
A SAT-Based Algorithm for Reparameterization in
Symbolic Simulation

Pankaj Chauhan Daniel Kroening Edmund Clarke

December 3, 2003
CMU-CS-03-191

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Semiconductor Research Corporation (SRC)
under contract no. 99-TJ-684, the National Science Foundation (NSF) under grant
no. CCR-9803774, the Office of Naval Research (ONR), the Naval Research Labo-
ratory (NRL) under contract no. N00014-01-1-0796, and by the Defense Advanced
Research Projects Agency, and the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485 . The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of SRC, NSF, ONR, NRL, DOD, ARO, or the U.S. government.

Keywords: Symbolic Simulation, SAT checkers, Bounded Model Checking,
Parametric Representation, Safety Property Checking

Abstract

Parametric representations used for symbolic simulation of circuits usually use
BDDs. After a few steps of symbolic simulation, state set representation is
converted from one parametric representation to another smaller representation,
in a process called reparameterization. For large circuits, the reparametrization
step often results in a blowup of BDDs and is expensive due to a large number
of quantifications of input variables involved. Efficient SAT solvers have been
applied successfully for many verification problems. This paper presents a novel
SAT-based reparameterization algorithm that is largely immune to the large
number of input variables that need to be quantified. We show experimental
results on large industrial circuits and compare our new algorithm to both SAT-
based Bounded Model Checking and BDD-based symbolic simulation. We were
able to achieve on average 3x improvement in time and space over BMC and able
to complete many examples that BDD-based approach could not even finish.

1 Introduction

Symbolic simulation is a widely applied technique for analysis of complex tran-
sition systems and synchronous circuits in particular. In symbolic simulation,
the transition relation is unwound m times into an equation that represents the
set of states that is reachable in exactly m steps. The simulator keeps separate
equations for each state variable. They are parameterized in the initial state
and the inputs of the circuit. Thus, the set of states is stored in a parametric
representation.

An efficient way to store and manipulate this parametric representation of
the set of states is crucial for the performance of the algorithm. Such a rep-
resentation describes a set of states as a vector (f1, f2, . . . , fn) of functions in
parameters P = {p1, p2, . . . , pm}. Each parametric function gives the value of
one state variable. For example, the set of states S = {10, 01} is represented
parametrically as (p1,¬p1). In this case, there is only one parameter p1.

Most implementations use BDDs [Bry86] to represent these functions [CM90,
Jon99, AJS99, Goe03, GB03, YS02]. These BDDs may grow exponentially in
the number of simulation steps, as the number of variables grows. In order to
address this problem, symbolic simulators compute a new, equivalent paramet-
ric representation. The new representation can be significantly smaller since it
usually requires fewer variables. This step is done as soon as one of the BDDs
becomes too large. The process of converting one parametric representation to
another is called reparameterization. In [CM90] and [Jon99], the reparameteri-
zation algorithm first converts the parametric representation into characteristic
function form and then parameterizes this form. In [Goe03], an algorithm is
given for computing set union in parametric form. Algorithms for reparameter-
ization and quantification are given that are based on this set union algorithm.
However, the reparameterization is done using BDDs, hence as the number of
simulation steps grows, the algorithm quickly becomes very expensive. This is
due to the fact that each simulation step introduces more input variables, which
need to be quantified during reparameterization.

Contribution We describe a SAT-based algorithm to perform the reparam-
eterization step for symbolic simulation. The algorithm performs better than
BDD-based reparameterization especially in the presence of many input vari-
ables. The algorithm takes arbitrary Boolean equations as input. Therefore,
it does not require BDDs for the symbolic simulation. Instead, non-canonical
forms that grow linearly with the number of simulation steps can be used.

In essence, the SAT-based reparameterization algorithm computes a new
parametric function for each state variable one at a time. In each computation,
a large number of input variables are quantified by a single call to a SAT-based
enumeration procedure [McM02, CCK03]. The advantage of this approach is
twofold: First, all input variables are quantified at the same time, and second,
the performance of SAT-based enumeration procedure is largely unaffected by
the number of input variables that are quantified.

We demonstrate the efficiency of this new technique using large industrial

1

circuits with thousands of latches. We compare it to both SAT-based Bounded
Model Checking and BDD-based symbolic simulation. Our new algorithm can
go much deeper than a standard Bounded Model Checker can. Moreover, the
overall memory consumption and the run times are, on average, 3 times less
than the values measured using a Bounded Model Checker. The BDD-based
symbolic simulator could not even verify most of the circuits that we used.

Other Techniques Model checking [CGP00, CE81] techniques suffer from
the state explosion problem. In case of BDD-based symbolic model check-
ing this problem manifests itself in the form of unmanageably large BDDs
[BCM+92]. This problem is partly addressed by a formal verification tech-
nique called Bounded Model Checking (BMC) [BCC+99, BCCZ99]. In BMC,
the transition relation for a complex circuit and its specification are jointly un-
wound to obtain a Boolean formula, which is then checked for satisfiability by
using a SAT procedure such as GRASP [SS96] or Chaff [MMZ+01]. If the for-
mula is satisfiable, a counterexample can be extracted from the output of the
SAT procedure. If the formula is not satisfiable, the circuit and its specification
can be unwound more to determine if a longer counterexample exists. This
process terminates when the length of the potential counterexample exceeds its
completeness threshold (i.e., is sufficiently long to ensure that no counterex-
ample exists [KS03]) or when the SAT procedure exceeds its time or memory
bounds. BMC has been used successfully to find subtle errors in very large
circuits [Sht00, CFF+01].

In BMC, the size of the SAT instance grows linearly with the unwinding
depth. However, for very large circuits, even linear growth can be prohibitive:
Either the formula already exceeds the memory limits, or the SAT instance is
too hard for the SAT solver. No attempt is made to reduce the size of the
representation.

BMC is not at all effective for showing that a property is true unless m
exceeds the completeness threshold for the design and the property. Since this
completeness threshold is, in most cases, prohibitively large, several extensions
to BMC have been proposed in order to detect the absence of counterexamples:

1. In the counterexample guided abstraction refinement framework (CE-
GAR) [CGJ+00, CCS+02], model checking is performed on a safe ab-
straction of the model. Thus, if the property holds on the abstract model,
it also holds on the concrete model. If this is not so, an abstract counterex-
ample is obtained from the model checker. This abstract counterexample
is then used to constrain the states in a Bounded Model Checking SAT
instance. If the constrained BMC SAT instance is satisfiable, the abstract
counterexample can be simulated on the concrete model and a bug is
found. If not, the abstraction is refined using various heuristics.

2. In [MA03], this framework is changed as follows: An abstract counterex-
ample is no longer obtained. The only information of interest is the length
m of the abstract counterexample. This length m is then used as the

2

bound for a normal, unconstrained BMC instance. If the BMC instance
is satisfiable, a bug is found. If this is not the case, information from the
SAT solver is used to generate the next abstract model.

3. In [McM03], a new framework is introduced: The algorithm initially per-
forms Bounded Model Checking for some m steps in order to refute the
property. If this fails, the proof of unsatisfiability extracted from the SAT
solver is used to simplify a fixed-point computation. The purpose of the
fixed-point computation is to detect the case when the property actually
holds. This may fail, and if so, the algorithm is repeated with an increased
value of m.

All three approaches therefore solely rely on Bounded Model Checking to refute
the property. The extensions are used to detect the case that the property is
true. We briefly describe how our algorithm can be used within these frameworks
as a replacement for SAT-based BMC.

Outline In section 2, we briefly introduce the basics of Bounded Model Check-
ing and modern SAT algorithms. We also describe how the basic SAT algorithm
can be extended in order to obtain the set of satisfying assignments instead of
just one satisfying assignment. In section 3, we provide background information
about the parametric representation as present in the literature. In section 4, we
explain our contribution, i.e., how to implement reparameterization using SAT.
In section 6, we present experimental results to demonstrate the effectiveness of
the idea. In section 7, we show how it can be used in a number of verification
frameworks as a replacement for Bounded Model Checking. We present a proof
of correctness of our algorithm in section 8.

Notations and Conventions

We will use the following notations and conventions throughout the paper. Sets
will be denoted by capital letters, as in S for the set of states, V for the set of
state variables, Im for the set of input variables, and P for the set of parametric
variables. We use a superscript of m for input variables to denote input variables
accumulated over m steps of symbolic simulation. An ordered tuple of lower
case letters denotes a vector of variables. For example, the state variable vector
with n state variables is (v1, v2, . . . , vn). The vector is denoted by using a
bar over the symbol. For example, a state vector will be denoted by v̄ or in
full form by (v1, v2, . . . , vn). A particular parametric assignment is given by
p̄ = (p1, p2, . . . , pm). The set of all possible 2n vectors of n state variables is
Sn, the set of all possible 2m assignments to m parameters is Pm, and the set
of all possible input vectors is Wm. Other uppercase calligraphic letters denote
subsets of these sets. When the number of components in a vector is clear, we
will often drop the subscripts, and just use S,P, and so on. Functions will be
denoted by lower case symbols, e.g., f(Im). In the brackets after a function
symbol, the list of variables on which the function depends (the support set) is
given, e.g., h1

i (p1, p2, . . . , pi). The value of a function for a particular assignment

3

to its support variables is given as h1
i (p1, p2, . . . , pi) or in short h1

i (p̄). A vector
of functions will be denoted by a bar over the top of the function symbol. For
example, a vector of parametric functions is h̄(P) = (h̄1(P), h̄2(P), . . . , h̄n(P)).
The symbols α and β will denote the constants 0 or 1.

