, 1997). As learners understand external representations, they form internal repre-

sentations, which they then, in turn, integrate into a mental model (Gilbert, 2008; Zhang, 1997; 

Zhang & Norman, 1994). Since different representations have complementary strengths 

(Ainsworth, 2006; Cromley et al., 2010; Gagatsis & Elia, 2004; Hinze et al., 2013; Kozma et al., 

2000; Larkin & Simon, 1987; Lewalter, 2003; Löhner et al., 2003; Nistal, Van Dooren, 

Clarebout, Elen, & Verschaffel, 2010; Rasch & Schnotz, 2009; Reed & Ettinger, 1987; Schnotz 

& Bannert, 2003; Schwartz & Black, 1996; Zhang, 1997; Zhang & Norman, 1994), the effec-

tiveness of multiple external representations lies in their potential to help students form more ac-

curate mental models of the domain.  

Building on the distinction between internal and external representations, Schnotz and Ban-

nert’s (2003) theoretical framework (Fig. 1) proposes that text and graphical representation lead 

to different types of internal representations – by virtue of using different symbol systems. Text 

uses a verbally organized symbol system and is processed semantically through an analysis of its 

semantic structure, leading to a propositional internal representation. Graphical representations, 

on the other hand, use a pictorial symbol system and are processed perceptually, leading to an 

analog internal representation. During mental model formation, learners integrate both types in-

ternal representations via structure mapping (Gentner & Markman, 1997). Integrating informa-

tion from different symbol systems requires deep conceptual processing, as students have to map 

semantic propositions to corresponding parts of a pictorial, analog internal representation. Ac-

cording to Schnotz and Bannert (2003), the integration across different symbol systems explains 

why learning with text and graphical representation leads to better learning outcomes than learn-

ing with text alone.  

In line with the Dual Channel theory (Paivio, 1986), and building on Schnotz and Bannert’s 

framework of text and graphic comprehension (Schnotz & Bannert, 2003), Mayer and Moreno’s 
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Cognitive Theory of Multimedia Learning (Mayer, 2003; Mayer, 2005; Mayer & Moreno, 1998, 

2003) assumes that verbal and pictorial information are processed in different information chan-

nels (Fig. 2). Even though text is often presented visually (i.e., in written form), it is encoded into 

a verbal model within working memory (see Fig. 2). Since the capacity of each part of working 

memory is limited but the capacity of both together is additive (Chandler & Sweller, 1991), 

learning with both text and graphical representation makes better use of the learner’s working 

memory capacity than learning with either type of representation alone. Furthermore, active inte-

gration of the verbal model and the pictorial model into one coherent mental model requires dee-

per conceptual processing of the content, which leads to better learning, compared to learning 

with a single representation.  

 
Fig. 1. Mental model integration in Schnotz and Bannert’s (2003) theoretical framework of text and graphic comprehension. 
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Fig. 2. Dual channel processing of verbal and pictorial information in Mayer and Moreno’s Cognitive Theory of Multimedia 

Learning. 

While the theoretical framework by Schnotz and Bannert (2003) and the Cognitive Theory of 

Multimedia Learning (Mayer, 2003; Mayer, 2005; Mayer & Moreno, 2003) can explain why re-

presentations using different symbol systems (i.e., text and one graphical representation) lead to 

better learning than either alone, they do not predict an advantage of multiple graphical represen-

tations compared to a single graphical representation. Different graphical representations use the 

same symbol system and consequently initiate the same encoding processes as learners form in 

internal (pictorial, analog) representation of the external (graphical) representations. Schnotz and 

Bannert (2003) would therefore not predict an advantage of multiple graphical representations 

provided in addition to text (when compared to a single graphical representation provided in ad-

dition to text): multiple graphical representations do not involve additional symbol systems from 

which learners have to integrate information. Furthermore, since all graphical representations are 

encoded into a pictorial model in working memory, multiple graphical representations do not in-

crease a learner’s cognitive capacity. The Cognitive Theory of Multimedia Learning might even 

predict cognitive overload in the pictorial part of working memory if multiple graphical repre-

sentations are provided in addition to text (as opposed to only a single graphical representation in 

addition to text), which might hamper learning.  

Ainsworth’s (2006) Design-Functions-Tasks framework describes cognitive competences in-

volved in learning with multiple external representations. Although the Design-Functions-Tasks 

framework does not explicitly focus on learning with graphical representations specifically, it 

generalizes to learning with multiple graphical representations. Through the function of compu-

tational offloading, multiple representations can reduce the amount of cognitive effort required 

to process one representation by providing another. For instance, number lines and circles may 
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represent the same fraction, but the number line is more difficult to interpret than the circle, be-

cause it uses more abstract features (e.g., labels of 0 and 1 at the ends of the number line to de-

note the unit of the fraction, rather than having an inherit unit, the whole circle). Providing the 

circle along with the number line may thus help a learner understand the number line. Re-

representation describes the function of different representations to emphasize different aspects 

of the concept they represent, even though the representations might have the same abstract 

structure. For instance, a circle may emphasize that a fraction (which is usually smaller than 1) is 

a part of a whole, whereas a number line emphasizes that a fraction can fall between any two 

whole numbers (not only between 0 and 1), although they share some common structure: both 

number line and circle depict the knowledge components of numerator and denominator. Finally, 

the function of graphical constraining describes that one representation may limit the interpreta-

tion of another. For example, a circle provided along with a number line may help a student in-

terpret the number line correctly. Consider the case of a circle showing 1/2, and a number line 

showing a segment from 0 to 2, with a dot at 1/2. A student might apply the part-whole approach 

to the number line and interpret the dot as showing 1/4 (i.e., taking the entire length of the num-

ber line as the unit, rather than just the segment between 0 and 1). Knowing that the circle and 

the number line are both supposed to show the same fraction (i.e., 1/2) may help the student 

overcome the misconception that the entire segment shown by a number line (as opposed to the 

segment of just 0 to 1) denotes the unit. The Design-Functions-Tasks framework further de-

scribes cognitive tasks that learners need to accomplish when learning with multiple external re-

presentations. Learners need to understand the form of each representation (i.e., they have to 

learn how a representation depicts information). They have to learn how to use the representation 

within the domain and how to construct the representation. Finally, they need to know how to 

select an appropriate representation for a given task, for which the ability to make connections 

between representations and to compare them to one another is an important prerequisite.  

Although the Design-Functions-Tasks framework can be extended to explain advantages of 

multiple graphical representations over a single graphical representation, its empirical basis is 

research that has been conducted under the symbol-systems approach. Hence, it does not expli-

citly specify the learning processes that enhance students’ benefit from multiple graphical repre-

sentations in particular, or how to provide instructional support for them. Most research on learn-
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ing with multiple representations, for instance, concludes that students need to make connections 

between representations of different symbols systems, such as text and graphical representation 

(Bodemer & Faust, 2006; Bodemer et al., 2004; Plötzner, Bodemer, & Feuerlein, 2001; Plötzner 

et al., 2008; Schwonke et al., 2008; Seufert, 2003), or between symbolic and graphical represen-

tation (van der Meij & de Jong, 2006). It remains an important open question which learning 

processes play a role in learning with multiple representations of the same symbol system, that 

is, with multiple graphical representations, as they are commonly used in learning materials 

across a variety of domains.  

Building on the prior work reviewed in this section, I provide a new theoretical framework 

that describes the learning processes involved in learning with multiple graphical representations. 
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2.2 A new theoretical framework for learning with multiple graphical representations 

In describing my theoretical framework, I adopt Anderson’s (1993) view that frameworks make 

general claims that cannot be tested empirically without making additional assumptions. I con-

sider the purpose of the theoretical framework to be the stimulation of further research across 

STEM domains that use multiple graphical representations. The framework describes learning 

processes that (arguably) enhance robust learning of domain knowledge with multiple graphical 

representations. To deduct testable predictions for a given domain, one needs to specify these 

learning processes by describing corresponding learning events for the given domain. I illustrate 

how one might derive testable predictions from this framework for the domain of fractions be-

low, hoping to inspire further research in this area. 

2.2.1 Processes involved in learning with multiple graphical representations 
In extending previous work on learning with multiple external representations, I draw on Koe-

dinger and colleagues’ (2012) Knowledge-Learning and Instruction (KLI) framework, which de-

scribes processes involved in learning of robust domain knowledge. In most domains, learning 

involves sense-making processes (among memory and fluency-building processes, and induction 

and refinement processes; Koedinger et al., 2012). In applying Koedinger and colleague’s de-

scription of sense-making processes to the case of multiple graphical representations, I define 

sense-making processes as learning processes that lead to principled understanding of connec-

tions between multiple graphical representations based on their knowledge components. Know-

ledge components are “acquired units of cognitive function or structure that can be inferred from 

performance on a set of related tasks” (Koedinger et al., 2012, p. 764).  

I propose that two types of sense-making processes are involved in learning with multiple 

graphical representations. In order to effectively acquire domain knowledge with multiple graph-

ical representations, students need to engage in sense-making processes to develop conceptual 

understanding of each individual graphical representation (henceforth representational sense-

making processes, leading to representational understanding) and sense-making processes to 

develop conceptual  understanding of the connections between multiple graphical representations 

(henceforth connectional sense-making processes leading to connectional understanding).  
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Engaging in representational sense-making processes means to relate the knowledge compo-

nents involved in each graphical representation (e.g., the number of colored sections) to the ab-

stract concept they represent (e.g., the numerator) via structure mapping (Gentner & Markman, 

1997). That is, students need to relate each graphical representation to the domain-specific know-

ledge components it depicts (e.g., Ainsworth, 2006; Noss et al., 1997). Understanding graphical 

representations has been shown to be a difficult task in many domains, such as fractions (Lamon, 

1999), statistics (Baker, Corbett, & Koedinger, 2002), algebra (Friel, Curcio, & Bright, 2001; 

Kaput, 1989; Preece, 1993), chemistry (Kozma & Russell, 2005), and biology (Eilam, 2013). 

Understanding graphical representations is generally recognized as an important educational goal 

in the domain of fractions (Siegler et al., 2010; NCTM, 2010), geometry and algebra (NMAP, 

2008), and other math domains (Pape & Tchoshanov, 2001). This notion of understanding indi-

vidual graphical representations includes understanding its format (Ainsworth, 2006; Eilam, 

2013), understanding the operators a graphical representation uses (Ainsworth, 2006), under-

standing the relation between the graphical representation and the domain (Ainsworth, 2006; 

Eilam, 2013; Kozma & Russell, 2005), and the ability to use the graphical representation to solve 

a task in the domain (de Jong et al., 1998; Nistal, Van Dooren, Clarebout, Elen, & Verschaffel, 

2009).  

Engaging in connectional sense-making processes means to establish relations between cor-

responding knowledge components of different graphical representations. The ability to make 

connections between multiple representations is key to students’ benefit from them (Ainsworth, 

2006; Bodemer & Faust, 2006; Bodemer et al., 2005; Bodemer et al., 2004; Brünken, Seufert, & 

Zander, 2005; Butcher & Aleven, 2008; Gutwill, Frederiksen, & White, 1999; Plötzner, 

Bodemer, & Feuerlein, 2001; Taber, 2001; van der Meij & de Jong, 2006). For example, Bode-

mer and Faust (2006) show that students who receive support to interactively relating text-based 

descriptions of heat pumps with corresponding parts in a diagrammatic representation show 

higher learning gains than students who do not receive such support. 

However, learning does not only rely on conceptual understanding: knowledge is only useful 

if it is readily accessible whenever needed. A learner who has readily accessible knowledge is 

said to have fluency in that knowledge (Koedinger et al., 2012). Often, fluency is considered as 

the ability to retrieve facts from memory (Arroyo, Royer, & Woolf, 2011). In my thesis work, on 
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the other hand, I focus on perceptual fluency, which has been described as the ability to “extract 

information [...] as the result of experience and practice” (Gibson, 1986, p. 3). Kellman and col-

leagues (2009) describe perceptual fluency as the ability to fast and effortlessly pick up relevant 

features and structural relations that define important classifications” (p. 55), and as the ability to 

“[extract] information more quickly and automatically with practice” (Kellman, Massey, & Son, 

2009, p. 3). This type of fluency is an important aspect of learning of domain knowledge 

(Kellman et al., 2008; Kellman et al., 2009), it happens via unconscious forms of learning (Fahle 

& Poggio, 2002), and is to be distinguished from conceptual and procedural learning (Kellman & 

Garrigan, 2009). Fluency-building processes result from experience with the perceptual proper-

ties of graphical representations and lead to readily accessible perceptual knowledge about indi-

vidual graphical representations and about the connections between multiple graphical represen-

tations.  

I propose that two types of fluency-building processes are involved in learning with multiple 

graphical representations: processes that lead to fluency in using individual graphical representa-

tions (henceforth representational fluency-building processes leading to representational fluen-

cy), and processes that lead to fluency in making connections between different graphical repre-

sentations (henceforth connectional fluency-building processes leading to connectional fluency). 

Representational fluency describes the ability to quickly and effortlessly identify the infor-

mation a given graphical representation shows and to use it to solve domain-specific tasks 

(Kellman et al., 2008; Kellman et al., 2009). A student who has connectional fluency can quickly 

and effortlessly relate different graphical representations by judging “at a glance” that two graph-

ical representations show the same fraction (Kellman et al., 2008; Kellman et al., 2009), rather 

than reasoning about their constituent knowledge components (i.e., based on reasoning about the 

numerators and the denominators of the fraction shown in each graphical representation being 

the same). Perceptually fluent learners can treat one graphical representation as a single percep-

tual chunk, which allows them to perform domain-relevant tasks quickly and effortlessly with 

multiple graphical representations. 
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2.2.2 Deriving domain-specific predictions from the theoretical framework 

 
Fig. 3. Specification of processes involved in learning with multiple graphical representations and in learning of domain know-

ledge for the domain of fractions. 

To derive testable predictions from this theoretical framework, I distinguish between two levels 

of learning: processes involved in learning of domain knowledge, and processes involved in 

learning with multiple graphical representations. The central claim of my theoretical framework 

is that instructional interventions designed to promote processes involved in learning with mul-

tiple graphical representations enhance students’ benefit from instruction designed to promote 

learning of the domain knowledge, as illustrated in Fig. 3. Domain knowledge is not specific to 

the particular graphical representations, but is more general – it includes knowledge that can be 

used to work with graphical representations, and knowledge that can be used without graphical 

representations. To make testable predictions for a given domain, one first needs to specify both 
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types of learning processes that students are expected to engage in, by specifying corresponding 

learning events, as described in Koedinger and colleague’s (2012) KLI framework. According to 

KLI, learning events are changes in knowledge components that happen in response to instruc-

tional events and can be inferred from assessment events. To make specific predictions for 

processes involved in learning of domain knowledge, one needs to specify learning events that 

correspond to a given learning process for the domain of interest. In the domain of fractions, a 

student should learn how to identify the numerator of a fraction given a graphical representation. 

(We might call the corresponding knowledge component “ident-numerator). This learning event 

is supported by instructional events designed to help students acquire this knowledge component 

(e.g., by having students work on steps in tutor problems that ask them to identify numerators 

shown in graphical representations). Whether or not the learning event took place can be inferred 

from assessment events designed to measure whether the student has acquired the knowledge 

component “ident-numerator” (i.e., the ability to identify the numerator of a fraction given a 

graphical representations). If the student’s knowledge is robust, we expect that this knowledge 

transfers to novel tasks, for example when the student is required to identify the numerator of a 

novel graphical representation he/she has never encountered before. 

The novelty of my theoretical framework lies in the relation between the processes involved 

in learning with multiple graphical representations described above (see section 2.2.1) to the 

processes involved in learning of domain knowledge. Let us consider one of the proposed 

processes involved in learning with multiple graphical representations: connectional sense-

making processes. In the domain of fractions, one example of connectional sense-making 

processes is that a student conceptually understands that the numerator shown by a circle as the 

number of shaded pieces corresponds to the number of sections between 0 and the dot in the 

number line. This specific sense-making process constitutes the learning event, since the student 

acquires the knowledge component “connect-numerator-circle-nl” – a learning event that can be 

inferred from observable assessment events (e.g., the student correctly maps numerators between 

circles and number lines). The hypothesis derived from my theoretical framework is that this 

learning events enhances students’ learning of the corresponding domain-specific knowledge 

component, “ident-numerator”. By abstracting across multiple instantiations of the knowledge 

component “ident-numerator” (e.g., for both circles and number lines), the student becomes more 
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flexible in applying the knowledge component “ident-numerator” to different types of graphical 

representations – as opposed to acquiring a specific knowledge component “ident-numerator-

circle” that only applies to circle representations. Having acquired the flexible knowledge com-

ponent “ident-numerator” allows the student to transfer this knowledge to novel tasks, for in-

stance to identify the numerator in a set representation, without ever having received instruction 

about how to identify the numerator depicted in a set. 

More broadly speaking, instructional events designed to support learning events that corres-

pond to processes involved in learning with multiple graphical representations (as described in 

section 2.2.1) should enhance students’ learning of domain knowledge. For instance, instruction-

al events designed to support connectional sense-making processes (e.g., worked-example sup-

port, see Experiment 4, section 4.4) should enhance students’ benefit from instructional events 

designed to support domain learning. Specifically, students should show better learning out-

comes if they learned with a version of the Fractions Tutor (i.e., an intervention designed to sup-

port domain learning) that included instructional support for connectional sense-making 

processes than if they learned with a version of the Fractions Tutor that does not include such 

support. 

2.2.3 Processes involved in learning with multiple graphical representations of fractions 
Fig. 4 illustrates the learning processes described above (see section 2.2.1) using three simplified 

examples of fractions knowledge components involving the concepts of numerator (“ident-

numerator”), denominator (“ident-denominator”), and the unit of a fraction (i.e., what the frac-

tion is taken of; “ident-unit”). 

The left part of Fig. 4 illustrates these representational sense-making processes in developing 

representational understanding using the task of identifying a fraction depicted in graphical re-

presentations as an example. Here, students are presented with external graphical representations 

(e.g., a circle, a rectangle, and a number line). To understand how a graphical representation de-

picts fractions, for instance, students need to learn what component of each graphical representa-

tion corresponds to the knowledge components numerator, denominator, and unit of the fraction 

(Charalambous & Pitta-Pantazi, 2007; Cramer, 2001; Kieren, 1993; Lamon, 1999). In the circle 

and rectangle, the numerator corresponds to the number of equally sized colored sections (“ident-

numerator-circle” and “ident-numerator-rectangle”, the denominator to the total number of sec-
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tions (“ident-denominator-circle” and “ident-denominator-rectangle”), and the unit to the shape 

of what the fraction is defined in relation to (e.g., a whole circle or a 1-inch long rectangle; 

“ident-unit-circle” and “ident-unit-rectangle”). For the number line, the numerator is the number 

of sections between 0 and the dot (“ident-numerator-nl”), the denominator the number of sec-

tions between 0 and 1 (“ident-denominator-nl”), and the unit is always the length between 0 and 

1 (“ident-unit-nl”). During this sense-making process, students form an internal representation of 

the knowledge components depicted in each graphical representation. For example, the internal 

representation of a circle includes the knowledge components “ident-numerator-circle”, “ident-

denominator-circle”, and “ident-unit-circle”.  

 
Fig. 4. Theoretical framework for sense-making processes and fluency-building processes in developing knowledge about indi-

vidual graphical representations and knowledge about connections between multiple graphical representations. 

The right part of Fig. 4 illustrates connectional sense-making processes. A student might rea-

son that a circle with one colored section shows the numerator of 1 (“ident-numerator-circle”), 

and that a number line with one section between 0 and the dot shows a numerator of 1 (“ident-

numerator-nl”; that a circle with two total sections shows a denominator of 2 (“ident-

denominator-circle”), that the number line with two sections between 0 and 1 shows a denomina-

tor of 2 (“ident-denominator-nl”). Moreover, the student acquires a mapping of the correspond-

ing components between the numerator in a circle and in a number line (“connect-numerator-
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circle-nl”) and between the denominator in a circle and in a number line (“connect-denominator-

circle-nl”). By making these inferences, the student acquires new and more flexible knowledge 

components that apply to both circles and number lines and that enables him/her to reason that, 

since both graphical representations show the same numerator and the same denominator, they 

both show 1/2 (“ident-numerator” and “ident-denominator”). In establishing such connections 

between multiple graphical representations, the student forms an abstract mental model of what a 

fraction is: some quantity defined in relation to another quantity. 

In addition to understanding fractions representations, being fluent with fractions, in 

representing fractions, and in relating different representations of fractions has been recognized 

as an important foundation of algebra learning (NMAP, 2008). Representational fluency means 

that students associate the abstract fraction shown by each graphical representation without rea-

soning about the knowledge components of numerator, denominator, and the unit separately. In-

stead, they treat each graphical representation as one perceptual chunk that stands for a given 

fraction. In other words, the student does not have to rely on the separate knowledge components 

“ident-numerator-circle” and “ident-denominator-circle”, but acquires a new knowledge compo-

nent of “ident-fract-circle”. This knowledge component integrates the perceptual properties of 

the given graphical representation, thus enabling the student to estimate the fraction a circle 

shows (e.g., a circle shows about 1/2 or about 3/4). Being fluent in using individual graphical 

representations frees cognitive capacities students can invest in other learning processes and the-

reby enhances future learning. 

Connectional fluency allows students to “simply see” that different graphical representations 

show the same fraction, without having to reason about their equivalence based on corresponding 

knowledge components. That is, instead of having separate knowledge components for finding 

the corresponding elements of numerator and denominator in circles and number lines (“connect-

numerator-circle-nl” and “connect-denominator-circle-nl”), the student acquires a new know-

ledge component that represents a perceptual chunk (“connect-circle-nl”) and enables students to 

identify circles and number lines that show the same fraction by making use of their perceptual 

properties. The ability to fluently make connections between graphical representations allows 

students to work flexibly with them and frees cognitive capacities that students can invest in oth-

er learning activities that require flexible use of a variety of graphical representations. 
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The theoretical framework just described crucially informed the instructional design of the 

Fractions Tutor (see section 3), which serves as the research platform for my experimental stu-

dies (see section 4). Furthermore, I discuss the results from the experimental studies in the light 

of the theoretical framework.    
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3 Fractions Tutor 
In this section, I describe a further contribution of my dissertation work: the Fractions Tutor. The 

Fractions Tutor is a successful intelligent tutoring system that promotes students’ robust learning 

of fractions and is usable within the context of real classroom settings. 

I first describe my motivation in developing a multi-representational tutoring system for the 

domain of fractions. I then describe in detail the way in which the Fractions Tutor incorporates 

interactive graphical representations, and how its use of graphical representations differs from 

other existing intelligent tutoring systems and other educational technologies. Next, I describe 

the use of user-centered methods to inform specific design decisions throughout the development 

process. Then, I describe the curriculum and design of the Fractions Tutor in detail. Finally, I 

briefly discuss empirical findings on the effectiveness of the Fractions Tutor. 
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3.1 Multiple graphical representations to help students learn fractions 

Understanding fractions is foundational for learning algebra and more advanced math (NMAP, 

2008; Siegler et al., 2012). Yet, fractions pose a significant challenge for students in the elemen-

tary and middle grades, and even for college students and pre-service teachers (Kaminski, 2002; 

Person, Berenson, & Greenspon, 2004). For example, the average 4th-grade student performed 

only at the basic level in the 2011 national NAEP math assessment, which included fractions and 

rational numbers (http://nces.ed.gov/nationsreportcard/). Indeed, fractions is the point when math 

often stops making sense to children (Moss, 2005). The difficulties that young students have with 

fractions are well documented (Boyer, Levine, & Huttenlocher, 2008; Brinker, 1997; Callingham 

& Watson, 2004; Person et al., 2004; Pitta-Pantazi, Gray, & Christou, 2004; Riddle & Rodzwell, 

2000; Steencken & Maher, 2002; Tatsuoka, 1984; Tunç-Pekkan, Zeylikman, & Rummel, 2010; 

Witherspoon, 1993).  

Students’ problems with fractions may not come as a surprise: fractions are a complex topic 

(Charalambous & Pitta-Pantazi, 2007; Meagher, 2002; Ohlsson, 1991; Paik, 2005; Post, Behr, & 

Lesh, 1982) that involves counting (Fuson, 1988), proportional and multiplicative reasoning 

(Boyer et al., 2008; Hecht, Vagi, Torgesen, Berch, & Mazzocco, 2007; Kent, Arnosky, & 

McMonagle, 2002; Kieren, 1993; Lesh, Post, & Behr, 1988; Post et al., 1982; Stafylidou & 

Vosniadou, 2004; Thompson & Saldanha, 2003; Vanhille & Baroody, 2002) in a way that fun-

damentally differs from students’ prior experience with whole numbers (Mack, 1995; Mack, 

1993; Ni & Zhou, 2005). Fractions encompass complex concepts involving measurement 

(Carpenter, 1971), ratios (Fuson & Abrahamson, 2005; Lamon, 1999), equi-partitioning 

(Confrey & Maloney, 2010), units and re-unitizing (Cramer & Henry, 2002; Cramer & Wyberg, 

2009; Lamon, 1999; Tunc-Pekkan, Rau, Aleven, & Rummel, 2010; Yanik, Helding, & Flores, 

2008). Students need to understand relations between fractions and concepts familiar from out-

of-school contexts (Ball, 1990), with whole numbers, decimals and other rational numbers (Behr, 

Post, Harel, & Lesh, 1993; Cramer, Wyberg, & Leavitt, 2009; Pagni, 2004; Siegler et al., 2011). 

Students need to learn how to perform operations such as adding and subtracting fractions 

(Cramer et al., 2008; Test & Ellis, 2005; Torbeyns, Verschaffel, & Ghesquière, 2005), finding 

equivalent fractions (Kamii & Clark, 1995; Ni, 2001), and multiplying fractions (Taber, 2001). 

Students need to perform mental computations (Caney & Watson, 2003; Steiner & Stoecklin, 

http://nces.ed.gov/nationsreportcard/
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1997), and estimate relative magnitudes (Caney & Watson, 2003; Cramer & Wyberg, 2007). 

Understanding fractions involves a complex set of mappings between real-world scenarios, re-

presentations, and symbols (Paik, 2005). In summary, there are many different conceptual inter-

pretations of fractions (Charalambous & Pitta-Pantazi, 2007; Kieren, 1993): fractions can be un-

derstood as parts of a whole, as measurements, or as ratios. A large part of the difficulty that stu-

dents have in understanding fractions is related to understanding these different conceptual inter-

pretations and relating them to one another. 

In fractions instruction, graphical representations are often used to help students understand 

these different conceptual interpretations of fractions (Charalambous & Pitta-Pantazi, 2007; 

Kieren, 1993; Lamon, 1999; Martinie & Bay-Williams, 2003; Moss & Case, 1999; Thompson & 

Saldanha, 2003). Commonly used graphical representations of fractions include area models 

(e.g., fraction circles, geoboards), linear models (e.g., fraction strips, cuisenaire rods, number 

lines), and discrete models (e.g., sets, counters). In fact, understanding and coordinating between 

different graphical representations between them is regarded key to students’ success in under-

standing fractions (NCTM, 2000, 2006; NMAP, 2008; Siegler et al., 2010; Thompson & 

Saldanha, 2003). Several observational studies show that providing instruction that helps stu-

dents relate these graphical representations to underlying concepts of fractions can promote 

learning (Brinker, 1997; Corwin et al., 1990; Cramer & Wyberg, 2009; Cramer et al., 2008; 

Mack, 1995; Moss, 2005; Paik, 2005; Pitta-Pantazi et al., 2004; Yang & Reys, 2001). Further-

more, helping students make connections between different representations of fractions has been 

shown to be effective in observational studies (Moss, 2005; Moss & Case, 1999; Taber, 2001) 

and in case studies (Kafai, Franke, Ching, & Shih, 1998). In my own prior work (see section 

4.1), I provide experimental evidence that students working with multiple graphical representa-

tions of fractions learn better than students who work with only a single graphical representation, 

although only when prompted to explain how the graphical representations (e.g., half of a circle) 

of fractions relate to the symbolic representation (e.g., 1/2; Rau et al., 2009). This study demon-

strates that we cannot take students’ benefit from multiple graphical representations for granted; 

rather, whether or not multiple graphical representations are helpful depends on the kind of in-

structional support students receive to learn from them.  
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My goal in developing the Fractions Tutor was therefore to use multiple graphical represen-

tations with appropriate instructional support in a way that enhances students’ robust learning of 

fractions knowledge. 
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3.2 Use of multiple, interactive, abstract graphical representations 

The Fractions Tutor includes several abstract and interactive graphical representations: circle 

diagrams, rectangles, and number lines (Fig. 5). Each graphical representation emphasizes cer-

tain aspects of different conceptual interpretations of fractions (Charalambous & Pitta-Pantazi, 

2007). The circle as a part-whole representation depicts fractions as parts of an area that is parti-

tioned into equally-sized sections. The rectangle is a more elaborate part-whole representation as 

it can be partitioned vertically and horizontally. Unlike the circle, the rectangle does not have a 

standard shape for the unit, thus allowing for more flexible re-unitizing procedures. Finally, the 

number line is considered a measurement representation and thus emphasizes that fractions can 

be compared in terms of their magnitude, and that they fall between whole numbers.  

 
Fig. 5. Interactive circle, rectangle, and number line representations, as used in the Fractions Tutor. 

Fig. 6 shows an example problem of the Fractions Tutor in which students use an interactive 

number line to find the location of “1” given a dot that shows 1/6. In the example problem in Fig. 

7, students learn about addition using an interactive rectangle. 

The Fractions Tutor includes abstract graphical representations based on the notion that they 

lead to more transferable knowledge because the representation is not tied to a specific scenario 

(Goldstone & Son, 2005; Goldstone, Steyvers, & Rogosky, 2003; Smith, 2003). In addition, ab-

stract representations may be advantageous because they facilitate interpretations of a situation in 

terms of abstract relations rather than specific attributes (Resnick & Omanson, 1987; Schwartz & 

Black, 1996). However, to promote students’ understanding of graphical representations based 

on their prior real-world experiences (Grady, 1998; Heim, 2000; Nisbett & Ross, 1980), the 

Fractions Tutor introduces the abstract graphical representations within real-world contexts and 

concrete representations (e.g., pizzas, chocolate bars). This approach of using abstract graphical 

representations while introducing them with concrete graphical representations corresponds to 

Goldstone and Son’s (2005) approach of “concreteness fading”, which was shown to be success-

ful in an experimental study. Comparisons across several iterations of classroom studies  (descri- 
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Fig. 6. Example problem of the Fractions Tutor in which students use an interactive number line to find “1” given a dot that 

shows 1/6. 

 
Fig. 7. Example problem of the Fractions Tutor in which students use an interactive rectangle to add two given fractions. 
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bed below) provide some (albeit non-experimental) evidence that students enjoy a version of the 

Fractions Tutor more if it includes problems that introduce the abstract graphical representations 

in the context of realistic scenarios rather than purely abstract representations without realistic 

contexts (Rau, Aleven, Rummel et al., 2013). 

The Fractions Tutor uses interactive graphical representations that students can manipulate 

and use as tools to solve fractions problems. Several studies have discussed advantages of using 

virtual manipulatives, or interactive graphical representations, to help students understand frac-

tions (Durmus & Karakirik, 2006; Kafai et al., 1998; Moyer et al., 2002; Proctor et al., 2002; 

Reimer & Moyer, 2005). The use of interactive graphical representations is based on the obser-

vation that physical activities, such as paper folding (Kamii & Clark, 1995), or the use of physi-

cal manipulatives (Caldwell, 1995; Cramer & Henry, 2002; Martin, Svihla, & Smith, 2012; 

Moss, 2005; Moss & Case, 1999) promotes students’ learning of fractions. Reimer and Moyer 

conducted an observational study in a classroom of 3rd-grade students and find that virtual mani-

pulatives have some advantages over physical manipulatives, such as allowing for more imme-

diate and specific feedback, easier and faster interactions, and increased student enjoyment 

(Reimer & Moyer, 2005). Suh and colleagues demonstrate the effectiveness of virtual manipula-

tives in an observational study in 5th-grade classrooms (Suh et al., 2005). In a quasi-experiment 

on proportional reasoning with 3rd-grade students, they demonstrate that virtual manipulatives 

are as effective as physical manipulatives (Suh & Moyer, 2007). In a classroom experiment on 

fractions learning, Roussou and colleagues compared the effectiveness of supporting fractions 

learning with virtual building blocks to physical building blocks (Roussou et al., 2006). While 

they do not find differences between conditions, they discuss several advantages of learning with 

virtual building blocks based on qualitative analyses of individual cases. Proctor and colleagues 

(Proctor et al., 2002) describe a case study in which virtual manipulatives were used for remedial 

instruction to help one 7th-grade students’ understanding of fractions. Lamberty and Kolodner 

(2002) describe a case study in which students use a virtual quilt tool to learn about fractions. 

Yet, in none of these studies were interactive graphical representations used within an intelligent 

tutoring system to address students’ misconceptions of fractions by providing adaptive feedback 

on their interactions with graphical representations. In the light of this research, the Fractions Tu-

tor uses interactive graphical representations while providing hints on demand and immediate 
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feedback on each interaction with the representations. The Fractions Tutor detects commonly 

made errors on these interactions (e.g., dividing a circle diagram into 4 sections rather than 5 to 

show the fraction 4/5) and provides individualized feedback to remedy common misconceptions 

that become evident in students’ interactions with graphical representations. 

Many other intelligent tutoring systems include interactive graphical representations. The fo-

cus of the Fractions Tutor is novel in that it supports conceptual learning with multiple, interac-

tive, abstract graphical representations. ASSISTments, a system for middle-school math 

(Heffernan, Heffernan, Deceoteu, & Militello, 2012), focuses on procedural rather than concep-

tual tasks. ActiveMath, an intelligent tutoring system that supports self-regulated learning of 

fractions based on a constructivist approach (Goguadze, Melis, & DFKI, 2008), includes mainly 

non-interactive graphical representations that update in response to changes students make in 

corresponding symbolic fractions. Kong and colleagues (Kong, 2008; Kong & Kwog, 2003; 

Kong, Lam, & Kwog, 2005) describe an intelligent tutoring system for fractions that relies on 

rectangle representations only. In Animalwatch (Beal, Arroyo, Cohen, Woolf, & Beal, 2010), 

students interact with various concrete graphical representations of fractions (e.g., sets of dogs, 

lengths of buttons), but it does not include abstract graphical representations. Many other learn-

ing environments for fractions exist that use multiple, interactive, abstract graphical representa-

tions (Adauto & Klein, 2010; Akpinar & Hartley, 1996; Kafai et al., 1998; Reimer & Moyer, 

2005), but these are not intelligent tutoring systems and hence do not provide adaptive feedback 

and hints on demand on students’ interactions with graphical representations. 

In sum, the Fractions Tutor is unique in its use of multiple abstract, interactive, graphical re-

presentations on which students receive individualized feedback to address their misconceptions 

about fractions. 
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3.3 Principled approach to resolving stakeholder conflicts 

In developing the Fractions Tutor, I took a user-centered design approach that takes into account 

stakeholder goals and needs. The objective was to develop a system that not only promotes ro-

bust learning of fractions knowledge, but that is also usable within the context of real class-

rooms. It is almost impossible to develop a system that satisfies all stakeholders, as students and 

teachers (among others) often have different goals. For example, students may want to work with 

a fun and enjoyable system, whereas teachers want students to learn and perform well on stan-

dardized tests, while also keeping the classroom under control. Though these goals and needs do 

not necessarily conflict, conflicts inevitably arise in the complex context of real educational set-

tings, for instance between students’ need for fun and entertainment and teachers’ goal of class-

room management. When they do arise, it is difficult to weigh them against one another. Usual-

ly, developers of educational technologies have to rely on ad-hoc or intuitive methods to address 

such conflicts. To address the conflicts that I faced when developing the Fractions Tutor, I de-

veloped a new methodology that integrates methods from human-computer interaction, intelli-

gent tutoring systems, and learning sciences.  

Since I identified conflicts between stakeholder goals throughout the design process of the 

Fractions Tutor, I first review how I applied the development process for Cognitive Tutors 

(Corbett et al., 2001; Koedinger, 2002; Koedinger & Corbett, 2006) to the design of the Frac-

tions Tutor. Then I describe my approach to resolve conflicts between stakeholder goals in the 

Fractions Tutor. 

3.3.1 Cognitive Tutor design process 
The design process for Cognitive Tutors comprises a set of iterative, non-linear stages. 

3.3.1.1. Stage 1: Stakeholder and problem identification 

The first step in Cognitive Tutor design is to identify the educational problem to be addressed as 

well as stakeholders and their objectives. To accomplish this goal, I interviewed students, teach-

ers and curriculum developers, review education literature, national and state standards.  

As described above (see section 3.1), the development of the Fractions Tutor was motivated 

by the fact that students struggle with fractions as early as elementary school (NMAP, 2008; 

Siegler et al., 2010) although fractions are considered an important educational goal (Siegler et 
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al., 2012). At the beginning of the development process, I conducted semi-structured interviews 

with five middle-school teachers, each with over 10 years of experience in teaching fractions. 

Teachers were asked to describe their instructional strategy for introducing fractions, their use of 

graphical representations, and what functionalities educational software for fractions learning 

should provide. These interviews demonstrated that teachers typically use a variety of graphical 

representations. They stated that educational software that uses interactive graphical representa-

tions while encouraging students to make connections between the different graphical represen-

tations and between the graphical and the symbolical representations might help students over-

come their difficulties with fractions. 

3.3.1.2. Stage 2: Identifying assessment and practice problems 

Based on the educational problem, I identified a set of assessment tasks (i.e., tasks learners 

should be able to solve after having worked with the educational software). These assessment 

tasks guided the selection of practice problems (i.e., problems students should solve as part of the 

educational software). A search of the education literature yielded a set of domain-specific target 

problems both for assessment and for practice. In addition, I brainstormed with research group 

members and teachers about novel problems for assessment and practice.  

The outcome of stage 2 was a set of domain-specific assessment tasks and practice problems 

for the Fractions Tutor. Along with the Fractions Tutor, the assessment tasks went through a 

number of iterations that reflected alignment with the practice problems, and were repeatedly 

validated based on reliability and validity analyses. 

3.3.1.3. Stage 3: Cognitive task analysis 

The goal of stage 3 is to understand student learning and student thinking in the domain. In doing 

so, I identified the knowledge and strategies the Fractions Tutor should cover using cognitive 

task analysis techniques (Clark, Feldon, van Merriënboer, Yates, & Early, 2007; Koedinger et 

al., 2012; Schraagen, Chipman, & Shalin, 2000). Cognitive task analysis seeks to identify the 

knowledge components that students need to acquire to perform well on assessment and practice 

problems. Cognitive task analysis can employ think-aloud protocols and observations of student 

learners (novices) or proficient student (experts), or make use of a theory of what knowledge 

learners need to acquire. In developing the Fractions Tutor, I combined think-aloud protocols 
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and observations with difficulty factors assessment (Baker, Corbett, & Koedinger, 2007; 

Koedinger et al., 2012; Koedinger & Nathan, 2004) – a method to identify features of tasks that 

reliably change the difficulty of the task.  

I conducted several iterations between stages 2 and 3. After each iteration, I updated the col-

lection of assessment and practice problems based on insights gained from cognitive task analy-

sis and difficulty factors assessments. I reviewed the problems in focus groups with research 

group members and teachers. As part of this stage, I also discussed potential problem sequences 

for the Fractions Tutor with other researchers and teachers. In addition, I used observations of 

teacher-student tutoring to guide the instructional design, which provided insights into successful 

instructional strategies.  

The outcome of stage 3 was a set of knowledge components and of practice problems that 

address all knowledge components in order of ascending difficulty. 

3.3.1.4. Stage 4: Cognitive modeling and tutor development 

Stage 4 aims at developing the Cognitive Tutor. As part of this stage, I created the Fractions Tu-

tor interface, a cognitive model of student problem solving that serves as a basis for individua-

lized support, and a curriculum that contains a collection of problem types and that span across a 

variety of topics that the Fractions Tutor covers. 

Stage 4 included several cycles of rapid, low-fidelity prototyping and high-fidelity prototyp-

ing. These rounds of testing were conducted in the laboratory with a small number of students 

from the target population. Between each round of testing, I updated the materials based on the 

findings and issues identified. The Fractions Tutor is an example-tracing tutor that I developed 

using Cognitive Tutor Authoring Tools (CTAT, Aleven, 2010; Aleven, McLaren, Sewall, & 

Koedinger, 2006; Aleven et al., 2009a). CTAT allows for rapid prototyping and fast implementa-

tion of iterative design changes. I included teachers in the development process by asking them 

to repeatedly review and comment on initial designs and early prototypes. Involving teachers not 

only improved the quality of the educational software – it also helped establish relations with 

teachers and revealed further stakeholder goals.  

The outcome of stage 4 is a set of multiple fully-functioning versions of the Fractions Tutor 

ready for further testing and evaluation. 
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3.3.1.5. Stage 5: Pilot studies and parametric studies 

The goal of stage 5 was to formally evaluate and iteratively improve the Fractions Tutor. I made 

use of a variety of methods during this phase. First, pilot testing the Fractions Tutor in the la-

boratory was useful to get in-depth insights with students solving practice problems while think-

ing aloud, which helped identify gaps in their knowledge that the Fractions Tutor did not yet ad-

dress. Second, testing the educational software in classrooms is indispensible. I gathered a varie-

ty of data from classroom studies with the Fractions Tutor. I assessed students’ learning gains 

based on pretests and posttests that integrate the target problems identified during earlier stages, 

including both standardized test items and transfer items that assess students’ ability to apply 

their knowledge to novel task types. In addition, informal observational data of students’ interac-

tions with the Fractions Tutor in classrooms, interviews and focus groups with teachers as well 

as surveys with students and with teachers yielded valuable insights into usability issues and re-

veal crucial aspects of the stakeholders’ goals. Finally, log data gathered while students used the 

Fractions Tutor provided a useful basis for identifying issues in usability and difficulty level of 

particular steps within the educational software. 

As part of this stage, I conducted a series of parametric studies in classrooms (described in 

detail in section 4), which investigated how best to implement multiple graphical representations 

so they enhance robust learning of domain knowledge. These studies led to iterative improve-

ment of the Fractions Tutor. As a consequence, the Fractions Tutor uses graphical representa-

tions in the following manner: 

• The Fractions Tutor encourages students to reflect on the relation between each graphical 

representations (e.g., circles) and the corresponding symbolic representation (e.g., ½) in the 

form of menu-based prompts (see Experiment 1, section 4.1, Rau et al., 2009).  

• The Fractions Tutor uses a spiral curriculum that switches frequently between different topics 

(e.g., equivalent fractions, fraction addition; see Experiment 2, section 4.2, Rau, Aleven et 

al., 2013b). 

• The Fractions Tutor frequently switches between different graphical representations (see Ex-

periment 3, section 4.3, Rau, Rummel et al., 2012).  

• The Fractions Tutor provides connectional sense-making support by encouraging students to 

become active in making sense of connections between different graphical representations 
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(e.g., circles and number lines) through the use of worked examples (see Experiment 4, sec-

tion 4.4, Rau, Aleven, & Rummel, 2013a; Rau, Aleven et al., 2012).  

• The Fractions Tutor provides connectional fluency-building support by the means of mixed 

representation problems (see Experiment 4, section 4.4, Rau, Aleven, & Rummel, 2013a; 

Rau, Aleven et al., 2012) 

• The Fractions Tutor provides connectional sense-making support before connectional fluen-

cy-building support (see Experiment 5, section 4.5, Rau, Aleven, & Rummel, 2013a).  

The outcome of stage 5 was a set of updated stakeholder goals, as well as an updated and ite-

ratively improved version of Fractions Tutor ready for classroom dissemination. 

3.3.1.6. Stage 6: Classroom use and evaluation 

The goal of stage 6 is to evaluate the educational software in the field. I conducted a number of 

randomized field trials during this phase. After several iterations, I evaluated the Fractions Tutor 

in classroom studies. I evaluated the Fractions Tutor not only based on students’ performance on 

pretests and posttests. Observations in randomly selected classrooms, interviews with randomly 

selected teachers and student or teacher surveys further helped identifying problem-solving be-

haviors and learning processes. In addition, the analysis of tutor log data during problem solving 

served as a basis for detecting issues with specific problem-solving steps, for example by identi-

fying steps on which students make many errors. I briefly describe the results from my most re-

cent evaluation below (see section 3.5). 