2 SAT

2.1 Introduction

The enabling technique for Bounded Model Checking is satisfiability solving
(SAT). A SAT solvers reads a formula in conjunctive normal form (CNF) and
finds a satisfying assignment if there is any. If not, the solver returns that the for-
mula is unsatisfiable. SAT solving is one of the classical NP-complete problems.
Over the last 4 years, propositional SAT checkers have demonstrated tremen-
dous success on various classes of SAT formulas. The key to the effectiveness
of SAT checkers like GRASP [SS96] and Chaff [MMZ+01], is non-chronological
backtracking, efficient conflict driven learning of conflict clauses, and improved
decision heuristics.

The efficiency of SAT procedures has made it possible to handle circuits with
thousands of state variables, much larger than any BDD-based model checker
is able to do at present.

while(1) {

if (decide_next_branch()) { // Branching

while (deduce() == conflict) { // Propagate implications

blevel = analyse_conflict(); // Learning

if (blevel == 0)

return UNSAT;

else

backtrack(blevel); // Non-chronological

// backtrack

}

}

else // no branch means all vars

return SAT; // have been assigned

}

Figure 1: Basic DPLL backtracking search (used from [MMZ+01] for illustration
purposes)

The basic framework for these SAT procedures, shown in Figure 1, is based
on Davis-Putnam-Longeman-Loveland (DPLL) backtracking search. The func-
tion decide_next_branch() chooses the branching variable at current decision
level. The function deduce() does Boolean constraint propagation to deduce
further assignments. In the process it might infer that the present set of assign-

4

ments to variables does not lead to any satisfying solution. This is a conflict,
since at least one CNF clause remains unsatisfied. In case of a conflict, new
clauses are learned by analyze_conflict() that prevent the same unsuccess-
ful search in the future. The conflict analysis also returns a variable for which
the other value should be tried. This variable may not be the most recent
variable decided, leading to a non-chronological backtrack. If all variables have
been decided, then a satisfying assignment has been found and the procedure
returns. The strength of various SAT checkers lies in their implementation of
constraint propagation, non-chronological backtracking, decision heuristics, and
learning. In our algorithm, we use the Chaff SAT checker [MMZ+01], as it has
been demonstrated to be one of the most powerful SAT checker on a wide class
of problems.

2.2 Obtaining the Set of Satisfying Assignments

Recently, SAT solvers have been used to obtain the set of satisfying assignments
or a projection thereof to a subset of the variables for a Boolean formula. This
is also used for the proposed reparametrization algorithm.

Obtaining a projection of the set of satisfiable assignments to a subset of the
variables corresponds to a Boolean quantification. The algorithm in [McM02]
computes a CNF equivalent formula to a Boolean formula f(X,Y) and then uni-
versally quantifies the X variables. Mathematically, it computes ∀X.f(X,Y) in
clausal form (CNF). Similarly, in our previous paper, we compute ∃X.f(X,Y)
in DNF by enumerating various assignments to the X variables. These enu-
meration procedures have many applications. For example, they are used in
image computation [McM02, CCK03, KP03] in Model Checking, or for deciding
satisfiability of QBF [PBZ03]. These applications obtain the desired set by enu-
meration. The SAT solver starts by searching for a satisfying assignment. If a
satisfying assignment is found (this corresponds to the return SAT case in Fig-
ure 1), the partial assignment is recorded and then added as a blocking clause.
Instead of terminating, the algorithm backtracks and continues to search for the
next satisfying assignment until no more assignments are found.

In order to speed up enumeration of satisfying assignments, the algorithms
enlarge the partial assignment before adding the blocking clause. There are
many ways to do this: In [McM02], the conflict graph is analyzed in order to
enlarge the assignment. In [CCK03], symbolic simulation techniques are used.
Moreover, storage of the enumerated clauses or cubes is crucial to the efficiency
of the algorithm. In [McM02], zBDDs are used for storing enumerated CNF
clauses, while we use a hashing scheme in [CCK03]. In [LBC03], the implemen-
tation from [CCK03] was compared against BDD-based quantification. The
SAT-based technique outperformed the BDD-based technique on most exam-
ples.

5

3 Parametric Representation

Characteristic functions and parametric representations are two well known
methods of representing a set of Boolean vectors. A set of Boolean vectors
over the state variables represents a set of states. Consider a set S of vectors
over the variables V = {v1, v2, . . . , vn}. As described above, v̄ = (v1, v2, . . . , vn)
denotes a particular vector or a particular assignments to the variables in V . If
the characteristic function ξ(V) represents the set S of vectors, then

S = {v̄ ∈ Sn | ξ(v̄) = 1}. (1)

Example The following example will be used throughout the paper. Let v1

and v2 be two Boolean state variables. Consider the set of states {01, 10, 11}.
This set of states has the characteristic function ξ(V) = v1 ∨ v2.

On the other hand, if S is represented parametrically with a vector of n func-
tions f̄(P) = (f1(P), f2(P), . . . , fn(P)) overm parameters P = {p1, p2, . . . , pm},
then

S = {v̄ ∈ Sn | ∃p̄ ∈ Pm[v1 = f1(p̄) ∧ v2 = f2(p̄) ∧ . . . ∧ vn = fn(p̄)]}. (2)

Informally, the set of vectors in S is given by the range of the vector of functions
(f1(p̄), f2(p̄), . . . , fn(p̄)), where p̄ ranges over all possible Boolean vectors in Pm.
For the running example, one possible parametric representation with three
parameters P = {p1, p2, p3} is

(f1(P) = p1 ∧ p2, f2(P) = ¬(p1 ∧ p2) ∨ p3).

Note that, in general, m 6= n. For the particular case of symbolic simulation
that we will discuss later, the number of parameters will be equal to the number
of input variables to the circuit times the number of simulation steps, which can
be much larger than n.

A parametric representation can be easily converted to a characteristic func-
tion by using the following equation:

ξ(V) = ∃p̄[(v1 ↔ f1(p̄)) ∧ (v2 ↔ f2(p̄)) ∧ . . . ∧ (vn ↔ fn(p̄))]. (3)

In other words, ξ(v̄) is true if the there exists an assignment p̄ to the parameters
such that the parametric function f1(p̄) evaluates to v1, f2(p̄) evaluates v2, and
so on. This is what is desired, since ξ is supposed to be true exactly for the
vectors in the set. In the case of symbolic simulation, p̄ consists of the initial
state and the inputs on the path to the state ξ(v̄).

Note that the conversion to characteristic function involves Boolean quan-
tification over the parameters. If the functions are represented by BDDs, then
this quantification becomes harder as the number of parameters m and the
number of state variables n increase. A similar quantification problem occurs
in BDD-based image computation when a transition relation is represented in
conjunctively decomposed form. In that case, the variables to be quantified are

6

the present state and input variables of the circuit, while the next state vari-
ables are not quantified. Considerable effort has been devoted to making image
computation faster. Early quantification [BCL91, TSL+90, RAP+95, CCJ+01b,
CCJ+01a] is a well known technique, in which the quantifiers are pushed inside
conjunction as far as possible. The order in which conjunctions are carried out
usually influences the effectiveness of early quantification.

Consider a circuit C with p inputs and n state variables. Suppose the cir-
cuit is symbolically simulated for m steps, by building Boolean expressions that
represent the values of each of the state bits. After the m-step simulation, sup-
pose each state bit vi is given by a Boolean expression denoted by the function
fi(Im). The variables Im appearing in each function fi(Im) are the p ·m inputs
plus the n initial values of the state variables. Thus, |Im| = m = p ·m+ n. We
will denote the set of input vectors over Im variables by Wm and a particular
input vector by ῑ. Powerful symbolic simulators can simulate a large number
of steps, making p ·m � n. The set of reachable states in m steps, as a set of
state vectors in V variables, is given by

S = {v̄ ∈ Sn | ∃ῑ ∈ Wm[v1 = f1(ῑ) ∧ v2 = f2(ῑ) ∧ . . . ∧ vn = fn(ῑ)]}.

Thus symbolic simulation builds a parametric representation of the set of states
reachable in exactly m steps, where the parameters are input variables Im.