3.3.2 Identifying stakeholder goals and instructional design principles 
I now describe a novel contribution to the design processes just described, which crucially in-

formed the design of the Fractions Tutor. In doing so, I will focus on a few examples, which illu-

strate the use of my methodology. For a more complete description of the design process, please 

refer to Rau, Aleven, Rummel and colleagues (2013). I first describe a hierarchy of stakeholder 

goals that constitutes the basis of the design process. Then, I describe the instructional design 

recommendations that I identified to address these goals and identify conflicts between instruc-

tional design recommendations. Table 1 gives an overview of the instructional goals and instruc-

tional design recommendations as well as of the resulting design conflicts. Finally, I present 

three approaches to resolving these conflicts.  
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Priority Goal Instructional design principles Design conflicts 
1 Robust learning 

(G1) 
Realistic cover stories (id1) 
Subgoaling (id2) 
Sparse use of color (id3) 
Holistic, complex problems (id4) 
 

C1: Subgoaling (id2) vs. 
holistic problems (id4) 

2 Classroom man-
agement (G2) 

Easy problems (id5) C2: realistic cover sto-
ries (id1) vs. easy prob-
lems (id5) 

3 Entertainment (G3) Colorful, flashy elements (id6) C3: Sparse use of color 
(id3) vs. colorful, flashy 
elements (id6) 

Table 1. Overview of example goals, instructional design principles, and design conflicts. 

3.3.2.1. Forming a goal hierarchy 

Across the stages and iterations of tutor development, I kept track of stakeholder goals. Based on 

focus groups and interviews with teachers and students, which I conducted as part of each stage, 

I created a goal hierarchy to identify and resolve goal conflicts. 

To develop a goal hierarchy, I used affinity diagrams, a common human-computer interac-

tion technique (Beyer & Holtzblatt, 1998): I wrote each goal on a sticky note and then worked 

bottom-up to organize them into a hierarchy. Once all notes were collected in groups, I named 

the group. I then identified a set of instructional design recommendations that could help achieve 

each goal. 

Goals and instructional design recommendations 

Based on interviews with teachers and based on the review of educational standards (Siegler et 

al., 2010; NMAP, 2008; NCTM, 2000), I identified teachers’ goals to promote students’ learning 

of robust knowledge about fractions, which can transfer to new problem types and that lasts over 

time (G1). Furthermore, I used education standards and math literature (as described in detail in 

section 3.1) to formulate domain-specific goals related to promoting conceptual understanding of 

fractions as parts of a whole, as proportions, and as measurements. The Fractions Tutor design 

incorporates many instructional design recommendations from the math education literature and 

the learning sciences literatures. One of these recommendations recommends using complex rea-

listic problems with cover stories (id1; Bassok, 1996; Blessing & Ross, 1996; Nunes, 

Schliemann, & Carraher, 1993; Thußbas, 2001). Furthermore, the literature recommends to illu-

strate the structural components of a problem-solving procedure using subgoaling (id2). Subgoal-
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ing is a procedure that aims at communicating the goal structure of a problem by breaking it into 

clear substeps, thereby “making thinking visible” (Anderson, Corbett, Koedinger, & Pelletier, 

1995; Catrambone & Holyoak, 1998; Singley, 1990). The Cognitive Theory of Multimedia 

Learning (Mayer, 2003; Mayer, 2005) suggests to use color only sparingly, so as to highlight on-

ly conceptually relevant aspects of the problem but without adding extraneous distracters (id3). 

Finally, constructivist learning theories (Bereiter & Scardamalia, 2003; Cobb, 1995; Kafai et al., 

1998; Mintzes, Wandersee, & Novak, 1997) recommend that students work on complex, holistic 

problems (id4).  

Classroom observations demonstrated teachers’ needs for classroom management while us-

ing the Fractions Tutor (G2), including the ability to focus on students who struggle with the 

content, monitoring students’ progress, and a quiet classroom of students who concentrate on 

their work. For instance, when asked what they like about using educational software such as the 

Fractions Tutor, teachers reported: “I like using it because it is so interactive for the students. 

They stay very involved,” or “The programs that I use with my students are interactive, colorful, 

and can hold their attention.” To address teachers’ goal for classroom management, I used focus 

groups with teachers to identify possible obstacles that the Fractions Tutor created within the 

classroom. I discovered that any aspect that makes the educational software difficult to use for 

students results in teachers helping students out with usability issues rather than helping with the 

content. A piece of educational software that is easy to use and that includes easy math problems 

would thus help achieve this goal (id5).  

Finally, surveys with students demonstrated their goal to have fun and to be entertained (G3). 

This need might best be achieved focusing on age-appropriate design elements resembling games 

with colorful and flashy elements (id6). Also, complex real-world problems with cover stories 

might address students’ need for interesting practice problems (see id1). 

Hierarchy of goal categories 

Next, I created a hierarchy of the goal categories just described. In doing so, focus groups with 

the stakeholders informed the ranking of goals. For the goals on which I could not find consen-

sus in focus groups, I again used affinity diagrams to identify classes of goals based on the effect 

they have on students’ learning and on the dissemination of the Fractions Tutor. In doing so, I 

conducted a brainstorming session with experts (who have good knowledge of the relevant litera-
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tures) about the effects of common interventions to meet the goals can help create the goal hie-

rarchy. I then regrouped the generated items to create a diagram for the effects. Next, I computed 

an impact factor for each goal and ordered the goals accordingly. Goals that also served the at-

tainment of other goals (e.g., increasing students’ concentration through improved classroom 

management also promotes the goal to help students learn) were given a higher impact factor 

than goals that impeded another goal (e.g., including colorful but distracting elements may im-

pede learning). Altogether, goals with a higher impact factor were given priority in resolving de-

sign conflicts. Table 1 gives an overview of the resulting hierarchy including the instructional 

design recommendations and resulting design conflicts. 

Conflicts 

I now turn to mapping out a few example conflicts that arise from competing goals and from the 

resulting instructional design recommendations just described. To identify these conflicts, I con-

ducted focus groups with learning sciences experts who have in-depth knowledge of the empiri-

cal research on the various design recommendations.  

Conflicts can arise between design recommendations that address the same goal. One such 

conflict C1 exists within the goal to promote robust learning (G1) by using subgoaling to break 

the problem up into small steps (id2) or by providing holistic and complex problems (id4). 

Further conflicts can arise from constraints within schools and students’ abilities. For exam-

ple, given students’ reading ability is often poor, conflict C2 occurs between the goal to promote 

robust learning (G1) by providing complex real-world problems with cover stories (id1) and 

teachers’ needs to facilitate classroom management (G2) by providing an easy-to-use system 

(id5): in my own classroom studies, I found that the increased reading effort due to the use of 

cover stories was impractical in classrooms given students’ low reading ability. Teachers were 

busy helping students understand problem statements, rather than helping them with the math 

problems. 

Finally, conflicts can arise between design recommendations on how to promote robust 

learning (G1) and students’ emotional needs for fun and entertainment (G3). One such conflict 

C3 exists between the use of lean designs so as to not distract the user from the learning task by 

using colorful highlighting only sparingly to emphasize conceptually relevant aspects (id3) and 
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students’ preference for flashy designs recommend the inclusion of game-like elements whose 

main purpose is to visually appeal to young students (id6).  

3.3.3 Resolving conflicts 
To address these conflicts in a principled way, I used three approaches: (1) where possible, I re-

solved conflicts based on the goal hierarchy, (2) I conducted parametric experiments, and (3) I 

conducted cross-iteration studies. Although I present these three approaches as a sequence, they 

complement each other and can occur at any of the iterative stages in the Cognitive Tutor design 

process described above (see section 3.3.1). 

3.3.3.1. Goal hierarchy 

To illustrate how I resolved conflicts based on the goal hierarchy, let us again consider conflict 

C3 between robust learning (G1) and students’ goal to have fun (G3; i.e., inclusion of game-like, 

colorful elements whose main purpose is to visually appeal young students [id6] versus lean de-

signs that use colorful highlighting to emphasize conceptually relevant aspects [id3]). Based on 

expert interviews and focus groups, the goal hierarchy places the highest priority on supporting 

robust learning (G1), whereas the goal to have fun (G3) has lowest priority. Therefore, it is clear 

that the Fractions Tutor should prioritize on employing color-based highlighting only concep-

tually relevant aspects. However, this can be done in a way that is visually appealing to students 

of the target age group. Further, I integrated flashy and exciting elements where (or when) they 

do not distract, for instance, at the end of a practice problem.  

Fig. 8 illustrates several key aspects of the solution I chose for the Fractions Tutor. First, the 

choice in color reflects the finding that students in grades 4 and 5 have a preference for less in-

tense colors with lower saturation and value, compared to younger students (Jakobsdottir, Krey, 

& Sales, 1994; Pett & Wilson, 1996). I also made sure the colors I selected are gender neutral 

(Jakobsdottir et al., 1994). Second, in the service of using color to emphasize only conceptually 

relevant aspects, I use orange to highlight key words in each problem step. Finally, Fig. 8 shows 

a success message that the Fractions Tutor displays at the end of a problem. The message con-

tains a short movie clip that flies in.  

Across different problems, the Fractions Tutor provides a variety of different success mes-

sages. Data from a survey that 429 students filled out after working with the Fractions Tutor 
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shows that students found it visually appealing. To the question whether they liked the layout 

and color choice of the interface, 61% of students responded “Yes, a lot!”, 28% responded “I 

don’t care,” and only 12% responded “No, not at all!” The difference between these response 

options was statistically significant, χ² (2, N = 429) = 236.86, p < .001. 

For additional examples of goal conflicts that I resolved based on the goal hierarchy, please 

refer to Rau, Aleven, Rummel et al., 2013. 

 
Fig. 8. Example problem in the Fractions Tutor that illustrates the use of animated success messages, sparse visual highlighting, 

and age-appropriate color palette. 

3.3.3.2. Parametric experiments 

Conflicts that cannot be resolved based on the goal hierarchy require more careful inspection. In 

this case, I conducted parametric experiments using multiple metrics to address important re-

maining conflicts. Consider again conflict C1 between subgoaling (id2) and holistic problems 

(id4). As mentioned, the subgoaling strategy breaks up problems into their substeps, in order to 

communicate the problem’s goal structure (Anderson et al., 1995; Catrambone & Holyoak, 1998; 

Singley, 1990). However, surveys with students who participated in a classroom experiment with 

311 students indicated that students tend to dislike multi-step problems. A student commented, 

for example: “suggestions i would make is stop the repeating and give more fun stuff because i 

heard from people even me not to be mean but most of it ws boring sorry.” Another student said: 

“in my opinion that there were too many questions in one problem!!” Having many steps within 

a problem seems to overwhelm students. For example, a student reported: “I think there was too 

many questions.” To address this issue, I conducted a classroom experiment that investigated the 
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incorporation of more holistic problems (see fluency-building problems described in section 

3.4.3), in addition to problems that employ the subgoaling strategy (see single-representation 

problems and worked-example problems described in sections 3.4.1 and 3.4.2). Although this 

experiment included a number of variations and thus does not a tightly controlled test of a holis-

tic approach versus a subgoaling approach, the results suggest that a version of the Fractions Tu-

tor that includes 25% of holistic problems lead to better learning than a version with 50% of ho-

listic problems while being more enjoyable than  a version without any holistic problems. I de-

scribe this experiment in detail below (see Experiment 4, section 4.4; also see Rau et al., 2013).  

3.3.3.3. Cross-iteration studies 

 
Fig. 9. Example of an early version of the Fractions Tutor with cover stories. Students learn about fractions in the context of shar-

ing pizzas. 

Unfortunately, it is not possible to conduct a controlled experiment for every design decision. In 

this case, I recommend conducting cross-iteration studies – to the extent possible (since it is not 

possible to iterate on every design decision either). For example, I addressed conflict C2 between 

the goal to promote robust learning (G1) by providing complex real-world problems with cover 
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stories (id1) and the goal to facilitate classroom management (G2) by providing an easy-to-use 

system (id5) based on the effects of the design decision across several iterations of the Fractions 

Tutor. 

Initially, I resolved conflict C2 based on the goal hierarchy, which prioritizes robust learning. 

Fig. 9 shows an example of an early version of the Fractions Tutor, which includes cover stories. 

However, when employing a version of the Fractions Tutor that included cover stories in class-

rooms, I faced challenging issues. Students complained about having to read a lot, and teachers 

expressed their concern about being able to use the Fractions Tutor in their classrooms without 

extra help. Several teachers suggested including an audio function, so that students could listen 

to the problem statement via headphones. However, since many schools lack the necessary 

equipment (i.e., headphones), I discarded that idea. Instead, I excluded cover stories from the 

Fractions Tutor. Fig. 10 shows an example of the next iteration of the Fractions Tutor, without 

cover stories. 

 
Fig. 10. Example of the next iteration of the Fractions Tutor without cover stories.  
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Fig. 11. Introductory problems with and without cover stories to introduce how the number line depicts fractions. 

However, in a subsequent experiment, classroom observations demonstrated that students had 

trouble making sense of the rather abstract problems in the tutor. An anonymous survey with 331 

students revealed that students thought the problems were too hard  and  that  they  were  not fun. 

One student commented, for instance: “I don’t like how the problem didn’t give clear, vivid 

questions. It confused the way I was taught.” Several students commented on the Fractions Tutor 

being boring, for instance: “it was good but it got boring at times.” 

I therefore included introductory problems that introduced the graphical representations used 

in the Fractions Tutor based on realistic cover stories (e.g., introducing number lines in the con-

text of measuring the length of candy, see Fig. 11). The next round of classroom testing with a 

new version of the Fractions Tutor did not reveal any persisting issues with reading levels or the 

abstract language the Fractions Tutor uses. An anonymous survey with 429 students revealed 

generally positive comments. One student responded, for example: “fractions tutor is a really 

good learning program.the reason i like it was because it wasnt too hard and wasnt too easy. it 

was just right for me.also i learn alot just from this.” Many students reported that they had fun 

with the tutor, for example: “i like about it is fun it makes people smart it was a lot fun.” 
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These cross-iteration changes to the Fractions Tutor illustrate that in cases where design 

choice based on the goal hierarchy proves to be impractical, several iterations may be necessary 

to find a balance between unintended disadvantages of a desired design choice and alternative 

solutions. By carefully monitoring the effect of each design choice, I arrived at combining cover 

stories in introductory problems with less reading-intensive, abstract problems throughout the 

rest of the Fractions Tutor. Empirical findings from a sequence of subsequent classroom studies 

demonstrate that this choice is an effective and practical solution for the young population the 

Fractions Tutor is designed for.  

One caveat of this approach is, however, that it is practically not possible to iterate on all de-

sign decisions, given that the design space of any educational software is very large. A further 

limitation of the present cross-iteration studies is that the changes that were made on the cover 

stories were confounded with other changes made in each iteration of the Fractions Tutor. It is 

difficult to rule out the possibility that these changes made no difference on the metrics I used to 

evaluate the tutor. 
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3.4 Overview of curriculum 

Curricular Unit Description 
Topic 1 Naming unit fractions and proper fractions given graphical representations 
Topic 2 Making graphical representations of unit fractions and proper fractions given symbolic 

i  Topic 3 Reconstructing the unit of unit fractions and proper fractions 
Topic 4 Naming improper fractions given graphical representations 
Topic 5 Making graphical representations of improper fractions 
Topic 6 Equivalent fractions: underlying concepts 
Topic 7 Equivalent fractions: expanding and reducting 
Topic 8 Comparing fractions 
Topic 9 Adding fractions 
Topic 10 Subtracting fractions 

Table 2. Topics and problem types covered by the Fractions Tutor. 

The Fractions Tutor curriculum covers ten topics (see Table 2), corresponding to over 10 hours 

of supplemental material. A more detailed description of the activities and concepts covered in 

each topic can be found in Appendix 1. The activities and concepts covered in each topic align 

with U.S. education standards including the Pennsylvania State standards, the NCTM standards, 

and the common core standards (see Appendices 2-4). A common theme throughout the Frac-

tions Tutor is the unit of the fraction (i.e., what the fraction is taken of). The concept of the unit 

is introduced in the first topics. The concept of the unit lays the foundation for improper fractions 

(by demonstrating that fractions such as 1 1/2 can be larger than one unit), and to adding frac-

tions (by showing that when adding fractions, the fraction is still defined with respect to the same 

unit). The focus on the unit throughout the curriculum illustrates the conceptual approach to 

problem solving that is characteristic of the Fractions Tutor. 

The Fractions Tutor is designed for the use within classrooms. Students work on the tutor 

problems individually at their own pace, with a teacher present to help out individual students 

who need help. The Fractions Tutor is available for free at www.fractions.cs.cmu.edu through 

Mathtutor, a website for middle school math (Aleven, McLaren, & Sewall, 2009b). Students log 

onto the website with personal logins. Teachers are provided with a tool that allows them to re-

trieve information about their students’ performance, for instance, how many errors students 

made on a particular set of problems. They can use this information to identify what problem 

type a particular student struggles with, and provide targeted advice to that individual student. 

http://www.fractions.cs.cmu.edu/
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Based on the findings described in Experiment 2 (Rau et al., 2010; Rau, Aleven et al., 2013b, 

see section 4.2), the Fractions Tutor curriculum uses a spiral curriculum (Harden & Stamper, 

1999): students work through the sequence of topics listed in Table 2 three times. For each topic, 

the Fractions Tutor includes problems with only one type of graphical representation (i.e., either 

a circle, a rectangle, or a number line), and problems in which multiple graphical representations 

are provided at the same time, paired with instructional support to make connections between 

them. In accordance with the findings described in Experiment 3 (Rau, Rummel et al., 2012, see 

section 4.3), the individual-representations problems are presented in interleaved fashion (i.e., 

one problem with a circle, followed by one problem with a rectangle, followed by one problem 

with a number line, etc.). Based on the findings described in Experiments 4 and 5 (Rau, Aleven 

et al., 2013a; Rau, Aleven et al., 2012, see sections 4.4 and 4.5), two different types of multiple-

representations connection-making problems are presented after the individual-representation 

problems for each topic. In this section, I describe each of these different types of problems in 

detail. 

3.4.1 Individual-representation problems for representational understanding and fluency 
At the beginning of each topic in the Fractions Tutor, students are presented with problems that 

include only one graphical representation (i.e., either a circle, a rectangle, or a number line,). Fig. 

12 shows a tutor problem that illustrates several of the features of the Fractions Tutor. Students 

are guided step by step through a fractions problem. Students interact with the circle representa-

tion by partitioning it into sections (see Fig. 12), by highlighting, and by dragging-and-dropping 

sections (see Fig. 5). The Fractions Tutor employs subgoaling (Anderson et al., 1995; 

Catrambone & Holyoak, 1998; Singley, 1990) to emphasize each knowledge component through 

visually separated steps. To focus students’ attention to the step at hand, the tutor interface builds 

up step by step (e.g., step B-2 in Fig. 12 only shows up after the student has completed step B-1). 

Based on the findings described in Experiment 1 (Rau et al., 2009, see section 4.1), the Fractions 

Tutor provides menu-based reflection prompts (Aleven & Koedinger, 2000) at the end of each 

problem, for example to compare fractions by reasoning about the inverse relationship between 

the size of the denominator and the magnitude of the fraction (see bottom of Fig. 12). 
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Fig. 12. Naming the fraction shown in an interactive circle, with reflection prompts. 

3.4.2 Connectional sense-making support for connectional understanding 
In addition to the individual-representation problems just described, the Fractions Tutor includes 

two main types of multi-representational tutor problems: problems with connectional sense-

making support, and problems for connectional fluency-building support. Fig. 13 shows the 

screen shot of a connectional sense-making problem for equivalent fractions. Students learn that 

equivalent fractions in different graphical representations show the same amounts or lengths that 

are cut into different numbers of sections. They also learn that numerators and denominators of 

equivalent fractions are always expanded by the same multiplier. Students are first presented 

with the worked example (part A in Fig. 13). Worked examples have been shown to be an effec-

tive and efficient means to support students’ learning in a variety of domains (Atkinson, Derry, 

Renkl, & Wortham, 2000; Atkinson & Renkl, 2007; Gerjets, Schwonke, & Catambone, 2006; 

Große & Renkl, 2007; Hilbert, Renkl, Kessler, & Reiss, 2008; Kopp, Stark, & Fischer, 2008; 

Kyun & Lee, 2009; Lewis & Barron, 2009; McLaren, Lim, & Koedinger, 2008; Nievelstein, van 

Gog, van Dijck, & Boshuizen, 2013; Nokes & VanLehn, 2008; Paas & van Gog, 2006; Paas & 

van Merriënboer, 1994; Pirolli & Anderson, 1985; Quilici & Mayer, 1996; Renkl, 1997; Renkl, 

2002, 2005; Salden, Aleven, Renkl, & Schwonke, 2008; Schmidt-Weigand, Hänze, & 

Wodzinski, 2009; Schwonke et al., 2009; Schworm & Renkl, 2006; Sweller, 2006), including 

learning with multiple representations (Berthold et al., 2008; Berthold & Renkl, 2009; 

Schwonke, Berthold et al., 2009). Worked examples provide students with filled-in solution 

steps, which promotes learning by reducing cognitive load (Kirschner, 2002; Paas & van Gog, 
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2006; Paas & van Merriënboer, 1994; Renkl, Atkinson, & Große, 2004) because students do not 

have to invest mental effort into finding a solution through cognitively intensive strategies such 

as means-ends-search (Renkl, 2005). Instead, students can invest mental effort into making sense 

of the solution step (Renkl, 1997; Renkl, 2002). Several studies have successfully implemented 

worked examples in intelligent tutoring systems (Koedinger & Aleven, 2007; Salden et al., 2008; 

Schwonke, Renkl et al., 2009).  

First, students are given worked example with a more familiar graphical representation: an 

area model representation (i.e., circle or rectangle). To ensure that students read through the 

worked examples, they are asked to fill in the last step themselves (step A-3 in Fig. 13). Next, 

once they complete that step, the problem-solving part of the worked example appears on the 

right (part B in Fig. 13). The problem-solving part always involves a more challenging graphical 

representation: the number line. Students can use the more familiar graphical representations 

from the worked example to guide their interactions with the more challenging graphical repre-

sentation to solve a problem of the same type (e.g., finding equivalent fractions). The side-by-

side arrangement between corresponding steps in the worked example and the problem was cho-

sen to assist students in aligning corresponding aspects of the worked example and the problem.  

Thus, worked example problems help students make sense of the connections between represen-

tations by highlighting structural correspondences between a familiar and a less familiar graphi-

cal representation. 

In the light of research showing that the positive effect of worked examples can be further 

enhanced by providing self-explanation prompts (Berthold & Renkl, 2009; Gerjets et al., 2006; 

Große & Renkl, 2007), students receive reflection prompts that help them abstract a general 

principle from the two graphical representations at the end of each worked example problem 

(part C in Fig. 13). For each step, students receive feedback at the level of the relevant know-

ledge components of the step at hand, for instance, by explaining that the denominator of a frac-

tion corresponds to the number of total sections a rectangle is cut into.  

Fig. 14 shows a screen shot of a connectional sense-making problem for fraction comparison. 

Connectional sense-making processes are supported by demonstrating that fractions can be 

judged based on their relative size to one another. The Fractions Tutor focuses on the concept of 

inverse relationships between the number of total sections and the size of each section. The setup 
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of the problem (i.e., completion of last step in the worked example, alignment of corresponding 

steps in worked example and problem, and reflection prompts) corresponds to the support de-

scribed for the equivalent fractions example (Fig. 13). 

 
Fig. 13. Connectional sense-making support problem for equivalent fractions. 

 
Fig. 14. Connectional sense-making support problem for fraction comparison. 
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3.4.3 Connectional fluency-building support for connectional fluency 

 
Fig. 15. Connectional fluency-building support problem for equivalent fractions. 

 
Fig. 16. Connectional fluency-building support problem for fraction comparison. 

Fig. 15 shows a connectional fluency-building problem for equivalent fractions. The fluency-

building problems are based on Kellman and colleague’s perceptual learning paradigm (Kellman 

& Garrigan, 2009; Kellman et al., 2008; Kellman et al., 2009; Massey, Kellman, Roth, & Burke, 

in press). In these problems, students learn to relate different representations of math problems, 

such as graphical representations, text-based word problems, and symbolic representations, to 
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one another based on their perceptual properties. Rather than making sense of why or how these 

different representations correspond to one another, connectional fluency-building problems aim 

at helping students in becoming faster and more efficient at extracting relevant information from 

the different representations based on repeated experience with a large variety of problems. 

Thus, connectional fluency-building problems help students make connections between represen-

tations fast and effortlessly through extensive perceptual experience.  

In the Fractions Tutor’s connectional fluency-building problems, students sort a variety of 

equivalent graphical representations using drag-and-drop. Rather than identifying numerator and 

denominator to solve the equivalence problem computationally, students visually judge whether 

graphical representations show equivalent fractions by estimating their relative size. As in Kell-

man and colleagues’ fluency trainings (Kellman et al., 2008; Massey et al., in press), feedback is 

given only about the correctness of the sorting task, without referring to the underlying concep-

tual aspects, such as the knowledge components of numerator and denominator. 

Fig. 16 shows an example of a connectional fluency-building problem for fraction compari-

son. Students sort graphical representations based on their relative size, using drag-and-drop. 

Again, students are encouraged to visually estimate the relative size of a variety of graphical re-

presentations. 
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3.5 Effectiveness 

I evaluated the effectiveness of the Fractions Tutor in a sequence of classroom experiments (de-

scribed in detail in section 4). Each experiment also served to iteratively improve the Fractions 

Tutor while investigating research questions following from the theoretical framework described 

above.  

Results from the most recent classroom experiment (Rau, Aleven et al., 2012; see Experi-

ment 4, section 4.4) showed that the Fractions Tutor leads to substantial learning gains that last 

over time. In this classroom experiment, 599 4th- and 5th-graders worked with the Fractions Tu-

tor for 10 hours of their regular math instruction. Fig. 17 shows students’ learning gains on the 

conceptual knowledge posttest. Students performed significantly better on an immediate posttest 

assessing their conceptual knowledge about fractions compared to an equivalent pretest, scoring 

about 10% higher (p < .01, d = .40), as well as on a delayed posttest administered a week later, 

scoring about 15% higher (p < .01, d = .60). Fig. 18 shows students’ learning gains on a test as-

sessing procedural knowledge. With regard to procedural knowledge, students also performed 

significantly better on an immediate posttest compared to an equivalent pretest (p < .01, d = .20) 

and on a delayed posttest (p < .01, d = .24). Both the conceptual knowledge test and the proce-

dural knowledge tests included transfer problems in which students had to apply their knowledge 

about fractions to novel task types. 

Taken together, these findings show that Fractions Tutor is a successful intelligent tutoring 

system that yields significant and robust learning gains especially on conceptual knowledge tests 

that include transfer items. It is usable within real classroom settings and addresses the goals and 

needs of both students and teachers.  
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Fig. 17. Learning gains on the conceptual knowledge test. 

 
Fig. 18. Learning gains on the procedural knowledge test. 



4 Classroom Experiments and Lab Studies 
 

67 
 
 

4 Classroom Experiments and Lab Studies 
In this section, I describe a series of classroom experiments and lab studies that investigate (1) 

how best to support students’ learning with multiple graphical representations, and (2) to itera-

tively improve the Fractions Tutor (see section 3). Furthermore, I reflect on the results from each 

experiment in the light of the theoretical framework on processes involved in learning with mul-

tiple graphical representations (see section 2). 

Principle Implementation Experiment Measure 
Use multiple graphical re-
presentations to enhance 
robust learning of domain 
knowledge 

Circles, rectangles, 
number lines 

Experiments 
1, 3, 4 

Reproduction of conceptual fractions 
knowledge, transfer of procedural know-
ledge (Experiment 1); reproduction with 
number lines, transfer of conceptual 
knowledge (Experiment 3); conceptual 
knowledge (Experiment 4) 

Use reflection prompts to 
support students in relating 
graphical representations to 
the corresponding symbolic 
representation  

Menu-based reflection 
prompts 

Experiment 1 Reproduction of conceptual fractions 
knowledge, transfer of procedural know-
ledge  

Interleave task types while 
blocking graphical repre-
sentations 

Frequently switch be-
tween different task 
types 

Experiment 2 Accuracy and efficiency of representa-
tional knowledge 

Interleave graphical repre-
sentations in addition to 
(moderately) interleaving 
task types  

Frequently switch be-
tween graphical repre-
sentations 

Experiment 3 Conceptual transfer 

Combine connectional 
sense-making support and 
connectional fluency-
building support  

Worked examples and 
mixed representations 
problems 

Experiment 4 Conceptual knowledge 

Implement connectional 
sense-making support in a 
way that requires students 
to actively generate connec-
tions 

Worked examples Experiment 4 Conceptual knowledge 

Provide connectional sense-
making support before con-
nectional fluency-building 
support  

Provide worked exam-
ples before mixed repre-
sentations problems 

Experiment 5 Accuracy of transfer of fractions know-
ledge 

Table 3. Instructional design principles and their implementation in the Fractions Tutor. 

Taken together, the experiments lead to a set of instructional design principles for the effec-

tive use of multiple graphical representations within intelligent tutoring systems. Each principle 

is based on experimental evidence for the effectiveness of specific implementations of instruc-

tional support for learning with multiple graphical representations. Table 3 gives an overview of 

the instructional design principles that follow from the experiments, how these principles are im-
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plemented in the Fractions Tutor, and on which measures of learning outcomes and learning 

processes these types of support were found to be effective in each experiment.  
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4.1 Experiment 1: Advantage of multiple graphical representations and self-explanation 

prompts 

As discussed in section 1.1, research shows that multiple representations can significantly en-

hance students’ learning: students typically learn better from a combination of text and graphical 

representation than from text alone (Ainsworth & Loizou, 2003; Baetge & Seufert, 2010; 

Bodemer et al., 2005; Butcher, 2006; Eilam & Poyas, 2008; Eitel et al., 2013; Kuehl et al., 2010; 

Magner et al., 2010; Mason et al., 2013; Rasch & Schnotz, 2009; Suthers et al., 2008). Further-

more, there is evidence that the positive effect of learning with multiple representations is me-

diated by an increased engagement in self-explanation activities (i.e., the process of generating 

explanations to oneself with the goal to make sense of what one is learning (Chi, Bassok, Lewis, 

Reimann, & Glaser, 1989): students who generate more high-quality self-explanations also show 

the highest learning gains when working with multiple representations (Ainsworth & Loizou, 

2003). Based on these findings, Ainsworth and Loizou (2003) hypothesize that multiple repre-

sentations are beneficial because they can promote the self-explanation effect. Berthold and 

colleagues (Berthold et al., 2008; Berthold & Renkl, 2009) built on this work and investigated 

whether promoting self-explanation activities can enhance students’ learning from multiple 

representations. They prompted students to self-explain while studying multi-representational 

worked examples (i.e., instructional examples in which each step of the correct solution is pro-

vided) and found that prompting promoted conceptual and procedural knowledge. Zhang and 

Linn (2011) evaluated an intervention that enhanced student-generated explanations while learn-

ing with dynamic chemistry representations. They found that the intervention helped students 

relate domain-relevant concepts to the visualizations. Taken together, this prior research on mul-

tiple representations indicates (1) that multiple representations can enhance students’ learning by 

prompting reflection activities, and (2) that prompting students to reflect on relations between 

domain-relevant concepts and representations can further enhance students’ benefits from mul-

tiple representations. However, neither of these studies systematically investigated whether the 

advantage of learning with multiple representations (compared to a single representation) can be 

enhanced by providing self-explanation prompts, or whether the advantage of multiple represen-

tations depends on students receiving such prompts. 
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Furthermore, all these prior studies used a symbol-systems approach: they included represen-

tations from different symbol systems, such as text and one additional graphical representation. 

As discussed in section 2, it remains an open question whether these findings generalize to learn-

ing with multiple graphical representations that use the same symbol system. Thus, the question 

of whether multiple graphical representations lead to better learning than a single graphical re-

presentation (provided in addition to symbolic and textual representations) remains open. 

Experiment 11 addresses these questions and thereby lays the foundation for my dissertation 

research. Specifically, Experiment 1 systematically investigates whether the advantage of mul-

tiple representations generalizes to more complex, multi-representational learning materials, 

which are commonly used in real educational settings: multiple graphical representations. Fur-

thermore, Experiment 1 tests whether students’ benefit from multiple graphical representations 

can be enhanced by prompting them reflect on the relation between each graphical representation 

and the symbolic representation.  

One-hundred thirty-two 6th-grade students worked with one of four versions of the Frac-

tions Tutor for 2.5 hours during their regular math instruction. The versions of the Fractions Tu-

tor varied on two experimental factors: number of representations (a single graphical representa-

tion versus multiple graphical representations) and reflection prompts (with versus without 

prompts). The reflection prompts were designed to encourage students to self-explain how the 

graphical representation relates to the symbolic notation while emphasizing knowledge compo-

nents such as numerator and denominator. Students in the prompted conditions were asked to 

reflect on what aspects of the given graphical representations correspond to the numerator and 

the denominator of the fraction (e.g., “How does the number line show the numerator of the frac-

tion?”), or how the procedure they performed symbolically corresponds to the manipulation of 

the graphical representations (e.g., “How did you convert the fraction in the circle?”). Students 

selected their answer from a drop-down menu, as shown in Fig. 19 – a procedure that has been 

shown to be effective many empirical studies with Cognitive Tutors (see Aleven & Koedinger, 

2002; Koedinger, Aleven, Roll, & Baker, 2009). Students in the no-prompt conditions received 

the same tutor problems without the  prompts.  Students  solved  each  problem  by  manipulating 

                                                 
1 Experiment 1 was part of my diploma thesis (the German equivalent to a Master thesis), see Rau (2008). 
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Fig. 19. Fraction addition with the number line representation, with self-explanation prompts. 

 
Fig. 20. Number line, circle, rectangle, stack, set (from left to right) as used in the Experiment 1. 

both the symbolic representation of fractions, and a graphical representation. 

In the single-representation conditions, all problems involved an interactive number line re-

presentation (see Fig. 20). In the multiple-representation conditions, students worked with five 

graphical representations: number lines, circles, rectangles, sets, and stacks (see Fig. 20). The 

different representations were presented in an interleaved fashion, so that only one graphical re-

presentation was presented at a time, but consecutive problems used different graphical represen-

tations. Students first solved a fractions problem using an interactive number line (see Fig. 19). 
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They then performed the same steps symbolically. Next, students revisited the same problem 

they had solved with the number line with the four remaining graphical representations.  

Before working on the Fractions Tutor, students completed a prior knowledge test. The prior 

knowledge test took about 20 minutes to complete. On the following day, all students started 

working on the Fractions Tutor. Students worked on the equivalent fractions and fraction addi-

tion topics of the Fractions Tutor. Students worked with the Fractions Tutor for a total of 2.5 

hours during two consecutive school days as part of their regular mathematics instruction. All 

students worked with the Fractions Tutor at their own pace, but the time they spent with the 

Fractions Tutor was held constant across experimental conditions, such that students completed 

as many tutor problems as they could in the time-frame available during the class periods. Im-

mediately after finishing the work on the Fractions Tutor, students completed the immediate 

posttest, which took about 30 minutes. Six days after the immediate posttest, students completed 

the delayed posttest.  

Results from 112 students show no main effect of number of graphical representations, but a 

main effect of reflection prompts on reproduction of conceptual knowledge of fractions as well 

as a significant interaction between number of graphical representations and reflection prompts 

on reproduction of conceptual knowledge, and on transfer of procedural knowledge at the imme-

diate posttest. Specifically, students in the prompted conditions performed better if they had 

worked with multiple graphical representations than if they had worked with a single graphical 

representation, whereas students within the no-prompt conditions performed worse if they had 

worked with multiple graphical representations than if they had worked with a single graphical 

representation. Please refer to Rau and colleagues (2009) or Rau (2008) for a more detailed de-

scription of Experiment 1. 

Taken together, the Experiment 1 extends prior research on multiple representations that use 

different symbol systems and shows that multiple graphical representations that use the same 

symbol system can enhance students’ robust learning of domain knowledge, provided that stu-

dents are prompted to self-explain the relation between graphical and symbolic representations. 

This finding extends the prior theoretical frameworks for learning with multiple representations 

described in section 2.1. Since multiple graphical representations use the same symbol system, 

they do not require students to integrate information from a larger number of symbol systems 
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than when students are provided with only a single graphical representation. Furthermore, the 

different graphical representations are all encoded into a verbal model within working memory 

and thus do not alter the cognitive capacity available. By consequence, Experiment 1 demon-

strates that the advantage of learning with multiple representations is not limited to representa-

tions of different symbol systems or the number of information channels used to process the re-

presentations.   

I attribute this finding to the complementary conceptual perspectives that multiple graphical 

representations provide on the learning content. As many STEM domains, fractions instruction 

uses different graphical representations with the goal to emphasize different conceptual aspects 

of the domain (e.g., fractions as measurements in number lines and fractions as parts of a whole 

in area models; Charalambous & Pitta-Pantazi, 2007). In order to understand the concept of frac-

tions, students need to integrate the conceptual views depicted by the different graphical repre-

sentations. This notion (i.e., that deep conceptual processing of the structural elements that con-

stitute the complex learning material is crucial to students’ benefit from multiple graphical repre-

sentations) does not contradict Schnotz and Bannert’s (2003) framework. Rather, it extends 

Schnotz and Bannert’s (2003) work by demonstrating that this type of integration process does 

not have to occur across different symbol systems: it can also occur between multiple representa-

tions that are part of the same symbol system. 

However, conceptual integration does not (often) happen spontaneously (Ainworth, 2006; 

Yerushamly, 1991). Experiment 1 systematically investigates whether reflection prompts de-

signed to encourage students to relate graphical to symbolic representations of fractions enhance 

their benefit from multiple graphical representations. The results show that such prompts are ne-

cessary for students to benefit from multiple graphical representations: only when provided with 

self-explanation prompts did I find an advantage of multiple over a single graphical representa-

tion. Experiment 1 is, to the best of my knowledge, the first to systematically investigate the ef-

fects of self-explanation prompts and multiple versus single graphical representations. 

The findings from Experiment 1 are also of practical importance: they provide guidelines for 

developers of instructional materials (such as intelligent tutoring systems) that include multiple 

graphical representations. Students will benefit from multiple graphical representations only if 

they are prompted to relate graphical and symbolic representations. Reflection prompts are an 
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appropriate means (though perhaps not the only effective one) to support students in doing so. As 

a consequence, the Fractions Tutor includes reflection prompts, as described in section 3.4.1. 

With regard to the processes involved in learning with multiple graphical representations (see 

section 2.2), the process supported by the reflection prompts may most likely be characterized as 

a representational sense-making process. The reflection prompts used in Experiment 1 encourage 

students to explicitly relate the graphical representations to the symbolic representation based on 

the abstract concept they both depict. By mapping abstract concepts (e.g., the numerator of a 

fraction) to the corresponding part of the symbolic notation of fractions (i.e., the top number) and 

to the corresponding component of the graphical representation (e.g., the number of shaded piec-

es in a circle), students are supported in acquiring representation-specific knowledge components 

(e.g., ident-numerator-circle). Thus, one might argue, based on the results in Experiment 1, that 

support for representational sense-making processes (e.g., in the form of reflection prompts) en-

hance students’ learning of robust domain knowledge with multiple graphical representations. 

However, Experiment 1 only assessed students’ domain knowledge as learning outcomes, but not 

their representational understanding during the learning process. To truly put this interpretation 

(i.e., that support for representational sense-making processes enhance students’ benefit from 

multiple graphical representations) to a test, one would also have to assess students’ representa-

tional understanding. One might expect that reflection prompts enhance representational under-

standing, and further, that differences in representational understanding between groups with 

versus without such prompts explain the differences in their performance on domain knowledge 

tests. 

In conclusion, Experiment 1 extends prior research on multiple representations that has been 

conducted under the symbol-systems approach to the case of multiple graphical representations, 

which all use the same symbol system. By demonstrating that multiple graphical representations 

can enhance learning (when accompanied by reflection prompts) provides the foundation for the 

experimental studies described in the remainder of this section. 
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4.2 Experiment 2: Interleaving task types while blocking graphical representations  

In multi-representational educational technologies, learners typically engage in extended prob-

lem-solving practice with multiple graphical representations across several task types. In these 

cases, instructors and instructional designers must decide how to sequence graphical representa-

tions (e.g., circles, number lines) and task types (e.g., finding equivalent fractions and comparing 

fractions). Should they interleave multiple graphical representations while blocking task types, or 

should they interleave task types while blocking multiple graphical representations? What se-

quence will lead to the most robust learning gains? The decision of how to sequence task types 

and graphical representations is likely to influence learners’ acquisition of robust conceptual and 

procedural knowledge. 

The question of whether to interleave graphical representations or task types is not only of 

practical importance. Although the advantages of learning with multiple representations are well-

documented, this research has not yet investigated the effects of interleaved practice with mul-

tiple representations. The literature on contextual interference has demonstrated that the temporal 

sequence of learning tasks affects students’ robust learning (Battig, 1972; Schmit & Bjork, 

1992): interleaving different learning tasks (rather than blocking them) leads to better long-term 

retention and better performance on transfer tests. However, this research has not yet investi-

gated whether the dimension on which the learning tasks are interleaved (e.g., task type or graph-

ical representation) matters. The question of which dimension instructional designers should in-

terleave is therefore of both practical and theoretical importance. 

4.2.1 Research questions and hypotheses 
The literature on contextual interference suggests that the decision of whether to interleave mul-

tiple graphical representations or task types will influence students’ robust learning of domain 

knowledge. Generally, results from contextual interference research show that interleaved prac-

tice leads to better learning outcomes than blocked practice (Battig, 1972; Schmidt & Bjork, 

1992). In this research, the independent variable typically is whether learning tasks are presented 

in “blocks” of the same type (e.g., task 1 – task 1 – task 1 – task 2 – task 2 – task 2 – task 3 – 

task 3 – task 3), or whether learning tasks of different types are interleaved (e.g., task 1 – task 2 – 

task 3 – task 1 – task 2 – task 3 – task 1 – task 2 – task 3). The contextual interference effect can 
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be found in a variety of domains including vocabulary learning (Bahrick, Bahrick, Bahrick, & 

Bahrick, 1993; Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; Pashler, Rohrer, Cepeda, & 

Carpenter, 2007), motor tasks (Hebert, Landin, & Solmon, 1996; Immink & Wright, 1998; Li & 

Wright, 2000; Meiran, 1996; Meiran, Chorev, & Sapir, 2000; Ollis, Button, & Fairweather, 

2005; Schmidt & Bjork, 1992; Shea & Morgan, 1979; Simon & Bjork, 2001), algebra (Rohrer, 

2008; Rohrer & Taylor, 2007; Taylor & Rohrer, 2010), troubleshooting (de Croock, van Mer-

riënboer, & Paas, 1998; van Merriënboer, Schuurman, de Croock, & Paas, 2002), and decision-

making tasks (Helsdingen, van Gog, & van Merriënboer, 2011). However, the research on inter-

leaved practice has not investigated whether the dimension on which learning tasks are inter-

leaved (i.e., interleaving graphical representations versus interleaving task types) matters. In oth-

er words, it remains an open question whether multiple graphical representations are more effec-

tive when they (the different graphical representations) are interleaved or when task types are 

interleaved. 

In particular, the advantage of interleaved practice has been attributed to two kinds of 

processes that play a role in deep, cognitive processing of the learning material (Rau, Aleven et 

al., 2013b). First, interleaved practice schedules require learners to frequently reactivate the 

knowledge needed to solve each learning task (de Croock et al., 1998; Lee & Magill, 1983, 

1985): when tasks are presented in an interleaved sequence, the required knowledge has to be 

retrieved more frequently from long-term memory. Retrieval from long-term memory streng-

thens the association between cues and associated elements in long-term memory, and increases 

the likelihood that this knowledge can be recalled later on (Anderson, 1993; Anderson, 2002). 

Second, interleaving may help students abstract knowledge across different learning tasks (de 

Croock et al., 1998; Shea & Morgan, 1979). When knowledge needed for different learning tasks 

is co-active in working memory, students can compare the knowledge relevant to the respective 

learning tasks. While this process may happen consciously or unconsciously, it helps learners to 

see which task properties are key and which are incidental, thereby directing their attention to 

aspects relevant to knowledge construction (Bannert, 2002; Paas & van Gog, 2006; van Mer-

riënboer et al., 2002). 