Usually, the number of parameters |Im| is very large. The number of possible
valuations of these variables is 2|I

m|, while the number of possible valuations
of the state variables is 2n. Therefore, many vectors in Im variables will map
to the same state vector. Hence, it should be possible to reduce the number of
parameters. We aim at finding new functions h1(P), h2(P), . . . , hn(P) in new
parameters P , where |P | � |Im|. This is why reparameterization is useful.
Obviously, a set of vectors in n variables can be represented by parametric
functions of n variables. Hence, |P | ≤ n. This process of converting from
one parametric representation to another is called reparameterization [CM90,
Goe03].

For the example above, another parametric representation in just two pa-
rameters P = {p1, p2} is (h1(P) = p1, h2(P) = ¬p1 ∨ p2).

There has been some work on reparameterization using BDDs. The most
complete description can be found in [Jon99, Goe03]. The BDD-based method
quantifies the input variables one at a time from the parametric representation
f̄(Im). Each quantification involves a parametric union of the two sets, each
of which could require a number of BDD operations, linear in the number of
state bits. The BDD-based algorithm has |Im| variable eliminations in the outer
loop, and the inner loop iterates over all state bits. Thus, to eliminate all Im

variables, |Im| · n BDD operations are needed [Goe03, Jon99].
We present a SAT-based reparameterization algorithm. Our SAT-based al-

gorithm does this in one pass over the state bits. The outer loop iterates over
the state bits, and the inner computation quantifies all Im variables in one run
of the SAT checker. The details of the algorithm are described in the next
section.

7

4 Reparameterization using SAT

4.1 Background

The algorithm computes functions h1(P), h2(P), . . . , hn(P) in parameters P ,
where |P | ≤ n. Thus, the number of parameters is at most equal to the number
of state variables. Moreover, the functions hi will have a specific structure, in
that the function hi will only depend on the variables {p1, p2, . . . , pi}. This
will be explicitly denoted by hi(p1, . . . , pi). We will derive these functions in
the order h1, h2, . . . , hn. Intuitively, each new parameter pi allows for the free
choice of the ith state bit vi. Let h1

i (p1, . . . , pi−1) denote the Boolean condition
under which the state bit vi is forced to take value 1, and let h0

i (p1, . . . , pi−1)
denote the Boolean condition under which the state bit vi is forced to take value
0, and hci (p1, . . . , pi−1) denote the Boolean condition under which vi is free to
choose a value (is not forced to either 0 or 1).

For the set {01, 10, 11} in the running example, suppose we let the first bit
be represented by free parameter p1. If the first bit is 0, then the second bit is
forced to be 1 in the set. Thus, the Boolean condition under which v2 is forced
to 1 is h1

2(p1) = ¬p1. Moreover, if the first bit is 1, then the second bit is free
to be either 0 or 1. Thus, hc2(p1) = p1. Note that h0

2(p1) = 0, since the second
bit is not forced to 0 in any condition.

The following decomposition of hi was introduced in [CM90, Goe03]:

hi(p1, . . . , pi) = h1
i (p1, . . . , pi−1) ∨ (pi ∧ hci (p1, . . . , pi−1)) . (4)

Intuitively, Equation 4 is interpreted as follows. The value of bit vi is 1 precisely
under the condition h1

i , hence the first term in the equation. If the parameters
p1 to pi−1 do not force the bit vi to be 1, then the bit is given by the free
parameter pi under the free choice condition hci .

The three conditions h0
i , h

1
i and hci are mutually exclusive and complete, thus

hci = ¬(h1
i ∨ h0

i) = ¬h1
i ∧ ¬h0

i . (5)

Continuing our example, we get h2(p1, p2) = ¬p1∨ (p2∧p1), which is equivalent
to the smaller parametric representation ¬p1 ∨ p2 we presented in the previous
section. It should be evident that h0

i , h
1
i , and hci depend only on the parameters

p1 to pi−1. Assigning some specific value to a bit restricts the set of choices for
the following bits. In our example, choosing v1 = 0 restricts the value of the
bit v2 to 1. In this special form of a parametric representation, the parametric
function hi is restricted only by the choices made for the earlier bits. Thus, the
critical part of computing hi is computing the three conditions h1

i , h
0
i and hci ,

which we describe now.

4.2 Computing h1
i and hci

Let us recall the meaning of h1
i : It denotes the Boolean condition in variables

{p1, . . . , pi−1} under which the ith bit vi is forced to take the value 1. In the

8

given representation f̄(Im), bit vi is constrained by other bits in what values it
can take. Initially, these constraints are given by the common variables Im. We
want to re-express these constraints in P variables. Let p̄ = (p1, p2, . . . , pi−1) be
a specific assignment which makes the Boolean condition h1

i (p1, . . . , pi−1) true.
Then all input vectors ῑ ∈ Wm, for which the functions f1, . . . , fi−1 evaluate
to the same value as h1, . . . , hi−1, are said to be confirming to the assignment
(p1, p2, . . . , pi−1). In essence, the evaluation of the new parametric functions and
the old parametric functions is the same for these input vectors. The restriction
function ρi(p1, . . . , pi−1, I

m) is used to find this set of confirming inputs. The
function ρi restricts the set of input vectors Wm to only those that conform
with the given assignment to the parameters. Formally, it can be written as

ρi(p1, . . . , pi−1, I
m) =

i−1∧
j=1

hj(p1, . . . , pj) = fj(Im). (6)

Note that ρ1 = 1. Now the condition h1
i can be easily expressed as follows:

We want a Boolean condition in {p1, . . . , pi−1} variables under which vi is forced
to take the value 1. So if an assignment (p̄1, p̄2, . . . , p̄i−1) makes h1

i true, then
that means that for all input vectors ῑ that conform with this assignment, the
function fi(ῑ) evaluates to 1. Hence,

h1
i (p1, . . . , pi−1) = ∀Im. (ρi(p1, . . . , pi−1, I

m)⇒ fi(Im) = 1) . (7)

Analogously, h0
i can be expressed as

h0
i (p1, . . . , pi−1) = ∀Im. (ρi(p1, . . . , pi−1, I

m)⇒ fi(Im) = 0) . (8)

Equation 5 can be used to compute hci , given both h1
i and h0

i . Thus hi can
be easily computed. Note that h1 = p1, unless the bit v1 is always 1 or 0, in
which case h1 = 1 or h1 = 0. This follows automatically from ρ1 = 1.

Thus, Equations 4 to 8 give us the following high level reparameterization
algorithm, that we call OrderedReparam.

The following theorem states that the algorithm is correct. It states that
the set of state vectors Y given by the new parametric representation is exactly
the same as that given by the original set of state vectors X .

Theorem 1 Suppose beginning with the parametric representation X = {v̄ ∈
S | ∃ῑ ∈ Wm.v̄ = f̄(ῑ)}, we obtain Y = {v̄ ∈ S | ∃p̄ ∈ P.v̄ = h̄(p̄)} by following
the algorithm OrderedReparam. Then X = Y.

We prove this theorem in section 8.
Computing h1

i and h0
i from equations 7 and 8 involves universally quantifying

a large number of Im variables. This is especially expensive with a BDD-
based representation. Moreover, representing parametric functions with BDDs
becomes very expensive as the number of simulation steps becomes larger as the
number of variables |Im| increases. BDDs can blow up due to variable ordering
problems, and the size of BDDs can become exponential in |Im|. However, if the

9

// Input: Parametric Representation f̄(Im) = (f1(Im), f2(Im), . . . , fn(Im)).
// Output: Parametric Representation h̄(P) = (h1(P), h2(P), . . . , hn(P)).
OrderedReparam(f̄(Im) = (f1(Im), f2(Im), . . . , fn(Im))

1 for i = 1 to n

2 ρi ← 1
3 for j = 1 to i− 1
4 ρi ← ρi ∧ (hj = fj)
5 endfor
6 h1

i ← ∀Im.(ρi ⇒ fi = 1)
7 h0

i ← ∀Im.(ρi ⇒ fi = 0)
8 hci ← ¬(h1

i ∨ h0
i)

9 hi ← h1
i ∨ (pi ∧ hci)

10 endfor
11 return (h1(P), h2(P), . . . , hn(P))

Figure 2: High Level Description of the Reparameterization Algorithm

parametric functions are represented by Boolean expressions, the size of each
expression is bounded by the circuit size times the number of simulation steps.
Therefore, symbolic simulators that use non-canonical Boolean expressions can
go much deeper. Thus, we seek to compute hi when the functions are given as
Boolean expressions.

In a previous paper [CCK03], we reported an efficient procedure to quantify
existentially a large number of variables from a Boolean formula. The procedure
essentially uses powerful SAT checkers like Chaff to enumerate cubes (partial
assignments) given in terms of the variables that are not to be quantified and
stores these cubes in an efficient data structure. We used the procedure to com-
pute successive images of a set of states to get the set of reachable states. The
procedure assumes that the formula is given in conjunctive normal form (CNF).
The procedure quantifies a subset of the variables and generates a disjunctive
normal form (DNF) clausal representation in terms of the remaining variables.
It is worthwhile to note that the complexity of the procedure is mostly related
to the number of variables not quantified and not to the number of variables to
be quantified. If the formula is not given in CNF, intermediate variables can be
used to convert it to CNF. In essence, the variables to be quantified are treated
in the same way as the intermediate variables.

We intend to use the same procedure to compute hαi (where α is either 1 or
0). However, note that we need to universally quantify Im variables, while the
procedure does existential quantification. So we re-express hαi as

hαi (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(Im) = α (9)

= ¬∃Im.¬ (ρi(p1, . . . , pi−1, I
m)→ fi(Im) = α) (10)

= ¬∃Im.ρi(p1, . . . , pi−1, I
m) ∧ fi(Im) 6= α (11)

10

Thus, the existential quantification can be carried out by our SAT-based pro-
cedure to compute ¬hαi . The formula ρi(p1, . . . , pi−1, I

m)∧ fi(Im) 6= α is given
to the SAT checker in CNF, which is done by introducing intermediate vari-
ables. The large number of Im variables poses no problem, as they are treated
just like intermediate variables by our SAT-based enumeration procedure. The
procedure computes ¬hαi in disjunctive normal form (DNF) over {p1, . . . , pi−1}
variables.

After computing h1
i and h0

i (thus in CNF), hci is given by ¬h1
i ∧ ¬h0

i . This
can be converted to CNF, if required for the SAT checker, by again introducing
intermediate variables. This allows us to derive hi using Equation 4. It appears
that for computing each hi, two SAT-based enumerations are required, hence a
total of 2n SAT-based enumerations. In the next section, we show that there are
a number of optimizations. First, we show that a single SAT-based enumeration
can be used to compute both ¬h1

i and ¬h0
i . Moreover, we show that successive

SAT runs are similar to earlier runs and how to use this similarity to improve
the performance of the SAT checker.

4.3 Computing h0
i and h1

i in a single SAT run

While enumerating cubes in variables {p1, . . . , pi−1} for computing h1
i and h0

i ,
we note that the SAT formulas are very similar to each other. In fact, the
only difference is whether fi(Im) equals 0 or 1. In order to merge these two
computations, we ask the SAT-based enumeration procedure to enumerate cubes
in {p1, . . . , pi−1} variables for the following formula:

ρi(p1, . . . , pi−1, I
m) (12)

For each solution enumerated (in p1 to pi−1 and Im), we check the value of
fi(Im). We do this check by just evaluating fi(Im) using the assignment to
the Im variables computed by the SAT checker. Note that we have to do this
evaluation a large number of times, hence it should be made as fast as possible.
Since this is just a function evaluation, techniques such as compiled simulation
can be used to do this much faster than what we do at present. Another option is
to use the SAT checker itself to do this evaluation, rather than using a separate
function evaluator. This can be done as follows: Instead of asking SAT to
enumerate the formula ρi(p1, . . . , pi−1, I

m), we ask it to enumerate on

ti(p1, . . . , pi−1, I
m) = ρi(p1, . . . , pi−1, I

m) ∧ (fi(Im) = β). (13)

Here, β is a new intermediate variable. This does not place any constraints
on the solution space. However, since the SAT checker assigns values to all
variables, the value it assigns to β is the evaluation of the function fi(Im). It
appears that we are unnecessarily adding CNF clauses to the SAT instance.
However, as we will see in the next subsection, these additional clauses can be
used when doing SAT-based enumeration for computing hαi+1.

If fi(Im) evaluates to 0, then we know that the cube found by the SAT
checker cannot belong to h1

i . This is because we found at least one consistent

11

assignment to Im variables that leads to the value 0 for fi(Im), hence bit i is not
forced to 1 for all consistent assignments to Im. Thus, the cube in {p1, . . . , pi−1}
is added to ¬h1

i . Similarly, if fi(Im) evaluates to 1, then the cube is added to
¬h0

i . Thus, both ¬h0
i and ¬h1

i are computed in a single SAT run, and then hci
is computed as given in Equation 5.

4.4 Incremental SAT

The optimized SAT formula for computing hαi , α ∈ {0, 1} (Equation 12) is very
similar to the formula given to the SAT checker for computing hi−1. Since
ρi =

∧i−1
j=1(hj = fj), the following recurrence is evident:

ρi(p1, . . . , pi−1, I
m) = ρi−1(p1, . . . , pi−2, I

m) ∧
(hi−1(p1, . . . , pi−1) = fi−1(Im)) (14)

Thus, an incremental SAT checker can be used, provided we delete the clauses
that were added as blocking clauses and the conflict clauses inferred from them
while enumerating hαi−1. An incremental SAT checker keeps all the conflict
clauses learned while enumerating solutions to ρi−1. This is correct because of
the recurrence above.

We have implemented an incremental SAT checker on top of zChaff along
with the cube enumeration. This SAT checker allows us to remove the blocking
clauses added in the previous SAT run. The advantage of incremental SAT
checking is that all the learning done while computing ρi−1 comes for free when
checking ρi. Only the clauses corresponding to hi−1 = fi−1 need to be added,
and only the blocking clauses need to be deleted.

Suppose the SAT checker is used to evaluate fi(Im) when enumerating on
ti (Equation 13), as described in the previous section by adding clauses cor-
responding to fi(Im) = β. In the next iteration we have to add an equality
between hi and fi to get ti+1, so we just add (β = hi(p1, . . . , pi)) ∧ (fi+1 = γ)
to the SAT formula ti to get the SAT formula ti+1. Here, γ is again a new
intermediate variable. Thus the clauses corresponding to fi(Im) = β are used
in the next iteration.

5 Safety Properties and Counterexamples

So far, we have described how to do SAT-based symbolic simulation when the
circuit is given in functional form, and the initial state constraint is given in
parametric form. Most circuits are in functional form, however, the initial state
constraint is frequently given as a predicate on the initial state variables. Safety
properties are also given as predicates. We now describe how to handle the initial
state and the safety property predicates and how to generate counterexamples.

12

5.1 Safety Property Checking

Symbolic simulation with reparameterization works as follows: Beginning with
the initial states, the circuit is simulated up to a certain depth, say k, when the
functions become too large. At this point, reparameterization is applied, and
a smaller parametric representation h̄k(P k) = (hk1(P k), hk2(P k), . . . , hkn(P k))
is computed representing the set of states reached in exactly k steps. The
superscript here just emphasizes the fact that this parametric representation is
for step k. After that point, symbolic simulation continues using h̄k(P k) as the
set of initial states in parametric form. This is continued until a bug is found
or the time limit is exceeded. In this section, we describe the method used for
finding violations of safety properties.

Let us assume that S0(V) is the initial state predicate and Bad(V) is the
predicate describing the set of states that violate the safety property of in-
terest. For the initial states, we generate a parametric representation from
the predicate S0(V) using the algorithm in [Jon99]. The initial state predi-
cates are usually small, hence this is not very expensive. The parametric vari-
ables for initial state will be part of the Im variables, as described earlier. If
(h1(P), h2(P), . . . , hn(P)) is the parametric representation at some step of the
simulation, then the SAT checker is asked to provide an assignment to the pa-
rameters such that the state vector satisfies the Bad(V) predicate. Formally,
the SAT checker is asked to find a satisfying assignment for

v1 = h1(P) ∧ v2 = h2(P) ∧ . . . ∧ vn = hn(P) ∧Bad(V) (15)

If the SAT checker generates a satisfying assignment, then we know that the
property fails, and a counterexample needs to be generated.

5.2 Counterexample Generation

For our symbolic simulator, the counterexample generation is nontrivial, since
we do not keep the whole simulation. Periodically, we reparameterize the repre-
sentation and hence lose the information about input variables up to that point.
In order to generate counterexamples, we need to store all intermediate para-
metric representations and the simulated functions that these representations
are derived from. This storage can be done on a disk, offline. We pick up one
state that violates the safety property and ask the SAT checker to provide an
assignment to the input variables that lead from the most recent parameterized
representation to the bug. Since the simulated functions are stored on the disk,
they can be directly used in the SAT checker, rather than unrolling the circuit
again. Once we get a state at the step when the last reparameterization was
done, we choose one state from that step and repeat the whole process again.
This is similar to the strategy that standard BDD-based model checkers use.
They begin with one bad state, and then keep on intersecting pre-images with
the frontier state sets, until they get to an initial state.

13

6 Experimental Results

We report our experimental results on a 1.3 GHz AMD Athlon processor ma-
chine with 1 GB of main memory running RedHat Linux 7.1. We set a memory
limit of 0.7GB. We report experimental results (table 1) on large industrial cir-
cuits. These circuits are taken from various processor designs. Both the circuits
were used in [CCS+02], where SAT-based abstraction-refinement was done for
verification of safety properties. All D series circuits have a counterexample,
while both properties hold on the IU circuit. IUp1 and IUp2 are the same
circuit, but checked with different properties.