How, based on these theoretical accounts, might one expect interleaving task types or graphi-

cal representations to affect students’ robust learning? I hypothesize that it will be most effective 
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to interleave learning tasks along the dimension of greatest variability, that is, the dimension 

along which the learning tasks vary the most from task to task. For two reasons, I hypothesize 

that task types (e.g., equivalent fractions, fraction comparison, fraction addition, etc.) are more 

variable than the graphical representations used in the Fractions Tutor. First, the different task 

types require students to apply different operations (e.g., finding equivalent fractions, adding 

fractions). By contrast, the different graphical representations provide different conceptual views 

on the task at hand (by depicting a fraction as a shaded part of a circle, or as a dot on the number 

line), and these conceptual differences might be difficult for novice learners to discern. Second, 

the graphical representations are designed to be intuitive: graphical representations typically em-

ploy perceptual processes in an easy-to-understand way. They may also be intuitive in the sense 

that they connect to students’ informal prior knowledge about fractions. To use graphical repre-

sentations, students are not expected to engage in explicit reasoning about the properties of the 

representations. The different task types, by contrast, require students to explicitly use different 

procedures to solve the task. Due to these properties of graphical representations and task types, I 

expect that the conceptual differences between graphical representations will not be as salient as 

the differences between task types. For this reason, I anticipate that task types are the more vari-

able dimension, compared to graphical representations. 

Interleaving learning tasks along the more variable dimension should give students better op-

portunities for reactivation and abstraction. Students are expected to reactivate any knowledge 

that is not shared between consecutive learning tasks. I expect this reactivation process to happen 

more frequently when learning tasks differ on the more variable dimension. Since repeated reac-

tivation of knowledge strengthens that knowledge and increases the chance that it can be recalled 

later on, reactivation is, in turn, expected to increase students’ acquisition of robust knowledge.  

Abstraction may be more likely to occur when learning tasks are interleaved on a moderately 

variable dimension. Consecutive tasks need to be sufficiently dissimilar so that students can 

compare the knowledge associated with the different learning tasks: without dissimilarities, there 

is nothing to abstract across. However, it is crucial for abstraction to occur that the consecutive 

learning tasks share some common knowledge that can be abstracted from them. If the learning 

tasks are too dissimilar, students may not be able to abstract common knowledge from them. In 

other words, if abstraction is the mechanism by which interleaved practice leads to better learn-
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ing, higher variability of consecutive learning tasks should not always lead to better learning out-

comes. Rather, there might be an optimal level of variability in learning tasks such that consecu-

tive tasks are similar enough to allow for abstraction, but dissimilar enough so that learners are 

likely to abstract knowledge from them. Since the different learning tasks employed in the Frac-

tions Tutor share a substantial amount of knowledge between them (by virtue of covering con-

ceptual and procedural aspects of fractions), I do not expect that the variability of these learning 

tasks is too high to prevent abstraction. 

Given that these arguments are not specific to conceptual or procedural knowledge, I expect 

that interleaving task types (while blocking graphical representations) will have a stronger effect 

on students’ acquisition of conceptual and of procedural knowledge than interleaving graphical 

representations (while blocking task types). 

4.2.2 Methods 
To investigate these questions, I conducted a classroom experiment that contrasted different 

practice schedules of graphical representations and task types. 

4.2.2.1. Experimental design 

 
Fig. 21. Experiment 2: Experimental procedure by condition. Rows depict twelve different task types covered, columns show one 

of several possible orders of representations: C/white = circle, N/light-grey = number line, S/dark-grey = set. The dashed cells 
indicate task type / representation combinations that were not implemented in the tutor. 
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The goal of this study was to systematically investigate the effects of interleaving task types (int-

types) versus interleaving representations (int-reps). Students were randomly assigned to one of 

two conditions. In the int-types condition, the task types were interleaved while the graphical re-

presentations were blocked. In the int-reps condition, the graphical representations were inter-

leaved while the task types were blocked. Students in all conditions worked on the same 102 

fractions tasks at their own pace, with the help from the Fractions Tutor. All learning tasks in-

volved one individual graphical representation per tutor problem, but multiple across a sequence 

of tutor problems (as described in section 3.4.1). Each problem also involved the symbolic repre-

sentation of fractions and a problem statement in text. Fig. 21 clarifies how the conditions were 

implemented. Each table represents the set of 102 problems that students solved with the tutor. 

Each row represents one of twelve task types (e.g., equivalent fractions, or fraction addition). 

There were nine problems for each task type (i.e., each row stands for nine problems). Each re-

presentation was coupled with each task type – there were three problems for any such combina-

tion2. Thus, the number of problems of each type, the number of problems with each representa-

tion, and the number of problems that couple a particular task type and representation are con-

stant across conditions. In the int-types condition (see the table on the left in Fig. 21), the task 

types are maximally interleaved and the representations are maximally blocked. That is, students 

covered all twelve fraction task types with one graphical representation before switching to the 

next representation, again working through all task types before switching to the third graphical 

representation (corresponding to 36 problems per representation). In this condition, students en-

countered a new task type after every single problem. By contrast, in the int-reps condition (see 

the table on the right in Fig. 21), the representations were maximally interleaved and the task 

types were maximally blocked. That is, students worked on all problems of one task type (cover-

ing it with all three representations) before moving on to the next task types. In this condition, 

students encountered a different graphical representation after every single problem. Thus, the 

degree of interleaving is the same across conditions; what varies is what is being interleaved. 

                                                 
2 All task types were presented with each graphical representation with the exception of two fraction addition 

task types where the use of the set representation is not advisable from an instructional standpoint. The exclusion of 
the set representation from two of twelve task types does not change the level of blocking or interleaving of task 
types or representations and therefore does not interfere with the intervention. 
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In order to prevent possible order effects, I implemented different plausible orders of graphi-

cal representations as a control factor to counterbalance potential ordering effects. Students never 

worked with the set representation first because sets appear to be the graphical representation 

with which students are least familiar (i.e., presenting students with the set representation first 

cannot be recommended from an instructional perspective and thus does not represent a realistic 

educational scenario). Students were randomly assigned to one of four different orders of graphi-

cal representations: circle – number line – sets, circle – set – number line, number line – circle – 

set, or number line – set – circle. Fig. 21 thus reflects only one of the implemented orders 

4.2.2.2. Participants 

The study involved 158 students in grades 5 and 6, aged 9 to 12 years, from 16 classes of a total 

of three schools. Students participated in the study during their regular math instruction. 

4.2.2.3. Procedure 

Experiment 2 took place at the end of the school year 2008/2009. Students’ regular math teachers 

led the sessions, but researchers were present in the classrooms at all times to assist teachers in 

answering questions specific to the use of the tutoring system.  

Students’ knowledge of fractions was assessed three times. On the first day, students com-

pleted a pretest. They then worked on twelve task types taken from six topics of the Fractions 

Tutor (with the version depicted in Fig. 9, see section 3.3.3.3; topics 1, 2, and 6-9 in Table 1, see 

section 3.4), for five hours, spread across five to six (depending on specific school schedules) 

consecutive days. The day following the tutor sessions, students completed an immediate post-

test. Seven days later, in order to assess whether students’ learning is robust in that it lasts over 

time (see Koedinger et al., 2012), students completed an equivalent delayed posttest. Students 

could take as much time as they needed to complete the tests. Participating teachers were asked 

not to revisit fractions between the immediate and the delayed posttest. 

4.2.2.4. Test instruments 

To assess students’ robust knowledge of fractions, I created a test that included two scales: re-

presentational knowledge and operational knowledge, described further below. The theoretical 

structure of these tests (i.e., the division of the test items into representational and operational 

knowledge) was validated by a confirmatory factor analysis using data from a large sample of 
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students collected during a pilot study (i.e., a different sample than participated in the current 

study).  

Each of the two test scales included both familiar and unfamiliar tasks (i.e., task types that 

students had encountered during their work on the tutor and task types that were new relative to 

those covered in the tutor). The goal in including the latter types of tasks was to assess whether 

students acquired robust knowledge that can be transferred to unfamiliar problems (see Koedin-

ger et al., 2012). Appendix 5 shows a sample test item for the representational knowledge and 

the operational knowledge scales, respectively. The representational knowledge scale of the test 

assessed students’ conceptual knowledge of fractions representations. I operationalized represen-

tational knowledge as the ability to interpret representations in terms of fractions, including 

graphical representations that were not covered by the tutor. All items of the representational 

knowledge test scale included graphical representations, including representations that students 

did not encounter in the set of tutor problems: fraction strips, and contextualized applications of 

measurement scales, analog clocks, and concrete objects. By contrast, the operational knowledge 

scale assessed students’ procedural knowledge of fractions operations. I operationalized opera-

tional knowledge as students’ ability to perform familiar operations (i.e., operations they had 

practiced in the tutor, such as fraction addition) either without graphical representations or with 

an unfamiliar graphical representation (i.e., fraction strips). The operational items also included 

items that required operations that were not covered by the tutor (i.e., fraction subtraction) solved 

without graphical representations. Both test scales included items that I adapted from standar-

dized tests in the United States (NAEP, PSSA) and from examples from the fractions literature 

(Rittle-Johnson & Koedinger, 2005).  

Two different equivalent versions (version A and version B) of the test were created. The test 

versions included the same tasks but used different numbers. The pilot study of the test instru-

ments showed that the test versions did significantly not differ in terms of difficulty. I randomly 

assigned students to either version A or B of the fractions test at the pretest, assigned them the 

other version at the immediate posttest, and randomly assigned either version A or B at the de-

layed posttest.  

I assessed students’ robust knowledge of fractions using both accuracy and efficiency meas-

ures. The accuracy measure corresponded to the mean score on the representational knowledge 
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scale of the test and the operational knowledge scale of the test, respectively. To analyze stu-

dents’ efficiency on the tests, I used a measure of efficiency described by (van Gog & Paas, 

2008) and by (Lewis & Barron, 2009). Specifically, I combined students’ standardized average 

scores on the representational knowledge and the operational knowledge subscales of the test and 

the standardized average time they spent on each of the test subscales across pretest, posttest, and 

delayed posttest using the following formula: 

efficiency (subscale of test) =  
Z (score on subscale of test) − Z (time spent on subscale)

√2
   (1) 

Positive efficiency scores indicate higher efficiency at solving quiz items correctly, and nega-

tive efficiency scores indicate lower efficiency at solving quiz items correctly, compared to the 

relative mean of the sample. An efficiency score of 0 indicates average efficiency with respect to 

the sample. 

I followed van Gog and Paas (2008) and Lewis and Barron (2009) and applied the concept of 

condition efficiency (Paas & van Merriënboer, 1993) to a measure of performance efficiency. 

Paas and van Merriënboer (1993) used performance and mental effort to compute efficiency. 

Van Gog and Paas (2008) argue that time on task can also be viewed as an approximation of 

mental effort. I used the time students spent on the test rather than the time they spent with the 

tutoring system for two reasons. First, I was interested in students’ efficiency in answering test 

items, rather than in how efficiently they learn, because the ability to solve a test fast and accu-

rately is required in many assessment situations, for example in standardized tests in the United 

States. Second, using time spent on the tutoring system as the measure of mental effort during 

the learning phase depends on the assumption that time-on-task during the learning phase was 

not restricted. This assumption does not hold, however, because the students worked with the 

tutoring system during their regular math periods, which are, due to their nature, restricted in 

time. 

4.2.3 Results 
Table 4 provides the means and standard deviations for the accuracy of representational and op-

erational knowledge, for time-on-task on the representational and operational knowledge subs-

cales of the test, and for representational efficiency and operational efficiency. 
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  pretest immediate posttest delayed posttest 

representational accuracy int-types .55 (.20) .61 (.27) .59 (.24) 
int-reps .53 (.22) .52 (.26) .39 (.32) 

operational accuracy int- types .38 (.31) .51 (.34) .44 (.36) 
int-reps .43 (.33) .40 (.35) .39 (.30) 

representational time-on-task int-types 100.18 (29.53) 70.89 (22.46) 66.95 (23.60) 
int-reps 103.63 (32.19) 74.88 (28.33) 79.24 (30.52) 

operational time-on-task int- types 68.74 (31.64) 47.69 (18.53) 43.88 (19.09) 
int-reps 69.77 (37.01) 46.11 (21.31) 42.71 (22.22) 

representational efficiency int-types -.35 (.89) .48 (.83) .52 (.80) 
int-reps -.48 (.98) .16 (.90) -.31 (1.01) 

operational efficiency int- types -.50 (.90) .31 (.83) .24 (.77) 
int-reps -.42 (1.12) .12 (.78) .17 (.63) 

Table 4. Means and standard deviations (in parentheses) for accuracy, time-on-task (in seconds), and efficiency for the represen-
tational and operational knowledge subscales at pretest, immediate posttest, delayed posttest by condition in Experiment 2. 

4.2.3.1. Analysis 

Students were excluded if they were not present on all test days (n = 49), if they worked on the 

tutoring system during the weekend (n = 1), if they had an overall pretest score of 0.95 or higher 

(n = 2), or if I did not have information on how much time they spent on each item of the test (n 

= 5). Table 5 shows the number of included and excluded students per condition.  
 included excluded 

int-types 52 27 
int-reps 49 30 

Table 5. Experiment 2: Number of students included and excluded by condition. 

After excluding these students, a total of N = 101 remained in the sample (n = 52 for int-

types and n = 49 for int-reps). The number of excluded students did not differ between experi-

mental conditions, χ² (1, N = 158) < 1, nor did the time spent on the tutor problems (F < 1). A 

MANOVA on the pretest scores showed that students who were excluded from the analysis 

scored significantly higher on the representational knowledge scale of the test, F(1, 156) = 

13.192, p < .01, and on the operational knowledge scale of the test, F(1, 156) = 6.456, p < .05, 

than students who were included in the analysis. No significant differences between conditions 

were found at the pretest for representational knowledge (F < 1), or operational knowledge (F < 

1). Since there was no effect for order of representation on representational knowledge (F < 1) or 

operational knowledge F(3, 97) = 1.21, p > .10, I disregarded the order of representation in the 

following analyses. Since students had seen the same test that they received at the delayed post-

test either at the pretest or at the immediate posttest, I analyzed the effect of having seen the 
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same test form either at the pretest or at the immediate posttest. There was no significant differ-

ence between students for the time (i.e., either at the pretest or at the immediate posttest) students 

had seen the same test before on representational knowledge (F < 1) or operational knowledge (F 

< 1). Finally, because some students did not finish all problems on the tutor in the time given, I 

computed a covariate that describes, for each student, the number of tutor problems solved that 

involved the knowledge components tested by the representational and by the operational know-

ledge tests, respectively. 

A hierarchical linear model (HLM; Raudenbush & Bryk, 2002) with four nested levels was 

used to analyze the data. At level 1, I modeled performance for each of the two posttests for each 

student. At level 2, I accounted for differences between students. At level 3, I modeled random 

differences between classes, and at level 4, I accounted for random differences between schools. 

The HLM is the outcome of a forwards-inclusion procedure in which I used the Bayesian Infor-

mation Criterion (BIC) to find whether the inclusion of a variable increased model fit. A lower 

BIC indicates better model fit while penalizing for greater model complexity. If the BIC de-

creased as a consequence of including a variable, I kept the variable. If the BIC did not decrease, 

I did not include the variable. I tested a number of variables, including teacher, sequence of 

graphical representations, test form sequence, grade level, number of problems completed, time 

per tutor step, interaction of test time with condition, interaction of pretest with condition, ran-

dom intercepts and slopes for classes and schools. Equation 2 describes the resulting HLM that I 

fitted to the data: 

Yijkl = (((μ + Wl) + Vkl) + β3 * cj + β4 * pj + β5 * ej + Ujkl) + β1 * ti + β2 * cj * ti + Rijkl (2) 

with  

(level 1) Yijkl = εjkl + β1 * ti + β2 * cj * ti + Rijkl   

(level 2) εjkl = δkl + β3 * cj + β4 * pj + β5 * ej + Ujkl  

(level 3) δkl = γl + Vkl  

(level 4) γl = μ + Wl  

with the index i standing for test time (i.e., immediate and delayed posttest), j for the student, 

k for class, and l for the school. The dependent variable Yijkl is studentj’s score on the dependent 

measures at test time ti (i.e., immediate or delayed posttest), εjkl is the parameter for the intercept 

for studentj’s score, β1 is the parameter for the effect of test time ti, β2 is the parameter for the ef-
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fect of the interaction of condition cj with test time ti, β3 is the parameter for the effect of condi-

tion cj, β4 is the parameter for the effect of studentj’s performance on the pretest pj, β5 is the pa-

rameter for the effect of exposure ej, which indicates how many problems studentj solved on the 

relevant knowledge components being tested by either the representational knowledge test or the 

operational knowledge, δkl is the parameter for the random intercept for classk, γl is the parameter 

for the random intercept for schooll, and μ is the overall average.  

In addition, I specified posthoc comparisons within the HLM to clarify the effects of condi-

tion. All reported p-values were adjusted using the Bonferroni correction. I report partial η² for 

effect sizes on effects including more than two conditions, and Cohen’s d for effect sizes of 

pairwise comparisons. According to (Cohen, 1988), an effect size partial η² of .01 corresponds to 

a small effect, .06 to a medium effect, and .14 to a large effect. An effect size d of .20 corres-

ponds to a small effect, .50 to a medium effect, and .80 to a large effect. 

4.2.3.2. Effects of practice schedules 

measure test time 
main effects 
/ interaction 

effects 

tendency of 
pairwise 

comparisons 

significant 
(yes/no) F/t-value adj. p-

value effect size 

repre-
sentational 
accuracy 

 condition  yes F(1, 100) = 23.97 p < .01 partial η² = . 
11 

 test time  yes F(1, 100) = 4.99 p < .05 partial η² = 
.01 

 condition * 
test time  yes F(1, 100) = 7.32 p < .01 partial η² = 

.05 
immediate 

posttest  int- types > 
int-reps yes t(100) = 2.34 p < .05 d = .37 

delayed 
posttest  int- types > 

int-reps yes t(100) = 5.55 p < .01 d = .88 

repre-
sentational 
efficiency 

 condition  yes F(1, 100) = 18.28 p < .01 partial η² = . 
07 

 test time  yes F(1, 100) = 4.94 p < .05 partial η² = 
.02 

 condition * 
test time  yes F(1, 100) = 7.46 p < .01 partial η² = 

.03 
immediate 

posttest  int- types > 
int-reps yes t(100) = 2.03 p < .05 d = .09 

delayed 
posttest  int- types > 

int-reps yes t(100) = 4.74 p < .01 d = .21 

Table 6. Experiment 2: Results on differences between conditions on representational accuracy and representational efficiency. 

To investigate the effect of practice schedules on accuracy of representational knowledge, I ap-

plied the HLM in equation 2 to students’ accuracy scores on the representational knowledge 
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subscale of the test. Table 6 provides an overview of the learning results on both the representa-

tional accuracy and representational efficiency measures. Table 7 summarizes the least squared 

means and standard deviations generated by the HLM for representational accuracy and repre-

sentational efficiency. There was a significant main effect for condition on representational accu-

racy, F(1, 100) = 18.28, p < .01, partial η² = .07. There was also a significant main effect of test 

time (i.e., immediate posttest and delayed posttest), F(1, 100) = 7.46, p < .05, partial η² = .02. 

The main effects were qualified by a significant interaction between test time (i.e., immediate or 

delayed posttest) and condition, F(1, 100) = 4.94, p < .01, partial η² < .03. To gain insights into 

the nature of this interaction, I computed posthoc comparisons for the effect of condition at the 

immediate posttest and the delayed posttest, respectively. On representational accuracy, there 

was an advantage for int-types over int-reps on the immediate posttest, t(100) = 2.03, p < .05, d = 

.09, and the delayed posttest, t(100) = 4.74, p < .01, d = .21. Taken together, these results show 

that the int-types condition outperforms the int-reps condition on accuracy of representational 

knowledge. 

  immediate posttest delayed posttest 
representational 
accuracy 

int-types .58 (.05) .57 (.05) 
int-reps .50 (.05) .36 (.05) 

representational 
efficiency 

int- types .41 (.22) .45 (.22) 
int-reps .03 (.22) -.43 (.22) 

Table 7. Experiment 2: Least squared means and standard deviations (in parentheses) for representational accuracy and represen-
tational efficiency at immediate posttest, delayed posttest by condition. 

To investigate the effect of practice schedules on efficiency of representational knowledge, I 

applied the HLM in equation 2 to students’ efficiency scores on the representational knowledge 

subscale of the test. I found a significant main effect for condition on representational efficiency, 

F(1, 100) = 23.97, p < .01, partial η² = .11. There was also a significant main effect of test time, 

F(1, 100) = 4.99, p < .05, partial η² = .01. The main effects were qualified by a significant inte-

raction between test time (i.e., immediate or delayed posttest) and condition, F(1, 100) = 7.32, p 

< .01, partial η² = .05, such that the difference between conditions was stronger on the delayed 

posttest than at the immediate posttest. Posthoc comparisons between groups were computed to 

clarify the interaction effect at the immediate posttest and the delayed posttest, respectively. On 

representational efficiency, there was an advantage for int-types over int-reps on the immediate 

posttest, t(100) = 2.34, p < .05, d = .37, and the delayed posttest, t(100) = 5.55, p < .01, d = .88. 
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These findings show that the int-types condition outperforms the int-reps condition on efficiency 

of representational knowledge. 

test scale test time 
main effects / 
interaction 

effects 

tendency of 
pairwise 

comparisons 

significant 
(yes/no) F/t-value adj. p-

value effect size 

operational 
accuracy 

 condition  no F(1,100) = 2.05 p > .10  

 test time  yes F(1,100) = 3.04 p < .10 partial η² 
< .01 

 condition * test 
time  no F(1,100) = 1.36 p > .10  

immediate 
posttest  int- types > 

int-reps no t < 1   

delayed 
posttest  int- types > 

int-reps no t < 1   

operational 
efficiency 

 condition  no F < 1   
 test time  no F < 1   

 condition * test 
time  no F < 1   

immediate 
posttest  int- types > 

int-reps no t < 1   

delayed 
posttest  int- types > 

int-reps no t < 1   

Table 8. Experiment 2: Results on differences between conditions, obtained from HLM described in equation 2. 

  immediate posttest delayed posttest 
operational accura-

cy 
int-types .51 (.04) .43 (.04) 
int-reps .41 (.04) .39 (.04) 

operational effi-
ciency 

int- types .25 (.11) .18 (.11) 
int-reps .17 (.10) .23 (.10) 

Table 9. Experiment 2: Least squared means and standard deviations (in parentheses) for operational accuracy and operational 
efficiency at immediate posttest, delayed posttest by condition. 

To investigate the effects of practice schedules on operational knowledge, I applied the HLM 

in equation 2 to students’ accuracy and efficiency scores on the operational knowledge subscale 

of the test. Table 8 provides an overview of the learning results on both the operational accuracy 

and operational efficiency measures. Table 9 summarizes the least squared means and standard 

deviations generated by the HLM for operational accuracy and operational efficiency. On opera-

tional accuracy, I found no significant main effect of condition, F(1,100) = 2.05, p > .10. The 

effect of test time was marginally significant for operational accuracy, F(1,100) = 3.04, p < .10, 

partial η² < .01. There was no significant interaction effect for operational accuracy, F(1,100) = 
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1.36, p > .10. These results show that the int-types condition does not outperform the int-reps 

condition on accuracy of operational knowledge. 

To investigate the effect of practice schedules on efficiency of operational knowledge, I ap-

plied the HLM in equation 2 to students’ efficiency scores on the operational knowledge subs-

cale of the test. On operational efficiency, there was no significant main effect of condition, F < 

1. The effect of test time was not significant for operational efficiency, F < 1. There was no sig-

nificant interaction effect for operational efficiency, F < 1. Taken together, these findings show 

that the int-types condition does not outperform the int-reps condition on efficiency of operation-

al knowledge. 

Please also refer to Rau, Aleven, and colleagues (2013b) for the results from Experiment 2. 

4.2.4 Discussion 
As hypothesized, the results show that interleaving task types while blocking graphical represen-

tations leads to both higher accuracy and higher efficiency in answering questions that require 

representational knowledge, compared to interleaving graphical representations while blocking 

task types. Thus, overall, the results provide support for the notion that interleaving task types 

leads to more robust representational knowledge than interleaving graphical representations. On 

the other hand, the practice schedule of task types and graphical representations did not signifi-

cantly affect students’ robust learning of operational knowledge. 

How might one explain the differences between conditions on representational knowledge? I 

argued that interleaving learning tasks along the dimension of greatest variability is most effec-

tive, and task types are the more variable dimension (compared to graphical representations) be-

cause the differences among task types are more salient than the differences between graphical 

representations. Although different graphical representations emphasize conceptual different as-

pects of fractions, students might not readily perceive these dissimilarities because the represen-

tations are designed to be intuitive and easy to interpret. Therefore, it might be difficult for no-

vice students to discern the conceptual differences between the different graphical representa-

tions. Greater problem variability may also increase the number of opportunities for abstraction. 

If tasks are very similar, it may be difficult for students to abstract across them. It is possible that 

the subtle differences between graphical representations makes it difficult for students to abstract 

across them. Instead, interleaving task types may encourage students to abstract across different 
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applications of the same graphical representations, which appears to lead to a most robust con-

ceptual understanding of graphical representations than abstracting across different graphical re-

presentation. Applying the same representation to different subsequent task types may allow stu-

dents to form an abstract understanding of the given representation independent of its application 

to a specific task type. Consequently, interleaving task types may have a larger impact on acquir-

ing representational knowledge than interleaving representations. Taken together, Experiment 2 

suggests that reactivation and abstraction across task types is more beneficial to students’ con-

ceptual understanding of graphical representations than abstracting across representations. Note 

that these two suggested mechanisms are not mutually exclusive, and both might account for the 

advantage of interleaving task types. Yet, Experiment 2 did not assess whether these mechanisms 

occur. Collecting think-aloud protocols while students work with the Fractions Tutor might shed 

light into the question of whether interleaving task types (compared to interleaving graphical re-

presentations) differ in the degree to which they enhance reactivation and abstraction processes. 

The fact that interleaving task types versus interleaving graphical representations affects only 

representational knowledge but not operational knowledge may reflect differences in these 

knowledge types. The representational knowledge scale requires primarily conceptual knowledge 

about how to interpret representations, and the ability to apply this knowledge to new representa-

tions of the same underlying domain concepts. The operational knowledge scale assesses stu-

dents’ ability to apply procedures to solve fractions problems, and to transfer these procedures by 

adapting them to novel problems (including problems without representations). The results from 

Experiment 2 appear to indicate that practice schedules have a greater impact on conceptual un-

derstanding of graphical representations than on operational knowledge. Some other studies have 

failed to find effects of practice schedules altogether (e.g., French, Rink, & Werner, 1990; Jones 

& French, 2007). They argued that the effect of practice schedules depends on the complexity of 

the learning tasks because the complexity of the task impacts the processing demands (Shea & 

Morgan, 1979; Wulf & Shea, 2002). Although these studies have been conducted in a radically 

different domain, their argument may apply to Experiment 2 as well and may help to explain the 

lack of differences between conditions on operational knowledge. For instance, Wulf and Shea 

(2002) suggest that the higher the complexity of the learning tasks (which increases processing 

demands compared to low-complexity tasks), the less students will benefit from interleaved prac-
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tice (which corresponds to a further increase of the processing demands). In Experiment 2, it 

may be that the operational knowledge covered by the tutor was more complex than the repre-

sentational knowledge. Fractions operations, when carried out with graphical representations, 

may rely on an at least basic understanding of how the graphical representations depict fractions, 

in addition to knowledge about fractions operations. In other words, the operational knowledge 

may have required some representational knowledge, whereas the representational knowledge 

covered by the Fractions Tutor may not have required operational knowledge. It is therefore 

possible that the operational knowledge acquisition as supported by the Fractions Tutor was, due 

to its higher complexity, accompanied by relatively high processing demands. Interleaving task 

types may have further increased the processing demands, so that students’ benefit from inter-

leaving task types decreased.  

With respect to the theoretical framework (see section 2.2), interleaving of task types might 

most likely be characterized as supporting representational sense-making processes. As argued, 

interleaving task types (and blocking of graphical representations) allows students to abstract 

across different applications of the same graphical representation to a number of different task 

types. The fact that the results show advantages of interleaving task types on the representational 

accuracy scale, which assessed students’ conceptual understanding of graphical representations 

of fractions, including their ability to transfer this knowledge to novel graphical representations 

not included in the Fractions Tutor, supports this interpretation.  

An alternative interpretation might be that the interleaving of task types (while blocking 

graphical representations) supports representational fluency-building processes as students re-

peatedly reactivate task-specific applications of the given graphical representation. Repeated 

reactivation should increase the likelihood that students can retrieve that task-specific knowledge 

about a given graphical representation later on. The finding that the int-types condition outper-

forms the int-reps condition on the representational efficiency scale, which takes into account not 

only the accuracy but also the speed with which students can apply their understanding of graph-

ical representations to solve fractions tasks, supports this interpretation. Note that it is possible 

that interleaving task types enhances both representational sense-making processes and represen-

tational fluency-building processes, so these two interpretations may not be mutually exclusive. 
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One limitation with respect to these interpretations of the results in terms of the theoretical 

framework is that representational understanding, representational fluency, and conceptual 

knowledge of fractions were not assessed separately. To put this interpretation to a true test, one 

should empirically evaluate the following hypotheses: one would expect that the int-types condi-

tion outperforms the int-reps condition on a test of reproduction of representational understand-

ing (or representational fluency), and that this difference in representational understanding (or 

representational fluency) would explain an hypothesized advantage of the int-types condition 

over the int-reps condition on a test of conceptual knowledge of fractions that does not involve 

graphical representations. Such a study could then also distinguish which learning process ac-

counts for the advantage of interleaving task types (and blocking graphical representations): re-

presentational understanding, representational fluency, or both.  

Another limitation of Experiment 2 is that it does not allow to tease apart the effects of 

blocking versus interleaving task types independently from the effects of interleaving versus 

blocking graphical representations. In other words, it is unclear whether the advantage of the int-

types condition over the int-reps can be attributed to the fact that task types were interleaved (ra-

ther than blocked) or to the fact that graphical representations were blocked (rather than inter-

leaved).  

In spite of these open questions regarding the mechanisms underlying the results, Experiment 

2 leads to conclusions that are of both practical and theoretical importance. The results provide 

guidance for developers of learning materials that include multiple graphical representations that 

are used across a variety of task types. Based on the findings of Experiment 2, I recommend that 

they interleave task types and block representations in order to promote conceptual understand-

ing of graphical representations. Furthermore, Experiment 2 extends prior research on inter-

leaved practice by showing that the dimension on which learning tasks are interleaved matters: 

interleaving task types benefits the acquisition of robust conceptual knowledge about representa-

tions more than interleaving of graphical representations does. This finding extends the literature 

on learning with multiple representations by demonstrating that the temporal sequence of mul-

tiple representations has an effect on students’ robust learning. Whether the interpretation that 

interleaving learning tasks along the dimension with greatest variability holds as a general prin-

ciple, remains to be confirmed by future research.  
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4.3 Experiment 3: Interleaving graphical representations  

Experiment 2 contrasts the effects of interleaving task types (while blocking graphical represen-

tations) and interleaving graphical representations (while blocking task types). The results from 

Experiment 2 show that interleaving task types has a larger effect on students’ robust learning of 

conceptual knowledge of fraction representations than interleaving graphical representations. 

However, it remains an open question whether interleaving graphical representations (compared 

to blocking graphical representations) while using a constant practice schedule across conditions 

can further enhance students’ robust learning of fractions. Experiment 3 investigates this ques-

tion by contrasting different practice schedules of graphical representations, while constantly us-

ing a moderately interleaved schedule for task types. 

In this section, I first describe results with respect to students’ learning outcomes. I then de-

scribe additional findings obtained from a small-scale think-aloud study and from the analysis of 

tutor log data. I discuss the practical and theoretical implications from this experiment with re-

gard to the practice schedules and multiple representations literature as well as a possible inter-

pretation of the results in the light of my theoretical framework for learning with multiple graph-

ical representations.  

4.3.1 Classroom experiment: effects of practice schedules on learning outcomes 
When designing instruction that uses multiple graphical representations, curriculum designers 

must decide how to temporally sequence the different graphical representations. How frequently 

should the curriculum alternate between graphical representations? Practice schedules are likely 

to have an impact on students’ understanding of individual representations and on their under-

standing of connections between different representations and, consequently, how well they learn 

the underlying mathematical concepts. In particular, it may matter whether the different repre-

sentations are practiced in a “blocked” manner (e.g., circle – circle – circle – number line – num-

ber line – number line) or are interleaved with practice of other representations (e.g., circle – 

number line – circle – number line – circle – number line). As argued in Experiment 2, inter-

leaved practice schedules provide frequent opportunities to reactivate knowledge that differs be-

tween subsequent learning tasks, and to abstract across these learning tasks. Interleaved practice 

with graphical reprsentations may allow students to reactivate knowledge specific to the given 
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graphical representation, thereby strengthening that knowledge. Furthermore, by providing fre-

quent opportunities for students to compare different graphical representations to one another 

(every time the student switches from one representation to the other), interleaving graphical re-

presentations might allow students to make connections between different representations. Re-

search in a variety of domains shows that interleaved practice schedules lead to better long-term 

retention and transfer than blocked practice (Battig, 1972; de Croock et al., 1998; Helsdingen et 

al., 2011; Pashler et al., 2007; Rohrer & Taylor, 2007; Schmidt & Bjork, 1992; Schneider, 1985; 

Simon & Bjork, 2001; van Merriënboer et al., 2002). A limitation of this research is that it has 

exclusively focused on practice schedules of different task types. Whether or not the finding that 

interleaved practice schedules lead to better learning generalizes to practice schedules of multiple 

graphical representations is an open question. Yet, as mentioned, whether to present multiple 

graphical representations in a blocked or interleaved manner is an important design decision that 

developers face in virtually any STEM domain. 

4.3.1.1. Research questions and hypotheses 

Experiment 3 addresses the question: does interleaving graphical representations (in addition to 

moderately interleaving task types) enhance students’ robust learning of fractions? 

Specifically, Experiment 3 investigates the following hypotheses: 

Hypothesis 1: Interleaved practice schedules of multiple graphical representations (while also 

moderately interleaving task types) enhance students’ learning of robust knowledge of fractions. 

Hypothesis 2: Multiple graphical representations, when provided in an interleaved fashion 

(while also moderately interleaving task types), lead to better learning than a single graphical 

representation. 

4.3.1.2. Methods 

To investigate these hypotheses, I conducted a classroom experiment that contrasted the effects 

of different practice schedules of multiple graphical representations on students’ robust learning 

of fractions, while moderately interleaving task types (constantly across all conditions). 
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Experimental design 

 
Fig. 22. Experiment 3: Practice schedules for the multiple graphical representations conditions. In all conditions, six task types 

were presented three times. Numbers 1-6 indicate task types, shapes depict representations. 

In all conditions, students worked through the same sequence of task types and fraction prob-

lems, and switched task types after every six of a total of 108 problems. Each task type was vi-

sited three times. A moderately interleaved schedule for task types was chosen so as to prevent 

the possible scenario that subsequent learning tasks are too dissimilar, which (as argued in Expe-

riment 2), might hamper students’ ability to abstract common knowledge across learning tasks. I 

randomly assigned students to one of five conditions. In the blocked condition, students switched 

graphical representations after 36 problems. In the moderate condition, students switched repre-

sentations after every six problems. In the fully interleaved condition, students switched repre-

sentations after each problem. In the increased condition, the length of the blocks was gradually 

reduced from twelve problems at the beginning to a single problem at the end. To account for 

possible effects of the order of graphical representations, I randomized several plausible orders in 
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which students encountered the graphical representations (i.e., students never received the num-

ber line first, since the number line is the hardest graphical representation, possible orders of re-

presentations were circle – rectangle – number line, circle – number line – rectangle, rectangle – 

circle – number line, rectangle – number line – circle). Finally, students in the single graphical 

representation conditions were randomly assigned to work on all tutor problems with only the 

circle, the rectangle, or the number line, respectively. 

Participants 

Experiment 3 was conducted with 587 4th- and 5th-grade students from six schools (31 classes). I 

excluded students who missed at least one test day, and who completed less than 67% of all tutor 

problems (students in the blocked condition switched representations after problem 36, and 72 

out of 108). I had to apply this stringent criterion to ensure that students in the blocked condition 

encountered all three graphical representations (see Fig. 22). This results in a total of N = 290 (n 

= 63 in blocked, n = 53 in moderately interleaved, n = 52 in fully interleaved, n = 62 in increa-

singly interleaved, n = 60 in the single-representation conditions [n = 21 in single-circle, n = 20 

in single-rectangle, n = 19 in single-number-line]). Table 10 shows the number of included and 

excluded students per condition.  
 included excluded 

blocked 63 58 
moderately interleaved 53 60 

fully interleaved 52 64 
increasingly interleaved 62 62 

single-circle 21 17 
single-rectangle 20 16 

single-number-line 19 20 
Table 10. Experiment 3: Number of students included and excluded by condition. 

Procedure 

Experiment 3 took place at the end of the school year 2009/20010. Students’ regular math teach-

ers led the sessions, but researchers were present in the classrooms at all times to assist teachers 

in answering questions specific to the use of the Fractions Tutor.  

Prior to working with the Fractions Tutor, students completed a pretest. The pretest took 

about 30 minutes. On the following day, all students started working with the Fractions Tutor 

(with the version of the Fractions Tutor depicted in Fig. 10, see section 3.3.3.3, on topics 1-5 in 

Table 1, see section 3.4). Students accessed the tutoring system from the computer lab at their 
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schools and worked on the Fractions Tutor for about five hours as part of their regular math in-

struction for five to six consecutive school days (depending on the length of the respective 

school’s class periods). All students worked on the Fractions Tutor at their own pace, but the 

time students spent with the system was held constant across classrooms and across experimental 

conditions. On the day following the tutoring sessions, students completed the immediate post-

test, which took about 30 minutes. Seven days after the posttest, students completed an equiva-

lent delayed posttest. 

Test instruments 

I assessed students’ knowledge of fractions at three test times using three equivalent test forms. I 

randomized the order in which they were administered. The tests included four knowledge types: 

reproduction with area models (i.e., circles and rectangles), reproduction with number lines, con-

ceptual transfer and procedural transfer. The area model items and number line items covered 

identifying fractions given a graphical representation, making a graphical representation given a 

symbolic fraction, and recreating the unit given a graphical representation of both unit fractions 

and proper fractions, as covered by the Fractions Tutor. Conceptual transfer items included pro-

portional reasoning questions with and without graphical representations. Procedural transfer 

items included comparison questions with and without graphical representations. The changes 

made to the tests with respect to the tests used in Experiment 2 reflect the changes made to the 

Fractions Tutor, since each experiment was part of the iterative tutor development process de-

scribed in section 3.3. Specifically, the reproduction with area models and reproduction with 

number line scales correspond to the reproduction items in the representational knowledge and 

operational knowledge scales of the test used in Experiment 2, while aligning with the revised 

version of the Fractions Tutor. The conceptual transfer scale of the test corresponds to the trans-

fer items that were included in the representational knowledge scale of the test used in Experi-

ment 2, again reflecting changes made to the Fractions Tutor between the two experiments. The 

procedural transfer scale corresponds to the transfer items that were part of the operational know-

ledge scale of the test used in Experiment 2, again while being adapted to reflect changes made 

to the Fractions Tutor. The theoretical structure of the test (i.e., the four knowledge types just 

mentioned) resulted from a factor analysis performed on the pretest data. Test items including 



4 Classroom Experiments and Lab Studies 
 

97 
 
 

the number line seemed to be more challenging for students than area models. Examples of the 

test items for each of the four knowledge types can be found in Appendix 6. 

4.3.1.3. Results 

As mentioned, I analyzed the data of N = 290 students. There was no significant difference be-

tween conditions with respect to the number of students excluded (χ² < 1). There were no signifi-

cant differences between conditions at pretest for any dependent measure, ps > .10. There was no 

significant effect for order of multiple graphical representations for any dependent measure, F(5, 

285) = 1.56, ps > .10.  

I used an HLM (see Raudenbush & Bryk, 2002) with four nested levels to analyze the data. 

At level 1, I modeled performance on each of the tests for each student. At level 2, I accounted 

for differences between students. Level 3 models random differences between classes, and level 

4 random differences between schools. The HLM is the outcome of a forwards-inclusion proce-

dure in which I used the BIC to find whether the inclusion of a variable increased model fit. If 

the BIC decreased as a consequence of including a variable (indicating better model fit), I kept 

the variable. If the BIC did not decrease, I did not include the variable. I tested a number of va-

riables, including teacher, sequence of graphical representations, test form sequence, grade level, 

number of problems completed, total time spent with the tutor, random intercepts and slows for 

classes and schools. Equation 3 shows the resulting HLM:  

Yijkl = (((μ + Wl) + Vkl) + β3 * cj + β4 * pj + β5 * cj * pj + Ujkl) + β1 * ti + β2 * cj * ti + Rijkl (3) 

with  

(level 1) Yijkl = εjkl + β1 * ti + β2 * cj * ti + Rijkl   

(level 2) εjkl = δkl + β3 * cj + β4 * pj + β5 * cj * pj + Ujkl  

(level 3) δkl = γl + Vkl  

(level 4) γl = μ + Wl  

with the index i standing for test time (i.e., immediate and delayed posttest), j for the student, 

k for class, and l for the school. The dependent variable Yijkl is studenti’s score on the dependent 

measures at test time ti (i.e., immediate or delayed posttest), εjkl is the parameter for the intercept 

for studentj’s score, β1 is the parameter for the effect of test time ti, β2 is the effect of the interac-

tion of condition cj with test time ti, β3 is the parameter for the effect of condition cj, β4 is the pa-

rameter for the effect of studentj’s performance on the pretest pj, β5 is the parameter for an apti-
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tude-treatment interaction between condition cj and studentj’s performance on pretest pj, δkl is the 

parameter for the random intercept for classk, γl is the parameter for the random intercept for 

schooll, and μ is the overall average. 

Since the HLM described in (3) uses students’ pretest scores as a covariate, it does not allow 

us to analyze whether students in the various conditions improved from pretest to immediate and 

delayed posttest. To analyze learning gains, I excluded pretest score in the dependent variable, as 

well as an interaction of pretest with condition, yielding: 

Yijkl = (((μ + Wl) + Vkl) + β3 * cj + Ujkl) + β1 * ti + β2 * cj * ti + Rijkl (4) 

with  

(level 1) Yijkl = εjkl + β1 * ti + β2 * cj * ti + Rijkl   

(level 2) εjkl = δkl + β3 * cj + Ujkl  

(level 3) δkl = γl + Vkl  

(level 4) γl = μ + Wl  

with the index i standing for test time (i.e., pretest, immediate, and delayed posttest). The de-

pendent variable Yijkl is studentj’s score on the dependent measures at test time ti (i.e., pretest, 

immediate posttest, or delayed posttest). Excluded were the parameters β4 for the effect of stu-

dentj’s performance on the pretest pj, and the parameter β5 is for an aptitude-treatment interaction 

between condition cj and studentj’s performance on pretest pj. 

I used planned contrasts and posthoc comparisons, all of which were computed as part of the 

HLM to clarify results from the HLM analysis. All reported p-values were adjusted using the 

Bonferroni correction for multiple comparisons. 

Effects of practice schedules on students’ learning 

Table 11 shows the means and standard deviations for the dependent measures by condition and 

test time.  

To investigate hypothesis 1 (that interleaved practice schedules enhance students’ learning of 

robust knowledge of fractions), I computed the HLM presented in formula (3) for only the mul-

tiple graphical representations conditions. There was no significant main effect of condition on 

any knowledge type, indicating that there was no global effect of practice schedules of multiple 

graphical representations across immediate and delayed posttests. An interaction between test 

time and condition was marginally significant for reproduction with area models, F(3, 867) = 
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2.57, p < .10, η² = .01, so that the effect of condition was stronger on the immediate posttest than 

on the delayed posttest, indicating that the effect of practice schedules depends on test time. The 

interaction between pretest score and condition was marginally significant for conceptual trans-

fer, F(3, 219) = 2.52, p < .10, η² = .02, demonstrating that students with different pretest scores 

benefit from different practice schedules. 