We compare our algorithm against a BMC algorithm implemented in the
NuSMV model checker with the zChaff SAT checker and the abstraction refine-
ment results in [CCS+02]. BMC keeps on unwinding the transition relation,
while we periodically reduce the size of representation with reparameterization.
Therefore, comparing against BMC is fair. Our algorithm is not yet complete
for safety properties, in that it cannot prove properties true without resorting
to abstraction-refinement. However, as we will describe later, we can combine
abstraction-refinement with our symbolic simulator to make the property check-
ing complete.

ckt # regs # PIs bug Run time max max # reps.
len. BMC [CCS+02] sym len. time

D2+ 94 11 15 18 79 32 221 1000 8
D5+ 343 7 32 15 38.2 17 127 1000 13
D24 223 47 10 5 8 7 543 1000 9
D6 161 16 20 289 833 145 64 1000 5
D18 498 247 28 6834 9955 1698 56 3000 7
D20 532 30 14 2349 1947 574 89 3000 9
IUp1 4494 361 true 3000* 3350 - 183 3000 45
IUp2 4494 361 true 3000* 712 - 183 3000 45

Table 1: Experimental Results on Large Industrial Benchmarks. Times reported
are in seconds. BMC was able to complete just 39 steps and then ran out of
memory for IUp1 and IUp2.

In Table 1, the first column is the name of the circuit. In the “# regs”
column, we report the number of latches in the circuit, while in the third column,
we record the number of inputs of the circuit. In the column marked “bug len.”,
we denote the length of the shortest counterexample to the safety property, if the
property is false. The “bmc time” column records the amount of time the BMC
algorithm required for finding the bug, the “fmcad time” records the amount of
time the abstraction-refinement algorithm took to find the bug or to prove the
property, and the column marked “sym time” denotes the amount of time our
algorithm takes to simulate up to the bug and find the bug. Since IUp1 and
IUp2 did not have any bug, we did not record the time for these two circuits in
the “sym bug time” column.

14

To show that our algorithm can go deeper than BMC, we continue simulating
these circuits past the bug and record the maximum length we can reach within
the time limit. The “max len.” column denotes the maximum length that we
simulate the circuit for in the time given in the column “ max time”. The last
column marked “# reparams” records the number of reparameterizations done
for simulating up to the maximum length.

We would like to point out that in [CCS+02], a spurious counterexample of
length 72 was found, which could not even be simulated with SAT on a machine
with 3 GB of memory. However, we could simulate it for 72 steps in 987 seconds
on the smaller machine with our algorithm.

It is evident from the results that our algorithm is more powerful than the
plain BMC algorithm. We are able to go much deeper and can do it in shorter
amount of time. In fact, we were even able to do better than the results ob-
tained with abstraction. It should be noted that multiple refinement steps are
required in abstraction-refinement, and in each step, a spurious counterexam-
ple is simulated using SAT. Therefore, abstraction-refinement can be slower in
many cases.

The BDD-based reachability program of [Goe03] does property checking and
can also do fixed points. However, it was able to find bugs for D2 and D5 circuits
only. For the rest of the circuits, it either exceeded the time or memory limit.

7 Extensions

7.1 Proving Safety Properties

For proving that a safety property is true, the BDD-based symbolic simulators
perform a fixed-point detection using efficient set union algorithms. Imple-
menting set union in our framework is feasible as described below, and as the
representation after reparameterization is canonical for a given variable order-
ing, the fixed point could be detected by comparing the last two parametric
representations.

7.1.1 Set Union

Suppose two sets of states S1 and S2 are given using the parametric representa-
tions h̄(P) = (h1(P), . . . , hn(P)) and ḡ(Q) = (g1(Q), . . . , gn(Q)), respectively.
Suppose P ∩ Q = ∅, i.e., the representations do not share parameters. If that
is not the case, the parameters can just be renamed to make them disjoint. We
define] as an operator for two parametric representations as follows:

h̄(P)] ḡ(Q) = (z?h1(P) : g1(Q), z?h2(P) : g2(Q), . . . , z?hn(P) : gn(Q)).

Here, the expression z?hi(P) : gi(Q) is just a short form for (z ∧ hi(P))∨ (¬z ∧
gi(Q)) and z is a new parameter. The claim below that h̄(P)] ḡ(Q) represents
S1 ∪ S2 is easy to prove.

15

Theorem 2 If S1 and S2 are given by parametric representations h̄(P) and
ḡ(Q), then S1 ∪ S2 is given by the parametric representation h̄(P)] ḡ(Q).

This set union operation can be generalized to take the union of n different
parametric representations by using dlog2ne new parameters.

The number of parameters after set union of two sets is |P |+|Q|+1. This rep-
resentation can be reparameterized by our SAT-based algorithm to get a para-
metric form in n parameters. Since our algorithm generates canonical forms, the
fixed point could be detected by comparing the last two representations. Thus,
fixed point detection would require a reparameterization run after each step of
simulation. This would nullify the performance gained by the new algorithm,
which benefits from performing the reparameterization only when the equations
become too big.

Hence, the fixed point detection algorithm, while a theoretical possibility,
should not be used for performance reasons. The user of Bounded Model Check-
ing has the same problem: the Bounded Model Checker only guarantees the
absence of bugs up to the bound. As described in the introduction, there are
several techniques to detect that the property holds. Thus, we propose to use
SAT-based symbolic simulation as a replacement for BMC within these frame-
works. The symbolic simulator is used to disprove the property only. This is
described in the next sections.

7.1.2 Invariant Constraints

Invariant statements are often used to restrict the state space for verification.
Such invariants are often called verification conditions [Jon99]. An invariant
is a predicate C(V) on state variables and the state exploration is restricted
to only those states satisfying C(V). The technique described so far assumes
that the transition relation of the system is a conjunction of transition func-
tions of individual state variables. It does not allow an arbitrary transition
relation. The following approach can be used for handling such invariant con-
straints. We first need to convert the invariant C(V) in a parametric form
(c1(Q), c2(Q), . . . , cn(Q)), where Q are parameters. Assuming that the invari-
ants are not too complicated, BDD-based algorithms can be used to get this
parametric form as described in [CM90] or [Jon99]. Let the next state func-
tion be denoted by fi(V). Then, for each state variable vi, a constraint of the
form fi(V) = ci(Q) is added for every time step. In the SAT formula used for
symbolic simulation, each fi(V) is represented by an intermediate variable. Let
vfi denote this variable. Similarly, ci(Q) is also represented by another inter-
mediate variable vci. Thus, the equality constraint vfi = vci is added to the
SAT formula. These equality constraints are added for each state variable in
each step of the simulation. The parameters Q are fresh variables for each time
step. Finally, when reparameterization is done, the Q parameters added for the
invariants are removed along with the Im variables.

For the special case of counterexample guided abstraction refinement, an
abstract counterexample, which is just an assignment to a subset of the state

16

variables at each time step, needs to be simulated on the concrete machine. The
abstract counterexample contains constraints in parameterized form that are to
be applied to the symbolic simulation.

7.1.3 SAT-based Reparameterization in the Abtraction-Refinement
Framework

In the abstraction-refinement framework, it is straightforward to use symbolic
simulation with the SAT-based reparameterization algorithm. In [MA03], no
counterexample needs to be simulated on concrete machine, as only the length of
the counterexample is of interest. In this case, the reparameterization algorithm
is simply used as replacement for BMC as described in Section 4.

On the other hand, in the counterexample-guided abstraction refinement
framework, a counterexample s̄m = 〈ŝ0, ŝ1, . . . , ŝm〉 is used to assigns val-
ues to a subset of the state variables at each step. Suppose that along the
length of the counterexample, reparameterization is invoked a total of l times
at steps m1,m2, . . . ,ml, such that 0 < m1 < m2 < . . . ≤ m. Let the old
parametric representation be denoted by (fmi1 (Imi), . . . , fmin (Imi)), and let
(hmi1 (Pmi), . . . , hmin (Pmi)) be the newly computed parametric representation
at step mi, and let Smi be the set of states represented by it. In order to
determine if the counterexample is spurious, we simulate the abstract coun-
terexample by adding ŝ0 as constraints to the initial state. Then we proceed by
adding ŝ1, ŝ2, ... as constraints to the symbolic simulation as described in Sec-
tion 7.1.2. These constraints are just assignments of values to state variables,
and hence are easy to add in the symbolic simulation.