  Reproduction with 
area models 

Reproduction 
with number lines 

Conceptual 
transfer 

Procedural 
transfer 

Pretest 

Blocked .56 (.26) .45 (.28) .60 (.30) .51 (.34) 
Moderately interleaved .64 (.25) .50 (.27) .70 (.27) .51 (.31) 

Fully interleaved .59 (.31) .46 (.25) .71 (.22) .60 (.36) 
Increasingly interleaved .64 (.25) .48 (.26) .69 (.25) .55 (.36) 

Single-circle .58 (.37) .47 (.29) .59 (.28) .49 (.31) 
Single-rectangle .55 (.31) .52 (.26) .67 (.28) .50 (.37) 

Single-number-line .65 (.26) .44 (.26) .69 (.25) .41 (.32) 

Immediate 
posttest 

Blocked .62 (.25) .51 (.31) .72 (.30) .52 (.37) 
Moderately interleaved .64 (.26) .54 (.25) .77 (.24) .55 (.36) 

Fully interleaved .71 (.24) .58 (.25) .78 (.23) .60 (.34) 
Increasingly interleaved .73 (.22) .58 (.26) .75 (.27) .53 (.37) 

Single-circle .61 (.28) .50 (.32) .70 (.30) .55 (.36) 
Single-rectangle .67 (.25) .53 (.32) .77 (.27) .48 (.40) 

Single-number-line .67 (.27) .57 (.28) .70 (.32) .40 (.36) 

Delayed 
posttest 

Blocked .69 (.25) .57 (.30) .71 (.31) .60 (.37) 
Moderately interleaved .71 (.20) .62 (.25) .78 (.26) .65 (.32) 

Fully interleaved .69 (.25) .64 (.25) .83 (.19) .56 (.37) 
Increasingly interleaved .77 (.20) .60 (.28) .77 (.25) .55 (.32) 

Single-circle .72 (.29) .57 (.31) .74 (.26) .63 (.36) 
Single-rectangle .65 (.27) .52 (.32) .73 (.36) .54 (.33) 

Single-number-line .61 (.30) .50 (.30) .75 (.29) .40 (.30) 
Table 11. Experiment 3: Means and standard deviations (in parentheses) for dependent measures at pretest, immediate posttest, 

delayed posttest by condition. 

To clarify the interaction between test time and condition, I used posthoc contrasts separately 

for the immediate and the delayed posttest. To limit the number of comparisons, I only compared 

the most successful multiple graphical representations condition (determined separately for each 

measure) against the remaining three multiple graphical representations conditions taken togeth-

er, as summarized in Table 12: for reproduction with area models, the increasingly interleaved 

condition was the most successful one. For both reproduction with number lines and conceptual 

transfer, the fully interleaved condition was the best, and for procedural transfer, the moderately 

interleaved condition was the best. I found some support for a benefit of interleaving multiple 

graphical representations: the fully interleaved condition significantly outperformed the not-

fully-interleaved conditions (i.e., blocked, moderately interleaved, and increasingly interleaved) 
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on conceptual transfer at the delayed posttest. Furthermore, I found a marginally significant ad-

vantage for the increasingly interleaved condition over the not-increasingly-interleaved condi-

tions (i.e., blocked, moderately interleaved, and fully interleaved) on reproduction with area 

models at the immediate and the delayed posttests. 
Effect Test Reproduction 

with area 
models 

Reproduc-
tion with 

number lines 

Conceptual 
transfer 

Procedural 
transfer 

fully interleaved > blocked, moderately 
interleaved, increasingly interleaved 

post - ns ns - 
delayed - ns p < .05, d = .33 - 

increasingly interleaved > blocked, mod-
erately interleaved, fully interleaved 

post p < .10, d = .30 - - - 
delayed p < .10, d = .30 - - - 

moderately interleaved > blocked, fully 
interleaved, increasingly interleaved 

post - - - ns 
delayed - - - ns 

Table 12. Experiment 3: Results from posthoc comparisons on differences between multiple representations conditions at imme-
diate posttest (post) and delayed posttest (delayed) by type of knowledge. “ns” indicates non-significant differences. “-” indicates 

that no posthoc comparisons were computed. 

To clarify the interaction between pretest score and condition on conceptual transfer, I com-

puted posthoc comparisons for students with extremely low or high pretest scores. For students 

with a low pretest score of 15%, 20%, and 25%, I found a significant advantage for the fully in-

terleaved over the blocked condition (ps < .05). I found no differences between conditions for the 

high prior knowledge students. 

Effects of practice schedules on students’ benefit from multiple graphical representations 

To investigate hypothesis 2 (that multiple graphical representations, when provided in an inter-

leaved fashion, lead to better learning than a single graphical representation), I applied the HLM 

described in formula (3) for the fully interleaved condition and the single-representation control 

conditions. The fully interleaved condition was selected for this analysis because it was the most 

successful condition for two of four measures (see Table 11), especially for students with low 

prior knowledge. I then computed planned contrasts that compared the fully interleaved condi-

tion to the single graphical representation conditions for each knowledge type at the immediate 

posttest and at the delayed posttest. I found a significant advantage for the interleaved condition 

over the single-representation conditions on reproduction with number lines at the immediate 

posttest, t(445) = 2.09, p < .05, d = .09, on reproduction with number lines at the delayed post-

test, t(445) = 2.66, p < .01, d = .12, and on transfer of conceptual knowledge at the delayed post-

test, t(445) = 2.27, p < .05, d = .10. 
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Condition Effect Reproduction 
with area mod-

els 

Reproduction 
with number 

lines 

Conceptual 
transfer 

Procedural 
transfer 

blocked post > pre ns ns p < .05, d = .42 ns 
delayed > pre p < .05, d = .52 p < .01, d = .39 p < .05, d = .39 ns 

moderately in-
terleaved 

post > pre ns ns p < .05, d = .29 ns 
delayed > pre ns p < .01, d = .50 p < .05, d = .30 p < .05, d = .45 

fully interleaved post > pre p < .05, d = .45 p < .01, d = .51 p < .01, d = .34 ns 
delayed > pre p < .05, d = .38 p < .01, d = .75 p < .01, d = .60 ns 

increasingly 
interleaved 

post > pre p < .05, d = .38 p < .01, d = .43 ns ns 
delayed > pre p < .05, d = .55 p < .01, d = .46 ns ns 

single-circle post > pre ns ns ns ns 
delayed > pre ns ns ns ns 

single-rectangle post > pre ns ns ns ns 
delayed > pre ns ns ns ns 

single-number-
line 

post > pre ns ns ns ns 
delayed > pre ns ns ns ns 

Table 13. Experiment 3: Results on test scores at immediate posttest (post) over pretest (pre) and delayed posttest (delayed) over 
pretest by knowledge types and conditions. “ns” indicates non-significant differences. 

To further investigate whether students’ learning gains differ between conditions, I analyzed 

learning gains using the HLM described in formula (4). The main effect of test time was signifi-

cant for reproduction with number lines, F(2, 867) = 20.09, p < .01, partial η² = .03, for repro-

duction with area models, F(2, 867) = 17.54, p < .01, η² = .02, conceptual transfer, F(2, 867) = 

38.78, p < .01, partial η² = .03, and marginally significant for procedural transfer, F(2, 867) = 

2.84, p < .10, partial η² = .01. The interaction between test time and condition was significant for 

reproduction with area models F(12, 862) = 2.06, p < .05, partial η² = .01. These results show 

that students (regardless of condition) benefited from working with the Fractions Tutor on repro-

duction with number lines, reproduction with area models, procedural and conceptual transfer, 

albeit with small effect sizes. On reproduction with area models, students’ learning gains de-

pended on the condition.  

To further clarify these results, I computed posthoc comparisons that contrasted students’ 

scores at the immediate posttest and the delayed posttest, compared to the pretest. Table 13 pro-

vides a summary of these posthoc comparisons. Generally, I found significant learning gains at 

the delayed posttest for most of the multiple graphical representations conditions on reproduction 

with area models, reproduction with number lines, and conceptual transfer. On procedural trans-

fer, only the moderate condition showed significant learning gains at the delayed posttest. Final-

ly, I found no significant learning gains for the single graphical representation conditions. 

Please also refer to Rau, Rummel, and colleagues (2012) for the results from Experiment 3. 
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4.3.1.4. Summary 

The results provide limited support for hypothesis 1, that interleaving graphical representations 

(while also moderately interleaving task types) enhances students’ learning of robust knowledge 

of fractions. The blocked condition never outperformed any of the interleaved conditions. Fur-

thermore, there was an advantage of the fully interleaved condition compared to the blocked, the 

moderately interleaved, and the increasingly interleaved conditions on conceptual transfer at the 

delayed posttest, especially for low prior knowledge students. There was also a marginally sig-

nificant advantage for the increasingly interleaved condition over the blocked, moderately inter-

leaved, and fully interleaved conditions on reproduction with the number line at the immediate 

and the delayed posttests. Although a comparison of all multiple graphical representations condi-

tions and the single graphical representation condition was not significant for the majority of de-

pendent measures, the fully interleaved condition significantly outperformed the single-

representation control condition on reproduction with the number line, conceptual transfer, and 

marginally on procedural transfer. The lack of differences on transfer of procedural knowledge 

may reflect the fact that the Fractions Tutor focuses on conceptual learning of fractions more so 

than on procedural learning.  

Furthermore, the results provide some support for hypothesis 2, that students who work with 

interleaved practice schedules of multiple graphical representations outperform students who 

work with only a single graphical representation. Both on reproduction with number lines and on 

transfer of conceptual knowledge, the fully interleaved condition significantly outperformed the 

single-representation control group.  

The analysis of students’ learning gains provides additional support for hypothesis 2. There 

were significant overall learning gains only for students who worked with multiple graphical re-

presentations. Students performed significantly better on all knowledge types, although the learn-

ing gains on transfer of procedural knowledge were only marginally significant. These gains per-

sisted until one week after the study when students completed the delayed posttest. The fact that 

students’ performance on procedural transfer did not improve to the same degree as on the other 

knowledge types may again reflect the Fractions Tutor’s focus on conceptual learning over pro-

cedural learning. At the same time, students who worked with only a single graphical representa-

tion did not demonstrate significant learning gains. This finding demonstrates the importance of 
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providing students with a variety of graphical representations, each of which emphasize a partic-

ular conceptual view on fractions, to promote their learning. Experiment 3 replicates the finding 

from Experiment 1: multiple graphical representations can enhance students’ robust learning of 

fractions. While the single-representation condition in Experiment 1 used only number lines, Ex-

periment 3 extends this finding by showing that the advantage of multiple graphical representa-

tions holds also when compared to learning with only a circle, or only a rectangle representation.  

In conclusion, the results from Experiment 3 provide some support for the notion that mul-

tiple graphical representations should be provided in an interleaved fashion (in addition to mod-

erately interleaving task types). These results extend the findings from Experiment 2, that inter-

leaving task types (while blocking graphical representations) enhances students’ acquisition of 

robust conceptual knowledge of fraction representations. Although Experiments 2 and 3 are not 

directly comparable, Experiment 3 suggests that the advantage of the int-types condition over the 

int-reps condition in Experiment 2 was not due to blocking graphical representations, but due to 

interleaving task types. Taken together, Experiment 3 extends prior research on practice sche-

dules of task types by showing that practice schedules of graphical representations have an im-

pact on students’ learning. 

In conclusion, the findings from Experiment 3 provide (albeit limited) support for the notion 

that instructional materials should provide interleaved practice with multiple graphical represen-

tations, if the goal is to promote the acquisition of robust conceptual knowledge that can transfer 

to novel tasks. 

4.3.2 Think-aloud study to investigate learning processes 
What might be the mechanisms by which interleaving graphical representations lead to more ro-

bust learning of domain knowledge? As discussed in Experiment 2, one possible mechanism is 

repeated reactivation of learning content. When working with interleaved task types, students 

have to reactivate the knowledge needed to solve each learning task more often than when work-

ing with blocked learning tasks (de Croock et al., 1998; Lee & Magill, 1983, Sweller, 1990). It is 

assumed that students store knowledge about how to solve a given task type in long-term memo-

ry. When working on a task type that requires this knowledge, students load it into working 

memory. This process of retrieving knowledge from long-term memory and loading it into work-
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ing memory strengthens the association between the task type and the knowledge, which increas-

es the likelihood that students can recall that knowledge later on (e.g., Anderson, 1993, 2002).  

Another explanation for the advantage of interleaved practice schedules over blocked prac-

tice schedules is that they help students to abstract knowledge from different task types presented 

consecutively (de Croock et al., 1998; Shea & Morgan, 1979). Abstraction occurs when students 

make connections between the knowledge required by different task; for instance, by comparing 

properties of the different tasks to one another. This process requires that knowledge from the 

previous task is still active in working memory when the knowledge required for the subsequent 

task is loaded into working memory. As students make connections between the knowledge re-

quired to solve different tasks, students may see more clearly what properties are incidental and 

which are key to solving a given task. This connection-making process allows students to 

process the features relevant to knowledge construction and allows them to abstract the know-

ledge common to consecutive tasks (Paas & van Gog, 2006; van Merriënboer et al., 2002). Stu-

dents more frequently encounter dissimilar tasks back to back in interleaved practice schedules, 

but less frequently in blocked practice schedules. 

To address this question, I conducted a small-scale think-aloud study with six students who 

worked with the fully interleaved version of the Fractions Tutor. The goal of the think-aloud 

study was to assess what kinds of spontaneous connections students make between multiple 

graphical representations across consecutive tutor problems, and whether students’ ability to 

make these connections can be enhanced by prompting them to do so.  

Six 5th-grade students participated in the think-aloud study. The think-aloud study was con-

ducted in the laboratory and included three sessions. During the first session, students took the 

same pretest that was used in the experimental study reported above. The pretest took about 30 

minutes to complete. During the second session, students worked for one hour on a subset of 

problems taken from the interleaved version of the tutoring system while being prompted to 

think aloud, following the procedure described in Ericsson and Simon (1984). In the third ses-

sion, students worked with similar tutor problems for one hour while being prompted to relate 

the different graphical representations to one another. I varied the type of prompts based on a 

within-subjects design: the prompt questions were either implicit (i.e., without directly prompt-

ing comparisons between the representations; e.g. “How is this problem the same as the last two 
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you did?” or “How is this problem different from the last one you did?”), or explicit (i.e., directly 

referring to aspects that the different representations share; e.g., “What is the unit in the circle / 

rectangle / number line?” or “How are the rectangle and the circle and the number line the same / 

different?”). All students received two implicit prompts and four explicit prompts, in a fixed se-

quence. 

Students’ utterances were recorded and transcribed. I combined top-down and bottom-up ap-

proaches in developing a coding scheme: I identified types of connections that students might 

make prior to the think-aloud study, and then refined the coding scheme after viewing the tran-

scripts from the think-aloud study. Connections between graphical representations were coded as 

surface connections if they either referred to the color of the representation, the shape of the re-

presentation, or the action performed on the representation (e.g., dragging and dropping). For 

example, when asked “how is the circle like the rectangle?”, a student’s response “you have to 

drag something into a diagram of the unit” would be coded as a surface connection. Connections 

were coded as conceptual if they referred to the corresponding features of the representations 

(i.e., numerator, denominator, unit), or the magnitude represented. For instance, when asked: 

“how is the number line like the circle?” for improper fractions, a student’s answer “they both 

have one whole unit plus a fraction of another unit that’s the same” would be coded as a concep-

tual connection. 

The results from the pretest indicate that all students had a good understanding of fractions. 

During the spontaneous comparison phase of the think-aloud study, I found only five instances 

of connections. These five connections were uttered by five of the six students. All five connec-

tions were surface connections. In addition to these spontaneous connections, I found 138 in-

stances of prompted connection making. Table 14 summarizes the average number of connec-

tions coded as surface and conceptual connections for implicit and explicit prompts. Given the 

small number of students, a statistical test on the types of connections in response to implicit and 

explicit prompts is not warranted. The data in Table 14 suggest, however, that students generated 

substantially more surface connections than conceptual connections. We also see that the implicit 

prompts yielded most of the surface connections, but few of the conceptual connections. Explicit 

prompts seem to have yielded more of the conceptual connections, compared to the implicit 

prompts. 
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 Implicit prompts Explicit prompts Overall 
Surface 4.17 2.33 2.94 

Conceptual .58 1.63 1.28 
Overall 2.38 1.98  

Table 14. Experiment 3: Number of surface connections and conceptual connections by implicit and explicit prompts averaged 
across students. 

In sum, results from the think-aloud study show that students tend not to spontaneously make 

connections between multiple graphical representations: I found only five spontaneous connec-

tions, and all of them were surface connections. However, students are able to make these con-

nections when prompted to do so. In particular, explicit prompts are well-suited to enhance con-

ceptual connections.  

With regards to learning mechanisms, these findings suggest that the advantage of inter-

leaved practice reported above does not stem from spontaneous connection-making activities be-

tween multiple graphical representations. Thus, the benefit from interleaved practice with mul-

tiple graphical representations does not seem to stem from conscious abstraction across the dif-

ferent representations. Rather, interleaved practice may be attributed to requiring students to re-

peatedly reactivate knowledge about the specific graphical representations. The fact that students 

were able to make connections when prompted to do so demonstrates that the lack of spontane-

ous connection-making activities is not an artifact of the think-aloud method being an unsuitable 

metric for detecting students’ connection-making processes.  

Please also refer to Rau, Rummel, and colleagues (2012) for the results from the think-aloud 

study. 

4.3.3 Educational data mining to investigate learning processes 
Task type Blocked Moderate Interleaved Increased 

1 .85 (.08) .86 (.06) .86 (.06) .87 (.05) 
2 .88 (.07) .89 (.07) .89 (.05) .89 (.05) 
3 .91 (.05) .88 (.07) .88 (.06) .87 (.07) 
4 .87 (.06) .84 (.07) .81 (.07) .84 (.06) 
5 .83 (.10) .86 (.06) .83 (.08) .83 (.07) 
6 .88 (.10) .90 (.06) .89 (.07) .89 (.07) 

Overall .87 (.08) .87 (.07) .86 (.07) .87 (.06) 
Table 15. Experiment 3: Results on average number of correct first attempts by task type and condition (standard deviation in 

brackets). Higher numbers indicate higher performance during the acquisition phase.  

To further investigate the mechanisms underlying the advantage of the fully interleaved condi-

tion over the blocked condition, I augment the findings from the traditional analysis of pretest 

and posttest data by applying a knowledge tracing algorithm (Corbett & Anderson, 1995) to the 
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log data obtained from the Fractions Tutor. Analyzing student performance during the acquisi-

tion phase (i.e., while students learn) is particularly interesting when investigating the effects of 

practice schedules: a common finding is that interleaved practice schedules lead to better long-

term retention and to better transfer than blocked schedules, but they often lead to worse perfor-

mance during the acquisition phase (Battig, 1972; de Croock et al., 1998; Helsdingen et al., 

2011; Pashler et al., 2007; Rohrer & Taylor, 2007; Schmidt & Bjork, 1992; Schneider, 1985; Si-

mon & Bjork, 2001; van Merriënboer et al., 2002). Therefore, it is often believed that the advan-

tage of interleaved practice over blocked practice is not apparent during the acquisition phase, 

but can only be detected with long-term retention tests and transfer tests administered after the 

acquisition phase.  

Table 15 provides a summary of students’ performance on the Fractions Tutor problems dur-

ing the acquisition phase, based on the overall first-attempt correct steps students made during 

practice with the Fractions Tutor. A repeated measures ANOVA with students’ performance on 

each task type as the dependent measure and practice schedule as the independent factor showed 

that students’ performance during the acquisition phase did not significantly differ between prac-

tice schedules (F < 1). Planned contrasts between the blocked condition and each of the inter-

leaved condition did not yield significant differences in students’ performance (ts < 1). There-

fore, based on raw performance measures, I do not find evidence that interleaved practice with 

graphical representations promotes students’ learning during the acquisition phase. In the light of 

the literature on practice schedules, this lack of an advantage of the interleaved condition on cor-

rect attempts is not surprising. 

To investigate whether latent measures of learning can detect an advantage of interleaved 

over blocked practice during the acquisition phase, I used a Bayesian Network model based on 

knowledge tracing (Corbett & Anderson, 1995). Knowledge tracing uses a two state Hidden 

Markov Model assumption of learning, which uses correct and incorrect responses in students’ 

problem-solving attempts to infer the probability of a student knowing the skill underlying the 

problem-solving step at hand. I combined this model with several other extensions to knowledge 

tracing to each of the four experimental conditions of the experimental study to investigate dif-

ferences in model learning rates between the conditions in the Fractions Tutor. 
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4.3.3.1. Bayesian Knowledge Tracing models 

To this end, I evaluated four Bayesian Knowledge Tracing models based on the Fractions Tutor 

log data. Two of the models were created for the purpose of analyzing the learning rates of the 

conditions in the experiment while the other two were used as baseline models to gauge the rela-

tive predictive performance of the new models. None of the tested models included a knowledge 

component model, so each step in the tutor is treated as a knowledge component. 

 
Fig. 23. Experiment 3: Overview of the four different Bayesian Networks tested, with observed (o.) and hidden (h.) nodes. 

I employed two models that served as benchmarks for model fit and designed two novel 

models for evaluating learning differences among the experiment conditions. I compared the re-

sulting four Bayesian models all of which were based around knowledge tracing. Fig. 23 pro-

vides an overview of the different models that were compared. The Standard-Knowledge-

Tracing model and the Prior-Per-Student model correspond to the two benchmark models. The 

Standard-Knowledge-Tracing model includes only knowledge tracing without taking students’ 

prior knowledge (S) (Pardos & Heffernan, 2010), experimental condition (C), or fraction repre-

sentation (R) into account. The Prior-Per-Student model (Pardos & Heffernan, 2010) includes the 

students’ individualized prior knowledge (S). Both the Standard-Knowledge-Tracking model and 
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the Prior-Per-Student model assume that there is a probability that a student will transition from 

the unlearned to the learned knowledge state at each opportunity regardless of the particular 

problem just encountered or practice schedule of the student. 

The Condition-Analysis model and the Condition-Representation-Analysis models serve as a 

means to answer hypothesis 1 as stated for the analysis of learning outcome, that interleaved 

practice schedules of multiple graphical representations enhance students’ learning. Hence, I de-

part from the simplifying assumption of a single learning rate per skill and instead fit a separate 

learning rate for each of the four practice schedules implemented in the Fractions Tutor. To do 

so, I adapted modeling techniques from prior work, which evaluated the learning value of differ-

ent forms of tutoring in (non-experiment) log data of an intelligent tutor (Pardos et al., 2010). 

Specifically, I estimated four different learning rates per task type, each corresponding to the par-

ticular condition (i.e., blocked practice, fully interleaved, moderately interleaved, or increasingly 

interleaved) assigned to the student – as opposed to using a single learning rate per task type. The 

Condition-Analysis model includes students’ prior knowledge and models the effect of experi-

mental condition (C). Finally, the Condition-Representation-Analysis model incorporates stu-

dents’ prior knowledge (S), condition (C), and the graphical representation encountered by each 

student in each problem (R). Specifically, I hypothesized that the different learning rate estimates 

will significantly differ between experimental conditions, within each given task type (in the 

Condition-Analysis model), and between graphical representations (in the Condition-

Representation-Analysis model). 

To model different learning rates within knowledge tracing, I adapted modeling techniques 

from prior work, which evaluated the learning value of different forms of tutoring in (non-

experiment) log data of an intelligent tutoring system (Pardos et al., 2010). Different representa-

tions of fractions are expected to result in different degrees of difficulty in solving the tutor prob-

lem (Charalambous & Pitta-Pantazi, 2007). The Condition-Representation-Analysis model used 

techniques from Knowledge-Tracing-Item-Difficulty-Effect Model (Pardos & Heffernan, 2011) 

to model different guess and slips for problems depending on the representation used in the tutor 

problem. 

Since there was no knowledge component model, I determined model fit by task type. To 

evaluate predictive performance, reported below, I used a 5-fold cross-validation at the student 
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level. For the reporting of learning rates by practice schedule, all data was used to train the mod-

el. 

The parameters in all four models were fit using the Expectation Maximization algorithm 

implemented in Kevin Murphy’s Bayes Net Toolbox (Murphy, 2001). For the Condition-

Representation-Analysis Model the number of parameters fit per task was 12 (2 prior + 4 learn 

rate + 3 guess + 3 slip). Probabilities of knowledge were set to 1 if the skill was already known, 

P(Ln-1) = 1, to represent a zero chance of forgetting, an assumption made in standard knowledge 

tracing. If a student was previously (at learning opportunity n – 1) in the unlearned state, the 

probability that he/she will now (at opportunity n) have transitioned to the learned state between 

problems is: 

𝑃𝑃(𝐿𝐿𝑛𝑛−1) + �(1 − 𝑃𝑃(𝐿𝐿𝑛𝑛−1)� ∗ 𝑃𝑃(𝑇𝑇|𝐶𝐶𝑠𝑠)), (5) 

where P(Ln-1) is the probability of a student already knowing the skill, C is the condition as-

signed to a student (i.e., blocked, fully interleaved, moderately interleaved, increasingly inter-

leaved), and T is the given task type. 

4.3.3.2. Evaluation results 
Model RMSE AUC 

Condition-Representation-Analysis 
Model 

.3427 .6528 

Standard-Knowledge-Tracing Model .3445 .6181 
Condition-Analysis Model .3466 .5509 
Prior-Per-Student Model .3469 .5604 

Table 16. Experiment 3: Summary of the cross-validated prediction results of the four tested models using RMSE and AUC me-
trics. 

Task type Blocked Moderate Interleaved Increased 
1 .0061 .0061 .0080 .0072 
2 .0019 .0032 .0065 .0036 
3 .0149 .0059 .0337 .0030 
4 .0037 .0022 .0035 .0014 
5 .0108 .0220 .0124 .0130 
6 .0043 .0107 .0078 .0090 

Overall .0062 .0056 .0120 .0062 
Table 17. Experiment 3: Learning rates by task type and condition from the Condition-Representation Analysis Model. Higher 

numbers indicate higher learning rates during the acquisition phase. 

To evaluate the predictive accuracy of each of the student models mentioned above, I conducted 

a 5-fold cross-validation at the student level. Cross-validating at the student level increases con-

fidence that the resulting models and their assumptions about learning will generalize to new 
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groups of students. The metric used to evaluate the models is root mean squared error (RMSE) 

and Area Under the Curve (AUC). Lower RMSE equals better prediction accuracy. For AUC, a 

score of 0.50 represents a model that is predicting no better than chance. An AUC of 1 is a per-

fect prediction.  

As shown in Table 16, the Standard-Knowledge-Tracing model has an overall RMSE of 

.3445, the Prior-Per-Student model has an RMSE of .3469, the Condition-Analysis model has an 

RMSE of .3466, and the Condition-Representation-Analysis model has the lowest RMSE with 

.3427 as well as the best AUC. These results demonstrate that the Bayesian network that includes 

students’ prior knowledge (S), experimental condition (C), and representations used for a certain 

problem (R) provides the best model fit. 

Table 17 shows the learning rates obtained from the Condition-Representation-Analysis 

model for each condition for each of the task types that the Fractions Tutor covered. Overall, the 

learning rate estimates align with the results obtained from the learning outcome data: the inter-

leaved condition demonstrates higher learning rates overall than the other conditions. The learn-

ing rates by task type provide more specific information on the nature of the differences between 

conditions in learning rates. For all but the fourth task type (naming improper fractions), the fully 

interleaved condition demonstrates a higher learning rate than the blocked condition. To test 

whether these differences are statistically significant, I employed the binomial test used by Par-

dos et al. (2010). The advantage of the interleaved practice schedule over the blocked practice 

schedule was statistically significant for task types 1, 2 and 3 (ps < .05) and moderately signifi-

cant for task type 5 (p < .10). The interleaved condition achieved the highest overall learning 

rate, which was twice that of any other condition. Given that, to the best of my knowledge, prior 

research on practice schedules has not found evidence of an advantage of interleaved practice 

over blocked practice during the acquisition phase, and since performance, as established by the 

average number of errors made during the acquisition phase (see Table 15), did not differ be-

tween conditions, this finding is remarkable. 

Please consider Rau and Pardos (2012) for a more detailed discussion of these results. 

4.3.3.3. Summary 

The findings from the Bayesian Knowledge Tracing analysis support and augment the findings 

from the learning outcome data in several ways. First, the finding that the Condition-
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Representation-Analysis model provides a better fit to the log data than the other models (espe-

cially those that do not include a node for the effect of condition) confirms the interpretation 

from the analysis of the learning outcome data that practice schedules of multiple graphical re-

presentations matter. Furthermore, the finding that the representation used in a tutor problem is a 

useful predictor of learning is consistent with the notion that different graphical representations 

provide different conceptual views on fractions in a way that influences how students understand 

fractions (Charalambous & Pitta-Pantazi, 2007). 

Second, the learning rate estimates per condition support the hypothesis that interleaved prac-

tice schedules of multiple graphical representations of fractions lead to better learning than a 

blocked practice schedule. This finding is interesting, especially in light of the lack of statistical-

ly significant differences in students’ performance on the Fractions Tutor during the acquisition 

phase. As shown in Table 15, students’ performance on the Fractions Tutor problems, measured 

by the success rate on the first attempt on each step, does not differ between conditions. The lite-

rature on contextual interference shows that interleaved practice schedules often impair perfor-

mance during the acquisition phase (de Croock et al., 1998; Immink & Wright, 1998; Lee & 

Magill, 1983; Shea & Morgan, 1979). It is assumed that variability between consecutive prob-

lems interferes with immediate performance since students have to use a new problem-solving 

procedure each time they encounter a new task. This interference leads to higher processing de-

mands and lower performance during the acquisition phase, but results in better long-term reten-

tion and transfer performance later on (van Merriënboer et al., 2002). In light of this literature, 

one might expect that higher learning gains in the interleaved condition become apparent only in 

the posttest data, but not during the acquisition phase, because they might be “masked” by im-

paired performance due to contextual interference. Although my data does not confirm that inter-

leaved practice schedules result in lower performance, my overall findings are in line with the 

notion that performance measures are not suitable for detecting differences between practice 

schedules during the acquisition phase. Rather than investigating differences between directly 

observed behaviors, Bayesian Knowledge Tracing models “machine-learn” a latent variable, 

namely the probability that a student transitions from the unlearned state to the learned state. 

These learning rate estimates appear to be a more suitable metric to detect advantages of inter-

leaved practice even during the acquisition phase. In other words, “naïve” methods such as per-
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formance during the acquisition phase are not suitable to detect differences in students’ learning 

from different practice schedules. Bayesian Knowledge Tracing analyses allow detecting learn-

ing gains that may be too subtle to detect during the acquisition phase when relying on student 

performance only. 

4.3.4 Discussion 
Taken together, the results from the learning outcomes, the think-aloud study, and the Bayesian 

Knowledge Tracing analysis yield interesting insights that are both of theoretical and practical 

significance. The results provide some support for the hypothesis that interleaving graphical re-

presentations leads to better learning than blocking graphical representations (while moderately 

interleaving task types). The analysis of the learning outcomes shows a significant advantage of 

interleaved practice only on transfer of conceptual domain knowledge at the delayed posttest, 

and a marginally significant advantage of the increasingly interleaved condition on reproduction 

with area models. The advantage of the fully interleaved condition over the blocked condition 

was particularly true for students with low prior knowledge. Taken together, the results from the 

learning outcomes provides only weak evidence that interleaved practice with graphical repre-

sentations leads to better learning than blocked practice. 

Yet, the analysis of the tutor log data with Bayesian Knowledge Tracing provides further 

support for this interpretation. The results show that a model that includes practice schedules fit 

the data best. Furthermore, I was able to detect advantages of interleaved practice over blocked 

practice even during the acquisition phase, in spite of students’ equal problem-solving perfor-

mance across conditions. These findings demonstrate that practice schedules of representations 

are a significant predictor of students’ learning. In other words, the analysis of the tutor log data 

based on Bayesian Knowledge Tracing replicates the effect found in the learning outcomes that 

interleaving graphical representations leads to better learning than blocking graphical representa-

tions.  

The results further show that the advantages of interleaved practice cannot only be detected 

based on long-term retention and transfer assessments (de Croock et al., 1998), but also by “ma-

chine-learning” a latent variable from students’ problem-solving behaviors. To the best of my 

knowledge, the Experiment 3 is the first to empirically establish advantages of interleaved prac-

tice over blocked practice using data from the acquisition phase. These findings demonstrate that 
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methods of educational data mining provide unique opportunities to gain deeper insights into 

educational psychology questions in a way that is not possible using “naïve” methods of looking 

at performance data alone. Furthermore, the analysis of the tutor log data provides further sup-

port for the conclusion that graphical representations should be presented in an interleaved fa-

shion, rather than in a blocked fashion.  

In addition, the results from Experiment 3 demonstrate significant learning gains for students 

who worked with a version of the Fractions Tutor that supports learning with multiple graphical 

representations of fractions, but not for those students who worked with only a single graphical 

representation. The gains persist until at least one week after the study when students completed 

the delayed posttest. This finding illustrates the merit of including multiple graphical representa-

tions of fractions, presented in an interleaved schedule, on students’ learning: within only six 

hours of supplementary practice with the Fractions Tutor, students significantly improved their 

knowledge in an important topic in math that presents a stumbling block for many students. Fur-

thermore, this finding replicates and extends the finding from Experiment 1 by showing that a 

multiple-representations version of the Fractions Tutor leads to better learning than a variety of 

single-representation versions of the Fractions Tutor (and not just compared to a number-line 

only version, as used in Experiment 1). 

Taken together, the findings from Experiment 3 extend prior research on interleaved practice 

schedules, which has focused on practice schedules of different task types. Experiment 3 demon-

strates that the advantage of interleaved practice schedules of task types generalizes to practice 

schedules of multiple graphical representations, at least when it comes to supporting robust 

learning of conceptual domain knowledge. Although more research is needed to investigate 

whether these findings generalize to other domains, based on these findings I carefully conclude 

that designers of intelligent tutoring systems should employ an interleaved practice schedule of 

graphical representations in order to enhance robust conceptual knowledge of fractions. In pro-

viding specific design recommendations for how to use multiple graphical representations within 

instructional materials, Experiment 3 also extends research on learning with multiple representa-

tions: the findings show that practice schedules in which multiple representations are provided 

have an impact on their effectiveness (compared to a single representation). Since graphical re-



4 Classroom Experiments and Lab Studies 
 

115 
 
 

presentations are used across many STEM domains, this finding provides guidance for instruc-

tional designers of a wide range of instructional materials.  

At first glance, it may seem that the findings from Experiment 2 and Experiment 3 contradict 

one another. In Experiment 2, blocking graphical representations (while interleaving task types) 

leads to better learning outcomes than interleaving graphical representations (while blocking task 

types) on a test of representational knowledge, which assessed conceptual understanding of 

graphical representations and the ability to transfer that knowledge to novel tasks. By contrast, in 

Experiment 3, interleaving graphical representations (while moderately interleaving task types) 

leads to better learning outcomes than blocking graphical representations (while moderately in-

terleaving task types) on a test of reproduction with area models and on a test of transfer of con-

ceptual knowledge, which included test items with and without graphical representations. Inter-

preting these seemingly contradicting findings is complicated by the fact that the topics covered 

by the Fractions Tutor in Experiment 2 and 3 were not the same, and that consequently, the tests 

used in Experiments 2 and 3 were not the same, since they reflect changes made to the Fractions 

Tutor between the two experiments.  

Yet, after careful inspection, it becomes apparent that Experiments 2 and 3 make fundamen-

tally different claims that do not necessarily contradict one another. Experiment 2 shows that in-

terleaving task types has a larger impact on students’ robust learning of representational know-

ledge than interleaving graphical representations, because task types are the more variable di-

mension on which  learning tasks can differ, compared to graphical representations. In interpret-

ing the findings from Experiment 2, I argued that blocking graphical representations might help 

students understand individual representations, as supported by the fact that the advantage of in-

terleaving task types and blocking graphical representations (compared to interleaving graphical 

representations while blocking task types) was found on the representational knowledge scale 

used in Experiment 2.  

By contrast, Experiment 3 investigates only the effect of interleaving graphical representa-

tions, while using a constant schedule of task types across all conditions. Rather than comparing 

the relative effect of interleaving one of two dimensions (i.e., task types and graphical represen-

tations) as in Experiment 2, Experiment 3 focuses on only one dimension: graphical representa-

tions. Given that Experiment 2 established that the effects of interleaving task types is stronger 
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than that of interleaving graphical representations, it is not unexpected that the effect sizes found 

in Experiment 3 are relatively small. Yet, interleaving graphical representations may be another 

way in which repeated reactivation and abstraction across learning tasks can be supported. Inter-

leaving multiple graphical representations may allow for deeper processing of the learning con-

tent as it provides more opportunities for students to reactivate representation-specific know-

ledge and for connection making between the different representations. The results from Expe-

riment 3 support this conjecture: interleaving graphical representations enhances the acquisition 

robust domain knowledge as assessed by the conceptual transfer scale of the test used in Experi-

ment 3. This finding might also shed further light into the results from Experiment 2. One caveat 

of Experiment 2 was that it could not tease apart whether the advantage of the int-types condition 

over the int-reps condition is due to the fact that task types were interleaved or that graphical re-

presentations were blocked. Although only a repetition of Experiment 3 that consistently uses a 

fully interleaved schedule of task types across all conditions could conclusively answer that 

question, the results from Experiment 3 suggest that the advantage of interleaving task types 

while blocking representations in Experiment 2 is due to the fact that task types were interleaved, 

and not that graphical representations were blocked.  

Although the analysis of learning processes is based on the findings from only a small-scale 

think-aloud study conducted with only the fully interleaved condition, I believe that it provides 

interesting insights into the processes that underlie the benefits of interleaving multiple graphical 

representations. The results from the think-aloud study lead to the conclusion that interleaved 

practice does not appear to promote students’ active connection making between different graph-

ical representations across consecutive tutor problems. Rather, repeated reactivation of fractions 

knowledge that is specific to the graphical representation at hand appears to be the mechanism 

underlying the advantage of interleaved practice. When working with interleaved graphical re-

presentations, students have to reactivate the knowledge relevant to using that graphical repre-

sentation to solve fractions problems more often than when working with blocked practice sche-

dules of graphical representations. The process of loading representation-specific knowledge 

from long-term memory into working memory increases the strength of the association between 

the graphical representation and that knowledge, which in turn improves the likelihood that a 

student will be able to retrieve that knowledge later on. Future work should investigate whether 
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indeed the advantage of interleaving representations results from repeated reactivation of know-

ledge about specific representations.  

In interpreting the relation between Experiments 2 and 3, several open questions remain. 

First, as discussed above, the instructional materials and tests used in both experiments were not 

directly comparable. It would be interesting to repeat Experiment 2 with the same materials used 

in Experiment 3 to investigate whether the findings can be replicated. Second, Experiment 3 em-

ployed a moderately interleaved sequence of task types across all conditions, whereas the most 

successful condition in Experiment 2 used a highly interleaved sequence of task types. There-

fore, Experiment 3 cannot answer the question whether the same advantage of interleaved prac-

tice applies to a scenario in which task types are also fully interleaved. It would be interesting to 

investigate whether the effects of interleaving task types and interleaving graphical representa-

tions interact. Interleaving both dimensions might have additive effects on students’ learning, so 

that interleaving both dimensions is better than interleaving only one of them, or they might pro-

vide too much variation across task types so that students are overwhelmed and can no longer 

abstract common knowledge across the different learning tasks. Finally, it would be interesting 

to investigate the effects of interleaving graphical representations (and / or task types) in other 

domains than fractions learning. What type of knowledge can be abstracted across task types and 

graphical representations may differ across domains. However, to the extent that conceptual as-

pects of the domain knowledge occur across graphical representations and task types, I expect 

that the advantage of interleaved practice will generalize to other domains than fractions.  

With respect to my theoretical framework for learning with multiple graphical representa-

tions, the mechanism that interleaving graphical representations supports may be representational 

fluency-building processes. Repeated reactivation of representation-specific knowledge may 

support the ease with which students can retrieve knowledge about individual graphical represen-

tations. The analysis of the tutor log data using Bayesian Knowledge Tracing provides some 

support for this interpretation: higher learning rates for the interleaved condition (compared to 

the blocked condition) indicate that students become more accurate at using individual graphical 

representations to solve fractions problems. This finding is what one would expect if students 

acquire representational fluency. Furthermore, the results from the think-aloud study suggest that 

repeated reactivation, rather than conscious abstraction across graphical representations, might 
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be the mechanism that accounts for the advantage of interleaved over blocked practice with 

graphical representations. Reactivation might be more conducive to fluency-building processes 

than to sense-making processes. However, given the speculative nature of this interpretation, 

more research is needed to evaluate the claim that interleaving graphical representations pro-

motes representational fluency. One caveat is that Experiment 3 did not include a direct test of 

representational fluency. Furthermore, the analysis of the tutor log data did not take latency 

measures of student response times while they worked with the Fractions Tutor into account. If 

students acquire fluency in using individual graphical representations, they should also become 

faster and more efficient at using them. To put the interpretation that interleaving graphical re-

presentations enhances students’ representational fluency, which in turn promotes their learning 

of conceptual fractions knowledge, to a true test, one would have to assess representational flu-

ency. My theoretical framework would predict that the hypothesized differences between inter-

leaved and blocked practice on a representational fluency test explain the expected advantage of 

the interleaved over the blocked condition on the conceptual knowledge test.  

Yet, this interpretation of the findings from Experiment 3 provide an interesting perspective 

also to reconcile the results from Experiments 2 and 3. As argued in Experiment 2, interleaving 

task types while blocking graphical representations may serve the development of representa-

tional understanding, by allowing students to gain in-depth understanding of how a given graph-

ical representation applies across different task types. I argued that interleaving graphical repre-

sentations may serve the development of representational fluency, as the repeated reactivation of 

representation-specific knowledge strengthens that knowledge and increases the chance that stu-

dents can retrieve it fast and effortlessly later on. Thus, interleaving task types and graphical re-

presentations may serve complementary goals: interleaving task types while blocking graphical 

representations may enhance representational sense-making processes, whereas interleaving 

graphical representations (while moderately interleaving task types) may enhance representa-

tional fluency-building processes. At different times during the learning process, different rela-

tive sequences of multiple graphical representations and task types might be most beneficial to 

students’ learning of the domain. The relatively good performance of the increasingly interleaved 

condition in Experiment 3, which gradually moved from a blocked sequence to a more and more 

interleaved sequence of multiple graphical representations, speaks to this hypothesis. If represen-
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tational fluency builds on representational understanding, blocking multiple graphical representa-

tions while interleaving task types might be most beneficial early in the learning sequence, whe-

reas interleaving multiple graphical representations (in addition to interleaving task types) might 

become more important later during the learning process. Thus, if interleaving task types (while 

blocking graphical representations) supports representational sense-making processes, if inter-

leaving graphical representations supports representational fluency-building processes, and if 

representational fluency builds on representational understanding, one might expect the best 

learning gains if different sequences are employed at different times during the learning process 

(or in particular, if the sequence of task types and graphical representations adapts to the level of 

representational understanding and representational fluency of each individual student). 

However, as argued in Experiment 2, it is also possible that interleaving task types also sup-

ports representational fluency-building processes. It is indeed possible that both interleaving task 

types and interleaving graphical representations support the same learning process, by enhancing 

reactivation and abstraction across different aspects of fractions knowledge. If this is the case, 

and if reactivation is the mechanism that accounts for the advantage of interleaved practice, one 

might expect that fully interleaving both task types and graphical representations will lead to the 

best learning gains, as the higher variability of subsequent task types increases the amount of 

knowledge that students need to reactivate as they move between different task types and graphi-

cal representations. If, however, abstraction is the mechanism by which interleaved practice en-

hances learning, one might expect that interleaving both task types and graphical representations 

creates too much variability to abstract across subsequent learning tasks. In this case, further re-

search is needed to compare varying degrees of interleaving task types and graphical representa-

tions, and to explore whether a potential “optimal” degree of variability between learning tasks 

differs between learners (e.g., low versus high prior knowledge students). 

As the excessive use of if-clauses in the preceding two paragraphs illustrate, these interpreta-

tions are highly speculative and remain to be empirically tested in future research. The next steps 

in such research should be to identify the effects of practice schedules of task types and graphical 

representations on representational understanding and representational fluency directly (and sep-

arately from domain knowledge), and to identify the processes of reactivation and abstraction for 
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the different types of interventions. Then, specific predictions about the relation between these 

different measures should be tested with appropriate mediation models.  

Despite of its highly speculative nature, this interpretation of the findings from Experiment 2 

and 3 illustrate the merit of my theoretical framework in generating new hypotheses that can be 

tested empirically based on the analysis of learning outcomes in experimental studies and for-

mally evaluated through the use of data mining techniques on learning process measures. The 

suggested questions for future research would not only provide insights based on which the theo-

retical framework could be revised, but it would also provide further guidance for designers of 

educational materials that vary across task types and graphical representations, as is typically he 

case in many STEM domains. 
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4.4 Experiment 4: Combining connectional sense-making and fluency-building support  

Experiments 1-3 focused on learning with multiple graphical representations that were provided 

across consecutive tutor problems, so that in each problem, only one graphical representation 

was present. Yet, prior research on multiple representations shows that students’ benefit from 

multiple representations depends on their ability to make connections between them (Ainsworth, 

2006; Cook et al., 2007; Even, 1998; Gutwill et al., 1999; Özgün-Koca, 2008; Plötzner et al., 

2001; Plötzner et al., 2008; Schnotz & Bannert, 2003; Schwonke et al., 2008; Schwonke & 

Renkl, 2010; Taber, 2001). In the domain of fractions, connection making between different re-

presentations is considered to be an important learning goal (Cramer, 2001; Miura & Yamagishi, 

2002; Taber, 2001). However, connection making is a difficult task for students that typically 

does not happen spontaneously (Ainsworth et al., 2002), especially when students have low prior 

knowledge (Bodemer & Faust, 2006). The results from the think-aloud study in Experiment 3 

illustrate that students tend not to spontaneously connect consecutively presented graphical re-

presentations to one another, unless explicitly prompted to do so. The goal of Experiment 4 was 

to investigate the complementary role of instructional support for two learning processes hy-

pothesized to be involved in connection making between multiple graphical representations: 

connectional sense-making processes and connectional fluency-building processes. This research 

question was motivated by my theoretical framework for learning with multiple graphical repre-

sentations (see section 2.2). I expect that supporting connectional sense-making processes and 

connectional fluency-building should enhance students’ benefit from multiple graphical repre-

sentations. Yet, most research on connection making has focused on the support of either 

process, rather than on supporting both.  

Research on connectional sense-making processes has typically investigated ways to help 

students relate representations based on corresponding elements of domain-relevant concepts 

(Bodemer & Faust, 2006; Bodemer et al., 2004; Brünken et al., 2005; Seufert & Brünken, 2006; 

van der Meij & de Jong, 2006). These studies show that connectional sense-making processes are 

crucial for students’ acquisition of domain knowledge. However, this research was exclusively 

conducted on supporting students in making connections between representations of different 

symbol systems: either between text and an additional graphical representation (Bodemer & 

Faust, 2006; Bodemer et al., 2004; Plötzner et al., 2001), or between symbolic representations 
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and a corresponding graphical representation (van der Meij & de Jong, 2006). Whether these 

findings generalize to connection making between representations using the same symbol system 

(i.e., multiple graphical representations) remains an open question.  

Another question that the literature on connectional sense-making support leaves open is the 

role of automated support provided by the system. On the one hand, providing students with au-

to-linked graphical representations (i.e., graphical representations that are linked in such a way 

that the student’s manipulations of one are automatically reflected in the other) promotes learn-

ing in complex domains (van der Meij & de Jong, 2006). On the other hand, research shows that 

students should actively create connections between representations, rather than passively ob-

serving correspondences (Bodemer & Faust, 2006; Bodemer et al., 2004; Gutwill et al., 1999). 

A well-researched way of supporting sense-making processes is to provide students with 

worked examples; an instructional intervention that has been shown to be effective in many do-

mains (Renkl, 2005). Berthold and Renkl (2009) compared students’ learning from multi-

representation worked examples to single-representation worked examples and found that mul-

tiple representations can enhance students’ learning from worked examples. Other studies (e.g., 

Berthold et al., 2008; Schwonke, Berthold et al., 2009) have also established that multiple repre-

sentations can promote students’ learning from worked examples. However, the question re-

mains open whether worked examples can also enhance students’ learning from multiple graphi-

cal representations. 

Research on connectional fluency-building processes has investigated the effects of percep-

tual training in relating representations on students’ math learning (Kellman & Garrigan, 2009; 

Kellman et al., 2008; Kellman, Massey, & Son, 2009). Students in Kellman and colleagues’ stu-

dies learned to find corresponding representations of math problems, such as textual descriptions, 

graphical representations, and symbolic representations. Fluency training aims at helping stu-

dents gain perceptual experience in making connections without asking them to consciously re-

flect on these connections. Rather, the training helps students become more efficient at extracting 

structurally relevant information across a variety of representations through experience and dis-

covery. Results of these studies show that students who already have good conceptual under-

standing of the domain and of the representations tend to score low on perceptual fluency tests, 

which assess the accuracy with which students recognize and construct corresponding represen-
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tations (Kellman et al., 2008; Kellman et al., 2009). Students who received fluency training sub-

sequently performed better not only on such fluency tests, but also on tests of conceptual and 

procedural knowledge, compared to students who did not receive such training (Kellman et al., 

2009). However, previous research on fluency-building processes in making connections has al-

so taken a symbol-systems approach and only focused on connection making between represen-

tations using different symbol systems, rather than on connection making between representa-

tions using the same symbol system. It thus remains an open question whether Kellman and col-

league’s findings generalize to support of connectional fluency-building processes that involve 

multiple graphical representations.  

4.4.1 Research questions and hypotheses 
As argued, both connectional sense-making processes and fluency-building processes may play a 

role in students’ learning with multiple graphical representations. Thus, Experiment 4 investi-

gates the hypothesis that students will learn best about fractions when they receive support for 

both connectional sense-making processes and connectional fluency-building processes.  

Furthermore, it may matter whether students are supported in actively engaging in connec-

tional sense-making processes or whether they receive automated support to engage in connec-

tional sense-making processes provided semi-automatically by the Fractions Tutor. A further 

goal of Experiment 4 is therefore to investigate whether students should become active in gene-

rating connections or receive automated support for connectional sense-making processes from 

the system.  

Specifically, Experiment 4 investigated the following hypotheses: 

Hypothesis 1: Support for connectional sense-making processes enhances students’ acquisi-

tion of robust knowledge of fractions. 

Hypothesis 2: Support for connectional fluency-building processes enhances students’ acqui-

sition of robust knowledge of fractions. 

Hypothesis 3: Support for both connectional sense-making and fluency-building processes 

enhances students’ acquisition of robust knowledge of fractions more so than either type of sup-

port alone. 

Hypothesis 4: Students’ acquisition of robust knowledge of fractions benefits more from a 

type of connectional sense-making support that requires them to actively make sense of connec-
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tions themselves, rather than making sense of correspondences that are depicted semi-

automatically. 

4.4.2 Methods 
To investigate these hypotheses, I conducted a classroom experiment that contrasted the effects 

of different types of support for connection making between multiple graphical representations 

of fractions. 

4.4.2.1. Experimental design 

Students were randomly assigned to one of seven experimental conditions, summarized in Table 

18. There were two different types of connection-making support: sense-making support and flu-

ency-building support. Students were assigned to either receiving sense-making support for con-

nection making (in the form of either auto-linked support or worked-example support) or not. 

This factor was crossed with a second experimental factor, namely, whether or not students re-

ceived fluency-building support for connection making or not. Since many education researchers 

and practitioners emphasize the importance of number lines (NMAP, 2008; Siegler et al., 2010), 

an additional control condition was implemented, which used only the number line. In other 

words, two conditions did not receive any type of connection-making support: the number-line 

condition and the multiple graphical representations condition. 
  Sense-making support Control 
  None Auto-linked representa-

tions 
Worked example  

Fluency-
building 
support 

None Multiple graphical  
representations condition 

Auto-linked condition Worked-example 
condition 

 

Fluency-
building 
support 

Fluency-building  
condition 

Auto-linking and  
fluency-building  

condition 

Worked-example and 
fluency-building 

condition 

Control  Number-line 
condition 

Table 18. Experiment 4: Overview of experimental conditions. 

4.4.2.2. Participants 

A total of 1308 4th- and 5th-grade students from three school districts (13 schools, 62 classes) 

participated in the experiment during their regular math class. Due to technical failure that re-

sulted in data loss, only one school district (5 schools, 25 classes, N = 599) had complete data. I 

excluded students who did not complete all tests and who did not complete their work on the tu-

toring system, yielding a total of N = 428. The number of students who were excluded from the 
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analysis did not differ between conditions, χ² (6, N = 169) = 4.34, p > .10. Table 19 shows the 

number of included and excluded students per condition.  
 included excluded 

Number-line condition 61 24 
Multiple graphical representations condition  64 30 

Auto-linked condition 52 25 
Worked-example condition 59 28 
Fluency-building condition 73 18 

Auto-linking and fluency-building condition 61 24 
Worked-example and fluency-building condition 58 20 
Table 19. Experiment 4: Number of students included and excluded by condition. 

4.4.2.3. Procedure 

The study took place at the beginning of the 2011/2012 school year. Students’ regular math 

teachers led the sessions, but researchers were present in the classrooms during the first two days 

of the study to assist teachers in answering questions specific to the use of the Fractions Tutor. 

Students accessed all materials online from their school’s computer lab. On the first day of 

the study, students completed a 30-minute pretest. They then worked on the Fractions Tutor for 

about ten hours, spread across consecutive school days (with the version described in section 3.4, 

on topics 1-10 in Table 1, see section 3.4). The day following the tutor sessions, students com-

pleted a 30-minute posttest and took a 5-minute survey. About one week after the posttest, stu-

dents were given an equivalent delayed posttest.  

 
Fig. 24. Experiment 4: Procedure for conditions with connection-making support. 
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Fig. 25. Experiment 4: Procedure for conditions with sense-making and fluency-building support. 

Fig. 24 illustrates this procedure for students in all of the conditions with connection-making 

support (i.e., in all but the multiple graphical representations condition and the number-line con-

dition, see Table 18). For each of the topics covered by the Fractions Tutor, students first com-

pleted four single-representation tutor problems, followed by four connection-making problems. 

The four connection-making problems were assigned according to the student’s condition. That 

is, students in the auto-linked condition received four auto-linked problems, students in the 

worked-example condition received four worked-example problems, and students in the fluency-

building condition received four fluency-building problems. Students in the conditions with 

sense-making and fluency-building support received two problems of each kind, as illustrated in 

Fig. 25. That is, students in the auto-linking and fluency-building condition received two auto-

linked problems followed by two fluency-building problems, and students in the worked-

example and fluency-building condition received two worked-example problems followed by 

two fluency-building problems. Students in the conditions without connection-making support 

(i.e., the multiple graphical representations condition and the number-line condition) received 

eight single-representation problems per topic. All tutor problems involved a comparable number 

of problem-solving steps and took about the same time to complete. 

4.4.2.4. Fractions Tutor versions 

Students in Experiment 4 worked with the latest version of the Fractions Tutor on all ten topics. 

The single-representations problems, worked-example problems, and fluency-building problems 

were described in detail in sections 3.4.2 and 3.4.3, respectively. 
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Fig. 26 shows an example of an auto-linked problem. The auto-linked problems followed the 

same side-by-side format as the worked-example problems, but there were no worked examples. 

Rather, students interacted with a number line to solve a problem, while an area model represen-

tation (i.e., a circle or a rectangle) updated automatically to mimic the steps the student per-

formed on the number line. In this sense, the more familiar representation provided feedback on 

the work with the less familiar representation. (At a technical level, the number line CTAT com-

ponent [Aleven et al., 2009] served as a controller for the circle and rectangle CTAT compo-

nents.) As the worked-example problems, the auto-linked problems included reflection prompts 

at the end of each problem (see bottom of Fig. 26), which asked students to identify correspon-

dences of the two given representations. The inclusion of reflection prompts in the sense-making 

problems was motivated both by the results from Experiment 1, and by the finding in the think-

aloud study in Experiment 3 that students can generate connections between graphical represen-

tations when prompted to do so. 

 
Fig. 26. Experiment 4: Example of an auto-linked problem to support connectional sense-making processes. 

4.4.2.5. Test instruments 

Students took three tests: a pretest, an immediate posttest, and a delayed posttest. The tests were 

adapted from the tests used in Experiment 3, but included a variety of new test items to reflect 
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changes made to the Fractions Tutor curriculum. I created three equivalent test forms, which in-

cluded the same type of problems, but with different numbers. Based on data from a pilot study 

with 61 4th-grade students, I made sure that the difficulty level of the test was appropriate for the 

target age group, and that the different test forms did not differ in difficulty. For the classroom 

study, I randomized the order in which the different test forms were administered.  

The tests targeted two knowledge types: procedural and conceptual knowledge. The concep-

tual knowledge scale assessed students’ principled understanding of fractions; it assessed similar 

aspects of conceptual knowledge of fractions as the conceptual transfer scale in Experiment 3, 

and it also includes items similar to the representational knowledge scale used in Experiment 2, 

but in a way that corresponds to the topics covered in the revised version of the Fractions Tutor 

(described below). Examples of the test items can be found in Appendix 7. The test items in-

cluded reconstructing the unit, identifying fractions from graphical representations, proportional 

reasoning questions, and verbal reasoning questions about comparison tasks. The procedural 

knowledge scale assessed students’ ability to solve questions by applying algorithms; it assessed 

similar aspects of procedural knowledge as the operational knowledge scale used in Experiment 

2 and the procedural transfer scale used in Experiment 3, but in a way that aligns with the topics 

covered in the revised version of the Fractions Tutor. The test items included finding a fraction 

between two given fractions using representations, finding equivalent fractions, addition, and 

subtraction. The theoretical structure of the test (i.e., the two knowledge types just mentioned) 

was based on a factor analysis with the pretest data from the current experiment. Half of the 

items in both test scales were reproduction and transfer items, respectively. I validated the result-

ing factor structure using the data from the immediate and the delayed posttests. 
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4.4.3 Results 
  pretest immediate posttest delayed posttest 

conceptual knowledge 

Multiple graphical representations .33 (.20) 
 
 

.45 (.23) 
 
 

.48 (.26) 
 
 

Auto-linking .38 (.20) 
 
 

.49 (.23) 
 
 

.51 (.26) 
 
 

Worked examples .36 (.22) 
 
 

.43 (.20) 
 
 

.49 (.26) 
 
 

Fluency-building .31 (.21) 
 
 

.37 (.22) 
 
 

.44 (.24) 
 
 

Auto-linking and fluency-building .36 (.20) 
 
 

.43 (.24) 
 
 

.49 (.25) 
 
 

Worked examples and fluency-building .39 (.21) 
 
 

.52 (.24) 
 
 

.58 (.26) 
 
 

Number-line only .37 (.20) 
 
 

.43 (.25) 
 
 

.48 (.20) 
 
 

procedural knowledge 

Multiple graphical representations .25 (.25) 
 
 

.30 (.28) 
 
 

.30 (.26) 
 
 

Auto-linking .21 (.18) 
 
 

.26 (.24) 
 
 

.26 (.24) 
 
 

Worked examples .26 (.21) 
 
 

.29 (.24) 
 
 

.31 (.27) 
 
 

Fluency-building .19 (.17) 
 
 

.23 (.20) 
 
 

.25 (.22) 
 
 

Auto-linking and fluency-building .20 (.18) .25 (.21) 
 
 

.26 (.21) 
 
 

Worked examples and fluency-building .26 (.20) 
 
 

.32 (.26) 
 
 

.33 (.26) 
 
 

Number-line only .21 (.20) 
 
 

.25 (.22) 
 
 

.27 (.23) 
 
 

Table 20. Experiment 4: Means and standard deviations (in parentheses) for conceptual and procedural knowledge at pretest, 
immediate posttest, delayed posttest. Min. score is 0, max. score is 1. 

measure effect significant  F/t-value adj. p-
value 

effect 
size 

conceptual 
knowledge 

sense-making support no F < 1   
fluency-building support no F < 1   

sense-making * fluency-building sup-
port 

yes F(2, 351) = 3.97 p < .05 η² =.03 

worked-example and fluency-building 
> number-line control 

yes t(115) = 2.41 p < .05 d = .27 

effect slices for the effect of sense-
making support 

yes F(2, 343) = 4.34 p < .05 η² =.07 

worked-example and fluency-building 
> auto-linking and fluency-building 

yes t(342) = 2.20 p < .05 d = .26 

worked-example and fluency-building 
> fluency-building 

yes t(341) = 2.82 p < .01 d = .32 

procedural 
knowledge 

sense-making support no F < 1   
fluency-building support no F < 1   

sense-making * fluency-building sup-
port 

no F < 1   

effect slices for the effect of sense-
making support 

no F < 1   

Table 21. Experiment 4: Results on conceptual and procedural knowledge. 

As mentioned, I analyzed the data of N = 428 students. Table 20 shows the means and standard 

deviations for the conceptual and procedural knowledge scales by test time and condition. Table 

21 gives an overview of the results. 
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4.4.3.1. Effects of connection-making support on learning outcomes 

I used an HLM (see Raudenbush & Bryk, 2002) with four nested levels to analyze the data. At 

level 1, I modeled performance on each of the tests for each student. At level 2, I accounted for 

differences between students. Level 3 models random differences between classes, and level 4 

random differences between schools. The HLM is the outcome of a forwards-inclusion proce-

dure in which I used the Bayesian Information Criterion (BIC) to find whether the inclusion of a 

variable increased model fit. A lower BIC indicates better model fit while penalizing for greater 

model complexity. If the BIC decreased as a consequence of including a variable, I kept the vari-

able. If the BIC did not decrease, I did not include the variable. I tested a number of variables, 

including teacher, school district, test form sequence, grade level, number of problems com-

pleted, total time spent with the tutor, random intercepts and slopes for classes and schools. More 

specifically, the following HLM was fitted to the data: 

Yijkl = (((μ + Wl) + Vkl) + β2 * sj + β3 * fj + β4 * pj + β5 * sj * pj + β6 * fj * pj + Ujkl) + β1 * ti + Rijkl (6) 

with  

(level 1) Yijkl = εjkl + β1 * ti + Rijkl  

(level 2) εjkl = δkl + β2 * sj + β3 * fj + β4 * pj + β5 * sj * pj + β6 * fj * pj + Ujkl  

(level 3) δkl = γl + Vkl  

(level 4) γl = μ + Wl  

with the index i standing for test time (i.e., immediate and delayed posttest), j for the student, 

k for class, and l for the school. The dependent variable Yijkl is studenti’s score on the dependent 

measures at test time ti (i.e., immediate or delayed posttest), εjkl is the parameter for the intercept 

for studentj’s score, β1 is the parameter for the effect of test time ti, β2 is the parameter for the ef-

fect of sense-making support sj, β3 is the parameter for the effect of fluency-building support fj, 

β4 is the parameter for the effect of studentj’s performance on the pretest pj, β5 is the parameter 

for an aptitude-treatment interaction between sense-making support sj and studentj’s performance 

on pretest pj, β6 is the parameter for an aptitude-treatment interaction between fluency-building 

support fj and studentj’s performance on pretest pj, δkl is the parameter for the random intercept 

for classk, γl is the parameter for the random intercept for schooll, and μ is the overall average. 

Since the HLM described in (6) uses students’ pretest scores as a covariate, it does not allow 

us to analyze whether students in the various conditions improved from pretest to immediate and 
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delayed posttest. To analyze learning gains, I excluded pretest score in the dependent variable, as 

well as an interactions of pretest with sense-making support and fluency-building support, yield-

ing: 
Yijkl = (((μ + Wl) + Vkl) + β2 * sj + β3 * fj + Ujkl) + β1 * ti + Rijkl (7) 

with  

(level 1) Yijkl = εjkl + β1 * ti + Rijkl  

(level 2) εjkl = δkl + β2 * sj + β3 * fj + Ujkl  

(level 3) δkl = γl + Vkl  

(level 4) γl = μ + Wl  

with the index i standing for test time (i.e., pretest, immediate, and delayed posttest). The de-

pendent variable Yijkl is studentj’s score on the dependent measures at test time ti (i.e., pretest, 

immediate posttest, or delayed posttest). Excluded were the parameters β4 for the effect of stu-

dentj’s performance on the pretest pj, parameter β5 is for an aptitude-treatment interaction be-

tween sense-making support sj and studentj’s performance on pretest pj, and parameter β5 is for 

an aptitude-treatment interaction between fluency-building support fj and studentj’s performance 

on pretest pj. 

In addition, I specified posthoc comparisons within the HLM to clarify the effects of sense-

making support and fluency-building support. The reported p-values were adjusted for multiple 

comparisons using the Bonferroni correction. I report partial η² for effect sizes on main effects 

and interactions between factors, and Cohen’s d for effect sizes of pairwise comparisons. Ac-

cording to common convention (Cohen, 1988), an effect size partial η² of .01 is considered a 

small effect, .06 a medium effect, and .14 a large effect. An effect size d of .20 corresponds to a 

small effect, .50 to a medium effect, and .80 to a large effect. 

Effects of sense-making support and fluency-building support 

To investigate hypothesis 1 (that support for connectional sense-making processes enhances stu-

dents’ acquisition of fractions knowledge), I computed the main effect of sense-making support 

using the hierarchical linear model described in equation 6. There was no main effect of sense-

making support on conceptual knowledge (F < 1) nor on procedural knowledge (F < 1).  

To investigate hypothesis 2 (that support for connectional fluency-building processes en-

hances students’ acquisition of fractions knowledge), I computed the main effect of fluency-
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building support. There was no main effect of fluency-building support on conceptual knowledge 

(F < 1) nor on procedural knowledge (F < 1). 

To investigate hypothesis 3 (that students’ acquisition of fractions knowledge requires sup-

port for both connectional sense-making and fluency-building processes), I computed the interac-

tion effect between sense-making support and fluency-building support. The results provide sup-

port for hypothesis 3: there was a significant interaction effect between sense-making and fluen-

cy support on conceptual knowledge, F(2, 351) = 3.97, p < .05, η² =.03, such that students who 

received both types of support performed best on the conceptual knowledge posttests. There was 

no significant interaction effect on procedural knowledge (F < 1).  

Finally, to verify the advantage of receiving connection-making support over the number line 

control condition, I compared the most successful condition (worked-example and fluency-

building) to the number line control condition using posthoc comparisons. The advantage of the 

worked-example and fluency-building condition over the control condition was significant on 

conceptual knowledge, t(115) = 2.41, p < .05, d = .27. 

In summary, the interaction effect between sense-making support and fluency-building sup-

port shows that supporting both sense-making processes and fluency-building processes in con-

nection making enhance students’ conceptual knowledge of fractions more so than either type of 

support alone. Since neither type of support alone enhanced students’ learning of fractions, and 

since only the condition that received a combination of worked-example support for sense-

making processes and fluency-building support outperformed the number-line only condition, I 

conclude that both types of support together are necessary for students to benefit from multiple 

graphical representations. 

Effects of active engagement in sense-making processes 

To investigate hypothesis 4 (that students’ acquisition of fractions knowledge benefits more from 

a type of connectional sense-making support that requires students to actively make sense of 

connections), I computed effect slices using the hierarchical linear model described in equation 

6: a test of the effect of sense-making support for each level of the fluency support factor. Effect 

slices are a way of performing a partitioned analysis of one experimental for a given level of a 

second experimental factor. I computed effect slices for sense-making support (i.e., a test of the 

effect of sense-making support) for each level of the fluency-building support factor within the 
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HLM shown described in equation 6. The test of effect slices for sense-making support (i.e., a 

test of the effect of sense-making support for each level of the fluency support factor) showed 

that there was a significant effect of sense-making support within the conditions with fluency 

support on conceptual knowledge, F(2, 343) = 4.34, p < .05, η² =.07, but not within the condi-

tions without fluency support (F < 1). Posthoc comparisons between the fluency-building condi-

tion, auto-linking and fluency-building condition, and the worked-example and fluency-building 

conditions confirmed that the worked-example and fluency-building condition significantly out-

performed the fluency-building condition, t(341) = 2.82, p < .01, d = .32, and the auto-linking 

and fluency-building condition t(342) = 2.20, p < .05, d = .26, on conceptual knowledge. In 

summary, worked-example problems are more effective in supporting sense-making of connec-

tions than auto-linked problems, provided that students also receive fluency support. 

Taken together, Experiment 4 provides evidence that the combination of both connectional 

sense-making and fluency-building support enhances students’ robust learning of conceptual 

knowledge. Furthermore, the results demonstrate that students need to actively engage in connec-

tional sense-making activities. A novel application of worked examples is a successful means to 

support students’ connectional sense-making processes. Finally, the fact that only the combined 

worked-example and fluency-building support condition significantly outperformed the number-

line control condition demonstrates that students’ benefit from multiple graphical representations 

depends on receiving support for both connectional sense-making and fluency-building 

processes.  

4.4.3.2. Causal path modeling 

By integrating two different, thus far separate lines research on connectional sense-making and 

fluency-building processes, Experiment 4 raises interesting new questions about the relation be-

tween these learning processes. It is surprising that there were no significant main effects for 

sense-making support or fluency-building support; only the combination of both was effective. 

Did one type of support enable students to benefit from the other? To develop hypotheses for this 

question, I conducted an analysis of the errors students made while working on the Fractions Tu-

tor. Specifically, I was interested in the types of errors that students in the conditions that demon-

strated significant differences on the conceptual posttests, that is, in errors the worked-example 

condition, fluency-building condition, and combined worked-example and fluency-building  con- 
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Error Type Description # in worked-
example condi-

tion 

# in fluency-
building 
condition 

# in worked-example 
and fluency-building 

condition 
additionMixedError  Finding representations that 

show the addend of a given 
sum equation depicted by 
representations 

n/a 207 176 

compareMixed-
Error3 

Finding representations that 
show a fraction smaller or 
larger than the given one 

n/a 436 307 

comparisonError  Comparing two fractions 92 n/a 82 
denomError7 Entering the denominator of 

a fraction 972 n/a 837 

DiffMixedError  Finding representations that 
show the difference of two 
fractions 

n/a 282 238 

equivalence-
CompareError  

Judging whether two frac-
tions are equivalent 19 n/a 18 

equivalenceError6,4 Finding equivalent fraction 
representations n/a 2899 2157 

improperMixed-
Error6,7 

Finding representations of 
improper fractions n/a 1380 1608 

multiplyError  Entering a number by which 
to multiply numerator or de-
nominator to expand a given 
fraction 

30 n/a 29 

nameCircleMixed-
Error6,7 

Finding circle representa-
tions that show the same 
fraction as a number line or 
a rectangle 

n/a 355 126 

nameNLMixed-
Error6 

Finding number line repre-
sentations that show the same 
fraction as a circle or a rec-
tangle 

n/a 949 599 

nameRectMixed-
Error6 

Finding rectangle representa-
tions that show the same frac-
tion as a number line or a 
circle 

n/a 385 133 

nlPartitionError6 Partitioning the number line 
to show an equivalent frac-
tion 

1913 n/a 2115 

numberSections-
UnitError  

Finding the denominator of a 
fraction by indicating how 
many sections the unit was 
divided into 

41 n/a 44 

numError6 Entering the numerator of a 
fraction 1559 n/a 1390 

place1Error6,7 Locating 1 on the number 
line given a dot on the num- 150 n/a 222 

                                                 
3 Significant difference between conditions, based on chi-square test 
4 Significant predictor of performance on conceptual posttest, after controlling for pretest performance 
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ber line and the fraction it 
shows 

placeDotError6 Placing a dot on the number 
line to show a fraction 198 n/a 253 

sectionsBetween-0-
1  

Indicating that the denomina-
tor in a number line is shown 
by the sections between 0 and 
1 

61 n/a 44 

SE-Error6,7 Self-explanation error, re-
sponse to reflection questions 1320 n/a 1629 

subtractionMixed-
Error7 

Finding representations that 
show the subtrahend of a 
given difference equation 
depicted by representations 

n/a 214 240 

sumMixedError6 Finding representations that 
show the sum of two frac-
tions 

n/a 256 205 

unitError  Selecting the unit for a frac-
tion given the symbolic frac-
tion and a graphical represen-
tation 

123 n/a 115 

unitMixedError  Finding the unit of a given 
fraction n/a 1050 1138 

Table 22. Experiment 4: Error types and number of error types per condition. Error types in italics were selected for further 
analysis. 

ditions made on the worked example problems and on the fluency-building problems. Rather 

than using the overall error rate, I applied a knowledge component model that underlies the prob-

lem structure of the Fractions Tutor to the errors while working on the tutor problems. Doing so 

allows for a more fine-grained analysis of students’ errors than the overall error rate does. I com-

pared the frequency of error types on those connection-making problems that were the same for 

two given conditions: errors on worked examples problems in the worked-example condition and 

the worked-example and fluency-building condition, and errors on fluency-building problems in 

the fluency-building condition and the worked-example and fluency-building condition. Table 22 

summarizes the types of errors that were possible in worked-example problems and in fluency-

building problems. 

I included only those error types into further analysis, which (1) were significant predictors 

of students’ posttest performance, while controlling for pretest performance, and (2) significantly 

differed between conditions. To determine whether an error type was a significant predictor of 

students’ immediate posttest performance, I conducted linear regression analyses with posttest 

performance as the dependent variable, and pretest performance and number of error type as pre-
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dictors. For both the chi-square tests and the regression analyses, I controlled for multiple com-

parisons using the Bonferroni correction. 

 
Fig. 27. Experiment 4: Structural equation model for the worked-example condition and the worked-example and fluency-

building condition. Fluency: whether or not students received fluency-building support in addition to worked-example support; 
conc_new-pre: performance on conceptual pretest; conc_new_post: performance on conceptual immediate posttest; 

conc_new_delpost: performance on conceptual delayed posttest. 

Fig. 27 shows the results from the structural equation model for the comparison of the 

worked-example support condition and the worked-example and fluency-building condition 

based on errors students made on the worked example problems. Students in the worked-

example and fluency-building condition, compared to the worked-example condition, make more 

SE errors (i.e., errors in answering self-explanation prompts) and more place1 errors (i.e., errors 

in finding 1 on an unlabeled number line), both of which decreased performance on the 

conceptual posttest. Fluency-building support has a direct positive effect on posttest 

performance, which is stronger than the sum of the negative mediation effects. While the 

structural equation model for the worked-example condition and the worked-example and 

fluency-building condition provides insights into potential costs of fluency-building support, it 

does not help identify mediators of the positive effect of fluency-building support provided in 
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addition to sense-making support. In general, since students who receive worked-example and 

fluency-builidng support work on fewer worked-example problems (2 per topic) than students 

who receive only worked-example support (4 per topic) are expected to make more errors on 

steps in the worked-example problems, simply because they receive less practice on them. Yet, 

the two particular error types on which I found differences between conditions, SE errors and 

place1 errors, on which fluency-building support had a negative effect, might correspond to steps 

in the tutor that particularly required conceptual understanding of connections. SE errors (i.e., 

errors in answering self-explanation prompts) directly require students to answer questions about 

which aspects of two graphical representations correspond to one another. Place1 errors (i.e., 

errors in finding 1 on a number line given a dot that shows a fraction), requires students to 

conceptually understand the concept of the unit of a fraction, which is a particularly hard concept 

to understand with number lines, but that is relatively easy to grasp with area models, such that 

sense-making support may have especially helped students understand this concept in particular. 

Taken together, the only mediation of the effect of the worked-example and fluency-building 

condition compared to the worked-example condition was negative, but there is no mediation of 

a positive effect, only a direct positive effect.  

Fig. 28 shows the best-fitting structural equation model for the fluency-building condition 

and the worked-example and fluency-building support condition based on the errors students 

made on fluency-building problems. Students in the worked-example and fluency-building 

condition make more nameCircleMixed errors (i.e., errors in identifying the fraction depicted by 

a circle), but fewer improperMixed errors (i.e., errors in identifying an improper fraction) and 

equivalence errors (i.e., errors in identifying equivalent fractions) than students in the fluency-

building condition. Students who make fewer nameCircleMixed errors also make more 

subtractionMixed (i.e., errors in finding the difference between two given fractions) and 

improperMixed errors, which decrease performance in the conceptual posttest. These mediations 

demonstrate a negative effect of sense-making support (provided in addition to fluency-building 

support) on conceptual posttest performance, while controlling for pretest performance. 

However, sense-making support also has a positive effect on posttest performance, mediated by 

fewer improperMixed errors and equivalence errors. 
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Fig. 28. Experiment 4: Structural equation model for the fluency-building condition and the worked-example and fluency-

building condition. Sense: whether or not students received worked-example support in addition to fluency-building support; 
conc_new-pre: performance on conceptual pretest; conc_new_post: performance on conceptual immediate posttest; 

conc_new_delpost: performance on conceptual knowledge test. 

The findings from the structural equation model demonstrate that sense-making support re-

duces certain error types made on fluency-building problems, thereby leading to better perfor-

mance on the conceptual posttest. However, I did not find evidence of an advantage of fluency-

building support based on errors made on worked-example problems, which were associated 

with higher posttest performance. The structural equation model analysis thus leads to the hypo-

thesis that sense-making support helps students benefit from fluency-building problems by re-

ducing certain types of errors on fluency-building problems. However, the structural equation 

model analysis does not support the notion that fluency-building support helps students benefit 

from sense-making problems. 

4.4.4 Discussion 
Experiment 4 tested a hypothesis that was deducted from my theoretical framework for learning 

with multiple graphical representations: that instructional support for connectional sense-making 

processes and support for fluency-building processes enhance students’ learning of domain 
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knowledge. The results from Experiment 4 provide support for this hypothesis only with respect 

to the combination of both types of support: taken alone, neither sense-making support nor flu-

ency-building support were effective at enhancing students’ learning of conceptual knowledge, 

but only together did they enhance students’ learning. There were no effects of connection-

making support on procedural knowledge. Furthermore, only students who received both types 

of instructional support for connection making significantly outperformed the number-line con-

trol condition on conceptual knowledge. With regard to the question of how to implement in-

structional support for  connectional sense-making processes, Experiment 4 shows that a type of 

sense-making support that requires students to become active in generating connections, rather 

than observing connections provided by auto-linked representations, is the most effective. 

 Experiment 4 extends previous research on connection making that has (1) only focused on 

supporting either connectional sense-making processes or connectional fluency-building 

processes but not on supporting both types of learning processes, and (2) only focused on con-

nection making between multiple representations of different symbol systems but not on connec-

tion making between multiple graphical representations.  

Experiment 4 did not replicate earlier findings from Experiments 1 and 3, that multiple 

graphical representations provided without instructional support for connection making lead to 

better learning than a single graphical representation. This finding is surprising, especially since 

the multiple graphical representations condition corresponded directly to the fully interleaved 

condition in Experiment 3. It is possible that changes in the participant sample (different schools, 

different teachers), changes made to the Fractions Tutor (revised curriculum), or changes made 

to the test in consequence to the revisions of the Fractions Tutor may have affected the replica-

bility of the advantage of multiple over a single graphical representation. In particular, the advan-

tage of multiple graphical representations in Experiment 3 was on the conceptual transfer scale 

of the test, whereas the conceptual knowledge test used in Experiment 4 included both reproduc-

tion and transfer items. It is possible that the advantage of multiple graphical representations ma-

nifests itself most strongly in the ability to transfer conceptual domain knowledge to novel prob-

lems. Further research should investigate which knowledge types particularly benefit from mul-

tiple graphical representations. On the flip side, the results from Experiment 4 show that one 

might expect a stronger advantage of multiple graphical representations over a single graphical 
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representation in Experiments 1 and 3 if explicit connection making support had been provided 

in these experiments as well. 

With regard to my theoretical framework, Experiment 4 provides support for the claim that 

both connectional sense-making and fluency-building processes play a role in students’ learning 

with multiple graphical representations. However, Experiment 4 did not assess connectional un-

derstanding and connectional fluency: instead, I infer from the fact that instructional support de-

signed to enhance connectional sense-making processes and connectional fluency-building 

processes promotes students’ learning of robust domain knowledge that these learning processes 

play a role in learning with multiple graphical representations. A direct test of this claim would 

also assess connectional understanding and connectional fluency and investigate whether differ-

ences on these measures can explain the differences in robust domain knowledge.  

Taken together, Experiment 4 suggests that connectional sense-making processes and fluen-

cy-building processes interact. But, it remains unclear how these learning processes interact. Ex-

periment 4 leads to the question whether both types of support simply need to be present, wheth-

er students’ benefit from connectional sense-making support depends on their acquisition of con-

nectional fluency, or whether students’ benefit from connectional sense-making support depends 

on their acquisition of connectional understanding. The causal path analysis on the tutor log data 

obtained from Experiment 4 leads to the hypothesis that the acquisition of connectional under-

standing provides the foundation for students’ benefit from support for connectional fluency-

building processes. Experiment 5 was designed to investigate this hypothesis. 
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4.5 Experiment 5: Sequencing connectional sense-making and fluency-building support 

Experiment 4 shows that support for both connectional sense-making processes and connectional 

fluency-building processes enhance students’ benefit from multiple graphical representations. 

While it is evident that connectional sense-making support and connectional fluency-building 

support interact, it remains unclear how they interact. Does connectional understanding enhance 

students’ benefit from fluency-building support, or does connectional fluency enhance their ben-

efit from connectional sense-making support? This question arises from the findings in Experi-

ment 4, in which neither connectional sense-making support nor connectional fluency-building 

support alone were effective, but only both types of support together enhanced students’ learning 

of conceptual fractions knowledge. Based on a structural equation model of students’ error types, 

one might hypothesize that connectional sense-making support helps students to benefit from 

connectional fluency-building support, rather than the other way around. But the structural equa-

tion model analysis cannot conclusively answer this question: in Experiment 4, connectional flu-

ency-building support was consistently provided after connectional sense-making support. It is 

unclear whether connectional fluency-building support might have helped students benefit from 

connectional sense-making support if the two types of support had been provided in the reverse 

order. Further, due to the selective nature of the structural equation model analysis (i.e., selection 

of error types only if they significantly differed between conditions and predicted posttest per-

formance, see section 4.4.3.2), its merit can only be hypothesis generation, but not empirical evi-

dence for (or rather, against) a hypothesis. 

4.5.1 Theoretical perspectives and hypotheses 
The question of how connectional sense-making support and fluency-building support interact is 

also of practical relevance. If connectional understanding (acquired through support for connec-

tional sense-making processes) enables students to benefit from connectional fluency-building 

support, instructional designers should provide support for connectional sense-making processes 

before support for connectional fluency-building processes (understanding-first hypothesis). If, 

on the other hand, connectional fluency (acquired through support for connectional fluency-

building processes) enables students to benefit from connectional sense-making support, they 

should support connectional fluency-building processes before connectional sense-making 
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processes (fluency-first hypothesis). Providing support for these learning processes in the optimal 

order should maximize students’ benefit from activities designed to support connection making, 

which is – as argued – a crucial competence that will enhance students’ learning of robust do-

main knowledge. 

By investigating how connectional sense-making support and fluency-building support inte-

ract, my research is a step towards closing the gap between studies that have exclusively focused 

on sense-making support (e.g., Bodemer & Faust, 2006; Bodemer et al., 2004; Brünken et al., 

2005; Seufert & Brünken, 2006; van der Meij & de Jong, 2006) and those that have focused sole-

ly on fluency-building support (e.g., Kellman & Garrigan, 2009; Kellman et al., 2008; Kellman 

et al., 2009). Furthermore, Experiment 5 extends this prior research by focusing on multiple 

graphical representations that use the same symbol system. In this section, I describe theoretical 

perspectives pertaining to these competing hypotheses on the question of which learning process 

to support first.  

A variety of literatures acknowledge that both understanding and fluency are important as-

pects of robust knowledge within a domain. Theories of cognitive skill acquisition (e.g., 

Anderson, 1983; Koedinger et al., 2012; Ohlsson, 2008) describe both sense-making processes 

and fluency-building processes as integral learning processes that students need to perform to 

master a domain. Furthermore, although many educational practice guides for math education 

almost exclusively stress the importance of conceptual understanding (e.g., Siegler et al., 2010) – 

maybe in an effort to counteract the longlasting emphasis on procedural learning. Yet, they have 

recently put more emphasis on fluency as well. For example, the NMAP (2008) describes 

fluency in relating different fractions representations as one important foundation for later 

algebra learning. Research on fluency-building processes, however, has mostly focused on 

fluency in fact retrieval (Arroyo et al., 2011; Benjamin, Bjork, & Schwartz, 1998; Johnson & 

Layng, 1996), rather than on the type of perceptual fluency in making connections between 

graphical representations that I consider here, as described by Kellman and colleagues (Kellman 

& Garrigan, 2009; Kellman et al., 2008; Kellman et al., 2009). Unfortunately, neither of these 

literatures makes explicit claims about dependences between sense-making processes and 

fluency-building processes, which might have obviated the need for an empirical investigation of 

this question. In the following, I summarize arguments that speak for the hypothesis that one 
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might expect the most robust learning gains when supporting connectional fluency-building 

processes before connectional sense-making processes (fluency-first hypothesis), and arguments 

for the opposite prediction, that instruction will be most effective when connectional sense-

making processes are supported before connectional fluency-building processes (understanding-

first hypothesis). I will then discuss specific predictions made by each of these hypotheses that 

can be tested empirically. 

4.5.1.1. Fluency-first hypothesis 

Students who acquire connectional fluency, that is, who are fluent in making connections be-

tween multiple graphical representations by visually relating them, may benefit from increased 

“cognitive head room” during subsequent learning tasks (Koedinger et al., 2012) that involve 

sense-making processes about the conceptual nature of the connections between multiple graphi-

cal representations. 

Indeed, Kellman and colleagues (2009) argue that fluency results from automation of the 

perceptual task to make connections between different representations. This type of connectional 

fluency is acquired through experience with a variety of representations without having to en-

gage in sense-making processes about how corresponding knowledge components are depicted 

in the different graphical representations. Fluency training reduces cognitive load by automating 

the perceptual task, thereby freeing up cognitive resources for more complex learning tasks. If 

the perceptual task is not automated, it will unnecessarily take up cognitive resources that might 

be needed for the completion of a more complex task; these might well be tasks that involve 

connectional sense-making processes. If so, providing connectional fluency-building support be-

fore connectional sense-making support may decrease the risk of cognitive overload while stu-

dents work on connectional sense-making problems, which is known to hamper learning 

(Chandler & Sweller, 1991).  

4.5.1.2. Understanding-first hypothesis 

Kellman et al.’s (2009) account relies on the assumption that connectional fluency – the automa-

tion of perceptually relating multiple graphical representations – can be learned independently 

from understanding of these connections. However, this assumption might not be true: connec-

tional understanding might equip students with the knowledge they need in order to benefit from 
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connectional fluency-building support. If students do not know what aspects of different graphi-

cal representations correspond to one another, how should they know what to attend to while 

working on connectional fluency-building problems? Not having this knowledge may lead to in-

efficient learning strategies, such as trial and error, which might impede students’ benefit from 

fluency-building support. 

Indeed, the math education literature seems (albeit not explicitly) to agree with this view. 

Education practice guides, such as the NCTM standards (2010), provide “checklists” of know-

ledge that students should have acquired by specific grade levels. Understanding of fractions re-

presentations is expected by the end of grade 5 (e.g., “In grades 3-5 all students should – develop 

understanding of fractions as parts of unit wholes, as parts of a collection, as locations on number 

lines, and as divisions of whole numbers”, from NCTM Number and Operation Standards). The 

ability to efficiently work with fractions representations is expected later – not before the end of 

grade 8 (e.g., “In grades 6–8 all students should – work flexibly with fractions, decimals, and 

percents to solve problems”, from NCTM Number and Operation Standards).  

While Bieda and Nathan (2009) discuss how fluency in connection making between algebra 

representations may help students acquire abstract understanding of algebraic concepts and to 

transfer that knowledge to novel tasks, they also describe the danger of students being overly in-

fluenced by the visual properties of a representation, rather than by conceptual understanding of 

the representation. Thus, although they did not experimentally investigate this assertion, they 

suggest that connectional understanding may enable students to pay attention to the conceptually 

relevant aspects of the representations when developing connectional fluency. 

4.5.1.3. Specific predictions  

Both the understanding-first hypotheses and the fluency-first hypotheses make predictions about 

learning outcomes and process-level measures that can be tested empirically. Let us consider 

predictions for two sequences of instruction: a condition that receives connectional sense-making 

support before connectional fluency-building support (understanding-first condition) versus a 

condition that receives connectional fluency-building support before connectional sense-making 

support (fluency-first condition). 

Predictions of learning outcomes 
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First, let us consider connectional fluency as one of the possible learning outcomes; predictions 

with respect to connectional understanding are discussed below. The understanding-first hypo-

thesis predicts that students in the understanding-first condition will outperform students in the 

fluency-first condition on measures of connectional fluency because having acquired connec-

tional understanding equips students with the knowledge that is necessary to benefit from con-

nectional fluency-building support, for instance by helping students to direct their attention to the 

conceptually relevant aspects of graphical representations. By contrast, the fluency-first hypothe-

sis does not make specific predictions for measures of connectional fluency; students’ benefit 

from connectional fluency-building support does not depend on having previously received con-

nectional sense-making support. Thus, I am investigating the following two competing hypo-

theses: 

Understanding-first connection-fluency H1: The understanding-first condition will outper-

form the fluency-first condition on measures of connectional fluency. 