When we reach the step m1, the process is repeated using ŝm1 as constraints
on the reparameterized state. Also, at each of the steps mi, we check to see if
the set of states Smi is empty or not. This can be done by checking if the SAT
formula

ŝ1
mi = v1 = fmi1 (Imi) ∧ ŝ2

mi = v2 = fmi2 (Imi) . . . ŝnmi = vn = fmin (Imi) (16)

has any satisfiable assignments or not. Here, ŝjmi denotes the assignment to
the jth state variable by the abstract counterexample in step number mi. If
Equation 16 is satisfiable, then we know that the counterexample can be con-
cretized and we proceed to build the concrete counterexample as described in
the previous section. If not, we need to extract refinement information from the
failed SAT instance.

For extracting refinement information, we can use the heuristics described
in [CCS+02]. However, there is one important difference: Equation 16 does
not contain state variables for all information steps. The state variables that
appear in the formula are from step mi−1 to step mi only. However, as reported
in [CCS+02], just looking at a part of the failed counterexample (often just the
failure state) already provides useful refinement information. Future work is to
evaluate the quality of the refinement information that we get from such SAT
instances by extensive experimentation.

17

7.2 Checking Liveness using Safety Properties

Biere et al. [SB03] propose to reduce a liveness property to a safety property
as follows: Consider properties of the form AFp. The counterexamples to AFp
properties are of the form EG¬p, i.e., an infinite path such that all states on the
path satisfy ¬p. For a finite state system, such an infinite path must look like
a lasso, i.e., a possibly empty sequence of states s0, s1, . . . , sl where no state is
repeated concatenated with a loop sl, sl+1, . . . , sm = sl. The authors describe
two methods to translate AF p to a safety property. Each method adds some
state variables to the original system model. In each method, a Boolean variable
found becomes true as soon as p holds on any state. Another Boolean variable
looped is defined that indicates that a state has already been seen before in the
path, thus loop has bee closed. The truth of the AF p property is thus given
by the truth of the AG(looped −→ found) property.

The two methods differ in the way the looped signal is generated. In the
first method, a counter that counts up to the completeness threshold (CT) of
the AF p property that is introduced. Once the counter has gone beyond the
CT, then looped is set to true. The counter can be very large, however. In
the second method, a copy of all state variables is made and these new state
variables nondeterministically copy the value of the real state variable at some
step. Once a state equivalent to the saved state is found, a loop is detected.
The authors describe experiments with both methods. They also extend the
method to handle general LTL properties.

It is easy to add this feature to SAT-based abstraction-refinement framework.
Since the translation is done in the system model, it can be easily incorporated
in our framework.

7.3 Effect of State Variable Ordering

The static ordering techniques for quantification scheduling in BDD-based image
computation place state variables whose transition functions are closely related
next to each other. I propose to use the same heuristic for ordering the state
variables in the SAT-based reparameterization algorithm.

It is not clear that the size of the parametric functions is related to the
size of the transition functions. We measured the correlation between the sizes
of transition functions and the sizes of parametric functions, before and after
reparameterization for different circuits. For some circuits (IU, D24, D6), a
very high correlation (> 85%) was observed while for other circuits (D2, D5,
D18), the correlation was minimal (< 60%). This indicates that static ordering
based on the size of the transition function can be useful. More work is needed
to understand the relationship better. It should be noted that the ordering
problem for parametric representation is not as severe as it is in quantification
scheduling. However, some improvements can be achieved by better orderings.

18

8 Correctness Proof

We provide a proof of Theorem 1 in this section. We prove that the parametric
representation that we get from the algorithm OrderedReparam is equivalent
to the original representation. As usual, v̄ = (v1, . . . , vn) ∈ Sn denotes a partic-
ular assignment to n variables V = {v1, . . . , vn}, ῑ ∈ Wm denotes a particular
assignment to variables Im, and p̄ = (p1, . . . , pn) ∈ Pn denotes a particular
assignment to variables P = {p1, . . . , pn}. We will use Xn and Yn to denote
subsets of Sn. We will often drop the subscripts from Sn,Pn,Xn, and Yn when
it is clear that the sets are constructed from n length vectors.
Proof of Theorem 1:

We will prove this theorem in two parts. First, we prove that X ⊆ Y, and
then we prove that Y ⊆ X .

X ⊆ Y .
If X = ∅, then the relation obviously holds. Otherwise, let v̄ be an arbitrary

element of X . Then by definition of X there exists an assignment ῑ ∈ Wm such
that f1(ῑ) = v1∧. . .∧fn(ῑ) = vn. In order to show that v̄ ∈ Y, we have to provide
an assignment p̄ ∈ P such that h1(p̄) = f1(ῑ) = v1 ∧ . . . ∧ hn(p̄) = fn(ῑ) = vn.

We will prove this by induction on n.
Base Case: n = 1

By definition of ρ1(ῑ), it is true that ρ1(ῑ) is 1 for any input vector ῑ, or
formally ∀ι ∈ Wm.ρ1(ῑ) = 1. Subsequently, hα1 = (∀ῑ ∈ Wm.f1(ῑ) = α),∀α ∈
{0, 1}. Since h1

1, h
0
1, and hc1 are mutually exclusive, only one of them is 1 and

the rest are 0. Also recall that h1(p1) = h1
1 ∨ p1 · hc1.

Now h¬v1
1 has to be 0, because there is an input vector ῑ for which f1(ῑ) = v1.

There are two possibilities left. Either hv1
1 = 1 or hc1 = 1. If hv1

1 = 1, then
h1(p1) = v1 for any p1. On the other hand, if hc1 = 1, then h1(p1) = p1, so we
choose p1 = v1. Then h1(p1) = p1 = v1.
Induction Step: n→ n+ 1

The induction hypothesis is

∀v̄ ∈ Xn.∃p̄ ∈ Pn.h1(p̄) = v1 ∧ . . . ∧ hn(p̄) = vn.

Here, Xn and Pn are used to emphasize that v̄ and p̄ are assignments to n
variables. We have to prove that

∀v̄ ∈ Xn+1.∃p̄ ∈ Pn+1.h1(p̄) = v1 ∧ . . . ∧ hn+1(p̄) = vn+1.

Let v̄ = (v1, . . . , vn+1) ∈ Xn+1. Then by definition of Xn+1, there exists an
ῑ ∈ Wm such that f1(ῑ) = v1 ∧ . . . ∧ fn+1(ῑ) = vn+1. According to the in-
duction hypothesis, there exists (p1, . . . , pn) such that h1(p1) = v1 ∧ . . . ∧
hn(p1, p2, . . . , pn) = vn. We will extend this assignment by pn+1 such that
hn+1(p1, . . . , pn+1) = vn+1. By definition, h1

n+1, h
0
n+1 and hcn+1 depend only

on p1, . . . , pn. So the particular assignment (p1, . . . , pn) assigns specific values
to these three functions, and they are mutually exclusive. Note that we have
ρn+1(p1, . . . , pn, ῑ) = 1 by definition of ρn+1 and by the induction hypothesis.

19

Also from the definition, hαn+1(p1, p2, . . . , pn) = 1 if and only if for all input
vectors satisfying ρi(p1, . . . , pn, ῑ) = 1, fn+1 evaluates to α. If there exists at
least one input vector for which ρi evaluates to 1 and fn+1 evaluates to ¬α,
then the hαn+1 = 0.

As there exists an ῑ for which both ρi(p1, p2, . . . , pn, ῑ) = 1 and fn+1(ῑ) =
vn+1 hold, h¬vn+1

n+1 cannot be 1. Thus, there are two cases to consider. If
h
vn+1
n+1 = 1, then hn+1(p1, . . . , pn+1) = vn+1 for any pn+1. On the other hand, if
hcn+1 = 1, then hn+1(p1, . . . pn+1) = pn+1. In that case, we choose pn+1 = vn+1.
Then hn+1(pn+1) = pn+1 = vn+1.

Thus the vector p̄ = (p1, p2, . . . , pn, pn+1) has the desired property h1(p̄) =
v1∧ . . .∧hn+1(p̄) = vn+1. This holds for p1, . . . , pn by the induction hypothesis,
and for pn+1 by the arguments above. So the induction step is proved.

We provided an assignment p̄ such that h̄(p̄) = v̄ for a given v̄ ∈ X . So
v̄ ∈ Y, hence X ⊆ Y.

Y ⊆ X .
If Y = ∅, then the relation obviously holds. Otherwise, suppose v̄ ∈ Y. Then

by definition of Y, there exists p̄ ∈ P such that h1(p̄) = v1 ∧ . . . ∧ hn(p̄) = vn.
In order to show that v̄ ∈ X , we have to provide an assignment ῑ such that
f1(ῑ) = h1(p̄) = v1 ∧ . . . ∧ fn(ῑ) = hn(p̄) = vn. However, instead of coming up
with just one input vector ῑ, we will come up with the largest set Jm ⊆ Wm of
input vectors such that any input vector in Jm will have the desired property.
Formally, we will prove the following stronger claim by induction:

∀v̄ ∈ Y.∃Jm ⊆ Wm.