Fluency-first connection-fluency H0: The fluency-first condition will perform equally well as 

the understanding-first condition on measures of connectional fluency. 

Second, let us consider connectional understanding as another possible learning outcome. 

The fluency-first hypothesis predicts that students in the fluency-first condition outperform stu-

dents in the understanding-first condition on measures of connectional understanding because 

connectional fluency frees cognitive capacities that students can invest in connectional sense-

making processes. By contrast, the understanding-first hypothesis does not make specific predic-

tions for measures of connectional understanding; students’ benefit from connectional sense-

making support is not expected to depend on having previously received connectional fluency-

building support. Hence, I am contrasting the following two competing hypotheses: 

Fluency-first connection-understanding H1: The fluency-first condition will outperform the 

understanding-first condition on measures of connectional understanding. 

Understanding-first connection-understanding H0: The understanding-first condition will 

perform equally well as the fluency-first condition on measures of connectional understanding. 

Third, let us consider transfer of fractions knowledge as a final measure of learning out-

comes. Both hypotheses predict that the optimal sequence of connectional sense-making support 

and connectional fluency-building support will promote students’ learning of robust fractions 
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knowledge that can transfer to novel tasks. According to the understanding-first hypothesis, the 

understanding-first condition should outperform students in the fluency-first condition on trans-

fer of fractions knowledge. Conversely, the fluency-first condition predicts that the fluency-first 

condition will outperform students in the understanding-first condition on transfer of domain 

knowledge. An alternative hypothesis might state that the sequence of connectional sense-

making support and connectional fluency-building support does not matter, as long as both are 

provided. Note that this “null”-hypothesis is consistent with the results from Experiment 4, but 

inconsistent with both the understanding-first hypothesis and the fluency-first hypothesis. Taken 

together, I investigate the following contrasting hypotheses:  

Understanding-first transfer H1: The understanding-first condition will outperform the flu-

ency-first condition on transfer of fractions knowledge. 

Fluency-first transfer H2: The fluency-first condition will outperform the understanding-first 

condition on transfer of fractions knowledge. 

Combination transfer H0: The understanding-first condition and the fluency-first condition 

will perform equally well on transfer of fractions knowledge. 

Predictions of problem-solving behaviors during learning 

Both hypotheses make predictions regarding measures of problem-solving behaviors during the 

learning process. In particular, the number of errors students make while working on connection-

al sense-making and fluency-building problems as well as the time they spend on these problems 

are of interest. The understanding-first hypothesis predicts that students in the understanding-first 

condition will make fewer errors on connectional fluency-building problems than the fluency-

first condition because their connectional understanding helps them solve fluency-building prob-

lems, which in turn enhances their benefit from fluency-building support.  

Likewise, the understanding-first hypothesis predicts that students in the understanding-first 

condition will spend less time and make fewer errors on fluency-building problems because their 

connectional understanding enables them to more efficiently direct their attention to relevant as-

pects of the graphical representations, thereby allowing them to solve fluency-building problems 

faster. By contrast, the fluency-first condition does not make specific predictions as to the num-

ber of errors or the time spent on fluency-building problems. Thus, I contrast the following hypo-

theses: 
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Understanding-first errors-fluency H1: The understanding-first condition will make fewer 

errors on fluency-building problems than the fluency-first condition. 

Fluency-first errors-fluency H0: The fluency-first condition and the understanding-first con-

ditions will make the same number of errors on fluency-building problems. 

Understanding-first duration-fluency H1: The understanding-first condition will spend less 

time on fluency-building problems than the fluency-first condition. 

Fluency-first duration-fluency H0: The fluency-first condition and the understanding-first 

conditions will spend the same amount of time on fluency-building problems. 

By contrast, the fluency-first condition predicts that students in the fluency-first condition 

will make fewer errors and will spend less time on sense-making problems than students in the 

understanding-first condition because connectional fluency frees the cognitive load students need 

to successfully engage in connectional sense-making processes. The understanding-first condi-

tion, on the other hand, does not predict differences between conditions on connectional sense-

making problems. Thus, I will compare the following competing hypotheses:  

Fluency-first errors-sense H1: The fluency-first condition will make fewer errors on sense-

making problems than the understanding-first condition. 

Understanding-first errors-sense H0: The understanding-first condition and the fluency-first 

conditions will make the same number of errors on sense-making problems. 

Fluency-first duration-sense H1: The fluency-first condition will spend less time on sense-

making problems than the understanding-first condition. 

Understanding-first duration-sense H0: The understanding-first condition and the fluency-

first conditions will spend the same amount of time on sense-making problems. 

Predictions of connection making and conceptual processing while reflecting on learning 

Both hypotheses make predictions regarding connection making between graphical representa-

tions and conceptual reasoning about fractions concept during the learning process. Specifically, 

the understanding-first hypothesis predicts that, being equipped with connectional understanding, 

students in the understanding-first condition will make more connections between graphical re-

presentations on connectional fluency-building problems than the fluency-first condition, as as-

sessed by interview data after the learning phase. By contrast, the fluency-first condition does not 
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predict differences between conditions on connection making while students reflect on their 

work on connectional fluency-building problems. Thus, I contrast the following two hypotheses: 

Understanding-first connections-fluency H1: The understanding-first condition will make 

more connections while reflecting on their work on fluency-building problems than the fluency-

first condition. 

Fluency-first connections-fluency H0: The fluency-first condition and the understanding-first 

condition will make the same number of connections while reflecting on their work on fluency-

building problems. 

Furthermore, the fluency-first hypothesis predicts that, having connectional fluency, students 

in the fluency-first condition will make more connections between graphical representations than 

students in the understanding-first condition while reflecting on their work on connectional 

sense-making problems. However, the understanding-first condition does not predict differences 

between conditions on connection making while students reflect on their work on connectional 

sense-making problems. I will therefore compare the following contrasting hypotheses: 

Fluency-first connections-sense H1: The fluency-first condition will make more connections 

while reflecting on their work on sense-making problems than the understanding-first condition. 

Understanding-first connections-sense H0: The understanding-first condition and the fluen-

cy-first condition will make the same number of connections while reflecting on their work on 

connectional sense-making problems. 

In addition, both the understanding-first and the fluency-first hypotheses imply that the op-

timal sequence of connectional sense-making and fluency-building support will promote stu-

dents’ conceptual reasoning about fractions. According to the understanding-first hypothesis, one 

would expect that the understanding-first condition will engage in more conceptual reasoning 

than the fluency-first condition, as assessed by interview data after the learning phase. Converse-

ly, the fluency-first condition predicts that the fluency-first condition will engage in more con-

ceptual reasoning than the understanding-first condition. An alternative hypothesis might state 

that the sequence of connectional sense-making support and fluency-building support does not 

affect conceptual reasoning: as long as both types of support are present, students will engage in 

conceptual reasoning. Taken together, I will investigate the following hypotheses:  
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Understanding-first concepts H1: The understanding-first condition will engage in more 

conceptual reasoning about fractions while reflecting on their work than the fluency-first condi-

tion. 

 Fluency-first concepts H2: The fluency-first condition will engage in more conceptual rea-

soning about fractions while reflecting on their work than the understanding-first condition. 

Combination concepts H0: The understanding-first condition and the fluency-first condition 

will engage in the same amount of conceptual reasoning about fractions while reflecting on their 

work. 

Predictions of relations between process-level and learning outcome measures 

Finally, both the understanding-first and the fluency-first hypotheses make predictions about the 

relation between these different dependent measures. Differences between conditions on the 

connectional fluency and connectional understanding should partially explain the differences be-

tween conditions on the transfer posttest, while controlling for pretest performance. Similarly, 

differences in problem-solving behavior are expected to partially explain the differences between 

conditions on the transfer posttest, while controlling for pretest performance.  

4.5.2 Method 
To investigate these hypotheses, I conducted a lab-based experiment that contrasted different se-

quences of connectional sense-making and fluency-building support.  

4.5.2.1. Experimental design and procedure 
Activity Type Understanding-first condition Fluency-first condition 
Test Pretest: near / far transfer Pretest: near / far transfer 
Tutor: equivalence Sense-making support:  

4 tutor problems 
Fluency-building support:  
4 tutor problems 

Quiz 1: equivalence Reproduction-understanding,  
reproduction-fluency  

Reproduction-understanding,  
reproduction-fluency 

Tutor: equivalence Fluency-building support:  
4 tutor problems  

Sense-making support:  
4 tutor problems 

Quiz 2: equivalence Reproduction-understanding,  
reproduction-fluency 

Reproduction-understanding,  
reproduction-fluency 

Tutor: comparison Sense-making support:  
4 tutor problems 

Fluency-building support:  
4 tutor problems 

Quiz 1: comparison Reproduction-understanding,  
reproduction-fluency 

Reproduction-understanding,  
reproduction-fluency 

Tutor: comparison Fluency-building support:  
4 tutor problems 

Sense-making support:  
4 tutor problems 

Quiz 2: comparison Reproduction-understanding,  
reproduction-fluency 

Reproduction-understanding,  
reproduction-fluency 
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Test Posttest: near / far transfer Posttest: near / far transfer 
Interview Retrospective interview on tutor problems Retrospective interview on tutor problems 

Table 23. Experiment 5: Sequence of activities by experimental condition. 

Students were randomly assigned to different sequences of connectional sense-making support 

and connectional fluency-building support. In other words, all students worked on the same tutor 

problems, but in different orders. 

Table 23 details the sequence of assessment problems and tutor problems for each experi-

mental condition. Students first completed a pretest. They then worked on equivalence and com-

parison topics of the Fractions Tutor. After every four tutor problems, students completed two 

quiz items (i.e., reproduction-understanding and reproduction-fluency for the given topic). After 

completing all tutor problems as well as the last set of quiz items, students were given an imme-

diate posttest. 

Students in the understanding-first condition received connectional sense-making support be-

fore connectional fluency-building support. This procedure was implemented for each topic (i.e., 

equivalence and comparison). Specifically, students in the understanding-first condition first 

worked on four connectional sense-making problems for equivalent fractions. Next, they worked 

on four connectional fluency-building problems for equivalent fractions. They then worked on 

four connectional sense-making problems for fraction comparison, followed by four connection-

al fluency-building problems for fraction comparison.  

By contrast, students in the fluency-first condition received connectional fluency-building 

support before connectional sense-making support, again for each topic. Specifically, students in 

the fluency-first condition first worked on four connectional fluency-building problems for 

equivalent fractions, then on four connectional sense-making problems for equivalent fractions. 

Next, they worked on four connectional fluency-building problems for fraction comparison, fol-

lowed by four connectional sense-making problems for fraction comparison. 

The experiment was conducted in two phases. Due to delayed arrival of the eye-tracking 

equipment, the first 38 of 74 students participated in the experiment without eye tracking. The 

remaining 36 students participated in the experiment with eye tracking. The procedure for both 

phases of the experiment was exactly identical except for the collection of interview data, as de-

tailed below.  
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Students in phase 2 worked with the SMI RED 250 remote eye-tracking system, which uses 

an infra-red camera located at the bottom of a regular computer monitor to track students’ eye 

movements (Duchowski, 2007). Therefore, students in phase 2 of the experiment worked on the 

Fractions Tutor in the same was as students in phase 1 (after following a calibration procedure 

that took about 1-2 minutes to complete).  

4.5.2.3. Participants 

Seventy-four students from grades 3-5 participated in the experiment. Students were recruited 

through advertisements in local newspapers, online bulletin boards, and through flyers distri-

buted in local schools. Sessions were conducted individually in the lab. Students were randomly 

assigned to the understanding-first condition or to the fluency-first condition. 

4.5.2.4. Fractions Tutor versions 

Students worked with a subset of the tutor problems used in Experiment 4 (see section 3.4.2). 

Connectional sense-making support makes use of the worked-example principle (Renkl, 2005). 

Students were first presented with a worked example that uses one of the area models (i.e., circle 

or rectangle) to demonstrate how to solve a fractions problem. Students completed the last step 

of the worked-example problem and (while the worked example was still on the screen) were 

then presented with an equivalent problem in which they have to use the number line. Students 

had to complete these analogous (i.e., they were open problems, not worked examples). At the 

end of the problem, students were prompted to relate the two graphical representations to one 

another. Fig. 13 (see section 3.4.2) shows an example of a connectional sense-making support 

problem for equivalent fractions, Fig. 14 (see section 3.4.2) shows an example of a connectional 

sense-making support problem for fraction comparison. 

Connectional fluency-building support problems are similar to Kellman et al.’s fluency train-

ing for perceptual expertise in connection making (Kellman et al., 2008). Students were pre-

sented with a variety of graphical representations and have to sort them into sets of equivalent 

fractions (see Fig. 15, see section 3.4.3), or order them from smallest to largest, using drag-and-

drop (see Fig. 16, section 3.4.3). Students were encouraged to solve the problems by visually es-

timating the relative size of the fractions, rather than by counting or computationally solving the 

problems. 
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4.5.2.5. Test instruments 

I assessed learning outcome measures, measures of problem-solving behaviors collected while 

students worked with the Fractions Tutor, and I conducted retrospective interviews, using the 

eye-gaze recordings as cues for the interviews for students who participated in the second phase 

of the experiment. 

Learning outcome measures  

I assessed reproduction of connection-making knowledge based on quiz items with circles, rec-

tangles, and number lines, presented in a format identical to the problems in the Fractions Tutor. 

Examples of the quiz items can be found in Appendix 8. Specifically, connection-understanding 

items assessed students’ conceptual understanding of connections between graphical representa-

tions with regard to equivalent fractions and fraction comparison. For instance, students were 

asked to choose the correct explanation for why two number lines show equivalent fractions. 

Connection-fluency items assessed students’ fluency in making connections with regard to 

equivalent fractions and fraction comparison. For example, students were asked to quickly find 

different graphical representations that show equivalent fractions. The order in which students 

received the quiz items was counterbalanced. For both measures, I computed accuracy and effi-

ciency scores. Accuracy was computed as the proportion of correct responses to the maximum 

number correct responses. To assess students’ efficiency in solving quiz items, I took into ac-

count the speed with which students solved the quiz items, following (van Gog & Paas, 2008): 

efficiency = Z (proportion  correct )− Z (time  on  quiz  items )
√2

 
 

(7) 

Positive efficiency scores indicate higher efficiency at solving quiz items correctly, and nega-

tive efficiency scores indicate lower efficiency at solving quiz items correctly, compared to the 

relative mean of the sample. An efficiency score of 0 indicates average efficiency with respect to 

the sample. 

I assessed students’ transfer of fractions knowledge based on equivalent pretests and post-

tests. This measure corresponds to transfer items from the conceptual knowledge test used in Ex-

periment 4, while reflecting the smaller selection of topics covered in Experiment 5. The transfer 

test included items on equivalence and comparison without graphical representations. Example 

test items are shown in Appendix 8. I computed accuracy and efficiency scores for the test.  
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Tutor log data 

The Fractions Tutor logs all of the students’ interactions during problem solving. The analysis of 

the tutor log data is based on a knowledge component model, summarized in Table 24. The 

knowledge component model was the result of a comparison of multiple alternative knowledge 

component models. Fig. 29 and Fig. 30 provide examples for the knowledge components for the 

equivalent fractions sense-making problems and fraction comparison sense-making problems, 

respectively. 

To investigate the predictions made by the understanding-first and fluency-first hypotheses, I 

compared conditions on several measures based on this knowledge component model. First, I 

investigated trends in students’ first-attempt errors and step durations. To do so, I used “learning 

curves” provided by the DataShop web service (Koedinger et al., 2010), which depict the aver-

age error rate or step duration (across students and knowledge components) as a function of the 

amount of practice (i.e., the number of opportunities a student has to apply a given knowledge 

component). Following standard practice in Cognitive Tutors research (Koedinger et al., 2010, 

2012), I considered each step in a given tutor problem as a learning opportunity for the particular 

knowledge component involved in the step. I considered a step in the problem to be correct if the 

student solved it without hints and without errors (i.e., if the student’s first action on the step was 

a correct attempt at solving, as opposed to an error or a hint request). I consider the total time 

spent on a step involving a given knowledge component as the duration of the step. I expect that, 

if learning occurs, the number of errors students make on consecutive learning opportunity de-

crease, and that they spend a decreasing amount of time on consecutive learning opportunity. In 

other words, decreasing learning curves indicate learning. 

Second, I investigated whether the number of first-attempt errors and total step duration me-

diate the effects of condition on students’ accuracy and efficiency on the quiz items and transfer 

tests. I computed the number of first-attempt errors as the sum of first actions on a given step 

was that were incorrect attempts across (1) equivalence knowledge components in fluency-

building problems (i.e., knowledge components 1-3 in Table 24), (2) equivalence knowledge 

components in sense-making problems (i.e., knowledge components 4-10 in Table 24), (3) com-

parison knowledge components in fluency-building problems (i.e., knowledge components 11-13 

in Table 24), (4) comparison knowledge components in sense-making problems (i.e., knowledge 
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components 14-21 in Table 24). Likewise, I computed the step duration as the total amount of 

time students spent on a given step across the same knowledge component types listed in Table 

24. 

 
Fig. 29. Experiment 5: Example knowledge components for equivalent fraction sense-making problems. 
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Fig. 30. Experiment 5: Example knowledge components for fraction comparison sense-making problems. 

 

 
Knowledge component Knowledge component 

type 
Description 

1. equivDrag_circle Equivalence fluency-
building 

Dragging-and-dropping equivalent circle 
(fluency-building problem) 

2. equivDrag_rect Equivalence fluency-
building 

Dragging-and-dropping equivalent 
rectangle (fluency-building problem) 

3. equivDrag_NL Equivalence fluency-
building 

Dragging-and-dropping equivalent number 
line (fluency-building problem) 

4. equivFractEquivalent Equivalence sense-making Judging whether two fraction 
representations are equivalent (sense-
making problem) 

5. equivMultiply Equivalence sense-making Multiplying the numerator or denominator 
of a given symbolic fraction to find an 
equivalent fraction (sense-making 
problem) 

6. equivNameDenomFract Equivalence sense-making Entering the denominator of an equivalent 
fraction (sense-making problem) 

7. equivNameNumFract Equivalence sense-making Entering the numerator of an equivalent 
fraction (sense-making problem) 

8. relationEquivDiffNumbers Equivalence sense-making Reasoning about equivalent fractions 
showing the same amount with different 
numbers (sense-making problem) 

9. relationEquivMultiplySameNumber Equivalence sense-making 
 

Reasoning about multiplying numerator 
and denominator by the same number to 
find equivalent fractions (sense-making 
problem) 

10. relationEquivSameAmount Equivalence sense-making Reasoning about equivalent fractions 
showing the same amount (sense-making 
problem) 

11. compDrag_circle Comparison fluency-
building 

Dragging-and-dropping circle that is 
smaller or larger than another (fluency-
building problem) 

12. compDrag_rect Comparison fluency-
building 

Dragging-and-dropping rectangle that is 
smaller or larger than another (fluency-
building problem) 

13. compDrag_NL Comparison fluency-
building 

Dragging-and-dropping number line that is 
smaller or larger than another (fluency-
building problem) 

14. compFract Comparison sense-making Indicating which fraction representation is 
larger or smaller than another (sense-
making problem) 

15. compNumSect Comparison sense-making Comparing the number of sections two 
fraction representations are partitioned into 
(sense-making problem) 

16. compSectSize Comparison sense-making Comparing the relative size of sections in 
two fraction representations (sense-making 
problem) 

17. numSectZeroDot Comparison sense-making Entering the fraction shown on the number 
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line (sense-making problem) 
18. relationCompLargerSizeLargerFract Comparison sense-making Reasoning about the fraction 

representation with the larger sections 
showing the larger fraction, given that the 
numerators are the same (sense-making 
problem) 

19. relationCompNumSectSizeSect Comparison sense-making Reasoning about the number of sections a 
fraction representation is partitioned into 
being inversely related to the size of the 
sections (sense-making problem) 

20. relationCompSameNum Comparison sense-making 
 

Reasoning about the number of sections of 
two fraction representations being the 
same if the numerators are the same 
(sense-making problem) 

21. relationCompTotalSectNumber Comparison sense-making Reasoning about the number of total 
sections two fraction representations are 
partitioned into (sense-making problem) 

Table 24. Experiment 5: Knowledge component model. 

Retrospective interviews 

In phase 1 of the experiment (i.e., in the first phase without eye tracking), students were inter-

viewed about their problem-solving procedure on four randomly selected tutor problems. Specif-

ically, one of each problem type (i.e., equivalence sense-making support, equivalence fluency-

building support, comparison sense-making support, comparison fluency-building support, see 

overview in Table 24) was randomly selected for the retrospective interview. On these randomly 

selected problems, the interviewer asked previously specified questions about how the student 

solved each step in the problem, based on detailed notes about students’ interactions. For in-

stance, the interviewer might ask: “In this step (points at step B2 in Fig. 29), you immediately 

selected ‘yes’ from the menu, that the two fractions in the number lines are equivalent. How did 

you solve that step?”  

In phase 2 of the experiment (i.e., the second phase with eye-gaze recordings as cues), four 

tutor problems were randomly selected in the same way as in phase 1. For each of these random-

ly selected problems, the interviewer played back the recorded eye-gaze behaviors for each se-

lected problem to the student. The eye-gaze recordings depict the student’s eye-gaze focus as a 

circle, overlaid with a background-screen recording showing the Fractions Tutor problem and the 

student’s interactions with the problem. In replaying the eye-gaze recording to the student, the 

interviewer first explained to the student what the eye-gaze circle meant, and then paused after 

each completed step for an interview question. Then, the interviewer asked about the student’s 
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problem-solving behavior in the same was as in phase 1, but skipping the description of the stu-

dent’s interaction (i.e., in the earlier example, the interviewer would not say “In this step [points 

at step B2 in Fig. 29], you immediately selected ‘yes’ from the menu, that the two fractions in 

the number lines are equivalent,” since that information was redundant with the eye-gaze record-

ing). Instead, the interviewer might for example ask, after replaying the eye-gaze recording for 

step B2 in Fig. 29, “how did you solve this step?” 

Code Description 
Only for sense-making 
problems: 
1. Representation connections 

If the student is talking about two different graphical representations (e.g., circle – 
rectangle, circle – number line, rectangle – number line), not if the student is 
talking about the same graphical representations (e.g., circle – circle, rectangle – 
rectangle, number line – number line) 

1.1. Representation-surface If the student makes a surface-level connection between two different graphical 
representations (e.g., based on color, shape, or some other feature that is not 
conceptually relevant).  
Example: “Like when you show it (points at rectangle B) this rectangle and the 
number lines, the number lines have the lines, and that’s for the rectangle.” (from 
an equivalence sense-making problem) 

1.2. Representation-concept-
incorrect 

If the student refers to a structural feature (e.g., number of total sections, number 
of shaded sections) of two different graphical representations (i.e., circle – 
rectangle, circle – number line) but does so incompletely or incorrectly.  
Example: “I saw that the they were both the same number, they’re both the same.” 
(from an equivalence sense-making problem) 

1.3. Representation-concept-
correct 

If the student refers to a structural feature correctly (e.g., number of total sections, 
number of shaded sections) of two different graphical representations (i.e., circle – 
rectangle, circle – number line).  
Example: “Three, em, the circles and the number lines show the same thing, cause 
this (points at number line B) is like one third, but it’s still nine, so three is one 
third of nine. And then this one (points at second question in C3), em, it was just 
em, that they have like different numbers of em, sections, so I saw numbers of 
sections and I just like saw it, they’re different sections, so numbers of sections.” 
(from an equivalence sense-making problem) 

Only for fluency-building 
problems: 
2. Representation-fluency 

If the student is talking about two different graphical representations (e.g., circle – 
rectangle, circle – number line, rectangle – number line), not if the student is 
talking about the same graphical representations (e.g., circle – circle, rectangle – 
rectangle, number line – number line).  
The student needs to refer to either an intuitive sense of the two representations 
looking alike, by visually estimating, or needs to correctly explain the connection 
based on concepts (e.g., numerator and denominator, as in 1.3). 
Example: “Em, well I was sort of looking at em, at how much there was, like I 
noticed that this (points at circle 1) equals this (points at given circle for slot 1), so 
this (points at circle 1) had to be with this one (points at given circle for slot 1) 
because they’re the same amount.” (from an equivalence fluency-building 
problem)  

For all problems: 
3. Concept-correct 

If the student explains a fractions concept correctly, without relating to graphical 
representations, while relating to one graphical representation (e.g., only a circle), 
or while relating to the same graphical representations (e.g., circle – circle) 
Example: “Em, well you don’t really change, I just knew that you don’t really 
change the amount here (points at circles), because it looks like this one (points at 
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circle A) is the same shape as that one (points at circle B), so they’re basically like 
the same amount.” (from an equivalence sense-making problem)  

Table 25. Experiment 5: Coding scheme for retrospective interviews. 

The protocols obtained from the retrospective interviews were coded for conceptual 

processing and surface-level processing of connections between multiple graphical representa-

tions, as well as for conceptual understanding of fractions (regardless of connections between 

multiple graphical representations). Table 25 details the criteria for each of these codes and ex-

ample utterances for each code. Fig. 31 shows the decision tree used by the coders to facilitate 

the coding procedure. I applied the same coding scheme to the retrospective interviews obtained 

in phases 1 and 2. However, due to the different sources of information available to the students 

as they responded to the interview question (i.e., a verbal description of the interaction versus 

eye-gaze recordings), I analyze the results from phases 1 and 2 separately.  

 
Fig. 31. Experiment 5: Decision tree to apply the coding scheme for retrospective interviews.  

4.5.3 Results 
Five students were excluded from the analysis. One student was excluded because he did not 

complete both topics of the Fractions Tutor. Four students were excluded because they were sta-

tistical outliers at the pretest. Table 26 shows the number of included and excluded students per 

condition.  
 included excluded 
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understanding-fist 37 3 
fluency-first 32 2 

Table 26. Experiment 5: Number of students included and excluded by condition. 

Taken together, the data from N = 69 students were analyzed (n = 37 in the understanding-

first condition, n = 32 in the fluency-first condition). I report partial eta-squared as measures of 

effect size, with an effect size of η2 of .01 corresponding to a small effect, .06 to a medium ef-

fect, and .14 to a large effect (Cohen, 1988). Table 27 gives an overview of the results on the 

learning outcome measures. Table 28 provides an overview of the results on the process-level 

measures. 

measure test time effect significant F/t-value adj. p-
value 

effect 
size 

Quiz:  
connection-

fluency accuracy 

 condition marginally F(1,65) = 3.34 p < .10 η2 = .05 
 quiz time no F < 1   

 condition * quiz 
time no F(1,65) = 1.42 p > .10  

quiz 1 understanding-first 
~ fluency-first no F < 1   

quiz 2 understanding-first 
> fluency-first yes F(1,65) = 4.52 p < .05 η2 = .07 

Quiz:  
connection-

fluency efficiency 

 condition yes F(1,65) = 12.14 p < .01 η2 = .16 
 quiz time no F(1,65) = 1.17 p > .10  

 condition * quiz 
time yes F(1,65) = 6.55 p < .05 η2 = .09 

quiz 1 fluency-first >  
understanding-first yes F(1,65) = 11.34 p < .01 η2 = .15 

quiz 2 fluency-first >  
understanding-first marginally F(1,65) = 2.82 p < .10 η2 = .04 

Quiz: connection-
understanding 

accuracy 

 condition no F < 1   
 quiz time no F < 1   

 condition * quiz 
time no F < 1   

Quiz: connection-
understanding 

efficiency 

 condition no F < 1   
 quiz time no F < 1   

 condition * quiz 
time no F < 1   

Test: transfer  
accuracy 

 condition no F < 1   
 test time yes F(1,66) = 3.76 p < .01 η2 = .12 
 condition * test time no F < 1   

posttest understanding-first 
> fluency-first marginally F(1,65) = 3.05 p < .10 η2 = .05 

Test: transfer  
efficiency 

 condition no F < 1   
 test time yes F(1,66) = 8.66 p < .01 η2 = .12 
 condition * test time no F < 1   
Table 27. Experiment 5: Results on learning outcome measures. 
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measure problem 
type effect significant F/χ²-value adj. p-

value 
effect 
size 

error rate 

equivalence-
sense 

understanding-first 
< fluency-first no F(1, 66) = 2.61 p > .10  

comparison-
sense 

understanding-first 
~ fluency-first marginally F(1, 66) = 2.80 p < .10 η2 = .04 

equivalence-
fluency 

understanding-first 
< fluency-first marginally F(1, 66) = 2.79 p < .10 η2 = .04 

comparison-
fluency 

understanding-first 
~ fluency-first no F(1, 66) = 2.04 p > .10  

step duration 

equivalence-
sense 

understanding-first 
~ fluency-first no F < 1   

comparison-
sense 

understanding-first 
~ fluency-first no F < 1   

equivalence-
fluency 

understanding-first 
~ fluency-first no F < 1   

comparison-
fluency 

understanding-first 
~ fluency-first no F < 1   

representation-
connections (phase 1 

interviews) 
 

sense-
making 

problems 
--- ---    

fluency-
building 
problems 

understanding-first 
~ fluency-first no χ² < 1   

all tutor 
problems 

fluency-building 
problems > sense-
making problems 

yes χ²(1, N = 187) = 
88.99 p < .01  

conceptual reasoning 
(phase 1 interviews) 

all tutor 
problems 

understanding-first 
> fluency-first yes χ²(1, N = 351) = 

10.60 p < .01  

Table 28. Experiment 5: Results on process-level measures. 

4.5.3.1. Effects on quiz: Connection-fluency and connection-understanding 
  Understanding-first Fluency-first 

Accuracy Quiz 1: connection-understanding .49 (.36) .39 (.38) 
Quiz 2: connection-understanding .41 (.33) .45 (.41) 

Quiz 1: connection-fluency .62 (.35) .60 (.32) 
Quiz 2: connection-fluency .65 (.34) .50 (.31) 

Efficiency Quiz 1: connection-understanding -.04 (12.99) .12 (10.05) 
Quiz 2: connection-understanding .41 (.33) .45 (.41) 

Quiz 1: connection-fluency -6.32 (21.32) 6.61 (8.61) 
Quiz 2: connection-fluency -1.31 (9.47) 1.71 (5.62) 

Table 29. Experiment 5: Means and standard deviations (in parentheses) by condition on connection-understanding and connec-
tion-fluency measures per quiz time. 

Table 29 shows the means and standard deviations for the understanding-first and fluency-first 

conditions on the quiz measures: accuracy and efficiency on the reproduction-understanding and 

the reproduction-fluency scales of the quizzes at quiz times 1 and 2. The scores were averaged 

across the equivalence and comparison topics (see Table 19 for an overview of the procedure), 
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because the measure of interest regards fluency and understanding, but not knowledge about 

equivalence and comparison.  

To investigate the understanding-first connection-fluency hypothesis H1 (that the understand-

ing-first condition will outperform the fluency-first condition on measures of fluency in making 

connections), I conducted a repeated measures ANCOVA with accuracy on the pretest and time 

spent on the Fractions Tutor as covariates, and accuracy on reproduction-fluency at quiz times 1 

and 2 as repeated, dependent measures. Fig. 32 shows students’ accuracy on the reproduction-

fluency quizzes at quiz times 1 and 2. There was a marginally significant main effect of condi-

tion, F(1,65) = 3.34, p < .10, η2 = .05, but no main effect of quiz time (F < 1) nor an interaction 

of quiz time with condition, F(1,65) = 1.42, p > .10. Posthoc comparisons revealed no significant 

differences between conditions at quiz time 1 (F < 1), but a significant advantage of the under-

standing-first condition over the fluency-first condition at quiz time 2, F(1,65) = 4.52, p < .05, η2 

= .07.  

 
Fig. 32. Experiment 5: Accuracy on reproduction-fluency quizzes by condition (F-1st = fluency-first, U-1st = understanding-

first) by quiz time. 

A repeated measures ANCOVA with efficiency on the pretest and time spent on the Frac-

tions Tutor as covariates, and efficiency on reproduction-fluency at quiz times 1 and 2 as re-
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peated, dependent measures showed a significant main effect of condition, F(1,65) = 12.14, p < 

.01, η2 = .16, and a significant interaction of quiz time with condition, F(1,65) = 6.55, p < .05, η2 

= .09, but no significant effect of quiz time, F(1,65) = 1.17, p > .10. Fig. 33 shows students’ effi-

ciency on the reproduction-fluency quizzes at quiz times 1 and 2. Posthoc comparisons show a 

significant advantage of the fluency-first condition at quiz time 1, F(1,65) = 11.34, p < .01, η2 = 

.15, but only a marginally significant advantage of the fluency-first condition at quiz time 2, 

F(1,65) = 2.82, p < .10, η2 = .04. 

 
Fig. 33. Experiment 5: Efficiency on reproduction-fluency quizzes by condition (F-1st = fluency-first, U-1st = understanding-

first) by quiz time. 

To investigate the fluency-first connection-understanding hypothesis H1 (that the fluency-

first condition will outperform the understanding-first condition on measures of conceptual un-

derstanding of connections), I conducted a repeated measures ANCOVA with pretest and time 

spent on the Fractions Tutor as covariates, and accuracy on reproduction-understanding at quiz 

times 1 and 2 as repeated, dependent measures. There was no significant main effect of condi-

tion, quiz time, nor an interaction of quiz time with condition (Fs < 1). A repeated measures 

ANCOVA with efficiency on the pretest and time spent on the Fractions Tutor as covariates, and 

efficiency on reproduction-understanding at quiz times 1 and 2 as repeated, dependent measures 
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showed no significant main effect of condition, quiz time, nor an interaction of quiz time with 

condition (Fs < 1).  

Taken together, the results provide partial support for the understanding-first connection-

fluency hypothesis H1. With regard to accuracy on connection-fluency, the results support the 

understanding-first connection-fluency hypothesis H1: students in the understanding-first condi-

tion outperform students in the fluency-first condition significantly at quiz time 2, that is, after 

having received fluency-building support. However, with regard to efficiency on connection-

fluency, the results show the opposite pattern: students in the fluency-first condition significantly 

outperform students in the understanding-first condition at quiz time 1, although this difference 

becomes smaller at quiz time 2, that is, after students in the understanding-first condition re-

ceived fluency-building support, but remains marginally significant. Thus, the fluency-first con-

nection-fluency hypothesis H0 can only be rejected in favor of the understanding-first connec-

tion-fluency hypothesis H1 with regard to accuracy measures, but not with regard to efficiency 

measures. 

Overall, the results do not support the fluency-first connection-understanding hypothesis H1. 

There were no differences between conditions on either accuracy or efficiency of connection-

understanding. Thus, the understanding-first connection-understanding hypothesis H0 cannot be 

rejected. 

4.5.3.2. Effects on posttest: Transfer of knowledge 

Table 30 shows the means and standard deviations for the understanding-first and fluency-first 

conditions on the transfer test measures: accuracy and efficiency at test times 1 and 2.  

  Understanding-first Fluency-first 
Accuracy Transfer pretest .45 (.35) .53 (.34) 

Transfer posttest .51 (.36) .47 (.32) 
Efficiency Transfer pretest .34 (.44) .42 (.40) 

Transfer posttest .51 (.48) .63 (.44) 
Table 30. Experiment 5: Means and standard deviations (in parentheses) by condition on transfer tests per test time. 

To investigate the understanding-first transfer hypothesis H1 (that the understanding-first 

condition will outperform the fluency-first condition on transfer) and the fluency-first transfer 

hypothesis H2 (that the fluency-first condition will outperform the understanding-first condition 

on transfer), respectively, I computed a repeated measure ANCOVA with time spent on the Frac-
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tions Tutor as covariate and test time (pretest and posttest) the repeated factor, and accuracy on 

transfer as dependent measure. Fig. 34 shows students’ accuracy on the transfer test at the pretest 

and the posttest. The results show a marginally significant interaction of test time with condition, 

F(1,66) = 3.76, p < .10, η2 = .05, but no significant main effects of condition or test (Fs < 1). 

Posthoc comparisons on the posttest with time spent on the Fractions Tutor and pretest as cova-

riates shows a marginally significant advantage of the understanding-first condition at the post-

test, F(1,65) = 3.05, p < .10, η2 = .05. 

 
Fig. 34. Experiment 5: Accuracy on transfer by condition (F-1st = fluency-first, U-1st = understanding-first) by test time. 

A repeated measures ANCOVA with time spent on the Fractions Tutor as covariate and test 

time (pretest and posttest) the repeated factor, and efficiency on transfer as dependent measure 

showed a significant main effect of test time, F(1,66) = 8.66, p < .01, η2 = .12, but no significant 

main effect of condition nor a significant interaction of test time with condition (Fs < 1). Fig. 35 

shows students’ efficiency on the reproduction-fluency quizzes at quiz times 1 and 2. 

Taken together, the results provide partial support for the understanding-first transfer hypo-

thesis H1, but they do not support the fluency-first transfer hypothesis H2. With regard to accu-

racy on transfer, the understanding-first condition marginally significantly outperforms the flu-

ency-first condition. It is interesting to note that only the understanding-first condition improved 
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from pretest to posttest on accuracy on transfer; the fluency-first condition worsened from pretest 

to posttest. However, both conditions equally improved on efficiency on transfer. Taken togeth-

er, the combination transfer hypothesis H0 can only be rejected in favor of the understanding-

first transfer hypothesis H1 when considering accuracy on transfer, but not with regard to effi-

ciency.  

 
Fig. 35. Experiment 5: Efficiency on transfer by condition (F-1st = fluency-first, U-1st = understanding-first) by test time. 

4.5.3.3. Effects on learning curves: Rates of learning 

Table 31 shows the means and standard deviations for the understanding-first and fluency-first 

conditions on the error rates and durations per problem type. 
 Problem type Understanding-first Fluency-first 

Error rates equivalence-sense .17 (.09) .17 (.08) 
comparison-sense .28 (.11) .29 (.11) 

equivalence-fluency .35 (.14) .36 (.13) 
comparison-fluency .17 (.10) .24 (.10) 

Step duration equivalence-sense 697.06 s (319.97 s) 635.85 s (364.26 s) 
comparison-sense 659.56 s (397.44 s) 573.93 s (219.41 s) 

equivalence-fluency 180.46 s (85.50 s) 180.27 s (98.88 s) 
comparison-fluency 23.57 s (14.09 s) 25.4 s (11.94 s) 

Table 31. Experiment 5: Means and standard deviations (in parentheses) by condition on error rates and durations (in seconds) 
per problem type. 
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To examine the understanding-first errors-fluency hypothesis H1 (that the understanding-first 

condition will make fewer errors on connectional fluency-building support than the fluency-first 

condition), and the fluency-first errors-sense hypothesis H1 (that the fluency-first condition will 

make fewer errors on connectional sense-making support than the understanding-first condition), 

I computed MANCOVAs with accuracy on the transfer pretest as covariate, and the estimated 

error rates, as outputted by the DataShop web service, for equivalence sense-making knowledge 

components, equivalence fluency-building knowledge components, comparison sense-making 

knowledge components, and comparison fluency-building knowledge components (see Table 24) 

as dependent measures. There was a marginally significant difference between conditions on 

comparison sense error rates, F(1, 66) = 2.80, p < .10, η2 = .04, and on equivalence-fluency error 

rates, F(1, 66) = 2.79, p = .10, η2 = .04, such that the understanding-first condition evidenced 

lower error rates. There were no significant differences on comparison-fluency error rates, F(1, 

66) = 2.61, p > .10, or on equivalence-sense error rates, F(1, 66) = 2.04, p > .10.  

This finding provides partial support for the understanding-first errors-fluency hypothesis 

H1. Earlier in the learning sequence (that is, on equivalence-fluency problems), the understand-

ing-first condition shows slightly lower error rates than the fluency-first condition. Thus, when 

considering problem-solving behaviors earlier during the learning sequence, the fluency-first er-

rors-fluency hypothesis H0 can be rejected in favor of the understanding-first errors-fluency hy-

pothesis H1. Whether the fact that this difference was not replicated on the comparison-fluency 

problems is due to the fact that they occurred later in the learning process (perhaps due to fati-

gue) or because of attributes of the comparison topic (perhaps due to the fact that these problems 

appeared to be easier for students, as indicated by lower error rates shown in Table 31) cannot be 

answered with the current experiment, since equivalence problems were always presented before 

comparison problems. 

It is interesting that this difference does not only occur on fluency-building problems, as the 

understanding-first hypothesis predicted, but also on sense-making problems. Fig. 36 shows the 

learning curve for the error rate averaged across comparison sense-making knowledge compo-

nents. Recall that a decreasing error rate indicates learning. As the standard errors in Fig. 36 in-

dicate, this difference is reliable after the third attempt per knowledge component. These results 

show that students in the understanding-first condition learn more efficiently than students in the 
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fluency-first condition while working on comparison sense-making problems. This finding 

stands in contrast to the fluency-first errors-sense hypothesis H1. Rather than promoting stu-

dents’ benefit from sense-making problems, receiving fluency-building support first seems to 

decrease students’ benefit from subsequent sense-making support. Again, this difference is only 

apparent later during the learning sequence (that is, on comparison problems). As with the fluen-

cy-building problems, one may reason that an apparent disadvantage of fluency takes a while to 

manifest itself in an increased error rate during problem solving.  

 
Fig. 36. Experiment 5: Learning curves by condition across comparison sense-making knowledge components. Bars show stan-

dard errors. 

To investigate the understanding-first duration-fluency hypothesis H1 (that the understand-

ing-first condition will spend less time on fluency-building problems than the fluency-first condi-

tion), and the fluency-first duration-sense hypothesis H1 (that the fluency-first condition will 

spend less time on sense-making problems than the understanding-first condition), I computed 

MANCOVAs with accuracy on the transfer pretest as covariate, and step duration for equiva-

lence sense-making knowledge components, equivalence fluency-building knowledge compo-

nents, comparison sense-making knowledge components, and comparison fluency-building 

knowledge components (see Table 24) as dependent measures. There were no significant differ-

ences between conditions on either dependent measure (Fs < 1). Thus, neither the fluency-first 

duration-fluency hypothesis H0 nor the understanding-first duration-sense hypothesis H0 can be 

rejected. 
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4.5.3.4. Effects on retrospective interviews: Connection making and conceptual reasoning 

At this time, only the interview data collected during phase 1 has been completely transcribed 

and coded. Table 32 shows the frequencies (i.e., the number of utterances) of representation con-

nections and conceptual utterances obtained during phase 1 of the experiment by the codes de-

scribed in Table 25. The interrater reliability between two independent coders was substantial 

with κ = .66. 

 Understanding-first Fluency-first 
Representation-surface 1 0 

Representation-concept-incorrect 5 1 
Representation-concept-correct 12 11 

Representation-fluency 76 82 
Concept-correct 206 145 

Table 32. Experiment 5: Frequencies of utterances coded as representation connections and conceptual reasoning (see Table 25 
for the coding scheme). 

To test the understanding-first connections-fluency hypothesis H1 (that the understanding-

first condition will make more connections while reflecting on their work on fluency-building 

problems than the fluency-first condition), I computed a chi-square test on the representation-

fluency utterances. The results show no significant difference between conditions (χ² < 1). Thus, 

the fluency-first connections-fluency hypothesis H0 cannot be rejected. 

Given that there were almost no representation-concept-correct connections (only 23 in total, 

see Table 32), a chi-square test to investigate the fluency-first connections-sense hypothesis H1 

(that the fluency-first condition will make more connections while reflecting on their work on 

sense-making problems than the understanding-first condition) is not warranted. Thus, the under-

standing-first connections-sense hypothesis H0 cannot be rejected. 

To test the understanding-first concepts hypothesis H1 (that the understanding-first condition 

will engage in more conceptual reasoning about fractions while reflecting on their work than the 

fluency-first condition) and the fluency-first concepts hypothesis H2 (that the fluency-first condi-

tion will engage in more conceptual reasoning about fractions while reflecting on their work than 

the understanding-first condition), I computed a chi-square test on the concept-correct utterances. 

The results show a significant difference between conditions, χ²(1, N = 351) = 10.60, p < .01, 

such that the understanding-first condition engages in significantly more conceptual reasoning 

about fractions than the fluency-first condition. Thus, the combination-concepts hypothesis H0 
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and the fluency-first concepts hypothesis H2 can be rejected in favor of the understanding-first 

concepts hypothesis H1.  

It is interesting to note that the fluency-building problems elicited more connection-making 

utterances than the sense-making problems. A chi-square test comparing the frequencies of all 

representation-connections to the frequency of all fluency-connections showed that this differ-

ence was significantly reliable, χ²(1, N = 187) = 88.99, p < .01. 

Taken together, the results from the retrospective interviews obtained in phase 1 of the expe-

riment provide support for the understanding-first hypothesis with regard to conceptual reason-

ing: students in the understanding-first condition engage in more conceptual reasoning than stu-

dents in the fluency-first condition. However, there was no difference between conditions with 

regard to connection making. The sense-making problems elicited little connection making, whe-

reas the fluency-building problems elicited significantly more connection making in both condi-

tions. This latter finding might explain why both types of support are needed. Connectional 

sense-making support promotes conceptual reasoning about domain-relevant concepts, whereas 

fluency-building support promotes connection making between the different graphical represen-

tations. It will be interesting to find out whether the same results hold true for the retrospective 

interview data collected in phase 2 of the experiment. 
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4.5.3.5. Relations between dependent measures 

 
Fig. 37. Experiment 5: Example mediation model compatible with the experimental design. 

Next, I investigated whether the differences between conditions on problem-solving behaviors 

and on the quiz items statistically “explain” (i.e., mediate) the advantage of the understanding-

first condition on students’ ability to transfer fractions knowledge to novel task types. To this 

end, I used the Tetrad IV program5 to search for models that are theoretically plausible and con-

sistent with the data. Specifically, I used the GES algorithm in Tetrad IV along with background 

knowledge constraining the space of models searched (Chickering, 2002) to those that are theo-

retically tenable and compatible with the experimental design. In particular, I assumed that con-

dition is exogenous and causally independent, that pretest is exogenous and causally independent 

from condition, and that the mediators are prior to the posttest. Fig. 37 illustrates the fully satu-

rated model that would be compatible with these assumptions. 

The qualitative causal structure of each of these linear structural equation models can be 

represented by a Directed Acyclic Graph (DAG). If two DAGs entail the same set of constraints 

                                                 
5 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, contains a causal model simulator, estimator, and 

over 20 model search algorithms, many of which are described and proved asymptotically reliable in (Spirtes, 
Glymour, & Scheines, 2000). 

http://www.phil.cmu.edu/projects/tetrad
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on the observed covariance matrix,6 then they are empirically indistinguishable. If the constraints 

considered are independence and conditional independence, which exhaust the constraints en-

tailed by DAGs among multivariate normal varieties, then the equivalence class is called a pat-

tern (Pearl, 2000; Spirtes et al., 2000). Instead of searching in the DAG space, the GES algo-

rithm achieves significant efficiency by searching in pattern space. The algorithm is asymptoti-

cally reliable,7 and outputs the pattern with the best BIC score.8 The pattern identifies features of 

the causal structure that are distinguishable from the data and background knowledge, as well as 

those that are not. The algorithm’s limits are primarily in its background assumptions involving 

the non-existence of unmeasured common causes and the parametric assumption that the causal 

dependencies can be modeled with linear functions.  

I conducted several mediation analyses, testing the mediation of the effect of condition on the 

transfer posttest through accuracy on connection-fluency quiz items, efficiency on connection-

fluency quiz items, error rates on fluency-building knowledge components, and error rates on 

sense-making knowledge components. 

Mediation of condition effects through performance on connection-fluency quiz 

Let us first consider the analysis that investigated whether the differences between conditions on 

accuracy on connection-fluency quiz items mediates the advantage of the understanding-first 

condition over the fluency-first condition on accuracy on the transfer posttest. Fig. 38 shows a 

model found by GES, with coefficient estimates included. The model fits the data well, (χ² = 

2.43, df = 4, p = .66). Students in the understanding-first condition perform better than students 

in the fluency-first condition on accuracy on connection-fluency quiz at quiz time 2 (that is, after 

having received fluency-building support). Higher accuracy on the connection-fluency quiz at 

quiz time 2 increases accuracy on the transfer posttest, after controlling for accuracy on the trans-

fer pretest. 

                                                 
6 An example of a testable constraint is a vanishing partial correlation, e.g., ρXY.Z = 0. 
7 Provided the generating model satisfies the parametric assumptions of the algorithm, the probability that the 

output equivalence class contains the generating model converges to 1 in the limit as the data grows without bound. 
In simulation studies, the algorithm is quite accurate on small to moderate samples. 

8 All the DAGs represented by a pattern will have the same BIC score, so a pattern’s BIC score is computed by 
taking an arbitrary DAG in its class and computing its BIC score. 



4 Classroom Experiments and Lab Studies 
 

172 
 
 

 
Fig. 38. Experiment 5: The model found by GES for the mediation hypothesis of the effect understanding-first condition on accu-

racy posttest transfer through accuracy on connection-fluency quiz items. 

 
Fig. 39. Experiment 5: The model found by GES for the mediation hypothesis of the effect understanding-first condition on effi-

ciency posttest transfer through efficiency on connection-fluency quiz items. 
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Next, I investigated whether the differences between conditions on efficiency on connection-

fluency quiz items mediates effects on efficiency on the transfer posttest. Fig. 39 shows a model 

found by GES, with coefficient estimates included. The model fits the data well, (χ² = 3.38, df = 

4, p = .50). Students in the understanding-first condition perform worse than students in the flu-

ency-first condition on efficiency on connection-fluency quiz at quiz time 1 (that is, before hav-

ing received fluency-building support). Higher efficiency on the connection-fluency quiz at quiz 

time 1 slightly decreases efficiency on the transfer posttest, after controlling for efficiency on the 

transfer pretest. Thus, efficiency on connection-fluency at quiz time 1 mediates a very slight 

negative effect of the understanding-first condition on efficiency on the transfer posttest.  

Taken together, the mediation analysis sheds light into how the differences between condi-

tions on accuracy and efficiency on the connection-fluency quizzes are to be interpreted. The ad-

vantage of the understanding-first condition over the fluency-first condition on the transfer post-

test is fully mediated by increased accuracy on the connection-fluency quiz at quiz time 2. Thus, 

after having received sense-making support, students benefit more from receiving fluency-

building support than students who receive the same fluency-building problems before sense-

making support. It is important to note that this advantage only plays out in accuracy measures, 

not in efficiency measures. Altogether, this finding is in line with the interpretation of the media-

tion analysis on error types in Experiment 4 (see section 4.4.3.2), that conceptual understanding 

of the connections between multiple graphical representations enables students to benefit from 

connectional fluency-building support. Students’ ability to speedily solve connection-fluency 

problems (i.e., efficiently solving such problems) does not benefit from having previously re-

ceived connectional sense-making support. However, students in the understanding-first condi-

tion make up for a disadvantage in efficiency that appears at quiz time 1 after having received 

connectional fluency-building support at quiz time 2. Their ability to efficiently transfer their 

knowledge about fractions to novel task types suffers only very slightly from this early disadvan-

tage in efficiently solving connection-fluency problems at quiz time 1. 

Mediation of condition effects through problem-solving behaviors 

Further, I investigated whether the differences between conditions on error rates on fluency-

building knowledge components (see Table 24) mediates the advantage of the understanding-first 

condition over the fluency-first condition on accuracy on the transfer posttest. Fig. 40 shows a 
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model found by GES, with coefficient estimates included. The model fits the data well, (χ² = 

4.58, df = 4, p = .33). Students in the understanding-first condition show lower error rates on 

equivalence fluency-building knowledge components than students in the fluency-first condition. 

Higher error rates on equivalence fluency-building knowledge components decrease accuracy on 

the transfer posttest. Thus, error rates on equivalence fluency-building knowledge components 

fully mediate a positive effect of the understanding-first condition on accuracy on the transfer 

posttest: students who received connectional sense-making support before connectional fluency-

building support show lower error rates while working on equivalence fluency-building support 

problems, which accounts for their advantage on accuracy on the transfer posttest. 

Next, I investigated whether the differences between conditions on error rates on sense-

making knowledge components (see Table 24) mediates the advantage of the understanding-first 

condition over the fluency-first condition on accuracy on the transfer posttest. Fig. 41 shows a 

model found by GES, with coefficient estimates included. The model fits the data well, (χ² = 

3.38, df = 3, p = .38). Students in the understanding-first condition show lower error rates on 

equivalence sense-making knowledge components and on comparison sense-making knowledge 

components than students in the fluency-first condition. Higher error rates on equivalence sense-

making knowledge components also lead to higher error rates on comparison sense-making 

knowledge components. Higher error rates on comparison sense-making knowledge components 

decrease accuracy on the transfer posttest. Thus, error rates on sense-making knowledge compo-

nents fully mediate a positive effect of the understanding-first condition on accuracy on the 

transfer posttest: students who did not receive connectional fluency-building support before 

working on sense-making support problems show lower error rates while working on sense-

making support problems, which accounts for their advantage on accuracy on the transfer post-

test. 

Taken together, the mediation analysis provides additional support for the understanding-first 

hypothesis and, furthermore, yields insights into the mechanisms by which the understanding-

first condition leads to higher accuracy on the transfer posttest. First, the mediation analysis sup-

ports the interpretation of the mediation analysis on error types in Experiment 4 (see section 

4.4.3.2), that connectional understanding enables students to benefit from connectional fluency-

building support. Connectional sense-making support reduces the error rate  on  equivalence  flu-  
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Fig. 40. Experiment 5: The model found by GES for the mediation hypothesis of the effect understanding-first condition on ac-

curacy posttest transfer through error rates on fluency-building knowledge components. 

 
Fig. 41. Experiment 5: The model found by GES for the mediation hypothesis of the effect understanding-first condition on ac-

curacy posttest transfer through error rates on sense-making knowledge components. 
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ency-building problems, which accounts for the higher accuracy of the understanding-first condi-

tion on the transfer posttest. 

Second, the mediation analysis of error rates on connectional sense-making support comple-

ments this finding by demonstrating potential costs of receiving connectional fluency-building 

support before connectional sense-making support. Students in the understanding-first condition 

show lower error rates than students in the fluency-first condition while working on comparison 

sense-making problems. In other words, students in the fluency-first condition (i.e., students who 

received connectional fluency-building support before working on connectional sense-making 

problems) show higher error rates on sense-making problems, which accounts for their lower 

accuracy on the transfer posttest. Thus, connectional fluency-building support decreases stu-

dents’ ability to benefit from connectional sense-making support, thereby hampering students’ 

acquisition of robust domain knowledge that can transfer to novel task types. 

4.5.4 Discussion  
Prior research shows that both sense-making processes and fluency-building processes play an 

important role in connection making: both learning processes need to be supported in order for 

students’ robust learning of domain knowledge to benefit from multiple graphical representations 

(Rau, Aleven et al., 2012). The results from Experiment 5 shed light on the question of how these 

learning processes interact. I contrasted two competing hypotheses. On the one hand, the under-

standing-first hypothesis posits that connectional sense-making support enhances students’ bene-

fit from subsequent connectional fluency-building support by helping them focus on conceptual-

ly relevant aspects of graphical representations. According to the fluency-first hypothesis, on the 

other hand, connectional fluency-building support enhances students’ benefit from subsequent 

connectional sense-making support by freeing cognitive resources that students can invest in 

sense-making processes to develop connectional understanding. I investigated contrasting predic-

tions made by each of these hypotheses for both learning outcomes and process-level measures. 

Altogether, the results from Experiment 5 are in line with the understanding-first hypothesis, 

but not with the fluency-first hypothesis. Students in the understanding-first condition outper-

formed students in the fluency-first condition on accuracy of connection-fluency at quiz time 2, 

which accounts for the advantage of the understanding-first condition on accuracy on the transfer 

posttest. Further, even though students in the understanding-first condition showed lower effi-
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ciency on connection-fluency quiz items, there were no differences between conditions on stu-

dents’ efficiency on the transfer posttest. Rather, as the mediation analysis of student’s efficiency 

on the connection-fluency quiz items shows (see Fig. 39), students’ lower efficiency on connec-

tion-fluency quiz items was associated with higher efficiency on the transfer posttest. Thus, with 

regard to learning outcomes, the findings are in line with the understanding-first hypothesis, but 

not with the fluency-first hypothesis. Receiving connectional sense-making support before con-

nectional fluency-building support enables students to acquire robust, accurate knowledge of 

fractions that transfers to novel task types. 

The analysis of process-level measures provides insights into the mechanisms underlying the 

advantage of the understanding-first condition on students’ accuracy on the transfer posttest. 

There are several aspects that explain the advantage of providing connectional sense-making 

support before connectional fluency-building support. First, as the analysis of problem-solving 

behaviors shows, connectional understanding enables students to benefit from connectional flu-

ency-building support (on the earlier equivalence problems), whereas connectional fluency ham-

pers students’ benefit from connectional sense-making support (on the later sense-making prob-

lems). The mediation analysis demonstrates that these differences in students’ problem-solving 

behaviors statistically explain the advantage of the understanding-first condition on transfer ac-

curacy. The notion that connectional understanding benefits students’ learning from connectional 

fluency-building support was anticipated and is in line with the understanding-first hypothesis. 

The finding that connectional fluency-building support harms students’ benefit from subsequent 

connectional sense-making support (as assessed by error rates on equivalence-fluency problems), 

however, is unexpected. It may be that connectional fluency-building support “primes” students 

to rely on perceptual characteristics rather than to conceptually think about connections, making 

them more “careless” as they intuitively go about solving sense-making support problems. This 

interpretation is in line with the concern expressed by Bieda and Nathan (2009) that students 

who are overly influenced by the perceptual properties of a representation may not pay attention 

to the conceptually relevant aspects of a representation, which is crucial to their learning of do-

main knowledge.  

Second, the analysis of the retrospective interviews collected in phase 1 of the experiment 

shows that the understanding-first condition engages in more conceptual reasoning about frac-
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tions than the fluency-first condition (as assessed posthoc by retrospective interview data). At the 

same time, connectional fluency-building support elicits significantly more connection-making 

utterances than connectional sense-making support, although the number of fluency-connections 

did not differ between conditions. A reasonable interpretation of these findings may be that the 

combination of connectional sense-making and fluency-building support is necessary because 

only connectional fluency-building support promotes explicit connection making between mul-

tiple graphical representations. However, only when students receive connectional sense-making 

support before fluency-building support can they benefit more from these connections, by con-

ceptually reasoning about the connections rather than being overly influenced by the perceptual 

properties of the graphical representations. 

It is critical to note that the advantage of the understanding-first condition over the fluency-

first condition plays out only on accuracy on transfer, but not on efficiency. Both conditions per-

form equally well when considering efficiency measures on the transfer posttest. How might one 

explain the lack of differences between conditions on efficiency on the transfer posttest? This 

finding makes sense when considering the earlier stated interpretation that the fluency-first con-

dition is “primed” to make use of the perceptual characteristics of graphical representations to 

solve transfer problems. Perhaps the fluency-first condition focuses on becoming more efficient 

at solving transfer problems rather than solving them more accurately. This early focus on effi-

ciency rather than on accuracy might come at the expense of lower accuracy in transferring frac-

tions knowledge to novel problems. However, for the understanding-first condition, the focus on 

improving on accuracy rather than on efficiency appears not to come at the expense of lower ef-

ficiency in solving fractions problems: there are no differences between the two conditions on 

the accuracy measure of the transfer posttest.  

It is important to point out that these findings leave some room for doubt: differences were 

found on only some of the dependent measures; the effects of sense-making support and fluency-

building support appears to differ by topic. Furthermore, the effects of condition on accuracy of 

transfer were only marginally significant. Further research is needed to support the conclusion 

that connectional sense-making support should be provided before fluency-building support, 

which mechanisms account for the advantage of the understanding-first condition over the fluen-

cy-first condition, and to investigate which properties of topics (e.g., equivalence versus compar-
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ison) or the time during the learning process under consideration (e.g., earlier versus later) en-

hance or diminish this effect. Especially with respect to the proposed mechanisms that underlie 

the advantage of the understanding-first condition, more research is needed. For instance, eye-

tracking data can be used to investigate whether connectional understanding, as described by the 

understanding-first hypothesis, indeed helps students direct their attention to relevant aspects of 

graphical representations in while they work on fluency-building problems. Think-aloud data 

collected while students work on the tutor problems might also yield insights into what aspects 

of graphical representations pay attention to, and how these processes differ between conditions. 

A larger sample size would provide more statistical power to compare alternative, and more ex-

haustive mediation models that take into account a larger number of dependent measures than the 

separate mediation models I computed for the given (relatively small) data set.  In spite of this 

caveats, it is striking that the effects found on a number of learning outcomes and process-level 

measures are in line with the understanding-first hypothesis, whereas no single effect was in line 

with the fluency-first hypothesis. Therefore, it seems reasonable to conclude that, to promote ac-

curacy of transfer of domain knowledge, connectional sense-making processes should be sup-

ported before connectional fluency-building processes. 

In summary, the results from Experiment 5 support and extend the understanding-first hypo-

thesis: connectional understanding not only enhances, but is necessary for students’ benefit from 

connectional fluency-building support because it enables students to relate connections between 

multiple graphical representations to conceptual knowledge about fractions. Whether or not these 

conclusions hold for other domains than fractions learning remains to be empirically tested. 

Based on Experiment 5, I conclude that instructional designers of multi-representational learning 

materials should provide students with connectional sense-making support before connectional 

fluency-building support, in particular when their goal is to promote not only efficiency in prob-

lem solving, but also accuracy in problem solving.  

Experiment 5 extends my theoretical framework for learning with multiple graphical repre-

sentations by clarifying how two of the proposed learning processes interact, based on the find-

ing from Experiment 4. Connectional fluency-building processes appear to, at least to some ex-

tent, build on connectional understanding. On the other hand, connectional sense-making 

processes might be hindered by connectional fluency. If perceptual chunking is the mechanism 
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that connectional fluency-building support enhances, the acquisition of more coarse-grained per-

ceptual chunks might hinder students’ ability to acquire more fine-grained chunks, as supported 

by connectional sense-making processes that require students to reason separately about consti-

tuent knowledge components. Instead, the availability of a perceptual chunk might “bypass” the 

learning of a connectional sense-making knowledge component, because a student can solve the 

problem based on the perceptual chunk, without having connectional knowledge components 

that correspond to separate aspects of graphical representations, such as numerator and denomi-

nator. Yet, as the results from the learning outcomes on accuracy in transferring fractions know-

ledge suggest, the acquisition of connectional sense-making knowledge components facilitate 

learning of robust domain knowledge. This interpretation of the results from Experiment 5 with 

respect to my theoretical framework is speculative, given that I did not include a knowledge 

component model that assesses knowledge components for connectional understanding and for 

connectional fluency separately. It would be interesting to develop such a knowledge component 

model and test these predictions. For example, does the acquisition of connectional fluency (e.g., 

of a knowledge component “connect-circle-nl”) hinder the acquisition of connectional under-

standing (e.g., of the knowledge components “connect-numerator-circle-nl” and “connect-

denominator-circle-nl”)? Furthermore, these questions could be extended to representational 

sense-making and fluency-building processes as well: does the acquisition of representational 

fluency (e.g., of a knowledge component “ident-fract-circle”) hinder the acquisition of represen-

tational understanding (e.g., of knowledge components “ident-numerator-circle” and “ident-

denominator-circle”)?  

Although, as mentioned, speculative in certain aspects, these reflections illustrate how iterat-

ing between the theoretical framework for learning with multiple graphical representations, expe-

rimental studies that test predictions made by the framework (such as Experiment 4), experimen-

tal studies to test hypotheses that follow from resulting findings (such as Experiment 5), and the 

interpretation of these results in terms of the theoretical framework (as, for example, described in 

this section), can stimulate further hypotheses and, potentially, empirical research that in turn, 

integrates learning outcome measures and assessments of learning processes. 
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5 Conclusion  
Taken together, my dissertation work comprises a sequence of experimental studies that focus on 

learning with multiple graphical representations and the development of an intelligent tutoring 

system for fractions learning. This research reflects two perspectives of my research: a learning 

sciences perspective and an educational technology perspective. At the heart of both contribu-

tions lies a set of instructional design recommendations for the effective use of multiple graphi-

cal representations. These design principles are the outcome of a series of classroom experi-

ments. In addition to providing practical guidance for developers of multi-representational learn-

ing materials, these design principles extend the literature on learning with multiple representa-

tions. The results from my experiments can be interpreted with respect to a theoretical frame-

work that I iteratively developed throughout the sequence of experiments and tutor development 

process. Furthermore, the experiments serve to iteratively improve the Fractions Tutor, which 

has repeatedly been shown to lead to robust learning of fractions knowledge. Finally, I describe a 

novel methodology for resolving conflicts between stakeholder goals, which has fundamentally 

shaped the design of the Fractions Tutor.  

In this section, I first review the contributions of my empirical work to the learning sciences 

perspective of my dissertation work, which include both the instructional design recommenda-

tions, contributions to existing theoretical perspectives on learning with multiple representations, 

and a novel theoretical framework for learning with multiple graphical representations. I then 

discuss my contributions from an educational technology perspective on my research. After criti-

cally discussing limitations of my work, reflecting on scenarios to which I expect my results to 

generalize, and describing possible future directions, I end by discussing the integration of the 

learning sciences and educational technology perspectives of my work through the use of a mul-

ti-methods approach.  



5 Conclusion  
 

182 
 
 

5.1 Learning sciences perspective 

There are two aspects to the learning sciences perspective of my work: providing practical rec-

ommendations for the effective use of multiple graphical representations in instructional mate-

rials, and extending existing theory about how multiple representations influence students’ learn-

ing of domain knowledge. Finally, I discuss my findings from the perspective of my theoretical 

framework for learning with multiple graphical representations. 

5.1.1 Instructional design principles for the use of multiple graphical representations 
Prior research on multiple representations has mostly taken a symbol-systems approach and in-

vestigated learning with textual descriptions accompanied by only one additional graphical re-

presentation (e.g., Ainsworth & Loizou, 2003; Baetge & Seufert, 2010; Bodemer et al., 2005; 

Butcher & Aleven, 2007; Kuehl et al., 2010; Magner et al., 2010; Rasch & Schnotz, 2009; Suth-

ers et al., 2008). This focus stands in contrast with the common use of multiple graphical repre-

sentations (e.g., Arcavi, 2003; Cook et al., 2007; Kordaki, 2010; Kozma et al., 2000; Urban-

Woldron, 2009; Walkington et al., 2011), which are provided in addition to textual and symbolic 

representations in many educational materials. My research addresses the gap between the com-

mon symbol-systems approach in prior research on multiple representations and the resulting 

lack of guidance for the design of more complex materials that include multiple graphical repre-

sentations. In doing so, I provide a set of instructional design principles that result from my expe-

rimental studies. 

First, multiple graphical representations do indeed have the potential to enhance students’ 

learning of domain knowledge, compared to a single graphical representation, as demonstrated 

by Experiments 1, 3, and 4. These experiments have generally found advantages of multiple 

graphical representations on learning of robust conceptual knowledge. Thus, the first design 

principle, which provides the foundation for my thesis work, is: 

Principle 1: Use multiple graphical representations (with appropriate instructional support) 

to enhance robust learning of domain knowledge. 

The qualification “with appropriate instructional support” describes the fact that multiple 

graphical representations do not automatically enhance students’ learning, as my experimental 

studies repeatedly illustrate. In fact, Experiment 1 shows that multiple graphical representations 
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only lead to better learning than a single graphical representation if they are provided along with 

reflection prompts that encourage students to self-explain the relation between each graphical 

representation and the corresponding symbolic representation. The second design principle there-

fore is: 

Principle 2: Use reflection prompts to support students in relating graphical representations 

to the key concepts they depict. 

Experiments 2 and 3 investigate the effects of interleaved practice with task types and graph-

ical representations. Experiment 2 shows that interleaving task types (while blocking graphical 

representations) enhances students’ learning of representational knowledge more so than inter-

leaving graphical representations (while blocking task types). Since differences between task 

types are more salient than differences between graphical representations, I conclude that inter-

leaving learning tasks along the dimension of greatest variability leads to more robust learning of 

robust conceptual understanding of graphical representations, although it remains an open ques-

tion whether this interpretation holds as a general principle. Consequently, the third design prin-

ciple is: 

Principle 3: Interleave learning tasks along the dimension of task types. 

While employing a moderately interleaved schedule of task types consistently across condi-

tions, Experiment 3 shows that, interleaving of graphical representations also enhances students’ 

learning of conceptual knowledge. The fourth design principle therefore states: 

Principle 4: In addition to (moderately) interleaving task types, also interleave graphical re-

presentations. 

Experiment 4 investigates how best to support students in making connections between mul-

tiple graphical representations. While neither connectional sense-making support nor connec-

tional fluency-building support alone were effective, they enhanced students’ robust learning of 

conceptual knowledge when combined. Thus, the fifth design principle is: 

Principle 5: Combine connectional sense-making support and connectional fluency-building 

support, rather than providing either type of support alone. 

With respect to how best to implement connectional sense-making support, Experiment 4 

shows that students need to become active in establishing the connections between graphical re-
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presentations themselves, rather than being provided with the connections semi-automatically by 

the system. Consequently, the sixth design principle is: 

Principle 6: Implement connectional sense-making support in a way that requires students to 

actively generate connections, rather than passively observing them. 

Finally, Experiment 5 investigates how connectional sense-making support and connectional 

fluency-building support interact, and which type of support should be provided first. The results 

show that in order to support students’ accuracy in transferring domain knowledge to novel 

tasks, connectional sense-making support should be provided before fluency-building support. 

Therefore, the seventh design principle is: 

Principle 7: Provide connectional sense-making support before connectional fluency-

building support. 

Needless to say, it is open to further investigation whether these design principles hold across 

other domains and other means of implementing these recommendations than was done in my 

experimental studies. I am confident that the critical discussion of the limitations of each expe-

riment (see section 4) has made it evident that I view these design principles not as the final word 

of wisdom, but rather as the outcome of a specific set of studies that can serve as working hypo-

theses for future research. I critically discuss the limitations of my work later in this section (see 

section 5.3). However, given that my thesis work is, to the best of my knowledge, the first com-

prehensive set of experimental studies to investigate how best to implement multiple graphical 

representations that use the same symbol system, I hope that in spite of the limited nature of this 

work, developers of instructional materials will see the merit of these instructional design prin-

ciples. 

5.1.2 Extending prior theoretical perspectives on learning with multiple representations 
Taken together, my research shows that the advantage of multiple representations is not limited 

to learning with representations from different symbol systems, but applies also to the common 

scenario that multiple graphical representations, which use the same symbol system, are pro-

vided along with textual descriptions and symbolic representations.  

Experiment 1 provides the foundation for my dissertation research. In particular, the merit of 

providing students with multiple graphical representations using the same symbol system, as is 

common practice in many educational materials, remained to be experimentally established – 
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due to the symbol-systems approach taken by most prior research on learning with multiple re-

presentations. As argued in section 2.1, existing theoretical frameworks take a symbol-systems 

approach and therefore cannot explain why multiple graphical representations might enhance 

learning. By contrast, they might lead to the prediction that multiple graphical representations do 

not benefit learning more than a single graphical representation because they do not require stu-

dents to integrate information across different symbol systems (Schnotz & Bannert, 2003), and 

may even harm learning by resulting in cognitive overload in the pictorial part of working mem-

ory (Mayer, 2003; Mayer 2005).  

The results from Experiment 1 show that multiple graphical representations lead to better 

learning than a single graphical representation, provided that students are prompted to reflect on 

the relation between graphical and symbolic representations. Experiment 3 provides further sup-

port for the notion that multiple graphical representations can enhance robust domain knowledge 

compared to a single graphical representation. The finding that only students who worked with 

multiple graphical representations showed significant learning gains, whereas a variety of single-

representation conditions did not show learning gains, extends Experiment 1 by demonstrating 

that the advantage of multiple graphical representations does not depend on the specific graphi-

cal representation used in the single-representation control condition. Also Experiment 4 shows a 

significant advantage of multiple graphical representations over a single graphical representation, 

provided that students receive both sense-making and fluency-building support for connection 

making. In general, Experiments 1, 3, and 4 found advantages of multiple graphical representa-

tions on tests that assessed conceptual understanding rather than procedural knowledge, demon-

strating that the merit of using multiple graphical representations lies in enhancing deep 

processing of the conceptual aspects of the learning material, and not in enhancing the ability to 

carry out computational operations. Taken together, my thesis work extends prior research that 

was mostly conducted under the symbol-systems assumption. My research demonstrates that 

multiple representations that use the same symbol system (e.g., multiple graphical representa-

tions) do indeed have the potential to enhance learning of robust domain knowledge. In other 

words, multiple representations of the same symbol system (i.e., multiple graphical representa-

tions) can lead to better learning than a single representation of that symbol system (i.e., a single 
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graphical representation). Consequently, the advantage of multiple representations is not limited 

to representations of different symbol systems.  

I attribute this advantage of multiple graphical representations to the purpose with which 

multiple graphical representations are being used in instructional materials, as detailed in sec-

tions 1.1 and 3.1. As in many STEM domains, fractions instruction uses different graphical re-

presentations to emphasize specific conceptual aspects of the domain (Charalambous & Pitta-

Pantazi, 2007). To deeply understand the conceptual aspects of fractions, students need to inte-

grate the different conceptual views depicted by the different graphical representations. This ref-

lection illustrates that my research does not contradict the notion that multiple representations are 

beneficial because they enhance deeper processing due to the integration of information across 

symbol systems, as expressed in Schnotz and Bannert’s (2003) framework for learning with mul-

tiple representations. Rather, my research extends this framework: what is crucial to the positive 

effect of multiple representations on students’ learning is the potential to encourage students’ 

engagement in deep, conceptual processing of the structural elements that constitute the informa-

tion depicted in different representations. This type of integration process does not have to occur 

across different symbol systems – it can also occur between multiple representations that use the 

same symbol system. 

Yet, multiple graphical representations do not automatically result in more robust learning 

than a single graphical representation, as the results from Experiments 1-5 demonstrate. Rather, 

their success may depend on (or at least be enhanced by) the implementation of multiple graphi-

cal representations in accordance to the instructional design principles summarized above (see 

section 5.1.1). The finding that the benefit of multiple graphical representations may depend on 

how they are implemented is in line with a number of studies that show that multiple representa-

tions (using different symbol systems) do not automatically result in better learning than text 

alone (Ainsworth, 2006; Ainsworth, Bibby, & Wood, 1998; de Jong et al., 1998; Kim et al., 

2013; Tsui & Treagust, 2013). These results also further highlight the importance of establishing 

principles for instructional support for learning with multiple graphical representations (see sec-

tion 5.1.1). 

The finding in Experiment 1, that reflection prompts enhance students’ benefit from multiple 

graphical representations, is in line with a vast literature on learning with multiple representa-
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tions (that use different symbol systems), which show that (1) the advantage of learning with text 

and graphics (as opposed to text alone) may stem from multiple representations enhancing stu-

dents’ tendency to self-explain (Ainsworth & Loizou, 2003), and that (2) interventions that pro-

mote self-explanation activities can enhance students’ benefits from multiple representations 

(Berthold et al., 2008; Berthold & Renkl, 2009; Zhang & Linn, 2011). Yet, Experiment 1 is, to 

the best of my knowledge, the first study to systematically investigate the interaction between the 

effect of reflection prompts and the effect of multiple representations. Furthermore, Experiment 

1 extends these findings to learning with multiple graphical representations (that use the same 

symbol system). Experiment 1 shows that students’ benefit from multiple graphical representa-

tions is not merely enhanced by reflection prompts, but depends on receiving such support. The 

reflection prompts in the Fractions Tutor are designed to support students in self-explaining the 

relation of each component of a given graphical representation (e.g., the number of colored sec-

tions in a circle) to the corresponding knowledge component as depicted symbolically (e.g., the 

numerator of a fraction). These reflection prompts used in Experiment 1 are thus equivalent to 

the type of connection-making support often used in research on connection making between 

multiple representations that use different symbol systems (Schwonke, Berthold et al., 2009; 

Seufert, 2003). Therefore, one might also interpret the finding from Experiment 1 as showing 

that connection making between representations of different symbol systems (i.e., between the 

graphical and symbolic representation) is necessary for students to benefit from multiple graphi-

cal representations that use the same symbol system.  

Experiment 2 contrasts the effects of interleaving graphical representations (while blocking 

task types) and interleaving task types (while blocking graphical representations) on students’ 

learning. Experiment 2 built on the findings of Experiment 1 in that both conditions in Experi-

ment 2 contained the same reflection prompts used in Experiment 1. Results show that interleav-

ing task types (while blocking graphical representations) leads to higher accuracy and efficiency 

in using conceptual representational knowledge to solve fractions problems than interleaving 

graphical representations (while blocking task types). This finding extends the literature on the 

contextual interference effect (de Croock et al., 1998; van Merriënboer et al., 2002), by showing 

that it matters which dimension of learning tasks are interleaved. I argue that task types consti-

tute the more variable dimension, compared to graphical representations, on which learning tasks 
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can vary, because the differences between task types are more salient than the differences be-

tween graphical representations. Furthermore, interleaving learning tasks along the dimension of 

greatest variability might be most effective because it increases the need for students to frequent-

ly reactivate knowledge  (de Croock et al., 1998; Lee & Magill, 1983, 1985) as well as the num-

ber of opportunities for abstracting across consecutively presented learning tasks (de Croock et 

al., 1998; Shea & Morgan, 1979). 

The finding that practice schedules have an impact on students’ learning with multiple graph-

ical representations is also interesting in the light of prior research on multiple representations. 

This prior research has mostly investigated explicit types of instructional support for students’ 

learning with text and graphic, for instance, by providing active means of referencing (Bodemer 

& Faust, 2006; Bodemer et al., 2005; Bodemer et al., 2004), by providing help features 

(Brünken, Seufert, & Zander, 2005; Seufert, 2003), instructional aids (Seufert, 2003), prompts 

for self-explanation activities (Butcher & Aleven, 2007), or trainings (Schwonke et al., 2008; 

Wong, Lawson, & Keeves, 2002). Experiment 2 demonstrates that subtle variations, such as the 

sequence in which graphical representations are provided across different task types, have an im-

pact on which aspects of the learning tasks students strengthen and abstract across. Thereby, the 

choice of practice schedule implicitly affects students benefit from multiple graphical representa-

tions, that is, without explicit support.  

Experiment 3 focuses on the effects of interleaving graphical representations while using a 

consistent schedule of task types across all conditions. Building on the finding of Experiment 2, 

Experiment 3 investigates whether in addition to moderately interleaving task types, one should 

also interleave graphical representations. The results from an analysis of learning outcomes and 

tutor log data provide moderate evidence that interleaving graphical representations leads to 

more robust learning of domain knowledge than blocking graphical representations. This finding 

extends prior research on multiple representations by showing that the sequence in which repre-

sentations are provided affects students’ learning. Furthermore, Experiment 3 extends research 

on practice schedules, which has mostly focused on the sequence of different task types. Experi-

ment 3 shows that the advantage of interleaving task types generalizes to interleaving graphical 

representations.  
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A small-scale think-aloud study sheds light into the question whether abstraction across 

graphical representation or repeated reactivation of representation-specific knowledge might ex-

plain the advantage of interleaved practice. The results from the think-aloud study stand in con-

trast to one possible explanation for the advantage of interleaving graphical representations, 

namely, that students spontaneously abstract across graphical representations by making explicit 

connections between consecutively presented representations. In the light of this finding, it 

seems more likely that interleaved practice with multiple graphical representations requires stu-

dents to repeatedly reactivate representation-specific knowledge in the interleaved condition, the-

reby strengthening their knowledge about each individual graphical representations, which in-

creases the likelihood that they can retrieve it faster and with less effort in the future.  

An analysis of the tutor log data by the means of Bayesian Knowledge Tracing demonstrates 

higher learning rates for students in the interleaved condition, compared to students in the 

blocked condition. In applying Bayesian Knowledge Tracing to research on interleaved practice, 

Experiment 3 further extends prior research on practice schedule effects that has failed (just like 

Experiment 3) to show an advantage of interleaved practice over blocked practice using raw per-

formance measures obtained during the acquisition phase. By modeling a latent variable of stu-

dents’ learning, using Bayesian Knowledge Tracing, I provide evidence of an advantage of the 

interleaved condition over the blocked condition, even during the acquisition phase. Experiment 

3 thus demonstrates that latent variable modeling, rather than raw performance measures, are a 

suitable metric to studying the effects of practice schedules on learning during the acquisition 

phase.  

Experiment 4 investigates the complementary effects of supporting students in acquiring 

connectional understanding and of supporting them in acquiring connectional fluency. The find-

ings extend prior research, which has focused only on either learning process alone: either on 

connectional sense-making processes (Bodemer & Faust, 2006; Bodemer et al., 2004; Plötzner et 

al., 2001; Schwonke et al., 2008; Seufert, 2003; van der Meij & de Jong, 2006), or on connec-

tional fluency-building processes (Kellman & Garrigan, 2009; Kellman et al., 2008; Kellman et 

al., 2009; Massey et al., in press). Furthermore, Experiment 4 extends this research by focusing 

on connection making between multiple graphical representations, that is, on representations us-

ing the same symbol system, whereas prior research has focused on connection making between 
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representations using different symbol systems, such as text and graphical representation 

(Bodemer & Faust, 2006; Bodemer et al., 2004; Plötzner et al., 2001; Seufert, 2003), between 

symbolic representation and graphical representation (van der Meij & de Jong, 2006), or between 

text, symbolic representations, and graphical representation (Kellman & Garrigan, 2009; 

Kellman et al., 2008; Kellman et al., 2009; Massey et al., in press). The results from Experiment 

4 indicate that students’ benefit from multiple graphical representations depends on combining 

support for both connectional sense-making processes and fluency-building processes: only stu-

dents who received a combination of both types of support significantly outperformed students in 

a single-representation control condition on measures of robust conceptual knowledge of frac-

tions.  

Furthermore, Experiment 4 investigates the role of system-based support for connectional 

sense-making processes. While some research suggests that automated support for connectional 

sense-making processes can enhance learning (van der Meij & de Jong, 2006), other research 

shows that students need to actively engage in connectional sense-making processes (e.g., 

Bodemer & Faust, 2006; Bodemer et al., 2004; Gutwill et al., 1999). Results from Experiment 4 

support the latter notion and show that worked examples, which require students to actively gen-

erate the connections themselves rather than relying on support that is provided semi-

automatically by the system, is the more effective type of connectional sense-making support. 

Worked examples have been shown to be effective in supporting sense-making processes in a 

variety of domains (e.g., Berthold et al., 2008; Große & Renkl, 2007; Kopp et al., 2008; McLa-

ren et al., 2008; Nokes & VanLehn, 2008; Renkl, 2005; Schwonke et al., 2009). Prior research 

also established that multiple representations (i.e., text and graphical representation) can make 

worked examples more effective (e.g., Berthold et al., 2008; Berthold & Renkl, 2009; Schwonke, 

Berthold et al., 2009). But prior research has not investigated the effect of worked examples as a 

means to support connection making between multiple graphical representations. Experiment 4 

extends this prior research by showing that worked examples can increase the effectiveness of 

multiple graphical representations, when used to support connectional sense-making processes 

(and in conjunction with support for connectional fluency-building processes).  

An analysis of the Experiment 4 log data by the means of causal path modeling provides ten-

tative insights into how connectional sense-making support and fluency-building support inte-
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ract. Students who receive sense-making support in addition to fluency-building support make 

fewer errors on fluency-building problems compared to students who receive no sense-making 

support. The reduction in errors made on the fluency-building problems accounts for the advan-

tage of receiving a combination of both types of support (compared to receiving fluency-building 

support only) on the conceptual knowledge posttest. By contrast, receiving fluency-building sup-

port does not influence the frequency of errors students make on the sense-making problems. 

The analysis of the tutor log data leads to a hypothesis that can be tested empirically; namely, the 

understanding-first hypothesis, that the combination of connectional sense-making support and 

fluency-building support promotes students’ learning because sense-making support enables stu-

dents to benefit from connectional fluency-building support. Thus, the combination of sense-

making support and fluency-building support should be most effective in supporting students’ 

robust learning of domain knowledge if support for connectional sense-making processes is pro-

vided before support for connectional fluency-building processes. 

Experiment 5 was designed to contrast the understanding-first hypothesis and the fluency-

first hypothesis. According to the understanding-first hypothesis, connectional understanding 

equips students with prerequisite knowledge that allows them to attend to relevant aspects of 

graphical representations while working on connectional fluency-building problems. Not having 

connectional understanding might leave students at a loss of what aspects of different graphical 

representations are structurally equivalent, leading to inefficient learning strategies, which dimi-

nishes their benefit from connectional fluency-building support. In other words, the understand-

ing-first condition posits that connectional fluency cannot be acquired without prerequisite con-

nectional understanding. By contrast, the fluency-first condition holds that connectional fluency-

building support equips students with (somewhat intuitive) perceptual knowledge about corres-

pondences between different graphical representations. Students who have this type of perceptual 

fluency in making connections might experience lower cognitive load while making sense of 

connections between graphical representations, and might therefore be expected to benefit more 

from connectional sense-making support, compared to students who have not previously ac-

quired connectional fluency.  

Experiment 5 tested specific predictions by both hypotheses about students’ learning out-

comes on reproduction of connection-making tasks and their ability to transfer knowledge about 
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the domain to novel task types, on problem-solving behaviors, and conceptual reasoning. Taken 

together, the results from Experiment 5 are in line with the understanding-first hypothesis but not 

the fluency-first hypothesis, at least when considering measures of accuracy. Students who re-

ceive connectional sense-making support before connectional fluency-building support outper-

form students who receive connectional fluency-building support before connectional sense-

making support on measures accuracy of reproduction on connection-fluency tasks and of a 

transfer test of fractions knowledge. However, when considering measures of efficiency (i.e., the 

ability to speedily and accurately solve these tasks), the sequence in which connectional sense-

making and fluency-building support are provided does not have a substantial effect. Providing 

connectional fluency-building support before connectional sense-making support appears to lead 

students to prioritize on becoming more efficient in solving fractions tasks, which comes at the 

expense of becoming more accurate. By contrast, providing connectional sense-making support 

before connectional fluency-building support leads to marginally higher accuracy on the transfer 

posttest without diminishing students’ development of efficiency in solving transfer problems.  

The analysis of process-level measures sheds some light into these findings. On the one hand, 

connectional sense-making support increases students’ benefit from connectional fluency-

building support by (although slightly) reducing errors students make on connectional fluency-

building problems presented earlier in the learning process (i.e., on equivalence-fluency prob-

lems). Similarly, providing connectional sense-making support before connectional fluency-

building support leads to increased conceptual reasoning about fractions, as assessed posthoc by 

retrospective interviews. This finding is in line with the results from the causal path analysis in 

Experiment 4. On the other hand, connectional fluency-building support appears to diminish stu-

dents’ benefit from connectional sense-making support by increasing errors students make on 

sense-making problems provided later in the learning process (i.e., on comparison-sense prob-

lems). This finding extends the results from the causal path analysis in Experiment 4. Finally, 

connectional fluency-building support may be necessary to support connection making because it 

elicits more explicit connection-making utterances than sense-making support does, as assessed 

by retrospective interviews. This finding might provide some clarification about the interaction 

effect found in Experiment 4 by demonstrating why the combination of both types of support are 

needed to enhance students’ benefit from multiple graphical representations: while connectional 
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sense-making support enables students to benefit from connectional fluency-building support, 

only connectional fluency-building support leads to explicit and consciously accessible connec-

tion-making processes. It is important to point out that these interpretations about the mechan-

isms that underlie the advantage of the understanding-first condition over the fluency-first condi-

tion are highly speculative, in particular since the results on process-level measures were not un-

animous. In particular, it appears that the effects of condition on students’ problem-solving be-

haviors depended either on the type of topic (equivalence or comparison) or the time at which 

they were presented (earlier or later in the learning process). Since the topics in Experiment 5 

were presented in a fixed rather than counterbalanced sequence, the relation between the topic 

and the time during the learning period at which these topics were presented remains unclear. 

More research is needed to investigate whether the effects of connectional sense-making support 

and connectional fluency-building support and students’ benefit from these respective types of 

support hold across other topics than the ones tested, and across longer learning periods. Yet, 

even though the mechanism might remain somewhat unclear, the overall conclusion from Expe-

riment 5 is that connectional sense-making support should be provided before connectional flu-

ency-building support if the goal is to enhance students’ accuracy in transferring domain know-

ledge to novel tasks. 