[
Jm 6= ∅ ∧ Jm =

{
ῑ ∈ Wm|

n∧
i=1

fi(ῑ) = v̄i

}]

Thus, we provide a non empty set of input vectors Jm ⊆ Wm such that
for every input vector in Jm, the function vector f̄(ῑ) will evaluate to the state
vector v̄, and for every input vector that is not in Jm, at least one function
fi(ῑ) will not match the value of the bit vi. Mathematically, we want Jm to
satisfy the following three conditions:

(I) Jm 6= ∅

(II) ∀ῑ ∈ Jm.f̄(ῑ) = v̄

(III) ∀ῑ 6∈ Jm.f̄(ῑ) 6= v̄

Any ῑ from Jm will suffice for our purpose.
We prove the claim by induction on n.

Base Case: n = 1
By definition, we have ∀ῑ ∈ Wm.ρ1(ῑ) = 1. Subsequently, we conclude

hα1 = (∀ι ∈ Wm.f1(ῑ) = α), α ∈ {0, 1}. Since h1
1, h

0
1 and hc1 are mutually

exclusive, only one of them is 1 and the rest are 0. We have two cases depending
on whether v1 = 0 or v1 = 1.

Case 1: v1 = 1.

20

Since v1 = h1(p1) = h1
1 ∨ p1 · hc1, we have two sub cases to consider: If

h1
1 = 1, then ∀ῑ ∈ Wm.f1(ῑ) = 1, as ρ1 = 1. In this case, Jm = Wm and
Jm is obviously non empty. Moreover, conditions (II) and (III) are also clearly
satisfied by Jm.

On the other hand, if p1 = 1 and hc1 = 1, then this implies that h0
1 = 0. We

choose Jm = {ῑ ∈ Wm | f1(ῑ) = 1} to satisfy condition (II). Jm is non empty,
since there exist at least one ῑ such that f1(ῑ) = 1, due to h0

1 = 0. Moreover,
f1(ῑ) 6= 1 for any ῑ 6∈ Jm by definition. Thus Jm also satisfies condition (III).

Case 2: v1 = 0.
Since v1 = h1(p1) = h1

1∨p1 ·hc1, we have h1
1 = 0 and either hc1 = 0 or p1 = 0.

So there are two sub cases to consider: If hc1 = 0, then h0
1 = 1. As ρ1 = 1, this

implies that ∀ῑ ∈ Wm.f1(ῑ) = 0. In this case, Jm = Wm and Jm is obviously
non empty. Moreover, conditions (II) and (III) are also clearly satisfied by Jm.

On the other hand, if hc1 = 1, this implies that p1 = 0, we choose Jm = {ῑ ∈
Wm | f1(ῑ) = 0} to satisfy condition (II). Jm is non empty, since there exist
at least one ῑ such that f1(ῑ) = 0, due to h1

1 = 0. Moreover, f1(ῑ) 6= 0 for any
ῑ 6∈ Jm by definition. Thus Jm also satisfies condition (III).

Thus in both cases, we have found a Jm with the desired properties.
Induction Step : n→ n+ 1

The induction hypothesis is that

∀v̄ ∈ Yn.∃Jm ⊆ Wm.

[
Jm 6= ∅ ∧ Jm =

{
ῑ ∈ Wm|

n∧
i=1

fi(ῑ) = v̄i

}]

We need to prove this for n+ 1, i.e.,

∀v̄ ∈ Yn+1.∃Km ⊆ Wm.

[
Km 6= ∅ ∧ Km =

{
ῑ ∈ Wm|

n+1∧
i=1

fi(ῑ) = v̄i

}]

For clarity, we use Jm for the induction hypothesis and Km for the claim.
Suppose we are given v̄ = (v1, v2, . . . , vn+1) ∈ Yn+1. By induction hypothesis,
there exists a non empty Jm such that ∀ῑ ∈ Jm.f1(ῑ) = v1∧. . .∧fn(ῑ) = vn. We
provide a non empty Km ⊆ Jm as shown below such that ∀ῑ ∈ Km.fn+1(ῑ) =
vn+1 and ∀ῑ ∈ Jm \ Km.fn+1(ῑ) 6= vn+1. Then, since Km ⊆ Jm, we already
have ∀ῑ ∈ Km.f1(ῑ) = v1 ∧ . . . ∧ fn(ῑ) = vn. So Km satisfies condition (II). If
ῑ 6∈ Km, then there are two cases depending on whether ῑ is in Jm or not. If
ῑ is in Jm, then the function fn+1 disagrees with vn+1. Otherwise, induction
hypothesis gives us that at least one of fi(ῑ) disagrees with vi for i ≤ n. Thus
Km satisfies condition (III) as well.

Now let us find such a Km.
Since we have v̄ ∈ Yn+1, there is an assignment p̄ = (p1, p2, . . . , pn+1) such

that h1(p̄) = v1 ∧ . . . hn+1(p̄) = vn+1. Note that for all input vectors ῑ ∈ Jm,
ρn+1(p1, p2, . . . , pn, ῑ) = 1 by definition of ρn+1 and by induction hypothesis.
Moreover, ∀ῑ 6∈ Jm.ρn+1(p1, p2, . . . , pn, ῑ) = 0.

21

Before commencing our inductive proof, we need to establish the following:

hαn+1 = ∀ῑ ∈ Wm. (ρn+1 ⇒ fn+1(ῑ) = α)

= (∀ῑ ∈ Jm. (ρn+1 ⇒ fn+1(ῑ) = α))
∧

(∀ῑ 6∈ Jm. (ρn+1 ⇒ fn+1(ῑ) = α))

= (∀ῑ ∈ Jm. (1⇒ fn+1(ῑ) = α))
∧

(∀ῑ 6∈ Jm. (0⇒ fn+1(ῑ) = α))

= (∀ῑ ∈ Jm. (fn+1(ῑ) = α))
∧

1

Thus, hαn+1 = ∀ῑ ∈ Jm.fn+1(ῑ) = α.

Since h1
n+1, h

0
n+1 and hcn+1 are mutually exclusive, only one of them is 1 and

the rest are 0. We have two cases depending on whether vn+1 = 0 or vn+1 = 1.
Case 1: vn+1 = 1.
Since vn+1 = hn+1(p̄) = h1

n+1∨pn+1·hcn+1, we have two sub cases to consider.
If h1

n+1 = 1, then ∀ῑ ∈ Jm.fn+1(ῑ) = 1, as ρn+1 = 1. In this case, Km = Jm
and Km is non empty since Jm is. Km also satisfies condition (II) as the first n
functions match the first n bits by induction and the last function matches the
last bit 1 by the argument above. If ῑ 6∈ Km, then ῑ 6∈ Jm, and at least one of
f1, f2, . . . , fn doesn’t match the value of the corresponding bit. Thus condition
(III) is also satisfied by Km.

On the other hand, if hcn+1 = 1 and pn+1 = 1, then this implies that h0
n+1 =

0. We choose Km = {ῑ ∈ Jm | fn+1(ῑ) = 1} to satisfy condition (II). Km is
non empty, since there exist at least one ῑ ∈ Jm such that fn+1(ῑ) = 1, due to
h0
n+1 = 0. For ῑ 6∈ Km, if ῑ ∈ Jm, then fn+1(ῑ) 6= 1. Otherwise, ῑ 6∈ Jm, and

inductive hypothesis gives us at least one fi, 1 ≤ i ≤ n such that fi(ῑ) 6= vi.
Thus Km also satisfies condition (III).

Case 2: vn+1 = 0.
Since vn+1 = hn+1(p̄) = h1

n+1 ∨ pn+1 · hcn+1, we have h1
n+1 = 0 and either

hcn+1 = 0 or pn+1 = 0. Thus, we have two sub cases to consider. If hcn+1 = 0,
then h0

n+1 = 1, so ∀ῑ ∈ Jm.fn+1(ῑ) = 0. In this case, Km = Jm and Km is non
empty since Jm is. Km also satisfies condition (II) as the first n functions match
the first n bits by induction and the last function matches the last bit 1 by the
argument above. If ῑ 6∈ Km, then ῑ 6∈ Jm, and at least one of f1, f2, . . . , fn
doesn’t match the value of the corresponding bit. Thus condition (III) is also
satisfied by Km.

On the other hand, if hcn+1 = 1, then pn+1 = 0 and we choose Km = {ῑ ∈
Jm | fn+1(ῑ) = 0} to satisfy condition (II). Km is non empty, since there exist
at least one ῑ ∈ Jm such that fn+1(ῑ) = 0, due to h1

n+1 = 0. For ῑ 6∈ Km,
if ῑ ∈ Jm, then fn+1(ῑ) 6= 0. Otherwise, ῑ 6∈ Jm, and inductive hypothesis
gives us at least one fi, 1 ≤ i ≤ n such that fi(ῑ) 6= vi. Thus Km also satisfies
condition (III).

Therefore, in both cases, we have found a Jm with the desired properties.
Hence, by the induction principle, we can always provide a Jm such that

22

∀ῑ ∈ Jm.f̄(ῑ) = v̄. We can choose any ῑ from Jm. Therefore, v̄ ∈ X , hence
Y ⊆ X . QED.

9 Conclusion and Future Work

The paper presents a SAT-based reparameterization algorithm, which allows to
perform symbolic simulation much faster than using BDDs. The method uses an
unwinding of the transition relation and thus is comparable to BMC. However,
the reparameterization step, which is done when the equation becomes too big,
allows makes it possible to go much deeper into the transition system than what
BMC without reparameterization can do. The reparameterization algorithm
captures a small, symbolic representation of the states that are reachable with
exactly k steps. Using this representation as new initial state predicate, the
algorithm starts over.

The algorithm is incomplete in that it is unable to prove the property to
be correct. However, so is BMC, and the presented algorithm can be used as a
replacement for BMC within most methods that make BMC complete, such as
counterexample guided abstraction refinement.

In the future, we want to evaluate the performance improvements obtain-
able by using the algorithm as replacement for BMC in this setting. In par-
ticular, we would like to investigate how to extract proofs of unsatisfiability or
interpolation-based proofs.

References

[AJS99] Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger.
Formal verification using parametric representations of boolean
constraints. In Proceedings of Design Automation Conference
(DAC’99), pages 402–407. ACM Press, June 1999.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, M. Fujita,
and Yunshan Zhu. Symbolic model checking using SAT procedures
instead of BDDs. In Proceedings of the Design Automation Confer-
ence (DAC’99), pages 317–320, 1999.

[BCCZ99] Armin Biere, Alexandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In Proceedings of
Tools and Algorithms for the Analysis and Construction of Systems
(TACAS’99), number 1579 in LNCS, 1999.

[BCL91] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic Model Check-
ing with partitioned transition relations. In A. Halaas and P. B.
Denyer, editors, Proceedings of the International Conference on
Very Large Scale Int egration, Edinburgh, Scotland, August 1991.

23

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Infor-
mation and Computation, 98(2):142–170, June 1992.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–691,
August 1986.

[CCJ+01a] Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula,
Tom Shiple, Helmut Veith, and Dong Wang. Non-linear quantifica-
tion scheduling in image computation. In Proceedings of ICCAD’01,
pages 293–298, November 2001.

[CCJ+01b] Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula,
Helmut Veith, and Dong Wang. Using combinatorial optimization
methods for quantification scheduling. In Tiziana Margaria and
Tom Melham, editors, Proceedings of CHARME’01, volume 2144 of
LNCS, pages 293–309, September 2001.

[CCK03] Pankaj Chauhan, Edmund M. Clarke, and Daniel Kroening. Using
SAT based image computation for reachability analysis. Techni-
cal Report CMU-CS-03-151, Carnegie Mellon University, School of
Computer Science, 2003.

[CCS+02] Pankaj Chauhan, Edmund M. Clarke, Samir Sapra, , James Kukula,
Helmut Veith, and Dong Wang. Automated abstraction refinement
for model checking large state spaces using SAT based conflict anal-
ysis. In Proceedings of FMCAD’02, volume 2517 of LNCS, pages
33–50, November 2002.

[CE81] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skele-
tons for branching time temporal logic. In Logic of Programs: Work-
shop, volume 131 of Lecture Notes in Computer Science. Springer-
Verlag, Yorktown Heights, NY, May 1981.

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
and M. Y. Vardi. Benefits of bounded model checking at an indus-
trial setting. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Proceedings of the 13th International Conference on Com-
puter Aided Verification (CAV 2001), number 2102 in LNCS, pages
436–453. Springer Verlag, 2001.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In E. A. Emerson
and A. P. Sistla, editors, Conference on Computer Aided Verifica-
tion (CAV 2000), volume 1855 of LNCS, pages 154–169, July 2000.

[CGP00] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, 2000.

24

[CM90] Olivier Coudert and Jean Christophe Madre. A unified framework
for the formal verification of sequential circuits. In Proc. Intl. Conf.
on Computer-Aided Design (ICCAD), pages 78–82. IEEE Computer
Society Press, November 1990.

[GB03] Amit Goel and Randal E. Bryant. Set manipulation with boolean
functional vectors for symbolic reachability analysis. In Proceedings
of Design Automation and Test in Europe (DATE’03), pages 10816–
10821, 2003.

[Goe03] Amit Goel. A Unified Framework for Symbolic Simulation and
Model Checking. PhD thesis, Electrical and Computer Engineer-
ing, Carnegie Mellon University, 2003.

[Jon99] Robert B. Jones. Applications of symbolic simulation to the for-
mal verification of microprocessors. PhD thesis, Dept. of Electrical
Engineering, Stanford University, August 1999.

[KP03] Hyeong-Ju Kang and In-Cheol Park. SAT-based unbounded sym-
bolic model checking. In Proceedings of Design Automation Con-
ference (DAC’03), pages 840–843, 2003.

[KS03] Daniel Kroening and Ofer Strichman. Efficient computation of
recurrence diameters. In L. Zuck, P. Attie, A. Cortesi, and
S. Mukhopadhyay, editors, 4th International Conference on Veri-
fication, Model Checking, and Abstract Interpretation, volume 2575
of Lecture Notes in Computer Science, pages 298–309. Springer Ver-
lag, January 2003.

[LBC03] S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach
to predicate abstraction. In W. A. Hunt and F. Somenzi, editors,
Conference on Computer Aided Verification (CAV 2003), number
2725 in LNCS, pages 141–153. Springer-Verlag, July 2003.

[MA03] Kenneth L. McMillan and Nina Amla. Automatic abstraction with-
out counterexamples. In Hubert Garavel and John Hatcliff, editors,
Tools and Algorithms for the Construction and Analysis of Systems,
9th International Conference (TACAS 2003), volume 2619 of Lec-
ture Notes in Computer Science, pages 2–17. Springer, 2003.

[McM02] Ken McMillan. Applying SAT methods in unbounded symbolic
model checking. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Proceedings of the International Conference on Computer-
Aided Verification (CAV 2002), volume 2404 of Lecture Notes in
Computer Science, pages 250–264. Springer, 2002.

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model check-
ing. In F. Somenzi and W. Hunt, editors, Conference on Computer
Aided Verification (CAV 2003), volume 2725 of Lecture Notes in
Computer Science, pages 1–13. Springer, July 2003.

25

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lin-
tao Zhang, and Sharad Malik. Chaff: Engineering an efficient
SAT solver. In Proceedings of the Design Automation Conference
(DAC’01), pages 530–535, 2001.

[PBZ03] D. Plaisted, A. Biere, and Y. Zhu. A satisfiability tester for quan-
tified boolean formulae. Journal of Discrete Applied Mathematics
(DAM), 2003. In press, available online.

[RAP+95] R.K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R.K. Bray-
ton. Efficient BDD algorithms for FSM synthesis and verification.
In IEEE/ACM International Workshop on Logic Synthesis, Lake
Tahoe, 1995. IEEE/ACM.

[SB03] Viktor Schuppan and Armin Biere. Efficient reduction of finite state
model checking to reachability analysis. In Proceedings of Software
Tools for Technology Transfer, 2003. Submitted for publication.

[Sht00] O. Shtrichman. Tuning SAT checkers for bounded model checking.
In E.A. Emerson and A.P. Sistla, editors, Proceedings of the 12th
International Conference on Computer Aided Verification (CAV
2000), LNCS. Springer Verlag, 2000.

[SS96] J. P. Marques Silva and K. A. Sakallah. GRASP: A new search algo-
rithm for satisfiability. Technical Report CSE-TR-292-96, Computer
Science and Engineering Division, Department of EECS, Univ. of
Michigan, April 1996.

[TSL+90] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Implicit enumeration of finite state machines using
BDDs. In Proceedings of the IEEE international Conference on
Computer Aided Design (ICCAD), pages 130–133, November 1990.

[YS02] Jin Yang and Carl-Johan H. Seger. Generalized symbolic trajectory
evaluation – abstraction in action. In Proceedings of FMCAD’02,
volume 2517 of LNCS, pages 70–86, November 2002.

26

	Introduction
	SAT
	Introduction
	Obtaining the Set of Satisfying Assignments

	Parametric Representation
	Reparameterization using SAT
	Background
	Computing hi1 and hic
	Computing hi0 and hi1 in a single SAT run
	Incremental SAT

	Safety Properties and Counterexamples
	Safety Property Checking
	Counterexample Generation

	Experimental Results
	Extensions
	Proving Safety Properties
	Set Union
	Invariant Constraints
	SAT-based Reparameterization in the Abtraction-Refinement Framework

	Checking Liveness using Safety Properties
	Effect of State Variable Ordering

	Correctness Proof
	Conclusion and Future Work