Experiment 5 supports the somewhat implicitly held notion by many math education stan-

dards, which state an expectation for understanding of representations before the ability to effi-

ciently work with them (e.g., NCTM, 2010). However, the findings extend Kellman and col-

leagues’ (2009, in press) work, which is based on an implicit assumption that fluency in making 

connections can be acquired independently of connectional understanding. If connectional fluen-

cy can indeed be learned independently from connectional understanding, it is believed to reduce 

cognitive load while students engage in connectional sense-making processes later on. However, 

rather than reducing cognitive load, early connectional fluency-building support may lock stu-

dents into a mode of learning that overly emphasizes perceptual properties of representations 

(Bieda & Nathan, 2009), which distracts students’ attention from conceptual processing. Instead, 

students might become more careless at solving fractions problems, evidenced by their gains on 

the efficiency measure used in Experiment 5, and their lack of gains on the accuracy measure. 

Note, however, that the findings from Experiment 5 do not contradict Kellman and colleagues’ 
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work, since they never compared different sequences of fluency-building and sense-making sup-

port. However, it is important to note that Experiment 5 did not assess students’ cognitive load 

during the learning process, such that this interpretation of the findings remain somewhat specul-

ative and should be tested in future research.  

In summary, my empirical work comprises a sequence of five experimental studies all of 

which extend the literature on learning with multiple representations that was mostly conducted 

under the symbol-systems assumption that multiple representations enhance students’ learning 

by virtue of using different symbol systems. My experiments show that multiple graphical repre-

sentations can enhance learning even though they use the same symbol system. However, to en-

hance their benefit from multiple graphical representations, students need to be supported in re-

lating graphical representations to the symbolic notation of fractions, and to make sense of and 

become fluent in making connections between the different graphical representations. Moreover, 

interleaved practice with multiple graphical representations over an interleaved sequence of task 

types further enhances students’ learning with multiple graphical representations. In addition to 

extending prior research on learning with multiple representations, my research integrates other 

literatures that have been considered separately: it integrates research on interleaved practice 

with the literature on learning with multiple representations, and it combines research on sense-

making processes and fluency-building processes. 

5.1.3 A new theoretical framework for learning with multiple graphical representations 
As described in section 2.2, another contribution of my thesis is a theoretical framework that de-

scribes processes involved in learning with multiple graphical representations. The central claim 

of the framework is that instructional support for these hypothesized learning processes will in-

crease students’ learning of domain knowledge from working with multiple graphical representa-

tions. Since I developed this theoretical framework in iteration with my experimental studies, the 

results from my experiments constitute by no means an evaluation of the theoretical framework. 

Yet, the theoretical framework provides an interesting lens through which one might interpret 

some of the findings of my experimental studies – a lens that I hope will stimulate future re-

search. 

Experiment 1 shows that reflection prompts designed to help students self-explain the rela-

tion of each graphical representation to the corresponding symbolic notation based on knowledge 
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components of numerator and denominator are necessary for students to benefit from multiple 

graphical representations. I argued that the learning processes that these reflection prompts sup-

port are most likely representational sense-making processes: reflection prompts are designed to 

help students make sense of each component of an individual graphical representation (e.g., 

number of shaded pieces in a circle) by relating it to the conceptual aspect of fractions it 

represents (e.g., the numerator of a fraction). Although Experiment 1 did not assess direct meas-

ures of sense-making processes (for example, through think-aloud protocols or interviews), it 

might be possible to interpret the results as suggesting that representational sense-making sup-

port (in the form of reflection prompts) enable students’ to acquire robust domain knowledge 

from working with multiple graphical representations. 

Experiments 2 and 3 show that interleaved practice with task types and graphical representa-

tions enhances students’ acquisition of robust domain knowledge. As I described in the discus-

sion of each experiment in section 4, it is unclear which of the proposed learning processes inter-

leaved practice with task types and graphical representations support. The findings from the 

think-aloud study that was carried out as part of Experiment 3 suggest that interleaved practice 

with graphical representations does not support connection-making processes. Rather, inter-

leaved practice might support either representational sense-making processes or representational 

fluency-building processes. I argue that interleaving task types (while blocking graphical repre-

sentations) promotes representational sense-making processes by allowing students to abstract 

across different applications of the same graphical representation used over a sequence of task 

types, and to reactivate task-specific knowledge about one given graphical representation every 

time students switch between different task types. However, I hypothesize that interleaving 

graphical representations support representational fluency-building processes by allowing stu-

dents to frequently reactivate representation-specific knowledge, thereby strengthening their 

knowledge and increasing the chance that students can fast and effortlessly recall that knowledge 

later on, which is an aspect of representational fluency as described in section 2.2. The finding 

from the Bayesian Knowledge Tracing analysis, that students in the interleaved condition show 

higher learning rates than students in the blocked condition, is in line with the interpretation that 

students become more fluent at using graphical representations to solve fractions problems – al-

though alternative interpretations are possible. As these considerations are highly speculative and 
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many alternative interpretations are possible (as described in sections 4.2.4 and 4.3.4), I would 

like to present these interpretations merely as careful hypotheses to be confirmed or rejected by 

future research. 

Of all experiments, the relation between the theoretical framework and Experiment 4 is the 

strongest, since Experiment 4 tests a prediction that follows directly from the central claim of the 

theoretical framework: that support for connectional sense-making processes and connectional 

fluency-building should enhance students’ learning of domain knowledge from multiple graphi-

cal representations. Experiment 4 shows indeed that providing both types of support leads to bet-

ter learning of robust conceptual knowledge about fractions than either type of support alone. 

Experiment 4 even shows that only when both types of support are provided, do students’ benefit 

more from multiple graphical representations than from a single graphical representation. Even 

though it might seem that Experiment 4 serves to evaluate the claim of my theoretical framework 

that both connectional sense-making processes and connectional fluency-building processes are 

necessary for students’ domain learning to benefit from multiple graphical representations, it is 

important to note that Experiment 4 did not directly assess whether the proposed learning 

processes actually take place, but only infers from the fact that an instructional intervention de-

signed to support these learning processes is effective that these learning processes need to be 

supported. It may well be that the sense-making support and fluency-building support used in 

Experiment 4 actually enhanced other learning processes that are entirely different in nature than 

the ones proposed by my theoretical framework. Yet, given that prior research on learning with 

multiple representations has emphasized the importance of supporting students in making sense 

of the connections between different representations (Bodemer & Faust, 2006; Bodemer et al., 

2004; Plötzner et al., 2001; Schwonke et al., 2008; Seufert, 2003; van der Meij & de Jong, 2006) 

and in becoming fluent in making these connections (Kellman & Garrigan, 2009; Kellman et al., 

2008; Kellman et al., 2009; Massey et al., in press), and given that the types of support for con-

nectional sense-making and fluency-building processes were designed in accordance with these 

literatures, it seems reasonable to say that Experiment 4 provides some (albeit far from conclu-

sive) support for the hypothesis that connectional sense-making processes and connectional flu-

ency-building processes play a role in students’ learning with multiple graphical representations, 
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and that support for these learning processes enhances students’ benefit from multiple graphical 

representations.  

Experiment 5 further investigates the interactions between these two hypothesized learning 

processes. The theoretical framework as described in section 2.2 makes no specific claims as to 

how the different proposed learning processes interact. Therefore, Experiment 5 can be consi-

dered as extending the theoretical framework. Demonstrating that connectional sense-making 

support should be provided before connectional fluency-building support, Experiment 5 suggests 

that connectional understanding enhances connectional fluency-building processes, rather than 

the other way around. However, the same caveats apply as with the previous experiments: to ve-

rify this interpretation, a direct assessment of the hypothesized learning processes would be 

needed.  

Taken together, these considerations about my experimental studies illustrate the merit of the 

theoretical framework for processes involved in learning with multiple graphical representations. 

The experiments can by no means confirm or disconfirm the theoretical framework – in fact, 

they were not designed to do so. Yet, in using the theoretical framework as one possible angle 

from which to interpret the findings from my experiments, I hope to stimulate future research 

that will directly assess predictions derived from the theoretical framework. In section 2.2.2, I 

describe how one might derive testable predictions from the theoretical framework, by making 

additional assumptions about how learning of domain knowledge takes place within the given 

domain. It would be interesting for future work to specify expected changes in assessment events 

that directly measure the proposed processes and empirically test the relation between these 

processes and students’ learning of domain knowledge.  
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5.2 Educational technology perspective 

A further contribution of my dissertation is a successful piece of educational software: the Frac-

tions Tutor. The Fractions Tutor is an intelligent tutoring system that uses multiple graphical re-

presentations in a research-based way to support the acquisition of robust, conceptual knowledge 

about fractions. My research on the Fractions Tutor extends the literature on intelligent tutoring 

systems in various ways described below. The design process of the Fractions Tutor integrates 

multiple methods from learning sciences, intelligent tutoring systems, and human-computer inte-

raction. In particular, my research illustrates how principle-based integration of these different 

disciplines can inform the development educational technologies. 

5.2.1 A successful intelligent tutoring system for fractions learning 
The Fractions Tutor is the outcome of a sequence of iterative classroom experiments and lab-

based studies. The motivation in developing the Fractions Tutor was to help students acquire ro-

bust conceptual and procedural knowledge about fractions, thereby helping them overcome one 

of the major stumbling blocks in math education (Boyer et al., 2008; Callingham & Watson, 

2004; Kaminski, 2002; Person et al., 2004; Moss, 2005). As the relatively poor performance of 

the majority of 4th-grade students in the recent 2011 national NAEP math assessment demon-

strates (see http://nces.ed.gov/nationsreportcard/), there is a need to develop effective instruc-

tional tools to help students overcome their difficulties in learning about fractions. Fractions is 

not only a math topic that is important in its own right, it also provides a crucial foundation for 

later learning of algebra and other more advanced topics (NMAP, 2008; Siegler et al., 2010).  

The Fractions Tutor uses multiple abstract, interactive graphical representations to support 

students’ conceptual learning, thereby taking a different focus than other intelligent tutoring sys-

tems, such as ASSISTments (Heffernan et al., 2012), ActiveMath (Goguadze et al., 2008), or 

Animalwatch (Beal et al., 2010), which have focused on procedural learning, or incorporate non-

interactive, concrete, or only a single graphical representation. The decision to use abstract 

graphical representations is based on cross-iteration studies and corresponds to Goldstone and 

Son’s (2005) concreteness fading approach. The use of interactive graphical representations is 

motivated by the math education literature on the advantages of virtual manipulatives to support 

fractions learning (e.g., Durmus & Karakirik, 2006; Moyer et al., 2002; Reimer & Moyer, 2005). 

http://nces.ed.gov/nationsreportcard/
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Finally, the use of multiple graphical representations, rather than a single graphical representa-

tion, constitutes the heart of the Fractions Tutor. Originally, the decision to include multiple 

graphical representations was motivated by the finding that most instructional materials employ a 

variety of graphical representations of fractions. The advantage of using multiple graphical re-

presentations was confirmed by my own prior experimental study (see section 4.1 for Experi-

ment 1), and repeatedly throughout subsequent experiments, described above (see section 4.3 for 

Experiment 3, see section 4.4 for Experiment 4). Based on a sequence of controlled experiments, 

I investigated how best to implement multiple graphical representations in the Fractions Tutor so 

that students can take full advantage of the multiplicity of graphical representations.  

The outcome of this research is an intelligent tutoring system for fractions that covers a wide 

range of topics (see section 3.4) and leads to robust conceptual learning gains in real classroom 

settings (see section 3.5). Given students’ difficulties with fractions and the importance of frac-

tions for later math learning, the development of a successful educational software for fractions 

learning is in and by itself an important contribution. In addition, my approach to integrating 

learning sciences research with iterative development of educational software based on methods 

originating in intelligent tutoring systems research and human-computer interaction constitutes a 

further contribution of my work. I expect that the same approach can benefit the development of 

other types of educational software as well. 

5.2.2 Integrating learning sciences and intelligent tutoring systems research 
Throughout my thesis, I have repeatedly emphasized that the Fractions Tutor is both the outcome 

and the platform of my research. This emphasis is not incidental; it illustrates an important aspect 

of my work.  

First, my empirical research was guided by theoretically motivated questions about how best 

to enhance students’ benefit from multiple graphical representations. By investigating the effects 

of instructional support for learning with multiple graphical representations not only on measures 

of learning outcomes but also on measures of learning processes (e.g., on problem-solving beha-

viors assessed by tutor log data, or on cognitive processes assessed by interview data and think-

aloud protocols), my research provides insights into which learning processes educational tech-

nologies need to support through instructional design. Since these learning processes are not spe-

cific to fractions, I expect that they play a key role in learning with multiple graphical representa-
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tions in the numerous other domains that use multiple graphical representations with the same 

purpose as in fractions: to emphasize complementary conceptual aspects of the domain. Fur-

thermore, my theoretical framework provides a novel perspective that allows to integrate my ex-

perimental findings and to deduct specific predictions that can be tested empirically. Let me illu-

strate how my theoretical framework and the empirical findings from my experimental studies 

might lead to novel questions and predictions for chemistry learning. Chemistry uses a variety of 

graphical representations of molecules. Corey-Pauling-Koltun (CPK) representations make the 

concept of molecule external surface easily accessible, but make it more difficult to perceive the 

details of the chemical structure. Ball-and-stick figures show the complete chemical structure of 

a molecule and provide easily recognizable patterns, but they disguise the surface of the mole-

cule. Based on my theoretical framework, I hypothesize that when provided with these different 

graphical representations of molecules in chemistry instruction, students need to understand how 

to conceptually interpret each of them, they need to become fluent in using each of them to solve 

chemistry tasks, and they need to conceptually understand how these different graphical repre-

sentations relate to one another, and they need to become fluent in establishing these relations. 

Consequently, students should show higher learning gains in robust chemistry knowledge if 

these learning processes are supported than when not receiving such support. As this hypotheti-

cal example illustrates, one can derive testable predictions from my theoretical framework about 

which learning processes should be supported so that students’ acquisition of robust domain 

knowledge benefits from multiple graphical representations in domains other than fractions 

learning. 

Thus, by virtue of being theoretically motivated, the investigation of learning sciences ques-

tions goes beyond solving a specific implementation problem (such as how best to implement 

multiple graphical representations within intelligent tutoring systems). Rather, my research pro-

vides an empirically evaluated a set of instructional design principles for educational software 

that uses multiple graphical representations. By investigating the effectiveness of different types 

of instructional support for learning with multiple graphical representations, my research pro-

vides directions for which types of support are effective in helping students take advantage of the 

different conceptual perspectives that multiple graphical representations provide on complex top-

ics. These principles were evaluated in controlled experiments situated within real classrooms, 
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and can be integrated into other educational technologies and be empirically tested in other do-

mains. Altogether, by using an intelligent tutoring system as a research platform for learning 

sciences questions, I not only provide insights into learning processes, but also provide practical 

guidance for the instructional design of multi-representational educational technologies. 

Most importantly, the integration of learning sciences research and intelligent tutoring sys-

tems research crucially benefits from my use of a multi-methods approach that integrates out-

come measures and process-level measures. Throughout my work, I have investigated not only 

what works, but also how and why it works. Thereby, my research relates instructional design 

principles to the learning processes they support. For instance, the use of causal path analysis 

modeling in Experiments 4 and 5 (see sections 4.4.3.2 and 4.5.3.6) helped identify (at least some 

of) the mechanisms by which sense-making processes and fluency-building processes interact. 

The use of interview data in Experiment 5 provides insights into the complementary effects of 

connectional sense-making support and connectional fluency-building support on students’ rea-

soning about domain concepts (see section 4.5.3.4). Understanding which learning processes dif-

ferent types of instructional support enhance allows developers of educational technologies to 

make an informed decision about which types of instructional support to prioritize. Consider the 

hypothetical example that a designer of educational software knows that college students tend 

not to spontaneously make connections between bar charts, box plots, scatter plots, whereas they 

already have a good representational understanding and representational fluency (having worked 

each of these representations since high school). Based on my findings, the developer might pri-

oritize on including connectional sense-making support and connectional fluency-building sup-

port rather than support for representational understanding and representational fluency.  

5.2.3 A principled methodology to resolving design conflicts 
Another important aspect of my research is the integration of a particular human-computer inte-

raction perspective, which has substantially contributed to the success of the Fractions Tutor 

within the context of real educational settings: a principled methodology to resolve design con-

flicts between stakeholders. Throughout the design process, I was faced with critical design con-

flicts between competing stakeholder goals. In section 3.3, I describe several options for resolv-

ing these conflicts. At the heart of this process is a goal hierarchy that I developed using a bot-

tom-up process that involved a variety of user-centered design methods such as focus groups and 
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affinity diagramming, which allowed to integrate a variety of stakeholders, including students, 

teachers, and educational psychology experts. Furthermore, I employed a multi-methods ap-

proach to empirical research to resolve persisting design conflicts based on parametric experi-

ments and cross-iteration studies. My methodology thereby extends existing instructional design 

processes by integrating methods from multiple disciplines and addresses shortcomings resulting 

from their focus on user-centered design alone (Design-based Research Collective, 2003; Jack-

son et al., 1998; Soloway et al., 1996), learning sciences (Bereiter & Scardamalia, 2003), and 

cognitive psychology research (Koedinger, 2002; Mayer, 2003; van Merrienboër et al., 2002).  

Even though, at times, design decisions are situational, highly contextualized and occur un-

der the pressure of deadlines and therefore are bound to be (to some extent) based on intuition 

rather than on methods, my approach addresses the common scenario in which developers of 

educational technologies need to rely on ad-hoc methods to resolve conflicts between conflicting 

goals of multiple stakeholders. Although I developed and demonstrated this approach within the 

context of a Cognitive Tutor, a specific type of educational technology that is widely used across 

3,000 schools in the United States, I am confident that my approach will generalize to other types 

of educational technologies. For instance, MIT’s edX system, an open-source learning technolo-

gy that makes course materials at the college level accessible online, faces unique design chal-

lenges due to the learners’ contexts and goals. Users may be students from around the world us-

ing the system for exam preparation, or teachers who access the system in order to fulfill their 

continued education requirement. Conflicts might exist between the users’ goal to relate the 

learning content to specific contexts, such as for an engineering project (if the user is a college 

student majoring in engineering), or for a high-school classroom (if the user is a teacher). Ad-

dressing these goals is difficult because tailoring the content to these different interest groups 

would result in having highly specific content that is not at the same time relevant to all interest 

groups. Yet, MIT has an interest in the edX system being widely used across different groups of 

users. In applying my approach to combine a goal hierarchy for different types of users with pa-

rametric experiments and cross-iteration studies, trade-offs such as the one just described can be 

explicitly identified and addressed.  

The scenario with edX illustrates that the approach I described in this section might serve as 

a framework to stimulate future research on educational technology development, not only to 
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improve specific technologies, but also to evaluate and further extend the presented approach. 

Only with a well-researched and principled approach to incorporating multiple (and, as de-

scribed, often conflicting) stakeholders’ goals can we develop educational technologies that are 

not only effective, but also usable within real contexts and even enjoyable. 
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5.3 Limitations and future research 

Inevitably, as all research, my research is limited in several ways. But at the same time, these 

limitations point to open questions that will hopefully stimulate further research in the area of 

learning with multiple graphical representations. 

First, my research was conducted in the domain of fractions learning. As mentioned, the way 

in which fractions instruction employs multiple graphical representations is characteristic of 

many STEM domains: across many domains, multiple graphical representations are used with 

the goal to emphasize particular conceptual aspects of the domain that are complementary in the 

sense that only if students understand all of them, they can be said to have robust domain know-

ledge. I expect that wherever multiple graphical representations are employed with this purpose, 

students’ benefit from multiple graphical representations will be enhanced if they are employed 

in accordance with the instructional design principles summarized in section 5.1.1. Based on my 

theoretical framework, I further hypothesize that students’ benefit from multiple graphical repre-

sentations will be enhanced if they receive instructional support to help them engage in represen-

tational sense-making and fluency-building processes as well as in connectional sense-making 

and fluency-building processes. Yet, this assertion remains to be tested empirically. Future re-

search should investigate whether students’ benefit from multiple graphical representations in 

robust learning in other domains than fractions depends on instructional support for each of these 

four learning processes. Such research would contribute to further expanding prior research that 

has focused on learning with multiple representations from different symbol systems (such as 

text and one additional graphical representation), to learning with multiple representations from 

the same symbol system (i.e., multiple graphical representations). As detailed in section 2.2.2, 

my theoretical framework allows to deduct hypotheses that can be empirically investigated. 

Second, my research is incremental in multiple ways. Not only did the design of instructional 

support in each experimental study build on the findings in the previous experiments, but also the 

design of the Fractions Tutor changed between subsequent experiments, based on both the expe-

riment results and on user-based studies conducted within the laboratory. Therefore, the conclu-

sions from each experiment cannot be considered independently from the results of previous ex-

periments. For example, in Experiment 2 (see section 4.2) would interleaving of task types have 

been more effective than interleaving graphical representations if the reflection prompts that 
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were found to support sense-making of individual graphical representations in Experiment 1 (see 

section 4.1) had not been integrated in the Fractions Tutor? My research cannot speak to this 

question. Or, in Experiment 3 (see section 4.3), would interleaving graphical representations 

have been more effective than blocking graphical representations if task types had not consistent-

ly been provided in a fully interleaved fashion across all conditions, based on the findings of Ex-

periment 2 (see section 4.2)? Again, my research does not answer that question. Speaking in 

terms of my theoretical framework (if one were to adopt my interpretation of the experimental 

results described in section 5.1.3), it remains an open question whether support for representa-

tional fluency-building processes is effective independently of students receiving support for 

sense-making processes with individual representations. Furthermore, it remains open whether 

support for learning processes involved in connection making is effective when provided inde-

pendently of support for learning processes involved in using individual graphical representa-

tions. Future research should address these open questions by investigating the effectiveness of 

each type of instructional support independent of other types of support.  

Third, as a consequence of the iterative development of the Fractions Tutor across the expe-

rimental studies, the assessments used in each experiment are not directly comparable, as they 

reflect the changes made to the topics covered by the Fractions Tutor. Inconsistencies between 

experiments with regard to the results might thus be caused by changes in the structure of the 

tests. For example, Experiment 4 did not replicate the advantage of multiple graphical represen-

tations over a single graphical representation when provided without connection-making support, 

which was found in Experiment 1 and (to a certain extent) in Experiment 3. Whether this lack of 

an effect in Experiment 4 might be explained by the fact that the test used in Experiment 4 in-

cluded both reproduction and transfer items of conceptual knowledge, whereas the test scale on 

which an advantage of multiple graphical representations was found in Experiment 3 included 

only transfer items of conceptual knowledge, remains an open question.  

Fourth, my research was conducted within a very specific type of educational technology: an 

intelligent tutoring system. The main strength of intelligent tutoring systems is that they can pro-

vide individualized adaptive feedback and hints on demand in real time. Many other educational 

technologies do not have that capability, such as massive open online courses (MOOCs, like the 

edX system mentioned earlier). It remains open whether my findings generalize to other technol-
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ogies that have fewer capabilities to allow for individualized support, or even to allow for the 

same amount of interactivity with graphical representations. Likewise, it remains open whether 

my findings generalize to non-technology learning materials, such as paper-based curricula, or 

paper-and-pencil work sheets.  

Finally, although the Fractions Tutor has been shown to lead to robust, substantial learning 

gains, it could be better. In particular, it does not yet take full advantage of the capability of intel-

ligent tutoring systems to provide adaptive support based on knowledge tracing. Although Cog-

nitive Tutors have the capability to provide adaptive support, I did not make use of this feature 

because it would have introduced additional (and undesirable) variability in my experimental 

studies and might have jeopardized the controlled experimental design. An interesting direction 

for future research would be to investigate the effects of providing instructional support for the 

hypothesized processes involved in learning with multiple graphical representations based on a 

knowledge-tracing model. This future version of the Fractions Tutor could provide, for instance, 

instructional support for fluency-building processes in connection making when students have 

received mastery in conceptual understanding of the connections. One might envision a domain-

independent model that serves as a basis to provide the appropriate type of instructional support 

for a specific learning process involved in learning with multiple graphical representations when 

needed. Such a model has the potential to enhance students’ benefit from multiple graphical re-

presentations in a variety of domains. 
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5.4 Summary: An interdisciplinary multi-methods approach 

Although limited in several ways, my research makes important contributions to the fields of 

learning sciences and educational technologies, as detailed in this section. Furthermore, my re-

search leads to a set of new research questions that will (definitely) stimulate my own future re-

search, and (hopefully) also that of other researchers.  

What has substantially influenced these contributions is a particular overarching characteris-

tic of my research: the use of a multi-methods approach. By integrating methods that combine 

learning outcomes and process-level measures, my research yields insights that motivate novel 

research questions that can be tested experimentally. To illustrate this point, consider the se-

quence of experimental studies described in section 4. For instance, the finding in Experiment 3, 

that students do not spontaneously make connections between graphical representations, unless 

explicitly prompted to do so (see section 4.3.2) informed the design of connectional sense-

making support used in Experiment 4, which includes explicit reflection prompts (see sections 

3.4.1 and 3.4.2). Furthermore, the finding in Experiment 4 that connectional sense-making and 

fluency-building processes interact (see section 4.4.3), together with the result from causal path 

analysis in Experiment 4 that sense-making support seemed to enhance students’ benefit from 

fluency-building support rather than vice versa (see section 4.4.3.2) lead to two competing hypo-

theses about learning processes that I contrasted experimentally in Experiment 5. The results 

from Experiment 5, in turn, lead to the formulation of instructional design principles that I incor-

porated in the Fractions Tutor and which can be applied to other multi-representational educa-

tional technologies as well.  

Taken together, these observations illustrate that the combination of learning sciences re-

search and intelligent tutoring systems research yields “more than the sum of their parts”. In 

combining both perspectives, my research benefited from their complementary views: by itera-

tively moving from theoretically motivated learning sciences questions to implementation ques-

tions in the context of intelligent tutoring systems development, both perspectives complemented 

one another. The result of this integration is (1) a set of empirically validated instructional design 

principles that can be integrated in a wide range of educational technologies, (2) an empirically 

motivated theoretical framework for learning with multiple graphical representations, (3) an ef-

fective intelligent tutoring system for fractions learning that leads to robust and flexible domain 
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knowledge, and (4) a new methodology that can guide instructional designers in resolving con-

flicts that inevitably arise in the context of real educational settings. 
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Appendix 1: Fractions Tutor curriculum 
Topic 1: Naming Fractions 

 Problem type: Determine what fraction (unit fractions and proper fractions) 
a given graphical representation shows (using circle diagrams, rectangles, 
and number lines) 
Learning goal: Become familiar with the (interactive) graphical representa-
tions and link it to the symbolic representation 
 

PA State Standard 2.1.5.D9 
NCTM Standards Grades 3-5 
#110 
NCTM Standards Grades 3-5 #3 
Common Core Standard 3.NF.111 
Common Core Standard 3.NF.2 
Common Core Standard 3.NF.3 

Problem type: Compare fractions given a graphical representation and the 
corresponding symbolic fraction (using circle diagrams, rectangles, and 
number lines) 
Learning goal: Developing a sense for the size of fractions using the graph-
ical representation and link it to the symbolic representation 
 

PA State Standard 2.1.5.D  
PA State Standard 2.4.5.A 
PA State Standard 2.4.5.B 
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #3 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 
Common Core Standard 3.NF.3 

Problem type: Determine what fraction a given graphical representation 
represents, given the unit of the fraction (using circle diagrams, rectangles, 
and number lines) 
Learning goal: Understand that the unit determines the relative size of the 
fraction 

PA State Standard 2.1.3.B 
PA State Standard 2.3.3.B 
PA State Standard 2.1.5.D  
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #3 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 
Common Core Standard 3.NF.3 

Topic 2: Making Graphical Representations of Fractions 
 Problem type: Construct a graphical representation for a fraction given 

symbolically (using circle diagrams, rectangles, and number lines) 
Learning goal: Become familiar with the (interactive) graphical representa-
tions and link it to the symbolic representation 
 

PA State Standard 2.1.5.D 
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #3 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 
Common Core Standard 3.NF.3 

Problem type: Compare fractions given a graphical representation and the 
corresponding symbolic fraction (using circle diagrams, rectangles, and 
number lines) 
Learning goal: Developing a sense for the size of fractions using the graph-
ical representation and link it to the symbolic representation 

PA State Standard 2.1.5.D  
PA State Standard 2.4.5.A 
PA State Standard 2.4.5.B 
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #3 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 
Common Core Standard 3.NF.3 

Problem type: Construct a graphical representation for a fraction given 
symbolically while using different units (using circle diagrams, rectangles, 
and number lines) 
Learning goal: Understand that the unit determines the relative size of the 
fraction 
 

PA State Standard 2.1.3.B 
PA State Standard 2.3.3.B 
PA State Standard 2.1.5.D  
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #3 
Common Core Standard 3.NF.1 

                                                 
9 see Appendix 2 for Pennsylvania State Standard definitions 
10 see Appendix 3 for NCTM Standard definitions 
11 see Appendix 4 for Common Core Standard definitions 
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Common Core Standard 3.NF.2 
Common Core Standard 3.NF.3 

Topic 3: Reconstructing The Unit  
 Problem type: Given a unit fraction, reconstruct the unit of the fraction (us-

ing circle diagrams, rectangles, and number lines) 
Learning goal: Understand that the unit determines the relative size of the 
fraction, developing a sense for the size of fractions using the graphical re-
presentation and link it to the symbolic representation 
 

PA State Standard 2.1.3.B 
PA State Standard 2.3.3.B 
PA State Standard 2.1.5.D  
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 

 Problem type: Given a proper fraction, (a) find the unit fraction, and (b) 
reconstruct the unit of the fraction (using circle diagrams, rectangles, and 
number lines) 
Learning goal: Understand that the unit determines the relative size of the 
fraction, developing a sense for the size of fractions using the graphical re-
presentation and link it to the symbolic representation 
 
 
 

PA State Standard 2.1.3.B 
PA State Standard 2.3.3.B 
PA State Standard 2.1.5.D  
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 

Topic 4: Naming Improper Fractions 
 Problem type: Determine what improper fraction a given graphical repre-

sentation shows (using circle diagrams, rectangles, and number lines) 
Learning goal: Understand that fractions can be larger than 1 

PA State Standard 2.1.5.D 
NCTM Standards Grades 3-5 #1 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 

 Problem type: Determine what fraction a given graphical representation 
represents, given the unit of the fraction (using circle diagrams, rectangles, 
and number lines) 
Learning goal: Understand that the unit determines the relative size of the 
fraction 

PA State Standard 2.1.3.B 
PA State Standard 2.3.3.B 
PA State Standard 2.1.5.D  
NCTM Standards Grades 3-5 #1 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 

Topic 5: Making Graphical Representations of Improper Fractions 

 

Problem type: Construct a graphical representation for a fraction given 
symbolically (using circle diagrams, rectangles, and number lines) 
Learning goal: Become familiar with the (interactive) graphical representa-
tions and link it to the symbolic representation 
 

PA State Standard 2.1.5.D 
NCTM Standards Grades 3-5 #1 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 

 

Problem type: Compare fractions given a graphical representation and the 
corresponding symbolic fraction (using circle diagrams, rectangles, and 
number lines) 
Learning goal: Developing a sense for the size of fractions using the graph-
ical representation and link it to the symbolic representation 

PA State Standard 2.1.5.D  
PA State Standard 2.4.5.A 
PA State Standard 2.4.5.B 
NCTM Standards Grades 3-5 #1 
Common Core Standard 3.NF.1 
Common Core Standard 3.NF.2 

Topic 6: Equivalent Fractions: Underlying Concepts 

 

Problem type: Given a graphical representation of a fraction (circle dia-
grams, rectangles, and number lines ), manipulate it to find an equivalent 
fraction graphically, and name the corresponding symbolic fraction 
Learning goal: Understand the invariance of amounts when partitioning a 
fraction into more sections 

 PA State Standard 2.1.8.A 
NCTM Standards Grades 3-5 #1 
Common Core Standard 
4.NF.1*** 
Common Core Standard 3.NF.3 

 
Problem type: Given a symbolic fraction, manipulate numerator and deno-
minator separately, while observing corresponding changes in a graphical 
representation (circle diagrams, rectangles, and number lines ) 
Learning goal: Understand that multiplying numerator and denominator by 

PA State Standard 2.1.8.A 
NCTM Standards Grades 3-5 #1 
Common Core Standard 4.NF.1 
Common Core Standard 3.NF.3 
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the same number does not change the amount of the fraction 

Topic 7: Equivalent Fractions: Expanding and Reducing 

 

Problem type: Given a graphical representation of a unit fraction (circle 
diagrams, rectangles, and number lines), manipulate it to expand it and re-
duce it 
Learning goal: Understand that expanding and reducing fractions are inter-
changeable activities 

PA State Standard 2.1.8.A 
NCTM Standards Grades 3-5 #1 
Common Core Standard 3.NF.3 
Common Core Standard 4.NF.1 

 

Problem type: Given a graphical representation of a proper fraction (circle 
diagrams, rectangles, and number lines ), manipulate it to expand it and re-
duce it 
Learning goal: Understand that expanding and reducing fractions are inter-
changeable activities 

PA State Standard 2.1.8.A 
NCTM Standards Grades 3-5 #1 
Common Core Standard 3.NF.3 
Common Core Standard 4.NF.1 

Topic 8: Comparing Fractions 

 

Problem type: Given two fractions and their graphical representation (circle 
diagrams, rectangles, or number lines), use common benchmarks (e.g., ½, 
¼) to compare them 
Learning goal: Being able to use benchmarks to compare fractions 

PA State Standard 2.2.8.B 
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #2 
Common Core Standard 3.NF.3 
Common Core Standard 4.NF.2 

 

Problem type: Given two fractions and their graphical representation (circle 
diagrams, rectangles, or number lines), use equivalent fractions to convert 
them to the same numerator or denominator to reason that one is larger than 
the other 
Learning goal: Being able to use equivalent fractions to compare fractions 

PA State Standard 2.2.8.B 
NCTM Standards Grades 3-5 #1 
NCTM Standards Grades 3-5 #2 
Common Core Standard 3.NF.3 
Common Core Standard 4.NF.2 

Topic 9: Adding Fractions 

 

Problem type: Add two given fractions with the same denominators and 
specify the unit of the addend fractions and the sum fraction 
Learning goal: Understanding that the unit does not change when adding 
two fractions, and that for this reason, the denominator of the sum fraction 
remains the same 

PA State Standard 2.2.8.B  
Common Core Standard 4.NF.3 

 

Problem type: Add two given fractions with the different denominators and 
specify the unit of the addend fractions and the sum fraction 
Learning goal: Understanding that the unit does not change when adding 
two fractions as the motivation for finding the common denominator before 
adding fractions; being able to use equivalent fractions to find the common 
denominator of two addend fractions 

PA State Standard 2.2.8.B 
 Common Core Standard 5.NF.1 

Topic 10: Subtracting Fractions 

 

Problem type: Subtract two given fractions with the same denominators and 
specify the unit of the subtrahend fractions and the difference fraction 
Learning goal: Understanding that the unit does not change when subtract-
ing two fractions, and that for this reason, the denominator of the difference 
fraction remains the same 

PA State Standard 2.2.8.B 
Common Core Standard 4.NF.3 

 

Problem type: Subtract two given fractions with the different denominators 
and specify the unit of the subtrahend fractions and the difference fraction 
Learning goal: Understanding that the unit does not change when subtract-
ing two fractions as the motivation for finding the common denominator 
before subtracting fractions; being able to use equivalent fractions to find 

PA State Standard 2.2.8.B 
Common Core Standard 5.NF.1 
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the common denominator of two subtrahend fractions 

Table A1. Topics and problem types covered by the Fractions Tutor. 
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Appendix 2: Pennsylvania State Standards 
Pennsylvania State Standards Alignment of Fractions Tutor with the Standards 
Use whole numbers and fractions to 
represent quantities. (2.1.3. B) 
Use drawings, diagrams or models to 
show the concept of fraction as part 
of a whole. (2.1.3. D) 

In the earlier units of the Fractions Tutor, students will work with 
multiple graphical representations of fractions and will have to 
translate between the graphical representations and the symbolic 
representations of fractions. We will help students transition from 
counting shaded sections and total sections in circles and 
rectangles to viewing fractions as ordered quantities in number 
lines. 

Use models to represent fractions and 
decimals (2.1.5. D) 

Circles, rectangles, and number lines are used throughout the 
Fractions Tutor units 

Develop and apply algorithms to 
solve word problems that involve 
addition, subtraction, and/or 
multiplication with fractions and 
mixed numbers that include like and 
unlike denominators. (2.2.5. C) 

Specific units in the Fractions Tutor focus on addition, subtraction, 
multiplication and division with fractions and mixed numbers, 
using graphical representations to support students’ conceptual 
understanding of algorithms. The Fractions Tutor uses realistic 
cover stories to introduce the graphical representations.  

Table A2. Alignment of the Fractions Tutor with Pennsylvania State Standards. 
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Appendix 3: NCTM Standards 
NCTM Standards Alignment of Fractions Tutor with the Standards 
All students should develop 
understanding of fractions as parts of 
unit wholes, as parts of a collection, 
as locations on number lines, and as 
divisions of whole numbers. 

The Fractions Tutor uses graphical representations to illustrate the 
part-whole interpretation of fractions (area models: circle and rec-
tangle), and the measurement interpretation (number line). 
 

All students should use models, 
benchmarks, and equivalent forms to 
judge the size of fractions. 

The Fractions Tutor uses graphical models to illustrate the relative 
size of fractions and to support fraction comparison. Graphical 
models are also used to define equivalent fractions as fractions that 
show the same amount using different numerators and denomina-
tors. 

All students should explore numbers 
less than 0 by extending the number 
line and through familiar 
applications. 

The Fractions Tutor provides practice in interpreting and manipu-
lating fractions using circles, rectangles, and number lines. 

Table A3. Alignment of the Fractions Tutor with Pennsylvania State Standards. 
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Appendix 4: Common Core Standards 
Grade Common Core Standards Alignment of Fractions Tutor with the 

Standards 

3 Understand a fraction 1/b as the quantity 
formed by 1 part when a whole is partitioned 
into b equal parts; understand a fraction a/b 
as the quantity formed by a parts of size 1/b. 
(3.NF.1.) 

Throughout the early units of the fractions tutor, 
we emphasize the unit of the fraction as what the 
fraction is being taken of. The fractions tutor 
includes partitioning activities and repetition 
activities of unit fractions to form proper 
fractions using circles, rectangles, and number 
lines. 

Understand a fraction as a number on the 
number line; represent fractions on a number 
line diagram. (3.NF.2.) 
Represent a fraction 1/b on a number line 
diagram by defining the interval from 0 to 1 
as the whole and partitioning it into b equal 
parts. Recognize that each part has size 1/b 
and that the endpoint of the part based at 0 
locates the number 1/b on the number line. 
Represent a fraction a/b on a number line 
diagram by marking off a lengths 1/b from 0. 
Recognize that the resulting interval has size 
a/b and that its endpoint locates the number 
a/b on the number line. 

The fractions tutor includes activities with the 
number line while supporting students in making 
connections between circles, rectangles, and 
number lines.  
The fractions tutor includes number lines that 
extend beyond 1 even when showing fractions 
between 0 and 1. Throughout the number line 
activities the fractions tutor emphasizes that the 
unit of a fraction on the number line is the 
distance between 0 and 1.  
The fractions tutor also includes reflection 
questions to help students understand that a 
proper fraction can be constructed by repeating 
unit fractions. 

Explain equivalence of fractions in special 
cases, and compare fractions by reasoning 
about their size. (3.NF.3.) 
Understand two fractions as equivalent 
(equal) if they are the same size, or the same 
point on a number line. 
Recognize and generate simple equivalent 
fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain 
why the fractions are equivalent, e.g., by 
using a visual fraction model. 
Express whole numbers as fractions, and 
recognize fractions that are equivalent to 
whole numbers. 
Compare two fractions with the same 
numerator or the same denominator by 
reasoning about their size. Recognize that 
comparisons are valid only when the two 
fractions refer to the same whole. Record the 
results of comparisons with the symbols >, =, 
or <, and justify the conclusions, e.g., by 
using a visual fraction model. 

Throughout the early units of the fractions tutor, 
we explicitly ask students to reason about the 
size of two fractions that have either the same 
denominator but different numerators, or 
different denominators but the same numerators. 
We use circles, rectangles, and number lines to 
support their thinking.  
The fractions tutor includes two units on 
equivalent fractions where we first introduce 
equivalent fractions conceptually and then 
provide computational practice in finding 
equivalent fractions. 
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4 Explain why a fraction a/b is equivalent to a 
fraction (n × a)/(n × b) by using visual 
fraction models, with attention to how the 
number and size of the parts differ even 
though the two fractions themselves are the 
same size. Use this principle to recognize 
and generate equivalent fractions. (4.NF.1.) 

The Fractions Tutor uses graphical re-
partitioning of graphical representations without 
changing the shown amount in order to 
introduce equivalent fractions, and to 
demonstrate why numerator and denominator 
need to be multiplied by the same number in 
order to conserve the amount. 

Compare two fractions with different 
numerators and different denominators, e.g., 
by creating common denominators or 
numerators, or by comparing to a benchmark 
fraction such as 1/2. Recognize that 
comparisons are valid only when the two 
fractions refer to the same whole. Record the 
results of comparisons with symbols >, =, or 
<, and justify the conclusions, e.g., by using 
a visual fraction model. (4.NF.2.) 

The Fractions Tutor introduces fractions with 
activities in which students are asked to name 
fractions given a graphical representation. As 
part of these activities, students will name two 
fractions and then compare them to one another. 
In these activities, the unit of the fraction is also 
being varied. Later in the tutor curriculum, an 
entire unit is dedicated to fractions comparison, 
using 1/2 as a benchmark. 

Understand a fraction a/b with a > 1 as a sum 
of fractions 1/b. (4.NF.3.) 
Understand addition and subtraction of 
fractions as joining and separating parts 
referring to the same whole. 
Decompose a fraction into a sum of fractions 
with the same denominator in more than one 
way, recording each decomposition by an 
equation. Justify decompositions, e.g., by 
using a visual fraction model. 
Add and subtract mixed numbers with like 
denominators, e.g., by replacing each mixed 
number with an equivalent fraction, and/or 
by using properties of operations and the 
relationship between addition and 
subtraction. 
Solve word problems involving addition and 
subtraction of fractions referring to the same 
whole and having like denominators, e.g., by 
using visual fraction models and equations to 
represent the problem. 

The Fractions Tutor includes units on fraction 
addition and fraction subtraction in which proper 
fractions will be decomposed into unit fractions.  
The concept of the unit of the fraction will be 
emphasized throughout the entire curriculum, 
and (wrt fraction addition and subtraction) 
special emphasis will be put on helping students 
understand that the denominator defines the size 
of the sections that are being added (in relation 
to the unit) and should therefore remain the 
same (i.e., adding the numerators, but not the 
denominators).  
The addition and subtraction units of the 
Fractions Tutor will also include mixed 
numbers. 
 

5 Add and subtract fractions with unlike 
denominators (including mixed numbers) by 
replacing given fractions with equivalent 
fractions in such a way as to produce an 
equivalent sum or difference of fractions 
with like denominators. (5.NF.1.) 

The Fractions Tutor includes fraction addition 
and fraction subtraction problems in which 
students are first guided to convert fractions to 
that they have the least common denominator. 

Table A4. Alignment of the Fractions Tutor with Common Core Standards. 
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Appendix 5: Experiment 2 test items 

 
Fig. A5-1. Example test items from the representational knowledge test used in Experiment 2.  
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Fig. A5-2. Example test items from the operational knowledge test used in Experiment 2.
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Appendix 6: Experiment 3 test items 

 
Fig. A6-1. Example test items from the area models fluency test used in Experiment 3. 

 
Fig. A6-2. Example test items from the number lines fluency test used in Experiment 3. 



Appendices 
 

257 
 
 

 
Fig. A6-3. Example test items from the conceptual transfer test used in Experiment 3. 

 
Fig. A6-4. Example test items from the procedural transfer test used in Experiment 3. 
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Appendix 7: Experiment 4 test items 

 
Fig. A7-1. Example test items from the conceptual knowledge test used in Experiment 4. 
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Fig. A7-2. Example test items from the procedural knowledge test used in Experiment 4. 



Appendices 
 

260 
 
 

Appendix 8: Experiment 5 test items 

 
Fig. A8-1. Example test items from the sense-making quiz used in Experiment 5. 
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Fig. A8-2. Example test items from the fluency-building quiz used in Experiment 5. 
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Fig. A8-3. Example test items from the transfer test used in Experiment 5. 
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